
 S

L

T

A

A

C

N

I

D

N

A

H

R

C

D

E
T

Technical Standard

Systems Management:
Application Response Measurement

(ARM) API

[This page intentionally left blank]

Open Group Technical Standard

Systems Management: Application Response Measurement (ARM) API

The Open Group

 July 1998, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners.

Open Group Technical Standard

Systems Management: Application Response Measurement (ARM) API

ISBN: 1-85912-211-6
Document Number: C807

Published in the U.K. by The Open Group, July 1998.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii Open Group Technical Standard

Contents

Chapter 1 Introduction... 1
 1.1 Scope and Purpose.. 1
 1.2 Measuring Service Levels.. 2
 1.3 ARMing Your Applications .. 3
 1.4 ARM Version 1.0 and Version 2.0 .. 4

Chapter 2 Instrumenting an Application.. 5
 2.1 Basic Tasks.. 5
 2.2 What to Instrument .. 6

Chapter 3 ARM API Function Calls... 7
 3.1 Overview .. 7
 3.2 Valid Call Sequences .. 8
 3.3 ARM API Function Call Parameters ... 9
 3.4 Definition of Data Type Terminology... 10
 3.4.1 Standard API Calls .. 10
 3.4.2 More Advanced Functions... 10
 3.5 Function Call Reference Pages ... 10
 arm_end() ... 11
 arm_getid()... 12
 arm_init()... 14
 arm_start() ... 16
 arm_stop() .. 17
 arm_update().. 19

Chapter 4 Advanced Topics .. 21
 4.1 Additional Data Passed in ARM Function Calls 21
 4.1.1 Transaction Correlation.. 21
 4.1.2 Application-Defined Metrics... 23
 4.1.3 Choosing a Data Type... 24
 4.1.4 Format of Data Buffer in arm_getid ... 26
 4.1.5 Data Type Definitions ... 27
 4.1.6 Format of Data Buffer in arm_start/arm_update/arm_stop.......... 28
 4.2 Three Ways to Instrument within a Transaction Instance 32
 4.3 Internationalization.. 33

Appendix A <arm.h> Header File... 35

Appendix B Measurement Agent Information .. 41
 B.1 Agents and Correlators.. 41
 B.2 Format of the Correlator.. 42

Systems Management: Application Response Measurement (ARM) API iii

Contents

Appendix C The ARM Software Developers Kit (SDK)............................ 47
 C.1 Content.. 47
 C.2 The ARM Shared Library .. 47
 C.3 Logging Agent... 48

Appendix D Adding ARM Function Calls to an Application 49

Appendix E Testing Your Instrumentation .. 51
 E.1 Procedure.. 51
 E.2 Logging Agent Sample Output.. 52

Appendix F Examples.. 53
 F.1 C/C++ (all platforms) Sample 1.. 53
 F.2 C/C++ (all platforms) Sample 2.. 57

 Glossary ... 63

 Index... 65

List of Figures

1-1 ARM in the Enterprise .. 3
3-1 Valid Call Sequences for ARM API Functions... 8
4-1 Transaction Response Time Correlation... 22

iv Open Group Technical Standard

Preface

The Open Group

The Open Group is the leading vendor-neutral, international consortium for buyers and
suppliers of technology. Its mission is to cause the development of a viable global information
infrastructure that is ubiquitous, trusted, reliable, and as easy-to-use as the telephone. The
essential functionality embedded in this infrastructure is what we term the IT DialTone. The
Open Group creates an environment where all elements involved in technology development
can cooperate to deliver less costly and more flexible IT solutions.

Formed in 1996 by the merger of the X/Open Company Ltd. (founded in 1984) and the Open
Software Foundation (founded in 1988), The Open Group is supported by most of the world’s
largest user organizations, information systems vendors, and software suppliers. By combining
the strengths of open systems specifications and a proven branding scheme with collaborative
technology development and advanced research, The Open Group is well positioned to meet its
new mission, as well as to assist user organizations, vendors, and suppliers in the development
and implementation of products supporting the adoption and proliferation of systems which
conform to standard specifications.

With more than 200 member companies, The Open Group helps the IT industry to advance
technologically while managing the change caused by innovation. It does this by:

• Consolidating, prioritizing, and communicating customer requirements to vendors

• Conducting research and development with industry, academia, and government agencies to
deliver innovation and economy through projects associated with its Research Institute

• Managing cost-effective development efforts that accelerate consistent multi-vendor
deployment of technology in response to customer requirements

• Adopting, integrating, and publishing industry standard specifications that provide an
essential set of blueprints for building open information systems and integrating new
technology as it becomes available

• Licensing and promoting the Open Brand, represented by the ‘‘X’’ Device, that designates
vendor products which conform to Open Group Product Standards

• Promoting the benefits of the IT DialTone to customers, vendors, and the public

The Open Group operates in all phases of the open systems technology lifecycle including
innovation, market adoption, product development, and proliferation. Presently, it focuses on
seven strategic areas: open systems application platform development, architecture, distributed
systems management, interoperability, distributed computing environment, security, and the
information superhighway. The Open Group is also responsible for the management of the
UNIX trademark on behalf of the industry.

Systems Management: Application Response Measurement (ARM) API v

Preface

Development of Product Standards

This process includes the identification of requirements for open systems and, now, the IT
DialTone, development of Technical Standards (formerly CAE and Preliminary Specifications)
through an industry consensus review and adoption procedure (in parallel with formal
standards work), and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to which a
vendor may register a product.

The ‘‘X’’ Device is used by vendors to demonstrate that their products conform to the relevant
Product Standard. By use of the Open Brand they guarantee, through the Open Brand Trade
Mark License Agreement (TMLA), to maintain their products in conformance with the Product
Standard so that the product works, will continue to work, and that any problems will be fixed
by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on development of Technical Standards and product documentation, but which also
includes Guides, Snapshots, Technical Studies, Branding and Testing documentation, industry
surveys, and business titles.

There are several types of specification:

• Technical Standards (formerly CAE Specifications)

The Open Group Technical Standards form the basis for our Product Standards. These
Standards are intended to be used widely within the industry for product development and
procurement purposes.

Anyone developing products that implement a Technical Standard can enjoy the benefits of a
single, widely supported industry standard. Where appropriate, they can demonstrate
product compliance through the Open Brand. Technical Standards are published as soon as
they are developed, so enabling vendors to proceed with development of conformant
products without delay.

• CAE Specifications

CAE Specifications and Developers’ Specifications published prior to January 1998 have the
same status as Technical Standards (see above).

• Preliminary Specifications

Preliminary Specifications have usually addressed an emerging area of technology and
consequently are not yet supported by multiple sources of stable conformant
implementations. They are published for the purpose of validation through implementation
of products. A Preliminary Specification is as stable as can be achieved, through applying
The Open Group’s rigorous development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued by formal standards
organizations, and developers are encouraged to develop products on the basis of them.
However, experience through implementation work may result in significant (possibly
upwardly incompatible) changes before its progression to becoming a Technical Standard.
While the intent is to progress Preliminary Specifications to corresponding Technical
Standards, the ability to do so depends on consensus among Open Group members.

vi Open Group Technical Standard

Preface

• Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia. For example, it
publishes the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum. It also publishes Technology Specifications relating to OSF/1, DCE,
OSF/Motif, and CDE.

Technology Specifications (formerly AES Specifications) are often candidates for consensus
review, and may be adopted as Technical Standards, in which case the relevant Technology
Specification is superseded by a Technical Standard.

In addition, The Open Group publishes:

• Product Documentation

This includes product documentation—programmer’s guides, user manuals, and so on—
relating to the Pre-structured Technology Projects (PSTs), such as DCE and CDE. It also
includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

• Guides

These provide information that is useful in the evaluation, procurement, development, or
management of open systems, particularly those that relate to the Technical Standards or
Preliminary Specifications. The Open Group Guides are advisory, not normative, and should
not be referenced for purposes of specifying or claiming conformance to a Product Standard.

• Technical Studies

Technical Studies present results of analyses performed on subjects of interest in areas
relevant to The Open Group’s Technical Program. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

Versions and Issues of Specifications

As with all live documents, Technical Standards and Specifications require revision to align with
new developments and associated international standards. To distinguish between revised
specifications which are fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://www.opengroup.org/corrigenda.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the
World-Wide Web at http://www.opengroup.org/pubs.

Systems Management: Application Response Measurement (ARM) API vii

Preface

This Document

This document is an Open Group Technical Standard. It defines the Application Response
Measurement (ARM) API function calls which can be used to instrument an application or other
software for transaction monitoring. The ARM API provides a way to monitor business
transactions, by embedding simple calls in the software which can be captured by an agent
supporting the ARM API. The calls are used to capture data that allows software to be
monitored for availability, service levels, and capacity.

The API can be used by programmers who want to collect performance information by
instrumenting the business logic of their applications or on other software in their domain. This
approach may be used by customers who have access to the source code of the business logic on
their systems in such a way that instrumentation is possible or by the use of non-invasive
techniques that may supply some of the data without instrumention. Neither the collection or
presentation mechanism of the ARM data returned from the API is covered in this standard.

Collection of ARM related data from the software components which surround the business
logic is often very desirable, and may in many cases be possible by using ARM 2.0, but more
work is needed in this area to encourage the software components to use the ARM API. This will
take the form of the expansion of future versions of the ARM API, or definition of other
mechanisms which can support these very diverse software environments.

It should further be noted that the applications (and other components) must normally be
running within the reach of the enterprise management domain in order to allow for collection
and presentation of performance data from agents, through some vendor specific mechanisms.

This Technical Standard is the formally adopted Open Group publication of the ARM API
version 2.0 specification.

History

The Application Response Measurement (ARM) working group of the Computer Measurement
Group (CMG) published its ARM version 1.0 API specification in June 1996. It then issued its
ARM version 2.0 API specification in November 1997. Then, in March 1998, it submitted the
ARM version 2 API to The Open Group, which approved it for publication as an Open Group
Technical Standard.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— Command operands, command option-arguments, or variable names; for example,
substitutable argument prototypes

— Environment variables, which are also shown in capitals

— Utility names

— External variables, such as errno

— Functions; these are shown as follows: name(). Names without parentheses are C
external variables, C function family names, utility names, command operands, or
command option-arguments.

viii Open Group Technical Standard

Preface

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
#define construct.

• The notation [ABCD] is used to identify a return value ABCD, including if this is an error
value.

• Syntax, code examples and user input in interactive examples are shown in fixed width font.
Brackets shown in this font, [] , are part of the syntax and do not indicate optional items.

Systems Management: Application Response Measurement (ARM) API ix

Trademarks

Motif, OSF/1, UNIX, and the ‘‘X Device’’ are registered trademarks and IT DialToneTM

and The Open GroupTM are trademarks of The Open Group in the U.S. and other countries.

Microsoft, Microsoft Windows NT, and Microsoft Windows 95 are U.S. registered
trademarks of Microsoft Corporation.

RISC System/6000TM is a trademark, and AIX and OS/2 are registered trademarks, of
International Business Machines Corporation.

Sun and Solaris are registered trademarks of Sun Microsystems, Inc.

Other third party logos and product/trade names are registered trademarks or trademarks of
their respective companies.

x Open Group Technical Standard

Acknowledgements

This Technical Standard is the formally adopted Open Group publication of the ARM API
version 2.0 specification.

The Open Group acknowledges the work of the ARM Working Group, under the sponsorship of
the Computer Measurement Group (CMG), in developing the ARM version 2.0 API
specification, which provides the technical source material for this Open Group Technical
Standard. The following CMG ARM Working Group member companies assisted in the
development of the ARM version 2.0 API:

System Management Database and Tools Application End Users
Vendors Vendors Vendors

BGS
www.bgs.com

Oracle
www.oracle.com

SAS
www.sas.com

Boeing
www.boeing.com

BMC
www.bmc.com

Unify
www.unify.com

SES
www.ses.com

Citicorp
www.citicorp.com

Candle
www.candle.com

Wells Fargo
www.wellsfargo.com

Compuware
www.compuware.com

Hewlett-Packard
www.hp.com

Landmark
www.landmark.com

Sun
www.sun.com

Tivoli/IBM
www.tivoli.com

Systems Management: Application Response Measurement (ARM) API xi

Referenced Documents

Further information on performance measurement agents that use the data generated by the
ARM API function calls, and additional information on ARM, such as White Papers and slides, is
available via the World Wide Web. The pointer to this information can be found from the on-line
version of this publication, which is available at:

http://www.opengroup.org/publications/catalog/c807.htm

On completion of the request to enter your identity, the table at the start of this on-line
document shows the URL where further information may be found.

xii Open Group Technical Standard

Chapter 1

Introduction

1.1 Scope and Purpose
The applications that are used to run businesses have changed dramatically over the past few
years. In the early 1980s, large applications generally executed on large computers, and were
accessed from "dumb" terminals. Non-networked applications executing on personal computers
were just beginning to be widely used. Since then, these two application models have moved
steadily towards each other, fusing together to form distributed (networked) applications.

The most common programming model for distributed applications is the client/server model.
In a client/server application, the application is split into two or more parts. One part is the user
or "client" part, and this part generally executes on a personal computer or workstation. The
"server" parts execute on computers that provide functions for the client part, that is, they serve
the client application. The client and server can run on the same system, but generally they are
on different systems. The client part of an application may invoke one or more functions on one
or more servers, and it may do a significant amount of processing itself combining,
manipulating, or analyzing the data provided by the servers.

An example of a client/server application might be processing a sales order by retrieving
inventory information from one database, sales information from another database, and pricing
information from a third. The client part of the application determines if there is sufficient
inventory to accept the order, calculates the price based on current market conditions, factors in
price discounts for this particular customer, and then invokes more server functions to complete
processing of the order.

By contrast, host-centric applications contain all the application logic in one computer system,
and users connect through "dumb" terminals to use the application. Examples of the protocols
used by these applications are 3270, Telnet, and X-Windows. The response time as seen by a user
for a transaction can generally be broken down into two components: the time to process the
transaction on the host, and the time for the input message and the output response. Processing
time at the terminal is usually trivial.

