
LA

 G

CI

U

N

ID

H

E

C

S

E
T

Guide

XPG3-XPG4 Base Migration Guide
Version 2

[This page intentionally left blank]

X/Open Guide

XPG3-XPG4 Base Migration Guide, Version 2

X/Open Company Ltd.

 December 1995, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open Guide

XPG3-XPG4 Base Migration Guide, Version 2

ISBN: 1-85912-156-X
X/Open Document Number: G501

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.org

ii X/Open Guide (1995)

Contents

Part 1 General Information .. 1

Chapter 1 Introduction... 3
 1.1 Objectives ... 4
 1.2 XSI Documentation — XPG3, XPG4 and the Single

 UNIX Specification ... 5
 1.3 Conformance to Standards ... 6
 1.3.1 C Language in an Issue 4 Environment .. 7
 1.4 Portability ... 8
 1.5 Existing Shell Applications... 9
 1.6 Guidelines for Interactive Users .. 10
 1.7 XPG4 Profiles ... 11
 1.7.1 XPG4 Base Profile... 11
 1.7.2 XPG4 Base 95 Profile ... 11
 1.7.3 XPG4 UNIX Profile .. 11

Chapter 2 General Portability Issues .. 13
 2.1 Glossary .. 13
 2.2 Internationalisation .. 14
 2.2.1 Bytes and Characters... 14
 2.2.2 Message Catalogues .. 14
 2.3 Character Set.. 15
 2.3.1 Character Set Description File... 15
 2.3.2 Transparency... 15
 2.3.3 Utilities and Multi-byte Codeset Support .. 16
 2.3.4 System Interfaces and Headers Multi-byte Codeset Support 16
 2.4 Locale... 18
 2.4.1 Collation .. 19
 2.4.2 Character Classification.. 19
 2.4.3 Date and Time Formatting... 21
 2.4.4 Numeric Formatting.. 21
 2.4.5 Affirmative Responses.. 21
 2.4.6 Message Formatting .. 22
 2.4.7 Monetary Formatting.. 22
 2.4.8 Functions that Invoke Commands... 22
 2.5 Environment Variables .. 23
 2.5.1 Locale Environment Variables .. 24
 2.5.2 Other Environment Variables.. 25
 2.6 Regular Expressions... 26
 2.7 Directory Structure and Devices ... 29
 2.7.1 Directory Structure.. 29
 2.7.2 Output Devices and Terminal Types ... 29

XPG3-XPG4 Base Migration Guide, Version 2 iii

Contents

 2.8 General Terminal Interface ... 30
 2.9 Invoking Commands ... 31
 2.9.1 Utility Syntax Guidelines ... 31
 2.9.2 Limits.. 32
 2.9.3 Input/Output Formats ... 33
 2.9.4 Errors.. 33
 2.9.5 Other Global Utility Behaviour... 33

Part 2 Commands and Utilities Migration..................................... 35

Chapter 3 Shell Command Language ... 37
 3.1 Naming Considerations .. 37
 3.1.1 Identifiers... 37
 3.1.2 Operators... 37
 3.1.3 Selecting Command Interpreters.. 38
 3.1.4 Aliases .. 38
 3.1.5 Reserved Command Names.. 38
 3.2 Parameters, Variables and Word Expansions 39
 3.2.1 IFS.. 39
 3.2.2 Tilde Expansion.. 39
 3.2.3 Parameter Expansion .. 40
 3.2.4 Command Substitution .. 41
 3.2.5 Arithmetic Expansion ... 41
 3.3 Redirection ... 42
 3.4 Shell Commands ... 43
 3.4.1 Command Search... 43
 3.4.2 Pipelines and Lists ... 44
 3.5 Pattern Matching... 45
 3.6 Special Built-ins... 46
 3.6.1 dot ... 46
 3.6.2 exec ... 46
 3.6.3 exit... 46
 3.6.4 export.. 46
 3.6.5 readonly... 46
 3.6.6 return.. 46
 3.6.7 set .. 47
 3.6.8 trap.. 47
 3.6.9 unset ... 47

Chapter 4 Utilities... 49
 4.1 Introduction ... 49
 4.1.1 Symbolic Link Support ... 49
 4.2 Utility Migration Information .. 50

iv X/Open Guide (1995)

Contents

Part 3 System Interfaces and Headers Migration..................... 89

Chapter 5 Program Migration and Portability... 91
 5.1 Feature Groups.. 92
 5.2 The Compilation Environment.. 93
 5.3 Functional Duplication .. 94
 5.4 Other Programming Considerations .. 97
 5.4.1 Argument Type Changes ... 97
 5.4.2 Prototype Changes and Movement ... 97
 5.4.3 Process Environment Access... 97
 5.4.4 Pseudo-terminals ... 97
 5.5 Errors... 101
 5.5.1 Issue 4... 101
 5.5.2 Issue 4, Version 2.. 101
 5.6 Interprocess Communication (IPC) .. 102
 5.7 STREAMS... 103
 5.8 Makefile Portability .. 104

Chapter 6 Interface Tables ... 107

Chapter 7 System Interfaces ... 121

Chapter 8 Headers... 221
 8.1 Header and Name Space Rules.. 221
 8.1.1 ISO C Headers .. 221
 8.1.2 POSIX-1 Headers ... 222
 8.1.3 XPG Headers... 223
 8.2 Names Safe to Use .. 224
 8.3 Header Migration Information .. 225

Part 4 C-language Migration... 239

Chapter 9 Introduction... 241
 9.1 Terminology... 241
 9.2 Approach.. 241
 9.3 Compiler... 241

Chapter 10 Function Prototypes.. 243
 10.1 Function Declarations .. 243
 10.1.1 Argument Checking.. 244
 10.1.2 Type Conversion .. 244
 10.2 Writing New Code.. 245
 10.3 Updating Existing Code .. 246
 10.4 Mixing Old and New Styles ... 247
 10.5 Variable Number of Arguments .. 248

XPG3-XPG4 Base Migration Guide, Version 2 v

Contents

Chapter 11 Promotion.. 251
 11.1 Converting Types.. 251
 11.2 Background.. 251
 11.3 Using a Cast ... 252
 11.4 Same Result.. 253
 11.5 Integral Constants... 254

Chapter 12 Tokenisation and Preprocessing... 255
 12.1 ISO C Translation Phases .. 255
 12.2 Trigraph Sequences .. 256
 12.3 X/Open C Translation Phases.. 256
 12.4 Logical Source Lines... 256
 12.5 Macro Replacement.. 257
 12.6 String Literal Production... 258
 12.7 Token Pasting... 259
 12.8 New Macros... 259
 12.9 Changes to #define ... 259

Chapter 13 Types.. 261
 13.1 Using Type Qualifiers .. 261
 13.1.1 Type Qualifiers in Derived Types... 261
 13.1.2 The const Keyword.. 262
 13.1.3 The volatile Keyword.. 262
 13.2 Incomplete Types.. 264
 13.2.1 Completing Incomplete Types.. 264
 13.2.2 Declarations .. 264
 13.2.3 Expressions ... 265
 13.2.4 Rationale.. 265
 13.2.5 Examples.. 265
 13.3 Compatible and Composite Types.. 267
 13.3.1 Multiple Declarations ... 267
 13.3.2 Separate Compilation ... 267
 13.3.3 Single Compilation .. 267
 13.3.4 Compatible Pointer Types.. 268
 13.3.5 Compatible Array Types .. 268
 13.3.6 Compatible Function Types... 268
 13.3.7 Composite Type ... 268

Chapter 14 Expressions .. 271
 14.1 X/Open C Rearrangement.. 271
 14.2 The ISO C Rules .. 272
 14.3 Advantages of Rearrangement .. 273
 14.4 Other Changes to Expressions ... 274
 14.4.1 Type Float .. 274
 14.4.2 Pointer Subtraction .. 274
 14.4.3 Empty Structure Declarations... 274
 14.5 Scope of Identifiers ... 275
 14.5.1 String Literals.. 275

vi X/Open Guide (1995)

Contents

Chapter 15 Internationalisation.. 277
 15.1 Multi-byte Characters .. 277
 15.2 Encoding Variations ... 277
 15.3 Wide-character Codes.. 278
 15.4 Conversion Functions .. 278
 15.5 Features of the C Language .. 279

Chapter 16 Standard Headers and Reserved Names.................................. 281
 16.1 Balancing Process.. 281
 16.2 Standard Headers ... 282
 16.3 Reserved Names ... 283
 16.4 Names Safe to Use .. 284

 Index... 285

List of Examples

5-1 Pseudo-terminal Initialisation... 98
10-1 Use of the _ _STDC_ _ Macro .. 245
10-2 Duplicating Interface .. 246

List of Tables

1-1 X/Open XPG4 Profiles and Brand Attributions...................................... 12
5-1 Feature Test Macros and Feature Groups... 92

XPG3-XPG4 Base Migration Guide, Version 2 vii

Contents

viii X/Open Guide (1995)

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

XPG3-XPG4 Base Migration Guide, Version 2 ix

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

x X/Open Guide (1995)

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done in any one of the following ways:

• anonymous ftp to ftp.xopen.org

• ftpmail (see below)

• reference to the Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information using ftpmail, send a message to ftpmail@xopen.org with the
following four lines in the body of the message:

open
cd pub/Corrigenda
get index
quit

This will return the index of publications for which Corrigenda exist. Use the same email
address to request a copy of the full corrigendum information following the email instructions.

This Document

This document is a Guide (see above). It is a companion to the set of CAE specifications that
define the X/Open System Interface (XSI) Operating System requirements:

• System Interface Definitions, Issue 4, Version 2 (XBD)

• Commands and Utilities, Issue 4, Version 2 (XCU)

• System Interfaces and Headers, Issue 4, Version 2 (XSH).

This document provides detailed guidance on applications migration from a number of
perspectives:

• from Issue 3 conforming systems to Issue 4 of the XSI

• from traditional UNIX operating systems environments to systems conforming to Issue 4,
Version 2 of the XSI

• from traditional UNIX operating systems environments to systems conforming to Issue 4 of
the XSI.

It is intended for application developers, who are expected to be experienced C-language
programmers or familiar with the shell command language and utilities. It is also intended for
interactive users of the shell interpreter. It provides useful information for implementors.

XPG3-XPG4 Base Migration Guide, Version 2 xi

Preface

This guide is structured as follows:

• General Information

— Chapter 1 is an introduction.

— Chapter 2 discusses global changes affecting many of the functions, macros, external
variables and utilities; much of this material relates to the XBD specification.

• Commands and Utilities Migration

— Chapter 3 discusses the changes in the shell command language.

— Chapter 4 details specific changes for individual utilities; unlike the XCU specification,
however, the utilities that are withdrawn in Issue 4 are included in this chapter, sorted
alphabetically.

• System Interfaces and Headers Migration

— Chapter 5 describes the compilation environment, error numbers and interprocess
communication.

— Chapter 6 is a quick reference guide to the functions, macros and external variables
defined in Issue 4, Version 2.

— Chapter 7 details specific changes for individual interfaces.

— Chapter 8 details specific changes for individual headers.

• C-language Migration

— Chapter 9 is a brief introduction to C-language migration.

— Chapter 10 describes function prototypes and how to use them.

— Chapter 11 discusses promotions.

— Chapter 12 describes tokenisation and preprocessing.

— Chapter 13 describes the use of type qualifiers, incomplete types, compatible types and
composite types.

— Chapter 14 describes expressions.

— Chapter 15 describes multi-byte characters and wide-character codes.

— Chapter 16 describes standard headers and reserved names.

Comprehensive references are available in the index.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— command operands, command option-arguments or variable names, for example,
substitutable argument prototypes

— environment variables, which are also shown in capitals

xii X/Open Guide (1995)

Preface

— utility names

— external variables, such as errno

— functions; these are shown as follows: name(); names without parentheses are C external
variables, C function family names, utility names, command operands or command
option-arguments.

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
#define construct.

• The notation [EABCD] is used to identify an error value EABCD.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font. Brackets shown in this font, [] , are part of the syntax and do not indicate optional
items. In syntax the | symbol is used to separate alternatives, and ellipses (...) are used to
show that additional arguments are optional.

• Bold fixed width font is used to identify brackets that surround optional items in syntax,
[] , and to identify system output in interactive examples.

• Variables within syntax statements are shown in italic fixed width font .

• Ranges of values are indicated with parentheses or brackets as follows:

— (a,b) means the range of all values from a to b, including neither a nor b

— [a,b] means the range of all values from a to b, including a and b

— [a,b) means the range of all values from a to b, including a, but not b

— (a,b] means the range of all values from a to b, including b, but not a

• Shading is used to identify extensions or warnings as detailed in Section 1.5 on page 9.

XPG3-XPG4 Base Migration Guide, Version 2 xiii

Acknowledgements

X/Open gratefully acknowledges:

• AT&T for permission to reproduce portions of its copyrighted System V Interface Definition
(SVID) and material from the UNIX System V Release 2.0 documentation.

• The Institution of Electrical and Electronics Engineers, Inc. for permission to reproduce
portions of its copyrighted IEEE Std 1003.2/D12.

• The IEEE Computer Society’s Technical Committee on Operating Systems and Application
Environments (TCOS), whose standards contributed to our work.

• The ANSI X3J11 Committees.

• Hewlett-Packard Company, International Business Machines Corporation, Novell Inc., The
Open Software Foundation, and Sun Microsystems, Inc., for their work in developing the
X/Open UNIX Extension and sponsoring it through the X/Open Direct Review (Fast-track)
process.

• The /usr/group Standards Committee, whose standard contributed to this work.

• The UniForum (formerly /usr/group) Technical Committee’s Internationalization
Subcommittee for work on internationalised regular expressions.

xiv X/Open Guide (1995)

Trade Marks

AT&T is a registered trade mark of AT&T in the U.S.A. and other countries.

UNIX is a registered trade mark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

/usr/group is a registered trade mark of UniForum, the International Network of UNIX
System Users.

X/Open is a registered trade mark, and the ‘‘X’’ device is a trade mark, of X/Open Company
Limited.

XPG3-XPG4 Base Migration Guide, Version 2 xv

Referenced Documents

The following X/Open documents are referenced in this guide:

How to Brand — What to Buy
The X/Open Branding Programme, How to Brand — What to Buy, February 1995
(ISBN: 1-85912-084-9, X951).

Internationalisation Guide
X/Open Guide, July 1993, Internationalisation Guide, Version 2 (ISBN: 1-872630-02-4, G304).

Issue 1
X/Open Portability Guide, July 1985 (ISBN: 0-444-87839-4).

Issue 2
Consists of:

• X/Open Portability Guide, Volume 1, January 1987, XVS Commands and Utilities
(ISBN: 0-444-70174-5).

• X/Open Portability Guide, Volume 2, January 1987, XVS System Calls and Libraries
(ISBN: 0-444-70175-3).

Issue 3
Consists of:

• Commands and Utilities, Issue 3

• System Interfaces and Headers, Issue 3.

Issue 4
Consists of:

• System Interface Definitions, Issue 4

• Commands and Utilities, Issue 4

• System Interfaces and Headers, Issue 4.

Issue 4, Version 2
Consists of:

• System Interface Definitions, Issue 4, Version 2

• Commands and Utilities, Issue 4, Version 2

• System Interfaces and Headers, Issue 4, Version 2.

Migration Guide
X/Open Guide, July 1992, XPG3-XPG4 Base Migration Guide (ISBN: 1-872630-49-9, G204).

Networking Services, Issue 4
X/Open CAE Specification, August 1994, Networking Services, Issue 4
(ISBN: 1-85912-049-0, C438).

X/Open C
Chapters 1 to 4 of X/Open Specification, 1988, 1989, February 1992, Programming
Languages, Issue 3 (ISBN: 1-872630-39-1, C214); this specification was formerly X/Open
Portability Guide, Volume 4, August 1988 (ISBN: 0-13-685868-6, XO/XPG/89/005).

xvi X/Open Guide (1995)

Referenced Documents

X/Open Curses, Issue 4
X/Open CAE Specification, December 1994, X/Open Curses, Issue 4 (ISBN: 1-85912-077-6,
C437).

XBD, Issue 3
X/Open Specification, 1988, 1989, February 1992, Supplementary Definitions, Issue 3
(ISBN: 1-872630-38-3, C213); this specification was formerly X/Open Portability Guide,
December 1988, Volume 3, (ISBN: 0-13-685850-3, XO/XPG/89/004).

XBD, Issue 4
X/Open CAE Specification, July 1992, System Interface Definitions, Issue 4
(ISBN: 1-872630-46-4, C204).

XBD, Issue 4, Version 2
X/Open CAE Specification, August 1994, System Interface Definitions, Issue 4, Version 2
(ISBN: 1-85912-036-9, C434).

XCU, Issue 3
X/Open Specification, 1988, 1989, February 1992, Commands and Utilities, Issue 3
(ISBN: 1-872630-36-7, C211); this specification was formerly X/Open Portability Guide,
Volume 1, January 1989 XSI Commands and Utilities (ISBN: 0-13-685835-X,
XO/XPG/89/002).

XCU, Issue 4
X/Open CAE Specification, July 1992, Commands and Utilities, Issue 4 (ISBN:
1-872630-48-0, C203).

XCU, Issue 4, Version 2
X/Open CAE Specification, August 1994, Commands and Utilities, Issue 4, Version 2 (ISBN:
1-85912-034-2, C436).

XSH, Issue 3
X/Open Specification, February 1992, System Interfaces and Headers, Issue 3
(ISBN: 1-872630-37-5, C212); this specification was formerly X/Open Portability Guide,
Issue 3, Volume 2, January 1989, XSI System Interface and Headers (ISBN: 0-13-685843-0,
XO/XPG/89/003).

XSH, Issue 4
X/Open CAE Specification, July 1992, System Interfaces and Headers, Issue 4
(ISBN: 1-872630-47-2, C202).

XSH, Issue 4, Version 2
X/Open CAE Specification, August 1994, System Interfaces and Headers, Issue 4, Version 2
(ISBN: 1-85912-037-7, C435).

The following non-X/Open documents are referenced in this guide:

ANSI C
American National Standard for Information Systems: Standard X3.159-1989, Programming
Language C.

AWK Programming Language
The AWK Programming Language by Aho, Kernighan and Weinberger.

C Programming Language
The C Programming Language (First Edition), by Kernighan and Ritchie.

FIPS 151-2
Proposed Federal Information Procurement Standards (FIPS) 151-2.

XPG3-XPG4 Base Migration Guide, Version 2 xvii

Referenced Documents

ISO/IEC 646
ISO/IEC 646: 1991, Information Processing — ISO 7-bit Coded Character Set for Information
Interchange.

ISO C
ISO/IEC 9899: 1990, Programming Languages — C (technically identical to ANSI standard
X3.159-1989).

ISO POSIX-1
ISO/IEC 9945-1: 1990, Information Technology — Portable Operating System Interface
(POSIX) — Part 1: System Application Program Interface (API) [C Language] (identical to
IEEE Std 1003.1-1990).

ISO POSIX-2
ISO/IEC 9945-2: 1993, Information Technology — Portable Operating System Interface
(POSIX) — Part 2: Shell and Utilities (identical to IEEE Std 1003.2-1992).

MSE working draft
Working draft of ISO/IEC 9899: 1990/Add3: draft, Addendum 3 — Multibyte Support
Extensions (MSE) as documented in the ISO Working Paper SC22/WG14/N205 dated 31
March 1992.

POSIX.1
IEEE Std 1003.1-1988, Standard for Information Technology — Portable Operating System
Interface (POSIX) — Part 1: System Application Program Interface (API) [C Language].

POSIX.1b
IEEE Std 1003.1b-1993, Standard for Information Technology — Portable Operating System
Interface (POSIX) — Part 1: System Application Program Interface (API) [C Language] —
Amendment 1: Realtime Extension.

POSIX.2
IEEE Std 1003.2-1992, Standard for Information Technology — Portable Operating System
Interface (POSIX) — Part 2: Shell and Utilities.

