
 S

L

T

A

A

C

N

I

D

N

A

H

R

C

D

E
T

Technical Standard

Systems Management:
Data Storage Management (XDSM) API

[This page intentionally left blank]

CAE Specification

Systems Management:

Data Storage Management (XDSM) API

The Open Group

 February 1997, The Open Group

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

CAE Specification

Systems Management: Data Storage Management (XDSM) API

ISBN: 1-85912-190-X
Document Number: C429

Published in the U.K. by The Open Group, February 1997.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii CAE Specification

Contents

Chapter 1 Overview... 1
 1.1 Scope and Purpose.. 1
 1.2 Events .. 1
 1.2.1 Tokens .. 1
 1.2.2 Access Rights .. 2
 1.3 Managed Regions ... 2
 1.4 Handles... 3
 1.5 Sessions ... 3
 1.6 Data Management Attributes... 3
 1.7 Holes.. 4
 1.8 DMAPI Implementation Options.. 4

Chapter 2 Interfaces ... 5
 2.1 Initialization... 5
 2.2 Handles... 5
 2.3 Sessions ... 7
 2.3.1 Session Instantiation ... 8
 2.3.2 Sessions and Event Messages.. 8
 2.4 Tokens ... 10
 2.5 Access Rights ... 10
 2.5.1 Upgrading Access Rights ... 12
 2.5.2 Placing Holds on Objects ... 13
 2.6 Finding Extents and Punching Holes ... 13
 2.7 Invisible Read and Write ... 14
 2.8 Managed Regions ... 14
 2.9 File Attributes and Bulk Retrieval... 16
 2.10 Data Management Attributes... 17
 2.10.1 Non-opaque Data Management Attributes 17
 2.10.2 Opaque Data Management Attributes .. 17
 2.11 Events .. 19
 2.11.1 Setting Event Disposition... 19
 2.11.2 The ‘‘mount’’ Event... 21
 2.11.3 Setting Event Notification.. 23
 2.11.4 Receiving and Responding to Events .. 24
 2.11.5 Pseudo Events... 27
 2.12 Configuration Information ... 28
 2.13 Limited Backup and Restore Support .. 28

Chapter 3 Event Types.. 29
 3.1 Overview .. 29
 3.1.1 Implementation Responsibilities.. 30
 3.1.2 Interruptible Events... 30

Systems Management: Data Storage Management (XDSM) API iii

Contents

 3.1.3 Asynchronous Namespace Event Delivery 31
 3.1.4 Invalid Handles.. 31
 3.2 File System Administration Events... 31
 3.2.1 mount ... 31
 3.2.2 preunmount.. 32
 3.2.3 unmount .. 32
 3.2.4 nospace... 32
 3.2.5 debut... 32
 3.3 Namespace Events ... 33
 3.3.1 create... 33
 3.3.2 postcreate... 33
 3.3.3 remove.. 34
 3.3.4 postremove.. 34
 3.3.5 rename.. 34
 3.3.6 postrename.. 35
 3.3.7 symlink... 35
 3.3.8 postsymlink... 35
 3.3.9 link .. 35
 3.3.10 postlink .. 36
 3.4 Data Events .. 36
 3.4.1 read... 36
 3.4.2 write.. 36
 3.4.3 truncate .. 36
 3.5 Metadata Events.. 37
 3.5.1 attribute.. 37
 3.5.2 cancel.. 37
 3.5.3 close .. 37
 3.5.4 destroy.. 37
 3.6 Pseudo Events.. 38
 3.6.1 user event format ... 38
 3.7 Event Summary... 39

Chapter 4 Data Structures .. 43
 4.1 dm_attrlist_t... 44
 4.2 dm_attrloc_t... 45
 4.3 dm_attrname_t .. 45
 4.4 dm_boolean_t .. 45
 4.5 dm_config_t ... 46
 4.6 dm_dispinfo_t ... 46
 4.7 Event Message Types ... 47
 4.7.1 dm_eventmsg_t.. 47
 4.7.2 dm_cancel_event_t.. 48
 4.7.3 dm_data_event_t ... 48
 4.7.4 dm_destroy_event_t.. 48
 4.7.5 dm_mount_event_t ... 48
 4.7.6 dm_namesp_event_t... 49
 4.8 dm_eventset_t ... 49
 4.9 dm_eventtype_t .. 49

iv CAE Specification

Contents

 4.10 dm_extent_t ... 50
 4.11 dm_extenttype_t ... 50
 4.12 dm_fileattr_t... 51
 4.13 DM Handles... 51
 4.14 dm_fsid_t.. 51
 4.15 dm_igen_t... 52
 4.16 dm_inherit_t... 52
 4.17 dm_msgtype_t... 52
 4.18 dm_off_t.. 52
 4.19 dm_region_t... 53
 4.20 Region Flags... 53
 4.21 dm_response_t .. 54
 4.22 dm_right_t.. 54
 4.23 dm_sequence_t.. 54
 4.24 dm_sessid_t.. 54
 4.25 dm_size_t.. 55
 4.26 dm_ssize_t.. 55
 4.27 dm_stat_t .. 55
 4.28 dm_timestruct_t.. 57
 4.29 dm_token_t .. 58
 4.30 dm_vardata_t... 58
 4.31 dm_xstat_t .. 58
 4.32 Attribute Mask Defines.. 58
 4.33 Get Events Defines.. 59
 4.34 Mount Event Defines ... 59
 4.35 Request Right Defines.. 59
 4.36 Unmount Event Defines .. 60
 4.37 Invisible Write Defines... 60
 4.38 Miscellaneous Defines ... 60

Chapter 5 DMAPI Definitions... 63
 5.1 Non-iterative Functions... 64
 5.2 Iterating Functions.. 65
 5.3 DMAPI Macros.. 66
 DMEV_CLR/ISSET/SET/ZERO macros ... 67
 5.4 DMAPI Functions ... 68
 dm_clear_inherit ()... 71
 dm_create_by_handle() ... 73
 dm_create_session()... 75
 dm_create_userevent() .. 77
 dm_destroy_session() .. 79
 dm_downgrade_right () ... 80
 dm_find_eventmsg().. 82
 dm_get_allocinfo ()... 83
 dm_get_{bulkattributes}()... 85
 dm_get_config() ... 89
 dm_get_config_events() .. 92
 dm_get_dmattr().. 93

Systems Management: Data Storage Management (XDSM) API v

Contents

 dm_get_eventlist()... 95
 dm_get_events()... 97
 dm_get_fileattr().. 99
 dm_get_mountinfo () ... 101
 dm_get_region() .. 103
 dm_getall_disp ().. 105
 dm_getall_dmattr () ... 106
 dm_getall_inherit () ... 108
 dm_getall_sessions () ... 110
 dm_getall_tokens () .. 111
 dm_handle_cmp() .. 112
 dm_handle_hash () ... 113
 dm_handle_is_valid ().. 114
 dm_handle_to_fshandle ().. 115
 dm_handle_to_path () .. 116
 dm_init_attrloc () ... 117
 dm_init_service()... 119
 dm_handle_{make/extract}()... 120
 dm_mkdir_by_handle () ... 123
 dm_move_event() .. 125
 dm_obj_ref_hold/release/query()... 126
 dm_path/fd_to_handle & dm_handle_free().. 128
 dm_pending()... 131
 dm_punch/probe_hole()... 132
 dm_query_right() .. 135
 dm_query_session() ... 136
 dm_read/write_invis()... 137
 dm_release_right()... 139
 dm_remove_dmattr()... 140
 dm_request_right().. 142
 dm_respond_event() .. 144
 dm_send_msg().. 146
 dm_set_disp()... 148
 dm_set_dmattr() .. 150
 dm_set_eventlist() ... 152
 dm_set_fileattr() .. 154
 dm_set_inherit() .. 156
 dm_set_region() ... 158
 dm_set_return_on_destroy() .. 161
 dm_symlink_by_handle () ... 163
 dm_sync_by_handle() ... 165
 dm_upgrade_right () .. 166

Chapter 6 Implementation Notes .. 169
 6.1 Event Encoding ... 169
 6.2 Event Ordering.. 170
 6.3 Lock Releasing... 170
 6.4 Tokens, Messages and Handles ... 170

vi CAE Specification

Contents

 6.5 mmap... 170
 6.6 Invisible I/O .. 171
 6.7 Generation of Events.. 171
 6.8 Locking Across Operations .. 171
 6.9 Tokens and Multiple Handles .. 171
 6.10 Structure Lists.. 172
 6.11 Undeliverable Event Messages .. 172
 6.12 dm_vardata_t... 173
 6.13 NFS Daemon Starvation.. 173
 6.14 Unmount and Shutdown Deadlock.. 173
 6.15 The dt_change Field in dm_stat... 174
 6.16 Punching Holes ... 174

 Glossary ... 175

 Index... 177

List of Figures

2-1 Taxonomy of Handles... 6
2-2 Message States.. 9
2-3 Overlapping of Events across Managed Regions 15
2-4 Disposition of Event Delivery... 20
2-5 Duplicate Event Registrations on a File System...................................... 20
2-6 Mount Event Propagation.. 22
2-7 Event Generation with No Rights .. 24
2-8 Requesting Access Rights after Event Generation.................................. 25
2-9 Continuing an Event with Access Rights ... 25
3-1 Interrupting a Synchronous Message.. 30

List of Tables

2-1 Access Right Properties for Files .. 11
3-1 Event Summary.. 39
3-2 Event Generation Objects... 40
3-3 Event Data Structures ... 41
3-4 Field Use in the dm_namesp_event Structure... 42
3-5 Field Use in the dm_mount_event Structure... 42
4-1 Structures used in Lists... 44
5-1 Non-iterating Function Types ... 64
5-2 Iterating Functions... 65
5-3 DMAPI Functions .. 68

Systems Management: Data Storage Management (XDSM) API vii

Contents

viii CAE Specification

Preface

The Open Group

The Open Group is an international open systems organisation that is leading the way in
creating the infrastructure needed for the development of network-centric computing and the
information superhighway. Formed in 1996 by the merger of the X/Open Company and the
Open Software Foundation, The Open Group is supported by most of the world’s largest user
organisations, information systems vendors and software suppliers. By combining the strengths
of open systems specifications and a proven branding scheme with collaborative technology
development and advanced research, The Open Group is well positioned to assist user
organisations, vendors and suppliers in the development and implementation of products
supporting the adoption and proliferation of open systems.

With more than 300 member companies, The Open Group helps the IT industry to advance
technologically while managing the change caused by innovation. It does this by:

• consolidating, prioritising and communicating customer requirements to vendors

• conducting research and development with industry, academia and government agencies to
deliver innovation and economy through projects associated with its Research Institute

• managing cost-effective development efforts that accelerate consistent multi-vendor
deployment of technology in response to customer requirements

• adopting, integrating and publishing industry standard specifications that provide an
essential set of blueprints for building open information systems and integrating new
technology as it becomes available

• licensing and promoting the X/Open brand that designates vendor products which conform
to X/Open Product Standards

• promoting the benefits of open systems to customers, vendors and the public.

The Open Group operates in all phases of the open systems technology lifecycle including
innovation, market adoption, product development and proliferation. Presently, it focuses on
seven strategic areas: open systems application platform development, architecture, distributed
systems management, interoperability, distributed computing environment, security, and the
information superhighway. The Open Group is also responsible for the management of the
UNIX trade mark on behalf of the industry.

The X/Open Process

This description is used to cover the whole Process developed and evolved by X/Open. It
includes the identification of requirements for open systems, development of CAE and
Preliminary Specifications through an industry consensus review and adoption procedure (in
parallel with formal standards work), and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to which a
vendor may register a product. There are currently two forms of Product Standard, namely the
Profile Definition and the Component Definition, although these will eventually be merged into
one.

Systems Management: Data Storage Management (XDSM) API ix

Preface

The X/Open brand logo is used by vendors to demonstrate that their products conform to the
relevant Product Standard. By use of the X/Open brand they guarantee, through the X/Open
Trade Mark Licence Agreement (TMLA), to maintain their products in conformance with the
Product Standard so that the product works, will continue to work, and that any problems will
be fixed by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical literature, the main part of which is
focused on specification development and product documentation, but which also includes
Guides, Snapshots, Technical Studies, Branding and Testing documentation, industry surveys
and business titles.

There are several types of specification:

• CAE Specifications

CAE (Common Applications Environment) Specifications are the stable specifications that
form the basis for our product standards, which are used to develop X/Open branded
systems. These specifications are intended to be used widely within the industry for product
development and procurement purposes.

Anyone developing products that implement a CAE Specification can enjoy the benefits of a
single, widely supported industry standard. In addition, they can demonstrate product
compliance through the X/Open brand. CAE Specifications are published as soon as they
are developed, so enabling vendors to proceed with development of conformant products
without delay.

• Preliminary Specifications

Preliminary Specifications usually address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations. They are
published for the purpose of validation through implementation of products. A Preliminary
Specification is not a draft specification; rather, it is as stable as can be achieved, through
applying The Open Group’s rigorous development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued by formal standards
organisations, and developers are encouraged to develop products on the basis of them.
However, experience through implementation work may result in significant (possibly
upwardly incompatible) changes before its progression to becoming a CAE Specification.
While the intent is to progress Preliminary Specifications to corresponding CAE
Specifications, the ability to do so depends on consensus among Open Group members.

• Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia. For example, it
publishes the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum. It also publishes Technology Specifications relating to OSF/1, DCE,
OSF/Motif and CDE.

Technology Specifications (formerly AES Specifications) are often candidates for consensus
review, and may be adopted as CAE Specifications, in which case the relevant Technology
Specification is superseded by a CAE Specification.

x CAE Specification

Preface

In addition, The Open Group publishes:

• Product Documentation

This includes product documentation — programmer’s guides, user manuals, and so on —
relating to the Pre-structured Technology Projects (PSTs), such as DCE and CDE. It also
includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

• Guides

These provide information that is useful in the evaluation, procurement, development or
management of open systems, particularly those that relate to the CAE Specifications. The
Open Group Guides are advisory, not normative, and should not be referenced for purposes
of specifying or claiming conformance to a Product Standard.

• Technical Studies

Technical Studies present results of analyses performed on subjects of interest in areas
relevant to The Open Group’s Technical Programme. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

• Snapshots

These provide a mechanism to disseminate information on its current direction and thinking,
in advance of possible development of a Specification, Guide or Technical Study. The
intention is to stimulate industry debate and prototyping, and solicit feedback. A Snapshot
represents the interim results of a technical activity.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new developments
and associated international standards. To distinguish between revised specifications which are
fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://www.opengroup.org/public/pubs.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the
World-Wide Web at http://www.opengroup.org/public/pubs.

Systems Management: Data Storage Management (XDSM) API xi

Preface

This Document

This Data Storage Management (XDSM) API is a CAE Specification. It defines APIs which use
events to notify Data Management (DM) applications about operations on files, enable DM
applications to store arbitrary attribute information with a file, support managed regions within
a file, and use DMAPI access rights to control access to a file object. DMAPI refers to the
interface defined by this XDSM Specification.

To adequately support data management applications, a file system and its host Operating
System must include a set of functions and semantics not found in most POSIX-compliant
systems. These extensions include the capability to monitor events on files, and special interfaces
to manage and maintain the data in a file.

Data management applications such as file backup and recovery, file migration, and file
replication, typically function as logical extensions of the Operating System. They often must
have special permissions (such as ‘‘root’’ or file system credentials) to operate. The interfaces
and data structures described in this document are all designed for these specific applications.
These interfaces are not intended for direct use by typical end-users or unprivileged processes.

Intended Audience

This document is intended for developers writing Data Management API-compliant
applications, or implementing the XDSM API in an operating system.

It is assumed the reader has a good understanding of standard UNIX semantics, is familiar with
the C language, and understands the issues and tradeoffs in writing data management software.

Structure

This specification is organized as follows:

• Chapter 1 provides a high-level overview of the features and functionality of the XDSM API.

• Chapter 2 outlines the specific interfaces and describes their use.

• Chapter 3 covers the event messages.

• Chapter 4 describes the DMAPI data structures.

• Chapter 5 contains man-page definitions for the API function calls.

• Chapter 6 provides implementation notes intended to highlight subtle or complex areas of
the DMAPI definition.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for filenames, keywords, type names, data structures and their
members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— variable names, for example, substitutable argument prototypes, parameters and
environment variables

— options in text

— C-language functions; these are shown as follows: name()

xii CAE Specification

Preface

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a C-language header file.

• The notation [ABCD] is used to identify a coded return value in C.

• Syntax and C-code examples are shown in fixed width font.

Systems Management: Data Storage Management (XDSM) API xiii

Trade Marks

Motif, OSF/1 and UNIX are registered trade marks and the ‘‘X Device’’TM and The Open
GroupTM are trade marks of The Open Group.

xiv CAE Specification

Referenced Documents

The following documents are referenced in this CAE Specification:

XSH, Issue 5
CAE Specification, January 1997, System Interfaces and Headers, Issue 5
(ISBN: 1-85912-181-0, C606).

XCU, Issue 5
CAE Specification, January 1997, Commands and Utilities, Issue 5 (ISBN: 1-85912-191-8,
C604).

XBD, Issue 5
CAE Specification, January 1997, System Interface Definitions, Issue 5 (ISBN: 1-85912-186-1,
C605).

Curses Interface, Issue 5
CAE Specification, May 1996, X/Open Curses, Issue 4, Version 2 (ISBN: 1-85912-171-3,
C610), plus Corrigendum U018.

XNS, Issue 5
CAE Specification, February 1997, Networking Services, Issue 5 (ISBN: 1-85912-165-9, C523).

Systems Management: Data Storage Management (XDSM) API xv

Referenced Documents

xvi CAE Specification

Chapter 1

Overview

1.1 Scope and Purpose
To adequately support data management applications, a file system and its host Operating
System must include a set of functions and semantics not found in most POSIX-compliant
systems. These extensions include the capability to monitor events on files and special interfaces
to manage and maintain the data in a file.

The important features of the DMAPI as described in this document are the use of events to
notify DM applications about operations on files, the ability of DM applications to store arbitrary
attribute information with a file, support for managed regions within a file, and the use of
DMAPI access rights to control access to a file object.

Data management applications such as file backup and recovery, file migration, and file
replication typically function as logical extensions of the operating system. They often must
have special permissions (such as root or file system credentials) to operate. The interfaces and
data structures described in this document are all designed for these specific applications. These
interfaces are not intended for direct use by typical end-users or unprivileged processes.

1.2 Events
Events and managed regions are the foundations of the DMAPI. In the event paradigm, the
operating system informs a DM application running in user space when a particular event
occurs. For example, a DM application in user space can request that it be notified whenever a
read of a certain area of a file occurs. When the operating system determines that it is going to
read data from the target area, it notifies the DM application via a DMAPI event. In this manner,
DM applications can monitor and manage files and specific regions within those files.

Files can be divided into distinct portions known as managed regions. Some types of DMAPI
events are produced on a per region basis; this allows for finer granularity of event notification
and reduces the number of messages between the operating system and the DM application.

1.2.1 Tokens

One of the fundamental concepts of the DMAPI is that of a token. A token is a reference to state
associated with a synchronous event message. This state may include lists of files affected by the
event, the access rights that are currently in force for those files, and so forth. The token provides
DM applications with a simple method of referencing this state. Most DMAPI functions require
a token as one of their parameters.

Systems Management: Data Storage Management (XDSM) API 1

Events Overview

1.2.2 Access Rights

The DMAPI provides DM applications with the ability to control access to a file object. There are
three forms of access rights: DM_RIGHT_NULL, DM_RIGHT_SHARED, and
DM_RIGHT_EXCL. These rights are mutually exclusive; it is not possible to have a
DM_RIGHT_SHARED right in effect on an object at the same time as a DM_RIGHT_EXCL right.

A DM_RIGHT_SHARED right grants its holder the right to read or query a file system object;
this is called a shared right. A DM_RIGHT_EXCL right grants its holder all of the
DM_RIGHT_SHARED rights plus the right to modify a file system object; this is called an
exclusive right. As the names suggest, there may be multiple DM_RIGHT_SHARED rights
granted on an object at one time. There can be only one DM_RIGHT_EXCL right granted, and it
excludes DM_RIGHT_SHARED rights as well.

Access rights to a file system object may be conveyed to a DM application as part of sending a
synchronous event message. DM applications must use the dm_query_right(), dm_request_right(),
and dm_release_right() interfaces to determine the access rights that have been conveyed.

DMAPI access rights provide a mechanism for a DM application to synchronize accesses by
other processes. If a token references an outstanding message that conveys the
DM_RIGHT_EXCL access right for a file, then only processes presenting that token as an
argument to a DMAPI function may access the file; all other attempted accesses to the file
(including from within the operating system) are blocked.

These access rights provide a level of abstraction from internal operating system locks. Each
Operating System will have different locking requirements and implementations. Using the
DMAPI access rights provides DM applications a consistent interface to the Operating System,
regardless of the internal locking model.

For more information on access rights, tokens, and synchronous messages, see the Sessions and
Event Messages, Tokens, and Access Rights sections.

1.3 Managed Regions
A managed region designates a specific portion of a file that is managed by a DM application.
Managed regions allow exception events to be generated only for those parts of the file in which
the DM application has interest.

A managed region consists of the following information:

• starting offset in the file

• length of the region

• a set of event flags.

Persistence, the duration of the period over which a given managed region exists, of this
information is implementation specific, and can be determined through a DMAPI configuration
function.

2 CAE Specification

Overview Handles

1.4 Handles
The DMAPI uses handles to identify file system objects. All of the interfaces in this document
use handles as opposed to file descriptors. A special handle that references a file system as a
whole is provided along with another one that allows receiving events when file systems are
being mounted.

1.5 Sessions
The interface between the operating system and the DM application is session based. Sessions
identify the recipient of an event message, and can also provide the DMAPI implementation
with the ability to track, audit, and control the use of DMAPI facilities. Internally, sessions can be
used by the DMAPI implementation as a mechanism to identify the queues that messages are
placed on. Sessions are not persistent across reboots.

1.6 Data Management Attributes
DM applications typically use extended attributes to store pertinent information about a file.
Attributes in this context are termed opaque since these attributes only have meaning to the
application that created them. Non-opaque attributes provide information that is visible to the
DMAPI implementation, such as managed region layout or event lists.

For example, the following are typical examples of opaque extended attributes:

• bitfile IDs

• location on secondary or tertiary storage

• indication that portions of the file are non-resident

• inheritable policy bits such as lock on magnetic storage .

Extended attributes accessed through the DMAPI are distinct from any extended attribute
facility the underlying file system may happen to provide. (If available, the DMAPI
implementation may choose to use such a facility to provide DMAPI attributes, but doing so is
not required.)

The DMAPI provides mechanisms for storage of both opaque and non-opaque per-file
attributes. Persistence of opaque attributes across reboots is a DMAPI implementation option.
DM applications should use the dm_get_config() function to determine what the implementation
provides.

Systems Management: Data Storage Management (XDSM) API 3

Holes Overview

1.7 Holes
Holes in a file can be created in two ways. First, as defined by POSIX 1003.1 - 1990:

The lseek() function shall allow the file offset to be set beyond the end of existing
data in the file. If data is later written at this point, subsequent reads of data in the
gap shall return bytes with the value zero until data is actually written into the gap.

Holes can also be created by the dm_punch_hole() operation. It is the intent of this specification
that a file system optimize the representation of holes so that large holes can be represented
without consuming media resources. Most hierarchical-storage style DM application implicitly
require the ability of a file system to represent at least one hole (covering the entire file)
efficiently.

1.8 DMAPI Implementation Options
An implementation of the DMAPI may support optional components of this specification. The
specifics of what optional components are implemented can be obtained by the dm_get_config()
function. The dm_get_config() function returns, for a file system, whether the following optional
functions are supported:

• the dm_get_bulkall () function

• creation-by-handle functions

• ‘‘legacy’’ handle functions

• non-blocking lock upgrades

• the dm_pending() function

• persistent, opaque attributes

• persistent event masks

• persistent inherited attributes

• persistent managed regions.

dm_get_config() also returns the implementation’s limits on various functions:

• maximum number of bytes returned for the attribute copy with destroy events

• maximum size of persistent attributes, if supported

• maximum handle size, if known

• maximum number of managed regions per file

• maximum number of bytes in user created event messages.

If an implementation does not support an optional function, [ENOSYS] will be returned to any
calls made.

The dm_init_service() function also returns vendor defined version information. This should
contain additional information on the specific DMAPI implementation, such as platform, the
supported DMAPI specification version, and a vendor version identifier. A DMAPI
implementation should provide information on how to interpret the return value from
dm_init_service().

4 CAE Specification

Chapter 2

Interfaces

Many of the interfaces described in this Chapter accept and return variable length data
structures. For example, handles are variable length. Event messages are also variable length. For
detailed information on accessing individual elements within a data structure, refer to the Data
Structures definitions (see Chapter 4).

2.1 Initialization
An application that needs to use the features and functionality of the DMAPI must first call an
initialization function. This allows implementations of the DMAPI to perform internal
initialization procedures before providing service to an application. The DMAPI specification
allows undefined behavior if applications do not use the initialization call. Another purpose of
this function is to return a DMAPI implementation specific version string which may be used to
determine at run-time whether the DM application is running on the correct implementation.

The following function exists for initializing the DMAPI:

dm_init_service() perform implementation-defined initialization.

2.2 Handles
A handle is an opaque identifier for an entity manipulated by the DMAPI. There are three
fundamental categories of handles; the global handle , file system handles , and object handles .

The global handle is a fixed constant of the implementation, and is used primarily in the
dm_set_disp() call when setting event disposition for the mount event. There is exactly one global
handle in any DMAPI implementation.

File system handles are used by many DMAPI functions to identify a file system. There is one file
system handle per file system. They are persistent and unique over time (per host) to the extent
that a given file system instance has a unique and persistent identity.

Object handles are the most common. These are the handles used to represent all types of file
system objects. Object handles are persistent and unique over time (per host) to the extent that a
given file system instance has a unique and persistent identity. They are governed by the
following properties:

• A unique object handle shall exist for each object visible in the file system name space. Each
object handle shall be unique within at least the context of a single host.

• A unique object handle shall exist for each file system object not visible in the name space,
such as unlinked but still-open files.

• Object handles must meet the following specific requirements with regard to uniqueness:

— Object handles shall remain valid across any number of system reboots as long as the
corresponding file system object exists.

— Object handles shall remain valid if the file object they identify is renamed within a file
system.

Systems Management: Data Storage Management (XDSM) API 5

Handles Interfaces

— Object handles shall remain valid regardless of any operations on the file object they
identify. The only time an object handle becomes invalid is when the object it identifies
ceases to exist.

• Object handles may be reused.

Some interfaces can only operate on object handles representing a specific type of file system
object. For example, dm_write_invis() can only be used to write to a regular file. When necessary
to describe restricted forms of object handles, the terms file handle , directory handle , symlink
handle , etc. are used in this document. The taxonomy of handle terminology is shown in the
following diagram.

Handles

ObjectGlobal Filesystem

DirectoryFile Symlink

Figure 2-1 Taxonomy of Handles

Handles are opaque; the length of a handle is implementation defined. DM applications should
make no assumptions about the length of a handle, as handles may be differing lengths even on
the same file system in some DMAPI implementations. Therefore, functions that use handles in
their interfaces specify two parameters: a void * that provides access to the actual handle, and a
size_t that specifies the length of the handle. The DMAPI implementation allocates space for
handles via the dm_path_to_handle (), dm_fd_to_handle (), and dm_path_to_fshandle () functions.

When a DM application is finished with the handle, it should free the space via the
dm_handle_free() function.

Most DMAPI functions take a handle as part of their interface. Many events also provide a
handle as part of their event-specific data. To convert from path names and file descriptors to
handles, a number of functions are provided, as described in the man-pages. They are outlined
below:

• dm_path_to_handle ()
Create a file handle from a path name.

• dm_fd_to_handle ()
Create a file handle from a file descriptor.

• dm_path_to_fshandle ()
Create a file system handle from a path name.

• dm_handle_cmp()
File handle comparison.

6 CAE Specification

Interfaces Handles

• dm_handle_free()
Free the storage allocated for a handle.

• dm_handle_is_valid ()
Determine if a handle is valid.

• dm_handle_hash ()
Hashes the contents of a handle.

Some legacy DM applications rely on the fact that the DMAPI object handles are built from the
combination of file system ID, file inode, and generation number. Such applications may require
the capability to decompose DMAPI handles into these components and to build handles from
these components.

The following optional interfaces are provided for this purpose:

• dm_make_handle ()
Construct a DMAPI object handle.

• dm_handle_to_fsid ()
Extract the file system ID from a handle.

• dm_handle_to_igen ()
Extract the inode generation count from a handle.

• dm_handle_to_ino ()
Extract the file inode number ID from a handle.

• dm_make_fshandle ()
Construct a DMAPI file system handle.

2.3 Sessions
Sessions can be thought of as message queues. The implementation of the DMAPI enqueues
messages on a session to make them available to a DM application. A DM application can also
request the DMAPI implementation to enqueue an application defined message on a session.
Sessions provide a mechanism for a DM application to receive events.

A unique ID is associated with each session. A session ID is of type dm_sessid_t and is used to
identify the recipient of an event message. Session IDs are opaque to DM applications. Sessions
are also the cornerstone of the recovery mechanism.

Sessions are governed by the following restrictions:

• Sessions are not persistent across reboots.

• Sessions are unique for as long as the system is up; they are not unique across reboots.

• Sessions must be explicitly destroyed. If a process exits or otherwise aborts without doing a
dm_destroy_session(), then the behavior of the session is dictated by the constraints in the
Sessions and Event Messages section, below.

• A session is not tied to a process. Any process that has successfully executed
dm_init_service() can use any valid session ID.

• Session IDs should not be interpreted as file descriptors. The underlying implementation
may use file descriptors, but the DM application should make no assumptions about the
implementation.

Systems Management: Data Storage Management (XDSM) API 7

Sessions Interfaces

2.3.1 Session Instantiation

A session must be created via dm_create_session() before a DM application can communicate
with the DMAPI. When a session is created, it is possible to specify a previous instantiation of a
session that will then be assumed (taken over), which is useful for recovery purposes. The
dm_create_session() function is atomic; if the call succeeds, the DMAPI guarantees that all old
messages that were enqueued on the old session are now part of the new session. When
assuming an existing session the old session is invalid when the call returns.

To shut down and destroy a session, a DM application may have to perform a number of
operations, such as ensuring that no more events are generated, responding to outstanding
messages, and so forth. If a DM application attempts to destroy a session that has outstanding
event messages still enqueued, an error is returned. It is assumed that dm_destroy_session() will
only be called after the application has ensured that no more events will be generated on the
session.