Systems Management: Application Response Measurement (ARM) API 1

Measuring Service Levels Introduction

1.2 Measuring Service Levels
A monitoring product running at the host is able to measure the service levels of host-centric
applications. The monitor observes the input request message that starts the transaction, and
then observes the outbound response back to the terminal. The difference between the two times
is the amount of time to process the transaction on the host. The monitor generally also
measures the time for the outbound response to be sent to the terminal and an acknowledgment
to be received, using this as an approximation of the transit time. The combination of the host
and transit times is an approximation of the service level seen by the user.

Monitoring the performance and the availability of distributed applications has not proved to be
easy to do. Some of the fundamental assumptions that the host-centric methods depend on do
not hold true. Some examples showing why this is so are:

• The user is typically running an application on a multitasking PC or workstation. When the
user presses a key or the mouse button, the specified transaction starts, but the user may be
able to continue doing other operations. Put another way, there is no reliable way to correlate
keyboard or mouse input operations with business transactions.

• One user transaction (which would be classified as a business transaction) may spawn
several other component transactions, some of which may execute locally and some
remotely. Any measurement agents that exist only in the network layer or in a host (server)
will not see the entire picture.

• The data may be sent through the network using various protocols, not just one, making the
task of packet decoding and correlation much more difficult.

• Client/server applications can be complex, taking different execution paths and spawning
different component transactions, depending on the results of previous component
transactions. Every permutation could take a different form when it goes across the
communication link, making it that much harder to reliably correlate network or host
(server) observations with what the user sees.

In spite of these difficulties, the need to monitor distributed applications has never been greater.
They are increasingly being used in mission-critical roles. An approach that solves the problems
listed above is to let the application itself participate in the process. A developer knows
unambiguously when transactions begin and end, both those that are visible to the user, and the
component transactions that invoke transactions on remote servers.

2 Open Group Technical Standard

Introduction ARMing Your Applications

1.3 ARMing Your Applications
With the Application Response Measurement (ARM) API, sections of an application can be
marked to define business transactions. By invoking ARM API function calls at the beginning
and end of each transaction, the application can be monitored by any of the measurement agents
that use data generated by the ARM API. Programs executing on client or server systems can be
instrumented.

By instrumenting an application to call the ARM API, that application can be managed by any of
the measurement agents that implement ARM. The advantage of this approach is that the user
of the application can choose the measurement agent that best meets their needs, without
needing to change the application.

Using ARM, system administrators will be able to answer key questions such as:

• Is the application working correctly (available)?

• How is the application performing? What is the response time? What is the workload
throughput? You will be measuring the actual service levels experienced by your users.

• Why is an application not available or performing poorly? What operation was the
application performing when the problem occurred? If a remote server/application was
being invoked when the problem occurred, which one?

• Who is using the application, how much are they using it, and what kind of operations are
being performed? Which servers are providing the services? This information is useful for
capacity planning and for charge-back accounting.

Network

Clients

Business
Applications

Business
Applications

START

STOP

START

STOP

Servers

Enterprise Management
Solutions

ARM
API

Measurement
Agent

ARM
API

Measurement
Agent

Figure 1-1 ARM in the Enterprise

This diagram shows how enterprise management applications, measurement agents that
implement the ARM API, and business applications that call the ARM API, work together to
provide a robust way to monitor application response.

Systems Management: Application Response Measurement (ARM) API 3

ARM Version 1.0 and Version 2.0 Introduction

1.4 ARM Version 1.0 and Version 2.0
The ARM version 1.0 API was not adopted or published by The Open Group. Nevertheless,
since the ARM version 1.0 API has been released by the ARM working group of the CMG, it is
appropriate to position this ARM version 2.0 API in the context of its predecessor.

Several additional features in ARM version 2.0 API improve the ways applications can be
managed, compared to ARM version 1.0 API:

• You can indicate that a transaction is a component of another transaction. Also, you can do
transaction correlation within one system or across multiple systems. This permits a better
understanding of the overall transaction, how much time each part of the transaction is
taking, and where problems are occurring.

• You can provide additional information about the transaction, such as the number of bytes or
records being processed, or about the state of the application at the moment that the
transaction is being processed, such as the length of a work queue. This information (called
application-defined metrics) is useful to better understand response times, and how the
application can be tuned to perform better.

• You can use the new logging agent to do simple verification of your instrumentation. It
allows you to determine if the correct parameters are being passed on each call, but it does
not function as a measurement agent.

ARM version 2.0 API is backward compatible with ARM version 1.0. Applications
instrumented to the ARM 1.0 API will continue to function correctly with agents that implement
the additional features of the ARM 2.0 API. Applications instrumented with ARM 2.0 will
function correctly with agents that implement the features of ARM 1.0.

4 Open Group Technical Standard

Chapter 2

Instrumenting an Application

2.1 Basic Tasks
There are three basic tasks involved in instrumenting an application with the ARM API.

1. Define the key business transactions. This is the most important step. Each application
developer needs to define who needs what kind of data, and what the data will be used for.
It is common and useful for this process to be a joint collaboration between the users and
developers of an application, and system and network administrators. There are two kinds
of transactions that will generally provide the greatest benefit if they are instrumented. The
following procedure is suggested:

• Start with transactions that are visible to users or that represent major business
operations. These are the building blocks for service level agreements, for workload
monitoring, and for early problem detection.

• Next, focus on transactions that are dependent on external services, such as a database
operation, a Remote Procedure Call (RPC), or a remote queue operation. These
generally are components of a user/business transaction. Knowing how these types of
transactions are performing can be invaluable when analyzing problems, tuning
applications, and reconfiguring systems and networks.

2. Modify the application to include calls to the ARM API1. The key activity here is to decide
where to place calls to the ARM API, by carefully defining the start and end of key
business transactions.

3. Install an ARM-compliant agent and associated management applications2. The
distributed applications can then be monitored.

1. The NULL libraries and logging agent which are available in the ARM SDK (see Appendix C on page 47) can be used for initial
testing.

2. If the NULL libraries or logging agent of the ARM SDK were used for testing, then they would be replaced by these ARM-
compliant agent and associated management applications.

Systems Management: Application Response Measurement (ARM) API 5

What to Instrument Instrumenting an Application

2.2 What to Instrument
The Application Response Measurement API is designed to instrument a unit of work, such as a
business transaction, that is sensitive to performance time. These transactions should be
something that needs to be measured, monitored, and for which corrective action can be taken if
the performance is determined to be too slow.

This API is not designed to be a programmer profiling tool. The measurement agents using data
generated by this API are designed to give application/system managers data to understand
how their environment is performing, and whether all services are available.

For information on measurement agents that do transaction monitoring, refer to the CMG web
site at http://www.cmg.org/regions/cmgarmw/. Links may be found on this site to
commercially available measurement agent solutions.

Some questions you may want to ask yourself when instrumenting a transaction are:

• What unit of work does this transaction define?

• Are the transaction counts and/or response times important?

• Who will use this information?

• If performance of this transaction is too slow, is there some corrective action that can take
place (for example, offload work from the machine, add memory, relocate remote files, etc.)?

6 Open Group Technical Standard

Chapter 3

ARM API Function Calls

3.1 Overview
The ARM API is made up of a set of function calls that will normally be contained in a shared
library. All the performance measurement agents that support the ARM API then provide their
own implementation of the shared library.

When the ARM API function calls are included in an application, the performance of that
application can be monitored by the agents that implement the shared library. The advantage of
this approach is that it allows the user to select a measurement agent that best meets their needs
without requiring any change to the application.

The set of ARM function calls is summarized below, in the logical order in which they may
expect to be used:

arm_init() During the initialization of your application, call arm_init() which names your
application and optionally the users, and initializes the ARM environment for
your application. A unique identifier is returned that must be passed to
arm_getid().

arm_getid() Use arm_getid() to name each transaction class you use in your application.
This is often done during the initialization of your application. A transaction
class is a description of a unit of work, such as Check Account Balance . In each
program, each transaction class may be executed once or many times. Call
arm_getid() returns a unique identifier that must be passed to arm_start().

arm_start() Each time a transaction class is executed, this is a transaction instance. Call
arm_start() signals the start of execution of a transaction instance and returns
a unique handle to be passed to arm_update() and arm_stop().

arm_update() This is an optional function call that can be made any number of times after
arm_start() and before arm_stop(). Call arm_update() gives information about
the transaction instance, such as a heartbeat after a group of records has been
processed.

arm_stop() Call arm_stop() signals the end of the transaction instance.

arm_end() At termination of the application, call arm_end() cleans up the ARM
environment for your application. There should be no problem if this call is
not made, but if it is not used then memory may be wasted because it is
allocated by the agent even though it is no longer needed.

The workhorse functions are arm_start() and arm_stop(), which are called at the beginning and
end of each executing transaction. There are two administrative calls used to define the
application and transactions: arm_init() and arm_getid(). Call arm_update() is an optional call
that can be used with long running transactions to provide an I’m alive heartbeat and a progress
indicator. Call arm_end() is used when an application is shutting down, which allows an agent to
release any storage used for monitoring this application.

Systems Management: Application Response Measurement (ARM) API 7

Overview ARM API Function Calls

3.2 Valid Call Sequences
The following diagram illustrates the valid call sequences for the ARM API. The dotted box
encloses the call sequences valid for a specific transaction defined by a call to arm_getid(). This
set of calls may be replicated for each defined transaction.

arm_getid

arm_end

arm_stop

arm_update

arm_start

arm_init

Figure 3-1 Valid Call Sequences for ARM API Functions

The following gives an example in an imaginary language showing the API calls:

arm_init ("Application Name", "User Name")
arm_getid ("Transaction A")
arm_getid ("Transaction B")
arm_getid ("Transaction C")

loop until program ends
arm_start (A)

arm_start (B)
do some work
arm_stop (B, status)

arm_start (C)
loop until transaction ends

do some work
arm_update (C)

end loop
arm_stop (C, status)

arm_stop (A,status)
end loop

arm_end

8 Open Group Technical Standard

ARM API Function Calls ARM API Function Call Parameters

3.3 ARM API Function Call Parameters
The following table shows which parameters are used in each of the ARM API function calls and
what is passed on from one function call to another.

arm_init()

appl_name

tran_name

tran_status

Return Codes:
appl_id (appl/user)
tran_id
start_handle (transaction)

data and data_size
(optional)

tran_detail (optional)

appl_user_id (optional)
(user_name)

arm_getid() arm_start() arm_update() arm_stop() arm_end()

x

x

x

x

x x x x

x

indicates the code is returned from one call and passed to another

Systems Management: Application Response Measurement (ARM) API 9

Definition of Data Type Terminology ARM API Function Calls

3.4 Definition of Data Type Terminology
The API calls use the terminology described in this section, to define each of the parameters.

3.4.1 Standard API Calls

The standard API calls use the following terminology to define each of the parameters:

int32 A signed 32-bit integer.

char* A 32-bit or 64-bit pointer to a character string or data structure depending
upon the operating system and/or the application mode of operation. Strings
must be NULL terminated unless specified otherwise. Strings are expected to
be displayed, put in reports, and so on, so appropriate characters should be
chosen.

3.4.2 More Advanced Functions

The more advanced functions in the API use the following terminology to define each of the
parameters:

int64 A signed 64-bit integer.

unsigned32 An unsigned 32-bit integer.

unsigned64 An unsigned 64-bit integer.

bit8 A byte containing 8 single-bit flags. In this document, when a bit8 is
represented as eight flags using the notation abcdefgh, a is the most significant
bit, and h is the least significant bit.

unsigned16 An unsigned 16-bit integer.

unsigned8 An unsigned 8-bit integer.

These formats are in the native format of the hardware platform. This accommodates the
difference between Big-Endian and Little-Endian systems, that is, the difference between
hardware architectures in which the most significant bit position is on the left as opposed to the
right.

3.5 Function Call Reference Pages
The ARM 2.0 function calls are defined in alphabetical order in the remainder of this Chapter:

• arm_end()

• arm_getid()

• arm_init()

• arm_start()

• arm_stop()

• arm_update()

10 Open Group Technical Standard

ARM API Function Calls arm_end()

NAME
arm_end — finish ARM activity.

SYNOPSIS
error_status=arm_end(appl_id,flags,data,data_size)

DESCRIPTION
Function arm_end() is used to close initiating new ARM API activity. It is typically called when
an application/user instance is terminating. Each arm_end() is paired with one arm_init() to
mark the end of an application.

An arm_end() is a signal from the application that it does not intend to issue any more
arm_getid() calls using this appl_id , or any arm_start() calls using any TRAN_ID defined using
this appl_id . After arm_end(), the measurement agent may ignore any arm_getid() or arm_start()
calls. It is acceptable to call arm_update() or arm_stop() for any incomplete transaction instances
started with arm_start().

PARAMETERS

appl_id (int32)
A unique reference to an application/user identifier returned from the arm_init() call. If
appl_id is less than zero, this arm_end() call will be treated as a NULL operation, and a
negative error_status returned.

flags (int32)=0
Reserved for future use. It must be set to zero.

data (char*)=0
Reserved for future use. A NULL pointer (0) must be used.

data_size (int32)=0
Reserved for future use. It must be set to zero.

RETURN CODE

ERROR_STATUS
Contains a zero if successful and a negative value if an error occurred.

ERRORS
If the value returned in ERROR_STATUS is less than zero, an error occurred in communicating
with the measurement agent. The most likely cause is passing an invalid value for appl_id . The
error should be logged so that corrective action can be taken.

EXAMPLE

status = arm_end (my_appl_id, /* transaction handle */
0,0,0); /* reserved for future use */

Systems Management: Application Response Measurement (ARM) API 11

arm_getid() ARM API Function Calls

NAME
arm_getid — assign a unique identifier to a transaction class.