POSIX.2a
IEEE Std 1003.2a-1992, Standard for Information Technology — Portable Operating System
Interface (POSIX) — Part 2: Shell and Utilities — Amendment 1: User Portability Extension.

SVID Issue 1
System V Interface Definition (Spring 1985, Issue 1).

xviii X/Open Guide (1995)

XPG3-XPG4 Base Migration Guide, Version 2

Part 1:

General Information

X/Open Company Ltd.

Part 1: General Information 1

2 XPG3-XPG4 Base Migration Guide, Version 2

Chapter 1

Introduction

This document has been created to aid developers migrating applications source code from
XPG3 Base branded systems and traditional UNIX systems to XPG4 Base and X/Open UNIX
branded systems. It updates the original XPG3-XPG4 Base Migration Guide.

The X/Open Portability Guide (XPG) evolved into the X/Open Common Applications
Environment (CAE) between Issue 3 and Issue 4. Issue 3 of the Portability Guide (XPG3) aligned
with the emerging ISO POSIX standards, and was published as Issue 4 in July 1992. While the
overall specifications structure had become the X/Open CAE, XPG4 Base was used as an easy
way to refer to the three volumes that formed the core programming portability specifications.
The XPG3-XPG4 Base Migration Guide was published to help programmers migrate
applications developed on XPG3 Base branded systems, to XPG4 Base branded systems.

These three core specifications were re-published in September 1994 as Issue 4, Version 2, as part
of the Single UNIX Specification, and contain a considerable number of new interfaces and new
functionality. They are published as a new version rather than as a new issue, as they are a
proper superset of Issue 4, adding new interfaces and functionality, but not modifying or
removing any Issue 4 material. (Networking Services, Issue 4 and X/Open Curses, Issue 4 form
the rest of the Single UNIX Specification. These two documents are not discussed in the context
of this guide.) The Single UNIX Specification was developed to simplify the porting of
applications developed to run on traditional UNIX systems.

Systems and components can still be branded to XPG3 Base, but the XPG4 Base brand offers the
customer and user significant additional capability. The XPG4 UNIX brand, as described by the
Single UNIX Specification, offers applications developers additional advantages when porting
existing applications developed on a traditional UNIX implementation.

This chapter explains the objective of this guide, identifies the documentation relevant to the
X/Open Operating System Interface (XSI), and explains its relationship to formal and emerging
standards. This chapter also explains how it affects application developers and interactive users.
A brief discussion of XPG4 profiles closes the chapter.

Throughout this guide, the term system interfaces covers the functions, macros and external
variables specified in the XSH specification. The term interface is used generically to refer to one
of the system interfaces or a utility defined in the XCU specification.

Part 1: General Information 3

Objectives Introduction

1.1 Objectives
The objective of this guide is to provide information for application developers so that:

• New applications can be developed for maximum portability between XSI-conformant
systems.

• Existing applications that conform to Issue 3 can be updated to conform with the facilities
and interfaces defined in the XSI specification set.

• Existing applications that were developed on a traditional UNIX system can be ported with a
minimum of work.

• Existing applications that were developed on a traditional UNIX system can be updated to be
more portable to systems that conform to the previous version of the XSI specification set.

Note: Issue 4 is designed such that strictly complying Issue 3 programs should continue to
work without modification, except as noted in Section 1.5 on page 9. However, a
number of interfaces have been added in areas where hitherto there were no standards,
and individual interfaces may have been extended to formalise common-use capability.
This is especially true for the X/Open UNIX Extension. Also, a number of interfaces
that are defined as optional in Issue 3 are mandatory in Issue 4. Thus, their availability
is ensured on all implementations that conform to Issue 4. XPG4 UNIX brand-
conformant systems require all feature groups considered optional for XPG4 Base 95
conformance.

4 XPG3-XPG4 Base Migration Guide, Version 2

Introduction XSI Documentation — XPG3, XPG4 and the Single UNIX Specification

1.2 XSI Documentation — XPG3, XPG4 and the Single UNIX Specification
The XSI specification for XPG3 Base is contained in the following CAE specifications:

• Supplementary Definitions, Issue 3 (formerly entitled XSI Supplementary Definitions,
Volume 3 of the X/Open Portability Guide, Issue 3)

• Commands and Utilities, Issue 3 (formerly entitled XSI Commands and Utilities, Volume 1 of
the X/Open Portability Guide, Issue 3)

• System Interfaces and Headers, Issue 3 (formerly entitled XSI System Interfaces and Headers,
Volume 2 of the X/Open Portability Guide, Issue 3)

• Chapters 1 to 4 in Programming Languages, Issue 3 (formerly entitled Programming
Languages, Volume 4 of the X/Open Portability Guide, Issue 3)

The XSI specification for XPG4 Base and XPG4 UNIX comprises:

• System Interface Definitions, Issue 4, Version 2 (XBD)

• Commands and Utilities, Issue 4, Version 2 (XCU)

• System Interfaces and Headers, Issue 4, Version 2 (XSH).

These documents cover the XSI portion of the Single UNIX Specification.

The X/Open C Language remains documented in Programming Languages, Issue 3. XPG4 Base
and XPG4 UNIX require C-language support according to the ISO C standard and, to enable
migration of applications developed on XPG3 Base branded systems, requires support for the
X/Open C Language as defined for XPG3 Base.

This guide is a companion to the Issue 4, Version 2 XSI specification set.

Part 1: General Information 5

Conformance to Standards Introduction

1.3 Conformance to Standards
XSI Issue 3 is fully compliant with IEEE Std 1003.1-1988 (POSIX.1).

XSI Issue 4 is fully compliant with:

• ISO/IEC 9945-1: 1990 (POSIX-1)

• ISO/IEC 9945-2: 1993 (POSIX-2)

• ISO/IEC 9899: 1990, Programming Languages — C (ISO C)

• FIPS 151-2.

The POSIX-1 standard is an updated version of the IEEE Std 1003.1-1988 (POSIX.1), which
defines the system application programming interface (API) of the Portable Operating System
Interface (POSIX) developed by IEEE working group P1003.1. The interfaces are defined in
terms of C-language bindings.

The XSH specification also contains parts of the POSIX-2 standard Shell and Utilities, which are
deemed by X/Open to be more appropriate to the XSH specification than to the XCU
specification. The POSIX-2 standard is a full-use standard, and is equivalent to
IEEE Std 1003.2-1992 (POSIX.2) and IEEE Std 1003.2a-1992 (POSIX.2a).

The Federal Information Processing Standards (FIPS) are a series of U.S. government
procurement standards managed and maintained on behalf of the U.S. Department of
Commerce by the National Institute of Standards and Technology (NIST). FIPS 151-2 is a profile
of the POSIX-1 standard, incorporating its text by reference, and mandating selected optional
behaviours and setting certain limits. The main impact of alignment with FIPS 151-2 is that
various optional elements of XSI Issue 3 are mandatory in XSI Issue 4, for example:

• job control

• supplementary process groups

• saved set-user-IDs and saved set-group-IDs

• {_POSIX_CHOWN_RESTRICTED}

• {_POSIX_VDISABLE}

• {_POSIX_NO_TRUNC}.

Differences that this alignment causes in individual interface definitions are highlighted in the
XSH specification and the XCU specification, and marked with a ‘‘FIPS’’ portability code in the
margin.

The ISO C standard is equivalent to the ANSI C standard, which defines a standard for the C
programming language. This standard was originally developed by the ANSI X3J11 working
group. One of the major effects of the ISO C standard on XSI Issue 4 is that all interfaces are now
defined in terms of function prototypes.

The XSH specification is also aligned with:

• ISO/IEC 9899: 1990/Add3: draft (Multibyte Support Extensions).

Issues of timing caused the XSH specification to be aligned with a draft of this standard, which
had not been ratified at the time. There are small areas where the XSH specification does not
align with the now ratified addendum, because of this timing. These areas will be corrected in a
future version or issue of the XSH specification. These differences are pointed out in their
respective descriptions.

6 XPG3-XPG4 Base Migration Guide, Version 2

Introduction Conformance to Standards

1.3.1 C Language in an Issue 4 Environment

ISO C is the language specified in the ISO C standard. Common Usage C refers to the C
Language before standardisation. Differences exist between ISO C and Common Usage C.
XPG1 to XPG3 define Common Usage C as the XSI C programming language, whereas XPG4
requires support for both ISO C and X/Open C, which is a Common Usage C.

Differences also exist between the C library definitions published in successive issues of the
Portability Guide. Issue 1 and Issue 2 derived their C library definitions from SVID Issue 1;
Issue 3 retains the same function syntax as Issue 2 but header usage is aligned with the library
definition published in ANSI standard X3.159-1989, Programming Language C (ANSI C). Issue 4
is aligned with the library definition published in the ISO C standard.

Information about the portability of applications between Issue 3 and Issue 4 is contained in this
guide, in terms of language and C library usage. In particular, Part 3 identifies where the types
of arguments and return values of individual functions are changed to align with ISO C.

Application programmers are warned that the use of earlier definitions of C library functions
need not be fully supported in Issue 4 environments. Information about migration to the use of
ANSI C headers can be found in the APPLICATION USAGE and CHANGE HISTORY sections
of System Interfaces and Headers, Issue 3.

Part 1: General Information 7

Portability Introduction

1.4 Portability
An important aspect of this document is to describe changes required to applications that
conform to Issue 3 to allow varying degrees of portability:

• to all POSIX (POSIX-2 standard and POSIX-1 standard) systems in the future

• to all POSIX systems, but using obsolescent features that may be withdrawn in the future

• to all X/Open branded systems

• to all systems of a particular vendor.

This document does not deal with these classes of portability as separate issues. The documents
in the XSI specification set contain warnings highlighting non-portable features. These take the
form of markings in the margins, coupled with text shading. If the entire SYNOPSIS section for
the interface or utility is shaded, then the interface or utility in its entirety is an extension beyond
the base formal standards. Some interfaces are collected together into feature groups, that need
not be implemented on a branded system, depending upon the particular XPG4 profile to which
the system is branded. See Section 1.7 on page 11.

A maximally portable application (one portable to all POSIX-based systems for the foreseeable
future) cannot use any of the features with marginal notations and background shading in the
XSI specification set. Judicious use can be made of features marked OB (obsolescent), EX (an
X/Open extension to POSIX), FIPS (an extension to conform to the FIPS), or JC (an extension
involving the presence of the job control feature on all X/Open systems), but OB may require
changes in a few years and EX, FIPS and JC might not be portable to systems that are not
conformant to an XPG4 profile. Using features marked UX (an X/Open UNIX Extension) may
limit portability to systems that are X/Open Single UNIX Specification-conformant. Using any
of the other marked features limits portability to a subset of XPG4 Base-conformant systems.
These specifications may be supported differently by systems branding to different XPG4
profiles. For example, an XPG4 Base 95 branded system may or may not support interfaces that
comprise certain feature groups (for example, SHARED MEMORY), while XPG4 UNIX systems
support all of the interfaces.

8 XPG3-XPG4 Base Migration Guide, Version 2

Introduction Existing Shell Applications

1.5 Existing Shell Applications
There are a few shell applications (or C applications that call the shell) that will cease to operate
when a system is converted to Issue 4 conformance. This is because previously valid input to
the shell command interpreter or to a utility has changed in meaning to correct a problem in the
historical design, to close a security loophole, to extend the system for internationalisation, or to
converge the differing syntaxes from systems such as System V, BSD, and so on. These
applications must be modified before a conversion to Issue 4 compliance is considered complete.

CW When changes in Issue 4 commands and utilities cannot be made in a forward-compatible way
from Issue 3, they are identified in this document with background shading and a marginal
notation of CW (Compatibility Warning), as in this example.

The CW notation is not used to protect applications that rely on features or behaviour not
described in Issue 3 or on those marked with portability warnings such as MV (marginal value),
OF (output format incompletely specified), PI (portability inconsistent) or UN (possibly
unsupportable feature).

Part 1: General Information 9

Guidelines for Interactive Users Introduction

1.6 Guidelines for Interactive Users
A user who follows the guidelines given for shell applications should be able to change from one
system to another without learning new conventions and rules. Such a user should observe the
same marginal warning markings that application writers do.

10 XPG3-XPG4 Base Migration Guide, Version 2

Introduction XPG4 Profiles

1.7 XPG4 Profiles
This guide describes the differences between issues of the XSI specification set as it has evolved.
These specifications form the basis for component definitions, which in turn are put together to
form profile definitions. Systems that are branded, are branded against these profile definitions.
While a developer uses the specifications when developing and porting applications programs,
the systems on which they work are branded to X/Open profiles. Branded products all have
conformance statements that describe such items as which feature groups are implemented on a
system. There are several key XPG4 profiles, all of which are completely defined in Part 3,
Profile Definitions of How to Brand — What to Buy. All components used in profile definitions
are defined in Part 2, Component Definitions of How to Brand — What to Buy.

1.7.1 XPG4 Base Profile

The original XPG4 Base profile, published in 1992, describes a fully functional environment for
portable applications development. It requires full conformance to the XPG4 Internationalised
System Calls and Libraries component, as described by System Interfaces and Headers, Issue 4,
and a soft brand for the XPG4 Commands and Utilities component, as described by Commands
and Utilities, Issue 4. This component can be anywhere along the migration path from XPG3
Commands and Utilities to a fully conforming XPG4 Commands and Utilities. Feature groups
identified in System Interfaces and Headers, Issue 4 are optionally implemented, with the
exception of the POSIX.2 C-language Binding feature group.

Required components:

• XPG4 Internationalised System Calls and Libraries

• XPG4 Commands and Utilities

• XPG4 C Language.

1.7.2 XPG4 Base 95 Profile

This is the current enhanced XPG4 Base profile requiring full conformance to the XPG4
Commands and Utilities V2 component definition. Feature groups identified in System
Interfaces and Headers, Issue 4 are optionally implemented, with the exception of the POSIX.2
C-language Binding feature group.

Required components:

• XPG4 Internationalised System Calls and Libraries

• XPG4 Commands and Utilities V2

• XPG4 C Language.

1.7.3 XPG4 UNIX Profile

This profile is a superset of XPG4 Base 95, and describes a platform supporting the additional
functions for applications portability for programs originally developed on traditional UNIX
systems. All feature groups identified in System Interfaces and Headers, Issue 4 are required to
be implemented. (This requirement does not apply to interfaces in the Encryption feature group,
as U.S. Federal government export restrictions may prevent a vendor from shipping this
functionality.)

Required components:

• XPG4 Internationalised System Calls and Libraries Extended

Part 1: General Information 11

XPG4 Profiles Introduction

• XPG4 Commands and Utilities V2

• XPG4 C Language

• XPG4 Transport Service (XTI)

• XPG4 Sockets

• XPG4 Internationalised Terminal Interfaces.

A brand is further qualified by an attribution. In order to clearly identify to purchasers the exact
specification to which a branded product conforms, an additional attribution is required when
reference is made to the X/Open brand and branded products, or to the trade mark and the
product registration.

XPG4 profile-related attributions are:

Profile Name Attribution
XPG4 Base Base
XPG4 Base 95 Base 95
XPG4 UNIX UNIX 95
UNIX 93† UNIX 93

Table 1-1 X/Open XPG4 Profiles and Brand Attributions

So, depending upon the profile definition to which a system was branding, they would claim:
‘‘ProductName Version X.X is an X/Open <Attribution> branded product’’. If the system was
branded to the complete X/Open Single UNIX Specification definition, described by the XPG4
UNIX Profile, they would claim: ‘‘ProductName Version X.X is an X/Open UNIX 95 branded
product’’.

† UNIX 93 is an interim brandable profile. To brand this way, a system must:

i. be XPG3 Base or XPG4 Base branded

ii. be based on USL/Novell code

iii. pass the System V Verification Suite (SVVS)

iv. commit to full XPG4 UNIX branding as quickly as possible.

This UNIX 93 interim profile is not a classic profile, and is only described in the ‘‘Standards of Quality’’ section of the Trade Mark
Licence Agreement. It is only considered to be an interim measure similar to XPG4 Commands and Utilities (1992), allowing the
marketplace to catch up to the specification programme.

12 XPG3-XPG4 Base Migration Guide, Version 2

Chapter 2

General Portability Issues

This chapter explains differences between Issue 3 and Issue 4 in the following areas:

• definitions of terms

• internationalisation and its effect on character set, locale, environment variables and regular
expressions

• directory structure and devices

• general terminal interface

• interactive considerations.

2.1 Glossary
In Issue 3, each of the Base specifications (Commands and Utilities, System Interfaces and
Headers) has its own chapter on definitions. In Issue 4, common definitions are contained in a
single volume, the XBD specification.

The Glossary is substantially rewritten in Issue 4, containing a formal definition of more terms
than are presented in Issue 3; the definitions themselves are more concise.

Part 1: General Information 13

Internationalisation General Portability Issues

2.2 Internationalisation
Many of the features for internationalising applications in the POSIX-2 standard were developed
by X/Open members and are related to features in Issue 3. Therefore, applications complying
with Issue 3 have comparatively fewer migration difficulties than applications on other systems.
A more complete description of the various internationalisation features can be found in the
X/Open Internationalisation Guide, Version 2.

The major areas affected by internationalisation are the character set (see Section 2.3 on page 15),
locale (see Section 2.4 on page 18), environment variables (see Section 2.5 on page 23) and
regular expressions (see Section 2.6 on page 26).

2.2.1 Bytes and Characters

Many interfaces were originally designed with the assumption that a character consists of one
byte. The interfaces in Issue 4 do not make that assumption. The XSI specification set makes
precise use of the terms byte, column position , octet and character .

A byte is a unit of eight bits or larger. Sizes greater than eight are relatively uncommon, but
nine, ten and even 16-bit bytes are possible. A byte exactly eight bits long is referred to as an
octet, but octet refers to a quantity of eight bits in a row, not necessarily at an addressable
machine boundary, as a byte is.

A character is defined as a sequence of one or more bytes representing a single graphic symbol
or control code. Thus, wherever the term is used in the XSI specification set, the implication is
that the referenced data object can contain multi-byte sequences.

Emerging encoding standards have defined characters of up to four 8-bit bytes. There is no
requirement that every character is the same length, even within a string or file.

A column position has a width based on the narrowest displayable character in the character set.
Although most western characters are all one column position wide, some character sets, such as
Kanji, have double- or triple-width characters. Utilities such as expand, fold, pr and vi are aware
of these relative widths. The width of each character is a value related to the current codeset in
the locale. This information is not available to the application in a portable manner.

2.2.2 Message Catalogues

A number of schemes have been developed to handle text string data in applications programs,
such that the appropriate string is delivered by the program in the appropriate language
depending upon a run-time configuration. Tools to collect and manage these strings as
‘‘message’’ files or message catalogues, along with the programmatic interfaces to retrieve the
strings at run time, exist in a number of forms on traditional UNIX systems.

Issue 4 provides the same interfaces as Issue 3, namely catopen(), catgets(), catclose () and the
gencat utility. Programs that have made use of other schemes will need to migrate to these
interfaces for portability across X/Open XPG4 UNIX and XPG4 Base branded systems.

14 XPG3-XPG4 Base Migration Guide, Version 2

General Portability Issues Character Set

2.3 Character Set
A portable filename character set is defined in Issue 3 for transferring the names of files between
systems, but the only reference to a ‘‘portable character set’’ for text is made in an oblique
reference to the 7-bit ASCII codeset, which is defined to be present in all supported locales.

By comparison, Issue 4 fully defines a portable character set in terms of the set of characters that
are guaranteed to be included in all supported locales. Although no specific encoding is defined
for the portable character set, certain rules are stated for encoding, as follows:

• A null character, NUL, must be present with all bits set to zero.

• For the encoding of characters 0 to 9, the value of each character after 0 must be one greater
than its predecessor.

• All characters must be single-byte entities representable as a positive value of type char.

No guarantees are given or implied that the encoding of characters defined in the portable
character set is invariant across locales. On systems where the encoding does vary, the results of
applications accessing these locales are unspecified.