The following functions are provided for manipulating an instantiation of a session:

• dm_create_session()
Create a new session; an old session may also be assumed.

• dm_destroy_session()
Destroy the specified session.

2.3.2 Sessions and Event Messages

At any time, a session may have synchronous event messages that are in one of two states:

• enqueued, undelivered

• delivered and awaiting a response from the DM application.

From the standpoint of the DMAPI implementation, synchronous event messages that are in the
second state (delivered and awaiting a response) are outstanding. Asynchronous messages do
not require a response from the DM application, and therefore will never be in the outstanding
state.

In Figure 2-2, there are three event messages on the session. Each event message is identified by
a unique token. One synchronous event message has been delivered to a DM application, and
therefore the session has an outstanding message. The event message continues to exist until
some DM application responds to it. The two other event messages on the session are just
enqueued and have not yet been delivered to a DM application.

8 CAE Specification

Interfaces Sessions

DM
app msg queue token: A

sync msg
token: A

Session
Messages

Assync msg
token: none

sync msg
token: B

not delivered
enqueued

delivered
outstanding

KEY

Figure 2-2 Message States

As part of sending a synchronous event message, the implementation of the DMAPI may convey
access rights to one or more objects in the message. If a DM application fails (dies, hangs, or
otherwise malfunctions), a recovery process must determine the outstanding event messages
and take care of the associated events to prevent the system from hanging. Since tokens are tied
to a session, and are always associated with a synchronous event message, it is possible to
obtain all outstanding event messages simply by knowing all the tokens.

An active session is not needed to obtain the list of all valid sessions in the system. This allows a
recovery application to interrogate all sessions even in the unlikely event the system runs out of
sessions.

Recovering after a DM application failure is very different from recovering from a system crash.
The requirements of each individual DM application will be unique with respect to recovery
from a system crash; it is beyond the scope of the DMAPI to provide all the tools for a DM
application to recover itself in this instance.

The following interfaces exist to manage session and event message recovery.

• dm_getall_sessions ()
Obtain all valid sessions in the system.

• dm_query_session()
Retrieve the information associated with the session when it was created.

• dm_getall_tokens ()
Get all tokens for all outstanding event messages for a session.

• dm_find_eventmsg()
Get the message for an event.

Systems Management: Data Storage Management (XDSM) API 9

Tokens Interfaces

2.4 Tokens
Tokens are a reference to state associated with a synchronous event message. They are always
associated with one and only one synchronous event message. When responding to an event
message, the same token that was delivered with the message must be supplied. Tokens are the
identifier that a DM application must use to reference a synchronous event message; the DM
application presents the token to the DMAPI and in return, is provided with the state associated
with the event message.

Like session IDs, tokens are opaque to DM applications. There is no security expressed or
implied by the possession or use of a token. If a DM application can ‘‘guess’’ the value of a
token, then it can use it (assuming that it can supply the appropriate session ID and has other
system-dependent privileges).

Tokens have the following properties:

• Tokens are not owned by any particular process.

• The DMAPI does not mandate authentication or authorization of the process using the token;
if a process knows a token’s value, it can use it.

• Tokens are meaningful only within the session under which they were created unless a
session is assumed from a previous session.

2.5 Access Rights
There are two primary rights; DM_RIGHT_SHARED and DM_RIGHT_EXCL. The third access
right, DM_RIGHT_NULL, is not considered a primary access right, since it conveys no rights to
an object.

Synchronous event messages contain access rights to one or more object handles. Some event
messages contain multiple file handles. The event message contains access rights to all the files
in the event message; the DM application must use dm_query_right() to determine what rights
for the given file handles, if any, are present in the message.

If a DM application needs to obtain access rights for more than one handle, it can use the same
token in repeated function calls to dm_request_right() and dm_release_right(). It is not necessary
for a new message (and its corresponding token) to be created via dm_create_userevent() for each
handle the DM application needs to acquire access rights to.

As already noted, tokens do not belong to any particular process. An application presents a
token to the DMAPI to reference and identify a specific access right. When a DM application is
informally described as ‘‘holding a token’’ or ‘‘obtaining an access right’’, a more precise
description would be that an outstanding access right exists, is encapsulated within a
synchronous event message, is associated with a specific session, and is identified by a specific
token.

Many DMAPI functions require a token that references a specific access right to an object. In
some cases, it may be advantageous for a DM application not to have to go through the steps of
explicitly creating a token and acquiring the necessary access rights just to call a DMAPI
function. Therefore, many functions accept either a token that references the required rights, or
the special value DM_NO_TOKEN, that indicates the absence of a token.

If a DM application does not pass a token to a DMAPI function that normally requires a token as
one of its parameters, then the function acquires the appropriate rights automatically on behalf
of the DM application. In this case, the DM application must be willing to be blocked. The DM
application may or may not be blocked interruptibly, depending on the implementation of the

10 CAE Specification

Interfaces Access Rights

DMAPI; see the man-page definition for dm_request_right() for more information.

The DM application must use caution when availing itself of this optimization. If a DM
application holds a token that references a right to an object, but fails to present it when calling a
DMAPI function, then the application is in danger of deadlocking with itself. This is because the
DMAPI function will not be able to acquire the necessary rights on behalf of the DM application
since the application already holds a token referencing those rights. The DM application should
also not use this method of acquiring access rights if it is receiving synchronous events via
dm_get_events(). Since one of the synchronous event messages may contain a token that
references an access right the DM application may be trying to obtain, the application will again
deadlock with itself.

The existence of any outstanding DM_RIGHT_SHARED access rights for a file system object
will block all attempts from all processes performing the following operations:

• all data modification, such as via write(2)

• object destruction.

The existence of the DM_RIGHT_EXCL access right will block all attempts to perform any
operation on the file system object, with the sole exception of the stat(2) family (stat , lstat , fstat ,
etc.).

The locking properties of access rights are summarized in the following table.

Access Right Blocked Operations
DM_RIGHT_SHARED data write, object destruction
DM_RIGHT_EXCL all but stat(2)

Table 2-1 Access Right Properties for Files

Notice that the above descriptions do not say that other processes are blocked; they say that all
processes are blocked. This is where the distinction that DM applications do not really ‘‘own’’
access rights comes into play.

The only way a DM application can distinguish itself from other processes that should be
blocked is by knowing the dm_token_t value identifying the appropriate token, and passing it in
with any operations that are to be performed on the file. It follows from this that once a DM
application has ‘‘obtained’’ a DM_RIGHT_SHARED or DM_RIGHT_EXCL access right, either
directly via a dm_request_right() call or indirectly via an event message, the DM application must
be extremely cautious when performing operations on file system objects. Generally, it must
restrict itself to using interfaces containing dm_token_t parameters.

For example, calling dm_request_right() and requesting DM_RIGHT_EXCL does not make a DM
application the owner of the right; dm_request_right() merely creates the right and encapsulates it
in the synchronous event message referenced by the token. Once that happens, all operations
against the file system object will be blocked as described above, even if they come from the
same process that called dm_request_right(). Only operations that are part of the DMAPI and
contain dm_token_t arguments are safe for DM application to call at this point, because those
interfaces are the only way DM application can distinguish themselves as ‘‘owning’’ the
DM_RIGHT_EXCL right.

Systems Management: Data Storage Management (XDSM) API 11

Access Rights Interfaces

2.5.1 Upgrading Access Rights

When requesting access rights to an object via dm_request_right(), the requested right may not be
immediately available. If the DM application has specified that it wants to block until the right
becomes available, the DM app may or may not be blocked interruptibly. The implementation of
the DMAPI will specify the semantics for interrupting blocked processes.

If a DM application holds a DM_RIGHT_SHARED access right, it can attempt to upgrade the
right to a DM_RIGHT_EXCL in a non-blocking manner via dm_request_right(). If the DMAPI
implementation cannot grant the request, however, the DM application will most likely have to
release the DM_RIGHT_SHARED right, and request DM_RIGHT_EXCL access to the object via
dm_request_right() in a blocking fashion.

A DM application may also request to upgrade a DM_RIGHT_SHARED access right to a
DM_RIGHT_EXCL in a non-blocking manner via dm_upgrade_right () if the DMAPI
implementation is able to upgrade the right without releasing the DM_RIGHT_SHARED access
right.

The state of the object cannot change while the DM application is waiting for an exclusive right
via dm_upgrade_right (). However, the state of the file may change if the request to upgrade is
via dm_request_right(). To provide some indication that the file changed while the application
was blocked, the DMAPI provides the notion of a change indicator that can be interrogated via
dm_get_fileattr(). This change indicator is modified by any operation that modifies file data or
metadata. The change indicator is not persistent and has no meaning across reboots. Its only
purpose is to indicate to the DM application that the file may have changed since the last time
the change indicator was interrogated.

The normal sequence of events for attempting a lock upgrade where the current shared lock
must be dropped would be as follows:

1. Obtain current change indicator.

2. Release shared right.

3. Request exclusive right (blocking operation).

4. Obtain new change indicator to see if the file has changed.

The following functions for manipulating access rights are provided:

• dm_downgrade_right ()
Downgrade an exclusive access right to a shared right.

• dm_request_right()
Request a specific access right to an object.

• dm_release_right()
Relinquish the access rights to an object.

• dm_query_right()
Determine the set of access rights to an object.

• dm_upgrade_right ()
Upgrade a currently held access right to an exclusive right.

12 CAE Specification

Interfaces Access Rights

2.5.2 Placing Holds on Objects

If a DM application needs to make sure an object does not go away after releasing all access
rights to the object, dm_obj_ref_hold () may be called to obtain an object hold. The effect is to
prevent the object from being flushed out for the duration of the hold and essentially making
non-persistent data management attributes temportarily persistent. Responding to an event
releases all holds associated with the event.

The following functions are for manipulating object holds:

• dm_obj_ref_hold ()
Place a hold on a file system object.

• dm_obj_ref_rele()
Release a hold on a file system object.

• dm_obj_ref_query()
Query for a hold on a file system object.

2.6 Finding Extents and Punching Holes
Data Management applications often need to release the on-disk blocks of a file to free up space
on a file system. Likewise, if a large, but sparsely populated file is to be backed up efficiently, a
DM application needs to know where the file has non-null data and where the file has holes.
These operations may not be supported on all file system types; dm_get_config() can be used to
determine if the underlying file system supports punching holes.

The DM application is responsible for maintaining accurate information about the location of
any holes in the original file when a sparse file is made non-resident. It is assumed that the DM
application will call dm_get_allocinfo () to determine where actual storage is located, and only
perform dm_read_invis() operations on the portions of the file that contain data.

The following functions return information about a file in terms of a dm_extent structure, as
defined in the Data Structures chapter (see Chapter 4). These functions, which do not affect any
of a file’s time stamps, are provided for managing the storage space for a file:

• dm_get_allocinfo ()
Return the allocation information for the file specified by the handle.

• dm_probe_hole()
Interrogate the DMAPI implementation for size and offset around the area that the DM
applications want to punch a hole.

• dm_punch_hole()
Logically write zeroes in the indicated region of the file identified by the handle, thereby
allowing the DMAPI implementation to release media resources associated with that region.
None of the file’s time stamps are updated, but the file’s DMAPI change indicator is updated.

Systems Management: Data Storage Management (XDSM) API 13

Invisible Read and Write Interfaces

2.7 Invisible Read and Write
Many data management applications must be able to access file data without altering the file’s
access, modification, and change times, and without generating any events. The operations in
this section do not trigger events; they bypass the normal event delivery mechanism to prevent a
DM application from receiving events generated by itself.

The invisible write function by default writes data asynchronously. If a DM application requires
that data written to a file be flushed at certain times, it can either set a flag specifying that writes
happen synchronously or it can call a separate function to flush the file’s contents to media.

The following functions, which do not affect any of a file’s time stamps, are provided:

• dm_read_invis()
Do a read without updating any of the file’s time stamps.

• dm_write_invis()
Do a write without updating any of the file’s time stamps. The DMAPI change indicator is
updated. This function can execute synchronously or asynchronously.

• dm_sync_by_handle()
Synchronize a file’s in-memory state with that on physical medium.

2.8 Managed Regions
Managed regions provide a mechanism for a data management application to control a specific
region of a file. Managed regions provide granularity finer than the entire file for data events
such as read and write. Their use is particularly important for very large files that may be larger
than the actual amount of available disk space.

A single managed region is represented by a dm_region structure. The set of managed regions
for a file is a collection of these structures. See Data Structures Chapter 4 for a definition of this
structure.

The generation of events for a managed region is controlled by a flags field in the dm_region
structure. The possible values for this field are a bitwise OR of one or more of the following:

DM_REGION_READ
Generate a synchronous event for a read operation that overlaps this managed region.

DM_REGION_WRITE
Generate a synchronous event for a write operation that overlaps this managed region.

DM_REGION_TRUNCATE Generate a synchronous event for a truncate operation that
overlaps this managed region.

or the following value:

DM_REGION_NOEVENT
Do not generate any events for this managed region.

The events defined above are the only synchronous data events that are defined for a managed
region. Only one of the above events will be produced for a particular read/write/truncate
operation, no matter how many managed regions the operation may overlap.

The example in Figure 2-3 below shows a read operation that overlaps two managed regions
that have read events set.

14 CAE Specification

Interfaces Managed Regions

Managed Region A

Managed Region B

Beginning of read
operation

End of read operation

Figure 2-3 Overlapping of Events across Managed Regions

In Figure 2-3, a read event is produced for Managed Region A. The arguments passed to the DM
application in the event message have the offset and length of the read operation; it is up to the
DM application to determine which managed regions the operation will overlap. Once the DM
application responds to the event message, the DMAPI implementation allows the read to
continue.

As an example, if a DM application fills the managed region A above, but not B, and continues
the operation, the behavior of the entire read operation is undefined.

Rationale:
Triggering one event per file operation eliminates the necessity of having the
DMAPI implementation re-evaluate all managed regions involved in a given
operation. Otherwise, the DMAPI implementation could be forced to generate
multiple events per managed region for a single I/O operation.

To change the set of managed regions, the DM application must obtain DM_RIGHT_EXCL
rights to the object. Since managed regions may or may not be persistent, the DM application
must be prepared to expect a debut event and to use dm_set_region() to download the set of
managed regions for a file.

Managed regions may be constrained by the following restrictions:

• Implementations may choose to support only one managed region per file, which may
always be the entire file.

• Managed regions may not overlap. Each region is a distinct subset of the file.

• Only regular files may be partitioned into multiple managed regions.

A DM application can determine the properties of the DMAPI managed region implementation
by consulting the dm_get_config() interface.

The following functions, which do not affect any of a file’s time stamps, are provided for
manipulating the managed regions of a file:

• dm_get_region()
Return the set of managed regions for a file.

Systems Management: Data Storage Management (XDSM) API 15

Managed Regions Interfaces

• dm_set_region()
Set the managed regions for a file. The DMAPI change indicator is updated.

2.9 File Attributes and Bulk Retrieval
Attributes need to be retrieved for a single file, a directory, or a whole file system. The attributes
returned are defined by the dm_stat structure. There are a number of methods for obtaining
these file attributes:

• The dm_get_fileattr() function obtains the attributes for a single file specified by the file’s
handle.

• The attributes and names for all files in a directory can be obtained through use of the
dm_get_dirattrs() function.

• The basic attributes for all files in a file system can be obtained through use of the
dm_get_bulkattr () function.

• The basic attributes, plus a named DM attribute, for all files in a file system can be obtained
through the use of the dm_get_bulkall () function.

For the second, third, and fourth methods, the application either provides a buffer large enough
to contain all retrieved attributes or more commonly (particularly for the last option) the
application makes iterative calls through the interface. A file system must be mounted to have
its attributes retrieved via any of the above methods.

DM applications often need to set a file’s metadata to specific values transparently. For example,
a backup application might want to set a file’s time stamps to their original value when the file is
restored. Specific fields from the dm_stat structure are encapsulated in the dm_fileattr struct;
this structure is used to set various metadata fields to specific values via dm_set_fileattr().

Before calling dm_get_bulkattr (), dm_get_dirattrs(), and dm_get_bulkall (), the DM application
must initialize an opaque ‘‘cookie’’ which provides location information to the DMAPI. Each call
of dm_get_bulkattr (), dm_get_dirattrs() or dm_get_bulkall () can use this cookie to determine
location information from one call to the next.

The file’s change indicator can also be retrieved using dm_get_fileattr(). This change indicator is
modified by any operation that modifies file data or metadata. DM applications can use the
change indicator to determine if a file may have changed state; if the indicator is the same
between two calls, the file is guaranteed not to have changed. If the indicator is different, the file
may (but not necessarily) have changed. This is especially useful for attempting lock upgrades,
as described in Upgrading Access Rights, Section 2.5.1 on page 12.

The following functions, which do not update any of an object’s time stamps, are provided for
obtaining bulk attributes:

• dm_get_bulkall ()
Get the specified attributes in bulk for objects in a the given file system with a specific DM
attribute.

• dm_get_bulkattr ()
Get the specified attributes in bulk for the given file system.

• dm_get_dirattrs()
Get the specified file attributes and names in bulk for the given directory.

• dm_init_attrloc ()
Initialize the location cookie for successive dm_get_bulkattr () calls.

16 CAE Specification

Interfaces File Attributes and Bulk Retrieval

The following function, which does not update any of a file’s time stamps, is provided for
obtaining the attributes of a single file:

• dm_get_fileattr()
Get the specified attributes for the given object.

The following function, which does not update any of the file’s time stamps (other than those
specified) as a side effect, is provided for metadata modification:

• dm_set_fileattr()
Set a specified attribute to a given value.

2.10 Data Management Attributes
Support for persistent data management attributes is a DMAPI implementation option. Some
DMAPI implementations may not support persistent opaque data management attributes, while
others may not provide support for persistent non-opaque attributes such as event lists. DM
applications should use the dm_get_config() function to determine what the implementation
provides.

A persistent attribute is one which stays defined across reboots. A non-persistent attribute is one
that may disappear at any time without notice (typically during inode flush). For more
information on how to manage non-persistent attributes, refer to the debut event.

2.10.1 Non-opaque Data Management Attributes

There are two types of non-opaque attributes:

• Managed Regions
The DMAPI implementation may support persistence of managed regions. The
dm_get_config() function returns the number of persistent managed regions supported.

• Event Bit Masks
Event bit masks encode which events are enabled for a particular file within a finite number
of persistent bits.

2.10.2 Opaque Data Management Attributes

The DMAPI persistent opaque attribute mechanism provides a set of (name, value) pairs
associated with a file system object. The name is a fixed length 8 byte (defined as
DM_ATTR_NAME_SIZE) opaque value determined by the DM application and is interpreted as
a byte sequence. Attribute names starting with ASCII ‘‘_’’ (0x5F) are reserved for future common
attribute labels. In order to prevent name clashes, the first three bytes of the attribute name are
currently assigned through a reservation process. The prefix should identify the company whose
DM product is using the attribute, for example, Cheyenne has ‘‘CYE’’ reserved.

To register a 3-byte prefix, send e-mail to xdsmreg@xopen.org, identifying the company
name and the requested name.

Registered prefixes can be checked on the World-Wide Web at the following location:

http://www.xopen.org/public/tech/sysman/xdsmreg.htm

The attribute value is variable length and also opaque. It is recommended that the values be
stored in network byte order to support the movement of media between architectures. These
attributes are persistent across reboots.

Systems Management: Data Storage Management (XDSM) API 17

Data Management Attributes Interfaces

If the DM implementation supports opaque attributes, a limited number of attributes may be
stored persistently with each file. Each attribute may store up to
DM_CONFIG_MAX_ATTRIBUTE_SIZE bytes of data per file. The value of
DM_CONFIG_MAX_ATTRIBUTE_SIZE is obtained via dm_get_config() and has a lower bound
of 32 bytes. The total amount of space available for storage of all persistent attributes on a file
system is bounded by DM_CONFIG_TOTAL_ATTRIBUTE_SPACE.

Associated with the file attributes is a per-file time stamp called dtime, which is updated when
attributes are created, modified, or deleted, or when a new file inherits its attributes from the
parent directory. The dtime time stamp may be the same as ctime as determined by the value
returned from the dm_get_config() function with DM_CONFIG_DTIME_OVERLOADED. If
dtime is not overloaded, then any operation that manipulates attributes does not modify the file’s
traditional time stamps (atime , mtime, ctime).

If DM_CONFIG_PERS_INHERIT_ATTRIBS (obtainable from dm_get_config()) is DM_TRUE, DM
applications can mark persistent attributes as inheritable. If a directory has an attribute (such as
lock_on_magnetic) that has been marked inheritable and a file is created in the directory, then the
file would inherit the attribute. Attributes that are not marked inheritable are not copied.

DM applications mark an attribute inheritable on a per-file system basis and for specified file
types. For example, a DM application could mark the above attribute (lock_on_magnetic)
inheritable for newly created regular files only. Newly-created directories would not inherit the
attribute.

Attribute inheritance is not persistent across reboots. If a DM application marked the
lock_on_magnetic attribute as inheritable and the system were then brought down, the attribute
would no longer be inheritable when the system came back up.

The following functions are provided for attribute management:

• dm_set_dmattr()
Create a persistent attribute or override the contents of an existing attribute.

• dm_getall_dmattr ()
Retrieve all of the DM attributes and their values for an object.

• dm_get_dmattr()
Retrieve the value of a specific attribute.

• dm_remove_dmattr()
Remove a specific attribute from an object.

The following functions are provided for managing inheritable attributes:

• dm_set_inherit()
Mark an attribute as inheritable on a file system.

• dm_clear_inherit ()
Mark an attribute as no longer being inheritable.

• dm_getall_inherit ()
Get all the attributes that have been marked inheritable on a file system. This is especially
useful for application restart after a failure.

18 CAE Specification

Interfaces Events

2.11 Events
The DMAPI provides DM applications with the ability to monitor and manage the data in a file
system without having to export all the file system semantics from kernel space to user space via
the event interface. Events are generated by a DMAPI implementation, and then the messages
are enqueued on a session for delivery to a DM application.

The intent of the DMAPI is to support a single product on any single file system. The DMAPI
does not preclude different products from different vendors operating on the same file system,
but it is not recommended. Different products on different file systems are fully supported by the
DMAPI with regard to event delivery.

Therefore, the following event restrictions exist:

• Multiple sessions cannot register disposition for the same event on the same object.

• Event messages are targeted to and enqueued on sessions; there is no explicit targeting of an
event to a specific process.

• The behavior of event delivery when no session has requested to receive a particular event
(that is, dm_set_disp() with the given event has not been executed) is DMAPI
implementation-specific. The DMAPI implementation must document the behavior of the
system and has one of these three choices:

— block the process that caused the event to be fired

— fail the operation

— not fire the event and allow the process to proceed as if there is no event disposition.

Certain events are optional in the DMAPI specification. It is recommended that for each file
system being managed by a DM application, that the application initially call
dm_get_config_events() to determine which events are supported by the DMAPI implementation
for that file system.

• dm_get_config_events()
Get a list of all events supported by the DMAPI implementation

2.11.1 Setting Event Disposition

After creating a session, DM applications must register with the DMAPI to establish the
disposition of events for a file system (that is, what session the events will be sent to). The event
list is the complete set of all events, including managed region events, that the DM application is
monitoring during the life of the session. Since registration is on a per-session basis, this event
list is not persistent across reboots. It is not possible to register to receive events on anything
other than the file system object.

Once a DM application has registered its event list and session with the DMAPI, it can begin
receiving event messages on a file system. Registration can be thought of as establishing the
association between a file system and a session, as it lets the DMAPI implementation know
which session to send specific event messages to.

The example shown in Figure 2-4 illustrates the case where a DM application has registered with
the file system represented by ‘‘foo’’ for the read and write events. The event messages are
delivered to the application via session 42. The file bar has an event list of read , write, and truncate
that was previously set via dm_set_region().

Systems Management: Data Storage Management (XDSM) API 19

Events Interfaces

foo

bar bletch

DM App1
Sid: 42

Event: RW

Read

Event list: Read, Write, Trunc

Sid: 42
Event: RW

Filesystem Session Defaults

Figure 2-4 Disposition of Event Delivery

In Figure 2-4, the read event is delivered to DM application 1, since that is the session for that
specific event.

Multiple applications can register their session and event list for a file system. If two
applications attempt to register to receive the same event, the last application to register for the
event will receive it; prior registrations for the event are replaced.

Rationale:
If this were not the case, and replacement were done on an entire event list, not a
per-event basis, then it would not be possible to have more than one active session
registered for a file system. Having each event in the event list handled individually
allows multiple applications to be active on the same file system simultaneously, all
handling different events.

Figure 2-5 illustrates how Figure 2-4 would change if a second DM application registered for just
the read events.

foo

bar bletch

DM App2
Sid: 69

Event: Read

Read

Event list: Read, Write, Trunc

Sid: 42
Event: RW

Sid: 69
Event: Read

Filesystem Event Reg

DM App1
Sid: 42

Event: RW

Write

Figure 2-5 Duplicate Event Registrations on a File System

20 CAE Specification

Interfaces Events

In Figure 2-5, read events are now sent to DM application 2, via session 69, not DM application 1.
write events will still be delivered to DM application 1.

Rationale:
The burden is on the system administrator to ensure that two different DM
applications do not attempt to control the same events on the same file system. In
Figure 5, an alternative implementation of dm_set_disp() would be to return an error
saying that an <event, file system, session> binding already exists. Another option
would be to send a special event to DM app one, informing it that it no longer will
be receiving read events. While these options could be implemented, it is believed
that the level of complexity is not warranted for this version of the DMAPI.

The examples given above assume that the file system the DM application is monitoring is
already mounted. However, it is quite possible that a DM application wants to set itself up to
monitor a file system that is not yet mounted.

2.11.2 The ‘‘mount’’ Event

The restriction of only sending synchronous events to one session has special ramifications with
regard to the mount event. It is not the intent of the DMAPI to force a model of one ‘‘super-
daemon’’ that listens for mount events, and then forwards the event to the appropriate recipient.
However, there is a special bootstrap problem with regard to receiving the mount event before a
file system handle is available. To receive mount events, a DM application must use the global
handle in the dm_set_disp() function. The mount event will be sent serially to each session that
has executed dm_set_disp(). The event is not broadcast to all sessions concurrently. The order in
which the DMAPI implementation sends the event to the sessions is not defined.

The mount event will be sent for all file systems that support the DMAPI. Specifying the event in
the dm_set_eventlist() function is not allowed, since the event is not persistent. When the mount
event is received, the DM application can determine if it is interested in the file system that is
specified in the event message. If a DM application is not interested in the file system, then it
must respond to the event via dm_respond_event() with a code of DM_RESP_DONTCARE. The
first DM application that responds to the event with DM_RESP_CONTINUE and an error code
of zero prevents the event from being sent to any of the remaining sessions. If any DM
application returns an error [DM_RESP_ABORT], then the mount event will not be sent to any
other session.

Systems Management: Data Storage Management (XDSM) API 21

Events Interfaces

DM App
A

DM App
B

DM App
C

mount
event msg

1 2

3 4

2 DM_RESP_DONTCARE

4 DM_RESP_CONTINUE

Figure 2-6 Mount Event Propagation

In Figure 2-6, 3 DM applications have specified via dm_set_disp() that they want to receive the
mount event. The DMAPI implementation sends the mount event message to DM application A
in step 1, which is not interested in the event, so it responds to the event message with
DM_RESP_DONTCARE in step 2. The DMAPI implementation then sends the mount event
message to DM application B in step 3, which determines that it wants to monitor the file
system. It responds to the event message with a DM_RESP_CONTINUE in step 4, so the mount
event is not sent to the remaining DM application C.

If all of the DM applications receiving mount events return DM_RESP_DONTCARE, then the file
system mount proceeds normally.

For recovery processing, many DM applications will need the name of the file system device and
the directory that it was mounted at. This information is made available via the mount event.
During application restart, an application can get the same information via dm_get_mountinfo ().
A DM application would determine all the file systems that were being monitored via
dm_getall_disp (), and then use dm_get_mountinfo () to obtain more information about the file
systems.

The following functions are provided for manipulating the disposition of a session’s events for a
file system:

• dm_set_disp()
Set the disposition of a session’s events on a file system.

• dm_getall_disp ()
Get the disposition of events for all file systems for a session.

• dm_get_mountinfo ()
Get the information that was delivered on a mount event for the indicated file system.

22 CAE Specification

Interfaces Events

2.11.3 Setting Event Notification

DM applications can specify that they need to receive certain events on an object. Events will
only be generated for these objects, not for all objects in the file system (except for the debut
event, discussed specifically later in this section). To set event notification on a object, the DM
application must specify an event list for the object. This object is specified via a handle. The
handle can be either the file system handle when setting events on a per file system basis, or a
handle to a specific file system object. Executing dm_set_eventlist() may or may not persistently
store the eventlist with the object; it is dependent on the particular implementation of the
DMAPI. The persistence characteristic can be determined via the dm_get_config() function.

The DM application must specify the entire list of events that is to be generated for the object. If
an event list already exists for the object, it is replaced by the new one specified in the
dm_set_eventlist() function. If an event list was previously set for the entire file system, and a
subsequent event list for an object in that file system includes an event that was set for the file
system (or vice versa), the result is undefined. All events, with the exception of the managed
region events and the mount event, can be specified in the dm_set_eventlist() function. If the
object has multiple managed regions, then dm_get_eventlist() returns the union of all managed
region events, in addition to the other events.

When an event is generated by the file system, the DMAPI implementation uses the session to
determine the recipient. Since DM applications must register with the DMAPI via the
dm_set_disp() to specify the event list and the session, the DMAPI can easily determine the target
session for any given event.

Some implementations of the DMAPI may not provide any persistent storage, even for event
notification. For these ‘‘zero bit’’ implementations, the DMAPI provides a debut event before any
access is granted to the object. This debut event should be specified in the event list when the DM
application sets its event disposition. The debut event gives the DM application the ability to
download information (such as event lists and managed region information) that may be needed
by the DMAPI implementation. Most likely, when downloading a new event list for an object,
the list will not include the debut event, but only include events that require some action to be
performed by the DM application.

The debut event is the first indication given to a DM application that a primitive DMAPI
implementation is going to perform an operation on a file. The DM application can take this
opportunity to download all the necessary information for that particular file, or for other files as
well. Alternately, some DM applications may want to intercept the mount event to prime
primitive DMAPI implementations, rather than having to receive many debut events.

The following functions for managing event lists on a file system objects are provided:

• dm_set_eventlist()
Specify the events, with the exception of the managed region events, to be generated for an
object.

• dm_get_eventlist()
Get the list of events to be generated for an object.