SYNOPSIS
tran_id=arm_getid(appl_id,tran_name,tran_detail,flags,data,data_size)

DESCRIPTION
The arm_getid() function call is used to assign a unique identifier to a transaction class, and
optionally to describe the format of additional data passed on arm_start(), arm_update(), and
arm_stop() calls. This is often done during the initialization of your application. The identifier
returned by arm_init() is passed as a parameter in arm_start() calls to identify which class of
transaction is starting.

A transaction class is a description of a unit of work, such as Check Account Balance . Any number
of transaction classes can be defined within each application. The transaction class name should
help a person understand what function the transaction performs. The call to arm_getid() need
be made only once for each transaction class each time the application is started. A call to
arm_getid() can be made with the same information as a previous call, in which case the
transaction identifier (tran_id) that is returned will be the same as the previous calls. Four types
of information are tested to see if the information is the same. If any of these are different, a
different tran_id will be returned:

• The application identifier (appl_id).

• The transaction name (tran_name).

• The data pointer (data) was NULL on previous calls and is not NULL, or it was not NULL on
previous calls and now it is NULL.

• If the data pointer (data) is not NULL on previous calls and this call, and the contents and
size (data_size) of the buffer pointed to by the data parameter differ.

Any number of transaction classes can be defined within each application. In each application,
each transaction class may be executed any number of times. Each time a transaction class is
executed — via arm_start()— it is called a transaction instance. There can be any number of
instances of each transaction class executing simultaneously.

PARAMETERS

appl_id (int32)
The unique reference to an application/user identifier returned from the arm_init() call. If
the appl_id is less than zero, this arm_getid() call will be treated as a NULL operation, and a
negative tran_id returned.

tran_name (char*)
The unique name of the transaction class. It is defined for each transaction class by the
application developer. It must be unique within the application (for each arm_init() call).
The maximum length is 128 bytes, including the NULL string terminator.

tran_detail (char*)
Transaction detail allows a developer to provide additional information about a transaction
class. It is a free-form text area that is set once for each appl_id/tran_name pair. If the contents
of the field change on later calls using the same appl_id/tran_name pair, the new contents are
ignored. The maximum length is 128 bytes including the NULL string terminator. If no
tran_detail is associated with this transaction, the NULL value (0) must be specified.

flags (int32)=0
Reserved for future use. It must be set to zero.

12 Open Group Technical Standard

ARM API Function Calls arm_getid()

data (char*)
A pointer to a buffer that describes the format of additional data that can be passed on
arm_start(), arm_update(), and arm_stop() calls. If no additional data is passed on these calls,
this parameter must be set to zero (0). See Section 4.1.4 on page 26 for the format of the data
buffer in arm_getid.()

data_size (int32)
The length in bytes of the buffer pointed to by data . If data is set to zero (0), data_size must
also be set to zero.

RETURN CODES

tran_id (int32)
The unique identifier assigned for this transaction class. This id needs to be passed on
arm_start() calls.

ERRORS
If the value returned in tran_id is less than zero, an error occurred in communicating with the
measurement agent. The most likely cause is passing an invalid value for appl_id . The value
returned on an error can be passed to arm_start(), which will cause arm_start() to function as a
NULL operation. The error should be logged so corrective action can be taken.

EXAMPLE

my_tran_id = arm_getid (my_appl_id, /* application name */
"Part Number Query", /* transaction name */
"Call to Server XYZ", /* transaction details */
0, /* reserved for future use */
my_buffer_ptr, /* metrics data/metrics meta-data */
my_buffer_length); /* length of data buffer */

Systems Management: Application Response Measurement (ARM) API 13

arm_init() ARM API Function Calls

NAME
arm_init — define the application or a unique instance of the application and user.

SYNOPSIS
appl_id=arm_init(appl_name,appl_user_id,flags,data,data_size)

DESCRIPTION
Use arm_init() to define the application or a unique instance of the application and user.
Function arm_init() must be called before any other ARM API calls. It is often called when an
application initializes. The return code is an application/user identifier that is input as a
parameter on arm_getid(), to associate transactions with the application.

Each application needs to be identified by a unique name. It is the developer’s responsibility to
choose a name that is meaningful but which is not duplicated by other developers. Suggestions
for names would be the product name and version number, or a project name.

There can be any number of application instances executing simultaneously that use the same
application name, or the same application and user names. A measurement agent may assign a
unique application identifier to each application instance, or it may assign an identifier that is
shared across identically named instances.

PARAMETERS

appl_name (char*)
The name used to identify the application. The maximum length is 128 bytes including the
NULL string terminator.

appl_user_id (char*)
The name of the application user. On UNIX and Windows NT, this value can be set to "*" to
indicate the login user ID of the person running the application. The maximum length is 128
bytes including the NULL string terminator. If no value is preferred for this parameter, it
should be specified as NULL value (0).

flags (int32)=0
Reserved for future use. It must be set to zero.

data (char*)=0
Reserved for future use. A NULL value (0) must be used.

data_size (int32)=0
Reserved for future use. It must be set to zero.

RETURN CODE

appl_id (int32)
A unique value to reference an application/user identifier. This id must be passed to the
arm_getid call.

ERRORS
If the value returned in appl_id is less than zero, an error occurred in communicating with the
measurement agent. The value returned on an error can be passed to arm_getid(), which will
cause arm_getid() to function as a NULL operation. The error should be logged so corrective
action can be taken.

14 Open Group Technical Standard

ARM API Function Calls arm_init()

EXAMPLE

my_appl_id = arm_init ("Parts Inventory Manager 1.1", /* appl name */
"*", /* user id */
0, 0, 0); /* reserved for future use */

Systems Management: Application Response Measurement (ARM) API 15

arm_start() ARM API Function Calls

NAME
arm_start — mark the beginning of execution of a transaction.

SYNOPSIS
start_handle=arm_start(tran_id,flags,data,data_size)

DESCRIPTION
Function arm_start() is used to mark the beginning of execution of a transaction. Each time a
transaction executes, it is called a transaction instance. Function arm_start() must be called in an
application at the beginning of each transaction instance required to be monitored.

Additional information about the transaction can be provided in the optional data buffer. If no
additional information is provided, a NULL pointer must be passed. This information can be
provided on any or all of the arm_start(), arm_update(), and arm_stop() calls, except for
correlation information, which is passed only on arm_start(). See Chapter 4 for details on how to
pass this information.

PARAMETERS

tran_id (int32)
The unique identifier assigned to the transaction class. This is the id generated by
arm_getid(). If the tran_id is less than zero, this arm_start() call will be treated as a NULL
operation, and a negative start_handle returned.

flags (int32)=0
Reserved for future use. It must be set to zero.

data (char*)
A pointer to a buffer with additional data that can optionally be passed. If no additional
data is passed, this parameter must be set to zero (0). See Section 4.1.6 on page 28 for the
description of the format of the data buffer in arm_start(), arm_update(), and arm_stop()
function calls.

data_size (int32)
The length in bytes of the buffer pointed to by the data parameter. If data is set to zero (0),
data_size must also be set to zero.

RETURN CODES

start_handle (int32)
The unique transaction handle assigned to this instance of a transaction. This handle must
be passed on arm_stop and any arm_update calls.

ERRORS
If the value returned in start_handle is less than zero, an error occurred in communicating with
the measurement agent. The most likely cause is passing an invalid value for tran_id . The value
returned on an error can be passed to arm_update() and arm_stop() calls, which will cause these
calls to function as NULL operations. The error should be logged so corrective action can be
taken.

EXAMPLE

my_handle = arm_start (my_tran_id, /* transaction handle */
0, /* reserved for future use */
my_buffer_ptr, /* metrics data/correlator */
my_buffer_length); /*length of data buffer */

16 Open Group Technical Standard

ARM API Function Calls arm_stop()

NAME
arm_stop — mark the end of a transaction instance that was started with arm_start().

SYNOPSIS
error_status=arm_stop(start_handle,tran_status,flags,data,data_size)

DESCRIPTION
Function arm_stop() is used to mark the end of a transaction instance that was started with
arm_start(). It should be called from your application program just after each transaction
instance ends.

In addition to signaling the end of the transaction instance, which allows a measurement agent
to calculate the elapsed time since the arm_start(), additional information about the transaction
can be provided in the optional data buffer. This information can be provided on any or all of the
arm_start(), arm_update(), and arm_stop() calls.

PARAMETERS

start_handle (int32)
The unique handle from the arm_start() call that marked the start of this transaction
instance. start_handle must be passed in each arm_stop() call. Many transaction instances
may be executing at the same time from this and other applications, so this handle is
essential for the measurement agent to use to identify which transaction instance is
stopping. If start_handle is less than zero, this arm_stop() call will be treated as a NULL
operation, and a negative ERROR_STATUS returned.

tran_status (int32)
The completion code of the transaction, as determined by the application.

0 Transaction successful (defined as ARM_GOOD in <arm.h>). Use this value when the
operation completed normally and as expected.

1 Transaction aborted (defined as ARM_ABORT in <arm.h>). Use this value when there
was a fundamental failure in the system. For example, a timeout from a
communications protocol stack, or an error when doing a database operation.

2 Transaction failed (defined as ARM_FAILED in <arm.h>). Use this value in
applications where the transaction worked properly, but no result was generated. For
example, when making an airline reservation, a server indicates no seats are available
on the requested flight. Since no reservation was made, the transaction was not
successful; however, since the reservation system is operating correctly, it is not an
aborted transaction either. In this case, it might be desirable to record the transaction as
a failed transaction.

flags (int32)=0
Reserved for future use. It must be set to zero.

data (char*)
A pointer to a buffer with additional data that can optionally be passed. If no additional
data is passed, this parameter should be set to zero (0). The format is identical to the
arm_start() call, except the Correlator field is not used in the arm_stop() call. See Section 4.1.6
on page 28 for a description of the format of the data buffer in arm_start(), arm_update(),
and arm_stop().

data_size (int32)
The length in bytes of the buffer pointed to by the data parameter. If data is set to zero (0),
data_size should also be set to zero.

Systems Management: Application Response Measurement (ARM) API 17

arm_stop() ARM API Function Calls

RETURN CODE

ERROR_STATUS (int32)
Contains a zero if successful, and a negative value if an error occurred.

ERRORS
If the value returned in ERROR_STATUS is less than zero, an error occurred in communicating
with the measurement agent. The most likely cause is passing an invalid value for start_handle .
The error should be logged so corrective action can be taken.

EXAMPLE

status = arm_stop (my_handle, /* transaction handle */
ARM_GOOD, /* transaction status */
0, /* reserved for future use */
buffer_ptr, /* data description */
buffer_length); /* length of data description */

18 Open Group Technical Standard

ARM API Function Calls arm_update()

NAME
arm_update — show the progress of a long transaction, or provide extra information about a
transaction, or provide a larger opaque application private buffer.

SYNOPSIS
error_status=arm_update(start_handle,flags,data,data_size)

DESCRIPTION
Function arm_update() is an optional call, used for the following purposes:

• To show the progress of a long transaction. Each insertion of arm_update() call into an
application program after arm_start() and before arm_stop() generates a heartbeat indicating
that the transaction instance is still running. This would typically be done after a fixed
interval of time (such as every minute) or after a fixed amount of work is completed (such as
1000 records processed). There can be any number of arm_update() calls between an
arm_start/arm_stop pair. This call is most useful for long-running transactions that take
minutes or hours to complete. Another way to capture data about the steps within a long
transaction is to use component transactions (see Section 4.2 on page 32, which describes
three ways to instrument within a transaction instance).

Function arm_update() is also useful for updating any of the metric or string variables passed
in the buffer pointed to by the data parameter (as defined in arm_getid()). This could be used
to show not only that the transaction is progressing, but also how far it has progressed. For
example, every time another 1000 records are processed, an arm_update() call could be made
with an updated count in the buffer.

• To provide extra information about a transaction. Each time you want to provide special
information about a transaction instance, insert an arm_update() call into an application
program after arm_start() and before arm_stop(). If there is no additional information to be
provided, pass a NULL pointer. There are several types of additional information that may
be useful, including about the size of the transaction (such as the number of bytes in a print
job), about the state of the application (such as the number of threads that are running), and
diagnostic information. This type of information can be provided via application-defined
metrics on any or all of the arm_start(), arm_update(), and arm_stop() calls. See Section 4.1.6
on page 28 for description of the detailed buffer format.

• To provide a larger opaque application private buffer. Information that does not conform
well to application-defined metrics (for example long diagnostic messages) may be provided
via an opaque buffer containing up to 1020 bytes of data (Format 2). Except for the 4-byte
Format field, the content of the buffer is entirely defined by the application developer.
Because the contents of the buffer containing the information is known only to the
application developer, measurement agents cannot do much with the data in this field. A
typical measurement agent might provide an option to write the buffer with the information
to a log file, but this is the most that can be expected.

Measurement agents are not required to do anything with the information in this call.

PARAMETERS

start_handle (int32)
The unique handle from the arm_start() call that marked the start of this transaction
instance. The start_handle must be passed in each arm_update() call. Many transaction
instances may be executing at the same time from this and other applications, so this handle
is essential to identify which transaction instance is being updated. If start_handle is less
than zero, this arm_update() call will be treated as a NULL operation, and a negative
ERROR_STATUS returned.

Systems Management: Application Response Measurement (ARM) API 19

arm_update() ARM API Function Calls

flags (int32)=0
Reserved for future use. It must be set to zero.

data (char*)
A pointer to a buffer with additional data that can optionally be passed. If no additional
data is passed, this parameter should be set to zero (0).

There are two possible buffer formats:

1 If the Format field contains the value 1, then application-defined metrics as defined in
arm_getid() can be passed. The correlator field is not used in the arm_update() call.

2 If the Format field contains the value 2, then a status message up to 1020 bytes in length
may be passed in.

See Section 4.1.6 on page 28 for description of the format of the data buffer in arm_start(),
arm_update(), and arm_stop().

data_size (int32)
The length in bytes of the buffer pointed to by data . If data is set to zero (0), data_size should
also be set to zero.