Another important difference between Issue 3 and Issue 4 is that the latter provides for the
support of multi-byte codesets, which may or may not have state dependencies. Thus, for
example, a text sequence may contain single-byte characters, characters that change shift state,
or multi-byte characters. There is no requirement that all XSI-conformant systems support this
feature, but XSI permits it.

2.3.1 Character Set Description File

This is a new feature in Issue 4. The provision of character set description files allows character
sets and their mapping to coded character sets to be defined in a portable manner. In essence, a
character set description file contains the list of symbolic characters defined in a codeset and
their encodings. These are referred to throughout XPG4 as charmap files and are of particular
significance to the localedef utility defined in the XCU specification.

2.3.2 Transparency

In Issue 4, all the utilities are transparent to 8-bit data. This includes all command-line
arguments and file or character data processed by a utility. This should impose no migration
barriers.

However, there are still portability restrictions on some 8-bit data when transported between
systems:

• Inter-system mail may be restricted to 7-bit data by underlying mail or network protocols.

• 8-bit data and filenames may or may not be portable to systems that are not XSI-conformant.

• Filenames should be limited to those in the portable filename character set for full portability
to POSIX systems.

• New restrictions in Issue 4 recommend that only characters in the portable character set in
the XBD specification with the specific 7-bit ISO/IEC 646: 1991 standard International
Reference Version encoding be used for fully portable interchange of data.

Part 1: General Information 15

Character Set General Portability Issues

2.3.3 Utilities and Multi-byte Codeset Support

It is important for the utility to describe exactly what units it is manipulating. Most of the
utilities in Issue 4 deal with characters, although some, such as fold, have options to recognise
either byte or character boundaries, and some, such as wc (using the −c option), deal only with
bytes. Applications that were written with 8-bit characters in mind should be re-evaluated to
find unportable assumptions. For example, if a file is translated to another codeset, the results of
wc may differ. File sizes and all system limits ({PATH_MAX}, {LINE_MAX}, and so on) are
generally expressed in bytes, which may be confusing to users who use codesets that encode
characters with multiple bytes.

There are some restrictions imposed on implementations that use bytes larger than octets:

• Utilities that accept byte input in terms of numeric values, such as awk and tr, and those that
can display bytes numerically, such as ed, ex, od, sed and vi, have no portable method of
representing 9-bit bytes in hexadecimal or 10-bit bytes in octal.

• The cksum and uuencode utilities operate in terms of octets and portable results are not
guaranteed for systems where the number of bits in a byte is not evenly divisible by 8.

2.3.4 System Interfaces and Headers Multi-byte Codeset Support

Many of the system interfaces and headers published in earlier versions of the XSH specification
are defined to work exclusively with byte values, which limits them in terms of multi-byte
codeset support. Ideally, these interfaces should be redefined to work with wide-character
types. However, for reasons of compatibility with earlier systems, this approach is untenable.

This problem has been solved by defining a parallel set of interfaces. These are named
collectively by X/Open as the Worldwide Portability Interfaces (WPI). They are identified in the
XSH specification by WP markings in the left margin. The majority are aligned with the MSE
working draft; exceptions are documented in Chapter 7. (The only exceptions are wcsftime(),
wcstok() and wcswcs().) These interfaces are functionally equivalent to the standard interfaces,
but work on wide-character values. The single-byte versions are retained in the XSI for
compatibility with Issue 3, but it is the WPI interfaces that are recommended for use by
character-based portable applications. However, application developers should note that
because these functions are aligned with the MSE working draft, the interfaces may change in
the next issue of the XSH specification.

Externally, multi-byte sequences tend to be represented as strings of bytes (that is, type char* in
C). As an object of this type would be difficult to manipulate internally, a new data type is
introduced (wchar_t), which is defined as an object large enough to hold the binary encoded
value of any character in the range of codesets supported by an implementation. The size of
wchar_t can vary from one system to another, and functions are provided to convert from the
external char format to the internal wchar_t format.

An implementation’s maximum number of bytes in a character is defined by the constant
{MB_LEN_MAX}; the maximum allowable number of characters in the current locale is
indicated by {MB_CUR_MAX}.

Use of the WPI interfaces saves the programmer from having to worry about the differences
between external and internal formats, as any conversions required are normally performed
automatically when data is moved between different storage media. All the WPI interfaces
manipulate character strings in terms of wchar_t * objects, allowing an implementation to
support either single-byte or multi-byte codesets.

16 XPG3-XPG4 Base Migration Guide, Version 2

General Portability Issues Character Set

Note: All XSI-conformant systems are required to support the Worldwide Portability
Interfaces, but whether or not they also support multi-byte codesets is
implementation-dependent. Thus, it is permissible for a system supporting only
single-byte codesets to define wchar_t as char.

Part 1: General Information 17

Locale General Portability Issues

2.4 Locale
Issue 4 contains a complete and coherent definition of the program locale, as a generic object,
and a specific description of the POSIX (or C) locale supported on all XSI-conformant systems.

The Issue 4 locale definition is compatible with Issue 3, with the following additions:

• LC_MESSAGES is added to the list of locale categories.

• The rules for initialising a program locale from the environment are modified to cater for the
LC_ALL environment variable (see Section 2.5 on page 23 for information on environment
variables).

• Collation rules are extended to cater for multiple pass collation algorithms (rather than the
simple two pass algorithms supported in Issue 3).

With respect to the definition of the POSIX locale, the following changes should be noted:

• Collation ordering is defined by the use of symbolic names rather than character codes. It is
further mandated that the collation order is the numeric ordering of their ASCII codes,
although it is not required that the character encoding is 7-bit ASCII.

• For category LC_CTYPE, a new keyword, blank, is added, which contains both spaces and
tabs.

• The LC_MESSAGES category, and the langinfo constants NOEXPR and YESEXPR, are
added. NOSTR and YESSTR are retained for compatibility with Issue 3.

• For category LC_MONETARY, the settings of values in the lconv structure are defined. In
Issue 3, only the langinfo item CRNCYSTR is defined in this category.

• For category LC_NUMERIC, the settings of values in the lconv structure are defined.

• Items T_FMT_AMPM, ERA, ERA_D_FMT and ALT_DIGITS are added to the LC_TIME
category.

The localedef utility is new in Issue 4; this gives applications and users the ability to create private
locales by customising locale categories.

In general, although applications have had to be aware of locale states in previous issues, the
advent of private locales is cause for much greater caution in the design of portable applications.

There are various categories within the overall locale; application developers should not modify
all the categories, using LC_ALL, when only certain category effects are required.

Rules can be defined for each supported locale category as follows:

• LC_CTYPE defines rules for character classification and case conversion.

• LC_COLLATE defines rules for collation.

• LC_MONETARY defines rules for the formatting of monetary numeric information.

• LC_NUMERIC defines rules for the formatting of non-monetary numeric information.

• LC_TIME defines rules for the formatting of date and time information.

• LC_MESSAGES defines the format and values for affirmative and negative responses, and
may also affect the format of messages from utilities.

Private locales are presented in what are generically known as localedef source files, which are
processed by the localedef utility to produce a locale object from a portable source description of
a locale. These locales do not affect the system in general or other users, but they do affect the
operations of many of the standard utilities and some of the C-language interfaces.

18 XPG3-XPG4 Base Migration Guide, Version 2

General Portability Issues Locale

The ramifications of this are discussed in the following sections.

2.4.1 Collation

Since users can arbitrarily modify the collation sequence with localedef, applications cannot rely
on the sequence of output of such utilities as ls or sort, or those that use regular expressions or
pattern matching, unless the application switches to a known locale for collation. For example,
if the user has altered the collation of xaa, xab, and so on, an application that relies on a sequence
such as:

split myfile
. . .
cat x?? > myfile

may get a scrambled file. This is because split creates files in a specific sequence, unaffected by
the LC_COLLATE category, but pathname expansion is affected by it. In this example, replace
the cat command with:

Save_COLLATE=$LC_COLLATE
LC_COLLATE=POSIX
cat x?? > myfile
LC_COLLATE=$Save_COLLATE

In the XCU specification, the following utilities are affected by LC_COLLATE:

Utilities Affected by LC_COLLATE
awk cxref join nm sort
cflow dircmp lex pax tar
comm ed localedef pg tr
cp ex ls rm uucp
cpio expr more sed vi
csplit find mv sh xargs
ctags grep nl

In the XSH specification, the following functions are affected by LC_COLLATE:

Functions Affected by LC_COLLATE
fnmatch()
glob()
localeconv ()

nl_langinfo ()
regcomp()

regexec()
strcoll()

strxfrm()
wcscoll()

wcsxfrm()
wordexp()

2.4.2 Character Classification

Changing LC_CTYPE can be more invasive than LC_COLLATE because, in addition to regular
expressions and shell patterns, character classification affects command-line processing,
recognition of white space, display of non-printable characters by the editors, default field
separators in sort, and so on.

Part 1: General Information 19

Locale General Portability Issues

In the XCU specification, the following utilities are affected by the LC_CTYPE category:

Utilities Affected by LC_CTYPE
admin cut join pcat tr
alias cxref kill pg tsort
ar date lex pr tty
asa dd lint printf type
at delta ln prs ulimit
awk df locale ps umask
basename diff localedef read unalias
batch dircmp logger renice uname
bc dirname logname rm uncompress
bg dis lp rmdel unexpand
c89 du lpstat rmdir unget
cal echo ls sact uniq
calendar ed m4 sccs unpack
cancel env mail sed uucp
cat ex mailx sh uudecode
cc expand make sleep uuencode
cd expr man sort uulog
cflow fc mesg spell uuname
chgrp fg mkdir split uupick
chmod file mkfifo strings uustat
chown find more strip uuto
cksum fold mv stty uux
cmp fort77 newgrp sum val
col gencat nice tabs vi
comm get nl tail wait
command getconf nm talk wc
compress getopts nohup tar what
cp grep od tee who
cpio hash pack test write
crontab head paste time xargs
csplit iconv patch touch yacc
ctags id pathchk tput zcat
cu jobs pax

In the XSH specification, the following functions are affected by the LC_CTYPE category:

Functions Affected by LC_CTYPE
atof () ispunct() iswpunct() setlocale () towlower()
atoi () isspace() iswspace() scanf() towupper()
atol () isupper() iswupper() sprintf() vprintf()
fprintf () iswalnum() iswxdigit () sscanf() wcstod()
fscanf() iswalpha () mblen() strftime() wcstol()
isalnum() iswcntrl() mbstowcs() strptime() wcstombs()
isalpha () iswctype() mbtowc() strtod() wcstoul()
iscntrl() iswdigit () nl_langinfo () strtol() wctomb()
isgraph() iswgraph() printf() strtoul() wctype()
islower() iswlower() regcomp() tolower()
isprint() iswprint() regexec() toupper()

20 XPG3-XPG4 Base Migration Guide, Version 2

General Portability Issues Locale

2.4.3 Date and Time Formatting

In Issue 3, the LC_TIME category affects utilities such as date, ls and pr only on certain
internationalised systems. In Issue 4 all systems support this effect.

In the XCU specification, the following utilities are affected by the LC_TIME category:

Utilities Affected by LC_TIME
ar cpio ls pr uustat
at date mail ps who
batch diff mailx tar
cal lp patch uucp
calendar lpstat pax uulog

In the XSH specification, the following functions are affected by the LC_TIME category:

Functions Affected by LC_TIME
nl_langinfo () setlocale () strftime() strptime() wcsftime()

2.4.4 Numeric Formatting

In Issue 3, the LC_NUMERIC category affects only the sort utility on some systems. The list is
now expanded.

In the XCU specification, the following utilities are affected by the LC_NUMERIC category:

Utilities Affected by LC_NUMERIC
awk od printf sort time

In the XSH specification, the following functions are affected by the LC_NUMERIC category:

Functions Affected by LC_NUMERIC
fprintf () nl_langinfo () setlocale () strfmon() wcstod()
fscanf() printf() sprintf() strtod()
localeconv () scanf() sscanf() vprintf()

2.4.5 Affirmative Responses

The value of the LC_MESSAGES category now affects the affirmative response characteristics of
a number of utilities. Although this is primarily of concern to interactive users, application
documentation may need changing. Programs such as the historical yes (not in the XCU
specification) would have to be modified because the letter y is no longer a fully portable means
of indicating agreement.

In the XCU specification, the following utilities have affirmative or negative response processing
that is affected by the LC_MESSAGES category:

Utilities Affected by
LC_MESSAGES Affirmative Responses

cp find mv rm xargs
ex localedef pax tar

Part 1: General Information 21

Locale General Portability Issues

2.4.6 Message Formatting

In the XSH specification, the following functions are affected by the LC_MESSAGES category,
although not for the purposes of determining affirmative or negative responses:

Functions Affected by LC_MESSAGES
catopen() nl_langinfo () perror() strerror()

2.4.7 Monetary Formatting

In the XSH specification, the following functions are affected by the LC_MONETARY category:

Functions Affected by LC_MONETARY
localeconv () nl_langinfo () setlocale () strfmon()

2.4.8 Functions that Invoke Commands

The popen() and system() functions are indirectly affected by all locale categories, because they
invoke commands that may be affected.

22 XPG3-XPG4 Base Migration Guide, Version 2

General Portability Issues Environment Variables

2.5 Environment Variables
Applications should not create their own environment variable names without at least one
lower-case letter. Collisions with future implementation extensions may otherwise result.

The definition of the PATH variable has changed. A portable application should only use . to
represent the current directory in path searching. For example, the first PATH should be
changed to the second:

PATH=:$HOME/bin::/bin:
PATH=.:$HOME/bin:.:/bin:.

The system still accepts both to mean the following sequence:

current directory
$HOME/bin
current directory
/bin
current directory

This is an artificial example to show the three possible locations of the current directory within
PATH. It is not useful to specify the current directory more than once. Also, note that it is poor
practice to precede the directories of system executable files with the current directory because it
promotes a situation in which the security policy employed on the system is undermined.

Portable applications should not use hard-coded pathnames to access the standard utilities
because the locations may vary between systems. Using the command:

getconf PATH

will provide a string with the names of the appropriate directories.

The concept of regulating language and cultural aspects of an application based on the contents
of the LANG and LC_* environment variables was introduced in Issue 2 and expanded upon in
Issue 3. Thus, most XSI-conformant applications are already cognizant of these variables.

The following table provides a list of the environment variable names newly reserved in Issue 4.
Applications that use any of these variables for other than the stated purpose should be
modified:

Newly Reserved Environment Variables
ARFLAGS
CC
CFLAGS
CHARSET
ENV
FC
FCEDIT
FFLAGS

GET
GFLAGS
HISTFILE
HISTSIZE
LC_ALL
LC_MESSAGES
LDFLAGS
LEX

LFLAGS
LINENO
MAKEFLAGS
MAKESHELL
MANPATH
MORE
NPROC

OLDPWD
OPTARG
OPTERR
OPTIND
PPID
PROCLANG
PROJECTDIR

PS3
PS4
PWD
RANDOM
SECONDS
YACC
YFLAGS

With Issue 4, Version 2, two more environment variables have been reserved: DATEMSK,
MSGVERB.

Part 1: General Information 23

Environment Variables General Portability Issues

2.5.1 Locale Environment Variables

LC_ALL contains the user’s requirements for the program’s entire locale and overrides settings of
the other locale environment variables (that is, LC_COLLATE, LC_CTYPE, LC_MESSAGES,
LC_MONETARY, LC_NUMERIC, LC_TIME and LANG), when the setlocale () function initialises
the program locale using the locale environment variables.

LC_MESSAGES affects the format of affirmative and negative responses, and also directs the
catopen() function in determining the name of message catalogues, provided the value of the
second argument in the call to catopen() is NL_CAT_LOCALE.

The significance of LC_ALL is that it fundamentally changes the rules by which a program locale
is initialised from the environment. Thus, when the setlocale () function is called as follows:

setlocale(LC_ALL, "");

the locale is initialised according to which of the following conditions is satisfied first:

1. LC_ALL is set (this takes precedence over all other locale-related environment variables).

2. LC_ALL is not set and one or more of the category-specific environment variables is set.

3. LANG is set (this provides a default when neither LC_ALL nor a category-specific
environment variable is set).

LC_MESSAGES replaces LANG in determining the language of affirmative and negative
responses. It also replaces LANG in the affairs of the catopen() function if, and only if, the second
argument is set to NL_CAT_LOCALE; otherwise the catopen() function still uses LANG, thus
providing backwards compatibility with Issue 3. In particular, the description of the NLSPATH
environment variable is changed to indicate use of LC_MESSAGES rather than LANG in
determining the name and location of message catalogues.

Note: Guidelines for the location of message catalogues have not yet been developed.
Therefore, take care to avoid conflicting with catalogues used by other applications and
the standard utilities.

The format of locale names, as assigned to one of the locale-related environment variables, has
also been changed from:

language [_territory [.codeset]][@modifier]

to:

language [_territory][.codeset][@modifier]

Thus, whereas the territory and codeset elements of a locale name are additive in Issue 3, they
are independent in Issue 4.

Another change in Issue 4 is that if the value of a locale name begins with a slash, it is
interpreted as the pathname of a locale definition.

24 XPG3-XPG4 Base Migration Guide, Version 2

General Portability Issues Environment Variables

2.5.2 Other Environment Variables

An alternative format is defined for the TZ environment variable:

: characters

which defines that the value is handled in an implementation-dependent manner.

In Issue 3, TMPDIR is mentioned as a variable that is commonly defined by implementations,
but its use is not defined and its availability is not guaranteed.

Part 1: General Information 25

Regular Expressions General Portability Issues

2.6 Regular Expressions
The full syntax of regular expressions is consolidated in the XBD specification. In Issue 3, these
definitions were split between two volumes (Commands and Utilities and Supplementary
Definitions). Also, a statement is added indicating that the definition of historical simple regular
expressions will be withdrawn in a future issue in favour of the improved internationalised
version.

The definition of internationalised regular expressions is the same as in Issue 3, but they are now
part of the POSIX.2 C-language Binding feature group. If they are supported, the feature test
macro {_POSIX2_C_VERSION} is set to a value other than −1.

Where applications use regular expressions, it is recommended to use regcomp(), regexec(), and
so on, rather than the regexp() family of functions, the re_comp() family of functions, or the
regcmp() family of functions, all of which are marked TO BE WITHDRAWN. The latter two sets
of functions were introduced with the X/Open UNIX Extension to support historical use.

Only rare compliant Issue 3 applications are impacted negatively by regular expression syntax
changes in Issue 4 because X/Open was involved in their development. Existing applications
should already be aware that the bracket expressions beginning with [[:, [[= and [[. are reserved
for international character classes, equivalence classes and collating symbols respectively. It is
possible that these obscure sequences were in use in some applications, because they were valid
previously, but no portable Issue 3 application would use them.

The following changes may affect applications:

• A fully portable application should not use range expressions. They continue to be
supported, but their use is discouraged. Applications that switch to a known locale for
collation can use range expressions reliably, but that type of application has limited
international usefulness. The vast majority of existing range expressions can be replaced by
lists of specific characters or character classifications. For example:

Convert from Convert to
[a-z] [[:lower:]]
[a-zA-Z] [[:alpha:]]
[a-zA-Z0-9] [[:alnum:]]

• Range expressions can match multi-character collating elements. For example, if the multi-
character collating element ch is defined and it collates between c and d, the expression:

[c-d]at

would now match the string:

chat

as well as:

cat

as it did previously.

• The Basic Regular Expression (BRE) interval expression syntax:

\{ m, n\}

is extended to apply to all regular expressions. Previously, only ed and sed used this form.

CW !For grep −E, egrep, lex and affirmative or negative responses (Extended Regular Expressions),
the syntax is the same, less the backslashes. Previously, this matched actual characters.

26 XPG3-XPG4 Base Migration Guide, Version 2

General Portability Issues Regular Expressions

For example:

a{1}

matched that literal four-character string. Such uses of braces surrounding numbers must be
changed to escape the braces:

a\{1\}

• Regular expressions support both duplication and interval expressions following sub-
expressions and back-references. Some historical systems supported:

\ n*

but treated:

\ n\{ min,max \}

or:

\(. . . \)*

or:

\(. . . \)\{ min,max \}

as invalid.