Systems Management: Data Storage Management (XDSM) API 23

Events Interfaces

2.11.4 Receiving and Responding to Events

Pending events can be received one at a time or in bulk. For synchronous events, a response to
each event message is required. For all events, the only valid response is an indication of
whether the operation should be continued or aborted. If the operation is to be aborted, an error
can also be specified that will be returned to the user process in the form of an errno.

Event messages are variable length. This is because two of the primary fields of most event
messages, file handles and path names, are variable length. DM applications should use
dm_get_config() to determine the largest message size to size their buffers for calls to
dm_get_events(). For more information on accessing and manipulating variable length message
buffers, see Data Structures definitions in Chapter 4.

The process that generated the event is blocked until the response is received by the DMAPI
implementation. The sleep may or may not be interruptible; the implementation of the DMAPI
will need to define the behavior for each synchronous event.

When a synchronous event message is generated, a token is part of the message. The token
identifies the event message, and may reference access rights that are conveyed as part of the
event message. No tokens are passed in an asynchronous messages.

When a DM application responds to a data event message, the token may reference access rights.
If a DM application allows the operation to continue with the DM_RESP_CONTINUE return
code, then special care must be taken by the implementation of the DMAPI to allow the
operation that caused the event generation to continue without another DM application
changing the state of the file.

Consider the following example:

User
ProcessUser

Space

User
Process

Kernel
Space

1

write(2)

sync msg 1 sync msg 2

2

Session
Messages

Figure 2-7 Event Generation with No Rights

In Figure 2-7. the user process has initiated a write(2) operation in user space, shown as step 1.
When the application begins executing the Operating System code that performs the operation
in the kernel, it detects that it must generate a synchronous managed region write event. The
event message is enqueued on the session in step 2, and the user process is then awaited.

24 CAE Specification

Interfaces Events

User
ProcessUser

Space

User
Process

Kernel
Space

1

write(2)

sync msg 1 sync msg 2

2

Session
Messages

DM
App A

DM
App B

DMAPI
routines

3 4 5

Figure 2-8 Requesting Access Rights after Event Generation

In Figure 2-8, the event message has been enqueued on the session in step 2, and is delivered to
DM application A via dm_get_events() in step 3. Since the event message conveys no rights, DM
application A must obtain access rights to the object. In this example, it requires the
DM_RIGHT_EXCL right, which it obtains in step 4. At the same time, DM application B
attempts to get exclusive access to the file in step 5. Since the access right is not available, DM
application B will wait.

User
ProcessUser

Space

User
Process

Kernel
Space

1

write(2)

sync msg 1 sync msg 2

2

Session
Messages

DM
App A

DM
App B

DMAPI
routines

3 4 5 86

7

Figure 2-9 Continuing an Event with Access Rights

In Figure 2-9, DM application A has completed its processing in step 6 and continues the
operation via a dm_respond_event() with the DM_RESP_CONTINUE response code. At the point
when the function returns to the DM application (not explicitly shown, but it can be assumed to

Systems Management: Data Storage Management (XDSM) API 25

Events Interfaces

be a step 6a), the token that referenced the access rights to the object is invalid. However, the
DMAPI implementation cannot immediately release the rights referenced by the token and grant
them to someone else.

In step 7, the user process that caused the data event to be generated is resumed by the
Operating System, and continues operation at the point at which the event was generated. Once
the DMAPI implementation has completed whatever event processing it deems necessary, and
once it has acquired whatever locks it needs to complete the rest of the write(2) operation, the
access rights can be released. At this point, DM application B can be allowed to obtain the
DM_RIGHT_EXCL access right, in step 8.

Rationale:
DM applications are logical extensions of the file system. When a DM application
has completed the servicing of an event, it should appear as though the conditions
that caused the event to be generated no longer exist. From the standpoint of the
Operating System, it is as though the event never occurred; whatever state that
required the event to be generated has been taken care of by the DM application.

In the example above, if DM application B were allowed to gain exclusive access to
the file, it could possibly change the state of the file; all the recently-completed work
of DM application A would then be void. More importantly, the implementation of
the DMAPI would have no way to tell what state the file is in, unless it monitored
all the actions of DM application B. It is also important to prevent the user process
from starvation. Therefore, the user process should be allowed to continue its
processing after DM application A has completed the event servicing.

The following functions for receiving event messages and responding to synchronous messages
are provided:

• dm_get_events()
Get the next available event or events.

• dm_respond_event()
Respond to a synchronous event.

Some DM applications may be multi-threaded (or made up of multiple processes). To facilitate
the processing of events between related processes, the DMAPI provides a method to move an
outstanding event message from one session to another. The event message remains in the
outstanding state, even though it is now enqueued on a different session.

The following function is provided:

• dm_move_event()
Move an event from one session to another.

If a DM application knows that it will take some significant period of time to process an event,
the application can optionally notify the DMAPI implementation. The implementation is free to
use or ignore the information.

The following function is provided:

• dm_pending()
Notify the file system of a slow DM application operation.

When a destroy event occurs, a DM application may optionally receive one DM attribute value
in the event message by specifying to the DMAPI implementation which DM attribute name it
wants to receive at destroy time.

26 CAE Specification

Interfaces Events

The following function is provided:

• dm_set_return_on_destroy()
Specify a DM attribute to return with destroy events.

2.11.5 Pseudo Events

Pseudo events do not correspond to an event generated as a result of an operation in the
operating system, such as a write(2). They are created by the DM application for purposes of
generating a token or sending a message to a session. The actual message data is opaque to the
DMAPI implementation. For the format of the pseudo-event, see Pseudo Events Section 3.6 on
page 38. There is currently only one type of pseudo event; the user event.

As described in the Tokens Section 2.4 on page 10, tokens are always associated with a
synchronous event message. To gain access to an object, a DM application must first create a
message that contains the context for a token. The required access right can then be obtained via
dm_request_right(). dm_create_userevent() will create a synchronous event message of type user
and enqueue it on the indicated session. The message and its corresponding token are
outstanding. From the standpoint of the DMAPI, the message appears to have been delivered to
a DM application via dm_get_events(), but has not yet been responded to via dm_respond_event().
The message will continue to exist until the DM application does a dm_respond_event() with the
token.

For purposes of recovery processing, intelligent DM applications can use the user-generated
event message mechanism to log their state during long and complicated operations. For
example, if a DM application requires exclusive access to a file, it first needs to create a
synchronous message. It puts together a user-level event message describing the operation, and
then requests that a token be generated and associated with this pseudo-event message. If the
DM application aborts (via a bus error, kill signal, etc.) before responding to the event, when it
restarts, it can obtain the message and any corresponding state. This can provide the application
with valuable information about its state when it aborted.

User-created messages can also be used as a test mechanism, to ensure that communications
between the DMAPI implementation and a DM application are working correctly. Applications
can use dm_send_msg() to create a synchronous or asynchronous message and have it enqueued
on any specified session. The created message is also of type user, and contains the data
specified by the user. For synchronous messages, the function does not return until the message
has been responded to. Obviously, the process initiating the message via dm_send_msg() must
not also be responsible for consuming the message via dm_get_events(), or it will hang.

The following functions for creating a user level event message exist:

• dm_create_userevent()
Generate a user pseudo-event message and return its token. The message is placed on the
session’s outstanding event message queue.

• dm_send_msg()
Generate a user pseudo-event message and send it to the indicated session. The message is
placed on the session’s undelivered message queue.

Systems Management: Data Storage Management (XDSM) API 27

Configuration Information Interfaces

2.12 Configuration Information
In order for a DM application to determine information about the underlying implementation of
the DMAPI, an interface exists to interrogate various implementation specific details. The
function dm_get_config() is called on a per-file system basis. Based on selected options in this
function, it will return information as listed in its man-page definition (see dm_get_config() on
page 89).

2.13 Limited Backup and Restore Support
Many current vendor migration and backup applications require additional interfaces into the
DMAPI in order to fully support their functionality. To ease a vendor’s transition to the DMAPI,
a set of optional DM interfaces may be provided. They consist of the following functions:

• dm_create_by_handle()
Create a file system object using a DM handle.

• dm_mkdir_by_handle ()
Create a directory object using a DM handle.

• dm_symlink_by_handle ()
Create a symbolic link using a DM handle.

28 CAE Specification

Chapter 3

Event Types

3.1 Overview
This chapter enumerates the types of events that can be generated, explains the data sent with
the event message, and indicates what rights if any will be conveyed to the receiver of the event
message.

Each event message consists of a common portion and an event specific portion. The common
portion consists of the event type, a token, a sequence number, and the length of the data.

The common portion will not be shown in the following descriptions of events. For specific
information on the layout of event messages, see Event Message Types, Section 4.7 on page 47.

There are five classes of events:

• file system administration

• namespace

• data

• metadata

• pseudo events.

Events can be either synchronous or asynchronous, as determined by the event type.
Synchronous events allow a DM application to take action before an operation is continued by
the operating system. For all events, it is not possible for a DM application to implement the
operation in user space as though it were part of the operating system.

The DM application can respond to synchronous events in a number of ways. The operation can
be continued, or it can be aborted with a specified error code returned back to the originating
user process. For the mount event, the DM application can instruct the DMAPI implementation
that it is not interested in the event, and the event should be sent to another session — see
Setting Event Disposition, Section 2.11.1 on page 19 for more information. Some DMAPI
implementations may also support a retry response to a nospace event. If retry is supported, the
operation will be retried by the operating system if the response to nospace is
DM_RESP_CONTINUE. Support of a retry is indicated by the DM_CONFIG_WILL_RETRY
boolean returned via dm_get_config().

Asynchronous messages inform the DM application of the success or failure of an operation in
the Operating System. They are delivered asynchronously with respect to the process
performing the operation and offer no opportunity for a DM application to affect the requesting
process; thus they are for notification purposes rather than for control.

Due to their asynchronous nature, there is no inherent upper bound on the number of
undelivered asynchronous messages that may be queued on a session. Therefore
implementations must choose either a reliable or an unreliable model for asynchronous
messages.

In the reliable model, no asynchronous messages are ever lost. However, this requires that once
the number of undelivered asynchronous messages reaches an implementation-defined
maximum, processes attempting to generate additional messages are blocked until previously
queued messages are delivered.

Systems Management: Data Storage Management (XDSM) API 29

Overview Event Types

In the unreliable model, the implementation may simply drop messages when the undelivered
message count exceeds an implementation limit.

A conforming DMAPI implementation shall document which model it provides for
asynchronous messages. It is recommended that implementations adopt a reliable model, or
failing that, an unreliable model that provides reliable semantics in all but the most unusual
cases.

For synchronous messages, tokens identify the message. Each synchronous event message may
convey the access rights that are required by the DM application; however, it is not guaranteed.
The same message may even convey different access rights, depending on the code path taken in
the operating system. DM applications must use the dm_query_right() and dm_request_right()
interfaces to obtain the proper access rights for their operations. For asynchronous messages,
there is no token.

3.1.1 Implementation Responsibilities

The DMAPI implementation must specify for each event the behavior, in the case that an event
needs to be generated but no session has been established to receive the event message. This is
different from the case where a session exists but there is no process to receive the event
message (for example, the DM application has died). Some implementation alternatives are
discussed in Undeliverable Events, Section 6.11 on page 170.

The implementation of the DMAPI will also need to define whether each individual
synchronous event is interruptible. Since placement of events in the operating system is not
defined by the DMAPI, interruptibility cannot be mandated by this interface specification.

3.1.2 Interruptible Events

If an implementation provides interruptible events, it must guarantee that event messages
which convey access rights cannot vanish out from underneath a DM application while a DM
operation is in progress.

User
process

DM
app msg queue token: A

sync msg 1
token: A

(generate sync msg 1)

Session
Messages

sync msg 2
token: B

not delivered
enqueued

delivered
outstanding

KEY

Figure 3-1 Interrupting a Synchronous Message

In Figure 3-1, the user has performed an operation that caused a synchronous event message,
sync msg1, to be generated. The message has been received by the DM application, and is being

30 CAE Specification

Event Types Overview

processed. Assume the message conveyed rights to the DM application. If the implementation
allows the user to interrupt the operation that caused the event message, the DMAPI
implementation must complete any DM operation that is in progress for the associated event
token, before processing the user interruption signal and returning control to the user thread.
The DMAPI implementation must also clean up any outstanding access rights associated with
the token, if the token is about to become invalid.

It is important to note that a DM application that is restartable depends on the existence of event
messages to determine the state of the application before it died. Therefore, the DMAPI
implementation must always keep the session message queues in an orderly state. If a token is
invalidated by a user interruption, all state associated with that token must be cleaned up by the
DMAPI implementation.

3.1.3 Asynchronous Namespace Event Delivery

Asynchronous namespace event messages are always generated for operations that succeed. It is
implementation defined as to whether or not an asynchronous event message is sent for a failed
operation.

3.1.4 Invalid Handles

Namespace event messages and mount event can contain invalid handles. For example, a
DMAPI implementation may deliver an invalid handle for an object which belongs to a file
system type that is not supported by this implementation of DMAPI. Call the
dm_handle_is_invalid () function to determine if the handle is valid.

3.2 File System Administration Events

3.2.1 mount

This event is generated at the point of a mount operation where the operation will succeed, but
access to the file system has not yet been granted. This event allows DM applications to
initialize, and provides them with the filesystem handle. This event is synchronous.

The mount event is unlike other events in that it may be sent to multiple sessions; see Section
2.11.2 on page 21 for more information. Any DMAPI interface that interacts only with the
objects referenced by the handles supplied in the mount event, using the token supplied in the
mount event, will work while the mount event token is held. All other DMAPI calls are
undefined during mount.

The event message contains the following specific information:

fs handle filesystem handle.

mountpoint handle handle for the directory to be mounted over, maybe invalid.

mountpoint path path name of the directory to be mounted over.

media designator file system media designator.

mode 0 or DM_MOUNT_RDONLY.

root handle handle for the root inode of the mounted file system.

Systems Management: Data Storage Management (XDSM) API 31

File System Administration Events Event Types

3.2.2 preunmount

This event is generated at the point of an unmount operation where the operation is about to
check for open files. Events for this file system may still be generated after the preunmount event.
This allows the DM application to close any active accesses and ‘‘cd’’ out of the file system so
that a DM application itself does not cause an unmount to fail. This event is synchronous.

The event message contains the following specific information:

fs handle filesystem handle.

rootdir handle handle to the root directory of the file system.

unmount mode 0 or DM_UNMOUNT_FORCE.

3.2.3 unmount

This event is generated after the operating system has attempted to unmount a file system. A
return code of zero indicates the unmount was successful, and the file system is no longer
mounted. Once unmounted, the DMAPI will not generate any other events for the file system
until it is remounted. A non-zero return code indicates the unmountattempt failed. The reason
for failure is given by the value of the return code. The DMAPI will continue to generate events
for the file system after a failed unmount. The DMAPI implementation will always continue the
operation, ignoring the response code from the DM application. This event is synchronous.

The event message contains the following specific information:

fs handle filesystem handle.

unmount mode 0 or DM_UNMOUNT_FORCE.

retcode return code of the operation (0 or errno).

3.2.4 nospace

This event is generated when an operation fails with ENOSPC. If the DMAPI implementation
supports operation retry (DM_CONFIG_WILL_RETRY in the dm_get_config() function), a
DM_RESP_CONTINUE response will cause the operation that produced the ENOSPC error to
be generated to be retried. This event is synchronous.

The event message contains the following specific information:

fs handle filesystem handle for file system where the ENOSPC error occurred.

3.2.5 debut

If the debut event is specified when a DM application registers via dm_set_disp(), the DMAPI
implementation will generate this event at least once before any of the set of other possible
events are generated for the object. The debut event provides a mechanism for managing non-
persistent attributes. It gives the DM application an opportunity to reset managed regions and
event lists each time an object becomes active. If the DMAPI implementation supports persistent
managed regions and persistent event lists (DM_CONFIG_PERS_MANAGED_REGIONS and
DM_CONFIG_PERS_EVENTS in the dm_get_config() function), this event may not be generated.
For DMAPI implementations that do not provide persistent storage of managed regions or event
lists, the DM application should set the managed region list and a specific event list for the
object. Most likely, the event list will not include the debut event, but instead will only include
events that require some action to be performed by the DM application.

32 CAE Specification

Event Types File System Administration Events

DMAPI implementations that do not support persistent non-opaque DM attributes directly are
not required to support debut events; they may implement the functionality of the debut event
through other internal mechanisms. This event is synchronous and optional.

The event message contains the following specific information:

object handle object that is being accessed.

3.3 Namespace Events
Namespace operations allow a DM application to permit or deny an operation from continuing
in the operating system. The synchronous events are generated before the operation has
completed; there is no guarantee that the operation will be successful, however. Asynchronous
namespace event messages are always generated for operations that succeed. It is
implementation defined as to whether or not an asynchronous event message is sent for a failed
event.

The DMAPI guarantees the ordering of paired namespace events. Asynchronous post event
messages will always be generated after synchronous before event messages. If there are multiple
synchronous events on a directory entry, it is not guaranteed that the associated asynchronous
events are properly interleaved.

Namespace event messages are generated based on the directory entry that is being affected. If a
DM application wants to receive namespace events for every file in the file system, it should do a
dm_set_eventlist() using the filesystem handle.

3.3.1 create

This event is generated before the operating system adds a new entry to a directory. This event is
synchronous. There is no guarantee that the operation will be successful.

The event message contains the following specific information:

parent handle parent directory where entry name will be added.

entry name name of the new entry.

mode type of the object to be created and is the same value as st_mode in
struct stat and dt_mode in struct dm_stat.

The DM application can either allow the operation to continue (DM_RESP_CONTINUE) or
return an error code.

3.3.2 postcreate

This event is generated after the operating system has attempted to add an entry to a directory.
This event is asynchronous.

The event message contains the following specific information:

parent handle parent directory where entry name was added.

entry handle handle for the new entry.

entry name entry name that was added to the directory.

mode type of the object created and is the same value as st_mode in struct
stat and dt_mode in struct dm_stat.

Systems Management: Data Storage Management (XDSM) API 33

Namespace Events Event Types

retcode return code of the operation (0 or errno).

3.3.3 remove

This event is generated before the operating system removes an entry from a directory. This
event is synchronous. There is no guarantee that the operation will be successful.

The event message contains the following specific information:

parent handle parent directory where entry name will be removed.

entry name entry name to be removed from the directory.

mode type of the object to be removed and is the same value as st_mode in
struct stat and dt_mode in struct dm_stat.

The DM application can either allow the operation to continue (DM_RESP_CONTINUE) or
return an error code.

3.3.4 postremove

This event is generated after the operating system has attempted to remove an entry from a
directory. This event is asynchronous.

The event message contains the following specific information:

parent handle parent directory where entry name was removed.

entry name entry name removed from the directory.

mode type of the object removed and is the same value as st_mode in struct
stat and dt_mode in struct dm_stat.

retcode return code of the operation (0 or errno).

3.3.5 rename

This event is generated before the operating system renames a directory entry in a file system.
This event is synchronous. There is no guarantee that the operation will be successful.

The event message contains the following specific information:

old parent handle original parent directory where old entry name resides.

new parent handle new parent directory where new entry name is to be added.

old entry name directory entry to be renamed.

new entry name new name of directory entry.

The DM application can either allow the operation to continue (DM_RESP_CONTINUE) or
return an error code.

34 CAE Specification

Event Types Namespace Events

3.3.6 postrename

This event is generated after the operating system has attempted to rename an entry in a file
system. This event is asynchronous.

The event message contains the following specific information:

old parent handle original parent directory where old entry name resided.

new parent handle new parent directory where new entry name was added.

old entry name original directory entry that was renamed.

new entry name new name of directory entry.

retcode return code of the operation (0 or errno).

3.3.7 symlink

This event is generated before the operating system adds a new symbolic link entry in a
directory. This event is synchronous. There is no guarantee that the operation will be successful.

The event message contains the following specific information:

parent handle parent directory where symlink entry name will be added.

symlink entry name name of symbolic link entry.

symlink contents contents of symbolic link.

The DM application can either allow the operation to continue (DM_RESP_CONTINUE) or
return an error code.

3.3.8 postsymlink

This event is generated after the operating system has attempted to add a symbolic link entry in
a directory. This event is asynchronous.

The event message contains the following specific information:

parent handle parent directory where symlink entry name was added.

entry handle handle for the new symlink entry.

symlink entry name entry name of newly added symbolic link.

symlink contents contents of symbolic link.

retcode return code of the operation (0 or errno).

3.3.9 link

This event is generated before the operating system adds a new hard link entry in a directory.
This event is synchronous. There is no guarantee that the operation will be successful.

The event message contains the following specific information:

parent handle parent directory where target entry name will be added.

source link handle handle of entry to be linked to.

target entry name new link name to be added to the directory.

The DM application can either allow the operation to continue (DM_RESP_CONTINUE) or
return an error code.

Systems Management: Data Storage Management (XDSM) API 35

Namespace Events Event Types

3.3.10 postlink

This event is generated after the operating system has attempted to add a new hard link entry in
a directory. This event is asynchronous.

The event message contains the following specific information:

parent handle parent directory where target entry name was added.

source link handle handle of entry that was linked to.

target entry name new link name added to the directory.

retcode return code of the operation (0 or errno).

3.4 Data Events
Data events are triggered by interactions with managed regions. They are synchronous, and
allow the DM application to take some action before the operation is continued in the operating
system. Data events only occur on regular files.

3.4.1 read

This event is generated when a read of a file overlaps one or more managed regions that have the
event set in the managed region flags field. This event is synchronous. The event message
contains the following specific information:

file handle handle for file being read.

offset starting offset of read operation.

length length in bytes of read request.

3.4.2 write

This event is generated when a write to a file overlaps one or more managed regions that have
the event set in the managed region flags field. This event is synchronous.

The event message contains the following specific information:

file handle handle for file being written.

offset starting offset for write operation.

length length in bytes of write request.

3.4.3 truncate

This event is generated when the operating system attempts a truncation of a file that overlaps
one or more managed regions that has the event set in the managed region flags field. This event
can be generated directly in response to a truncate request by the user, as from truncate(2), or
indirectly as when an existing file is truncated via open(2) with the appropriate flags. This event
is synchronous.

The event message contains the following specific information:

file handle handle for file being truncated.

offset starting offset for truncation operation.

36 CAE Specification

Event Types Metadata Events

3.5 Metadata Events

3.5.1 attribute

This event is generated when an object is changed in a way that affects the change time
(dt_ctime) value returned by dm_get_bulkattr (), dm_get_dirattrs or dm_get_fileattr(). This event is
asynchronous.

The event message contains the following specific information:

object handle object that was affected.

3.5.2 cancel

This event may be generated when the implementation determines that an earlier request is no
longer of interest (for example, if a user terminated an application program). The method of
determining that a request is no longer of interest is implementation-dependent. The DM
application may react to this event according to its preference; however, the original event, the
one being cancelled, must still receive a response such as DM_RESP_ABORT or
DM_RESP_CONTINUE. This event is asynchronous.

The intent of this event message is that in advising a DM application that a given result is no
longer of interest, the DM application might be better able to schedule resources that might
otherwise have been devoted to providing that given result. This scheduling may be particularly
advisable if long-latency resources were required to satisfy a request.

The data associated with the cancel event is in the dm_cancel_event_t format. The event
message contains the following specific information:

sequence the value of the ev_sequence field for the event being canceled.

token the token of the original event.

This event is optional.

3.5.3 close

This event is generated on the close of a file system object. (The definition of ‘‘close’’ is
implementation-dependent. Typically, it will be on the last close.) This notification is a hint only,
and is not guaranteed to be reliable. This event is asynchronous and optional.

The event message contains the following specific information:

object handle object that is being closed.

3.5.4 destroy

This event is generated when the Operating System has destroyed an object. If the destroyed
object had the attribute specified by dm_set_return_on_destroy(), a copy of its attribute data will
be returned with the event message. The attribute data may be truncated if it was longer than
the maximum supported length for the implementation (returned by dm_get_config() with the
DM_CONFIG_MAX_ATTR_ON_DESTROY flag). This event is asynchronous.

The destroy event message contains the following specific information:

object handle object that was destroyed.

attribute name attribute name being returned.

Systems Management: Data Storage Management (XDSM) API 37

Metadata Events Event Types

attribute copy copy of attribute data for the object.

3.6 Pseudo Events
Pseudo events are events that do not correspond to any operation in the Operating System.
Currently, the only defined pseudo event is the user event that is generated by both
dm_create_userevent() and dm_send_msg().

3.6.1 user event format

This event structure is used in the dm_create_userevent() and dm_send_msg() functions for both
synchronous and asynchronous events. All dm_create_userevent() functions create synchronous
event messages. The dm_send_msg() function can be either synchronous or asynchronous. Only
synchronous events will associate a token with the event message. Asynchronous events can be
indicated by a value of DM_INVALID_TOKEN in the token field. DM applications can use this
event type to store information that is associated with the message that is to be created. The
message data is not interpreted by the DMAPI implementation.

For more information see the Tokens Section 2.4 on page 10 and the Events Section 2.11 on page
19.

Since this is not a generated event, the entire event message will be shown, and is as follows:

event type set to DM_EVENT_USER.

token token that will be returned or DM_INVALID_TOKEN.

message length length of the data to follow.

data private data that the DM application wants to have associated with a
message.

38 CAE Specification

Event Types Event Summary

3.7 Event Summary
A summary of events, the type of objects they are delivered on, and how they are enabled, is
given in Table 3-1.

Event Sync/Async Enabled By Enabled On
mount sync always enabled global
preunmount sync dm_set_eventlist fs
unmount sync dm_set_eventlist fs
nospace sync dm_set_eventlist fs
debut sync always enabled file, dir or fs

create sync dm_set_eventlist dir or fs
postcreate async dm_set_eventlist dir or fs
remove sync dm_set_eventlist dir or fs
postremove async dm_set_eventlist dir or fs
rename sync dm_set_eventlist dir or fs
postrename async dm_set_eventlist dir or fs
symlink sync dm_set_eventlist dir or fs
postsymlink async dm_set_eventlist dir or fs
link sync dm_set_eventlist dir or fs
postlink async dm_set_eventlist dir or fs

read sync dm_set_region managed region
write sync dm_set_region managed region
truncate sync dm_set_region managed region

attribute async dm_set_eventlist file, dir or fs
cancel async dm_set_eventlist file, dir or fs
close async dm_set_eventlist file, dir or fs
destroy async dm_set_eventlist file, dir or fs

created by
dm_create_userevent
and dm_send_msg

user either not applicable

Table 3-1 Event Summary

Systems Management: Data Storage Management (XDSM) API 39

Event Summary Event Types

Table 3-2 lists the objects that the DMAPI implementation will consult to determine if an event
should be generated. For example, the rename event will be generated if a rename() occurs where
one of the following objects has that event enabled:

• old parent directory

• new parent directory

• filesystem handle for the file system containing the object to be renamed.

Event Controlling Object Handle
mount global
preunmount fs
unmount fs
nospace fs
debut file, dir or fs

create parent dir or fs
postcreate parent dir or fs
remove parent dir or fs
postremove parent dir or fs
rename old parent, new parent, or fs
postrename old parent, new parent, or fs
symlink parent dir or fs
postsymlink parent dir or fs
link parent dir or fs
postlink parent dir or fs

read file
write file
truncate file

attribute file, dir or fs
cancel file, dir or fs
close file, dir or fs
destroy file, dir or fs

user n/a

Table 3-2 Event Generation Objects

40 CAE Specification

Event Types Event Summary

Events are defined via a number of different data structures. Table 3-3 summarizes the event
structures that are used to deliver each event.

Event Data structure
mount dm_mount_event
preunmount dm_namesp_event
unmount dm_namesp_event
nospace dm_namesp_event
debut dm_namesp_event

create dm_namesp_event
postcreate dm_namesp_event
remove dm_namesp_event
postremove dm_namesp_event
rename dm_namesp_event
postrename dm_namesp_event
symlink dm_namesp_event
postsymlink dm_namesp_event
link dm_namesp_event
postlink dm_namesp_event

read dm_data_event
write dm_data_event
truncate dm_data_event

attribute dm_namesp_event
cancel dm_cancel_event
close dm_namesp_event
destroy dm_destroy_event

user opaque to DMAPI implementation

Table 3-3 Event Data Structures

Systems Management: Data Storage Management (XDSM) API 41

Event Summary Event Types

A number of different events use the dm_namesp_event structure. Table 3-4 lists which fields
are valid, and their contents, for each event message that uses this structure.

Event handle1 handle2 name1 name2 mode retcode
preunmount fs rootdir - - unmount mode -
unmount fs - - - unmount mode r/c
nospace fs - - - - -
debut object - - - - -

create parent - name - st_mode -
postcreate parent new name - st_mode r/c
remove parent - name - st_mode -
postremove parent - name - st_mode r/c
rename old parent new parent old name new name - -
postrename old parent new parent old name new name - r/c
symlink parent - name contents - -
postsymlink parent new name contents - r/c
link parent source name - - -
postlink parent source name - - r/c

attribute object - - - - -
close object - - - - -

- not applicable
r/c return code

Table 3-4 Field Use in the dm_namesp_event Structure

The following table describes the fields of the dm_mount_event.

mode mount options
handle1 file system handle
handle2 mounted-on directory handle, may be invalid
name1 mount path
name2 file system media
roothandle root inode handle

Table 3-5 Field Use in the dm_mount_event Structure

42 CAE Specification

Chapter 4

Data Structures

The DMAPI references a number of data structures that are presented here in alphabetical order.
All of these structures can have additional vendor-specific fields unless otherwise stated. Many
of the interfaces deal with variable length data, such as handles and path names. This data is
encapsulated in the implementation defined dm_vardata_t structure, see the Implementation
Notes section for one proposed definition. To access the data, the following functions are
provided:

DM_GET_VALUE(p, field, type)

DM_GET_LEN(p, field)

Rationale:
The philosophy behind all the interfaces that deal with variable length data is to
allow for such data to be embedded in the same buffer as the structure that contains
a reference to it. The references are all relative to the start of the structure
containing them, so that buffers containing such structures can be copied without
destroying the embedded references. The expectation is that the variable length
data will most commonly be appended directly after the structure that references it,
but the dm_vardata_t interface does not demand this spatial relationship. However,
the interfaces that return variable length data are designed (and implicitly specified)
so that this spatial relationship does hold for the information they return.

To access fields within a variable length structure, the DM application must use the macros
defined above. For example, to get at the handle in an event message, the following code could
be used:

dm_eventmsg_t *msg = malloc(bufsize);
dm_data_event_t *event;

dm_get_events(sid,msg,...);
event = DM_GET_VALUE(msg, data, dm_data_event_t *);
hanp = DM_GET_VALUE(event, handle, void *);
hlen = DM_GET_LEN(event, handle);

A number of DMAPI functions return lists of variable length structures. To move from one
structure to the next in a list, the following macro should be used:

#define DM_STEP_TO_NEXT(struct_ptr, struct_type)

A suggested implementation of the DM_STEP_TO_NEXT macro is given under Section 6.10 on
page 170.