RETURN CODE

ERROR_STATUS (int32)
Contains a zero if successful and a negative value if an error occurred.

ERRORS
If the value returned in ERROR_STATUS is less than zero, an error occurred in communicating
with the measurement agent. The most likely cause is passing an invalid value for start_handle .
The error should be logged so corrective action can be taken.

EXAMPLE

status = arm_update (my_handle, /* transaction handle */
0, /* reserved for future use */
my_buffer_ptr, /* data description */
my_buffer_length); /* length of data description */

20 Open Group Technical Standard

Chapter 4

Advanced Topics

The following topics provide information on more advanced implementations using the ARM
2.0 API.

4.1 Additional Data Passed in ARM Function Calls
The following two types of additional data can now be provided via the ARM 2.0 API:

• Transaction correlation data

You can indicate that a transaction is a component of another transaction. You can do
transaction correlation within one system or across multiple systems. This permits a better
understanding of the overall transaction, how much time each part of the transaction is
taking, and where problems are occurring.

• Application-defined metrics

Application-defined metrics provide additional information about the transaction, such as
the number of bytes or records being processed, or about the state of the application at the
moment that the transaction is being processed, such as the length of a work queue. This
information is useful to better understand response times, and how the application can be
tuned to perform better.

4.1.1 Transaction Correlation

Many client/server transactions consist of one transaction visible to the user, and any number of
nested component transactions that are invoked by the one visible transaction. These component
transactions are the children of the parent transaction (or the child of another child component
transaction). It’s very useful to know how much each component transaction contributes to the
total response time of the visible transaction. Similarly, a failure in one of the component
transactions will often lead to a failure in the visible transaction, and this information is also
very useful.

There are two facilities that the application developer can use to provide this information to
measurement agents that implement the ARM 2.0 API:

• On the same arm_start(), the application can request that the measurement agent assign and
return a correlator for this instance of the transaction (that is, a parent correlator). Note that
the agent has the option of not providing the correlator, because it may not support the
capability (ARM Version 1.0 agents do not support correlators), or because it is operating
under a policy to suppress generating them.

Systems Management: Application Response Measurement (ARM) API 21

Additional Data Passed in ARM Function Calls Advanced Topics

• When indicating the start of a child transaction with an arm_start(), the application can
provide a correlator provided from a parent transaction. This allows the measurement agent
to know the parent/child relationship.

Enterprise Management
Solution

(Correlation Application)

Client A:

Measurement
Agent

ARM API

Measurement
Agent

ARM API

Measurement
Agent

ARM API

T1

T2

T3

correlated transaction response times

Server B:

Server C:

CLIENT A
(T1), Corr C1

Corr C1

start T1 start T2 start T3 stop T3stop T2stop T1
(Corr C1)

Corr C2

(Corr C2)

(T2), Corr C2
SERVER B SERVER C

Figure 4-1 Transaction Response Time Correlation

The figure shows the concept for a simple model. The principle can be extended to a model of
arbitrary complexity.

• Client A starts transaction T1, requesting a correlator via, and is assigned C1.

• Client A sends a request (T1) to Server B, and includes C1 in the request.

• Server B starts transaction T2, passing C1 as the parent. At the same time it requests a
correlator and is assigned C2.

• Server B sends a request (T2) to Server C, and includes C2 in the request.

• Server C starts transaction T3, passing C2 as the parent.

• T3 stops, T2 stops, and T1 stops.

If the correlation application collects all the data about these transactions, it can put together
the total picture, knowing that T1 is the parent of T2 (via C1), and T2 is the parent of T3 (via
C2). The parent/child relationship could be from a client to a server, or within one program.

An application using the ARM API need not be concerned with the format of the correlators.
Measurement agents generate correlators.

22 Open Group Technical Standard

Advanced Topics Additional Data Passed in ARM Function Calls

Changes Needed for Transaction Correlation

Each application responsible for a component of the overall transaction (client and server)
will require some modifications. Applications have three responsibilities:

• Request correlators for transactions with one or more child transactions (via arm_start())
by getting the appropriate flag.

• Send the assigned correlators to the child transaction(s) along with the data needed to
invoke the child transaction(s) itself. This is done by first checking that the agent assigned
a correlator, and then sending the number of bytes in the correlator. The length is stored
by the agent in the Correlator Length field.

• Pass correlators received from parent transactions to the measurement agents (via
arm_start()) by storing the correlator in the optional buffer and setting the appropriate
flag.

To enable a correlation application to analyze the correlators coming from different systems,
measurement agents follow conventions when creating correlators. Included within the
correlator is information identifying the system, the transaction class (from arm_getid()), the
transaction instance (from arm_start()), and some flags. The format is flexible and extendible
so more conventions can be added as the need arises. See Appendix B on Measurement
Agent Information, for information on the correlator format.

Correlators are passed in the arm_start() calls by utilizing the data buffer. This same data
buffer is used to pass application-defined metrics, as described in Section 4.1.6 on page 28,
which describes format of the data buffer in arm_start(), arm_update(), and arm_stop().
Correlators are ignored in arm_update() and arm_stop() calls.

If a correlator is being requested, the data buffer should be 256 bytes, to allow for a variable
size correlator. If a correlator is being passed to the measurement agent, and none is
requested, the length may be truncated based on the correlator length.

If you only wanted to do transaction correlation in your application and not provide
application-defined metrics, you can zero out the metrics (set the Flags Second Byte to zero
and fill with zeros 80 bytes for the metrics descriptions).

Note: Other than the length, the correlator format need not be understood by the
application developer, as it is opaque.

4.1.2 Application-Defined Metrics

Application-defined metrics can tell you more about the transaction or about the state of the
application at the moment that the transaction is being processed. Three likely uses are
envisioned as described below:

1. Specify characteristics of the transaction that will affect the response time, or that are
useful for workload planning. Examples are the number of bytes in a file transfer or print
job, or the number of records being processed. A file transfer of 100 megabytes would
certainly be expected to take longer than a transfer of 100 kilobytes.

2. Specify information about the current state of the application. Examples would be the
length of a workload queue, the amount of memory allocated, or the number of threads
being used. This information is useful for adjusting workloads by shifting work between
systems, or tuning the application. If a comparison of response times versus threads shows
that congestion builds and response times increase dramatically if, for example, eight
threads are used instead of twelve, the application can be recompiled or instructed to use
more threads, which may result in a dramatic improvement in performance.

Systems Management: Application Response Measurement (ARM) API 23

Additional Data Passed in ARM Function Calls Advanced Topics

3. Specify information that can be used in diagnosing problems. Examples are error codes
returned from services invoked by the application, or information about the transaction
itself such as the part number being processed.

In setting up application-defined metrics, arm_getid() is used to define the context (or meta-data)
for a buffer of values that can be passed at arm_start(), arm_update() or arm_stop(). Actual
values are passed in arm_start(), arm_update() and arm_stop(). The length of the buffer is
specified in the data_size parameter.

4.1.3 Choosing a Data Type

The additional data provided in the data buffer uses metric and/or string fields. (See later
sections of this Chapter for information on the format of the data buffer.)

Four general data types can be specified for each field:

• Counter

• Gauge

• Numeric id

• String

This section provides some suggestions about which data type to use.

Counter

A counter should be used when it makes sense to sum up the values over an interval. Examples
are bytes printed and records written. The values can also be averaged, maximums and
minimums (per transaction) can be calculated, and other kinds of statistical calculations can be
performed.

If a counter is used, its initial value must be set in the arm_start() call. The difference between the
value in the arm_start() and the arm_stop() (or the value in the last arm_update() call if no metric
value is passed in arm_stop()), equals the amount attributed to this transaction. Similarly, the
difference between successive arm_update() calls, or from the arm_start() to the first
arm_update() call, or from the last arm_update() to the arm_stop() call, equals the value for the
time period between the calls.

Here are three examples of how a counter would probably be used:

• The counter is set to zero at arm_start() and to some value at arm_stop() (or the last
arm_update call). In this case, the application probably measured the value for this
transaction and provided that value in the arm_stop() call. The application always sets the
value to zero in the arm_start() call, so the value at arm_stop() reflects both the difference
from the arm_start() value and the absolute value.

• The counter is x1 at arm_start(), x2 at its arm_stop, x2 at the next arm_start(), and x3 at its
arm_stop(). In this case, the application is probably keeping a rolling counter. Perhaps this is
a server application that counts the total workload. The application simply takes a snapshot
of the counter at the start of a transaction and another snapshot at the end of the transaction.
The agent determines the difference attributed to this transaction.

• The counter is x1 at arm_start(), x2 at arm_stop(), x3 (not equal to x2) at the next arm_start(),
and x4 at arm_stop(). In this case, the application is probably keeping a rolling counter as in
the previous example. But in this case the measurement represents a value affected by other
users or transaction classes, so the value often changes from one arm_stop() to the next
arm_start() for the same transaction class.

24 Open Group Technical Standard

Advanced Topics Additional Data Passed in ARM Function Calls

Gauge

A gauge should be used instead of a counter when it is not meaningful to sum up the values
over an interval. An example is the amount of memory used. If you were measuring the amount
of memory used over 20 transactions in an interval and the average usage for each of these
transactions was 15 MB, it does not make sense to say that 20*15=300 MB of memory used over
the interval. It would make sense to say that the average was 15 MB, that the median was 12 MB,
and that the standard deviation was 8 MB. These are the kinds of operations that an agent will
typically apply to gauges. The values can also be averaged, maximums and minimums per
transaction calculated, and other kinds of statistical calculations performed.

Gauges can be provided on arm_start(), arm_update(), and arm_stop() calls. This creates the
potential for different interpretations. If several values are provided for a transaction (one on an
arm_start(), one on each arm_update(), and one on an arm_stop()), which one(s) should be used?
In order to have consistent interpretation, the following conventions apply. Measurement agents
are free to process the data in any way within these guidelines.

• The maximum value for a transaction will be the largest valid value passed at any time
during the transaction.

• The minimum value for a transaction will be the smallest valid value passed at any time
during the transaction.

• The mean value for a transaction will be the mean of all valid values passed at any time
during the transaction. All values will be weighted equally.

• The median value for a transaction will be the median of all valid values passed at any time
during the transaction. All values will be weighted equally.

• The last value for a transaction will be the last valid value passed at any time during the
transaction.

Numeric ID

A numeric id is simply a numeric value that is used as an identifier, and not as a measurement
value. Examples are message numbers and error codes. It is not meaningful to sum, average, or
manipulate these values in any arithmetic way. By using numeric id instead of a gauge or
counter, the application indicates this to the measurement agent. An agent could create
statistical summaries based on these values, such as generating a frequency histogram by error
code, but this is done by counting the numbers, not by summing them or performing any other
arithmetic operation.

String

A measurement agent should process a string in the same way as a numeric id. As with numeric
ids, it is not meaningful to do arithmetic operations on a string value.

Systems Management: Application Response Measurement (ARM) API 25

Additional Data Passed in ARM Function Calls Advanced Topics

4.1.4 Format of Data Buffer in arm_getid

Format Size 101 (int32) (identifies "meta-data" format)
Flags:

The flags
indicate which
Metric and
String
descriptions
are included
in the buffer.

First Byte (bit8) = 0

Second Byte (bit8)
abcdefg0, where a through g each denote the value of a bit flag:

a = 1 if there is a description for Metric #1, otherwise a = 0
b = 1 if there is a description for Metric #2, otherwise b = 0
c = 1 if there is a description for Metric #3, otherwise c = 0
d = 1 if there is a description for Metric #4, otherwise d = 0
e = 1 if there is a description for Metric #5, otherwise e = 0
f = 1 if there is a description for Metric #6, otherwise f = 0
g = 1 if there is a description for String #1, otherwise g = 0

Third Byte (bit8) = 0

Fourth Byte (bit8) = 0

4 bytes

The first 4 bytes (int32) define the type of data that will be
passed in the 8 byte field. See the description below this table
for an explanation of the different data types.

1 = ARM_Counter32
2 = ARM_Counter64
3 = ARM_CntrDivr32
4 = ARM_Gauge32
5 = ARM_Gauge64
6 = ARM_GaugeDivr32
7 = ARM_NumericID32
8 = ARM_NumericID64
9 = ARM_String8

The last 44 bytes (char*) are the name of the metric. This is a
NULL terminated character string. A possible use of this name
is to display it along with the current value, either on a user
interface or in a report.

Metric #1 desc. 48 bytes

Metric #2 desc. 48 bytes Same as Metric description #1.
Metric #3 desc. 48 bytes Same as Metric description #1.
Metric #4 desc. 48 bytes Same as Metric description #1.
Metric #5 desc. 48 bytes Same as Metric description #1.
Metric #6 desc. 48 bytes Same as Metric description #1.

The first 4 bytes (int32) define the type of data that will be in the
field. Only one data type is valid in this field.

10 = ARM_String32

The last 44 bytes (char*) are the name of the String #1 field. It is
a NULL terminated character string. A possible use of this name
is to display it along with the current value, either on a user
interface or in a report.

String #1 desc. 48 bytes

26 Open Group Technical Standard

Advanced Topics Additional Data Passed in ARM Function Calls

4.1.5 Data Type Definitions

ARM_Counter32
An unsigned32 value that increases up to the maximum value that the counter can hold, at
which point it resets to zero and continues counting up from zero. Except for the reset back
to zero, the value can never decrease. The counter is in the first four bytes, and the second
four bytes are unused.

ARM_Counter64
An unsigned64 counter (see ARM_Counter32, except it is 64 bits long).

ARM_CntrDivr32
A combination of two unsigned32 integers, with ARM_Counter32 in the first four bytes, and
an unsigned32 divisor in the second four bytes. The total value is ARM_CntrDivr32. The
purpose of this format is to be able to represent decimal values without using floating point
formats.

ARM_Gauge32
An int32 (signed) value that can increase or decrease. The gauge is in the first four bytes,
and the second four bytes are unused.