CW • An implementation may treat multiple duplication symbols as an error. Previously, they
were additive. As an example:

a+*b

matched zero or more instances of a followed by b. Now, multiple duplication symbols are
undefined; that is, they cannot be relied upon for portable applications. In BREs, adjacent
instances of * and:

\{ mn\}

must be recoded. In EREs, adjacent instances of *, ?, + and {m,n} must be recoded.

CW • An implementation may treat a circumflex or dollar-sign as an anchor within BRE sub-
expressions. For example:

\(ˆa\)b

previously matched the string ˆab. Now, some systems may treat the circumflex as an
anchor, matching ab at the beginning of a line. Any instances of:

\(ˆ

or:

$\)

in BREs must be changed to escape the ˆ and $.

This change does not apply to EREs; these characters always required escaping to represent
themselves outside bracket expressions.

• There is now a limit of at least 256 bytes on regular expressions. This is considerably larger
than most historical systems and allows more elaborate patterns, particularly in egrep.

Part 1: General Information 27

Regular Expressions General Portability Issues

Utilities Employing Basic Regular Expressions
csplit ex more pg sed
ctags expr nl red vi
ed grep pax

Utilities Employing Extended Regular Expressions

awk ex1 lex2 pax1 tar1

cp1 find1 mv1 rm1 xargs1

egrep grep -E

Notes:

1. Used only as part of affirmative or negative response processing.

2. There are significant differences between the lex EREs and those described in the
XBD specification, Section 7.4, Extended Regular Expressions.

Pattern Matching

Shell pattern matching adopts all of the internationalisation attributes of regular expressions.
Further information on filename matching can be found in Chapter 4.

28 XPG3-XPG4 Base Migration Guide, Version 2

General Portability Issues Directory Structure and Devices

2.7 Directory Structure and Devices

2.7.1 Directory Structure

Issue 4 states that the following directories must exist on all XSI-conformant systems:

• /

• /dev

• /tmp

While it is generally safe to assume that these always existed on any XSI-conformant system, it is
not stated explicitly in previous issues.

2.7.2 Output Devices and Terminal Types

The XBD specification, Section 8.2, Output Devices and Terminal Types, is added to indicate how
implementations should support utilities defined in the XCU specification that have
requirements for particular terminal characteristics. Note the following:

• Implementations are not required to support all terminal types. In particular, with
asynchronous and synchronous devices, neither or both may be supported. In the case of
asynchronous devices, they may support some or all of the required terminal characteristics.

• When a feature or utility is not supported on a specific terminal type, as allowed by the
definition in the XCU specification, an implementation is required to indicate such conditions
through diagnostic messages or exit status values (or both).

• An implementation is required to document which terminal types it supports and which
features or utilities are not supported by each terminal.

Part 1: General Information 29

General Terminal Interface General Portability Issues

2.8 General Terminal Interface
In Issue 3, job control is defined as optional; in Issue 4, it is mandatory. Thus, a number of
changes are made to the General Terminal Interface, removing caveats like ‘‘If the
implementation supports job control’’. This change also means that the signals SIGTSTP,
SIGTTIN and SIGTTOU must be supported by an implementation.

For FIPS alignment, {_POSIX_VDISABLE} is supported on all XSI-conformant systems in Issue 4,
meaning that all changeable special control characters can be disabled individually. This is
defined as optional in Issue 3.

In the list of input modes flags, IUCLC is marked TO BE WITHDRAWN. OLCUC is similarly
marked in the list of output mode flags, and XCASE is so marked in the list of local mode flags.

30 XPG3-XPG4 Base Migration Guide, Version 2

General Portability Issues Invoking Commands

2.9 Invoking Commands

2.9.1 Utility Syntax Guidelines

Many of the utilities in Issue 4 are modified slightly to improve the consistency of command-line
argument handling. This effort has had a much larger impact on implementations than on users,
essentially requiring that almost all the standard utilities be recoded using getopt() and that
backward compatibility for existing applications be maintained. The following changes have
ramifications on applications and users:

CW • Virtually all arguments of the form −xarg are changed so that both −xarg and −x arg are
accepted on the command line. A portable application must use the −x arg form, splitting the
option name and its option-argument into separate command-line arguments.

There are a few exceptions to this policy. The POSIX-2 standard pr utility maintains the old
form for historical reasons, and a portable application cannot rely on implementations
supporting a new form (although they are allowed to do so). Also, some of the obsolescent
forms maintain the old syntax.

In the XCU specification, the following Issue 3 utilities have option-arguments that were
previously adjacent to the option letter, but should now be separated:

Utilities Affected by Separating Arguments
admin cxref lp prs uucp
awk delta lpstat ps uupick
cc dis m4 rmdel uustat
cflow ex nl sort val
csplit get paste tabs vi
cut lint pr unget xargs

• A number of the utilities are modified to add options to replace forms of syntax that did not
meet the Utility Syntax Guidelines:

— single hyphens used as other than filename operands (for standard input or output)

— option letters that are actually decimal values.

The historical forms of these utilities are preserved as obsolescent versions. Portable
applications should migrate to the new forms; details appear in Chapter 4. The following
utilities are affected:

Utilities Modified by the Syntax Guidelines
du fgrep lex sort tty
ed get more split uniq
egrep head newgrp strings uux
env join nice tail vi
ex kill nl touch xargs
expand

• Most of the utilities are now required to accept − − as an operand that means ‘‘no more
options follow’’. Portable applications should be modified to use this argument whenever
operands are being constructed for a command line and the application writer does not have
full control over the form of the operand. For example, any operand that is a pathname, a
database entry or a user reply could be a problem.

Part 1: General Information 31

Invoking Commands General Portability Issues

The script:

printf "Enter filename(s) to be removed:"
read Reply
eval rm $Reply

is not portably consistent if there is a chance the first filename entered by a naive user could
be:

-rf

This is admittedly not a portable filename, but it is valid. In this example, the utility name rm
should be followed by the − − argument. However, if the application writer is supplying the
operands as part of the script itself, this change is unnecessary, although benign.

This guideline also applies to utilities that do not usually take any options because the
implementation is free to add options as extensions.

2.9.2 Limits

Various limits now affect the behaviour of utilities. In all cases, these limits are in excess of the
limits imposed by historical systems (which frequently differed between systems and were
rarely publicised).

• The {LINE_MAX} limit is the most significant change. In most cases, this change does not
affect existing applications. Many of the standard utilities previously had limits on
processing text lines in the range of 128 to 512 bytes; some would fail in unpredictable ways
if the line length were exceeded. Therefore, portable applications in the past avoided long
lines. New applications are assured of successful processing for lines no longer than 2048
bytes.

The application should be able to handle such long lines. For example, a C-language
application that receives pipeline input from a standard utility must now be aware that files
with long lines may appear on systems, and the utilities now pass them through. In C, the
current value of {LINE_MAX} is available in <limits.h> or from sysconf(), but it is never less
than 2048.

Shell script applications should be evaluated for the inclusion of fold, if displaying, printing
or mailing longer lines is anticipated.

• Some utilities now have specific limits that increase their capacity over historical versions
and make using them more consistent and portable. All those processing regular expressions
can now handle arbitrary expressions up to 256 bytes. The sed stream editor can process
larger pattern and hold spaces. Other examples of increased limits are in Chapter 4.

• A related fact is that many previous arbitrary limits have been silently removed. For
example, previous versions of ed were limited to comparatively small editing buffers. The
new version of ed has no stated editing size limit. Therefore, the implementation
dynamically allocates resources to provide what is required. If ed fails, it is now because
some system resource (for example, memory, disk space, number of active processes) was
exhausted, not because of an arbitrary programming limit, such as a fixed size internal buffer.
Also, the commands in sed are no longer arbitrarily limited.

Another example of a removed, unstated limit is that some versions of rm would fail to
remove a directory hierarchy if it contained too many levels of sub-directories.

32 XPG3-XPG4 Base Migration Guide, Version 2

General Portability Issues Invoking Commands

2.9.3 Input/Output Formats

Many informative (as opposed to diagnostic) messages from the utilities are documented, to
promote their use within pipelines in a portable way. Applications should be examined for any
previous reliance on specific message contents. In most cases, these messages were not listed in
Issue 3, so they could not have been used portably.

The new message specifications are written such that usage of white space can be varied by the
utility, to line up columns, for example. Applications cannot generally rely on comparisons of
fixed strings, but should be written to examine the utility output with awk, lex, read or scanf().

Applications relying on the new message formats must be aware of the locale in which they are
operating. In most cases, the XCU specification specifies formats only when LC_MESSAGES is
set to the POSIX locale.

Unfortunately, it is still difficult to parse outputs from some utilities in a portable way. For
example, if a utility message includes a filename, that name could potentially include space, tab
or newline characters, making it difficult to locate field, or even line, boundaries. Applications
making heavy use of output formats are probably portable only to systems with conscientious
users and system administrators who follow portable filename guidelines.

2.9.4 Errors

Exit status values are listed for the first time for many utilities, although it is frequently the case
that this is ‘‘zero success, non-zero failure’’. In those cases, applications should be examined and
any reliance on system-specific exit values removed. For example, relying on pack to return the
number of files it could not pack was never portable in cases where that number could have
been 256.

Some exit status values are reserved for specific uses:

126 A utility requested to be invoked was found but could not be invoked.

127 A utility requested to be invoked could not be found.

>128 The utility was interrupted by a signal.

Writing applications that exit with these values for reasons other than those stated should be
avoided. Utilities that list these exit values return them only in the cases specified. Other
utilities may return these values for other conditions.

2.9.5 Other Global Utility Behaviour

The definition of a text file requires that each line is terminated with a newline. Some historical
versions of utilities may have allowed the last newline to be missing, silently adding one in the
output. This behaviour is not guaranteed, except where specifically documented. Applications
creating text files should be examined to ensure they are doing so correctly.

Implementations are required to allow simultaneous execution of some utilities, even if
historically they could not because of temporary-file naming conventions that caused collisions
in common directories. They are also required to clean up temporary files in most cases.

Part 1: General Information 33

General Portability Issues

34 XPG3-XPG4 Base Migration Guide, Version 2

XPG3-XPG4 Base Migration Guide, Version 2

Part 2:

Commands and Utilities Migration

X/Open Company Ltd.

Part 2: Commands and Utilities Migration 35

36 XPG3-XPG4 Base Migration Guide, Version 2

Chapter 3

Shell Command Language

This chapter considers the effects of new features in the Issue 4 shell command language. In
most cases these offer opportunities for new applications to be written with more reliance on the
shell itself and less on the utilities. In some cases, however, these new features require subtle
changes to existing applications.

3.1 Naming Considerations

3.1.1 Identifiers

The letters in portable names are restricted to those in the portable character set; this is not stated
in Issue 3. Alias names can also include the characters:

! % , @

Implementations supporting additional characters document whether those alphabetics can be
used in names and aliases.

3.1.2 Operators

CW The symbol ((is reserved as a control operator on some systems. Therefore, nested sub-shells
that begin with ((must be separated. For example, convert:

((echo hello);(echo world))

to:

((echo hello);(echo world))

Some systems (for example, those using the KornShell to implement the XCU specification shell)
may treat these as invalid arithmetic expressions instead of subshells. Note that this
requirement does not force the separation of)) because the shell is able to distinguish the
termination of arithmetic from that of nested subshells.

CW The ! character is now a reserved word that complements the results from a pipeline. This was
previously a valid, although unportable, utility name.

The new redirection operators >| and <> are added, but these were not valid shell syntax
previously.

The curly-brace { } characters are designated as possible control operators in a future issue; they
are currently reserved words. Portable applications should begin quoting them now if they are
to represent literal characters because this quoting may be required in the future. For example,
(using one quoting mechanism), convert:

echo {Hi}

to:

echo \{Hi\}

CW The four words: function, select, [[and]] are reserved and cannot be used where a reserved
word would be recognised, such as a command name.

Part 2: Commands and Utilities Migration 37

Naming Considerations Shell Command Language

3.1.3 Selecting Command Interpreters

CW Some systems have supported a kernel feature that caused special treatment of shell scripts
beginning with the characters #!. This was used to select a command interpreter. For example, it
is common to see a script beginning with:

#!/bin/sh

which means, ‘‘run this using the program /bin/sh, even if another shell is in use’’. This was
never strictly portable (because the absolute pathname /bin/sh is not guaranteed on a system),
and a fully portable program must not rely on it; the system may treat it only as a comment.

3.1.4 Aliases

Aliases are a new facility and should cause no forward compatibility problems.

However, if there is concern about the user setting up an environment where utility names do
things unintended by the application, note that aliases can be brought into a shell script through
common implementation extensions. A way to guard against command names expanding into
aliases is to quote them. For example, a very common alias that an interactive user might set up
is:

alias ls="ls -CF"

This would disrupt shell scripts such as:

ls | pax ...

The previous ls could be replaced by l\s or an unalias ls command could be issued.

3.1.5 Reserved Command Names

Because of new utilities and other changes, the following are no longer valid names for local
commands, unless they are invoked with a pathname containing a slash:

• any unquoted command name ending with a colon (:)

• any of the following, when not quoted: !, [[or]]

• any of the following:

alias fg more time
asa fold nice tput
bg fort77 pathchk unalias
c89 function pax uncompress
cksum head printf unexpand
command jobs renice uudecode
compress locale sccs uuencode
expand localedef select zcat
fc logger strings

38 XPG3-XPG4 Base Migration Guide, Version 2

Shell Command Language Parameters, Variables and Word Expansions

3.2 Parameters, Variables and Word Expansions

3.2.1 IFS

The treatment of the value of the IFS variable and its use in field splitting are changed:

1. The unset special built-in can unset IFS. If not set, IFS behaves as if it were:

<space><tab><newline>

CW 2. When "$*" is expanded, the first character of IFS is used as a separator. Although this is as
stated in Issue 3, historical systems actually used a single space character in this instance.

CW 3. If IFS is null, there is no separator, for example:

$ IFS=’’
$ set a b c
$ echo "$*"
abc

Once again, previous systems used a space character.

CW 4. When IFS is set to a value other than:

<space><tab><newline>

the characters within IFS that are not white space act as field separators. For example, if a
file /etc/passwd contained the first line:

root::0:0::/:/bin/sh

The script:

IFS=":"
read a b c < /etc/passwd
echo $b

would have previously produced 0, but it now produces a null value, indicating that each
instance of a colon delimited a field.

5. Field splitting with IFS occurs only after parameter expansion, command substitution or as
part of the read command. This prevents certain security loopholes. Previously, on some
systems the following input:

$ IFS=o
$ violet

would invoke vi to edit file let.

No portable application should have relied on this behaviour.

3.2.2 Tilde Expansion

CW Previously, it was unportable but valid to have files named with a leading tilde character (∼).
Now, the use of such files in scripts should have quoting for the leading tildes, because the first
component may match a login ID. For example, the first command should be converted to one
of the following three:

Part 2: Commands and Utilities Migration 39

Parameters, Variables and Word Expansions Shell Command Language

cat ∼jan ∼feb ...
cat " ∼jan" " ∼feb" ...
cat \ ∼jan \ ∼feb ...
cat ./ ∼jan ./ ∼feb ...

Although tilde expansion was not used previously by portable applications, a common
KornShell extension must be avoided:

PATH=∼dwc/bin: ∼maw/bin

This does not expand the second tilde (because it does not start a word). Use one of the
following instead:

PATH=∼maw/bin
PATH=∼dwc/bin:$PATH

PATH=$(printf %s ∼dwc/bin : ∼maw/bin)

3.2.3 Parameter Expansion

Five new forms of parameter expansion are added that yield string lengths and remove prefix or
suffix patterns:

${# parameter } String length.

${ parameter %word } Remove smallest suffix pattern.

${ parameter %%word } Remove largest suffix pattern.

${ parameter #word } Remove smallest prefix pattern.

${ parameter ##word } Remove largest prefix pattern.

These can be used to replace some of the existing expr and sed calls in existing scripts and
improve performance and readability in many cases.

The rules for parameter expansion with double-quotes:

"${...}"

are changed to require that any single- or double-quotes must be paired within the curly-braces.
A consequence of this rule is that single-quotes cannot be used to quote the } within:

"${...}"

For example:

unset bar
foo="${bar-’}’}"

is invalid because the:

"${...}"

substitution contains an unpaired unescaped single-quote. The backslash can be used to escape
the } in this example to achieve the desired result:

unset bar
foo="${bar-\}}"

Some systems have allowed the end of the word to terminate the backquoted command
substitution, such as in:

40 XPG3-XPG4 Base Migration Guide, Version 2

Shell Command Language Parameters, Variables and Word Expansions

"‘echo hello"

This usage is undefined; the matching backquote is required by the XCU specification. The other
undefined usage can be illustrated by the example:

sh -c ’‘ echo "foo‘’

3.2.4 Command Substitution

Backquoted command substitution must be terminated by a backquote:

‘...‘

Some shells allowed the end of a file or string silently to delimit the command substitution.

A new form of command substitution is introduced that makes using quoting and nesting rules
easier than with the back-quote method:

$(...)

It is unnecessary for any scripts to be converted to this new form, but new script writers may
find it easier and more logical to use the new form for any complex constructs:

• When any of \$, \’ or \\ appear within back-quotes, the leading \ is removed:

echo ‘echo ’\\$x’‘

as compared to:

echo $(echo ’\$x’)

• Nesting back-quote command substitutions requires escaping the enclosed ‘...‘ as
follows:

echo ‘echo \‘echo Hi\‘‘

as compared to:

echo $(echo $(echo Hi))

If the new form is used to execute a subshell, care must be taken to remove any ambiguity
arising from arithmetic expansion. For example, if a utility named: 1+2 is written, the
command:

$((1+2))

is then ambiguous. It must be written portably as:

$((1+2))

Single-quotes cannot be used to quote the } within:

"${ . . . }"

3.2.5 Arithmetic Expansion

Arithmetic expansion is a new feature without forward compatibility problems. It can be used
to simplify existing shell arithmetic that involves the expr utility.

Part 2: Commands and Utilities Migration 41

Redirection Shell Command Language

3.3 Redirection
Multi-digit file descriptors are now allowed syntactically, although a portable application cannot
use numbers higher than 9, because the shell can reserve all higher numbers for its own use.

The new noclobber version of redirection can be used for creating lock files in applications or
determining that a file can be created safely without replacing an existing file. For example,
consider an application that wishes to save a copy of a file before it edits it:

cat $1 > $1.back

On a traditional file system with 14-byte filenames, if $1 is ten bytes or larger, this command
could erase another file. If $1 is 14 bytes, it would erase the original file instead of copying it.
Now, the following can be written:

set -C # set noclobber mode
if > $1.back; then

echo Backup copy can be created
else

echo Backup attempt will fail

The noclobber mode is even more useful for interactive users who wish to prevent inadvertent
destruction of their files. They would then have to use the >| operator to overwrite a file
deliberately.

The new <> operator has been supported on many implementations, but not documented. It
should cause no compatibility problems, but its use is rather specialised.

CW Issue 3 allowed here-documents to be terminated by the end of the script file, as in the following
example of a two-line file:

cat <<EOF
Hi

A fully portable script requires a proper delimiter.

The System V shell and the KornShell have differed historically on pathname expansion of an
argument word; the former never performed it, the latter only when the result was a single field
(file). As a compromise, it was decided that the KornShell capability was useful, but only as a
shorthand device for interactive users. It is not reasonable to write a shell script such as:

cat foo > a*

Therefore this is not permitted.

42 XPG3-XPG4 Base Migration Guide, Version 2

Shell Command Language Shell Commands

3.4 Shell Commands
When a command names a utility that cannot be found, there is no assurance that this aborts a
script. A portable script must be written to test the exit status of each command it considers
critical before proceeding to the next step.