Systems Management: Data Storage Management (XDSM) API 43

Data Structures

The following table shows the affected structures:

Structure Name
dm_attrlist_t
dm_dispinfo_t
dm_eventmsg_t
dm_stat_t

Table 4-1 Structures used in Lists

The DM_STEP_TO_NEXT macro can be used as shown in the following example:

dm_stat_t *statbuf = malloc(bufsize);
dm_stat_t *sbufp;

dm_init_attrloc(...)
dm_get_bulkattr(sid, ...statbuf);

sbufp = statbuf;
while (sbufp != NULL) {

......
sbufp = DM_STEP_TO_NEXT(sbufp, dm_stat_t *);

}

4.1 dm_attrlist_t
SYNOPSIS

struct dm_attrlist {
dm_attrname_t al_name;
dm_vardata_t al_data;

};
typedef struct dm_attrlist dm_attrlist_t;

DESCRIPTION
A dm_attrlist_t pointer is passed to dm_getall_dmattr () to retrieve all persistent data
management attributes associated with the specified file. The data structure includes, but is
not limited to, the fields described above.

Since attributes may have different size data fields, use the DM_GET_VALUE and
DM_GET_LEN macros to interpret the al_data field. All attribute names are fixed length 8
byte (defined as DM_ATTR_NAME_SIZE) opaque values.

Each attribute may store up to DM_CONFIG_MAX_ATTRIBUTE_SIZE bytes of data per
file. The value of DM_CONFIG_MAX_ATTRIBUTE_SIZE is obtained via dm_get_config()
and has a lower bound of 32 bytes. The total amount of space available for storage of all
persistent attributes on a file system is bounded by
DM_CONFIG_TOTAL_ATTRIBUTE_SPACE.

44 CAE Specification

Data Structures dm_attrloc_t

4.2 dm_attrloc_t
DESCRIPTION

An opaque scalar that is used in the dm_get_bulkattr () and dm_init_attrloc () functions.

4.3 dm_attrname_t
SYNOPSIS

struct dm_attrname {
u_char an_chars[DM_ATTR_NAME_SIZE];

};
typedef struct dm_attrname dm_attrname_t;

DESCRIPTION
This is used by the data management attribute functions to identify an attribute. All
attribute names are fixed length 8 byte (defined as DM_ATTR_NAME_SIZE) opaque values.

It is recommended that applications use printable eight character names (or pad smaller
names with the NULL character) to simplify display of attributes names and use a
predefined three byte prefix as specified in section 3.10.2.

4.4 dm_boolean_t
DESCRIPTION

An opaque scalar that can contain either DM_TRUE or DM_FALSE.

Systems Management: Data Storage Management (XDSM) API 45

dm_boolean_t Data Structures

4.5 dm_config_t
REQUIREMENT

This enumeration must contain at least the elements listed here. The DMAPI
implementation may choose a different order for the elements.

SYNOPSIS
typedef enum {

DM_CONFIG_INVALID,
DM_CONFIG_BULKALL,
DM_CONFIG_CREATE_BY_HANDLE,
DM_CONFIG_DTIME_OVERLOAD,
DM_CONFIG_LEGACY,
DM_CONFIG_LOCK_UPGRADE,
DM_CONFIG_MAX_ATTR_ON_DESTROY,
DM_CONFIG_MAX_ATTRIBUTE_SIZE,
DM_CONFIG_MAX_HANDLE_SIZE,
DM_CONFIG_MAX_MANAGED_REGIONS,
DM_CONFIG_MAX_MESSAGE_DATA,
DM_CONFIG_OBJ_REF,
DM_CONFIG_PENDING,
DM_CONFIG_PERS_ATTRIBUTES,
DM_CONFIG_PERS_EVENTS,
DM_CONFIG_PERS_INHERIT_ATTRIBS,
DM_CONFIG_PERS_MANAGED_REGIONS,
DM_CONFIG_PUNCH_HOLE,
DM_CONFIG_TOTAL_ATTRIBUTE_SPACE,
DM_CONFIG_WILL_RETRY

} dm_config_t;

DESCRIPTION
Enums from dm_config_t are used in dm_get_config() calls to query various options
pertaining to the implementation of the DMAPI.

4.6 dm_dispinfo_t
SYNOPSIS

struct dm_dispinfo {
dm_vardata_t di_fshandle;
dm_eventset_t di_eventset;

};
typedef struct dm_dispinfo dm_dispinfo_t;

DESCRIPTION
The dm_dispinfo_t structure is used on calls to dm_getall_disp () to retrieve the list of all
event dispositions for all file systems for a given session. DM applications should use the
DM_GET_VALUE macro to retrieve the value of the filesystem handle and
DM_STEP_TO_NEXT to move between successive structures.

46 CAE Specification

Data Structures Event Message Types

4.7 Event Message Types

4.7.1 dm_eventmsg_t

SYNOPSIS
struct dm_eventmsg {

dm_eventtype_t ev_type;
dm_token_t ev_token;
dm_sequence_t ev_sequence;
dm_vardata_t ev_data;

};
typedef struct dm_eventmsg dm_eventmsg_t;

DESCRIPTION
Every event message is of type dm_eventmsg_t. Since multiple messages can be returned in
a single call, DM applications must use the DM_STEP_TO_NEXT macro to move from one
message to the next.

All event messages contain an event type. Synchronous messages also contain a token. The
dm_eventmsg_t structure represents this common data via the ev_type and ev_token fields.
Asynchronous messages never have a token associated with them; therefore ev_token will
always be DM_INVALID_TOKEN for asynchronous messages.

The rest of the contents of the message for a given event is distinct for an event’s type, and
will be contained in a dm_xxx_event buffer, where xxx depends on the event type. As with
other data whose size or type isnt known in advance, it is referred to through the
DM_GET_VALUE macro applied to a descriptor field that lives in the common prelude part
of the event message.

ev_type
The event type that occurred.

ev_token
The token may reference and identify a specific access right for a handle in the event-
specific portion of the message. When responding to the message, the token is used to
identify the message and is no longer valid when the response call dm_respond_event()
has completed. The token field is valid for synchronous messages only; the field will be
DM_INVALID_TOKEN for asynchronous event messages.

ev_sequence
This is a sequence identifier for the event message. If the implementation supports the
cancel event, the value of this sequence identifier must be unique in the event stream. A
subsequent cancel event may refer to this event using the value of this sequence
identifier. The contents of this field is not specified if the cancel event is not supported.

ev_data
The event-specific data.

Systems Management: Data Storage Management (XDSM) API 47

Event Message Types Data Structures

4.7.2 dm_cancel_event_t

SYNOPSIS
struct dm_cancel_event {

dm_sequence_t ce_sequence;
dm_token_t ce_token;

};
typedef struct dm_cancel_event dm_cancel_event_t;

DESCRIPTION
The dm_cancel_event structure is used for the cancel event message type.

4.7.3 dm_data_event_t

SYNOPSIS
struct dm_data_event {

dm_vardata_t de_handle;
dm_off_t de_offset;
dm_size_t de_length;

};
typedef struct dm_data_event dm_data_event_t;

DESCRIPTION
The dm_data_event structure is used for all data events.

4.7.4 dm_destroy_event_t

SYNOPSIS
struct dm_destroy_event {

dm_vardata_t ds_handle;
dm_attrname_t ds_attrname;
dm_vardata_t ds_attrcopy;

};
typedef struct dm_destroy_event dm_destroy_event_t;

DESCRIPTION
The dm_destroy_event structure is used for the destroy event.

4.7.5 dm_mount_event_t

SYNOPSIS
struct dm_mount_event {

mode_t me_mode;
dm_vardata_t me_handle1;
dm_vardata_t me_handle2;
dm_vardata_t me_name1;
dm_vardata_t me_name2;
dm_vardata_t me_roothandle;

};
typedef struct dm_mount_event dm_mount_event_t;

DESCRIPTION
The dm_mount_event structure is used for the mount event.

48 CAE Specification

Data Structures Event Message Types

4.7.6 dm_namesp_event_t

SYNOPSIS
struct dm_namesp_event {

mode_t ne_mode;
dm_vardata_t ne_handle1;
dm_vardata_t ne_handle2;
dm_vardata_t ne_name1;
dm_vardata_t ne_name2;
int ne_retcode;

};
typedef struct dm_namesp_event dm_namesp_event_t;

DESCRIPTION
The dm_namesp_event structure is used for all namespace events.

4.8 dm_eventset_t
DESCRIPTION

To specify events, the dm_eventset_t type must be used. This is an opaque type (to the DM
application) that is manipulated via the DMEV_ZERO, DMEV_SET and DMEV_CLR
macros in a manner analogous to the FD_SET type that is used in calls to select(2).

4.9 dm_eventtype_t
REQUIREMENT

This enumeration must contain at least the elements listed here. The DMAPI
implementation may choose a different order for the elements.

SYNOPSIS
typedef enum {

DM_EVENT_INVALID,
DM_EVENT_CLOSE,
DM_EVENT_MOUNT,
DM_EVENT_PREUNMOUNT, DM_EVENT_UNMOUNT,
DM_EVENT_NOSPACE,
DM_EVENT_DEBUT,
DM_EVENT_CREATE, DM_EVENT_POSTCREATE,
DM_EVENT_REMOVE, DM_EVENT_POSTREMOVE,
DM_EVENT_RENAME, DM_EVENT_POSTRENAME,
DM_EVENT_SYMLINK, DM_EVENT_POSTSYMLINK,
DM_EVENT_LINK, DM_EVENT_POSTLINK,
DM_EVENT_READ,
DM_EVENT_WRITE,
DM_EVENT_TRUNCATE,
DM_EVENT_ATTRIBUTE,
DM_EVENT_CANCEL,
DM_EVENT_DESTROY,
DM_EVENT_USER,
DM_EVENT_MAX

} dm_eventtype_t;

Systems Management: Data Storage Management (XDSM) API 49

dm_eventtype_t Data Structures

DESCRIPTION
Event types are encoded in message structures and dm_eventset_t types as dm_eventtype_t
enums. DM_EVENT_MAX is guaranteed to be larger than the number of the largest valid
event type that can be represented in the dm_eventset_t type. DM_EVENT_INVALID is
guaranteed to be smaller than the number of the smallest valid event type that can be
represented in the dm_eventset_t type.

4.10 dm_extent_t
SYNOPSIS

struct dm_extent {
dm_extenttype_t ex_type;
dm_off_t ex_offset;
dm_size_t ex_length;

};
typedef struct dm_extent dm_extent_t;

DESCRIPTION
The extent structures returned by the call to dm_get_allocinfo () contains the ex_type field,
whose value is one of two indicators for the type of extent. If a DMAPI implementation can
know that an extent of a file would be read as zeros, for example because no media
resources are mapped to that extent of the file, it should indicate that knowledge about the
extent by associating DM_EXTENT_HOLE with that extent. Otherwise, the value
DM_EXTENT_RES should be associated with that extent. The ex_offset field is the byte offset
into the file where the extent begins, and ex_length is the byte count of the extent.

4.11 dm_extenttype_t
SYNOPSIS

typedef enum {
DM_EXTENT_INVALID,
DM_EXTENT_RES,
DM_EXTENT_HOLE

} dm_extenttype_t;

DESCRIPTION
The dm_extenttype_t enum is used to specify the type of extent in the dm_extent_t
structure.

50 CAE Specification

Data Structures dm_extenttype_t

4.12 dm_fileattr_t
SYNOPSIS

struct dm_fileattr {
mode_t fa_mode;
uid_t fa_uid;
gid_t fa_gid;
time_t fa_atime;
time_t fa_mtime;
time_t fa_ctime;
time_t fa_dtime;
dm_off_t fa_size;

} ;
typedef struct dm_fileattr dm_fileattr_t;

DESCRIPTION
These are the fields that can be modified by dm_set_fileattr().

4.13 DM Handles
SYNOPSIS

void *hanp;
size_t hlen;

DESCRIPTION
Handles are opaque to DM applications. The length of a handle is implementation defined.
When a handle must be used in a function, it is specified using two parameters. The hlen
parameter specifies the length of the opaque data that is pointed to by hanp.

When a handle is embedded in a structure, the dm_vardata_t structure is used. The DM
application should use the DM_GET_VALUE macro to access the handle data and
DM_GET_LEN to determine the length of the opaque handle data.

4.14 dm_fsid_t
DESCRIPTION

This is a scalar used to represent a file system identifier.

Systems Management: Data Storage Management (XDSM) API 51

dm_igen_t Data Structures

4.15 dm_igen_t
DESCRIPTION

This is a scalar used to represent a file inode generation number.

4.16 dm_inherit_t
SYNOPSIS

struct dm_inherit {
dm_attrname_t ih_name ;
mode_t ih_filetype;

};
typedef struct dm_inherit dm_inherit_t;

DESCRIPTION
A dm_inherit_t pointer is passed to dm_getall_inherit () to retrieve all data management
attributes that have been made inheritable through the dm_set_inherit() function. The call is
made on a per file system basis. The ih_filetype field is the type of the file as defined in
Single UNIX Specification.

4.17 dm_msgtype_t
SYNOPSIS

typedef enum {
DM_MSGTYPE_INVALID,
DM_MSGTYPE_SYNC,
DM_MSGTYPE_ASYNC

} dm_msgtype_t;

DESCRIPTION
This is used when creating a user event via dm_send_msg() to specify the type of event
message that should be created, synchronous or asynchronous.

4.18 dm_off_t
DESCRIPTION

This is a signed scalar used to represent file offsets.

Rationale:
Vendors have taken different approaches for extending file addressibility
beyond the off_t type, which is usually 32 bits. For example, some vendors
have an offset_t type or an off64_t type for working with files larger than 2GB.

The intent is that dm_off_t be a suitable type for addressing all files supported by the
system.

52 CAE Specification

Data Structures dm_region_t

4.19 dm_region_t
SYNOPSIS

struct dm_region {
dm_off_t rg_offset;
dm_size_t rg_size;
u_int rg_flags;

};
typedef struct dm_region dm_region_t;

DESCRIPTION
The dm_region structure defines the range of bytes that are managed in the file. The
rg_flags field can be set to generate synchronous read , write, and truncate events whenever
the associated operation is performed within the managed region. A region may extend
outside the current valid portions of a file. If rg_size is set to zero, then that region extends
from rg_offset through EOF and beyond. Thus operations beyond the end of file, including
appends and sparse writes, will generate events according to the flag setting. This means
that the rg_flags field must always be set to a valid state. Regions may also be allocated with
no associated events set by using DM_REGION_NOEVENT. This may be used to allocate
space for future control of a region of the file in DMAPI implementations that provide
persistent managed regions.

Valid values for the rg_flags field are as follows:

DM_REGION_READ
Generate synchronous event for read operations that overlap this managed region

DM_REGION_WRITE
Generate synchronous event for write operations that overlap this managed region

DM_REGION_TRUNCATE
Generate synchronous event for truncate operations that overlap this managed region

DM_REGION_NOEVENT
Do not generate any events for this managed region.

4.20 Region Flags
DEFINES

#define DM_REGION_NOEVENT xxx
#define DM_REGION_READ xxx
#define DM_REGION_WRITE xxx
#define DM_REGION_TRUNCATE xxx

DESCRIPTION
The defines above are used to specify the generation of events in the rg_flags field of the
managed region structure. DM_REGION_READ, DM_REGION_WRITE and
DM_REGION_TRUNCATE may be ORed together.

Systems Management: Data Storage Management (XDSM) API 53

dm_response_t Data Structures

4.21 dm_response_t
REQUIREMENT

This enumeration must contain at least the elements listed here. The DMAPI
implementation may choose a different order for the elements.

SYNOPSIS
typedef enum {

DM_RESP_INVALID,
DM_RESP_CONTINUE,
DM_RESP_ABORT,
DM_RESP_DONTCARE

} dm_response_t;

DESCRIPTION
When a DM application responds to an event via dm_respond_event(), the response codes
must be an enum taken from dm_response_t.

4.22 dm_right_t
SYNOPSIS

typedef enum {
DM_RIGHT_NULL,
DM_RIGHT_SHARED,
DM_RIGHT_EXCL

} dm_right_t;

DESCRIPTION
The dm_right_t enum specifies the access rights for an object.

4.23 dm_sequence_t
DESCRIPTION:

This is an unsigned scalar used to represent one of a sequence of event messages for
message cancellation.

4.24 dm_sessid_t
DESCRIPTION:

The session ID is an opaque scalar. Implementations of the DMAPI may differ in the
information they require to be stored with the session ID. A special value,
DM_NO_SESSION, is available for use as an invalid or non-existent session.

54 CAE Specification

Data Structures dm_size_t

4.25 dm_size_t
DESCRIPTION

This is an unsigned scalar used to represent sizes of extents within files (among other
things).

4.26 dm_ssize_t
DESCRIPTION

This is a signed scalar used for function calls that return the size of the file or -1 to indicate
error.

4.27 dm_stat_t
SYNOPSIS

struct dm_stat {
dm_vardata_t dt_handle;
dm_vardata_t dt_compname;
dm_eventset_t dt_emask;
int dt_nevents;
int dt_pers;
int dt_pmanreg;
time_t dt_dtime;
u_int dt_change;

dev_t dt_dev;
ino_t dt_ino;
mode_t dt_mode;
nlink_t dt_nlink;
uid_t dt_uid;
gid_t dt_gid;
dev_t dt_rdev;
dm_off_t dt_size;
time_t dt_atime;
time_t dt_mtime;
time_t dt_ctime;
u_int dt_blksize;
dm_size_t dt_blocks;

};
typedef struct dm_stat dm_stat_t;

DESCRIPTION
The dm_stat structure is used for retrieving per file attributes via the dm_get_fileattr(),
dm_get_dirattrs() and dm_get_bulkattr () functions. The structure is composed of at least
fields found in the Single UNIX Specification struct stat as well as additional DMAPI
specific fields.

Since handles are variable length, the structure is somewhat problematic as
dm_get_bulkattr () can return a variable number of variable length structures. To access the
variable length data in an individual structure, the DM_GET_VALUE macro should be used.
To move between structures, the DM_STEP_TO_NEXT macro is used.

Systems Management: Data Storage Management (XDSM) API 55

dm_stat_t Data Structures

The dm_stat structure contains at least the following fields:

dt_handle
A dm_vardata_t structure that contains the offset from the beginning of the structure
where the data for the handle begins. The DM_GET_VALUE macro should be used to
access the handle.

dt_compname
A dm_vardata_t structure that contains the offset from the beginning of the structure
where the name of the file begins. This field is valid only for dm_get_dirattrs(). The
DM_GET_VALUE macro should be used to access the file name.

dt_emask
The event bindings that are stored persistently with the file. The event types in this set
can be manipulated by the dm_set_eventlist() functions.

Not all DMAPI implementations support persistent event bindings. Support can be
determined through use of the dm_get_config() function.

dt_nevents
The number of events in the event mask, dt_emask.

dt_pers
A boolean indicating whether the file does or does not have associated persistent
opaque data management attributes. A non-zero value indicates presence of persistent
attributes.

dt_pmanreg
A boolean indicating whether the file does or does not have associated persistent
managed regions. A non-zero value indicates presence of persistent managed regions.

dt_dtime
The value of the data management attribute time stamp if dt_pers is a non-zero value.
This field may be the same as ctime as determined by calling dm_get_config() with
DM_CONFIG_DTIME_OVERLOADED.

This field will be set to zero if persistent attributes are not supported by the DMAPI or
associated with this file.

dt_change
This field is a file change indicator that is changed on each file modification (of either
data or metadata) and on each persistent attribute change. It can be used by DM
applications during lock upgrade to determine whether the file has changed state. If the
same value is returned in dt_change between two calls, the file is guaranteed not to
have changed; however, some implementations of the DMAPI may return a different
dt_change value even if the file has not really been modified.

The following fields are taken from the Single UNIX Specification struct stat.

dt_dev
ID of device containing file

dt_ino
File serial number

dt_mode
Mode of file

dt_nlink
Number of links to the file

56 CAE Specification

Data Structures dm_stat_t

dt_uid
User ID of file

dt_gid
Group ID of file

dt_rdev
Device ID (if file is character/block special)

dt_size
File size in bytes (if file is regular file)

dt_atime
Time of last access

dt_mtime
Time of last data modification

dt_ctime
Time of last status change

dt_blksize
A file system specific preferred I/O block size for this object. In some file system types,
this may vary from file to file.

dt_blocks
Number of blocks of a file system-specific size allocated for this object.

4.28 dm_timestruct_t
SYNOPSIS

struct dm_timestruct {
time_t dm_tv_sec;
int32 dm_tv_nsec;

};
typedef struct dm_timestruct dm_timestruct_t;

DESCRIPTION
A dm_timestruct_t is the structure passed to dm_pending(), used to represent an interval of
time in seconds and nanoseconds. It contains at least the following information:

dm_tv_sec

dm_tv_nsec

Systems Management: Data Storage Management (XDSM) API 57

dm_token_t Data Structures

4.29 dm_token_t
DESCRIPTION

A dm_token_t is an opaque scalar. There are two distinguished values, DM_NO_TOKEN,
which signifies automatic token acquisition, and DM_INVALID_TOKEN, which signifies no
legal value.

4.30 dm_vardata_t
DESCRIPTION

A dm_vardata_t is an opaque structure. Implementations of the DMAPI may differ in the
information they require to be stored in a variable length data structure. Use the macros as
mentioned at the beginning of this chapter to access dm_vardata_t fields. See the
Implementation Notes chapter for an example definition of the dm_vardata_t structure and
its access macros.

4.31 dm_xstat_t
SYNOPSIS

struct dm_xstat {
dm_stat_t dx_statinfo;
dm_vardata_t dx_attrdata;

};
typedef struct dm_xstat dm_xstat_t;

DESCRIPTION
The dm_xstat structure is used for retrieving per file attributes and one persistent data
management attribute via dm_get_bulkall (). The data structure includes, but is not limited
to, the fields described above.

The dm_xstat structure contains at least the following fields:

dx_statinfo The dm_stat_t structure

dx_attrdata The attribute data for the object as set by dm_set_dmattr() on the object.

4.32 Attribute Mask Defines
DEFINES

#define DM_AT_ATIME xxx
#define DM_AT_CFLAG xxx
#define DM_AT_CTIME xxx
#define DM_AT_DTIME xxx
#define DM_AT_EMASK xxx
#define DM_AT_GID xxx
#define DM_AT_HANDLE xxx
#define DM_AT_MODE xxx
#define DM_AT_MTIME xxx
#define DM_AT_PATTR xxx
#define DM_AT_PMANR xxx
#define DM_AT_SIZE xxx
#define DM_AT_STAT xxx

58 CAE Specification

Data Structures Attribute Mask Defines

#define DM_AT_UID xxx

DESCRIPTION
The #defines shown above are used by the dm_get_bulkall (), dm_get_bulkattr (),
dm_get_dirattrs(), dm_get_fileattr() and dm_set_fileattr() functions. They are OR-able flags.
For descriptions of these flags, see the man-page definitions for these functions. in Chapter 5
on page 63.

4.33 Get Events Defines
DEFINES

#define DM_EV_WAIT xxx

DESCRIPTION
There is currently one definition used for retrieving DM messages via dm_get_events(). This
definition is an OR-able flag. Refer to the dm_get_events() reference manual page for a
description of this flag.

4.34 Mount Event Defines
DEFINES

#define DM_MOUNT_RDONLY xxx

DESCRIPTION
The possible flags contained in the me_mode field of the dm_mount_event structure during
the mount event. These definitions are OR-ed flags. The DM_MOUNT_RDONLY flag is set
when the mount command is run with the read-only option set.

4.35 Request Right Defines
DEFINES

#define DM_RR_WAIT xxx

DESCRIPTION
There is currently one definition used for requesting rights via dm_request_right(). This
definition is an OR-able flag. Refer to the dm_request_right() reference manual page for a
description of this flag.

Systems Management: Data Storage Management (XDSM) API 59

Unmount Event Defines Data Structures

4.36 Unmount Event Defines
DEFINES

#define DM_UNMOUNT_FORCE xxx

DESCRIPTION
The possible flags contained in the ne_mode field of the dm_namesp_event structure
during the preunmount and unmount events. These definitions are OR-ed flags. The
DM_UNMOUNT_FORCE flag is set when the unmount command is run with the force
unmount option set.

4.37 Invisible Write Defines
DEFINES

#define DM_WRITE_SYNC xxx

DESCRIPTION
There is currently one flag definition for the flags parameter to dm_write_invis(). This
definition is an OR-able flag. Refer to the dm_write_invis() reference manual page for a
description of this flag.

4.38 Miscellaneous Defines
DEFINES

#define DM_SESSION_INFO_LEN xxx
#define DM_NO_SESSION xxx

#define DM_TRUE xxx
#define DM_FALSE xxx

#define DM_INVALID_TOKEN xxx
#define DM_NO_TOKEN xxx

#define DM_INVALID_HANP xxx
#define DM_INVALID_HLEN xxx

#define DM_GLOBAL_HANP xxx
#define DM_GLOBAL_HLEN xxx

#define DM_VER_STR_CONTENTS xxx

#define DM_ATTR_NAME_SIZE 8

DESCRIPTION
The #defines shown above are referenced by various DMAPI functions. The DMAPI does
not mandate their value, as is indicated by the xxx. Each implementation of the DMAPI is
free to chose a suitable value.

DM_SESSION_INFO_LEN is the length of the string that can be associated with the session
on the dm_create_session() call. 256 bytes is the recommended length.

DM_NO_SESSION is used on dm_create_session() to indicate that session assumption is not
wanted. The implementation of the DMAPI should choose a meaningful value.

60 CAE Specification

Data Structures Miscellaneous Defines

DM_TRUE and DM_FALSE are boolean values used in several functions such as
dm_get_bulkattr () and dm_get_fileattr().

DM_INVALID_TOKEN is a special token value which signifies no legal token value.

DM_NO_TOKEN is a special token value which is used in calls to functions that require a
token but the caller wants the DM implementation to automatically acquire the appropriate
rights.

DM_INVALID_HANP and DM_INVALID_HLEN are used to specify invalid handles.

DM_GLOBAL_HANP and DM_GLOBAL_HLEN are used to specify the global handle.

DM_VER_STR_CONTENTS specifies the DMAPI implementation specific version string as
returned from the dm_init_service() function.

DM_ATTR_NAME_SIZE specifies the fixed length of an attribute name in bytes.

Systems Management: Data Storage Management (XDSM) API 61

Data Structures

62 CAE Specification

Chapter 5

DMAPI Definitions

The following pages describe the interfaces of the DMAPI in detail. The interfaces are given in
man-page format, and are in alphabetical order. In the man-pages, parameters are described as
follows:

(I) indicates an input parameter

(O) indicates an output parameter

(I/O) indicates both an input and an output parameter.

Many of the following functions reference data structures that are defined by the DMAPI. To
provide a consistent API from platform to platform, these data structures are defined in a header
file named <dmapi.h>. DM applications that need to use these functions must include this
header file. The specification of this header file is not shown on the following function
definitions, but is of the following format:

#include <dmapi.h>

There are two paradigms used for DMAPI functions:

• iterative
which allow DM applications to make repeated calls to the same function to obtain all
available data

• non-iterative
which require a DM application to provide a buffer large enough to hold all available data in
a single call.

The error conditions specified in these man-pages are the recommended values. A DMAPI
implementation may recognize and report additional error conditions.

A number of the functions are optional in the DMAPI specification. It is left to an
implementation as to whether those optional functions are supported. If an optional function is
not supported, it must still be implemented as a stub function that returns -1 and sets errno to
ENOSYS. A DM application can use the dm_get_config() function to also determine which
optional functions are supported by an implementation rather than having to first call the
function and check for ENOSYS.

Systems Management: Data Storage Management (XDSM) API 63

Non-iterative Functions DMAPI Definitions

5.1 Non-iterative Functions
Several functions accept and return variable length data structures, such as dm_get_dmattr().
Other functions may return a variable number of structures in a list, such as dm_getall_inherit ().
Both these function types use the E2BIG paradigm. In this paradigm, the DM application
specifies the size of the buffer in one of the input arguments. If the buffer is not large enough to
hold the requested information, then no data is copied, the error E2BIG is returned, and one of
the output arguments is updated to indicate the required size of the buffer.

There are two distinct flavors of the E2BIG paradigm:

• functions which return variable sized data structures

• functions which return a variable number of fixed size structures.

Generally, functions that return variable sized structures specify the size of the input buffer in
bytes via the buflen parameter. If E2BIG is returned, then the parameter rlenp is set to the
required buffer size. These types of functions take a void * pointer to a buffer.

Functions that return fixed size structures specify the number of elements that fit in the input
buffer, via the nelem parameter. If [E2BIG] is returned, the nelemp parameter is updated to
indicate the number of elements that are available. DM applications can use this return value to
resize their buffer. These types of functions take a buffer pointer to a specific type.

This is summarized in the following table:

Parameters Function type Buffer Type
buflen / rlenp variable length structures void *
nelem / nelemp variable number of structures specific structure pointer

Table 5-1 Non-iterating Function Types

64 CAE Specification

DMAPI Definitions Non-iterative Functions

5.2 Iterating Functions
Several DMAPI functions are iterating functions, allowing the DM application to make a number
of calls to the same function to retrieve all the available data. These functions typically contain
an offset parameter, providing the DM application with the ability to specify the starting point in
a file or file system for data retrieval.

These functions return -1 on error and set the global errno to indicate the cause of error. If a zero
is returned, the function completed successfully, and no more data is available. If the function
completed successfully, but more data maybe available, a value of 1 is returned.

The following functions are the only iterating functions:

Function Name
dm_get_allocinfo ()
dm_get_bulkall ()
dm_get_bulkattr ()
dm_get_dirattrs()

Table 5-2 Iterating Functions

Systems Management: Data Storage Management (XDSM) API 65

DMAPI Macros DMAPI Definitions

5.3 DMAPI Macros
The following reference manual page defines the 4 DMAPI macros:

DMEV_CLR remove an event from an event list

DMEV_ISSET determine if an event is set in an event list

DMEV_SET add an event to an event list

DMEV_ZERO initialize the event list to contain no events

66 CAE Specification

DMAPI Definitions DMEV_CLR/ISSET/SET/ZERO macros

NAME
DMEV_CLR — remove an event from an event list
DMEV_ISSET — determine if an event is set in an event list
DMEV_SET — add an event to an event list
DMEV_ZERO — initialize the event list to contain no events

SYNOPSIS
int
DMEV_SET(

dm_eventtype_t event_type,
dm_eventset event_list)

int
DMEV_CLR(

dm_eventtype_t event_type,
dm_eventset event_list)

int
DMEV_ISSET(

dm_eventtype_t event_type,
dm_eventset event_list)

void
DMEV_ZERO(

dm_eventset event_list)

DESCRIPTION
These macros manipulate event sets as defined by dm_eventset_t. DMEV_SET() adds the
specified event_type to the event_list set, while DMEV_CLR() removes the specified event from
the list. DMEV_ISSET() evaluates to non-zero if the specified event_type is a member of the
event_list set, otherwise it evaluates to zero. DMEV_ZERO() initializes the event_list set to
contain no events.