ARM_Gauge64
An int64 (signed) gauge (see ARM_Gauge32, except it is 64 bits long).

ARM_GaugeDivr32
A combination of two integers, one an int32 (signed) and one an unsigned32.
ARM_Gauge32 is in the first four bytes, and an unsigned32 divisor in the second four bytes.
The total value is ARM_GaugeDivr32. The purpose of this format is to be able to represent
decimal values without using floating point formats.

ARM_NumericID32
An unsigned32 value that should not be used in arithmetic operations because it is used as
an identifier, not as a measurement. For example, a message number or error code. The
numeric id is in the first four bytes, and the second four bytes are unused.

ARM_NumericID64
An unsigned64 value that should not be used in arithmetic operations because it is used as
an identifier, not as a measurement. An example is a message number or error code.

ARM_String8
An 8 byte string that is not NULL terminated. If the string is less than eight bytes long, it
must be padded with blanks. The character set is ASCII or EBCDIC, depending on whatever
is standard for that platform. Unlike the NULL terminated character strings passed in
various places in the API, these strings cannot be reliably converted to other code pages, so
it is suggested you use only the common characters in the first 128 characters of the Latin
code pages. See Section 4.3 on page 33 for more information on internationalization.

ARM_String32
A 32 byte string that is not NULL terminated. If the string is less than 32 bytes long, it must
be padded with blanks. The character set is ASCII or EBCDIC, depending on whatever is
standard on that platform. Unlike the NULL terminated character strings passed in various
places in the API, these strings cannot be reliably converted to other code pages, so it is
suggested you use only the common characters in the first 128 characters of the Latin code
pages. See the "Internationalization" section on page 56 for more information.

Systems Management: Application Response Measurement (ARM) API 27

Additional Data Passed in ARM Function Calls Advanced Topics

4.1.6 Format of Data Buffer in arm_start/arm_update/arm_stop

Format 1

Format Size 1 (int32) (2 is special, for arm_update())
Flags:

The flags
indicate
which fields
are included
in the buffer.

First Byte (bit8): Only valid for arm_start(). Ignored on
arm_update() and arm_stop().

abcd0000, where a,b,c,d each denote the value of a bit
flag. a,b,d are set by the application. c is set by the
measurement agent.

a = 1 if the application is passing the correlator from a
parent transaction in the Correlator field; otherwise a = 0.

b = 1 if the application is requesting that the agent
generate a correlator for the transaction (the one
indicated by this arm_start()), otherwise b = 0. If a
correlator is being requested, the data buffer should be
256 bytes, to allow for a variable size correlator.

c = 1 if the agent is returning a correlator in the Correlator
field. When set, the value in the Correlator field overlays
any previous value. This flag will only be set when three
conditions are met, otherwise c=0:

1. The application has set bit b = 1.

2. The agent supports this function (agents that only
support version 1.0 of the ARM API do not).

3. The agent is running in a mode where the
generation of correlators is enabled (that is, there
might be an installation policy to disable the
generation of correlators, either temporarily or
permanently).

If this bit is not set to 1, there is no correlator, and
therefore the application should not forward the contents
of the Correlator field.

d = 1 if the application is requesting that the agent trace
this transaction. This might be done when a dummy test
transaction is being executed, or when an error has
occurred. Each agent can choose how and if it should
honor the request, and administrators who configure the
agent may establish the policy.

Second Byte (bit8)

abcdefg0, where a through g each denote the value of a
bit flag:
a = 1 if a value is passed in Metric #1, otherwise a = 0
b = 1 if a value is passed in Metric #2, otherwise b = 0
c = 1 if a value is passed in Metric #3, otherwise c = 0

4 bytes

28 Open Group Technical Standard

Advanced Topics Additional Data Passed in ARM Function Calls

Format Size 1 (int32) (2 is special, for arm_update())
d = 1 if a value is passed in Metric #4, otherwise d = 0
e = 1 if a value is passed in Metric #5, otherwise e = 0
f = 1 if a value is passed in Metric #6, otherwise f = 0
g = 1 if a value is passed in String #1, otherwise g = 0

It is perfectly permissible for an application to pass none
or some of the metrics on each call, and to change which
metrics are passed from call to call. This holds true for
arm_start(), arm_update(), and arm_stop() calls. The one
requirement that must be adhered to is that the meaning
and position of the field must have been defined with the
arm_getid() call (see Section 4.1.4 on page 26 for the
format of data buffer in arm_getid()).

Third Byte (bit8) = 0

Fourth Byte (bit8) = 0
The metric fields are used by the application to pass
useful information about the transaction or the state of
the application to the measurement agent. The field
contains one or two integers, or a string variable. The use
of the field and the format of the field are determined by
the buffer passed on the arm_getid() call (see Section 4.1.4
on page 26 for the format of data buffer in arm_getid()).

See Section 4.1.3 on page 24 for more information on
choosing a data type, and Section 4.1.5 on page 27 for
data type definitions.

Metric #1 8 bytes

Metric #2 8 bytes Same as Metric #1.
Metric #3 8 bytes Same as Metric #1.
Metric #4 8 bytes Same as Metric #1.
Metric #5 8 bytes Same as Metric #1.
Metric #6 8 bytes Same as Metric #1.

A string variable of up to 32 characters. The string is not
NULL terminated, and is padded with blanks if it is less
than 32 characters. Any information can be included in
the string. Examples would be a part number being
processed, or an error code.

String #1 32 bytes

The field has two different uses depending on whether it
is passed on the call from the application to the
measurement agent, or if it is passed in the return from
the agent:

1. The application can pass in the correlator from a
parent transaction to the agent. This allows the
agent to correlate the parent transaction to the
component transaction being started with this
arm_start() call.

2. The agent can return a correlator for the transaction

Correlator

Systems Management: Application Response Measurement (ARM) API 29

Additional Data Passed in ARM Function Calls Advanced Topics

Format Size 1 (int32) (2 is special, for arm_update())
being started by this arm_start() call. The
application could then pass this correlator to
applications that it invokes, and they in turn could
pass it as the parent correlator in arm_start() calls
that they make.

If the correlator returned bit is set (Flags First Byte c=1),
the application can either pass the entire 168 byte
correlator. Or if you want to optimize, the application can
choose to read the correlator length field and only pass
the number of bytes containing data, starting with the 2
bytes of the correlator length.

See Section 4.1.1 on page 21 for more information on
correlating transactions. Also, see Appendix B for more
information on the content of the correlator.

Length
2 bytes

The Correlator length field (unsigned 16) specifies the
length of a correlator (including this field) generated by a
measurement agent (when bit c is set in the first Flags
byte).

If this value is zero, it means that the agent is not
returning a correlator, and therefore there is no reason to
pass this correlator on to other parts of the application (or
servers that it calls).

This field is considered a part of the correlator and must
be included in the forwarded correlator data.

Data
0-166 bytes

The Correlator data field is used to show the parent/child
relationship between transactions. (Note: the application
instrumenter has no need to understand the correlator
format, as it is opaque).

30 Open Group Technical Standard

Advanced Topics Additional Data Passed in ARM Function Calls

Format 2

In the arm_update() calls with a Format field containing the value 2, the buffer may have the
following format:

Format Size 2 (int32)
1020 bytes
(maximum)

Contains the data. The length of the buffer is determined by
the data_size parameter. The format of the data is not
defined, but it is suggested that the data be formatted as
plain-text characters so it can be understood without
requiring a special formatting program. The agent cannot
summarize the data over an interval, it must be treated as
trace data. One suggestion is to format all information as
plain-text characters so it can be read by a person without a
special formatting program.

Note that because the data in an opaque buffer cannot be
summarized, and processing by the agent may consist of
logging the data to a trace file, many calls at a high
frequency could result in a loss of data or a slowing down of
the system, most likely due to an excessive amount of file
I/O. Therefore it is recommended that the call be used only
in special situations. NULL termination is not required.

Data

Systems Management: Application Response Measurement (ARM) API 31

Three Ways to Instrument within a Transaction Instance Advanced Topics

4.2 Three Ways to Instrument within a Transaction Instance
There are three methodologies for instrumenting within a transaction instance. The first two are
useful when the transaction is within one application. The last one is useful when the transaction
is distributed across applications or systems.

1. Instrument a transaction using arm_update() as a heartbeat , when it is an operation that
takes a long time to complete (several minutes or hours) and you want to show the overall
progress of the transaction in numeric form.

If these transactions have different steps associated with processing each record, you may
want to instrument these steps with component transactions (as described below), or use
repeated calls to arm_update() to show the overall progress of the transaction. For example,
the transaction may process a million records. A call to arm_update() could be made for
every 1000 records or every minute of processing. This could show the progress of the
transaction based on the number of times arm_update() was called or with one or more
application-defined metrics.

2. Instrument a transaction using component transactions when it is a long transaction that
has many steps. A transaction can be defined for the overall transaction and then nested
transactions can be defined for each of the steps. A step might represent a single discrete
operation, or it could represent a large number of operations, such as copying 1000 files.
This allows for the monitoring of each of the steps as well as the overall transaction.

For example, step 1 takes about 20 minutes, step 2 takes about 40 minutes, and step 3 takes
about 10 minutes. Each step can have a defined transaction as well as the overall
transaction. So you would define 3 component transactions monitoring each step, plus one
transaction that monitors the overall transaction.

3. Instrument using transaction correlation when the transaction has components that span
several applications or systems. This approach is more complex than the previous two as it
requires changes to all the applications involved in processing components of the
transaction, but it is the most accurate way to track transaction response time spanning
systems.

32 Open Group Technical Standard

Advanced Topics Internationalization

4.3 Internationalization
The ARM API is designed to enable applications to use native code pages and languages, and for
measurement agents to be able to support many different languages. Users of agents should
contact the providers to see if the agent supports the needed code pages and languages.

The ARM API supports any code page as long as no characters are encoded with binary zero
bytes (octets). This is because most strings are passed as NULL terminated strings, and the
NULL terminator character is a binary zero byte. If a binary zero byte is encountered before the
end of the string, the agent would interpret the zero byte as the NULL terminator and truncate
the string. Most code pages meet this requirement.

These are code pages that contain binary zero bytes, but there are alternate ways to encode the
characters. A well-known example is the Unicode standard. In its native format using 16 bit
characters (UTC-2), there are binary zero bytes. However, the UTF-8 encoding of the same
Unicode characters does not contain binary zero bytes, and this format is entirely compatible
with the ARM API.

Agents that support native languages will often use the following technique. When the
application links to the agent it links to a part of the agent that executes in the same process
space as the application. Typically this small part of the agent communicates with the main part
of the agent across an inter-process communications (IPC) channel. The small part of the agent
that executes in the same process as the application can issue an operating system call to find
out what code page and language the process is using. It can then pass this information to the
main part of the agent, and the main part of the agent can convert from the native code page as
necessary.

There are the following three restrictions on the use of native languages.

• The strings can contain no binary zero bytes except for the NULL terminator character (as
was mentioned above).

• All the strings should be encoded using the same code page and language information as the
process that executes the arm_init() call. This also implies that the code page and language
information should not change after the arm_init() call.

• This technique does not apply to any string data passed within the optional buffers on
arm_start(), arm_update(), and arm_stop(). This is because these strings are not null
terminated (note that it does apply to the metric descriptions passed within the optional
buffer on arm_getid()). Further, these strings are often about things that are external to the
program, such as a part number or an error code, so the requirement to use the same code
page and language information as the process is unacceptable. The application developer is
strongly recommended to restrict these strings to the first 128 bytes of the standard Latin
code pages for ASCII and EBCDIC (depending on the platform). ,iX EBCDIC

Systems Management: Application Response Measurement (ARM) API 33

Advanced Topics

34 Open Group Technical Standard

Appendix A

<arm.h> Header File

A C language header file, <arm.h>, is supplied for applications written in either C or C++. If you
are using a language other than C or C++, the data structures and external references need to be
translated to the language you are using. Note that not all hardware systems or compilers
provide native support for 64-bit integers, nor is there yet a standard type declaration for them.
For these reasons the distributed version of the <arm.h> header file does not assume native
support for 64 bit integers. However, the symbol "INT64" can be defined near the front of the file
to customize the header for compilers and systems with 64 bit integer support.