Historically, shells have returned an exit status of 128+n, where n represents the signal number.
Since signal numbers are not standardised, there is no portable way to determine which signal
caused the termination. Also, it is possible for a command to exit with a status in the same range
of numbers that the shell would use to report that the command was terminated by a signal.
Therefore, a portable script cannot rely on determining the exact cause of a command failure
when a signal is received.

There is a historical difference in sh and ksh non-interactive error behaviour. When a command
named in a script is not found, some implementations of sh exit immediately, but ksh continues
with the next command. Thus, the POSIX-2 standard says that the shell may exit in this case.
This puts a small burden on the programmer, who has to test for successful completion
following a command, when it is important that the next command not be executed if the
previous is not found. When it is important for the command to be found, it is probably also
important for it to complete successfully. The test for successful completion does not need to
change.

With the System V shell, all built-ins are treated as special built-ins, which causes them to exhibit
the special behaviour listed in the XCU specification, Section 2.14, Special Built-in Utilities (such
as the difference in how variable assignments stay in effect). Earlier versions of System V and
BSD systems did not implement the common echo, pwd and test as built-ins (regular or special),
so these older systems are actually closer to the current XCU specification. The differences
between the behaviour of built-ins and other utilities is not documented in the SVID.

3.4.1 Command Search

The rules for command search make explicit the differences between special and regular built-
ins. Previously, regular built-ins had different characteristics from file-system utilities, but the
portable application could not predict which utilities were which. So, it was impossible to write
a shell function with the name of a common utility because that utility might be built-in and the
function would never be accessed.

In Issue 4, an application cannot discern between regular built-ins and file-system utilities
(unless it is able to check for performance differences). All utilities, other than the special built-
ins, can be replaced with functions. All utilities, other than the special built-ins, can be used as if
they were in the file system by commands such as:

nohup utility
find . -exec utility \;
ls * | xargs utility

It is important to understand that some utilities only affect or understand their own shell
environment, not their parent’s; commands such as:

(cd /tmp)
nohup kill %1
env wait

are valid, but not very useful.

The new command utility can be used to suppress function lookup.

Part 2: Commands and Utilities Migration 43

Shell Commands Shell Command Language

3.4.2 Pipelines and Lists

A new reserved word, !, can be used to complement the exit status of a pipeline. For example:

if ! false; then
echo True

fi

Scripts assuming that a pipeline is (or is not) executed in a subshell must be modified to tolerate
the pipeline being executed in a subshell, but not to depend on it. For example, the command:

echo dog cat mouse | rea d x y z
echo $x $y $z

does not work as expected on some systems because the read is invoked in a subshell and does
not affect the variables in the current environment. This example could be written as:

read x y z <<eof
dog cat mouse
eof
echo $x $y $z

Scripts written assuming that the first example using read would not work are also not portable,
because some shells, such as the KornShell, do run the final pipeline stage in the current
environment. Such a script could use:

echo dog cat mouse | (rea d x y z)
echo $x $y $z

to be sure read would not affect the current environment.

Portable applications should avoid using the AND and OR operators, && and | |, in complex
constructs without using { } or () groupings to show the precedence desired. The precedence of
these operators, strictly left-to-right, is different from most programming languages, where AND
has higher precedence, and confusion may result. So, for example, the following three
commands are equivalent (assuming the subshell effects in the second are not relevant), but the
second or third is preferred:

a || b && c
(a || b) && c
{ a || b; } && c

44 XPG3-XPG4 Base Migration Guide, Version 2

Shell Command Language Pattern Matching

3.5 Pattern Matching
Pattern matching is expanded with the internationalisation features described for bracket
expressions in Section 2.6 on page 26.

A period in a bracket expression may now match a leading dot in a filename. Previously this
was never portable and a portable application still cannot use this form.

CW A leading circumflex in a bracket expression must be quoted. For example, to list filenames
beginning with ˆ or a, use one of the following:

ls [aˆ]*
ls [\ˆa]*

Any of the shell special characters used in a pattern must be quoted or escaped. In most cases,
this was already necessary to prevent their misinterpretation by the shell. For example:

ls a(b*

never worked. However, the command:

find . -name ’a(b*’ -print

did work.

CW Now, this form requires escaping of the shell character to avoid side effects from
implementation extensions:

find . -name ’a\(b*’ -print

Part 2: Commands and Utilities Migration 45

Special Built-ins Shell Command Language

3.6 Special Built-ins
Special built-ins have special properties for error conditions, variable assignments and
accessibility via the exec functions and certain commands (such as nohup). It is now possible for
the application to predict these effects because the list of special built-ins is specified; although
any of the standard utilities could be implemented as a regular built-in, none of them can be
special built-ins.

3.6.1 dot

Some older implementations searched the current directory for the file, even if the value of PATH
disallowed it. This behaviour is now prohibited due to concerns about introducing
susceptibility to trojan horses, which the user might be trying to avoid by leaving dot out of
PATH.

3.6.2 exec

Most historical implementations were not conformant in that:

foo=bar exec cmd

did not pass foo to cmd. It is unlikely that any application ever relied on it not being passed.

CW Applications relying on file descriptors > 2 being automatically closed or left open following an
exec must be recoded to force the desired result.

3.6.3 exit

In applications, the reserved exit status values 126 and 127 should be avoided, except as
described in the XCU specification. Values greater than 128 should be reserved for signal
terminations.

3.6.4 export

Instances without arguments that expect a specific portable output format must be recoded as:

export -p

Applications relying on previous output formats are not portable.

3.6.5 readonly

Instances without arguments that expect a specific portable output format have to be recoded as:

readonly -p

Applications relying on previous output formats are not portable.

3.6.6 return

The behaviour of return when not in a function or dot script differs between shells. In some
shells this is an error; in others, and in Issue 4, the effect is the same as exit.

The exit value given to exit cannot exceed 255.

46 XPG3-XPG4 Base Migration Guide, Version 2

Shell Command Language Special Built-ins

3.6.7 set

In some previous shells:

set --

only unset parameters if there was at least one argument; the only way to unset all parameters
was to use shift. Using the new Issue 4 version should not affect existing scripts because there
should be no reason deliberately to issue it without arguments; if it is issued as:

set -- "$@"

and there are in fact no arguments resulting from $@, unsetting the parameters would achieve
the same effect.

The use of set + without other arguments (which is similar to set with no arguments, except that
the values of the variables are not reported) is not documented in Issue 3 and is no longer
supported. An application requiring this could substitute:

"set | sed"

to suppress the variable values.

CW The −k and −t options are no longer supported and should be removed from portable scripts.

3.6.8 trap

Applications should be migrated to the symbolic signal names.

Scripts relying on a specific system’s trap output format have to be recoded.

3.6.9 unset

Applications must be recoded to use unset with either −f or −v to be fully portable.

Part 2: Commands and Utilities Migration 47

Shell Command Language

48 XPG3-XPG4 Base Migration Guide, Version 2

Chapter 4

Utilities

4.1 Introduction
This chapter contains the migration information for the XSI utilities in the XCU specification. In
general, most changes occurred between Issue 3 and Issue 4 of the XCU specification. Very little
changed between Issue 4 and Issue 4, Version 2.

• All references to the ISO POSIX-2 DIS have been updated to the POSIX-2 standard, to reflect
its proper current status as a full international standard.

• There were a number of minor corrections and clarifications made to the text of several
utilities, namely: awk, compress, make, od, pack, pcat, sact, uname, uncompress, unpack.

• Functional additions were made to several utilities for conformance to X/Open UNIX
Extension requirements, namely: c89, cc, getconf.

4.1.1 Symbolic Link Support

As shown in the XCU specification, Section 1.2.1, Symbolic Links, the definition of symbolic links
and pathname resolution with respect to symbolic links in the XBD specification, Chapter 2,
Glossary, is new for Version 2; however, support for symbolic links is not required to conform to
the XCU specification. This document will be fully-aligned with the emerging IEEE Std 1003.2b
(POSIX.2b) in a future edition, and it is that IEEE standard that fully specifies the behaviour of
the utilities with respect to symbolic links. (Refer to the XCU specification, Section 1.6.1,
Relationship to Emerging Formal Standards.)

Part 2: Commands and Utilities Migration 49

Utility Migration Information Utilities

4.2 Utility Migration Information

admin — create and administer SCCS files (DEVELOPMENT)

Issue 4: Conformance to the Utility Syntax Guidelines requires separation by blank
characters for: −a login, −d flag, −e login, −f flag, −m mrlist, −r rel, −t name and −y
comment. The − − argument is required to delimit the first operand if that operand
could be misinterpreted as an option (for example, a directory name beginning
with −).

The mrlist option-argument is now required with all uses of −m. The name option-
argument is now required with −t when −i or −n are used in creating a new SCCS
file.

Input lines beginning with a character with a numeric value of 1 (SOH, or
<control>-A) are no longer allowed. The various SCCS files are now required to be
text files, but their formats are explicitly unspecified, disallowing universal inter-
system portability of, for example, the s. files. Input lines are now documented to
be limited to {LINE_MAX} bytes and cannot contain NUL characters. Input files
must end with a newline character.

Some of the utility output formats are specified, whereas they are not specified in
Issue 3. Applications relying on previous output formats were never portable.

alias — define or display aliases

Issue 4: A new utility for Issue 4.

ar — create and maintain library archives

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

asa — interpret carriage-control characters

Issue 4: A new utility for Issue 4.

at — execute commands at a later time

Issue 4: Conformance to the Utility Syntax Guidelines requires a blank character between
the option and argument for −f file and −q queuename.

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

The spacing requirements for the timespec are now looser than some systems
allowed.

awk — pattern scanning and processing language

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for −F ERE. The − − argument is required to delimit
the first operand if that operand could be misinterpreted as an option (for example,
a filename beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

50 XPG3-XPG4 Base Migration Guide, Version 2

Utilities Utility Migration Information

This description is based on the new awk, nawk, which introduced a number of new
features to the version of awk in Issue 3:

1. New keywords: delete, do, function and return.

2. New built-in functions: atan2(), cos(), sin(), rand(), srand(), gsub(), sub(),
match(), close() and() system().

3. New predefined variables: FNR, ARGC, ARGV, RSTART, RLENGTH and
SUBSEP.

4. New expression operators:

?:
ˆ

5. The FS variable and the third argument to split are now treated as extended
regular expressions.

6. The operator precedence has changed to match more closely C. Two
examples of code that operate differently are:

whil e (n /= 10 > 1) . . .
if (!"wk" ∼ /bwk/) . . .

Several features are added for POSIX-2 standard alignment that are not
documented in the referenced document by Aho, Kernighan and Weinberger.

1. Multiple instances of −f progfile are permitted.

2. New option: −v assignment.

3. New predefined variable: ENVIRON.

4. New built-in functions: toupper(), tolower().

5. More formatting capabilities added to printf to match the ISO C standard.

6. Regular expressions are extended to make them a pure superset of Extended
Regular Expressions (see the XBD specification, Section 7.4, Extended
Regular Expressions).

The precedence of the getline function and the |, < or concatenate operators has
formally been declared ambiguous. For example, a portable application cannot
rely on:

getline < "a" "b" or getline < "x" + 1

always being parsed as either of the following:

(getline < "a") "b" or getline < ("x" + 1)
getline < ("a" "b") or (getline < "x") + 1

even though the first case in each pair is the most prevalent historically.
Parentheses must be used to achieve the precedence desired.

Conversion between string and numeric values is slightly changed. In previous
implementations, variables and constants maintain both string and numeric values
after their original value is converted by any use. This means that referencing a
variable or constant can have unexpected side effects.

Part 2: Commands and Utilities Migration 51

Utility Migration Information Utilities

For example, in previous implementations the following program:

{
a = "+2"
b = 2
if (NR % 2)

c = a + b
if (a == b)

print "numeric comparison"
else

print "string comparison"
}

would perform a numeric comparison (and output numeric comparison) for
each odd-numbered line, but perform a string comparison (and output string
comparison) for each even-numbered line. Issue 4 ensures that comparisons are
numeric if necessary. With previous implementations, the following program:

BEGIN {
OFMT = "%e"
print 3.14
OFMT = "%f"
print 3.14

}

would output 3.140000e+00 twice, because in the second print statement the
constant 3.14 would have a string value from the previous conversion. Issue 4
requires that the output of the second print statement is 3.140000 .

To avoid the problem of the following script printing nothing:

BEGIN {
y[1.5] = 1
OFMT = "%e"
print y[1.5]

}

a new variable, CONVFMT, is introduced. The OFMT variable is now restricted
to affecting output conversions of numbers to strings, and CONVFMT is used for
internal conversions, such as comparisons or array indexing.

Issue 4, Version 2:
Examples 10 and 17 in the EXAMPLES section have been corrected.

banner — make large letters (WITHDRAWN)

Issue 4: This utility is now withdrawn because its output could not be well specified in an
internationalised environment (particularly for large, complex character sets), and
it is rarely needed by portable applications. XSI-conformant systems continue to
offer banner-like services for lp header pages.

52 XPG3-XPG4 Base Migration Guide, Version 2

Utilities Utility Migration Information

basename — return non-directory portion of pathname

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

The POSIX-1 standard definition of pathname allows trailing slashes on a
pathname naming a directory. Some historical implementations have not allowed
trailing slashes and thus treated pathnames of this form in other ways. Historical
implementations also differed in their handling of suffix when suffix matched the
entire string left after removing the directory part of string.

The behaviour of basename and dirname in the XCU specification are coordinated so
that when string is a valid pathname:

$(basename "string")

would be a valid filename for the file in the directory:

$(dirname "string")

batch — execute commands when the system load permits

Issue 4: This utility operates exactly as in Issue 3, except for the effects of the
internationalisation variables.

bc — arbitrary-precision arithmetic language

Issue 4: A new utility for Issue 4.

bg — run jobs in the background

Issue 4: A new utility for Issue 4.

c89 — compile standard C programs

Issue 4: A new utility for Issue 4. See the entry for cc.

cal — print calendar

Issue 4: This utility is specified more fully than in Issue 3, but it should operate identically,
except for the possible effects of the internationalisation variables on some
systems.

calendar — reminder service (TO BE WITHDRAWN)

Issue 4: Input lines of calendar files are now documented to be limited to {LINE_MAX}
bytes and cannot contain NUL characters.

The calendar utility will be withdrawn from a future issue.

It would require considerable work to make it suitable for international use;
emerging desktop productivity tools are expected to address this need better.

Part 2: Commands and Utilities Migration 53

Utility Migration Information Utilities

cancel — cancel line printer requests

Issue 4: This utility operates exactly as in Issue 3, except for the possible effects of the
internationalisation variables on some systems.

cat — concatenate and print files

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

The −s option (write no diagnostic messages when non-existent files are named) is
marked PI in Issue 3, is not in the POSIX-2 standard, and differs in meaning on
systems based on System V compared with systems based on BSD. Therefore, it is
deleted from the XCU specification. An application needing to suppress messages
(the System V meaning of −s) can use:

cat . . . 2>/dev/null

An application needing to squeeze excess blank lines (the BSD meaning of −s) can
use this script based on sed:

sed -n ’
Write non-empty lines.
/./ {

p
d
}

Write a single empty line, then look for more empty lines.
/ˆ$/ p
Get next line, discard the held newline character
(empty line), and look for more empty lines.
:Empty
/ˆ$/ {

N
s/\n//
b Empty
}

Write the non-empty line before going back to search
for the first in a set of empty lines.

p
’

cc — a C-language compilation system (TO BE WITHDRAWN)

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −e epsym, −D name[=value], −I directory, −L
directory, −o outfile, −u symname, −U name and −W options. The − − argument is
required to delimit the first operand if that operand could be misinterpreted as an
option (for example, a filename beginning with −).

See Part 4 for additional information on C-language migration issues.

Issue 4, Version 2:
In the Standard Libraries subsection, the −l c operand describes access to
traditional interfaces if _XOPEN_UNIX is defined by the implementation.

54 XPG3-XPG4 Base Migration Guide, Version 2

Utilities Utility Migration Information

cd — change working directory

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a directory name beginning with −).

Applications relying on a directory named − can no longer do so. The PWD and
OLDPWD variables are now modified by every successful invocation of cd.

cflow — generate C-language flowgraph (DEVELOPMENT)

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −d num, −D num[=def], −i incl, −I dir and −U dir.
The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

For all except binary input files, input lines are now documented to be limited to
{LINE_MAX} bytes and cannot contain NUL characters. Input files must end with
a newline character.

Some of the utility output formats are specified, whereas they are not specified in
Issue 3. Applications relying on previous output formats are not portable.

chgrp — change file group ownership

Issue 4: Some systems count the number of errors and reflect that in the exit status code.
Applications that rely on this behaviour are not portable.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

chmod — change file modes

Issue 4: Some systems count the number of errors and reflect that in the exit status code.
Applications that rely on this behaviour are not portable.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a mode operand beginning with −, such
as −r, −w, −s, −x or −X).

Applications should be migrated to the symbolic permissions form.

chown — change file ownership

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Some systems count the number of errors and reflect that in the exit status code.
Applications that rely on this behaviour are not portable.

chroot — change root directory for a command (WITHDRAWN)

Issue 4: This utility is withdrawn because there is no portable way to set up an
environment where it is useful and it is usually usable only by applications with
appropriate privileges.

Part 2: Commands and Utilities Migration 55

Utility Migration Information Utilities

cksum — write file checksums and sizes

Issue 4: A new utility for Issue 4.

For applications migrating from sum to cksum, the following changes apply:

• The checksum produced is completely different, but it is guaranteed to be
calculated the same on all systems.

• The sum block count is changed to an octet count in cksum.

cmp — compare two files

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Some of the utility output formats are specified, whereas they are not specified in
Issue 3. Applications relying on previous output formats are not portable.

col — filter reverse line-feeds (TO BE WITHDRAWN)

Issue 4: Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

The col utility will be withdrawn from a future issue. It may be replaced in a future
issue by a similar utility without the current ASCII bias.

comm — select or reject lines common to two files

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

Some of the utility output formats are specified, whereas they are not specified in
Issue 3. Applications relying on previous output formats are not portable.

command — execute a simple command

Issue 4: A new utility for Issue 4.

compress — compress data

Issue 4: A new utility for Issue 4.

Applications converting from the pack family must be cognizant of the different
suffix used for the compressed files: upper-case .Z.

Issue 4, Version 2:
The DESCRIPTION section is clarified to state that the ownership, modes, access
time and modification time of the original file are preserved if the invoking process
has appropriate privileges. The STDOUT section includes the case where a file
operand is −.

56 XPG3-XPG4 Base Migration Guide, Version 2

Utilities Utility Migration Information

cp — copy files

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

The −i, −p, −r and −R options are new in Issue 4.

When creating directories, some historical versions of cp used the mode of the
source directory, plus read, write and search bits for the owner, as modified by the
file mode creation mask. This was done so that cp can copy trees where the user
has read permission, but the owner does not. A side effect is that if the file creation
mask denies the owner permissions, cp fails. Also, once the copy is done, historical
versions of cp set the permissions on the created directory to be the same as the
source directory, unmodified by the file creation mask. This behaviour is modified
so that cp is always able to create the contents of the directory, regardless of the file
creation mask. After the copy is done, the permissions are set to be the same as the
source directory, as modified by the file creation mask. This latter change from
historical behaviour is to prevent users from accidentally creating directories with
permissions beyond those they would normally set and for consistency with the
behaviour of cp in creating files.

cpio — copy file archives in and out (TO BE WITHDRAWN)

Issue 4: The capability of cpio is stabilised at the Issue 3 level. The pax utility is replacing
cpio and is able to read and write archives produced by cpio.

crontab — schedule periodic background work

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

The new −e option allows editing of the crontab entry.

csplit — split files based on context

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −f prefix and −n number.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Input lines in the file to be split are now documented to be limited to {LINE_MAX}
bytes and cannot contain NUL characters. Input files must end with a newline
character.

The new −n option allows files to be split into more than 99 files (the limit in
previous issues).

ctags — create a tags file

Issue 4: A new utility for Issue 4.