SEE ALSO
dm_get_eventlist(), dm_set_eventlist().

Systems Management: Data Storage Management (XDSM) API 67

DMEV_CLR/ISSET/SET/ZERO macros DMAPI Definitions

5.4 DMAPI Functions
The following reference manual pages define the DMAPI function calls. These functions are all
listed in column 1 of Table 5-3.

In some cases, a single reference manual page definition covers several functions. These cases
are identified in column 2 of Table 5-3. In these cases, the man-page title is stylized to reflect the
functions it covers. In addition, where space for this title on the man-page does not allow the
function names to be concatenated, a descriptive name reflecting the nature of the common
operation is enclosed in braces ‘‘{ }’’.

Table 5-3 DMAPI Functions

Function Reference Manual Page Title
dm_clear_inherit()
dm_getall_inherit()
dm_set_inherit()

dm_create_by_handle()
dm_mkdir_by_handle()
dm_symlink_by_handle()
dm_sync_by_handle()

dm_create_session()
dm_destroy_session()
dm_getall_sessions()
dm_query_session()
dm_set_return_on_destroy()

dm_downgrade_right()
dm_query_right()
dm_release_right()
dm_request_right()
dm_upgrade_right()

dm_get_allocinfo()

dm_get_bulkall() dm_get_{bulkattributes}()
dm_get_bulkattr() dm_get_{bulkattributes}()
dm_get_dirattrs() dm_get_{bulkattributes}()

dm_get_config()

dm_get_dmattr()
dm_getall_dmattr()
dm_remove_dmattr()
dm_set_dmattr()

68 CAE Specification

DMAPI Definitions DMAPI Functions

Function Reference Manual Page Title
dm_create_userevent()
dm_find_eventmsg()
dm_get_events()
dm_get_eventlist()
dm_get_config_events()
dm_move_event()
dm_respond_event()
dm_set_eventlist()

dm_get_fileattr()
dm_set_fileattr()

dm_get_mountinfo()

dm_get_region()
dm_set_region()

dm_getall_disp()

dm_getall_tokens()

dm_handle_cmp()
dm_handle_is_valid()
dm_handle_hash()
dm_handle_to_fshandle()
dm_handle_to_path()

dm_make_handle() dm_handle_{construct/extract}()
dm_make_fshandle() dm_handle_{construct/extract}()
dm_handle_to_fsid() dm_handle_{construct/extract}()
dm_handle_to_igen() dm_handle_{construct/extract}()
dm_handle_to_ino() dm_handle_{construct/extract}()

dm_fd_to_handle() dm_fd/path_to_handle & dm_handle_free()
dm_path_to_fshandle() dm_fd/path_to_handle & dm_handle_free()
dm_path_to_handle() dm_fd/path_to_handle & dm_handle_free()
dm_handle_free() dm_fd/path_to_handle & dm_handle_free()

dm_init_attrloc()

dm_init_service()

dm_obj_ref_hold() dm_obj_ref_hold/release/query()
dm_obj_ref_rele() dm_obj_ref_hold/release/query()
dm_obj_ref_query() dm_obj_ref_hold/release/query()

Systems Management: Data Storage Management (XDSM) API 69

DMAPI Functions DMAPI Definitions

Function Reference Manual Page Title
dm_pending()

dm_punch_hole() dm_punch/probe_hole()
dm_probe_hole() dm_punch/probe_hole()

dm_read_invis() dm_read/write_invis()
dm_write_invis() dm_read/write_invis()

dm_send_msg()

dm_set_disp()

70 CAE Specification

DMAPI Definitions dm_clear_inherit()

NAME
dm_clear_inherit — clear an attribute’s inherit-on-create status

SYNOPSIS
int
dm_clear_inherit(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
dm_attrname_t *attrnamep)

DESCRIPTION
The dm_clear_inherit () function marks the named attribute as no longer inheritable on the
specified file system.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
The filesystem handle.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access right for the file system handle. The access right must be
DM_RIGHT_EXCL or the token DM_NO_TOKEN may be used and the interface acquires
the appropriate rights.

dm_attrname_t *attrnamep (I)
The attribute name that marks the name as no longer inheritable.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[EACCES]
The access right referenced by the token for the handle is not DM_RIGHT_EXCL.

[EBADF]
The filesystem handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The argument attrname specifies an attribute that has not been marked inheritable.

[EINVAL]
The argument token is not a valid token.

[EINVAL]
The session is not valid.

[EIO]
The attempt to clear the inheritable attribute resulted in an I/O error.

[ENOSYS]
The DMAPI implementation does not support this optional function.

Systems Management: Data Storage Management (XDSM) API 71

dm_clear_inherit() DMAPI Definitions

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_set_inherit(), dm_getall_inherit ().

NOTES
dm_clear_inherit () is an optional component of the DMAPI.

72 CAE Specification

DMAPI Definitions dm_create_by_handle()

NAME
dm_create_by_handle — create a file system object using a DM handle

SYNOPSIS
int
dm_create_by_handle(

dm_sessid_t sid,
void *dirhanp,
size_t dirhlen,
dm_token_t token,
void *hanp,
size_t hlen,
char *cname)

DESCRIPTION
The dm_create_by_handle() function allows applications the ability to create an object in a
directory specified by dirhanpandwithacomponentname cname that can, after creation, be
referenced by the supplied target handle hanp . This is useful when an application is
reconstructing a file system object for which it still has the data and attributes stored on an
alternate media.

It is the responsibility of the user of this function to reconstruct the object state including
extended attributes. See dm_set_fileattr() and dm_set_dmattr().

If an object cannot be constructed by the file system for the specified handle, an error is returned.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *dirhanp (I)
The handle for the directory that contains the target file.

size_t dirhlen (I)
The length of the directory handle in bytes.

dm_token_t token (I)
The token referencing the access right for the directory handle. The access right must be
DM_RIGHT_EXCL right or the token DM_NO_TOKEN may be used and the interface
acquires the appropriate rights.

void *hanp (I)
The file handle of the object.

size_t hlen (I)
The length of the file handle in bytes.

char *cname (I)
The name of the object to be created in the specified directory.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[EACCES]
The access right referenced by the token for the directory handle is not DM_RIGHT_EXCL.

[EBADF]
The parent handle does not refer to an existing or accessible object.

Systems Management: Data Storage Management (XDSM) API 73

dm_create_by_handle() DMAPI Definitions

[EEXIST]
The file handle refers to an existing object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The argument token is not a valid token.

[EINVAL]
The session is not valid.

[ENOSYS]
The DMAPI implementation does not support this optional function.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_set_fileattr(), dm_set_dmattr(), dm_mkdir_by_handle (), dm_symlink_by_handle ().

NOTES
edm_create_by_handle() is an optional component of the DMAPI.

74 CAE Specification

DMAPI Definitions dm_create_session()

NAME
dm_create_session — create a session

SYNOPSIS
int
dm_create_session(

dm_sessid_t oldsid,
char *sessinfop,
dm_sessid_t *newsidp)

DESCRIPTION
The dm_create_session() function establishes a DMAPI session. Sessions are guaranteed to be
unique as long as the system that grants them is up; sessions are not unique across reboots.
Applications should treat the session id as opaque.

To later identify the session during recovery, an arbitrary string can be associated with the
session. This NULL-terminated string must have a length of DM_SESSION_INFO_LEN bytes
(including the NULL) or less. The sessinfop parameter is an arbitrary string; the DMAPI assigns
no semantics to it whatsoever. It is not an error for more than one session to have identical
sessinfop strings.

To support recovery, the DMAPI supports the notion of session assumption. This is provided by
the oldsid parameter. If specified, the DMAPI atomically updates all messages that refer to oldsid
to be associated with a new session id, which is returned to the caller. When dm_create_session()
returns, oldsid is no longer valid; attempts to use it in subsequent DMAPI calls result in an error.

To determine a previous session identifier, the DM application can use dm_getall_sessions () and
dm_query_session() to find a specific old session identifier. If oldsid is provided, then when
dm_create_session() returns, the new session has assumed what was an active, open session. It is
not necessary to register to receive events; the new session has assumed the context of the
previous session, including all default event registrations. If a sessinfop string is provided, it
replaces any existing sessinfop string associated with the old session.

Sessions are not tied to a particular process. Once a session has been established, any processes
with sufficient permissions (such as the super-user) may use the session. This permits an
application to hand a session off to another process for further operations. The hand off can be
accomplished merely by conveying the value of the session ID to the other process via any
mechanism (shared memory, message, pipe, file, etc.). Because sessions are not tied to any
particular process, no DMAPI calls are needed to accomplish session hand off.

dm_sessid_t oldsid (I)
A value previously returned by dm_create_session(), or DM_NO_SESSION if no
assumption is desired.

char *sessinfop (I)
A NULL-terminated string of at most DM_SESSION_INFO_LEN to be associated with the
session.

dm_sessid_t *newsidp (O)
The new session id created by the DMAPI.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[E2BIG]
sessinfop string was longer than DM_SESSION_INFO_LEN bytes.

Systems Management: Data Storage Management (XDSM) API 75

dm_create_session() DMAPI Definitions

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[ENOMEM]
The DMAPI could not obtain the required resources to complete the call.

[EINVAL]
The argument oldsid contains an invalid session id.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_destroy_session(), dm_set_disp(), dm_getall_sessions (), dm_query_session().

76 CAE Specification

DMAPI Definitions dm_create_userevent()

NAME
dm_create_userevent — generate a user pseudo-event message

SYNOPSIS
int
dm_create_userevent(

dm_sessid_t sid,
size_t msglen,
void *msgdatap,
dm_token_t *tokenp)

DESCRIPTION
Tokens are always associated with an event message. If a DM application needs to obtain a
token to get specific access rights to an object, it must generate a pseudo-event message to define
a context for that token.

DM applications can use the user defined message data to record information about the state of
the operation they are performing. This information could be useful during recovery processing.
The DMAPI implementation does not interpret the contents of the message data.

The dm_create_userevent() function allows a token to be associated with arbitrary message data.
The DMAPI creates a new token, and associate it with an event message whose data is given by
the msgp parameter. The message is enqueued on the specified session, and is in the same state
as synchronous messages that have been received by DM applications via dm_get_events() but
not yet responded to. The type of the message is set to be DM_EVENT_USER. The token is valid
until the DM application does a dm_respond_event() on the token. The generated token does not
reference any access rights for any object handles. DM applications must use dm_request_right()
to obtain access rights.

dm_sessid_t sid (I)
The identifier for the session of interest.

size_t msglen (I)
The length of the message data in bytes.

void *msgdatap (I)
The data that is to be included in the message.

dm_token_t *tokenp (O)
A newly created token identifying the message.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[E2BIG]
The user message data is too big to fit into implementation defined limits. The limit can be
determined by calling the dm_get_config() function using the value
DM_CONFIG_MAX_MESSAGE_DATA.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The session is not valid.

[ENOMEM]
The DMAPI could not obtain the required resources to complete the call.

Systems Management: Data Storage Management (XDSM) API 77

dm_create_userevent() DMAPI Definitions

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_send_msg().

78 CAE Specification

DMAPI Definitions dm_destroy_session()

NAME
dm_destroy_session — destroy the specified session

SYNOPSIS
int
dm_destroy_session(

dm_sessid_t sid)

DESCRIPTION
To perform a graceful shutdown, DM applications must shut down and destroy a session as part
of their termination procedures. Upon successful return from dm_destroy_session() the session id
is invalid.

If the file system is active or the session is registered for any events, dm_destroy_session() cannot
invalidate the session id. If there are any outstanding or undelivered events, dm_destroy_session()
will fail.

dm_sessid_t sid (I)
The session id to destroy.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[EBUSY]
There are outstanding events for the session that have not been delivered, or there are
synchronous events that have not been responded to.

[EINVAL]
The session is not valid.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_create_session()

Systems Management: Data Storage Management (XDSM) API 79

dm_downgrade_right() DMAPI Definitions

NAME
dm_downgrade_right — downgrade an exclusive access right to a shared right

SYNOPSIS
int
dm_downgrade_right(

dm_sessidt sid,
void *hanp,
size_t hlen,
dm_token_t token)

DESCRIPTION
Downgrade an exclusive access right currently held for the object specified by the handle and
referenced by the token. The downgrade operation does not drop the exclusive access right
currently held for the object before acquiring the share right. The minimum right to hold when
making this request is DM_RIGHT_EXCL.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
The handle for the file system object for which downgrading access right is being requested
and with which an exclusive access right is already associated.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the exclusive access right for the object to be manipulated

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[EBADF]
The file handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The token does not grant a DM_RIGHT_EXCL right to the specified object.

[ENOSYS]
The DMAPI implementation does not support this optional function.

[ESRCH]
The token does not refer to any outstanding DM event.

[EPERM]
The caller does not hold the appropriate privilege.

[EPERM]
The access right currently held is not DM_RIGHT_EXCL.

80 CAE Specification

DMAPI Definitions dm_downgrade_right()

SEE ALSO
dm_release_right(), dm_request_right(), dm_upgrade_right ().

NOTES
dm_downgrade_right () is an optional component of the DMAPI.

Systems Management: Data Storage Management (XDSM) API 81

dm_find_eventmsg() DMAPI Definitions

NAME
dm_find_eventmsg — get the message for the event

SYNOPSIS
int
dm_find_eventmsg(

dm_sessid_t sid,
dm_token_t token,
size_t buflen,
void *bufp,
size_t *rlenp)

DESCRIPTION
Obtains the message that is associated with the token. It is only possible to obtain messages that
are outstanding, that is, messages that have been delivered but not responded to.

Tokens are always associated with an event message; receipt of a message is the only way a DM
application can obtain a token. Once a message has been responded to, the token (and the
corresponding message) is no longer valid.

dm_sessid_t sid (I)
The identifier for the session of interest.

dm_token_t token (I)
The token that corresponds to an outstanding event message.

size_t buflen (I)
The length of the message buffer in bytes.

void *bufp (O)
The buffer that should be filled in with a dm_eventmsg structure.

size_t *rlenp (O)
The size of the requested information. If the buffer is not large enough to hold the requested
information (as indicated by the buflen parameter), then no data is copied, the call fails with
[E2BIG], and rlenp is set to the required size. rlenp is updated if either the call was successful
or the call fails with [E2BIG], but is undefined otherwise.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[E2BIG]
The information is too large to fit into the buffer.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The session or token is not valid.

[ENOMEM]
The DMAPI could not obtain the required resources to complete the call.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_getall_tokens), () dm_getall_sessions (), dm_respond_event(), dm_query_session().

82 CAE Specification

DMAPI Definitions dm_get_allocinfo()

NAME
dm_get_allocinfo — return the current allocation information for a file

SYNOPSIS
int
Dm_get_allocinfo(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
dm_off_t *offp,
u_int nelem,
dm_extent_t *extentp,
u_int *nelemp)

DESCRIPTION
The dm_get_allocinfo () function returns allocation information for a file. This function is iterative
in nature and allows the application to begin retrieving extent information about a file at any
byte offset.

The extent structures returned by the call to dm_get_allocinfo () contains the ex_type field, whose
value is one of two indicators for the type of extent. If a DMAPI implementation can know that
an extent of a file would be read as zeros, for example because no media resources are mapped
to that extent of the file, it should indicate that knowledge about the extent by associating
DM_EXTENT_HOLE with that extent. Otherwise, the value DM_EXTENT_RES should be
associated with that extent. The ex_offset field is the byte offset into the file where the extent
begins, and ex_length is the byte count of the extent.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
The handle for the target file.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access right for the handle. The access right must be at least
DM_RIGHT_SHARED or the token DM_NO_TOKEN may be used and the interface
acquires the appropriate rights.

dm_off_t *offp (I/O)
On output, the byte address of the beginning of the extent following the last returned
extent. When *offp returns zero, there are no more extents. On input, the byte address from
which to start reporting extent information. Assigning zero to *offp causes the initial extents
of the file to be returned. Assigning the value returned by the previous call to
dm_get_allocinfo () causes the next extents to be returned. The value in *offp may point
beyond the current size of the file.

u_int nelem (I)
The number of elements in the extent array.

dm_extent_t *extentp (O)
The residency information for the file.

u_int *nelemp (O)
The number of elements returned.

Systems Management: Data Storage Management (XDSM) API 83

dm_get_allocinfo() DMAPI Definitions

RETURN VALUE
Zero indicates success and that no more information is available. 1 is returned on success and
indicates more information maybe available. On error, -1 is returned and the global errno is set to
indicate the error.

[EACCES]
The access right referenced by the token for the handle is not at least DM_RIGHT_SHARED.

[EBADF]
The file handle does not refer to an existing accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
nelem is zero and must be at least one.

[EINVAL]
The argument offp does not point to a valid extent.

[EINVAL]
The file handle does not refer to a regular file.

[EINVAL]
The session is not valid.

[EINVAL]
The argument token is not a valid token.

[EIO]
An attempt to read the file residency information resulted in an I/O error.

[ENOTSUP]
This call is not meaningful for the object being checked.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_punch_hole(), dm_probe_hole().

84 CAE Specification

DMAPI Definitions dm_get_{bulkattributes}()

NAME
dm_get_bulkattr — get bulk attributes for an entire file system
dm_get_bulkall — get bulk data management attributes for a file system
dm_get_dirattrs — get bulk attributes for a directory

SYNOPSIS
int
dm_get_bulkattr(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
u_int mask,
dm_attrloc_t *locp,
size_t buflen,
void *bufp,
size_t *rlenp)

int
dm_get_bulkall(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
u_int mask,
dm_attrname_t *attrnamep,
dm_attrloc_t *locp,
size_t buflen,
void *bufp,
size_t *rlenp)

int
dm_get_dirattrs(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
u_int mask,
dm_attrloc_t *locp,
size_t buflen,
void *bufp,
size_t *rlenp)

DESCRIPTION
The function dm_get_bulkattr () retrieves both standard file attributes and DM specific file
attributes for the file system specified by the argument hanp . The bufp argument is filled with
one or more dm_stat structures on return. The argument mask indicates which fields of the
dm_stat structure to return (see Section 4.27 on page 55 for the flag definitions). For fields that
are not returned, the corresponding fields of the dm_stat structure are undefined; the
dt_compname field is always undefined. The file system specified by hanp must be mounted.

The function dm_get_bulkall () is similar to dm_get_bulkattr (), except that it returns a series of
dm_xstat structures in the buffer identified by the bufp argument. The dx_attrdata field of each
dm_xstat structure will contain the data associated with the attribute name that is specified by

Systems Management: Data Storage Management (XDSM) API 85

dm_get_{bulkattributes}() DMAPI Definitions

the attrnamep argument. If the named attribute is not set on a given file, that file will show a
zero-length attribute in dx_attrdata . Because dm_xstat structures contain variable data, the
output buffer should be traversed using the DM_STEP_TO_NEXT macro. dm_get_bulkall () is an
optional interface in the DMAPI.

The dm_get_dirattrs() function performs a similar function for directories. It returns the file
name, attributes, and DM specific file attributes for the files in the directory specified by hanp .
The bufp argument is filled with one or more dm_stat structures on return. The argument mask
indicates which fields of the dm_stat structure to return. For fields that are not returned, the
corresponding fields of the dm_stat structure are undefined. The dt_compname field is always
filled in. The directory specified by hanp must be on a mounted file system. If a file is named
several times within the directory (that is, multiple links to the same file), a dm_stat structure is
returned for each one.

These functions can be repeated, and each time fill the buffer bufp with zero or more dm_stat (or
dm_xstat) structures, until all structures have been returned. The argument locp must be
initialized via dm_init_attrloc () (see dm_init_attrloc () on page 117) before calling
dm_get_bulkattr (), dm_get_bulkall () or dm_get_dirattrs(). The same handle must be used for
initializing locp as is used for retrieving the attributes.

The arguments to dm_get_bulkattr () are as follows:

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
The handle for the file system. Information on all allocated files is returned; unallocated
inodes are skipped.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access right for the handle. The access right must be at least
DM_RIGHT_SHARED or the token DM_NO_TOKEN may be used and the interface
acquires the appropriate rights.

u_int mask (I)
The mask argument controls which fields in the dm_stat structure should be returned. The
mask is constructed by OR-ing together one or more of the following flags:

DM_AT_HANDLE
The file’s handle is returned.

DM_AT_EMASK
The file’s persistent event mask is returned.

DM_AT_PMANR
A boolean (DM_TRUE or DM_FALSE) is returned indicating whether the file has
persistent managed regions.

DM_AT_PATTR
A boolean (DM_TRUE or DM_FALSE) is returned indicating whether the file has
persistent data management attributes.

DM_AT_DTIME
The time stamp of the persistent attributes if associated with the file.

86 CAE Specification

DMAPI Definitions dm_get_{bulkattributes}()

DM_AT_CFLAG
The file change indicator is returned.

DM_AT_STAT
The file’s general attributes as defined by the Single UNIX Specification structstat.

dm_attrloc_t *locp (I/O)
This is an offset, which is opaque to the calling DM application, that can be used by the
DMAPI implementation to indicate the location in the object. It should not be modified by
the DM application. It must be initialized via dm_init_attrloc () before calling
dm_get_bulkattr (), dm_get_bulkall () or dm_get_dirattrs().

size_t buflen (I)
The size of the buffer, in bytes.

void *bufp (O)
This is filled in with the dm_stat information for the file system.

size_t *rlenp (O)
The size of the returned information.

The arguments to dm_get_bulkall () are identical to those for dm_get_bulkattr (), with the addition
of one argument to specify the attribute of interest:

dm_attrname_t *attrnamep (I)
The DM attribute to be retrieved.

The arguments to dm_get_dirattrs() are identical to those for dm_get_bulkattr () with the
exception of the specification of the file handle:

void *hanp (I)
The handle for the directory. Information on all the files in the directory is returned.
Subdirectories are not traversed. If a subdirectory is a mount point, dm_get_dirattrs()
returns information on the underlying mounted-on subdirectory, not the new mount point.

RETURN VALUE
dm_get_bulkattr (), dm_get_bulkall () and dm_get_dirattrs() return 1 to indicate success and more
information maybe available, or zero to indicate success and no more information is available. -1
is returned on error, in which case the global errno is set to one of the following values:

[EACCES]
The access right referenced by the token for the handle is not at least DM_RIGHT_SHARED.

[EBADF]
The file handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The argument locp or mask is not a valid value.

[EINVAL]
The argument token is not a valid token.

[EINVAL]
The file handle does not represent a directory or the file system object.

[EINVAL]
The session is not valid.

Systems Management: Data Storage Management (XDSM) API 87

dm_get_{bulkattributes}() DMAPI Definitions

[EIO]
An attempt to read the attributes resulted in an I/O error.

[ENOMEM]
The DMAPI could not obtain the required resources to complete the call.

[ENOSYS]
The DMAPI does not support dm_get_bulkall ().

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_get_allocinfo (), dm_get_fileattr(), dm_init_attrloc ().

88 CAE Specification

DMAPI Definitions dm_get_config()

NAME
dm_get_config — return DMAPI implementation details and limits

SYNOPSIS
int
dm_get_config(

void *hanp,
size_t hlen,
dm_config_t flagname,
dm_size_t *retvalp)

DESCRIPTION
The function dm_get_config() returns information specific to an implementation of the DMAPI.

void *hanp (I)
A handle for any file on the file system or a handle for the file system.

size_t hlen (I)
The length of the handle in bytes.

dm_config_t flagname (I)
The argument flagname is an enum and may contain one of the following values:

DM_CONFIG_BULKALL
A boolean value indicating whether the DMAPI implementation supports the
dm_get_bulkall () function.

DM_CONFIG_CREATE_BY_HANDLE
A boolean value indicating whether the DMAPI implementation supports the
dm_create_by_handle(), dm_mkdir_by_handle () and dm_symlink_by_handle () functions.

DM_CONFIG_DTIME_OVERLOAD
A boolean value that indicates whether the ctime and dtime fields in the dm_stat
structure share the same storage.

DM_CONFIG_LEGACY
A boolean value indicating whether the DMAPI implementation supports the
dm_make_handle (), dm_make_fshandle (), dm_handle_to_fshandle (), dm_handle_to_igen ()
and dm_handle_to_ino () legacy functions.

DM_CONFIG_LOCK_UPGRADE
A boolean value indicating whether the DMAPI implementation does or does not
support upgrading/downgrading rights in non-blocking fashion without releasing the
current right.

DM_CONFIG_MAX_ATTR_ON_DESTROY
The maximum number of bytes returned for the attribute copy field within a destroy
event message. A size of 0 is returned if this feature is not supported by the
implementation.

DM_CONFIG_MAX_ATTRIBUTE_SIZE
The maximum size in bytes per file that a single persistent attribute can occupy is
returned. This is the size of the attribute data only.

DM_CONFIG_MAX_HANDLE_SIZE
The maximum size of handles in the file system. A size of 0 means it is unknown.

DM_CONFIG_MAX_MANAGED_REGIONS
The maximum number of managed regions supported per file is returned.

Systems Management: Data Storage Management (XDSM) API 89

dm_get_config() DMAPI Definitions

DM_CONFIG_MAX_MESSAGE_DATA
The number of bytes of data in the largest user-created event message. DM applications
can use this value to determine the largest buffer size allowed in calls to
dm_create_userevent() and dm_send_msg()).

DM_CONFIG_OBJ_REF
A boolean value indicating whether the DMAPI implementation supports the
dm_obj_xxx () functions.

DM_CONFIG_PENDING
A boolean value indicating whether the DMAPI implementation supports the
dm_pending() function.

DM_CONFIG_PERS_ATTRIBUTES
A boolean value indicating whether the file system does or does not support persistent,
opaque data management attributes.

DM_CONFIG_PERS_EVENTS
A boolean value is returned which indicates whether the DMAPI implementation
supports support persistent event masks.

DM_CONFIG_PERS_INHERIT_ATTRIBS
A boolean value indicating whether the file system does or does not support inherited
opaque data management attributes.

DM_CONFIG_PERS_MANAGED_REGIONS
A boolean value is returned that indicates whether the DMAPI implementation
supports or does not support persistent managed regions.

DM_CONFIG_PUNCH_HOLE
A boolean value indicating whether the file system does or does not support punching
holes (see dm_punch/probe_hole() on page 132).

DM_CONFIG_TOTAL_ATTRIBUTE_SPACE
The total available space per file for the storage of all persistent data management
attributes, in bytes.

DM_CONFIG_WILL_RETRY
A boolean value is returned that indicates whether the DMAPI implementation retries
the operation that caused a nospace event to be generated if a DM_RESP_CONTINUE
response is returned.

For boolean values, a DM_TRUE return value indicates that the property is supported,
while DM_FALSE indicates that the property is not supported. Other return values are
dependent on the value of the flagname argument.

dm_size_t *retvalp (O)
The value of the requested flag if the call succeeds. If dm_get_config() returns -1, the value is
undefined.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[EBADF]
The file handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

90 CAE Specification

DMAPI Definitions dm_get_config()

[EINVAL]
The argument flag_name does not contain a valid option.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_punch_hole(), dm_get_allocinfo ().

Systems Management: Data Storage Management (XDSM) API 91

dm_get_config_events() DMAPI Definitions

NAME
dm_get_config_events — get a list of all events supported by the DMAPI implementation

SYNOPSIS
int
dm_get_config_events(

void *hanp,
size_t hlen,
u_int nelem,
dm_eventset_t *eventsetp,
u_int *nelemp)

DESCRIPTION
Return the list of supported events for a specific file system. The object can be either a regular
file or the file system object. The returned event list is the set of all supported events in the file
system containing the object. DM applications can use the DMEV_ISSET macro to determine if a
specific event is supported.

void *hanp (I)
The handle for an object in the file system or a file system handle.

size_t hlen (I)
The length of the handle in bytes.

u_int nelem (I)
The number of elements in the event set array.

dm_eventset_t *eventsetp (O)
Buffer to be filled in with the list of supported events.

u_int *nelemp (O)
The number of elements read. If the buffer is not large enough to hold the requested
information (as determined by the nelem parameter), then no data is copied, the call fails
with [E2BIG], and nelemp is set to the number of elements that are available. nelemp is
updated if either the call was successful or the call fails with [E2BIG], but is undefined
otherwise.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[E2BIG]
The information is too large to fit into the buffer.

[EBADF]
The handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_get_events().

92 CAE Specification

DMAPI Definitions dm_get_dmattr()

NAME
dm_get_dmattr — retrieve a data management attribute

SYNOPSIS
int
dm_get_dmattr(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
dm_attrname_t *attrnamep,
size_t buflen,
void *bufp,
size_t *rlenp)

DESCRIPTION
The dm_get_dmattr() function retrieves a single, specific data management attribute for a file.
The file’s attribute time stamp is not altered.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
The handle for the file for which the attributes should be retrieved.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access right for the handle. The access right must be at least
DM_RIGHT_SHARED, or the token DM_NO_TOKEN may be used and the interface
acquires the appropriate rights.

dm_attrname_t *attrnamep (I)
The attribute to be retrieved.

size_t buflen (I)
The size of the buffer in bytes.

void *bufp (O)
The buffer to be filled in with the value of the specified attribute’s data.

size_t *rlenp (O)
The size of the requested information. If the buffer is not large enough to hold the requested
information (as indicated by the buflen parameter), then no data is copied, the call fails with
[E2BIG], and rlenp is set to the required size. rlenp is updated if either the call was successful
or the call fails with [E2BIG], but is undefined otherwise.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[E2BIG]
The information is too large to fit into the buffer.

[EACCES]
The access right referenced by the token for the handle is not at least DM_RIGHT_SHARED.

Systems Management: Data Storage Management (XDSM) API 93

dm_get_dmattr() DMAPI Definitions

[EBADF]
The file handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The argument token is not a valid token.

[EINVAL]
The session is not valid.

[ENOENT]
The attribute was not found.

[ENOMEM]
The DMAPI could not acquire the required resources to complete the call.

[ENOSYS]
The DMAPI implementation does not support this optional function.

[EIO]
An attempt to read the attribute resulted in an I/O error.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_set_dmattr(), dm_remove_dmattr(), dm_getall_dmattr ().

NOTES
dm_get_dmattr() is an optional component of the DMAPI.