#ifndef ARM_H_INCLUDED
#define ARM_H_INCLUDED

/**/
/* arm.h - ARM API Definitions */
/**/

#include <sys/types.h> /* C types definitions */

/* Type definitions for various field sizes */
/* 64-bit integer compiler support: */
/* If a type declaration supporting 64 bit integer arithmetic */
/* is defined for the target platform and compiler, the */
/* "INT64" #define should be set to that type declaration. */
/* E.g., */
/* #define INT64 long long */
/* If 64 bit arithmetic is not supported on the target */
/* platform or compiler, remove (or comment out) the "INT64" */
/* #define and structures of two 32 bit values will be */
/* defined for the 64 bit fields. */

/*** #define INT64 long long ***/

typedef unsigned char bit8 ;
typedef short int16 ;
typedef long int32 ;
typedef unsigned char unsigned8 ;
typedef unsigned short unsigned16 ;
typedef unsigned long unsigned32 ;

#ifdef INT64
typedef INT64 int64 ;
typedef unsigned INT64 unsigned64 ;
#else
typedef struct int64 {

int32 upper;
int32 lower;

} int64 ;

typedef struct unsigned64 {
unsigned32 upper;
unsigned32 lower;}

unsigned64 ;
#endif

Systems Management: Application Response Measurement (ARM) API 35

<arm.h> Header File

/*** Symbol definitions ***/

/* Enumeration of transaction status completion codes */

enum arm_tran_status_e { ARM_GOOD = 0, ARM_ABORT, ARM_FAILED };

/* Enumeration of user data formats */

enum arm_userdata_e { ARM_Format1 = 1, ARM_Format2,
ARM_Format101 = 101 };

/* Enumeration of metric types */

typedef enum arm_metric_type_e {
ARM_Counter32 = 1, ARM_Counter64, ARM_CntrDivr32,
ARM_Gauge32, ARM_Gauge64, ARM_GaugeDivr32, ARM_NumericID32,
ARM_NumericID64, ARM_String8, ARM_String32,
ARM_MetricTypeLast

} arm_metric_type_e;

/*** Data definitions ***/

/* User metric structures */

typedef struct arm_cntrdivr32_t { /* Counter32 + Divisor32 */
unsigned32 count;
unsigned32 divisor;

} arm_cntrdivr32_t;

typedef struct arm_gaugedivr32_t { /* Gauge32 + Divisor32 */
int32 gauge;

unsigned32 divisor;
} arm_gaugedivr32_t;

/* Union of user ARM_Format1 metric types */

typedef union arm_user_metric1_u {
unsigned32 counter32; /* Counter32 */
unsigned64 counter64; /* Counter64 */
arm_cntrdivr32_t cntrdivr32; /* Counter32 + Divisor32 */
int32 gauge32; /* Gauge32 */
int64 gauge64; /* Gauge64 */
arm_gaugedivr32_t gaugedivr32; /* Gauge32 + Divisor32 */
unsigned32 numericid32; /* NumericID32 */
unsigned64 numericid64; /* NumericID64 */
char string8[8]; /* String8 */

} arm_user_metric1_u;

/* Application view of correlator */

typedef struct arm_app_correlator_t {
int16 length; /* Length of the correlator */
char agent_data[166]; /* Agent-specific data fields */

} arm_app_correlator_t;

/* User metrics ARM_Format1 structure definition */

typedef struct arm_user_data1_t {
int32 format; /* Version/format id (userdata_e) */

36 Open Group Technical Standard

<arm.h> Header File

bit8 flags[4]; /* Flags for metrics’ presence */
arm_user_metric1_u metric[6]; /* User metrics */
char string32[32]; /* 32 byte non-terminated */

/* string */
arm_app_correlator_t correlator; /* Correlator */

} arm_user_data1_t;

/* User metrics ARM_Format2 structure definition */

typedef struct arm_user_data2_t {
int32 format; /* Version/format id (userdata_e) */
char string1020[1020]; /* 1020 byte opaque blob */

} arm_user_data2_t;

/* User metric meta-data for ARM_Format101 structure */

typedef struct arm_user_meta101_t {
int32 type; /* Type of metric (arm_user_metric_e) */
char name[44]; /* NULL-terminated string <= 44 char */

} arm_user_meta101_t;

/* User meta-data ARM_Format101 structure definition */

typedef struct arm_user_data101_t {
int32 format; /* Version/format id (userdata_e) */
bit8 flags[4]; /* Flags for which fields are present */

arm_user_meta101_t meta[7]; /* User metrics meta-data */
} arm_user_data101_t;

/* Flag bit definitions (within bit8 fields) */

/* flags[0] in arm_user_data1_t passed in arm_start */

#define ARM_CorrPar_f 0x80 /* Correlator from parent */
#define ARM_CorrReq_f 0x40 /* Request correlator generation */
#define ARM_CorrGen_f 0x20 /* New correlator generated in data */
#define ARM_TraceReq_f 0x10 /* User trace request */

/* flags[1] in arm_user_data101_t passed in arm_get_id and */
/* flags[1] in arm_user_data1_t passed in arm_start, arm_update */
/* and arm_end */

#define ARM_Metric1_f 0x80 /* Metric 1 present */
#define ARM_Metric2_f 0x40 /* Metric 2 present */
#define ARM_Metric3_f 0x20 /* Metric 3 present */
#define ARM_Metric4_f 0x10 /* Metric 4 present */
#define ARM_Metric5_f 0x08 /* Metric 5 present */
#define ARM_Metric6_f 0x04 /* Metric 6 present */
#define ARM_AllMetrics_f 0xfc /* Metrics 1-6 present */
#define ARM_String1_f 0x02 /* String 1 present */

#if defined _WIN32
#include <windows.h>
#define ARM_API WINAPI

#elif defined __OS2__
#define ARM_API _Pascal

#elif defined _OS216
#define arm_data_t char _far
#define arm_ptr_t char _far

Systems Management: Application Response Measurement (ARM) API 37

<arm.h> Header File

#define ARM_API _far _pascal
#elif defined _WIN16 || _WINDOWS

#include <windows.h>
typedef BOOL (FAR PASCAL _export * FPSTRCB) (LPSTR, LPVOID);
#define arm_data_t char FAR
#define arm_ptr_t char FAR
#define ARM_API WINAPI

#else /* unix */
#define ARM_API

#endif

#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */

#ifdef _PROTOTYPES

/*** Function prototypes ***/

extern int32 ARM_API arm_init(
char* appl_name, /* application name */
char* appl_user_id, /* Name of the application user */
int32 flags, /* Reserved = 0 */
char* data, /* Reserved = NULL */
int32 data_size); /* Reserved = 0 */

extern int32 ARM_API arm_getid(
int32 appl_id, /* application handle */
char* tran_name, /* transaction name */
char* tran_detail, /* transaction additional info */
int32 flags, /* Reserved = 0 */
char* data, /* format definition of user metrics */
int32 data_size); /* length of data buffer */

extern int32 ARM_API arm_start(
int32 tran_id, /* transaction name identifier */
int32 flags, /* Reserved = 0 */
char* data, /* user metrics data */
int32 data_size); /* length of data buffer */

extern int32 ARM_API arm_update(
int32 start_handle, /* unique transaction handle */
int32 flags, /* Reserved = 0 */
char* data, /* user metrics data */
int32 data_size); /* length of data buffer */

extern int32 ARM_API arm_stop(
int32 start_handle, /* unique transaction handle */
int32 tran_status, /* Good=0, Abort=1, Failed=2 */
int32 flags, /* Reserved = 0 */
char* data, /* user metrics data */
int32 data_size); /* length of data buffer */

extern int32 ARM_API arm_end(
int32 appl_id, /* application id */
int32 flags, /* Reserved = 0 */
char* data, /* Reserved = NULL */
int32 data_size); /* Reserved = 0 */

38 Open Group Technical Standard

<arm.h> Header File

#else /* _PROTOTYPES */

extern int32 ARM_API arm_init();
extern int32 ARM_API arm_getid();
extern int32 ARM_API arm_start();
extern int32 ARM_API arm_update();
extern int32 ARM_API arm_stop();
extern int32 ARM_API arm_end();

#endif /* _PROTOTYPES */

#ifdef __cplusplus
}
#endif /* __cplusplus */

/* Type definitions for compatibility with version 1.0 of */
/* the ARM API */

typedef int32 arm_appl_id_t;

typedef int32 arm_tran_id_t;

typedef int32 arm_start_handle_t;

typedef unsigned32 arm_flag_t;

typedef char arm_data_t;

typedef int32 arm_data_sz_t;

typedef char arm_ptr_t;

typedef int32 arm_ret_stat_t;

typedef int32 arm_status_t;

#endif /* ARM_H_INCLUDED */

Systems Management: Application Response Measurement (ARM) API 39

<arm.h> Header File

40 Open Group Technical Standard

Appendix B

Measurement Agent Information

This appendix contains information provided for measurement agent implementers as opposed
to ARM application instrumenters. For instrumenters it is provided as reference only, the
correlator is opaque from an application instrumenter’s perspective.

B.1 Agents and Correlators
The agents provide the correlators, and within the correlator they provide information to
uniquely identify agents. To enable an enterprise management solution (correlation application)
to analyze the correlators coming from different systems in a heterogeneous environment,
agents need to follow some conventions when creating correlators.

The following section documents a set of semantics for measurement agents to use in formatting
the correlator and agent identifiers. The correlator passed on arm_start() calls is sent across
systems, so it is always in network byte order. Network byte order is a standard described as
follows: is always in network byte order. Network byte order is a standard

Buffer word/byte/bit Format

byte 0 byte 1 byte2 byte 3
|----------|----------|-----------|-----------|

0 7 8 15 16 22 23 31
msb lsb

Systems Management: Application Response Measurement (ARM) API 41

Format of the Correlator Measurement Agent Information

B.2 Format of the Correlator
Correlators provided by agents and passed on the arm_start() calls have the following format:

Length of the Correlator (unsigned16)

If this value is zero, it means that the measurement agent is not returning a
correlator, and therefore there is no reason to pass this correlator on to other
parts of the application (or servers that it calls).

A zero length provides another safeguard for agents. If an application passes a
null correlator anyway, when any agent receives this correlator as the parent
correlator for another transaction, the agent can see that the data in the
correlator is invalid and ignore it, regardless of whether the parent correlator bit
(Flags First Byte a) is set in the arm_start() buffer.

2 bytes

Correlator format (unsigned8)=1

Only one format is defined at this point, but others could be added in the
future.

1 byte

Flags

First Byte (bit8)

ab000000, where a and b are bit flags.

a=1 if a trace of this transaction and any nested component transactions is
requested by the agent.

b=1 if a trace of this transaction and any nested component transactions is
requested by the application. The application requests this by setting the "d" bit
(in abcdefgh notation) in the first flag byte in the buffer passed on arm_start().
The agent will decide whether to set this bit, based on its capabilities and how
it is configured.

The trace this correlator flag is a way to cause agents to trace and/or monitor a
transaction and all component transactions associated with the transaction
without having to trace or monitor all transactions on a system, or without
requiring a complicated infrastructure to control tracing and monitoring. (Note
that this does not preclude other ways to control agents, nor is this intended to
be a final and comprehensive solution. It is intended that this will be used in
addition to other approaches).

When an agent builds a correlator, it is free to turn on these flags. The agent
might do this if an application has been experiencing unsatisfactory response
times. Any agents that receive this correlator as the parent correlator for a
component transaction will also see the flag, and they in turn could turn on the
flag in any correlators they generate. This process could repeat, resulting in the
passing of the trace flag through all the transactions of interest. All the agents
might be configured to trace only the few transactions with this flag on, and
this would both capture the information needed to diagnose the transaction
problem, and avoid overloading the agents and their systems with attempts to
trace all transactions.

1 byte

42 Open Group Technical Standard

Measurement Agent Information Format of the Correlator

The reason there are separate flags for traces requested by an agent and an
application is to provide additional flexibility in how policies for monitoring
and tracing are implemented. It might be common for an installation to trace
transactions only when requested by agents (based on how the administrator
has configured the agents), because then the administrator would control all
tracing. On the other hand, permitting the application to highlight when a
transaction is special has advantages.

Format of the Address field (unsigned16)

The following formats are defined:
0 = reserved
1 = IPv4
2 = IPV4+port number
3 = IPv6
4 = IPv6+port number
5 = SNA
6 = X.25
7:32767 = reserved

This list will be expanded as new requirements arise. The intent is to provide a
value for any common addressing format as soon as the need is identified.

32768-65535 = undefined and available for agent implementers to use. There
are no semantics associated with the address format. It will be an unusual
situation where a new format is needed, but this provides a solution if this is
needed. The preferred approach is to get a new format defined that is in the
0-32767 range. There is a risk that two different agent developers will choose
the same id, but this risk is small.

2 bytes

Vendor ID (unsigned16)

The vendor ID is a way to identify who built the agent. Combining this
information with the Agent Version field will provide a way for a management
application to know what kind of agent generated a correlator. A management
application may contain specialized functions or logic that only works with the
agents from a particular vendor and/or supporting particular functions or
interfaces. By putting these two fields in the correlator, a management
application has a way to know whether the agent that generated the correlator
has some of these specialized capabilities.

For example:
The management application wants to contact the agent to know the name of
the application, user, and transaction class running this transaction instance.
Although the address of the agent is known from the Address field, the
protocol that one uses to interface to the agent could be anything. The
management application may know how to access several different agents, and
could use these values to determine if the correlator came from an agent that it
knows how to access. Alternatively, an agent has a special capability. For
example, maybe version 3.3 of a vendor’s agent analyzes data in a particular
way, but previous versions do not. The management application could use this
field to see what are the agent’s capabilities.

2 bytes

Systems Management: Application Response Measurement (ARM) API 43

Format of the Correlator Measurement Agent Information

In order to minimize the possibility of two vendors using the same vendor ID,
the value should be taken from the list of enterprise identifiers from the
Internet Assigned Numbers Authority (IANA). This list was created for
vendors who have SNMP agents. Although the ARM API specification does
not require or endorse SNMP, it’s likely that most or all the organizations that
will create an ARM agent will have at least one enterprise ID assigned. The list
of enterprise IDs can be found at:

ftp://ftp.isi.edu/in-notes/iana/assignments/enterprise-
numbers

For organizations that do not have an enterprise identifier assigned by the
IANA, the values between 32768-65535 are free for agent developers to use.
There are no semantics associated with these ids. It is expected that most or all
agent developers will have a formally assigned vendor id, and it will be an
unusual situation where another id is needed, but this provides a solution if
this is needed. There is a risk that two different agent developers will choose
the same id, but this risk is very small.

Agent Version (unsigned16)

The Agent Version is used to distinguish between different versions of an
agent, and will be most useful when the capabilities and/or interfaces of an
agent change from one release to another. It will also be useful to distinguish
between different agents from the same vendor. Each vendor is responsible for
avoiding having multiple agents with different capabilities using the same
Agent Version value. Refer to the explanation in the Vendor ID field above to
understand how to use this field.

2 bytes

Agent Instance (unsigned16)

Each agent assigns transaction ids and start handles. Typically there will be one
agent on each system, and this one agent is responsible for making sure that
there are no duplicate ids or handles. From one system to another, however,
duplicate ids and handles will be common, that is, an id/handle combination
assigned on system X will also be assigned on system Y.

One of the main purposes of the Address, Vendor ID, and Agent Version fields
is to tell a management application how to contact an agent in order to
translate the transaction id and start handle into the names of the application,
user, and transaction class, and the instance of the transaction. As long as there
is only one set of ids and handles stored at that address, all the required
information is there. However, if the address is not the address of an
individual agent, but rather is the address of a directory that contains
information about multiple agents, there is insufficient information, because
the id/handle combinations can be duplicated.