Part 2: Commands and Utilities Migration 57

Utility Migration Information Utilities

cu — call another system

Issue 4: This utility operates exactly as in Issue 3, except for the effects of the
internationalisation variables.

cut — cut out selected fields of each line of a file

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −b list, −c list, −d delim and −f list.

Input lines cannot contain NUL characters. Input files must end with a newline
character.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Unlike other utilities, some historical implementations of cut exit after not finding
an input file, rather than continuing to process the remaining file operands. This
behaviour is prohibited by the XCU specification, where only the exit status is
affected by this problem.

Some historical implementations do not count backspace characters in
determining character counts with the −c option. This may be useful for using cut
for processing nroff output. However, the cut −c option in the XCU specification
treats neither backspace nor tab characters in any special fashion. The fold utility
does treat these characters specially.

cxref — generate C-language program cross-reference table (DEVELOPMENT)

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −o file, −w num, −D num[=def], −I dir and −U dir.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

date — write the date and time

Issue 4: The following new field descriptors are added:

• %e (equivalent to the form used by date’s default output in the POSIX locale)

• %C (century)

• %u (weekday number, Monday as 1)

• %V (week number, starting at 1)

• modified field descriptors (%Ec, %Od, and so on).

The %U, %V and %W descriptors precisely define how week numbers are assigned
in the first few days of the year.

Issue 3 incorrectly implies that GMT would be used if TZ is not set; this is
currently implementation-dependent.

58 XPG3-XPG4 Base Migration Guide, Version 2

Utilities Utility Migration Information

dd — convert and copy a file

Issue 4: Some of the utility output formats are specified, whereas they are not specified in
Issue 3. Applications relying on previous output formats are not portable.

delta — make a delta (change) to an SCCS file (DEVELOPMENT)

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −g list, −m mrlist, −r SID and −y comment.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a directory name beginning with −).

The mrlist option-argument is now required with all uses of −m.

The various SCCS files are now required to be text files, but their formats are
explicitly unspecified, disallowing universal inter-system portability of, for
example, the s. files.

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

Some of the utility output formats are specified, whereas they are not specified in
Issue 3. Applications relying on previous output formats are not portable.

df — report free disk space

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

The new −P (portable) option produces output in a fully specified format, allowing
the portable use of df in scripts. The −t option is retained as an extension, but it
does not produce consistently formatted output on all systems. Shell script writers
should use df −P.

Previous issues did not require that space figures be reported uniformly in 512-
byte units; applications can now rely on this or select 1Kbyte units with the −k
option.

diff — compare two files

Issue 4: The −h (half-hearted) option is omitted. Since it is marked PI in Issue 3 and since a
POSIX-conformant diff does not have arbitrary file-length limitations, it must be
omitted from portable applications.

The −b option is incorrectly described in Issue 3. The Issue 4 description, which
involves all varieties of white space, not just blank characters, correctly matches
historical implementations.

For applications that parse the output of diff −e or −f, note that the ed substitute
command can now appear in the output; not all systems used this in the past.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

Some of the utility output formats are specified, whereas they are not specified in
Issue 3. Applications relying on previous output formats are not portable.

Part 2: Commands and Utilities Migration 59

Utility Migration Information Utilities

dircmp — directory comparison (TO BE WITHDRAWN)

Issue 4: The capability of dircmp is stabilised at the Issue 3 level, with the exception of the
possible effects of the internationalisation variables on some systems. The diff
utility with the −R option is recommended as a replacement for dircmp.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a directory name beginning with −).

Input lines in any files being compared with the −d option are now documented to
be limited to {LINE_MAX} bytes and cannot contain NUL characters. Input files
must end with a newline character.

dirname — return directory portion of pathname

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

The behaviour of basename and dirname in the XCU specification are coordinated so
that when string is a valid pathname:

$(basename "string")

is a valid filename for the file in the directory:

$(dirname "string")

dis — disassembler (DEVELOPMENT) (OPTIONAL) (TO BE WITHDRAWN)

Issue 4: The dis utility will be withdrawn from a future issue. It has never been used
portably.

Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −F function and −l string.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

du — estimate file space usage

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

The −a and −s options are mutually exclusive. Some systems may produce output
for −sa, but a fully portable application cannot use that combination.

The new −x option can be used to search a single file system for disk usage.

The previous behaviour of not listing non-directories explicitly given as operands,
unless the −a option is specified, is reversed.

In the past, some systems did not produce error messages about inaccessible
directories and files, so the −r option was used to force that. This behaviour is now
the default and −r will be retired in the future. To suppress error messages, use
shell redirection of standard error.

Previous issues did not require that space figures be reported uniformly in 512-
byte units; applications can now rely on this or select 1Kbyte units with the −k
option.

60 XPG3-XPG4 Base Migration Guide, Version 2

Utilities Utility Migration Information

echo — write arguments to standard output

Issue 4: Any usage of echo where it does not control the format of its arguments should be
replaced by the new printf utility. For example, usage such as:

echo Usage: ...
echo cannot read input file

remains portable, but the following examples are not:

echo Argument $1 not valid.
echo cannot read input file $2

The sequence \0 is replaced by a binary zero; previous issues incorrectly implied
that it would be the two characters \ and 0.

ed — edit text

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. (This is considerably larger than some historical ed
implementations have allowed.) Input files must end with a newline character.

Applications using ed − should be converted to use ed −s.

Some historical implementations contained a bug that allowed a single period to
be entered in input mode as:

<backslash><period><newline>

This is not allowed by the XCU specification because there is no description of
escaping any of the characters in input mode; backslashes are entered into the
buffer exactly as typed. The typical method of entering a single period is to
precede it with another character and then use the substitute command to delete
that character.

The manner in which the l command writes non-printable characters is changed to
avoid the historical backspace-overstrike method. On video display terminals, the
overstrike is ambiguous because most terminals simply replace overstruck
characters, making the l format not useful for its intended purpose of
unambiguously understanding the content of the line. The historical backslash
escapes were also ambiguous. The string a\0011 could represent a line containing
those six characters or a line containing the character ‘‘a’’, a byte with a binary
value of 1, and a character 1. In the format required in the XCU specification, a
backslash appearing in the line is written as \\ so that the output is truly
unambiguous. The method of marking the ends of lines is adopted from the ex
editor and is required for any line ending in space characters; the $ is placed on all
lines so that a real $ character at the end of a line cannot be misinterpreted.

Some historical implementations returned exit status zero even if command errors
had occurred; this is not allowed by the XCU specification.

Part 2: Commands and Utilities Migration 61

Utility Migration Information Utilities

egrep — search a file with an ERE pattern

Issue 4: See grep.

env — set environment for command invocation

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a name or utility operand beginning with
−).

Applications using env − should be converted to use env −i.

ex — text editor

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −t tagstring, −c command and −w size. The − −
argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input file lines must end with a newline character except
for the final line.

The paragraph in INPUT FILES, ‘‘By default, . . . ,’’ is intended to close a long-
standing security hole in ex and vi, that of the little-known modelines. This is the
feature whereby a line in the first or last five lines of the file containing the strings
"ex:" or "vi:" (and, apparently "ei:" or "vx:") is considered to be a line containing
editor commands, and ex interprets all the text up to the next colon (:) or newline
character as a command. Consider the consequences, for example, of an
unsuspecting user using ex or vi as their editor when replying to a mail message in
which a line such as:

"ex:! rm −rf ∗:"

appeared in the signature lines. Implementation extensions are sometimes
available to allow this behaviour.

The ve version command, marked as MV in Issue 3, is omitted.

The default for editor option exrc is reversed from common practice to close a
security hole. Those people who use the .exrc file in directories other than $HOME
can retain the old behaviour, by setting this option in their EXINIT environment
variables or their $HOME/.exrc files. Note that noexrc disables the use of ./.exrc;
exrc enables it. The default is to disable it.

The non-printable characters printed by the list command can no longer be relied
upon to be in the form letter because this does not meet the requirement that the
output line be unambiguous.

The following options are now considered to be extensions: lisp mode, the use of
terminal function keys with map, and the directory, edcompatible, redraw and
slowopen editor options.

62 XPG3-XPG4 Base Migration Guide, Version 2

Utilities Utility Migration Information

expand — convert tabs to spaces

Issue 4: A new utility for Issue 4.

expr — evaluate arguments as an expression

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, an operand beginning with −).

The use of a leading circumflex in the regular expression is unspecified because
many historical implementations have treated it as special, despite their system
documentation. For example:

expr foo : ˆfoo expr ˆfoo : ˆfoo

return 3 and 0, respectively, on those systems; their documentation would imply
the reverse. Thus, the anchoring condition is left unspecified to avoid breaking
historical scripts relying on this undocumented feature.

false — return false value

Issue 4: This utility operates exactly as in Issue 3.

fc — process command history list

Issue 4: A new utility for Issue 4.

fg — run jobs in the foreground

Issue 4: A new utility for Issue 4.

fgrep — search a file for a fixed-string pattern

Issue 4: See grep.

file — determine file type

Issue 4: A new utility for Issue 4.

find — find files

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

An application using find and expecting no output because none of −print, −exec or
−ok were given will have to redirect standard output to /dev/null.

Applications using octal notation with −perm should be converted to use symbolic
modes for maximum portability.

fold — filter for folding lines

Issue 4: A new utility for Issue 4.

Part 2: Commands and Utilities Migration 63

Utility Migration Information Utilities

fort77 — FORTRAN compiler (FORTRAN)

Issue 4: A new utility for Issue 4.

gencat — generate a formatted message catalogue

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a catfile name beginning with −).

Input lines in the message text source file are now documented to be limited to
{LINE_MAX} bytes and cannot contain NUL characters. Input files must end with
a newline character.

get — get a version of an SCCS file (DEVELOPMENT)

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −c cutoff, −l list and −x list.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a directory name beginning with −).

Some of the utility output formats are specified, whereas they are not specified in
Issue 3. Applications relying on previous output formats are not portable.

Applications using get −lp should be converted to use get −L.

getconf — get configuration values

Issue 4: A new utility for Issue 4.

Issue 4, Version 2:
The following changes have been made to the system_var table:

• Names beginning with POSIX_ have been changed to begin with _POSIX_.

• Names beginning with XOPEN_ have been changed to begin with _XOPEN_.

• MN_NMAX is changed to NL_NMAX.1

• NL_SET_MAX is changed to NL_SETMAX.

• NL_TEXT_MAX is changed to NL_TEXTMAX.

• The _XOPEN_CRYPT, _XOPEN_ENH_I18N and _XOPEN_SHM configuration
variables have been added to the list.

• The ATEXIT_MAX, IOV_MAX, PAGESIZE, PAGE_SIZE and _XOPEN_UNIX
configuration variables have been added to the list.

1. References in the XCU specification description of getconf linking MN_NMAX to NL_MAX are erroneous and will be corrected in
a corrigendum.

64 XPG3-XPG4 Base Migration Guide, Version 2

Utilities Utility Migration Information

getopts — parse utility options

Issue 4: A new utility for Issue 4.

The getopts command parses command line options appropriate to the new Utility
Syntax Guidelines (refer to Section 2.9.1 on page 31). Shell scripts developed on
traditional UNIX systems that used getopt will need to convert to using getopts.

grep — search a file for a pattern

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

All the utilities in the grep family are consolidated and take consistent selections of
arguments across grep, egrep and fgrep. This results in adding −f to grep, −e to grep
and fgrep (and allowing multiple patterns in the option-argument, separated by
newline characters), and −x to grep and egrep. The new −q is added to all.

Historical implementations usually silently ignored all but one of the multiply-
specified −e and −f options, but were not consistent as to which specification was
actually used.

A definition of action taken when given a null RE or ERE is specified. This is an
error condition in some historical implementations.

hash — remember or report utility locations

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a utility name beginning with −).

Some implementations of the shell do not remember or report utilities found
through normal command search.

head — copy the first part of files

Issue 4: A new utility for Issue 4.

iconv — codeset conversion

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument or for: −f fromcode and −t tocode.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

Part 2: Commands and Utilities Migration 65

Utility Migration Information Utilities

id — return user identity

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a user name beginning with −).

Some of the utility output formats are specified, whereas they are not specified in
Issue 3. Applications relying on previous output formats are not portable.

jobs — display status of jobs in the current session

Issue 4: A new utility for Issue 4.

join — relational database operator

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument or for: −a file_number, −e string, −j1 field, −j2 field, −o
list, −t char, −v file_number, −1 field and −2 field.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

A new field is allowed in the −o list to represent the join field, allowing the full join
or outer join operations described in relational database literature.

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

Applications using join with one of the variants of −j should be converted to use
join −1 and −2. Multi-argument list values for −o should be converted to a single
argument. For example, convert the first of these commands to the second:

join -j1 3 -j2 4 -o 1.2 3.4 4.5 file1 file2
join -1 3 -2 4 -o 1.2,3.4,4.5 file1 file2

kill — terminate or signal processes

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −s signal.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a pid beginning with −).

Applications should migrate to the symbolic signal names with the −s option. For
example, convert either of the first two commands to the third:

kill -9 1234
kill -kill 1234
kill -s kill 1234

lex — generate programs for lexical tasks (DEVELOPMENT)

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

None of the statistics or error messages have specified output formats;
applications relying on one implementation’s formats are not portable.

66 XPG3-XPG4 Base Migration Guide, Version 2

Utilities Utility Migration Information

Applications cannot rely on receiving the summary of statistics by including a
table size (for example, %p, %n) in the program. They must use −v to receive the
summary. In any case, the summary and error messages may appear on either
standard output or standard error, unless the −t option is used (in which case
standard error is used).

New features are added that do not appear on all historical systems:

• The %x specifier for exclusive start conditions.

• The %array and %pointer declarations. X/Open systems have historically used
an array for yytext, but a portable application cannot rely on this choice unless
it codes %array. In particular, multi-file programs with external references to
yytext outside the scanner source file require one of the new declarations to be
considered strictly portable.

• The definition of the input function is changed to allow buffering of input.

line — read one line (TO BE WITHDRAWN)

Issue 4: The capability of line is stabilised at the Issue 3 level. The read utility is replacing
line.

lint — check C-language programs (DEVELOPMENT) (TO BE WITHDRAWN)

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −D name[=value], −I directory, −l x, −L directory, −o
x and −U name. The − − argument is required to delimit the first operand if that
operand could be misinterpreted as an option (for example, a filename beginning
with −).

ln — link files

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

The version of ln in Issue 3 unlinks the destination file, if it exists, by default. If the
mode does not permit writing, that version prompts for confirmation before
attempting the unlink. In this Issue 3 version, the −f option causes ln not to
attempt to prompt for confirmation. This allows ln to succeed in creating links
when the target file already exists, even if the file itself is not writable (although the
directory has to be). The POSIX-2 standard does not allow the ln utility to unlink
existing destination paths by default. Applications requiring the forced linking
behaviour must use the −f option; those requiring the prompting features of ln
need to be rewritten using test, rm and shell script prompting, such as with read.

locale — get locale-specific information

Issue 4: A new utility for Issue 4.

Part 2: Commands and Utilities Migration 67

Utility Migration Information Utilities

localedef — define locale environment

Issue 4: A new utility for Issue 4.

logger — log messages

Issue 4: A new utility for Issue 4.

logname — return user’s login name

Issue 4: This utility operates exactly as in Issue 3, except for the effects of the
internationalisation variables.

lp — send files to a printer

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −d dest, −o option and −t title. The − − argument is
required to delimit the first operand if that operand could be misinterpreted as an
option (for example, a filename beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

The interaction between PRINTER and LPDEST is described.

lpstat — report line printer status information

Issue 4: This utility operates exactly as in Issue 3, except for the effects of the
internationalisation variables.

ls — list directory contents

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Issue 3 indicates that not all systems use 512-bytes as reporting units. Because of
POSIX compliance, all systems now use 512-byte units for reporting directory
sizes. But, as explained in APPLICATION USAGE, portable applications should
always use the exact byte counts, not block counts, to determine file sizes.

m4 — macro processor (DEVELOPMENT)

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −D name[=val] and −U name.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

68 XPG3-XPG4 Base Migration Guide, Version 2

Utilities Utility Migration Information

mail — send or read mail (TO BE WITHDRAWN)

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a name beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

The capability of mail is stabilised at the Issue 3 level. The mailx utility is replacing
mail.

mailx — process messages

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −s subject and −u user.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, an address beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. The Subject field is now documented to be limited to
{LINE_MAX} − 10 bytes and cannot contain a newline character. Input files must
end with a newline character.

The −h number (number of network ‘‘hops’’ made so far) and −r address (pass
address to network delivery software) options are omitted from Issue 4. Both are
marked as PI and UN in Issue 3 and are not generally useful to portable
applications. The conv=conversion variable is omitted because it is not fully
specified in Issue 3.

CW The mailx variables beginning with lower-case letters are no longer affected by
shell or environment variable contents. Any settings of these variables must be
accomplished by the mailx set command in one of the startup files.

The allnet, onehop, sendmail and sendwait variables are now considered to be
extensions.

The Copy, echo, Save, followup and Followup commands and the −F option are
now considered to be extensions.

The version command is marked MV in Issue 3 and is removed from Issue 4.

The default for print, Print, type and Type is now more, rather than the previous
pg. The Print and Type commands are now affected by the pagination as well as
their lower-case counterparts.

make — maintain, update and regenerate groups of programs (DEVELOPMENT)

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument or for: −f makefile.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a target name beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

Portable makefiles require the .POSIX special target.

CW Commands that begin with a plus-sign (+) are executed even if the −n option is
present. The behaviour of −n when the plus-sign prefix is encountered is extended

Part 2: Commands and Utilities Migration 69

Utility Migration Information Utilities

to apply to −q and −t as well. However, the System V and Issue 3 convention of
forcing command execution with −n when a target’s command line contains either
of the strings $(MAKE) or ${MAKE} is not included in the portable makefile
behaviour. The danger of this approach is illustrated with the following example
of a portion of a makefile:

subdir:
cd subdir; rm all_the_files; $(MAKE)

The command-line plus-sign prefix can provide the desired capability.

The −S option is added as an opposite of −k.

The .PRECIOUS special target is extended to affect all targets globally (by
specifying no prerequisites). The .IGNORE and .SILENT special targets are
extended to allow prerequisites.

Issue 4, Version 2:
Under the Default Rules, the string -G$@ is deleted from the line referencing
sccs .

man — display system documentation

Issue 4: A new utility for Issue 4.

mesg — permit or deny messages

Issue 4: This utility operates exactly as in Issue 3, except for the effects of the
internationalisation variables.

mkdir — make directories

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −m mode.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a directory name beginning with −).

mkfifo — make FIFO special files

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −m mode.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

more — display files on a page-by-page basis

Issue 4: A new utility for Issue 4.

70 XPG3-XPG4 Base Migration Guide, Version 2

Utilities Utility Migration Information

mv — move files

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

The mv utility can now move directories across file system boundaries.

The −i option is added for interactive prompting prior to overwriting existing files.

Historic implementations of mv do not exit with a non-zero exit status if they are
unable to duplicate any file characteristics when moving a file across file systems,
nor do they write a diagnostic message for the user. The former behaviour is
preserved to prevent scripts from breaking; a diagnostic message is now required,
however, so that users are alerted that the file characteristics have changed.

newgrp — change to a new group

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a group name beginning with −).

nice — invoke a utility with an altered system scheduling priority

Issue 4: A new utility for Issue 4.

nl — line numbering filter

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument or for: −b type, −d delim, −f type, −h type, −i incr, −l
num, −n format, −s sep, −v startnum and −w width.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

Applications that rely on placing options after the file operand should be converted
to use the order prescribed by the Utility Syntax Guidelines.

Some of the utility output formats are specified, whereas they are not specified in
Issue 3. Applications relying on previous output formats are not portable.

nm — write the name list of an object file

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

The default output base for numeric quantities remains decimal, but this is now an
extension to POSIX. A fully portable application should use −t d to achieve the
decimal base.

The −V (output utility version) is marked as non-portable in Issue 3 and is omitted
from Issue 4.