94 CAE Specification

DMAPI Definitions dm_get_eventlist()

NAME
dm_get_eventlist — get the list of enabled events for an object

SYNOPSIS
int
dm_get_eventlist(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
u_int nelem,
dm_eventset_t *eventsetp,
u_int *nelemp)

DESCRIPTION
Return the list of enabled events for the specified object. The object can be either a regular file or
the file system object. The returned event list is the set of all events for the object. DM
applications can use the DMEV_ISSET macro to determine if a specific event is enabled.

For DMAPI implementations that do not store event lists persistently and support the debut
event, dm_get_eventlist() returns only those events that have been set via dm_set_eventlist() since
the most recent debut event. The function does not itself cause a debut event to be generated.

The synchronous managed region events are set via the dm_set_region() interface. If there are
any managed regions that have any events set (as determined by the rg_flags field in the struct B
dm_region), dm_get_eventlist() returns the union of all of those flags fields.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
The handle for the object.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access right for the handle. The access right must be at least
DM_RIGHT_SHARED or the token DM_NO_TOKEN may be used and the interface
acquires the appropriate rights.

u_int nelem (I)
The number of elements in the event set array.

dm_eventset_t *eventsetp (O)
Buffer to be filled in with the list of events.

u_int *nelemp (O)
The number of elements read. If the buffer is not large enough to hold the requested
information (as determined by the nelem parameter), then no data is copied, the call fails
with [E2BIG], and nelemp is set to the number of elements that are available. nelemp is
updated if either the call was successful or the call fails with [E2BIG], but is undefined
otherwise.

Systems Management: Data Storage Management (XDSM) API 95

dm_get_eventlist() DMAPI Definitions

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[E2BIG]
The information is too large to fit into the buffer.

[EACCES]
The access right referenced by the token for the handle is not at least DM_RIGHT_SHARED.

[EBADF]
The handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The argument token is not a valid token.

[EINVAL]
The session is not valid.

[ENOMEM]
The DMAPI could not obtain the required resources to complete the call.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_set_eventlist(), dm_set_disp(), dm_get_events(), macro DMEV_ISSET.

96 CAE Specification

DMAPI Definitions dm_get_events()

NAME
dm_get_events — get the next available event messages

SYNOPSIS
int
dm_get_events(

dm_sessid_t sid,
u_int maxmsgs,
u_int flags,
size_t buflen,
void *bufp,
size_t *rlenp)

DESCRIPTION
Get the next event or events for a session. The event message is copied to the message buffer and
includes both the common and event-specific fields of the event.

Messages can be retrieved in bulk; up to maxmsgs can be copied to the output buffer, provided
that enough space is available. If no messages are immediately available, and the
DM_EV_WAIT flag is set in the flags argument, then the calling process blocks interruptibly.

dm_sessid_t sid (I)
The identifier for the session of interest.

u_int maxmsgs (I)
The maximum number of messages that should be transferred in a single call. A value of
zero indicates return all available messages that fit into the message buffer.

u_int flags (I)
If the DM_EV_WAIT flag is not set and no messages are available, the calling process
returns with [EAGAIN]. If DM_EV_WAIT is set and no messages are available, the calling
process blocks interruptibly, waiting for messages to be enqueued on the session.

size_t buflen (I)
The size of the message buffer in bytes. It must be large enough to hold at least one
maximum sized event message.

void *bufp (O)
The message buffer to be filled in with one or more dm_eventmsg structures.

size_t rlenp (O)
The size of the requested information. If the buffer is not large enough to hold the requested
information (as indicated by the buflen parameter), then no data is copied, the call fails with
[E2BIG], and rlenp is set to the required size. rlenp is updated if either the call was successful
or the call fails with [E2BIG], but is undefined otherwise.

RETURN VALUE
Zero indicates success. On error, -1 is returned and the global errno is set to indicate the error.

[E2BIG]
The information is too large to fit into the buffer.

[EAGAIN]
The flags parameter had the DM_EV_WAIT flag set, and no messages are immediately
available.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

Systems Management: Data Storage Management (XDSM) API 97

dm_get_events() DMAPI Definitions

[EINVAL]
The session is not valid.

[EINTR]
The process was blocked waiting for messages and was interrupted.

[ENOMEM]
The DMAPI could not obtain the required resources to complete the call.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_set_eventlist(), dm_set_disp().

98 CAE Specification

DMAPI Definitions dm_get_fileattr()

NAME
dm_get_fileattr — return file attributes

SYNOPSIS
int
dm_get_fileattr(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
u_int mask,
dm_stat_t *statp)

DESCRIPTION
The function dm_get_fileattr() retrieves both standard file attributes and DM specific file
attributes for the file specified by handle.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
The handle for the file for which the file attributes should be retrieved.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access right for the handle. The access right must be at least
DM_RIGHT_SHARED, or the token DM_NO_TOKEN may be used and the interface
acquires the appropriate rights.

u_int mask (I)
The argument mask indicates which fields of the dm_stat structure to return. The mask is
constructed by OR-ing together one or more of the following flags:

DM_AT_EMASK
The file’s persistent event mask is returned.

DM_AT_PMANR
A boolean (DM_TRUE or DM_FALSE) is returned indicating whether the file has
persistent managed regions.

DM_AT_PATTR
A boolean (DM_TRUE or DM_FALSE) is returned indicating whether the file has
persistent data management attributes.

DM_AT_DTIME
The time stamp of the persistent attributes if associated with the file.

DM_AT_CFLAG
The file change indicator is returned.

DM_AT_STAT
The file’s general attributes as defined by the Single UNIX Specification struct stat.

dm_stat_t *statp (O)
The buffer to be filled in with the required information. For fields that were not specified by
the mask input value, the values of the corresponding field are not defined.

Systems Management: Data Storage Management (XDSM) API 99

dm_get_fileattr() DMAPI Definitions

RETURN VALUE
Zero is returned on sucess. On error, -1 is returned, and the global errno is set to one of the
following values:

[EACCES]
The access right referenced by the token for the handle is not at least DM_RIGHT_SHARED.

[EBADF]
The file handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The argument mask is not valid.

[EINVAL]
The argument token is not a valid token.

[EINVAL]
The session is not valid.

[EIO]
An attempt to read the attributes resulted in an I/O error.

[ENOMEM]
The DMAPI could not obtain the required resources to complete the call.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_get_allocinfo (), dm_get_bulkattr (), dm_get_dirattr().

100 CAE Specification

DMAPI Definitions dm_get_mountinfo()

NAME
dm_get_mountinfo — return the information that was delivered on a mount event

SYNOPSIS
int
dm_get_mountinfo(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
size_t buflen,
void *bufp,
size_t *rlenp)

DESCRIPTION
During initialization and often during recovery, DM applications need to get information about
the file systems they are operating on. To facilitate this, dm_get_mountinfo () provides the same
information that was originally generated on a mount event. This information is most likely kept
in a static area in the DMAPI implementation; thus it is not a large burden on the
implementation to return it both in a message and via this interface.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
The handle for the file system meta-object.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access right for the handle. The access right must be at least
DM_RIGHT_SHARED, or the token DM_NO_TOKEN may be used and the interface
acquires the appropriate rights.

size_t buflen (I)
The length of the input buffer in bytes.

void *bufp (O)
A pointer to a buffer that is to be filled in with the information. The buffer should point to a
dm_mount_event structure.

size_t rlenp (O)
The size of the requested information. If the buffer is not large enough to hold the requested
information (as indicated by the buflen parameter), then no data is copied, the call fails with
[E2BIG], and rlenp is set to the required size. rlenp is updated if either the call was successful
or the call fails with [E2BIG], but is undefined otherwise.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[E2BIG]
The buffer is not large enough to hold the requested information.

[EBADF]
The handle does not refer to an existing or accessible object.

Systems Management: Data Storage Management (XDSM) API 101

dm_get_mountinfo() DMAPI Definitions

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The handle is not a file system handle.

[EINVAL]
The session is not valid.

[EIO]
An attempt to read the mount information resulted in an I/O error.

[ENOMEM]
The DMAPI could not obtain the required resources to complete the call.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
mount event.

102 CAE Specification

DMAPI Definitions dm_get_region()

NAME
dm_get_region — get the managed regions for a file

SYNOPSIS
int
dm_get_region(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
u_int nelem,
dm_region_t *regbufp,
u_int *nelemp)

DESCRIPTION
Get the set of managed regions for a file.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
The handle for the regular file.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access right for the handle. The access right must be at least
DM_RIGHT_SHARED, or the token DM_NO_TOKEN may be used and the interface
acquires the appropriate rights.

u_int nelem (I)
The number of elements in the region buffer.

dm_region_t *regbufp (O)
A pointer to the structure defining the regions to be filled in.

u_int *nelemp (O)
The number of elements read. If the buffer is not large enough to hold the requested
information (as determined by the nelem parameter), then no data is copied, the call fails
with [E2BIG], and nelemp is set to the number of elements that are available. nelemp is
updated if either the call was successful or the call fails with [E2BIG], but is undefined
otherwise.

RETURN VALUES
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[E2BIG]
The information is too large to fit into the buffer.

[EACCES]
The access right referenced by the token for the handle is not at least DM_RIGHT_SHARED.

[EBADF]
The file handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

Systems Management: Data Storage Management (XDSM) API 103

dm_get_region() DMAPI Definitions

[EINVAL]
The handle does not refer to a regular file.

[EINVAL]
The session is not valid.

[EINVAL]
The argument token is not a valid token.

[ENOMEM]
The DMAPI could not acquire the required resources to complete the call. LI "[EPERM]"
The caller does not hold the appropriate privilege.

SEE ALSO
dm_set_region().

104 CAE Specification

DMAPI Definitions dm_getall_disp()

NAME
dm_getall_disp — get disposition of events for all file systems for a session

SYNOPSIS
int
dm_getall_disp(

dm_sessid_t sid,
size_t buflen,
void *bufp,
size_t *rlenp)

DESCRIPTION
Get the set of all dispositions of events for all file systems for the indicated session. Since a
session may be receiving events on more than one file system, dm_getall_disp () returns the
disposition of events for every file system that was specified in a dm_set_disp() function.

dm_sessid_t sid (I)
The identifier for the session of interest.

size_t buflen (I)
The length of the input buffer in bytes.

void *bufp (O)
The buffer to be filled in with dm_dispinfo structures.

size_t *rlenp (O)
The size of the requested information. If the buffer is not large enough to hold the requested
information (as indicated by the buflen parameter), then no data is copied, the call fails with
[E2BIG], and rlenp is set to the required size. rlenp is updated if either the call was successful
or the call fails with [E2BIG], but is undefined otherwise.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[E2BIG]
The information is too large to fit into the buffer.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The session is not valid.

[ENOMEM]
The DMAPI could not acquire the required resources to complete the call.

[EPERM]
he caller does not hold the appropriate privilege.

SEE ALSO
dm_set_disp().

Systems Management: Data Storage Management (XDSM) API 105

dm_getall_dmattr() DMAPI Definitions

NAME
dm_getall_dmattr — retrieve all of a file’s data management attributes

SYNOPSIS
int
dm_getall_dmattr(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
size_t buflen,
void *bufp,
size_t *rlenp)

DESCRIPTION
The dm_getall_dmattr () function returns all the attributes and attribute data associated with the
specified file system object.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
The handle for the file for which the attributes should be retrieved.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access right for the handle. The access right must be at least
DM_RIGHT_SHARED or the token DM_NO_TOKEN may be used and the interface
acquires the appropriate rights.

size_t buflen (I)
The size of the buffer in bytes.

void *bufp (O)
The buffer to be filled in with dm_attrlist structures.

size_t *rlenp (O)
The size of the requested information. If the buffer is not large enough to hold the requested
information (as indicated by the buflen parameter), then no data is copied, the call fails with
[E2BIG], and rlenp is set to the required size. rlenp is updated if either the call was successful
or the call fails with [E2BIG], but is undefined otherwise.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[E2BIG]
The information is too large to fit into the buffer.

[EACCES]
The access right referenced by the token for the handle is not at least DM_RIGHT_SHARED.

[EBADF]
The file handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

106 CAE Specification

DMAPI Definitions dm_getall_dmattr()

[EINVAL]
The argument token is not a valid token.

[EINVAL]
The session is not valid.

[EIO]
An attempt to read the attributes resulted in an I/O error.

[ENOMEM]
The DMAPI could not acquire the required resources to complete the call.

[ENOSYS]
The DMAPI implementation does not support this optional function.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_get_dmattr(), dm_attrlist_t ().

NOTES
dm_getall_dmattr () is an optional component of the DMAPI.

Systems Management: Data Storage Management (XDSM) API 107

dm_getall_inherit() DMAPI Definitions

NAME
dm_getall_inherit — get all inheritable attributes for the specified file system

SYNOPSIS
int
dm_getall_inherit(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
u_int nelem,
dm_inherit_t inheritbufp,
u_int *nelemp)

DESCRIPTION
The dm_getall_inherit () function returns a list of all inheritable attributes associated with the
given file system object. The inheritability property of attributes is not persistent across reboots.
The attributes are returned in a dm_inherit structure, which gives the attribute name and the file
type that the attribute applies to.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
The file system handle.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access right for the handle. The access right must be at least
DM_RIGHT_SHARED or the token DM_NO_TOKEN may be used and the interface
acquires the appropriate rights.

u_int nelem (I)
The number of elements to return. No more than nelem is returned.

dm_inherit_t *inheritbufp (O)
The buffer to be filled with inheritable attributes.

u_int *nelemp (O)
The number of elements read. If the buffer is not large enough to hold the requested
information (as determined by the nelem parameter), then no data is copied, the call fails
with [E2BIG], and nelemp is set to the number of elements that are available. nelemp is
updated if either the call was successful or the call fails with [E2BIG], but is undefined
otherwise.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[E2BIG]
The information is too large to fit into the buffer.

[EACCES]
The access right referenced by the token for the handle is not at least DM_RIGHT_SHARED.

[EBADF]
The file handle does not refer to an existing or accessible object.

108 CAE Specification

DMAPI Definitions dm_getall_inherit()

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The argument token is not a valid token.

[EINVAL]
The handle is not a file system handle.

[EINVAL]
The session is not valid.

[EIO]
An attempt to read the attributes resulted in an I/O error.

[ENOSYS]
The DMAPI implementation does not support this optional function.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_set_inherit(), dm_clear_inherit (), dm_inherit_t .

NOTES
dm_getall_inherit () is an optional component of the DMAPI.

Systems Management: Data Storage Management (XDSM) API 109

dm_getall_sessions() DMAPI Definitions

NAME
dm_getall_sessions — get all extant sessions

SYNOPSIS
int
dm_getall_sessions(

u_int nelem,
dm_sessid_t *sidbufp,
u_int *nelemp)

DESCRIPTION
The dm_getall_sessions () function returns a list of all the sessions that exist on a system.

u_int nelem (I)
The maximum number of elements to return.

dm_sessid_t *sidbufp (O)
The buffer where the active sessions are to be deposited.

u_int *nelemp (O)
The number of elements read. If the buffer is not large enough to hold the requested
information (as determined by the nelem parameter), then no data is copied, the call fails
with [E2BIG], and nelemp is set to the number of elements that are available. nelemp is
updated if either the call was successful or the call fails with [E2BIG], but is undefined
otherwise.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[E2BIG]
The information is too large to fit into the buffer.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[ENOMEM]
The DMAPI could not obtain the required resources to complete the call.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_find_eventmsg(), dm_create_session(), dm_getall_tokens (), dm_query_session().

110 CAE Specification

DMAPI Definitions dm_getall_tokens()

NAME
dm_getall_tokens — get all outstanding tokens for a session

SYNOPSIS
int
dm_getall_tokens(

dm_sessid_t sid,
u_int nelem,
dm_token_t *tokenbufp,
u_int *nelemp)

DESCRIPTION
This gets all the outstanding tokens that are associated with a session. An outstanding token is a
token that corresponds to a synchronous message that has been delivered but not responded to.
User event messages created with dm_create_userevent() are implicitly synchronous, and if
tokens exist for these messages, they are also returned.

dm_sessid_t sid (I)
The identifier for the session of interest.

u_int nelem (I)
The maximum number of elements to return.

dm_token_t *tokenbufp (O)
The buffer that should be filled in with all outstanding tokens.

u_int *nelemp (O)
The number of elements read. If the buffer is not large enough to hold the requested
information (as determined by the nelem parameter), then no data is copied, the call fails
with [E2BIG], and nelemp is set to the number of elements that are available. nelemp is
updated if either the call was successful or the call fails with [E2BIG], but is undefined
otherwise.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[E2BIG]
The information is too large to fit into the buffer.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The session is not valid.

[ENOMEM]
The DMAPI could not obtain the required resources to complete the call.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_getall_sessions (), dm_find_eventmsg(), dm_respond_event(), dm_create_session().

Systems Management: Data Storage Management (XDSM) API 111

dm_handle_cmp() DMAPI Definitions

NAME
dm_handle_cmp — file handle comparison

SYNOPSIS
int
dm_handle_cmp(

void *hanp1,
size_t hlen1,
void *hanp2,
size_t hlen2)

DESCRIPTION
Compare two handles for equality.

void *hanp1 (I)
The first handle to compare.

size_t hlen1 (I)
The length of the first handle in bytes.

void *hanp2 (I)
The second handle to compare.

size_t hlen2 (I)
The length of the second handle in bytes.

RETURN VALUE

<0 hanp1 is less than hanp2 (according to an implementation defined rule).

=0 hanp1 and hanp2 represent the same object.

>0 hanp1 is greater than hanp2 (according to an implementation defined rule).

The rationale behind multiple return values is so that DM applications can use dm_handle_cmp()
in sorting.

112 CAE Specification

DMAPI Definitions dm_handle_hash()

NAME
dm_handle_hash — hashes the contents of a handle

SYNOPSIS
u_int
dm_handle_hash(

void *hanp,
size_t hlen)

DESCRIPTION
Hashes the contents of a handle and returns the hashed value.

void *hanp (I)
A pointer to a handle.

size_t hlen (I)
The length of the handle in bytes.

RETURN VALUE
Returns a value derived in an implementation defined manner from the contents of the handle.
dm_handle_hash () has no failure indication.

Systems Management: Data Storage Management (XDSM) API 113

dm_handle_is_valid() DMAPI Definitions

NAME
dm_handle_is_valid — determine if a handle is valid

SYNOPSIS
dm_boolean_t
dm_handle_is_valid(

void *hanp,
size_t hlen)

DESCRIPTION
Determine if a handle is valid.

void *hanp (I)
The handle to check for validity.

size_t hlen (I)
The length of the handle.

RETURN VALUE

DM_TRUE
The handle is valid.

DM_FALSE
The handle is not a valid DM handle.

114 CAE Specification

DMAPI Definitions dm_handle_to_fshandle()

NAME
dm_handle_to_fshandle — obtain the file system handle corresponding to an object handle

SYNOPSIS
int
dm_handle_to_fshandle(

void *hanp,
size_t hlen,
void **fshanpp,
size_t *fshlenp)

DESCRIPTION
The dm_handle_to_fshandle () function obtains the handle for the file system in which the object
handle resides. hanp may not be a file system handle or the global handle.

void *hanp (I)
The object handle.

size_t hlen (I)
The length of the handle in bytes.

void **fshanpp (O)
A pointer that is set to point to the file system handle.

size_t *fshlenp (O)
The length of the file system handle in bytes.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[EBADF]
hanp does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[ENOMEM]
The DMAPI could not obtain the required resources to complete the call.

[EPERM]
The caller does not hold the appropriate privilege.

Systems Management: Data Storage Management (XDSM) API 115

dm_handle_to_path() DMAPI Definitions

NAME
dm_handle_to_path — get a path name

SYNOPSIS
int
dm_handle_to_path(

void *dirhanp,
size_t dirhlen,
void *targhanp,
size_t targhlen,
size_t buflen,
char *pathbufp,
size_t *rlenp)

DESCRIPTION
Takes two object handles, one of which must be the handle of a directory containing the file
identified by the other handle, and constructs a path name. If the first character of the path is
‘‘/’’, then the path is an absolute path name, otherwise it is relative to the containing file system.

void *dirhanp (I)
A handle for the directory containing the target file.

size_t dirhlen (I)
The length of the directory handle in bytes.

void *targhanp (I)
A file handle for the target file. The target file must be in the directory represented by
dirhanp.

size_t targhlen (I)
The length of the target handle in bytes.

size_t buflen (I)
The length of the path name buffer in bytes.

char *pathbufp (O)
The buffer for the path name.

size_t *rlenp (O)
Always updated if the call is successful and undefined if [E2BIG] is returned.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[E2BIG]
The information is too large to fit into the buffer.

[EBADF]
Either dirhanp or targhanp does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[ENOMEM]
The DMAPI could not obtain the required resources to complete the call.

[EPERM]
The caller does not hold the appropriate privilege.

116 CAE Specification

DMAPI Definitions dm_init_attrloc()

NAME
dm_init_attrloc — initialize a bulk attribute location offset

SYNOPSIS
int
dm_init_attrloc(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
dm_attrloc_t *locp)

DESCRIPTION
The function dm_init_attrloc () initializes an opaque cookie for use by the functions
dm_get_bulkattr (), dm_get_bulkall () and dm_get_dirattrs().

The arguments to dm_init_attrloc () are as follows:

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
The handle for the file system or the directory.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access right for the handle. The access right must be at least
DM_RIGHT_SHARED or the token DM_NO_TOKEN may be used and the interface
acquires the appropriate rights.

dm_attrloc_t *locp (O)
Pointer to an offset ‘‘cookie’’ to initialize.

RETURN VALUE
dm_init_attrloc () returns a value of zero upon successful completion. Otherwise a value of -1 is
returned and errno is set to one of the following values:

[EACCES]
The access right referenced by the token for the handle is not at least DM_RIGHT_SHARED.

[EBADF]
The file handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The argument token is not a valid token.

[EINVAL]
The file handle does not represent a directory or the file system object.

[EINVAL]
The session is not valid.

[EPERM]
The caller does not hold the appropriate privilege.

Systems Management: Data Storage Management (XDSM) API 117

dm_init_attrloc() DMAPI Definitions

SEE ALSO
dm_get_bulkattr (), dm_get_bulkall (), dm_get_dirattr().

118 CAE Specification

DMAPI Definitions dm_init_service()

NAME
dm_init_service — perform implementation-defined initialization

SYNOPSIS
int
dm_init_service(

char **versionstrpp)

DESCRIPTION
Each process that uses the DMAPI must call dm_init_service() before any other DMAPI function.
This allows the implementation of the DMAPI to perform any required initialization. The
dm_init_service() function returns a NULL terminated version string which is unique to an
implementation and may be compared against DM_VER_STR_CONTENTS to verify at run-time
that the DMAPI implementation which the DM application was compiled for is the one that is
running.

The results of using any other DMAPI function are undefined if dm_init_service() is not called
before other DMAPI functions.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[ENOMEM]
The DMAPI could not obtain the required resources to complete the call.

[ENOSYS]
The DMAPI is not supported on this platform.

[EPERM]
The caller does not hold the appropriate privilege.

Systems Management: Data Storage Management (XDSM) API 119

dm_handle_{make/extract}() DMAPI Definitions

NAME
dm_make_handle — construct DMAPI object handle
dm_make_fshandle — construct DMAPI file system handle
dm_handle_to_fsid — extract file system ID from handle
dm_handle_to_igen — extract inode generation count from handle
dm_handle_to_ino — extract inode from handle

SYNOPSIS
int
dm_make_handle(

dm_fsid_t *fsidp,
dm_ino_t *inop,
dm_igen_t *igenp,
void **hanpp,
size_t *hlenp)

int
dm_make_fshandle(

dm_fsid_t *fsid,
void **hanpp,
size_t *hlenp)

int
dm_handle_to_fsid(

void *hanp,
size_t hlen,
dm_fsid_t *fsidp)

int
dm_handle_to_igen(

void *hanp,
size_t hlen,
dm_igen_t *igenp)

int
dm_handle_to_ino(

void *hanp,
size_t hlen,
dm_ino_t *inop)

DESCRIPTION
This set of functions allows a DM application to compose and decompose DMAPI opaque
handles. It is intended as a porting aid when upgrading legacy HSM applications to the DMAPI
interface.

The dm_make_handle () function converts a file system ID, inode number, and inode generation
count into a handle.

dm_fsid_t *fsidp (I)
The file system ID.

dm_ino_t *inop (I)
The inode number.

120 CAE Specification

DMAPI Definitions dm_handle_{make/extract}()

dm_igen_t *igenp (I)
The inode generation count.

void **hanpp (O)
A pointer which is initialized by the DMAPI to point to a region of memory containing an
opaque DM handle. The caller is responsible for freeing the allocated memory.

size_t *hlenp (O)
The length of the handle in bytes.

The dm_make_fshandle () function converts a file system ID into a file system handle.

dm_fsid_t *fsidp (I)
The file system ID.

void **hanpp (O)
A pointer which is initialized by the DMAPI to point to a region of memory containing an
opaque DM handle. The caller is responsible for freeing the handle.

size_t *hlenp (O)
The length of the handle in bytes.

The dm_handle_to_fsid () function extracts a file system ID from a handle.

void *hanp (I)
A pointer to an opaque DM handle previously returned by DMAPI.

size_t hlen (I)
The length of the handle in bytes.

dm_fsid_t *fsidp (O)
A pointer to the file system ID.

The dm_handle_to_igen () function extracts an inode generation count from a handle.

void *hanp (I)
A pointer to an opaque DM handle previously returned by DMAPI.

size_t hlen (I)
The length of the handle in bytes.

dm_igen_t *igenp (O)
A pointer to the inode generation count.

The dm_handle_to_ino () function extracts an inode number from a handle.

void *hanp (I)
A pointer to an opaque DM handle previously returned by DMAPI.

size_t hlen (I)
The length of the handle in bytes.

dm_ino_t *inop (O)
A pointer to the inode number.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[EBADF]
The file handle does not refer to an existing or accessible object.

Systems Management: Data Storage Management (XDSM) API 121

dm_handle_{make/extract}() DMAPI Definitions

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The argument token is not a valid token.

[ENOMEM]
The DMAPI could not obtain the required resources to complete the call.

[ENOSYS]
Function is not supported by the DM implementation.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_handle_free().

NOTES
dm_make_handle (), dm_make_fshandle (), dm_handle_to_fsid (), dm_handle_to_igen () and
dm_handle_to_ino () are optional components of the DMAPI.

122 CAE Specification

DMAPI Definitions dm_mkdir_by_handle()

NAME
dm_mkdir_by_handle — create a directory object using a handle

SYNOPSIS
int
dm_mkdir_by_handle(

dm_sessid_t sid,
void *dirhanp,
size_t dirhlen,
dm_token_t token,
void *hanp,
size_t hlen,
char *cname)

DESCRIPTION
dm_mkdir_by_handle () allows applications the ability to create a directory in a directory specified
by dirhanp and with a component name specified by cname that can, after creation, be referenced
by the supplied target handle hanp . This is useful when an application is reconstructing a
directory for which it still has the data and attributes stored on alternate media.

It is the responsibility of the user of this function to reconstruct the object state, including
extended attributes. See dm_set_fileattr() and dm_set_dmattr().

If an object cannot be constructed by the file system for the specified handle, an error is returned.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *dirhanp (I)
The handle for the directory that contains the target directory.

size_t dirhlen (I)
The length of the directory handle in bytes.

dm_token_t token (I)
The token referencing the access right for the parent directory handle. The access right must
be at DM_RIGHT_EXCL or the token DM_NO_TOKEN may be used and the interface
acquires the appropriate rights.

void *hanp (I)
The file handle of the directory.

size_t hlen (I)
The length of the file handle in bytes.

char *cname (I)
The name of the directory to be created in the specified directory.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[EACCES]
The access right referenced by the token for the parent directory handle is not
DM_RIGHT_EXCL.

[EBADF]
The parent directory handle does not refer to an existing or accessible object.

Systems Management: Data Storage Management (XDSM) API 123

dm_mkdir_by_handle() DMAPI Definitions

[EEXIST]
The target directory handle refers to an existing object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The argument token is not a valid token.

[EINVAL]
The session is not valid.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_set_fileattr(), dm_set_dmattr(), dm_create_by_handle(), dm_symlink_by_handle ().

124 CAE Specification

DMAPI Definitions dm_move_event()

NAME
dm_move_event — move an event from one session to another

SYNOPSIS
int
dm_move_event

dm_sessid_t srcsid,
dm_token_t token,
dm_sessid_t targetsid,
dm_token_t *rtokenp)

DESCRIPTION
The dm_move_event() function transfers an outstanding event message between sessions.

The event message remains outstanding, even though it is now enqueued on a different session.
Once the call returns successfully, the old token that references the message is no longer valid.
The token returned in rtokenp must be used in subsequent calls to reference the message.

dm_sessid_t srcsid (I)
The source session identifier.

dm_token_t token (I)
The token that identifies the message that is to be moved.

dm_sessid_t targetsid (I)
The new session that is to receive the outstanding event.

dm_token_t *rtokenp (O)
The new token that must be used to refer to the message.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The source or target sessions are not valid.

[ENOENT]
There is no message corresponding to the token.

[ENOMEM]
The DMAPI could not obtain the required resources to complete the call.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_get_events(), dm_respond_event().

Systems Management: Data Storage Management (XDSM) API 125

dm_obj_ref_hold/release/query() DMAPI Definitions

NAME
dm_obj_ref_hold — place a hold on a file system object
dm_obj_ref_rele — release a hold on a file system object
dm_obj_ref_query — query for a hold on a file system object

SYNOPSIS
int
dm_obj_ref_hold(

dm_sessid_t sid,
dm_token_t token,
void *hanp,
size_t hlen)

int
dm_obj_ref_rele(

dm_sessid_t sid,
dm_token_t token,
void *hanp,
size_t hlen)

int
dm_obj_ref_query(

dm_sessid_t sid,
dm_token_t token,
void *hanp,
size_t hlen)

DESCRIPTION
This set of functions allows the DM application to place and release holds on file system objects.
The effect is to prevent the object from being flushed out for the duration of the hold, thus no
debut events will occur.

System behavior is undefined if an attempt is made to place multiple holds on the same
handle/token pair. For portability, the DM application should issue a single hold/release, and
use dm_obj_ref_query() to determine if a hold is already in place.

Creating the hold may cause a debut event to occur and responding to an event releases all
holds associated with the event.

dm_sessid_t sid (I)
The identifier for the session of interest.

dm_token_t token (I)
The token referencing access rights for the specified object.

void *hanp (I)
The handle for the file system object for which a hold is being placed, released, or queried.

size_t hlen (I)
The length of the handle in bytes.