The purpose of the Agent Instance field is to provide a way to identify which
agent generated a correlator, even if the correlation data from multiple agents
is available at the address specified in the Address field.

2 bytes

4 bytes Transaction instance (start_handle returned from an arm_start()

44 Open Group Technical Standard

Measurement Agent Information Format of the Correlator

4 bytes Transaction class ID (tran_id returned from an arm_getid()
2 bytes Length of the address field (unsigned16)
Maximum
146 bytes

Address

This field is the address of the agent. More precisely, it is the address that a
management application can contact in order to have the Transaction class ID
mapped to the names of an application, user, and transaction class, and to get
information about the transaction instance, or aggregated data about the
transaction class (or any other data).

The maximum length of this field is determined by an overall limit of 168 bytes
for the correlator. In the correlator format described here, the maximum
address length is 146 bytes. In actual practice, it is expected to be no more than
20 bytes for most implementations. If new correlator formats are added in the
future, the maximum size of this field could change. The maximum correlator
size of 168 bytes will not change.

Correlators are passed on arm_start() calls as part of the buffer pointed to by
the data pointer. The maximum size of the buffer is 256 bytes, of which 88 bytes
are used for other fields, leaving 168 bytes for the correlator. An application
should allocate space for the full 256 bytes when making the arm_start() call,
but can then use the Correlator Length field to determine how long the
correlator really is, and only forward that much data to other cooperating
applications.

Following are the formats that have been defined so far. The data is stored in
network standard byte order, in which integers are sent most significant byte
first, unless otherwise indicated. This list is not intended to be exhaustive, and
will be extended whenever a new agent implementation requires a new format.

0 = reserved

1 = IPv4
Bytes 0:3 4 byte IP address

2 = IPV4+port number
Bytes 0:3 - 4 byte IP address
Bytes 4:5 - 2 byte IP port number

3 = IPv6
Bytes 0:15 - 16 byte IP address

4 = IPv6+port number
Bytes 0:15 - 16 byte IP address
Bytes 16:17 - 2 byte IP port number

5 = SNA
Bytes 0:7 - EBCDIC-encoded network ID
Bytes 8:15 - EBCDIC-encoded network accessible unit (control point or LU)

Systems Management: Application Response Measurement (ARM) API 45

Format of the Correlator Measurement Agent Information

6 = X.25
Bytes 0:15 - The X.25 network address (also referred to as an X.121 address).
This is up to 16 ASCII character digits ranging from 0-9. The length is
known from the Length of the address field . An agent running over an X.25
link with the IP configured may choose to use this format or the IP format.
This format must be used when IP is not configured above an X.25 link.

7:32767 = reserved
32768-65535 = undefined and available for agent implementers to use.

46 Open Group Technical Standard

Appendix C

The ARM Software Developers Kit (SDK)

The ARM SDK has been developed by the ARM Working Group of the CMG. The following
information is included in this document for the convenience of application developers. Further
information on the ARM SDK can be found on the World Wide Web, by following the address
pointer given in Referenced Documents on page xii.

C.1 Content
The ARM SDK contains everything you need to prepare your application for transaction
monitoring. It comes with a default no-operation (NULL) shared library that contains all the
function calls you will need and a header file. The NULL library allows developers to instrument
and run their applications without having one of the measurement agents installed.

Additionally, the source used to create the NULL library is part of the SDK. This is provided so a
shared library can be created for applications that exist on platforms not currently supported by
the measurement technologies. The SDK contains NULL libraries compiled for UNIX systems
(HP-UX, IBM AIX, NCR MP-RAS, and Sun Solaris) and PC based systems (OS/2, Windows NT,
and Windows95). The kit installs the correct library for the system.

A C language header file is supplied for applications written in either C or C++.

The source code and header file for a logging agent is supplied for use in testing your
instrumentation.

Sample programs for C/C++ are provided as examples of how to instrument applications.
Examples for other programming languages from the ARM 1.0 SDK are also available on the
CD-ROM and the referenced Web site.

C.2 The ARM Shared Library
The library specified here is a NULL shared library provided to resolve externals in the code. If
you are working with a specific vendor’s performance measurement agent you may want to use
the libarm library supplied for that agent instead of the NULL library. The agent-specific
library will return errors that may be helpful during development, whereas the NULL library
will always return a non-error condition (0).

Systems Management: Application Response Measurement (ARM) API 47

The ARM Shared Library The ARM Software Developers Kit (SDK)

After installation, libarm.* shared libraries reside in the directory where the system libraries
are installed. For example:

HP-UX 10.x /usr/lib/libarm.sl
IBM AIX /usr/lib/libarm.a
Sun Solaris /usr/lib/libarm.so
NCR MP-RAS /usr/lib/libarm.so
Windows NT $windir$\SYSTEM32\LIBARM32.DLL
Windows95 $windir$\SYSTEM32\LIBARM32.DLL
OS/2 (32-bit) $os2dir$\DLL\LIBARM.DLL

It is recommended that the library be used from the standard location, so that applications can
locate the library in a standard location and be able to take advantage of a measurement agent
once it is installed on the system.

C.3 Logging Agent
The source code for a logging agent, logagent.c , is included in the SDK, for use in testing
your instrumentation.

Unlike the NULL libraries, it is only in source format, so it needs to be compiled before it can be
used.

48 Open Group Technical Standard

Appendix D

Adding ARM Function Calls to an Application

The following steps show how to add ARM API function calls to an application. Also shown is a
very simple application that has been instrumented with the ARM Software Developer’s Kit
(SDK) libarm library of calls.

Each numbered step below (1-4) is highlighted in the source code for the sample application that
follows:

1. Once the SDK is installed, include the header file <arm.h> (for C and C++) in your source
code and modify the compile link to reference the library.

2. Identify the start and the end of the application, and place the calls to arm_init() and
arm_end(). These calls are used for initialization and cleanup of the ARM environment for
your application, and therefore should be called from the initialization and exit sections of
your application.

3. Determine what transaction classes you want to instrument, and the names to use to
uniquely identify each transaction class. Modify the code to call arm_getid() for each
transaction class. The arm_getid() calls can also be made from the application initialization
section.

4. Call arm_start() just prior to the start of execution of the transaction, and arm_stop() just
after the transaction completes.

When distributing an application, a NULL shared library must be included in the installation
package. This will ensure that the application will load and execute correctly, even if no
measurement agent is installed.

Note: If the libarm.* file already exists on the system where the application is being
installed, do not overwrite the library. The library that exists may be the NULL
library or it could be one of the measurement agent’s libraries.

/**/
/* sample.c */
/**/

#include <stdio.h>
(1) #include "arm.h"

int32 appl_id = -1; /* Unique id for the application */
int32 tran_id = -1; /* Unique id for the transaction */
void init()
{

(2) appl_id = arm_init("ARM sample program" /* application name */
"*", /* use default user */
0,0,0);

if (appl_id < 0)
printf("ARM sample program not registered.0);

(3) tran_id = arm_getid(appl_id, /* application id from arm_init */
"Sample_transaction", /* transaction name */
"First Transaction in Sample program",
0,0,0);

if (tran_id < 0)
printf("Sample_transaction is not registered.0);

} /* init */

Systems Management: Application Response Measurement (ARM) API 49

Adding ARM Function Calls to an Application

void transaction()
{

int32 tran_handle;
(4) tran_handle = arm_start(tran_id, /* trans id from arm_getid */

0,0,0);
/***/
/* Perform actual transaction processing here*/
/***/
sleep(1);

(4) arm_stop(tran_handle, /* transaction handle from arm_start */
ARM_GOOD, /* successful completion define = 0 */
0,0,0);

return;
} /* transaction */
main()
{

int continue_processing = 1;
init();
while (continue_processing)
{

transaction();
}

(2) arm_end(appl_id, /* application id from arm_init */
0,0,0);

return(0);
}

50 Open Group Technical Standard

Appendix E

Testing Your Instrumentation

E.1 Procedure
The following tasks are recommended for testing your instrumentation after you have included
the ARM API calls in your program.

1. Link to the NULL library that is part of the ARM SDK. If the link fails, it means that you
are not linking to the correct library, or you are using incorrect names or parameters in at
least one of the ARM API calls.

2. Once you can link successfully, then run your application, including the calls to the API,
and verify that your application performs correctly. No testing of the API calls is done
except for the linking parameters, because the NULL library simply returns zero every
time it is called. Running the application is useful to insure that you did not inadvertently
alter the program in a way that affects its basic function.

3. Assuming you have a compiled logging agent source, link to the logging agent generated
in the previous step. Run your application, including the calls to the ARM API and verify
that your application performs correctly.

4. Manually review the log created by the logging agent to verify that the correct parameters
are passed on each call. These parameters include transaction ids to connect start calls to
the correct transaction class, start handles to connect stop calls to the correct start calls, and
any of the optional parameters. Optional advanced parameters include correlators that
indicate the parent/child relationship between transactions and components, and metrics
about the transaction or application state.

Search the log for error messages (identified by ERROR in the text), and informative
messages (identified by INFO in the text), after your application has run for a considerable
period of time in a simulated production environment. Upon successful completion of this
test, you should be confident that your ARM API calls are correct. A sample log is
provided in Section E.2.

5. Link to a performance measurement product (if available) and run the application under
typical usage scenarios. This will test the entire system of application plus management
tools.

Systems Management: Application Response Measurement (ARM) API 51

Logging Agent Sample Output Testing Your Instrumentation

E.2 Logging Agent Sample Output

7:47:39.sss: arm_init: Application <Appl_0> User <User_0> = Appl_id <1>

17:47:39.sss: arm_getid: Application <Appl_0> User <User_0> Transaction <Tran_0>
Detail <This is transaction type 0>

17:47:39.sss: arm_getid: Application <Appl_0> User <User_0> Transaction <Tran_0>
= Tran_id <1>

17:47:39.sss: arm_getid: Application <Appl_0> User <User_0> Transaction <Tran_0>
Metric Field <1> Type <1> Name <This is a Counter32 user metric >

17:47:39.sss: arm_start: Application <Appl_0> User <User_0> Transaction <Tran_0>
= Start_handle <1>

17:47:39.sss: arm_start: Application <Appl_0> User <User_0> Transaction <Tran_0>
Start_handle <1> Metric < This is a Counter32 user metric > : <0>

17:47:40.sss: arm_update: Application <Appl_0> User <User_0> Transaction <Tran_0>
Start_handle <1> Metric < This is a Counter32 user metric > : <2>

17:47:41.sss: arm_stop: Application <Appl_0> User <User_0> Transaction <Tran_0>
Start_handle <1> Status <0>

17:47:41.sss: arm_stop: Application <Appl_0> User <User_0> Transaction <Tran_0>
Start_handle <1> Metric < This is a Counter32 user metric > : <4>

17:47:41.sss: arm_end: Application <Appl_0> User <User_0> appl_id <1>

52 Open Group Technical Standard

Appendix F

Examples

F.1 C/C++ (all platforms) Sample 1
Sample 1 uses standard ARM API calls, not advanced functions.

/***/
/* sample1.c */
/* This program provides examples of how to use the features */
/* provided by version 1.0 and 2.0 of the ARM API. */
/***/

#include <stdio.h>
#include "arm.h"

int32 appl_id = -1; /* Define an identifer for the application id */
int32 simple_tran_id = -1; /* Define a unique identifier for each */
int32 long_tran_id_1 = -1; /* TRANSACTION */
int32 long_tran_id_2 = -1;
int32 sub_tran_id_1 = -1;
int32 sub_tran_id_2 = -1;

/***/
/* init */
/***/

void init()
{

appl_id=arm_init("ARM sample program", /* application name */
"*", /* use default user */
0,0,0);

simple_tran_id = arm_getid(appl_id,
"Simple_transaction_1", /* transaction name */
"First Transaction in Sample program",
0,0,0);

if (simple_tran_id < 0)
printf("Simple_transaction_1 is not registered.0);

long_tran_id_1 = arm_getid(appl_id,
"Long_transaction_1", /* transaction name */
"A long transaction using arm_update",
0,0,0);

if (long_tran_id_1 < 0)
printf("Long_transaction_1 is not registered.0);

long_tran_id_2 = arm_getid(appl_id,
"Long_transaction_2", /* transaction name */
"A long transaction using sub transactions",
0,0,0);

Systems Management: Application Response Measurement (ARM) API 53

C/C++ (all platforms) Sample 1 Examples

if (long_tran_id_2 < 0)
printf("Long_transaction_2 is not registered.0);

sub_tran_id_1 = arm_getid(appl_id,
"Sub_tran1_of_long_tran_2", /* transaction name */
"Subtransaction 1 of Long_trans2",
0,0,0);

if (sub_tran_id_1 < 0)
printf("Sub_tran_of_long_tran_2 is not registered.0);

sub_tran_id_2 = arm_getid(appl_id,
"Sub_tran2_of_long_tran_2", /* transaction name */
"Subtransaction 2 of Long_trans2",
0,0,0);

if (sub_tran_id_2 < 0)
printf("Sub_tran_of_long_tran_2 is not registered.0);

} /* init */

/***/
/* simple_trans1 */
/***/

void simple_trans1()
{

int32 tran_handle;

tran_handle = arm_start(simple_tran_id, /* transaction id */
/* from arm_getid */

0,0,0);

/**/
/* Perform actual transaction processing here */
/**/

arm_stop(tran_handle, /* transaction handle from arm_start */
ARM_GOOD, /* successful completion define = 0 */
0,0,0);

return;
} /* simple_trans1 */

/***/
/* long_trans_using_update */
/* arm_update can show the progress of an iterative process */
/***/

void long_trans_using_update()
{

#define MAX_COUNT 1000000
#define UPDATE_COUNT 100000 /* call update every 100,000 iterations */

int32 tran_handle;
int i;
tran_handle = arm_start(long_tran_id_1, /* trans id from arm_getid */

0,0,0);