Some of the utility output formats are specified, whereas they are not specified in
Issue 3. Applications relying on previous output formats are not portable.

Part 2: Commands and Utilities Migration 71

Utility Migration Information Utilities

nohup — invoke a utility immune to hangups

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a utility name beginning with −).

Historical versions of the nohup utility use default file creation semantics. Some
more recent versions use the permissions specified here as an added security
precaution.

Some historical implementations ignore SIGQUIT in addition to SIGHUP; others
ignore SIGTERM.

od — dump files in various formats

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −A address_base, −j skip, −N count and −t
type_string.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Portable applications should migrate from the −bcdosx options to −t type_string
and the offset operand to −A address_base.

Issue 4, Version 2:
The description of the −c option is made dependent on the current setting of the
LC_CTYPE category, and a reference to the POSIX locale is deleted.

pack — compress files (TO BE WITHDRAWN)

Issue 4: Conformance to the Utility Syntax Guidelines requires [−] to be treated as an
operand, rather than an option. Thus, the previously accepted:

pack - -f file

should be changed to:

pack -f - file

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

In Issue 3, the exit status reflects the number of files that could not be packed. The
new exit status description does not mandate that and applications relying on it
have to be redesigned; they are probably not portable on Issue 3 systems anyway,
because the exit status would wrap back to zero when 256 files could not be
packed.

The compress utility is replacing pack. The two utilities are generally equivalent
when used with file operands, but any part of the application that relies on a .z
suffix has to be changed to handle .Z.

Some of the utility output formats are specified, whereas they are not specified in
Issue 3. Applications relying on previous output formats are not portable.

Issue 4, Version 2:
The DESCRIPTION section is clarified to state that the ownership, modes, access
time and modification time of the original file are preserved if the invoking process
has appropriate privileges.

72 XPG3-XPG4 Base Migration Guide, Version 2

Utilities Utility Migration Information

paste — merge corresponding or subsequent lines of files

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −d list.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Input lines cannot contain NUL characters. Input files must end with a newline
character.

patch — apply changes to files

Issue 4: A new utility for Issue 4.

pathchk — check pathnames

Issue 4: A new utility for Issue 4.

pax — portable archive interchange

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −b blocksize, −f archive, −o options, −p string, −s
replstr and −x format. The − − argument is required to delimit the first operand if
that operand could be misinterpreted as an option (for example, a filename
beginning with −).

The following pairs of commands demonstrate conversions from cpio and tar to
pax. In all cases, the examples show comparable command-line usage rather than
identical output formats. The −x option can be added to the pax commands
shown, producing archives to select specific output formats:

ls * | cpio -ocv
pax -wdv *

find /mydir -type f -print | cpio -oc
find /mydir -type f -print | pax -w

cpio -icdum < archive
pax -r < archive

(cd /fromdir;find . -print) | cpio -pdlum /todir
pax -rwl /fromdir /todir

tar cf archive *
pax -w -f archive *

tar xfv - < archive
pax -rv < archive

(cd /fromdir; tar cf − .) | (cd /todir; tar xf −)
pax -rw /fromdir /todir

The cpio archive format created when −c is not used is not necessarily supported
by pax; pax may be able to read it, but cannot write it unless triggered by an
implementation extension.

Part 2: Commands and Utilities Migration 73

Utility Migration Information Utilities

pcat — expand and concatenate files (TO BE WITHDRAWN)

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

In Issue 3, the exit status reflected the number of files that could not be unpacked.
The new exit status description does not mandate that and applications relying on
it will have to be redesigned; they were probably not portable before anyway,
because the exit status would have wrapped back to zero when 256 files could not
be packed.

The zcat utility is replacing pcat. The two utilities are generally equivalent when
used with file operands, but any part of the application that relies on a .z suffix has
to be changed to handle .Z.

Issue 4, Version 2:
The DESCRIPTION section no longer specifies the assertion that a file is not
written if the filename has more than {NAME_MAX}−2 bytes.

pg — file perusal filter for soft-copy terminals (TO BE WITHDRAWN)

Issue 4: Partial conformance to the Utility Syntax Guidelines requires blank-character
separation of the option and argument for: −p string.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

The capability of pg is stabilised at the Issue 3 level. The more utility is replacing
pg.

Some of the utility output formats are specified, whereas they are not specified in
Issue 3. Applications relying on previous output formats are not portable.

pr — print files

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument or for: −h header, −l lines, −o offset and −w width.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

Historical systems accepted the header string as the next argument, such that the
following were equivalent:

pr -3dh "file list" file1 file2
pr -h3d "file list" file1 file2

but the Utility Syntax Guidelines prevent this usage. Use the version shown in
EXAMPLES.

Historical implementations of the pr utility have differed in the action taken for the
−f option. BSD uses it as described here for the −F option; System V uses it to
change trailing newline characters on each page to a form-feed character and, if
standard output is a TTY device, sends an alert character to standard error and

74 XPG3-XPG4 Base Migration Guide, Version 2

Utilities Utility Migration Information

reads a line from /dev/tty before the first page. Therefore, the use of −f is marked
as an extension and the −F option is added.

Some of the utility output formats are specified, whereas they are not specified in
Issue 3. Applications relying on previous output formats are not portable.

printf — write formatted output

Issue 4: A new utility for Issue 4.

prs — print an SCCS file (DEVELOPMENT)

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −c cutoff, −d dataspec and [−r [SID]]. In Issue 3, the
−c and −d options are listed with optional option-arguments; applications must
provide these option-arguments.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a directory name beginning with −).

ps — report process status

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −g grouplist, −G grouplist, −n namelist, −o format, −p
proclist, −t termlist, −u userlist, −U userlist.

The new −o option can be used to customise the output. For applications requiring
only certain pieces of information from ps, this may be preferable to parsing the −f
or −l formats. Fully portable applications should convert to the use of −o.

pwd — return working directory name

Issue 4: This utility operates exactly as in Issue 3, except for the effects of the
internationalisation variables.

read — read a line from standard input

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a variable name beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

red — restricted text editor (WITHDRAWN)

Issue 4: This utility is withdrawn because it does not provide the secure environment it
implies.

renice — set system scheduling priorities of running processes

Issue 4: A new utility for Issue 4.

Part 2: Commands and Utilities Migration 75

Utility Migration Information Utilities

rm — remove directory entries

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

The −R option is added for symmetry with other utilities, but requires no
modifications to existing applications.

Some systems were inconsistent about prompting to standard output or standard
error; the XCU specification requires consistent use of standard error.

rmdel — remove a delta from an SCCS file (DEVELOPMENT)

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −r SID.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a directory name beginning with −).

rmdir — remove directories

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a directory name beginning with −).

On some previous systems, the −p option also caused a message to be written to
the standard output. The message indicated whether the whole path was removed
or part of the path remains for some reason. The STDERR section requires this
diagnostic when the entire path specified by a dir operand is not removed, but
does not allow the status message reporting success to be written as a diagnostic.

sact — print current SCCS file-editing activity (DEVELOPMENT)

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a directory name beginning with −).

Some of the utility output formats are specified, whereas they are not specified in
Issue 3. Applications relying on previous output formats are not portable.

Issue 4, Version 2:
The STDERR section encompasses informative messages concerning sccs files
with no impending deltas.

sccs — front end for the SCCS subsystem (DEVELOPMENT)

Issue 4: A new utility for Issue 4.

sdb — symbolic debugger (WITHDRAWN)

Issue 4: This utility has never been used in a portable manner. Software developers should
use the debuggers available on each system, many of which are more powerful
and easier to use than sdb.

76 XPG3-XPG4 Base Migration Guide, Version 2

Utilities Utility Migration Information

sed — stream editor

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −e script and −f script_file.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

This document requires implementations to support at least ten distinct wfiles,
matching historical practice on many implementations. This is an extension to the
POSIX-2 standard limit of nine. Applications should limit themselves to nine wfiles
for portability outside XSI-conformant systems.

The manner in which the l command writes non-printable characters is changed to
avoid the historical backspace-overstrike method and other requirements are
added to achieve unambiguous output.

The requirements for acceptance of blank characters and space characters in
command lines is made more explicit to describe existing practice clearly and
remove confusion about the phrase ‘‘protect initial spaces and tabs from the
stripping that is done on every script line’’ which appeared in Issue 3. (Not all
implementations are known to strip blank characters from text lines, although they
all allow leading blank characters preceding the address on a command line.)

The treatment of # comments differs from Issue 3, which only allows a comment as
the first line of the script. The comment character is treated as a command and it
has the same properties in terms of being accepted with leading blank characters.

Issue 3 also requires that a script_file have at least one non-comment line. Some
historical implementations behave in unexpected ways if this is not the case. A
correct Issue 4 implementation permits a script_file that consists only of comment
lines.

CW The treatment of the p flag to the s command differs between historical systems
when the default output is suppressed. In the two examples:

echo a | sed ’s/a/A/p’
echo a | sed -n ’s/a/A/p’

the POSIX-2 standard, BSD, System V documentation and the SVID indicate that
the first example should write two lines with A, whereas the second should write
one. Some System V and Issue 3 systems write the A only once in both examples,
because the p flag is ignored if the −n option is not specified.

The form of the substitute command that uses the n suffix is limited by Issue 3 to
the first 512 matches. This limit is removed in Issue 4 because there is no reason
why an editor processing lines of {LINE_MAX} length should have this restriction.
The command:

s/a/A/2047

should be able to substitute the 2047th occurrence of the character a on a line.

Part 2: Commands and Utilities Migration 77

Utility Migration Information Utilities

sh — shell, the standard command language interpreter

Issue 4: The − or − − argument is required to delimit the first operand if that operand could
be misinterpreted as an option (for example, a filename beginning with −).

See also Chapter 3 on page 37.

sleep — suspend execution for an interval

Issue 4: The exit status is allowed to be zero when sleep is interrupted by the SIGALRM
signal.

sort — sort, merge or sequence check text files

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −k keydef, −o output, −t char, −z recsz.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files should end with a newline character.

Applications should migrate to the use of the −k option; see EXAMPLES for
conversion examples.

The −y[kmem] option in Issue 3 is omitted and the −z recsz option is marked as not
supported on all systems. Portable applications should specify neither. The −z
option is not standard practice on most systems, and is inconsistent with using sort
to sort several files individually and then to merge them together. The description
of preventing abnormal termination is not applicable to any X/Open system and
−z is maintained only for temporary backwards compatibility. The −y option is
removed because it could not be used portably.

Examples in some historical documentation state that options −um with one input
file keep the first in each set of lines with equal keys. This behaviour is deemed to
be an implementation artifact and is not made standard.

Issue 3 indicates that ‘‘setting −n implies −b.’’ The description of −n already states
that optional leading blank characters are tolerated in doing the comparison. If −b
is enabled, rather than implied, by −n, this has unusual side effects. When a
character offset is used into a column of numbers (for example, to sort mod 100),
that offset is measured relative to the most significant digit, not to the column.
Therefore, the −b implication is omitted from the XCU specification and an
application writer wishing to achieve the previously mentioned side effects has to
code the −b option manually.

spell — find spelling errors (TO BE WITHDRAWN)

Issue 4: This utility is being withdrawn because there is no known technology that can be
used to make it recognise general language for user-specified input without
providing a complete dictionary and grammar along with the input file.

78 XPG3-XPG4 Base Migration Guide, Version 2

Utilities Utility Migration Information

split — split files into pieces

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −a suffix_length and −l line_count.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

In this issue, split can now deal with binary files, can split at arbitrary byte
boundaries and can create a larger number of output files.

strings — find printable strings in files

Issue 4: A new utility for Issue 4.

strip — remove unnecessary information from executable files (DEVELOPMENT)

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

All the options marked UN in Issue 3 are removed from Issue 4.

stty — set the options for a terminal

Issue 4: The SWTCH control character, marked as OP in Issue 3, is omitted.

The loblk control mode is omitted because shl is not supported on all systems.

The setting of a line discipline number via the line option is omitted because there
is no underlying support for it in the POSIX-1 standard.

The Issue 3 description of Control Mode 0 says: ‘‘Hang up line immediately. This
applies to all terminal lines, not just modem lines. A SIGHUP signal is sent to all
processes attached to the line.’’. This description is incorrect and the Issue 4
description accurately reflects the processing of modem disconnects on historical
systems.

sum — print checksum and block count of a file (TO BE WITHDRAWN)

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

The capability of sum is stabilised at the Issue 3 level. The cksum utility is replacing
sum.

tabs — set terminal tabs

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −T type.

In Issue 3 it is stated that tab and margin setting are always performed via
characters output to standard output. In Issue 4, acknowledgement is given that
this is not necessarily the case for all terminal types.

Part 2: Commands and Utilities Migration 79

Utility Migration Information Utilities

tail — copy the last part of a file

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −c number and −n number.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

Issue 3 described the interaction of the −f option and pipes, but not FIFOs. The −f
option is not ignored when the standard input or a file operand is a FIFO.

Applications using one of the obsolescent forms should be converted to use −c, −f
and −n. For example:

Convert from Convert to
tail -10 tail -n 10
tail -5c tail -c 5
tail -3b tail -c 1536
tail +10f tail -f -n +10

talk — talk to another user

Issue 4: A new utility for Issue 4.

tar — file archiver (TO BE WITHDRAWN)

Issue 4: The capability of tar is stabilised at the Issue 3 level. The pax utility is replacing tar
and is able to read and write archives produced by tar.

tee — duplicate standard input

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Some historical implementations ignore write errors. This is explicitly not
permitted by the XCU specification.

Some historical implementations use O_APPEND when providing append mode;
others use the lseek() function to search to the end of the file after opening the file
without O_APPEND. This document requires capability equivalent to using
O_APPEND.

test — evaluate expression

Issue 4: See APPLICATION USAGE for details of converting the −o and −a binary
primaries for maximal portability. The following list of paired commands shows
sample conversions:

test $1 = cat -o $2 = mouse -a $3 = bird
test "$1" = "cat" | | { test "$2" = "mouse" && test "$3"

= "bird"; }

test $1 = red -a $2 = white -o $3 = blue
test "$1" = "red" && test "$2" = "white" | | test "$3"

= "blue"

80 XPG3-XPG4 Base Migration Guide, Version 2

Utilities Utility Migration Information

test $1 = car -a \($2 = boat -o $3 = plane \)
test "$1" = "car" && (test "$2" = "boat" | | test "$3"

= "plane")

In the preceding conversions, the { } and () grouping forms accomplish the same
result, but the latter creates a subshell. This may cause a slight performance
penalty on some systems.

The new −e primary is added because it provides the only way for a shell script to
find out if a file exists without trying to open the file. Since implementations are
allowed to add additional file types, a portable script cannot use:

test -b foo -o -c foo -o -d foo -o -f foo -o -p foo

to find out if foo is an existing file.

The −t file_descriptor primary is shown with a mandatory argument because the
grammar is ambiguous if it can be omitted. Issue 3 allows it to be omitted,
providing a default of 1.

time — time a simple command

Issue 4: In Issue 3 it is unclear whether time operates on a simple command (utility name
plus arguments) or on a complex shell command, such as a pipeline. In Issue 4, it
is now clear that only a simple command can be timed portably, because the
pipeline cases are now explicitly unspecified.

The following example command can be used to apply time portably to a complex
command:

time sh -c ’ complex-command-line ’

touch — change file access and modification times

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −r ref_file and −t time.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

An ambiguity exists in the Issue 3 specification when a pathname that is a decimal
number leads the operands; it is treated as a time value. A portable application
must use the −t time construct to avoid this ambiguity if it cannot control the
filenames in use.

At least one historical implementation of touch incremented the exit code if −c is
specified and the file does not exist. This document requires exit status zero if no
errors occur.

tput — change terminal characteristics

Issue 4: A new utility for Issue 4.

Part 2: Commands and Utilities Migration 81

Utility Migration Information Utilities

tr — translate characters

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a string1 value beginning with −).

According to Issue 3, a range expression required enclosing square-brackets, such
as:

tr ’[a-z]’ ’[A-Z]’

However, BSD-based systems do not require the brackets and this convention is
used by the XCU specification to avoid breaking large numbers of BSD scripts:

tr a-z A-Z

The preceding Issue 3 script continues to work because the brackets, treated as
regular characters, are translated to themselves. However, any Issue 3 script that
relies on:

a-z

representing the three characters a, −, and z has to be rewritten as:

az-

Better yet, most range expressions should be converted to use the character
classification methods, such as [:alpha:] or [:upper:].

NUL characters are no longer stripped from the input automatically. See
APPLICATION USAGE.

The use of octal values to specify control characters is not portable. The
introduction of escape sequences for control characters provides the necessary
portability, but applications should be checked for usage such as:

tr ’\b’ B

which formerly meant to translate b to B, but now translates the backspace
character to B. The previous ability to escape any character with a backslash is
removed and unspecified results occur.

Issue 3 support for multi-character collating elements, using the:

[[.cc.]]

construct, and implicitly in a range expression, is removed.

In Issue 3, the:

[:class:]

and:

[=equiv=]

conventions are shown with double brackets, as in regular expression syntax.
Because tr does not implement regular expression principles, but just borrows part
of the syntax, the double brackets are removed from the POSIX-2 standard tr.
Applications must remove the extra brackets.

Examples 1 and 5 in the Issue 3 tr are no longer valid. Also, note the differences in
Issue 3 example number 3 and its replacement, Issue 4 number 2.

82 XPG3-XPG4 Base Migration Guide, Version 2

Utilities Utility Migration Information

true — return true value

Issue 4: This utility operates exactly as in Issue 3.

tsort — topological sort

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

tty — return user’s terminal name

Issue 4: Applications using tty −s should be converted to use test −t 0.

type — write a description of command type

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a command name beginning with −).

A fully portable application should use command −V instead of type.

ulimit — set or report file size limit

Issue 4: This utility operates exactly as in Issue 3, except for the effects of the
internationalisation variables.

umask — get or set the file mode creation mask

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a mode operand beginning with −, such
as −r, −w or −x).

Applications should migrate to the symbolic permissions form.

The default output format is unspecified. Portable applications should use −S.

unalias — remove alias definitions

Issue 4: A new utility for Issue 4.

uname — return system name

Issue 4: This utility operates exactly as in Issue 3, except for the effects of the
internationalisation variables.

Issue 4, Version 2:
The SYNOPSIS section now lists all valid options.

uncompress — expand compressed data

Issue 4: A new utility for Issue 4.

Issue 4, Version 2:
The DESCRIPTION section is clarified to state that the ownership, modes, access
time and modification time of the original file are preserved if the invoking process
has appropriate privileges.

Part 2: Commands and Utilities Migration 83

Utility Migration Information Utilities

unexpand — convert spaces to tabs

Issue 4: A new utility for Issue 4.

unget — undo a previous get of an SCCS file (DEVELOPMENT)

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −r SID.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a directory name beginning with −).

Some of the utility output formats are specified, whereas they are not specified in
Issue 3. Applications relying on previous output formats are not portable.

uniq — report or filter out repeated lines in a file

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −f fields and −s chars.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

Applications using uniq −n or +n should be converted to use −f fields and −s chars,
for example:

Convert from Convert to
uniq -3 uniq -f 3
uniq +3 uniq -s 3

unpack — expand files (TO BE WITHDRAWN)

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

In Issue 3, the exit status reflected the number of files that could not be unpacked.
The new exit status description does not mandate that and applications relying on
it will have to be redesigned; they were probably not portable before anyway,
because the exit status would have wrapped back to zero when 256 files could not
be packed.

The uncompress utility is replacing unpack. The two utilities are generally
equivalent when used with file operands, but any part of the application that relies
on a .z suffix has to be changed to handle .Z.

Some of the utility output formats are specified, whereas they are not specified in
Issue 3. Applications relying on previous output formats are not portable.

Issue 4, Version 2:
The DESCRIPTION section is clarified to state that the ownership, modes, access
time and modification time of the original file are preserved if the invoking process
has appropriate privileges, and the DESCRIPTION section no longer specifies the
assertion that a file is not written if the filename has more than {NAME_MAX}−2
bytes.