RETURN VALUE
dm_obj_ref_hold () and dm_obj_ref_rele() return zero on success. dm_obj_ref_query() returns 1 if
there is a hold currently associated with the specified object, session id, and token; it returns 0 if
there is no hold. On error, -1 is returned and the global errno is set to one of the following values:

126 CAE Specification

DMAPI Definitions dm_obj_ref_hold/release/query()

[EACCES]
The access right referenced by the token for the handle is not at least DM_RIGHT_SHARED.

[EBADF]
The file handle does not refer to an existing or accessible object.

[EBUSY]
There is a hold already in place for the specified object/token.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The argument ,I token is not a valid token.

[EINVAL]
The handle is not a file system handle.

[EINVAL]
The session is not valid.

[ENOMEM]
Insufficient memory to complete the call.

[ENOSYS]
Function is not supported by the DM implementation.

[EPERM]
The caller does not hold the appropriate privilege.

NOTES
The dm_obj_ref_hold (), dm_obj_ref_rele() and dm_obj_ref_query() are optional components of the
DMAPI.

Systems Management: Data Storage Management (XDSM) API 127

dm_path/fd_to_handle & dm_handle_free() DMAPI Definitions

NAME
dm_path_to_handle — create a file handle from a path name
dm_fd_to_handle — create a file handle from a file descriptor
dm_path_to_fshandle — create a file system handle from a path name
dm_handle_free — free the storage allocated for a handle

SYNOPSIS
int
dm_path_to_handle(

char *path,
void **hanpp,
size_t *hlenp)

int
dm_fd_to_handle(

int fd,
void **hanpp,
size_t *hlenp)

int
dm_path_to_fshandle(

char *path,
void **hanpp,
size_t *hlenp)

void
dm_handle_free(

void *hanp,
size_t hlen)

DESCRIPTION
This set of functions deals with file handles, which are opaque to a DM application. File handles
uniquely identify an object.

dm_path_to_handle () converts a path name into a file handle. If the final component of the path
name is a symbolic link, the file handle returned is for the symbolic link itself, and not for the
object that the symbolic link references (if any).

char *path (I)
The path name of the object.

void **hanpp (O)
A pointer that is initialized by the DMAPI to point to a region of memory containing an
opaque DM handle. The caller is responsible for freeing the allocated memory.

size_t *hlenp (O)
The length of the handle in bytes.

dm_fd_to_handle () converts a file descriptor into a file handle.

int fd (I)
A file descriptor to the object.

void **hanpp (O)
A pointer that is initialized by the DMAPI to point to a region of memory containing an
opaque DM handle. The caller is responsible for freeing the allocated memory.

128 CAE Specification

DMAPI Definitions dm_path/fd_to_handle & dm_handle_free()

size_t *hlenp (O)
The length of the handle in bytes.

dm_path_to_fshandle () returns the file system handle given a path name to any file in the file
system. If the final component of the path name is a symbolic link, the file handle returned is the
file system handle for the file system containing the symbolic link and not the file handle for the
file system containing the object that the symbolic link references (if any). The file system handle
is used by many DMAPI functions to identify a file system.

char *path (I)
A path name to any file in the file system.

void **hanpp (O)
A pointer that is initialized by the DMAPI to point to a region of memory containing an
opaque DM handle that represents the file system meta object. The caller is responsible for
freeing the allocated memory.

size_t *hlenp (O)
The length of the handle in bytes.

dm_handle_free() frees the storage allocated for a handle that was previously returned by
dm_path_to_handle (), dm_fd_to_handle (), dm_path_to_fshandle (), dm_make_handle (),
dm_handle_to_fshandle () or dm_make_fshandle ().

void *hanp (I) Pointer to the storage area for the file handle that should be freed.

size_t hlen (I) The length of the handle in bytes.

RETURN VALUE
dm_handle_free() has no failure indication. The other functions return zero is on success. On
error, -1 is returned, and the global errno is set to one of the following values:

[EACCES]
Search permission is denied for a component of path.

[EBADF]
fd is not a valid open file descriptor.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[ELOOP]
Too many symbolic links were encountered in translating the path name.

[ENAMETOOLONG]
A component of path or the entire length of path exceeded the file system limits.

[ENOENT]
A component of path that must exist does not exist.

[ENOMEM]
Insufficient memory to allocate the file handle.

[ENOTDIR]
A component of the specified path name was not a directory when a directory was
expected.

[ENXIO]
The file system containing the file opened on fd or the final component of path does not
support the DMAPI.

Systems Management: Data Storage Management (XDSM) API 129

dm_path/fd_to_handle & dm_handle_free() DMAPI Definitions

[EPERM]
The caller does not hold the appropriate privilege.

130 CAE Specification

DMAPI Definitions dm_pending()

NAME
dm_pending — notify FS of slow DM application operation

SYNOPSIS
int
dm_pending(

dm_sessid_t sid,
dm_token_t token,
dm_timestruct_t *delay)

DESCRIPTION
The dm_pending() function permits a DM application to notify the DMAPI implementation
when it detects that an operation will take an unusually long time.

The function indicates that the response to the event identified by token is delayed for an
approximate duration of delay. The value of delay is a hint only.

The dm_pending() function must be sent before dm_respond_event(), and is not a replacement for
dm_respond_event().

A DM application is not required to generate dm_pending() notifications, and the DMAPI
implementation is free to use or ignore the information as it sees fit. Typical use for dm_pending()
is to advise the underlying file system about the delay.

dm_sessid_t sid (I)
The identifier for the session of interest.

dm_token_t token (I)
The token representing the event that is expected to be delayed.

dm_timestruct_t *delay (I)
Expected duration of delay.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[ENOSYS]
Function is not supported by the DM implementation.

NOTES
The dm_pending() function is an optional component of the DMAPI.

Systems Management: Data Storage Management (XDSM) API 131

dm_punch/probe_hole() DMAPI Definitions

NAME
dm_punch_hole — create a hole in a file
dm_probe_hole — return the rounded result of the area where a hole is to be punched

SYNOPSIS
int
dm_punch_hole(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
dm_off_t off,
dm_size_t len)

int
dm_probe_hole(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
dm_off_t off,
dm_size_t len,
dm_off_t *roffp,
dm_size_t *rlenp)

DESCRIPTION
The dm_punch_hole() function is used to make a hole in a regular file, logically writing zeroes to
the designated area while bypassing normal DMAPI event generation. The DMAPI
implementation may then optionally free media resources for that area. dm_probe_hole() is used
to interrogate the DMAPI implementation for size and offset around the area where the hole is to
be punched. The DMAPI implementation can impose boundary and rounding constraints within
which the DM application must be willing to work.

The DMAPI guarantees that if the DM_RIGHT_EXCL access right is held across a call to
dm_probe_hole(), and then the returned results of the probe call are used to make a
dm_punch_hole() call, the function will not fail because of rounding.

dm_punch_hole() takes the following arguments:

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
File handle for the regular file that should have its storage manipulated.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access right for the handle. The access right must be
DM_RIGHT_EXCL or the token DM_NO_TOKEN may be used and the interface acquires
the appropriate rights.

dm_off_t off (I)
The starting offset in the file to begin punching a hole. If the offset does not exactly match
what the DMAPI implementation can support, [EAGAIN] is returned.

132 CAE Specification

DMAPI Definitions dm_punch/probe_hole()

dm_size_t len (I)
The length of the hole to punch, in bytes. If the length does not exactly match what the
DMAPI implementation can support, [EAGAIN] is returned. If zero is specified, hole is
punched to the end of file.

dm_probe_hole() takes the following arguments:

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
File handle for the regular file that should have its storage manipulated.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access right for the handle. The access right must be at least
DM_RIGHT_SHARED or the token DM_NO_TOKEN may be used and the interface
acquires the appropriate rights.

dm_off_t off (I)
The desired starting offset in the file for the hole.

dm_size_t len (I)
The desired length of the hole to punch, in bytes. A length of zero corresponds to the end of
the file.

dm_off_t *roffp (O)
The rounded starting offset of the hole that the DMAPI implementation supports.

dm_size_t *rlenp (O)
The rounded length of the hole, in bytes, that the DMAPI implementation supports.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[E2BIG]
The argument off in dm_probe_hole() is larger then file size or the sum of off and len is beyond
the end of the file.

[EACCES]
For dm_probe_hole(), the access right referenced by the token for the handle is not at least
DM_RIGHT_SHARED.

[EACCES]
For dm_punch_hole(), the access right referenced by the token for the handle is not
DM_RIGHT_EXCL.

[EAGAIN]
Rounding of the offset and length is required for a punch operation.

[EBADF]
The handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The argument token is not a valid token.

Systems Management: Data Storage Management (XDSM) API 133

dm_punch/probe_hole() DMAPI Definitions

[EINVAL]
The file handle does not refer to a regular file.

[EINVAL]
The session is not valid.

[EIO]
I/O error resulted in failure of operation.

[ENOSYS]
The DMAPI implementation does not support this optional function.

[EPERM]
The caller does not hold the appropriate privilege.

[EROFS]
The operation is not allowed on a read-only file system.

SEE ALSO
dm_get_allocinfo ().

NOTES
The dm_punch_hole() and dm_probe_hole() functions are an optional component of the DMAPI.

134 CAE Specification

DMAPI Definitions dm_query_right()

NAME
dm_query_right — determine the set of access rights to an object

SYNOPSIS
int
dm_query_right(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
dm_right_t *rightp)

DESCRIPTION
The dm_query_right() function determines the access rights to the specified object referenced by
the token.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
The handle that is being queried for access rights.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token that references the access rights.

dm_right_t *rightp (O)
The location where the access rights should be returned.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[EBADF]
The file handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The session or token is not valid.

[ENOENT]
The token does not reference any access rights for the handle.

[ENOMEM]
The DMAPI could not obtain the required resources to complete the call.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_create_userevent(), dm_request_right(), dm_respond_event().

Systems Management: Data Storage Management (XDSM) API 135

dm_query_session() DMAPI Definitions

NAME
dm_query_session — query a session for information

SYNOPSIS
int
dm_query_session(

dm_sessid_t sid,
size_t buflen,
void *bufp,
size_t *rlenp)

DESCRIPTION
DM applications can associate up to DM_SESSION_INFO_LEN bytes of information with a
session via the dm_create_session() function. To retrieve this information during recovery, a DM
application must use dm_query_session().

dm_sessid_t sid (I)
The identifier for the session of interest.

size_t buflen (I)
The length of the input buffer in bytes.

void *bufp (O)
The buffer to be filled in with the session information.

size_t *rlenp (O)
The size of the requested information. If the buffer is not large enough to hold the requested
information (as indicated by the buflen parameter), then no data is copied, the call fails with
[E2BIG], and rlenp is set to the required size. rlenp is updated if either the call was successful
or the call fails with [E2BIG], but is undefined otherwise.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[E2BIG]
The information is too large to fit into the buffer.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The session is not valid.

[ENOMEM]
The DMAPI could not obtain the required resources to complete the call.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_getall_sessions ().

136 CAE Specification

DMAPI Definitions dm_read/write_invis()

NAME
dm_read_invis — reads a file bypassing DMAPI events
dm_write_invis — writes to a file bypassing DMAPI events

SYNOPSIS
dm_ssize_t
dm_read_invis(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
dm_off_t off,
dm_size_t len,
void *bufp)

dm_ssize_t
dm_write_invis(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
int flags,
dm_off_t off,
dm_size_t len,
void *bufp)

DESCRIPTION
The dm_read_invis() and dm_write_invis() functions read and write files respectively bypassing
normal DMAPI event processing. Neither function updates a file’s access or modified time
stamps. The semantics of the function are the same as in read() or write() functions. Writes are
either synchronous or asynchronous depending on the value of flags. The default is
asynchronous. If DM_WRITE_SYNC is specified in flags, the dm_write_invis() function has the
same semantics as a standard write followed by an fsync(2) call.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
File handle for the regular file that is read to or written from.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access right for the file. The access right must be
DM_RIGHT_EXCL on writes, and at least DM_RIGHT_SHARED on reads or the token
DM_NO_TOKEN may be used and the interface acquires the appropriate rights.

int flags (I)
Flags modifying the behavior of dm_write_invis(). Currently the only flag defined is
DM_WRITE_SYNC, which causes a write to be synchronous.

dm_off_t off (I)
The starting offset in the file to begin reading or writing.

dm_size_t len (I)
The length to read or write.

Systems Management: Data Storage Management (XDSM) API 137

dm_read/write_invis() DMAPI Definitions

void *bufp (I/O)
When reading, this is an output parameter, and is filled in with the data from the file. When
writing, it is an input parameter, and contains the data that is written to the file.

RETURN VALUE
Number of bytes read or written on success, -1 on failure and global errno is set to one of the
following or other implementation specific values:

[EACCES]
For dm_read_invis(), the access right referenced by the token for the handle is not at least
DM_RIGHT_SHARED.

[EACCES]
For dm_write_invis(), the access right referenced by the token for the handle is not
DM_RIGHT_EXCL.

[EBADF]
The file handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EFBIG]
For dm_write_invis(), the sum of off and len is larger than the maximum file size.

[EINTR]
The operation was interrupted by a signal and should be re-tried. On dm_write_invis(), no
data was written to the file.

[EINVAL]
The argument len is too large and will overflow if placed into a dm_ssize_t value.

[EINVAL]
The argument off is larger than the file size for read.

[EINVAL]
The argument token is not a valid token.

[EINVAL]
The file handle does not refer to a regular file.

[EINVAL]
The session is not valid.

[EIO]
I/O error resulted in failure of operation.

[ENOSPC]
No space left in the file system.

[EPERM]
The caller does not hold the appropriate privilege.

[EROFS]
The operation is not allowed on a read-only file system.

138 CAE Specification

DMAPI Definitions dm_release_right()

NAME
dm_release_right — release all access rights to an object

SYNOPSIS
int
dm_release_right(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token)

DESCRIPTION
The access rights referenced by the token for the specified object are released. If the access rights
cannot be immediately relinquished, [EAGAIN] is returned.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
The handle for the file system object for which the access rights are being released.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access rights for the specified object.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[EACCES]
The token does not have rights to the object.

[EAGAIN]
The right could not be immediately released.

[EBADF]
The file handle does not refer to an existing or accessible object.

[EBUSY]
The DMAPI implementation does not support releasing this type of right.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The session is not valid.

[EINVAL]
The token is not valid.

[ENOMEM]
The DMAPI could not obtain the required resources to complete the call.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_request_right(), dm_query_right(), dm_create_userevent().

Systems Management: Data Storage Management (XDSM) API 139

dm_remove_dmattr() DMAPI Definitions

NAME
dm_remove_dmattr — remove a data management attribute

SYNOPSIS
int
dm_remove_dmattr(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
int setdtime,
dm_attrname_t *attrnamep)

DESCRIPTION
The dm_remove_dmattr() function removes the attribute specified by attrname. When a file is
removed, the associated attributes are also removed automatically.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
The handle for the file for which the attributes should be removed.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access right for the handle. The access right must be
DM_RIGHT_EXCL or the token DM_NO_TOKEN may be used and the interface acquires
the appropriate rights.

int setdtime (I)
The file’s attribute time stamp is updated if setdtime is non-zero.

dm_attrname_t *attrnamep (I)
The attribute to be removed.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[EACCES]
The access right referenced by the token for the handle is not DM_RIGHT_EXCL.

[EBADF]
The file handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The argument token is not a valid token.

[EINVAL]
The session is not valid.

[EIO]
I/O error resulted in failure of operation.

140 CAE Specification

DMAPI Definitions dm_remove_dmattr()

[ENOSYS]
The DMAPI implementation does not support this optional function.

[EPERM]
The caller does not hold the appropriate privilege.

[EROFS]
The operation is not allowed on a read-only file system.

SEE ALSO
dm_set_dmattr().

NOTES
dm_remove_dmattr() is an optional component of the DMAPI.

Systems Management: Data Storage Management (XDSM) API 141

dm_request_right() DMAPI Definitions

NAME
dm_request_right — request a specific access right to an object

SYNOPSIS
int
dm_request_right(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
u_int flags,
dm_right_t right)

DESCRIPTION
Add the requested right to the access rights referenced by the token for the object specified by
the handle. This is the mechanism by which DM applications can gain specific access rights to an
object.

There are two access rights that can be requested: DM_RIGHT_SHARED and
DM_RIGHT_EXCL. The dm_request_right() function does not block and fails with [EAGAIN]
when the requested right cannot be obtained. If a DM application needs to block interruptibly
until the requested right is available, then the DM_RR_WAIT flag should be set in the flags
argument.

If a process holds a shared access right (DM_RIGHT_SHARED) to an object and requests an
exclusive right (DM_RIGHT_EXCL) in a non-blocking mode (the DM_RR_WAIT flag is not set
in the flags argument), then the request fails immediately with [EACCES] and the shared lock is
not released.

If a process attempts to upgrade from a DM_RIGHT_SHARED to an DM_RIGHT_EXCL lock in
a non-blocking mode (the DM_RR_WAIT flag is not set in the flags argument), then the request
may work. If the request fails, [EBUSY] is returned, but the shared lock is not released. If the
request succeeds, the shared lock may have been released before the exclusive lock was
obtained.

When requesting access rights to an object via dm_request_right(), the requested right may not be
immediately available. If the DM application has specified that it wants to block until the right
becomes available, the DM application may or may not be blocked interruptibly. The
implementation of the DMAPI specifes the semantics that apply for interrupting blocked
processes. When interrupts are allowed and occur, the call fails with [EINTR].

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
The handle for the file system object for which access rights are being requested.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token that references the access rights for the object to be manipulated.
DM_NO_TOKEN cannot be used with dm_request_right().

u_int flags (I)
If the DM_RR_WAIT flag is not set and the requested right is not available, the calling
process fails with [EAGAIN]. If DM_RR_WAIT is set and the requested right is not
available, the calling process blocks interruptibly, waiting for the requested right to become

142 CAE Specification

DMAPI Definitions dm_request_right()

available.

dm_right_t right (I)
The requested access right.

USAGE NOTES
See Section 2.5 on page 10 for more information about how dm_request_right() should be used.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[EACCES]
The process attempted to upgrade a lock in blocking mode.

[EAGAIN]
The flags parameter did not have the DM_RR_WAIT flag set, and the process would be
blocked in requesting the right.

[EBADF]
The file handle does not refer to an existing or accessible object.

[EBUSY]
The upgrade from DM_RIGHT_SHARED to DM_RIGHT_EXCL cannot be granted.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINTR]
The DMAPI implementation allows interruption and the process was interrupted.

[EINVAL]
The requested right is not valid.

[EINVAL]
The session or token is not valid or token was DM_NO_TOKEN.

[ENOMEM]
The DMAPI could not obtain the required resources to complete the call.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_create_userevent(), dm_respond_event(), dm_release_right(), dm_get_fileattr(), dm_query_right().

Systems Management: Data Storage Management (XDSM) API 143

dm_respond_event() DMAPI Definitions

NAME
dm_respond_event — respond to an event

SYNOPSIS
int
dm_respond_event(

dm_sessid_t sid,
dm_token_t token,
dm_response_t response,
int reterror,
size_t buflen,
void *respbufp)

DESCRIPTION
Once a synchronous message has been received via dm_get_events(), it must be responded to.
Otherwise, the application that caused the event to be generated is blocked, system resources is
tied up, and so forth.

The token identifies the message. Once this call has returned, the token is no longer valid.

Some DMAPI implementations may provide extensions to the basic event facility, such as the
ability to return attribute information when responding to an event. These extensions will utilize
the respbufp parameter. Normal event responses will only make use of the response code and
corresponding reterror value.

dm_sessid_t sid (I)
The identifier for the session of interest.

dm_token_t token (I)
The token identifying the message.

dm_response_t response (I)
The action to be taken by the operating system. Valid actions are DM_RESP_CONTINUE,
which continues the operation, or DM_RESP_ABORT, which aborts the operation and sets
the errno of the calling process to reterror. DM_RESP_DONTCARE is also valid when
responding to the mount event.

int reterror (I)
If the operation is to be aborted (response is set to DM_RESP_ABORT), return errno to the
application that caused the event. reterror is returned to the user, even if it is set to zero.

size_t buflen (I)
The length of the response buffer in bytes. Only used by implementations that provide
extensions to the DMAPI.

void *respbufp (I)
Buffer for DMAPI implementation extensions. The format of this buffer is not defined by the
DMAPI.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[E2BIG]
buflen is larger than the implementation defined limit. The limit can be determined by
calling the dm_get_config() function using DM_CONFIG_MAX_ATTRIBUTE_SIZE.

144 CAE Specification

DMAPI Definitions dm_respond_event()

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The session is not valid.

[ENOMEM]
The DMAPI could not obtain the required resources to complete the call.

[EPERM]
The caller does not hold the appropriate privilege.

[ESRCH]
The token does not reference a valid message.

SEE ALSO
dm_get_events().

Systems Management: Data Storage Management (XDSM) API 145

dm_send_msg() DMAPI Definitions

NAME
dm_send_msg — send a message to the indicated session

SYNOPSIS
int
dm_send_msg(

dm_sessid_t targetsid,
dm_msgtype_t msgtype,
size_t buflen,
void *bufp)

DESCRIPTION
The dm_send_msg() function allows an event message of type user to be enqueued on the
indicated session. The contents of the message data are opaque to the DMAPI. The message
remains enqueued until the indicated target session receives it with dm_get_events().

dm_send_msg() can send both synchronous and asynchronous messages. If the type is
DM_MSGTYPE_SYNC, then a synchronous message is created, and the calling process blocks
until a response is returned. The DMAPI generates a token that references no access rights. If the
type is DM_MSGTYPE_ASYNC, then an asynchronous event message is created, and the calling
process is not blocked. The DMAPI does not generate a token for asynchronous messages. The
lack of a valid token is identified to the receiver of the event by a value of
DM_INVALID_TOKEN in the token field of the event message.

dm_sessid_t targetsid (I)
The session the message should be enqueued upon.

dm_msgtype_t msgtype (I)
The type of message to be enqueued: DM_MSGTYPE_SYNC or DM_MSGTYPE_ASYNC.

size_t buflen (I)
The length of the data buffer in bytes.

void *bufp (I)
The data that is to be incorporated into the generated message. If buflen is zero, this
parameter is ignored.

RETURN VALUE
Upon successful completion, the function dm_send_msg() returns zero for asynchronous
messages. The return value for synchronous messages is dependent on the return code from the
event servicing. Otherwise a value of -1 is returned and errno is set to one of the following
values:

[E2BIG]
The user message data is too big to fit into implementation defined limit. The limit can be
determined by calling the dm_get_config() function using
DM_CONFIG_MAX_MESSAGE_DATA.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINTR]
Interrupted. The event was not delivered.

[EINVAL]
The session is not valid.

[EINVAL]
The type is not DM_MSGTYPE_SYNC or DM_MSGTYPE_ASYNC.

146 CAE Specification

DMAPI Definitions dm_send_msg()

[ENOMEM]
The DMAPI could not obtain the required resources to complete the call.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_get_events(), dm_create_userevent().

Systems Management: Data Storage Management (XDSM) API 147

dm_set_disp() DMAPI Definitions

NAME
dm_set_disp — set the disposition of events on a file system for a session

SYNOPSIS
int
dm_set_disp(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
dm_eventset_t *eventsetp,
u_int maxevent)

DESCRIPTION
After establishing a session, a DM application must indicate which events to deliver to the
session. The event set is the complete set of all events, including managed region events, that the
DM application is monitoring during the life of this session. This event set is not persistent
across reboots.

The dm_set_disp() function establishes a (event, file system, session) binding that lets the DMAPI
implementation know which session to send events to. Until it has completed, the DMAPI
implementation has no way of knowing what session should receive events that are generated
on a file system. Once dm_set_disp() has returned to the calling DM application, the session
starts receiving events as they are generated by the DMAPI implementation.

If a specific event in eventsetp already has been established for the file system indicated by hanp ,
then the prior (event, file system, session) binding is replaced by the one specified by the
eventsetp parameter. It is not possible to target the same event to multiple sessions
simultaneously (except for the special case of the mount event).

DM applications must register the event list and session binding using a file system handle; it is
not possible to use arbitrary file system objects (such as regular files). Since the file system
handle can only be obtained after the file system has been mounted, it is not possible to specify
the mount event using the file system handle. The global handle must be used. If the mount event
is specified using the file system handle, the behavior is undefined. If events other than the
mount event are specified for the global handle, the behavior is also undefined.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
The handle for the file system or the global handle.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access right for the handle. The access right must be
DM_RIGHT_EXCL or the token DM_NO_TOKEN may be used and the interface acquires
the appropriate rights.

dm_eventset_t *eventsetp (I)
The list of default events to be monitored for this session.

u_int maxevent (I)
The number of events to be checked for dispositions in the event set. The events from 0 to
maxevent−1 are examined.

148 CAE Specification

DMAPI Definitions dm_set_disp()

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[EACCES]
The access right referenced by the token for the handle is not DM_RIGHT_EXCL.

[EBADF]
The file handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The handle is not a file system handle.

[EINVAL]
The session is not valid.

[EINVAL]
The token is not valid.

[ENOMEM]
The DMAPI could not obtain the required resources to complete the call.

[ENXIO]
The implementation of the DMAPI does not support registering for events on the specified
handle.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_create_session(), dm_set_eventlist(), dm_getall_disp ().

Systems Management: Data Storage Management (XDSM) API 149

dm_set_dmattr() DMAPI Definitions

NAME
dm_set_dmattr — create or replace a data management attribute

SYNOPSIS
int
dm_set_dmattr(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
dm_attrname_t *attrnamep,
int setdtime,
size_t buflen,
void *bufp)

DESCRIPTION
The dm_set_dmattr() function creates or replaces the value of the named attribute with the
specified data.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
The handle for the file for which the attributes should be created or replaced.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access right for the handle. The access right must be
DM_RIGHT_EXCL or the token DM_NO_TOKEN may be used and the interface acquires
the appropriate rights.

dm_attrname_t *attrnamep (I)
The attribute to be created or replaced.

int setdtime (I)
The file’s attribute time stamp is updated if setdtime is non-zero.

size_t buflen (I)
The size of the buffer in bytes.

void *bufp (I)
The buffer containing the attribute data.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[E2BIG]
The attribute value exceeds one of the implementation definied storage limits.

[E2BIG]
buflen is larger than the implementation defined limit. The limit can be determined by
calling the dm_get_config() function.

[EACCES]
The access right referenced by the token for the handle is not DM_RIGHT_EXCL.

150 CAE Specification

DMAPI Definitions dm_set_dmattr()

[EBADF]
The file handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EIO]
An attempt to write the new or updated attribute resulted in an I/O error.

[EINVAL]
The argument token is not a valid token.

[EINVAL]
The session is not valid.

[ENOMEM]
The DMAPI could not acquire the required resources to complete the call.

[ENOSPC]
An attempt to write the new or updated attribute resulted in an error due to no free space
being available on the device.

[ENOSYS]
The DMAPI implementation does not support this optional function.

[EPERM]
The caller does not hold the appropriate privilege.

[EROFS]
The operation is not allowed on a read-only file system.

SEE ALSO
dm_get_dmattr(), dm_remove_dmattr(), dm_getall_dmattr ().

NOTES
dm_set_dmattr() is an optional component of the DMAPI.

Systems Management: Data Storage Management (XDSM) API 151

dm_set_eventlist() DMAPI Definitions

NAME
dm_set_eventlist — set the list of events to be enabled for an object

SYNOPSIS
int
dm_set_eventlist(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
dm_eventset_t *eventsetp,
u_int maxevent)

DESCRIPTION
To receive events on an object, a DM application must bind a set of events to an object,
indicating to the DMAPI that the application is monitoring the object. The dm_set_eventlist()
function establishes a binding of events on the indicated object that may be persistent.
Persistence of event bindings is implementation defined, and can be determined via the
dm_get_config() function.

The two functions dm_set_disp() and dm_set_eventlist() work together to enable DM applications
to receive events. dm_set_eventlist() controls the generation of events on an object, by specifying
which file system operations should generate a DMAPI event. dm_set_disp() controls the
delivery of events by specifying which session should receive the generated event.

Events can be enabled on any file system object, including regular files. The managed region
events cannot be specified via dm_set_eventlist() since they are specific to each managed region.
The mount event cannot be specified, since it is generated by all file system types that support
the DMAPI.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
The handle for the object. The handle can be either the file system handle or a file handle.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access right for the handle. The access right must be
DM_RIGHT_EXCL or the token DM_NO_TOKEN may be used and the interface acquires
the appropriate rights.

dm_eventset_t *eventsetp (I)
The list of events to be enabled for the object.

u_int maxevent (I)
The number of events to be checked for dispositions in the event set. The events from 0 to
maxevent−1 are examined.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[EACCES]
The access right referenced by the token for the handle is not DM_RIGHT_EXCL.

152 CAE Specification

DMAPI Definitions dm_set_eventlist()

[EBADF]
The file handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The argument token is not a valid token.

[EINVAL]
The session is not valid.

[EINVAL]
Tried to set event on a global handle.

[ENOMEM]
The DMAPI could not obtain the required resources to complete the call.

[ENXIO]
The implementation of the DMAPI does not support enabling event delivery on the
specified handle.

[EPERM]
The caller does not hold the appropriate privilege.

[EROFS]
The operation is not allowed on a read-only file system.

SEE ALSO
dm_get_eventlist(), dm_set_disp(), dm_set_region(), macro DMEV_SET .

Systems Management: Data Storage Management (XDSM) API 153

dm_set_fileattr() DMAPI Definitions

NAME
dm_set_fileattr — set file time stamps, ownership and mode

SYNOPSIS
int
dm_set_fileattr(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
u_int mask,
dm_fileattr_t *attrp)

DESCRIPTION
The dm_set_fileattr() function allows DM applications to set various file attributes as defined by
the dm_fileattr structure.

Each field corresponding to a bit in the mask is used to set the corresponding attribute in the file.
For fields that are not specified to be set, the current value is not modified. For example, if
DM_AT_CTIME is not set, the file’s ctime field is not modified.

If the call to dm_set_fileattr() requests updates of both dm_ctime and dm_dtime, and the DMAPI
implementation overloads dm_ctime and dm_dtime, then dm_ctime is used.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
The handle for the file for which the file attributes should be set.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access right for the handle. The access right must be
DM_RIGHT_EXCL or the token DM_NO_TOKEN may be used and the interface acquires
the appropriate rights.

u_int mask (I)
The argument mask indicates which fields of the dm_fileattr structure to set. The mask is
constructed by OR-ing together one or more of the following flags:

DM_AT_ATIME
The file’s access time stamp.

DM_AT_MTIME
The file’s data modification time stamp.

DM_AT_CTIME
The file’s status change time stamp.