54 Open Group Technical Standard

Examples C/C++ (all platforms) Sample 1

for (i=1;i<=MAX_COUNT;i+ +)
{

/* your processing goes here */

if (i%UPDATE_COUNT == 0)
arm_update(tran_handle, /* update based on UPDATE_COUNT */

0,0,0);
}
arm_stop(tran_handle, /* transaction handle from arm_start */

ARM_GOOD /* successful completion define = 0 */
0,0,0);

return;

} /* long_trans_using_update */

/***/
/* long_trans_using_sub_trans */
/* Sub-transactions can show the progress of the steps of a long */
/* transaction */
/***/

void long_trans_using_sub_trans()
{

int32 tran_handle;
int32 sub_tran_handle1;
int32 sub_tran_handle2;

/* record the overall transaction processing (optional) */

tran_handle = arm_start(long_tran_id_2, /* trans id from*/
/* arm_getid */

0,0,0);

/* start recording the first step of the long transaction */
sub_tran_handle1 = arm_start(sub_tran_id_1,

0,0,0);

/**************************************/
/* Process step 1 on this transaction */
/**************************************/

/* record the completion of the first step */

arm_stop(sub_tran_handle1, /* transaction handle from arm_start */
ARM_GOOD, /* successful completion define = 0 */
0,0,0);

/* start recording the second step of the long transaction */
sub_tran_handle2 = arm_start(sub_tran_id_2,

0,0,0);

/**************************************/
/* Process step 2 on this transaction */
/**************************************/

/* record the completion of the second step */

arm_stop(sub_tran_handle2, /* transaction handle from arm_start */
ARM_GOOD, /* successful completion define = 0 */

Systems Management: Application Response Measurement (ARM) API 55

C/C++ (all platforms) Sample 1 Examples

0,0,0);

/* record the completion of the overall transaction */
arm_stop(tran_handle, /* transaction handle from arm_start */

ARM_GOOD, /* successful completion define = 0 */
0,0,0);

return;
} /* long_trans_using_sub_trans */

/***/
/* main */
/***/

main()
{

int continue_processing = 1;

init();

while (continue_processing)
{

simple_trans1();
long_trans_using_update();
long_trans_using_sub_trans();

continue_processing = 0;
}

arm_end(appl_id, /* application id from arm_init */
0,0,0);

return(0);

}

56 Open Group Technical Standard

Examples C/C++ (all platforms) Sample 2

F.2 C/C++ (all platforms) Sample 2
Sample 2 uses the advanced functions of application-defined metrics and transaction correlation.

/**/
/* Sample2.c */
/* This program provides examples of how to use two of the new */
/* features provided by version 2.0 of the ARM API: */
/* - user defined metrics and correlation. For simplicity, */
/* this sample program does not perform any error checking. */
/**/

#include <stdio.h>
#include "arm.h"

int32 client_appl_id = -1; /* application id */
int32 client_tran_id = -1; /* transaction id */

int32 metric_appl_id = -1; /* application id */
int32 metric_tran_id = -1; /* transaction id */

/**/
/* server_application */
/* This routine is included here to simplify this example. */
/* In a real life situation, this piece of code would likely be */
/* running on a separate system. */
/**/

void server_application(arm_app_correlator_t client_correlator)

{
int32 server_appl_id = -1; /* unique application id */
int32 server_tran_id = -1; /* unique transaction id */
int32 server_tran_handle = -1; /* transaction instance */

arm_user_data1_t *buf_ptr, buf = {
1, /* header */
{ARM_CorrPar_f, 0, 0, 0}, /* flags */
};

int32 buf_sz;

int i, data_len;

server_appl_id=arm_init("Server_Application", /* application name */
"*", /* use default user */
0,0,0); /* reserved */

server_tran_id = arm_getid(server_appl_id, /* appl_id from arm_init */
"Server_transaction", /* transaction name */
"First Transaction in Server program",
0, /* data buffer */
0,0); /* buffer pointer & size */

/* Pass the parent correlator received from the client */
/* application to the ARM agent using the arm_start call. */

buf_ptr = &buf;

Systems Management: Application Response Measurement (ARM) API 57

C/C++ (all platforms) Sample 2 Examples

buf_ptr->flags[0] = ARM_CorrPar_f;

buf_ptr->correlator.length = client_correlator.length;
data_len = (client_correlator.length

- sizeof(client_correlator.length));
for (i = 0; i < data_len; i++)

buf_ptr->correlator.agent_data[i] = client_correlator.agent_data[i];

buf_sz = (sizeof(buf)-sizeof(client_correlator)
+ client_correlator.length);

server_tran_handle = arm_start(server_tran_id, /* tran_id from */
/* arm_getid */

0, /* reserved */
(char *)buf_ptr,
buf_sz);

/**/
/* Perform actual transaction processing here */
/**/

arm_stop(server_tran_handle, /* transaction handle from arm_start */

ARM_GOOD, /* successful completion define = 0 */
0, /* reserved for future use */
0,0); /* buffer pointer & buffer size */

arm_end(server_appl_id, /* application id from arm_init */
0,0,0); /* reserved for future use */

return;

} /* server_application() */

/***/
/* client_transaction */
/***/

void client_transaction()
{

int32 client_tran_handle = -1; /* transaction start handle */

arm_user_data1_t *buf_ptr, buf = {
1, /* Header */
};

int32 buf_sz;

arm_app_correlator_t correlator = {
0, /* correlator length */
0, /* agent data */
};

int i, data_len;

buf_ptr = &buf;
buf_sz = sizeof(buf);

58 Open Group Technical Standard

Examples C/C++ (all platforms) Sample 2

/* The client application requests a correlator from the ARM Agent */

buf_ptr->flags[0] = ARM_CorrReq_f;
client_tran_handle = arm_start(client_tran_id, /* tran_id from */

/* arm_getid */
0, /* reserved for future use */
(char *)buf_ptr, /* metrics buf ptr */
buf_sz); /* user metric buffer size */

/* If the ARM Agent returns a correlator, determine the size of */
/* the agent specific data in the correlator and pass the data, */
/* along with the correlator length, to the server application. */

if ((buf_ptr->flags[0] & ARM_CorrGen_f) == ARM_CorrGen_f) {
correlator.length = buf_ptr->correlator.length;
data_len = (correlator.length - sizeof(buf_ptr->correlator.length));
for (i = 0; i < data_len; i++)

correlator.agent_data[i] = buf_ptr->correlator.agent_data[i];
}

server_application(correlator);

arm_stop(client_tran_handle, /* transaction handle from arm_start */
ARM_GOOD, /* successful completion define = 0 */
0, /* reserved for future use */

0,0); /* buffer pointer & buffer size */

return;

} /* client_transaction() */

/**/
/* init_client_application */
/**/

void init_client_application()

{

client_appl_id=arm_init("Client_Application", /* application name */
"*", /* use default user */
0,0,0); /* reserved for future use */

client_tran_id = arm_getid(client_appl_id, /* appl_id from arm_init */
"Client_transaction", /* transaction name */
"First transaction in Client application",
0, /* reserved */
0,0); /* buffer pointer & size */

return;

} /* init_client_application */

/**/
/* metric_transaction */
/**/

void metric_transaction()

Systems Management: Application Response Measurement (ARM) API 59

C/C++ (all platforms) Sample 2 Examples

{
int32 metric_tran_handle = -1; /* transaction start handle */

arm_user_data1_t *buf_ptr, buf = {
1, /* Header */
{0, ARM_AllMetrics_f | ARM_String1_f, 0, 0}, /* Flags */
};

int32 buf_sz;

buf_ptr = &buf;
buf_sz = sizeof(buf);

buf_ptr->metric[0].counter32 = 0x32;
buf_ptr->metric[1].gauge32 = 0x32;
buf_ptr->metric[2].counter64.upper = 0x01234567;
buf_ptr->metric[2].counter64.lower = 0x76543210;
strcpy(buf_ptr->metric[3].string8, "String 8");
buf_ptr->metric[4].cntrdivr32.count = 0x32;
buf_ptr->metric[4].cntrdivr32.divisor = 0x32;
buf_ptr->metric[5].numericid64.upper = 0x01234567;
buf_ptr->metric[5].numericid64.lower = 0x76543210;
strcpy(buf_ptr->string32,"This is a 32 character string ");

metric_tran_handle = arm_start(metric_tran_id, /* tran_id from */
/* arm_getid */

0, /* reserved */
(char *)buf_ptr, /* metrics buf ptr */
buf_sz); /* user metric buffer size */

/********************************/
/* Perform some processing here */
/********************************/

arm_update(metric_tran_handle, /* trans handle from arm_start */
0, /* reserved for future use */
(char *)buf_ptr, /* user metrics buffer pointer */
buf_sz); /* user metric buffer size */

/*************************************/
/* Perform some more processing here */
/*************************************/

arm_stop(metric_tran_handle, /* transaction handle from arm_start */
ARM_GOOD, /* successful completion define = 0 */
0, /* reserved for future use */
(char *)buf_ptr, /* user metrics buffer pointer */
buf_sz); /* user metric buffer size */

return;

} /* metric_transaction() */

/***/
/* init_metric_application */
/***/

void init_metric_application()
{

60 Open Group Technical Standard

Examples C/C++ (all platforms) Sample 2

arm_user_data101_t *buf_ptr, buf = {
101,
{0, ARM_AllMetrics_f | ARM_String1_f, 0, 0},
{{1, "Metric #1 - Type 1 is a COUNTER32 "},
{4, "Metric #2 - Type 4 is a GAUGE32 "},
{2, "Metric #3 - Type 2 is a COUNTER64 "},
{9, "Metric #4 - Type 9 is a STRING8 "},
{3, "Metric #5 - Type 3 is a COUNTER32/DIVISOR32"},
{8, "Metric #6 - Type 8 is a NUMERICID64 "}
{10, "The last field is always a STRING32 "}
}};

int32 buf_sz;

buf_ptr = &buf;
buf_sz = sizeof(buf);

metric_appl_id=arm_init("Metric_Application", /* application name */
"*", /* use default user */
0,0,0); /* reserved */

metric_tran_id = arm_getid(metric_appl_id, /* appl_id from arm_init */
Metric_transaction", /* transaction name */
"First transaction in Metric application",

0, /* reserved */
(char *)buf_ptr, /* buffer */
buf_sz); /* buffer size */

return;

} /* init_metric_application */

/***/
/* Main */
/***/

main()
{

int continue_processing = 1;

init_client_application();

init_metric_application();

while (continue_processing)
{

client_transaction();
metric_transaction();
continue_processing = 0;

}

arm_end(client_appl_id, /* application id from arm_init */
0,0,0); /* reserved for future use */

arm_end(metric_appl_id, /* application id from arm_init */
0,0,0); /* reserved for future use */

return(0);

Systems Management: Application Response Measurement (ARM) API 61

C/C++ (all platforms) Sample 2 Examples

62 Open Group Technical Standard

Glossary

ARM
Application Response Measurement
Information on this Group is available on the Web, at

http://www.cmg.org/regions/cmgarmw/

ARM Working Group
The Application Response Measurement working group which developed the original
specification on which this ARM Open Group Technical Standard is based. The ARM Working
Group performed this development work under the sponsorship of the CMG.

CMG
Computer Measurement Group.
Information on this Group is available on the Web, at

http://www.cmg.org/

SDK
The ARM working group’s Software Developer’s Kit.

URL
Uniform Resource Locator — a World Wide Web address.

Systems Management: Application Response Measurement (ARM) API 63

Glossary

64 Open Group Technical Standard

Index

<arm.h> ..35
agent ..41
application-defined metrics....................................23
ARM ..63
ARM API function call parameters.........................9
ARM API function calls...7
ARM Software Developers Kit47
ARM Working Group ..63
arm_end() ..7, 11
arm_getid()..7, 12, 26
arm_init() ...7, 14
arm_start() ..7, 16, 28, 41
arm_stop() ...7, 17, 28
arm_update() ..7, 19, 28
ASCII ...33
basic tasks...5
business transaction ...3
C language header..47
C++ language header...47
call sequences ..8
child transaction ...23
child/parent transaction relationship21
client/server model..1
CMG ..63
code pages..33
component transaction..2
correlation...21-22
correlation application ..22
correlator ..41

format..42
network byte order...41

counter ..24
data format

arm_getid ...26
arm_start()...28
arm_stop() ...28
arm_update() ..28

data type...24
counter ..24
gauge...25
numeric id..25
string ...25

data type definitions ..27
data type terminology ...10
definitions for data types ..27
diagnostic uses ..24

distributed applications ..1
distributed transactions ..32
enterprise environment ...3
function call parameters..9
function calls..7
gauge...25
header file...35, 47
heartbeat ...32
host-centric applications ...1
instrumenting

distributed transactions32
long transactions ..32
multi-step long transactions32

instrumenting an application3, 6, 49
instrumenting methodologies................................32
internationalization..33
libarm ..47
logging agent ...48
Logging agent..52
long transactions...32
measurement agent..21, 33
methodologies for instrumenting32
mission-critical roles ..2
multi-step long transactions...................................32
multiple network protocols2
multitasking terminal ..2
native languages ...33
network byte order...41
NULL shared library..47
NULL terminator..33
numeric id ..25
parameters..9
parent correlator ...21
parent transaction...23
performance...23
processing time ...1
reducing threads ...23
remote server...2
requirements for transaction correlation.............23
response time...1
response time correlation..22
SDK ...47, 49, 63

C language header..47
C++ language header...47
logging agent...48
NULL library...47

Systems Management: Application Response Measurement (ARM) API 65

Index

selecting a data type...24
service level..2
string..25
testing an instrumentation51
transaction..1
transaction correlation21, 23
transaction instance ...32
transaction response time correlation..................22
transit time ...2
tuning an application...23
Unicode...33
URL..63
UTF-8...33
valid call sequences..8
Version 1.0/Version 2.0 ...4
workload planning...23

66 Open Group Technical Standard

	c807cov.pdf
	Page 1

	blank.pdf
	Page 1