DM_AT_DTIME
The time stamp of the persistent attributes if associated with the file. The value is
ignored if no DM attributes exist.

DM_AT_UID
User ID of the file’s owner.

DM_AT_GID
Group ID of the file’s owner.

154 CAE Specification

DMAPI Definitions dm_set_fileattr()

DM_AT_MODE
The mode of the file as described by the mknod(2) system call.

DM_AT_SIZE
The size of the file. May cause a system dependent error to occur, possibly a ENOSPC.

dm_fileattr_t *attrp (I)
The dm_fileattr structure with the appropriate fields defined. For fields that are not set, the
corresponding fields of the dm_fileattr structure are not used.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[EACCES]
The access right referenced by the token for the handle is not DM_RIGHT_EXCL.

[EBADF]
The file handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The argument mask is not valid.

[EINVAL]
The argument token is not a valid token.

[EINVAL]
The session is not valid.

[EIO]
I/O error resulted in failure of operation.

[ENOMEM]
The DMAPI could not acquire the required resources to complete the call.

[EPERM]
The caller does not hold the appropriate privilege.

[EROFS]
The operation is not allowed on a read-only file system.

SEE ALSO
dm_fileattr_t().

Systems Management: Data Storage Management (XDSM) API 155

dm_set_inherit() DMAPI Definitions

NAME
dm_set_inherit — mark an attribute inheritable

SYNOPSIS
int
dm_set_inherit(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_toke n_t token,
dm_attrname_t *attrnamep,
mode_t mode)

DESCRIPTION
The function dm_set_inherit() marks the attribute specified by attrnamep as an inheritable
attribute for the file system specified by the handle. An attribute is inherited from the parent
directory during file creation. The inheritability property of attributes is not persistent across
reboots. The access right referenced by the token for the object must be DM_RIGHT_EXCL.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
The file system handle for which the inheritable attributes should be set.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access right for the handle. The access right must be
DM_RIGHT_EXCL or the token DM_NO_TOKEN may be used and the interface acquires
the appropriate rights.

dm_attrname_t *attrnamep (I)
The attribute to be marked as inheritable.

mode_t mode (I)
The argument mode limits the scope of inheritance to file objects created of specified values.
mode is taken from Single UNIX Specification values.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[EACCES]
The access right referenced by the token for the handle is not DM_RIGHT_EXCL.

[EBADF]
The handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The argument hanp does not refer to a file system handle.

[EINVAL]
The argument mode does not contain valid file types.

156 CAE Specification

DMAPI Definitions dm_set_inherit()

[EINVAL]
The session or token is not valid.

[ENOMEM]
The DMAPI could not acquire the required resources to complete the call.

[ENOSYS]
The DMAPI implementation does not support this optional function.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_clear_inherit (), dm_getall_inherit ().

NOTES
dm_set_inherit() is an optional component of the DMAPI.

Systems Management: Data Storage Management (XDSM) API 157

dm_set_region() DMAPI Definitions

NAME
dm_set_region — set the managed regions for a file

SYNOPSIS
int
dm_set_region(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
u_int nelem,
dm_region_t *regbufp,
dm_boolean_t *exactflagp)

DESCRIPTION
The dm_set_region() function replaces the set of managed regions for a regular file. The
implementation has the right to round the boundaries or change the number of managed
regions. The final set of managed regions must cover the requested regions. Overlapping
managed regions are not permitted.

The dm_region structure defines the range of bytes that are managed in the file. The rg_flags
field can be set to generate synchronous read, write, and truncate events whenever the
associated operation is performed within the managed region. A region may extend outside the
current valid portions of a file. A region may extend to the end of a file and allow control on files
that are appended to, by setting rg_size to zero. Regions may also be allocated with no associated
events set by using DM_REGION_NOEVENT. This may be used to allocate space for future
control of a region of the file in DMAPI implementations that provide persistent managed
regions.

The implementation is free to reorder the managed region set. A subsequent call to
dm_get_region() may return the managed regions in a different order than they were provided to
dm_set_region(). The DMAPI implementation is also permitted to coalesce contiguous or
noncontiguous regions with identical rg_flags. The exactflagp is set to DM_TRUE if the file
system did not alter the managed region set.

For operations involving multiple managed regions within a file, only one region event is
generated for the operation. It is up to the DM application to respond appropriately to all
managed regions that are affected by an operation.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
Handle for the regular file to be affected.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access right for the handle. The access right must be
DM_RIGHT_EXCL or the token DM_NO_TOKEN may be used and the interface acquires
the appropriate rights.

u_int nelem (I)
The number of input regions in regbufp. If nelem is 0, then all existing managed regions are
cleared.

158 CAE Specification

DMAPI Definitions dm_set_region()

dm_region_t *regbufp (I)
A pointer to the structure defining the regions to be set. May be NULL if nelem is zero.

dm_boolean_t *exactflagp (O)
If DM_TRUE, the file system did not alter the requested managed region set.

Valid values for the rg_flags field of the region structure are created by OR’ing together one or
more of the following values:

DM_REGION_READ
Enable synchronous event for read operations that overlap this managed region.

DM_REGION_WRITE
Enable synchronous event for write operations that overlap this managed region.

DM_REGION_TRUNCATE
Enable synchronous event for truncate operations that overlap this managed region.

DM_REGION_NOEVENT
Do not generate any events for this managed region.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[E2BIG]
The number of regions specified by nelem exceeded the implementation capacity.

[EACCES]
The access right referenced by the token for the handle is not DM_RIGHT_EXCL.

[EBADF]
The file handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The argument token is not a valid token.

[EINVAL]
The file handle does not refer to a regular file.

[EINVAL]
The regions passed in are not valid because they overlap or some other problem.

[EINVAL]
The session is not valid.

[EIO]
An I/O error resulted in failure of operation.

[ENOMEM]
The DMAPI could not acquire the required resources to complete the call.

[EPERM]
The caller does not hold the appropriate privilege.

[EROFS]
The operation is not allowed on a read-only file system.

Systems Management: Data Storage Management (XDSM) API 159

dm_set_region() DMAPI Definitions

SEE ALSO
dm_get_region(), dm_get_eventlist().

160 CAE Specification

DMAPI Definitions dm_set_return_on_destroy()

NAME
dm_set_return_on_destroy — specify a DM attribute to return with destroy events

SYNOPSIS
int
dm_set_return_on_destroy(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
dm_attrname_t *attrnamep,
dm_boolean_t enable)

DESCRIPTION
The dm_set_return_on_destroy() function allows a DM application to specify one data
management attribute whose data is returned with destroy events generated for the specified file
system. The implementation, if it supports persistent attributes, delivers a copy of the attribute
data with destroy events generated after this function returns successfully.

The data may be truncated if it was greater than the maximum number of bytes that the
implementation can return (returned by dm_get_config() for the
DM_MAX_ATTR_BYTES_ON_DESTROY flag). If a destroyed object on the file system did not
have the specified attribute set, then no data is returned with the corresponding destroy events.

This binding does not persist after unmounting of the file system.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
The handle for the file system of interest.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access right for the handle. The access right must be
DM_RIGHT_EXCL or the token DM_NO_TOKEN may be used and the interface acquires
the appropriate rights.

dm_attrname_t *attrnamep (I)
The attribute to be returned with destroy events.

dm_boolean_t enable (I)
Set to DM_TRUE to enable returning attributes. Set to DM_FALSE to disable returning
attributes.

Return Values
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[EACCES]
The access right referenced by the token for the handle is not DM_RIGHT_EXCL.

[EBADF]
The handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

Systems Management: Data Storage Management (XDSM) API 161

dm_set_return_on_destroy() DMAPI Definitions

[EINVAL]
The argument token is not a valid token.

[EINVAL]
The handle does not refer to a file system.

[EINVAL]
The session is not valid.

[EINVAL]
The attribute name is not valid.

[ENOSYS]
The DMAPI implementation does not support this optional function.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_set_eventlist().

NOTES
dm_set_return_on_destroy() is an optional component of the DMAPI.

162 CAE Specification

DMAPI Definitions dm_symlink_by_handle()

NAME
dm_symlink_by_handle — create a symbolic link using a DM handle

SYNOPSIS
int
dm_symlink_by_handle(

dm_sessid_t sid,
void *dirhanp,
size_t dirhlen,
dm_token_t token,
void *hanp,
size_t hlen,
char *cname,
char *path)

DESCRIPTION
The dm_symlink_by_handle () function allows applications the ability to create a symbolic link in
a directory specified by dirhanp and with a component name specified by cname that can, after
creation, be referenced by the supplied target handle hanp. This is useful when an application is
reconstructing a file system object for which it still has the data and attributes stored on alternate
media.

This function creates the link with the specified path as its value (that is, the new object created
will be a symbolic link pointing to path)

It is the responsibility of the user of this function to reconstruct the object state including
extended attributes. See dm_set_fileattr() and dm_set_dmattr().

If an object cannot be constructed by the file system for the specified handle, an error is returned.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *dirhanp (I)
The handle for the directory that contains the target file.

size_t dirhlen (I)
The length of the directory handle in bytes.

dm_token_t token (I)
The token referencing the access right for the directory handle. The access right must be at
DM_RIGHT_EXCL or the token DM_NO_TOKEN may be used and the interface acquires
the appropriate rights.

void *hanp (I)
The file handle of the symbolic link.

size_t hlen (I)
The length of the file handle in bytes.

char *cname (I)
The name of the symbolic link to be created in the specified directory.

char *path (I)
The path to which the symbolic link points.

Systems Management: Data Storage Management (XDSM) API 163

dm_symlink_by_handle() DMAPI Definitions

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[EACCES]
The access right referenced by the token for the directory handle is not DM_RIGHT_EXCL.

[EBADF]
The parent directory handle does not refer to an existing or accessible object.

[EEXIST]
The file handle refers to an existing object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The argument token is not a valid token.

[EINVAL]
The session is not valid.

[ENOSYS]
The DMAPI implementation does not support this optional function.

[EPERM]
The caller does not hold the appropriate privilege.

SEE ALSO
dm_set_fileattr(), dm_set_dmattr(), dm_create_by_handle(), dm_mkdir_by_handle ().

NOTES
dm_symlink_by_handle () is an optional component of the DMAPI.

164 CAE Specification

DMAPI Definitions dm_sync_by_handle()

NAME
dm_sync_by_handle — synchronize a file’s in-memory state with that on the physical medium

SYNOPSIS
int
dm_sync_by_handle(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token)

DESCRIPTION
The dm_sync_by_handle() function causes all modified data and attributes of the object referred
to by hanp to be written to its physical media. When dm_sync_by_handle() returns, the state of the
object referred to by hanp is captured on physical medium. This is the equivalent of fsync(2),
except that the object is referenced by the handle.

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
A handle to any file in the file system.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access right for the handle. The access right must be at
DM_RIGHT_EXCL or the token DM_NO_TOKEN may be used and the interface acquires
the appropriate rights.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[EACCES]
The access right referenced by the token for the handle is not DM_RIGHT_EXCL.

[EBADF]
hanp does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The argument token is not a valid token.

[ENOMEM]
The DMAPI could not obtain the required resources to complete the call.

[ENOSYS]
The DMAPI implementation does not support this optional function.

[EPERM]
The caller does not hold the appropriate privilege.

NOTES
dm_sync_by_handle() is an optional component of the DMAPI.

Systems Management: Data Storage Management (XDSM) API 165

dm_upgrade_right() DMAPI Definitions

NAME
dm_upgrade_right — upgrade a currently held access right to an exclusive right

SYNOPSIS
int
dm_upgrade_right(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token)

DESCRIPTION
Upgrade the access right currently held for the object specified by the handle and referenced by
the token. The upgrade operation does not drop the access right currently held for the object and
attempts to upgrade without blocking the process requesting to upgrade.

The minimum right to hold when making this request is DM_RIGHT_SHARED. If a process
requests to upgrade while holding an exclusive right , the request succeeds with no attempt to
upgrade. Otherwise the attempt to upgrade is tried without blocking the process. If the
requested right cannot be obtained without blocking, the request fails.

On DMAPI implementations that do not support non-blocking right upgrades, this call fails with
[ENOSYS].

dm_sessid_t sid (I)
The identifier for the session of interest.

void *hanp (I)
The handle for the file system object for which upgrading access right is being requested
and with which an access right is already associated. See also dm_downgrade_right () on
page 80.

size_t hlen (I)
The length of the handle in bytes.

dm_token_t token (I)
The token referencing the access right for the object.

IMPLEMENTATION NOTE
A DM application may retry upgrading an access right if dm_upgrade_right () fails with [EBUSY].
This is an indication that there is at least one other process holding a shared access right to the
same object. Note that the request to upgrade can only be granted if the requesting process is the
only holder of a shared or exclusive right to the object. In the case of another process holding a
shared right to the same object, the requesting process must be aware of possible deadlock that
can be caused when at least one other process tries to upgrade its access right.

RETURN VALUE
Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the
following values:

[EBADF]
The file handle does not refer to an existing or accessible object.

[EBUSY]
Could not upgrade access right.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

166 CAE Specification

DMAPI Definitions dm_upgrade_right()

[EINVAL]
The token does not grant a DM_RIGHT_SHARED or DM_RIGHT_EXCL to the specified
object.

[ENOSYS]
The DMAPI implementation does not support this optional function.

[ESRCH]
The token does not refer to any outstanding DM event.

[EPERM]
The caller does not hold the appropriate privilege.

[EPERM]
The access right currently held is not DM_RIGHT_SHARED nor DM_RIGHT_EXCL.

SEE ALSO
dm_downgrade_right (), dm_release_right(),() dm_request_right().

NOTES
dm_upgrade_right () is an optional component of the DMAPI.

Systems Management: Data Storage Management (XDSM) API 167

DMAPI Definitions

168 CAE Specification

Chapter 6

Implementation Notes

This Chapter describes some issues and hints which may be of use to the implementer of the
DMAPI. These hints are presented in a separate Chapter because they are relevant to the
DMAPI, yet they may not be applicable to all DMAPI implementations.

6.1 Event Encoding
As discussed in the Non-opaque Data Management Attributes section (see Section 2.10.1 on
page 17), event bit masks may exist that allow specific encoding of events to be represented with
a number of fixed bit patterns. These bit patterns are implementation defined, are not
guaranteed to be the same from platform to platform, and in fact are not visible through any of
the DMAPI interfaces.

A single bit might allow the following event list encoding:

0 The file has no event lists.

1 The file has an event list but there is not enough persistent storage available to encode the
events.

By increasing the number of bits, well known combinations of events can be stored persistently
with the file. For example, with 2 bits, the following event list encoding may exist:

00 The file has no event lists.

01 Read events will be generated for this file.

10 Write events will be generated for this file.

11 The file has an event list but there is not enough persistent storage available to encode the
events.

For example, if the file has both read and write events set, then this cannot be encoded in two
bits. In this case the debut event would need to be generated in order to load the event list.

The encoding of events is not defined by the DMAPI. It is expected that different DMAPI
implementations would encode events differently, depending on those data management
applications which would be supported.

Note: Due to the requirement regarding implementation of the DMAPI, support for persistent
non-opaque attributes is a DMAPI implementation option.

Systems Management: Data Storage Management (XDSM) API 169

Event Ordering Implementation Notes

6.2 Event Ordering
Each implementation of the DMAPI may send a number of different events to a DM application
as a result of a single system call. It may be helpful, but is not required, for DM application
writers to know in advance the sequence of events for each system call. Unfortunately,
determining this list is a non-trivial exercise. It is suggested that the DM application writer
should work with the implementor of the DMAPI in order to determine the sequence and
ordering of events that occurs for system calls of interest.

If the application is multi-threaded, then the DM app writer’s job is even more difficult.
Synchronization primitives are necessary so that one process is not left hanging waiting for an
event that has been serviced by another process.

6.3 Lock Releasing
Some DMAPI implementations may have special lock restrictions. Some may be unable to
upgrade an access right from DM_RIGHT_SHARED to DM_RIGHT_EXCL without sleeping,
while others may have special primitives that allow them to grant whatever right the DM
application requires. Some DMAPI implementations may also have special requirements with
regard to releasing locks. During the servicing of events, it may not always be possible to
relinquish a right. DM application writers should not assume that it is always possible to release
a right(via dm_release_right()). The careful DM application writer will always check return codes
from all DMAPI functions.

6.4 Tokens, Messages and Handles
Tokens reference access rights for handles, and must always be associated with a message. An
implementor may wish to view a token as simply a message ID. When viewed this way, the
token is similar to a file descriptor, in that it just references state maintained in the kernel. Given
the one-to-one correspondence of tokens and messages, one can think of them (within the
kernel) as separate objects or one object independent of how they are actually implemented.

6.5 mmap
There are many operating systems that use mmap(2) as a mechanism for utilities to copy file
data. Unfortunately, this can make implementation of the DMAPI difficult, since a page fault
often occurs at a much later point in time than when the file is actually mapped. Usually, there
are also very stringent locking restrictions in place at the time the page fault occurs.

To get around these problems, some systems may have to adopt a paradigm that at the time the
file is mapped (that is, at the time the actual mmap(2) call is executed), then if the file is non-
resident it will have to be made resident. This is sub-optimal from a disk space utilization
standpoint, and it also means that a large file that is mmap’d cannot be partially resident.
However, the alternative is to place DMAPI call-outs deep in the VM subsystem, which is
usually a very complex exercise and is not recommended unless considerable expertise is
available.

170 CAE Specification

Implementation Notes Invisible I/O

6.6 Invisible I/O
Invisible read and write can also place special burdens on the implementor of the DMAPI.
Invisible I/O is typically used by a DM application to reload data for a non-resident file. This
operation should not modify any of a file’s time stamps, nor should it cause events to be
generated.

In systems where pages are encached on the vnode, this can lead to troublesome locking and
coherency issues. How is the actual write to disk performed? Is the page cache bypassed? How
do you ensure that encached pages are dealt with correctly?

6.7 Generation of Events
The placement of code that actually generates events will be different from platform to platform.
When an event is actually generated will be different on all systems, and should not concern the
DM application writer. The DMAPI implementor will need to take into consideration lock state,
likelihood of the operation succeeding, and so forth, to determine the best location for the actual
callout to occur.

In the case of managed region events, the DMAPI implementor must ensure that a poorly-
behaved DM application does not cause the system to behave in an unexpected manner. For
example, if a file has multiple managed regions that represent non-resident data, and a DM
application only restores the data for one of those regions, the system must be sure that
operations such as read-ahead do not cause multiple events to occur. For further information, see
the Managed Region description in Section 1.3 on page 2.

6.8 Locking Across Operations
To ensure consistency, some DM application may wish to enforce their own locking scheme
across operations. They may want to develop a wrapper around some operations in order to
synchronize and/or serialize accesses to files.

6.9 Tokens and Multiple Handles
Tokens may reference access rights for more than one file handle. This makes certain operations
easier, such as obtaining access rights to a list of file handles; the same token can be reused
without incurring the overhead of dm_create_userevent() to construct a new token for each file
handle. However, allowing a single token to reference multiple handles can make recovery more
difficult. How does a DM application determine which file handles have access rights referenced
by a single token?

During recovery, a DM application can always execute dm_respond_event(), give it the offending
token, and let the DMAPI release any and all access rights associated with the token. If the DM
application needs to be selective about which file handles have their access rights released, then
it (the DM application) must provide some mechanism external to the DMAPI to log which file
handles are associated with a token. The DMAPI does not provide interfaces to identify multiple
file handles from a single token.

Systems Management: Data Storage Management (XDSM) API 171

Structure Lists Implementation Notes

6.10 Structure Lists
Several DMAPI functions return lists of structures. Some of these functions return lists of
variable-length structures. Since the length of the structure is not known, DMAPI
implementations must provide a mechanism for the DM application to access the various
members of the list.

The DMAPI specifies that DM applications should use the DM_STEP_TO_NEXT macro to access
variable length structures that are in a list. However, the actual implementation of this macro is
not defined. One suggestion is that each variable-length structure should have a field in a well-
known position (say offset zero) or use a special field name that is opaque to the DM application.
For example, using the field name approach, the definition of the dm_eventmsg_t would be:

struct dm_eventmsg {
ssize_t _link;
dm_type_t ev_type;
dm_token_t ev_token;
dm_vardata_t ev_data;

};

The definition of the DM_STEP_TO_NEXT macro would then become:

#define DM_STEP_TO_NEXT(p, type) \
((type)((p)->_link ? (char *)(p) + (p)->_link : NULL))

6.11 Undeliverable Event Messages
The implementation of the DMAPI needs to specify the guidelines for delivery of a synchronous
event message when no session exists to receive it. There are three choices with regard to
synchronous event message delivery when no session exists:

• block the requesting process.

• return an error to the process that instigated the event.

• do not generate the event.

If an error is returned to the process, it may be specific to the operation that caused the event.
This means that depending on the operation, two different errors can be returned for the same
event type.

The implementation must also define the behavior for asynchronous events.

172 CAE Specification

Implementation Notes dm_vardata_t

6.12 dm_vardata_t
One possible implementation of the dm_vardata_t structure is:

struct dm_vardata {
ssize_t vd_offset;
size_t vd_length;

};
typedef struct dm_vardata dm_vardata_t;

where the offset field (vd_offset) in dm_vardata_t records the distance in bytes from the
beginning of the structure in which the variable length data begins.

In the case of an event message, it records the beginning of the actual event-specific data. For
other structures, such as dm_stat_t, it indicates where the handle data can be found. The
definition of the two access macros would then be:

DM_GET_VALUE(p, field, type) \
((type)((char *)(p) + (p)->filed.vd_offset))

DM_GET_LEN(p, field) ((p)->field.vd_length)

6.13 NFS Daemon Starvation
Special consideration needs to be taken when using DMAPI on a file system that is exported via
NFS. Because a migrate-in operation can potentially take several seconds or even minutes, a
large number of NFS client requests to files that are staged out could lead to NFS daemon
starvation. Each NFS daemon could be waiting for a DMAPI operation to complete, with no free
daemon threads left to accept new requests.

A possible solution to this problem is to devise a method for the file system to notify the NFS
daemon when it detects that an operation will take an unusually long time. The NFS daemon
could then fork a separate thread to wait for the migration to complete, and also send a
EJUKEBOX notification to the client NFS.

The dm_pending() interface allows the DMAPI application to notify the DMAPI implementation
if an operation is expected to be slow. The implementation may then take appropriate steps to
notify NFS.

6.14 Unmount and Shutdown Deadlock
Unmount of a DMAPI managed File System can take a long time. This means the shutdown script
needs to wait for the DM applications to finish with unmount activities before killing off
processes. If shutdown kills the DM application process threads without first giving the DM
application a chance to clean up its session IDs, then the unmount event will be posted to an
orphan session and can never be responded to. unmount will then hang. However, if shutdown
does not kill the non-DM application process threads, the File System may look busy forever,
and unmount will likewise hang. shutdown therefore needs a way to kill all processes except the
DM application processes.

Systems Management: Data Storage Management (XDSM) API 173

The dt_change Field in dm_stat Implementation Notes

6.15 The dt_change Field in dm_stat
The suggested implementation is to keep an in-kernel counter that is incremented every time it
is read. In this way, released in-core inodes will be incrememted properly.

6.16 Punching Holes
If a call to dm_punch_hole() frees media resources, the DMAPI implementation should indicate
these freed resources in subsequent calls to dm_get_allocinfo (), by describing the freed extent
with the DM_EXTENT_HOLE flag.

174 CAE Specification

Glossary

DM application
A Data Management application is any application that uses the DMAPI.

DMAPI
Data Management Application Programming Interface. The term which refers to the interface
defined by this XDSM Specification.

DMAPI implementation
The services in the host Operating System which act as the XDSM API provider

DMIG
Data Management Interfaces Group. This term refers to the group that developed this Data
Storage Management interface interface between the UNIX kernel and data management
applications.

event
A notification from the operating system kernel to a DM application about an operation on a file.
For example, a DM application can arrange to be notified about attempts to read a particular file.

hole
An area of a file that consists entirely of bytes of zeros. Some file system implementations may
not need to consume any media resources to maintain such an area.

managed file
A file that is being monitored by a DM application for events.

managed region
A contiguous span of a file given as an (offset, length) pair, together with an associated event
generation specification.

multiple DM applications
In this document, the term multiple DM apps refers to multiple, non-cooperating and distinct
applications that use the DMAPI. Note that a single product which happens to be constructed
using multiple processes is not an example of ‘‘multiple DM applications’’, whereas something
like a compression product from vendor A and a backup product from vendor B is.

operating system
In the context of the DMAPI, this is the code that includes the base kernel as well as any file
system or extensions that may have been added to the kernel.

process
A single UNIX process. For purposes of this document, a process and a user thread are
equivalent.

product
A specific DM application from a single vendor. A single product may consist of one or more
processes working together.

token
A reference to state associated with a synchronous event message.

Systems Management: Data Storage Management (XDSM) API 175

Glossary

176 CAE Specification

Index

<dmapi.h>..63
access rights...2, 10
attribute ..37
attribute mask defines ...58
backup...28
bulk retrieval ...16
cancel...37
close ...37
configuration ...28
create ...33
data management attribute3, 17
data structure ..43
debut..32
defines

attribute mask ...58
get events ...59
invisible write..60
miscellaneous ..60
mount event...59
region flags...53
request right...59
unmount event..60

destroy ..37
DM application ...175
DMAPI..175
DMAPI definitions ...63
DMAPI implementation175
DMEV_CLR ...67
DMEV_CLR/ISSET/SET/ZERO macros67
DMEV_ISSET...67
DMEV_SET ..67
DMEV_ZERO..67
DMIG ..175
dm_clear_inherit() ...71
dm_create_by_handle() ..73
dm_create_session() ..75
dm_create_userevent() ...77
dm_destroy_session() ...79
dm_downgrade_right() ..80
dm_fd_to_handle ...128
dm_find_eventmsg() ...82
dm_getall_disp() ..105
dm_getall_dmattr() ...106
dm_getall_inherit()..108
dm_getall_sessions() ...110
dm_getall_tokens()..111

dm_get_allocinfo()...83
dm_get_bulkall ...85
dm_get_bulkattr ...85
dm_get_config() ...89
dm_get_config_events() ...92
dm_get_dirattrs...85
dm_get_dmattr() ..93
dm_get_eventlist()...95
dm_get_events()...97
dm_get_fileattr() ..99
dm_get_mountinfo() ...101
dm_get_region()...103
dm_get_{bulkattributes}()......................................85
dm_handle_cmp()..112
dm_handle_free ..128
dm_handle_hash() ...113
dm_handle_is_valid() ...114
dm_handle_to_fshandle()115
dm_handle_to_fsid ..120
dm_handle_to_igen ...120
dm_handle_to_ino ...120
dm_handle_to_path() ...116
dm_handle_{make/extract}()120
dm_init_attrloc() ..117
dm_init_service() ...119
dm_make_fshandle..120
dm_make_handle ...120
dm_mkdir_by_handle()..123
dm_move_event()..125
dm_obj_ref_hold...126
dm_obj_ref_hold/release/query()126
dm_obj_ref_query ..126
dm_obj_ref_rele ..126
dm_path/fd_to_handle & dm_handle_free()128
dm_path_to_fshandle..128
dm_path_to_handle...128
dm_pending() ...131
dm_probe_hole ...132
dm_punch/probe_hole()......................................132
dm_punch_hole ..132
dm_query_right()...135
dm_query_session() ..136
dm_read/write_invis() ...137
dm_read_invis...137
dm_release_right()...139
dm_remove_dmattr()..140

Systems Management: Data Storage Management (XDSM) API 177

Index

dm_request_right()..142
dm_respond_event() ...144
dm_send_msg()..146
dm_set_disp() ...148
dm_set_dmattr() ..150
dm_set_eventlist() ...152
dm_set_fileattr()...154
dm_set_inherit()...156
dm_set_region() ...158
dm_set_return_on_destroy()...............................161
dm_symlink_by_handle()163
dm_sync_by_handle()...165
dm_upgrade_right()..166
dm_vardata_t ..173
dm_write_invis ...137
dt_change field in dm_stat174
event..1, 19, 175

data..36
file system administration31
metadata...37
namespace..33
pseudo ..38
summary ..39

event disposition ..19
event encoding..169
event message ...8
event message type ..47
event notification ..23
event ordering...170
event types ...29
extents ...13
file attributes..16
file migration ...1
file replication..1
generation of events...171
get events defines ...59
handle..3, 5
handles..170
hole..4, 13, 175
implementation options ..4
initialization...5
interfaces...5
invisible I/O ..171
invisible read ...14
invisible write..14
invisible write defines..60
iterating functions ..65
link ...35
lock releasing...170
locking across operations171
man-page definitions ...63

managed file ..175
managed region ..1-2, 14, 175
messages...170
miscellaneous defines..60
mmap ..170
mount..21, 31
mount event defines...59
multiple DM applications.....................................175
multiple handles ...171
NFS daemon starvation ..173
non-iterative functions ..64
non-opaque..17
nospace ...32
opaque...17
operating system ..175
pending event..24
POSIX ..1
postcreate ...33
postlink ...36
postremove ..34
postrename ..35
postsymlink ...35
preunmount...32
process ..175
product ...175
pseudo event ...27, 38
punching holes..13, 174
read..36
receive event ..24
remove ..34
rename ..34
request right defines...59
respond to event ...24
restore ...1, 28
session ...3, 7-8
session instantiation...8
struct

DM Handles ..51
dm_attrlist..44
dm_attrloc_t ..45
dm_attrname_t..45
dm_boolean_t..45
dm_cancel_event_t ..48
dm_config_t...46
dm_data_event_t ..48
dm_destroy_event_t ..48
dm_dispinfo_t ...46
dm_eventmsg_t ..47
dm_eventset_t ...49
dm_eventtype_t ..49
dm_extenttype_t...50

178 CAE Specification

Index

dm_extent_t ...50
dm_fileattr_t ..51
dm_fsid_t ...51
dm_igen_t ..52
dm_inherit_t ..52
dm_mount_event_t..48
dm_msgtype_t ..52
dm_namesp_event_t ...49
dm_off_t ...52
dm_region_t ..53
dm_response_t..54
dm_right_t ...54
dm_sequence_t ...54
dm_sessid_t ...54
dm_size_t ...55
dm_ssize_t ...55
dm_stat_t..55
dm_timestruct_t ...57
dm_token_t..58
dm_vardata_t ..58
dm_xstat_t ...58

structure lists ...172
symlink ...35
token ...1, 10, 170-171, 175
truncate ...36
undeliverable event messages172
unmount ...32
unmount and shutdown deadlock173
unmount event defines..60
write...36

Systems Management: Data Storage Management (XDSM) API 179

Index

180 CAE Specification

	c429cov.pdf
	Page 1

	blank.pdf
	Page 1