84 XPG3-XPG4 Base Migration Guide, Version 2

Utilities Utility Migration Information

uucp — system-to-system copy

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −n user. The − − argument is required to delimit
the first operand if that operand could be misinterpreted as an option (for example,
a filename beginning with −).

In Issue 3 the uucp utility always assigns universal read and write permissions to
files (666) and preserves execute permissions across the transmission. In Issue 4
the permissions are implementation-dependent. Therefore, it is no longer possible
to assume that a portable application will be able to access files on the other
system after transfer.

uudecode — decode a binary file

Issue 4: A new utility for Issue 4.

uuencode — encode a binary file

Issue 4: A new utility for Issue 4.

uulog — query system-to-system transaction log

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −s system.

uuname — list names of other known uucp systems

Issue 4: This utility operates exactly as in Issue 3, except for the effects of the
internationalisation variables.

uupick — receive public system-to-system file copies

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −s system.

uustat — uucp status inquiry and job control

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −k jobid, −r jobid, −s system and −u user.

uuto — send public system-to-system file copies

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

uux — remote command execution

Issue 4: Applications using uux − should be converted to use uux −p.

Part 2: Commands and Utilities Migration 85

Utility Migration Information Utilities

val — validate SCCS files (DEVELOPMENT)

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −m name, −r SID and −y type. The − − argument is
required to delimit the first operand if that operand could be misinterpreted as an
option (for example, a directory name beginning with −).

Some of the utility output formats are specified, whereas they are not specified in
Issue 3. Applications relying on previous output formats are not portable.

vi — screen-oriented (visual) display editor

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −t tagstring, −c command and −w size.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input file lines must end with a newline character, except
for the final line.

The e and E commands described here differ slightly from some historical
implementations in that an empty or blank line is described as containing exactly
one word or bigword, just as for b, B, w and W. On some systems, the E command
skips over empty/blank lines. There is now a consistent definition of bigword
between the E command and the others so that they all treat empty or blank lines
the same way.

wait — await process completion

Issue 4: Multiple pid operands and job control job IDs are now allowed.

wall — write to all users (WITHDRAWN)

Issue 4: This utility is withdrawn because it cannot be used portably by an application. It
is usually usable only by applications with appropriate privileges. Applications
needing some sort of general broadcasting facility can use who and write, but the
user community accessible in this way is limited by security considerations and
the mesg status of each user at the time.

wc — word, line and byte count

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

The new −m option allows counting by characters (which can be multi-byte)
instead of bytes.

Some historical implementations use only the space character, tab character and
newline character as word separators, which would result in different counts for
some files.

86 XPG3-XPG4 Base Migration Guide, Version 2

Utilities Utility Migration Information

what — identify SCCS files (DEVELOPMENT)

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a directory name beginning with −).

who — display who is on the system

Issue 4: The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a filename beginning with −).

The forms who am i and who am I are being replaced by who −m for portable
applications.

write — write to another user

Issue 4: This utility operates exactly as in Issue 3, except for the effects of the
internationalisation variables. However, it is now acknowledged that the
implementation may define special control characters as part of extensions to the
terminal driver and that these will also be effective in the write session. For
example, some systems have implemented <control>-W to back up one word in
the input, similar to its use in vi.

xargs — construct argument list(s) and invoke utility

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −I replstr, −L number, −e eofstr, −n number and −s
size.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a utility name beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

The −e option is changed to support the Utility Syntax Guidelines and because the
POSIX-2 standard does not allow the default use of underscore as a logical EOF
character. In Issue 3, underscore is the default and −e without an option-argument
turns off all logical EOFs. Portable applications requiring the former default case
must specify −e _.

The −i and −l options are declared obsolescent because they do not conform to the
Utility Syntax Guidelines. They should be replaced as follows:

Convert from Convert to
-i -r or -I {}
-i replstr -I replstr
-l -L 1
-l number -L number

Part 2: Commands and Utilities Migration 87

Utility Migration Information Utilities

yacc — yet another compiler compiler (DEVELOPMENT)

Issue 4: Conformance to the Utility Syntax Guidelines requires blank-character separation
of the option and argument for: −b file_prefix and −p sym_prefix.

The − − argument is required to delimit the first operand if that operand could be
misinterpreted as an option (for example, a grammar name beginning with −).

Input lines are now documented to be limited to {LINE_MAX} bytes and cannot
contain NUL characters. Input files must end with a newline character.

Simultaneous execution of multiple invocations of yacc and multiple parsers in the
same file are now possible, given the new −b and −p options.

zcat — expand and concatenate data

Issue 4: A new utility for Issue 4.

88 XPG3-XPG4 Base Migration Guide, Version 2

XPG3-XPG4 Base Migration Guide, Version 2

Part 3:

System Interfaces and Headers Migration

X/Open Company Ltd.

Part 3: System Interfaces and Headers Migration 89

90 XPG3-XPG4 Base Migration Guide, Version 2

Chapter 5

Program Migration and Portability

This chapter covers a general set of topics of interest to developers:

• migrating applications from implementations conforming to Issue 3 to implementations
conforming to Issue 4, Version 2

• migrating applications originally developed on traditional UNIX systems to systems that
conform to XPG4 UNIX.

Specific topics covered include:

• feature groups

• the compilation environment

• functional duplication in the Single UNIX Specification

• other programming considerations

• interprocess communications

• STREAMS

• error codes

• makefile portability.

Part 3: System Interfaces and Headers Migration 91

Feature Groups Program Migration and Portability

5.1 Feature Groups
The concept of feature groups was introduced in Issue 4. The majority of functions belong to the
BASE capability. These functions are mandatory on XSI-conforming systems; applications can
rely on their existence.

In addition to the BASE capability, there are five feature groups as follows:

• Encryption; identified as CRYPT on reference pages

• Enhanced Internationalisation; identified as ENHANCED I18N on reference pages

• POSIX.2 C-language Binding; identified as POSIX2 CLB on reference pages

• Shared Memory; identified as SHARED MEM on reference pages

• X/Open UNIX Extension; identified as X/OPEN UNIX on reference pages.

The feature group identifier appears at the top of appropriate reference pages, and BASE is used
to identify all functions belonging to the BASE capability.

The XPG4 XSH specification defines which feature groups are mandatory and which are
optional for specific profiles or component definitions. Refer to Section 1.7 on page 11 for an
overview of XPG4 profiles. Some interfaces in feature groups also define optional behaviour.
Developers must refer to a product’s Conformance Statement to determine what feature groups
are supported on that particular implementation.

Feature test macros are defined by an implementation and available for the application source-
code to check to determine whether a feature group is supported or not at compile time.

Feature Test Macro Feature Group
_XOPEN_CRYPT Encryption
_XOPEN_ENH_I18N Enhanced Internationalisation
_POSIX2_C_VERSION POSIX.2 C-language Binding
_XOPEN_SHM Shared Memory
_XOPEN_UNIX X/Open UNIX Extension

Table 5-1 Feature Test Macros and Feature Groups

With two exceptions, the implementation shall define the feature test macro to be other than −1
if the feature group is provided, and −1 if the feature group is not implemented. The exceptions
are:

• The _POSIX2_C_VERSION macro needs to be defined explicitly in <unistd.h>.

• An implementation not supporting the X/Open UNIX Extension need not define
_XOPEN_UNIX to be −1. (The system may pre-date the introduction of the X/Open UNIX
feature group.)

92 XPG3-XPG4 Base Migration Guide, Version 2

Program Migration and Portability The Compilation Environment

5.2 The Compilation Environment
A section is added to Issue 4 indicating use of the feature test macro _XOPEN_SOURCE. In
summary, ensure that this macro is defined before the inclusion of any header defined in the
XSH specification; its inclusion subsumes the use of _POSIX_SOURCE and _POSIX_C_SOURCE.
This macro causes all of the proper symbols to be exposed with respect to base functionality and
any of the XSH specification feature groups that are provided on that particular XPG4 branded
system.

The Single UNIX Specification introduces the X/Open UNIX Extension feature group, which
requires the additional macro _XOPEN_SOURCE_EXTENDED to be defined to be 1 prior to the
inclusion of the first header. These two macros, _XOPEN_SOURCE and
_XOPEN_SOURCE_EXTENDED, are set by the application to ensure the identifiers and
prototypes are correctly exposed, and should not be confused with the other feature test macros
that are set by the implementation to be tested by the application. One (_XOPEN_SOURCE and
_XOPEN_SOURCE_EXTENDED) is a header configuration mechanism used by the application
to provide information to the implementation. The other (_XOPEN_UNIX) is an announcement
mechanism provide by the implementation to be tested by the application source-code.

The _XOPEN_SOURCE macro may be defined automatically by the compilation environment,
but to ensure maximum portability the application should define the macro either on the
compilation command line, or best at the beginning of each source module prior to the inclusion
of any headers. _XOPEN_SOURCE_EXTENDED will not be automatically defined by the
compilation environment.

The X/Open Name Space has been fully defined.

Application developers are advised to study the XSH specification, Section 2.2, The Compilation
Environment, when migrating or developing programs on XPG4 Base 95 or XPG4 UNIX branded
systems.

Part 3: System Interfaces and Headers Migration 93

Functional Duplication Program Migration and Portability

5.3 Functional Duplication
Part of the development of the Single UNIX Specification involved merging three industry
portability specifications and surveying existing applications. Some functionality is duplicated
in some interfaces, because of this approach. This functional duplication was carefully managed
in the specification, and serves the portability of existing applications originally developed for
UNIX and UNIX-like environments. A number of things have been done with the format of the
Single UNIX Specification to provide direction for new application development work, and to
support the migration of applications that need to be portable to earlier versions of the Single
UNIX Specification.

• Text shading and portability codes in the reference pages notify programmers of potential
functionality that may reduce portability to other platforms.

• Interfaces that duplicate functionality and are not intended to be the preferred future
direction:

— may be marked as TO BE WITHDRAWN on the NAME line to draw attention to areas
that need attention

— have clearly marked migration paths in favour of current industry standards in the
APPLICATION USAGE section of the reference page.

The following summarises the areas in the Single UNIX Specification where duplicated
functionality exists. References to the recommended interfaces are found in the appropriate
sections of Chapter 7 on page 121, and in the appropriate APPLICATION USAGE sections of
the XSH specification.

• <strings.h> versus <string.h>

There is direct overlap between the BSD byte-string functions (bcmp(), bcopy(), bzero()) and
the ISO C standard memory handling functions (memcmp(), memmove(), memset()). Other
string functions traditionally found on BSD systems are also covered by ISO C standard
functions: index() maps to strchr() and rindex() maps to strrchr(). The ISO C standard
functions are the preferred method of performing these operations.

The ISO C standard functions are all defined in <string.h>, while the BSD functions have
been moved to <strings.h>.

• Temporary File Creation

There are a number of interfaces to create temporary files and temporary filenames. The
interfaces tempnam() and tmpnam() create filenames suitable for temporary files, and tmpfile()
actually creates a temporary file for use.

The functions mkstemp() and mktemp() are present in the Single UNIX Specification as part of
the X/Open UNIX Extension, but only exist to support historical usage.

• Regular Expression Handling

There are several ways to handle regular expressions and pattern matching:

— the newer more functional POSIX.2-defined functions regcomp() and regexec() included
through <regex.h>

— the historical model covered by compile(), step() and advance() and included through
<regexp.h>

— the regcmp() and regex() functions as defined in <libgen.h>

94 XPG3-XPG4 Base Migration Guide, Version 2

Program Migration and Portability Functional Duplication

— the re_comp() and re_exec() functions as defined in <re_comp.h>.

The POSIX.2 functionality is the preferred method of handling regular expressions, and the
other methods are marked TO BE WITHDRAWN.

• Multiple Signal Models

The development of the Single UNIX Specification brought together three separate signal
models from POSIX.1, BSD and the SVID. While the BSD and SVID signal models are now
supported on X/Open UNIX systems, supporting ports of historical applications, the newer
POSIX.1-based model should be used to plan for future portability, and support portability to
implementations that conform to an earlier version of the XSH specification. Reference pages
point to equivalent calls in the POSIX.1 signal model in the APPLICATION USAGE sections,
for the calls based on the other two models.

If an application depends upon historical BSD signal behaviour, it will need to replace all
calls to signal() with calls to bsd_signal(), to avoid the overloading of the signal() call that
occurred when the models came together in the specification.

• Advisory Record Locking

Advisory record locking is supported with the lockf() interface, new to this version of the
XSH specification, and also with the fcntl() interface. The latter method is preferred for
applications that require portability to implementations conforming to earlier versions of the
XSH specification.

• mknod() and mkfifo()

The mknod() interface has been added to the Single UNIX Specification but the only portable
use of the function is for creating FIFO-special files. Because of this and the existence of
mkfifo() as the POSIX.1 standard method of creating a FIFO-special file, developers are
encouraged to use mkfifo() for future portability, and portability to implementations
conforming to earlier versions of How to Brand — What to Buy.

• Non-local Goto

The _longjmp() and _setjmp() interfaces (new in the Single UNIX Specification) are identical
to the ISO C standard interfaces longjmp() and setjmp(), with the exception that they do not
manipulate the signal mask. Applications that depend upon the value of the signal mask
should use the POSIX.1-specified siglongjmp() and sigsetjmp() interfaces.

• Current Working Directory

The getcwd() interface should be used to determine the current working directory, rather than
getwd(), to plan for future portability, and support portability to implementations that
conform to an earlier version of the XSH specification.

• Text String to Number Conversion

Text strings representing numbers should be converted to numbers using the standard
strtod() and strtol() interfaces, rather than the historical atof(), atoi() and atol() functions.
While these interfaces have been added to the Single UNIX Specification to support the
porting of historical applications, the newer standards-based interfaces have better error
checking.

In a similar vein, the floating-point number to string conversion routines, ecvt(), fcvt(), gcvt()
should be replaced with sprintf() for maximum portability.

Part 3: System Interfaces and Headers Migration 95

Functional Duplication Program Migration and Portability

• utimes() versus utime()

To set file access and modification times, a developer should use the utime() function, aligned
with POSIX.1 and supported by implementations conforming to earlier versions of the XSH
specification, rather than the utimes() interface.

96 XPG3-XPG4 Base Migration Guide, Version 2

Program Migration and Portability Other Programming Considerations

5.4 Other Programming Considerations
Functional duplication should be of concern to programmers developing new applications, as
they want to write the application to be as portable as possible over the long term. Programmers
porting existing applications are less likely to be concerned about these issues immediately, but
may discover a number of other issues effecting their portability.

5.4.1 Argument Type Changes

Argument type changes tend to be to more exact definitions, such as int to mode_t or
size_t . Much of this is as a result of the C-language and POSIX standards efforts, but function
prototypes not covered by either standard have been rationalised as well. For example, the
second argument to bzero() changed from an int to a size_t from 4.3BSD to 4.4BSD, and the
Single UNIX Specification reflects the newer more exact definition.

5.4.2 Prototype Changes and Movement

Certain function prototypes may have changed in subtle ways (types), or moved entirely to
different header files. Prototypes moved from one header to another due once again to
standards efforts. For example, the ISO C standard memory functions have historically
appeared in <memory.h>, but moved to <string.h> with the standard. The BSD byte-string
functions such as bcopy() and bcmp() have their prototypes defined in <string.h> in the 4.4BSD
documentation, but <strings.h> in the Single UNIX Specification. Again, these moves are not
strictly because of standards efforts. For example, the older regular expression handling
functions compile(), step(), advance() moved from <regexpr.h> to <regexp.h> as part of the move
to the Single UNIX Specification.

5.4.3 Process Environment Access

For C-language processes, the environment is an array of pointers to strings defined as:

extern char **environ;

C-language programs can use getenv() to determine the existence and value of environment
variables. Environment variables can be placed in a program’s environment using putenv(),
directly manipulating the environ array (not recommended), or using the envp arguments when
creating a process (using exec()). The environ array should not be directly accessed from the
application.

System V platforms support a third argument to main() that is a null-terminated array of
character string pointers to the environment. Applications that rely on this behaviour will need
to be reworked to use the environ array, a two argument main(), and possibly getenv() and
putenv().

5.4.4 Pseudo-terminals

Issue 4, Version 2 introduces pseudo-terminals to the specification. This raises a portability
problem for applications source-code that may have been developed on a BSD-based system and
is being moved to a System V-based system, or vice versa. Pseudo-terminal implementations
differ in these two operating environments with respect to initialisation.

The following example code (adapted from the module SRC/userintf.c in the VSX4 test suite)
illustrates opening a pseudo-terminal to handle both environments.

Part 3: System Interfaces and Headers Migration 97

Other Programming Considerations Program Migration and Portability

Example 5-1 Pseudo-terminal Initialisation

/*
* Openpty() opens the master and slave sides of a pseudo-terminal.
* Both device names are supplied, but if master ptys are obtained
* from a clone device the slave name is a dummy which must be
* overwritten with the real device name. If cntrl is true
* the slave must be opened as a controlling terminal by calling
* openctl() instead of plain open(). Both devices must be opened
* for reading and writing. On many systems master devices can
* only be opened once, giving EBUSY for example on subsequent
* opens. If openpty() encounters a busy master device, it must
* simply open the slave.
*
* The open file descriptors are returned via the pointers mfdp and
* sfdp. Openpty() returns 0 for success or -1 for failure.
*
*/

#define CLONE_MPTY /* delete this define if master pty’s are not
obtained from a clone device (e.g. /dev/ptmx) */

#define STREAMS_PTY /* delete this define if pty’s do not use STREAMS */

#ifdef STREAMS_PTY
#include <sys/stropts.h>
#endif

int
openpty(char *master, char *slave, int *mfdp, int *sfdp, int cntrl) {

*mfdp = open(master, O_RDWR|O_NOCTTY);
if (*mfd p < 0 && errno != EBUSY)

return -1;

#ifdef CLONE_MPTY
if (*mfdp >= 0)
{

char *newslave;
size_t len;
static struct { char *ptr; size_t len; } slavelen[2];
extern char *ptsname();

(void) grantpt(*mfdp); /* change permission of slave */
(void) unlockpt(*mfdp); /* unlock slave */
newslave=ptsname(*mfdp); /* get a slave */
if (slavelen[0].ptr == NULL)
{

/* remember length of original dummy name
to be used if called again */

slavelen[0].ptr = slave;
slavelen[0].len = strlen(slave);

}

98 XPG3-XPG4 Base Migration Guide, Version 2

Program Migration and Portability Other Programming Considerations

else if (slave != slavelen[0].ptr && slavelen[1].ptr == NULL)
{

/* remember length of original dummy name
to be used if called again */

slavelen[1].ptr = slave;
slavelen[1].len = strlen(slave);

}
if (slave == slavelen[0].ptr)

len = slavelen[0].len;
else

len = slavelen[1].len;
if (strlen(newslave) > len)
{

(void) fprintf(stderr, "Error in openpty()\n");
return -1;

}
(void) strcpy(slave, newslave);

}
#endif

if (cntrl)
*sfdp = openctl(slave, O_RDWR);

else
*sfdp = open(slave, O_RDWR|O_NOCTTY);

if (*sfdp < 0)
return -1;

#ifdef STREAMS_PTY
if (*mfdp >= 0)
{

(void) ioctl(*sfdp, I_PUSH, "ptem"); /* pseudo tty emulator */
(void) ioctl(*sfdp, I_PUSH, "ldterm"); /* line discipline */

}
#endif

return 0;
}

/*
* Ptygetattr() obtains terminal attributes for the slave pseudo-
* terminal corresponding to the master device addressed by mfd.
* It returns 0 for success, -1 for failure.
*
*/

int
ptygetattr(int mfd, struct termios *termios_p) {
#ifdef STREAMS_PTY

extern char *ptsname();
char *slave;
int ret, sfd = -1;

Part 3: System Interfaces and Headers Migration 99

Other Programming Considerations Program Migration and Portability

/* Obtain slave device name and call tcgetattr() on the slave */
slave = ptsname(mfd);
if (slave && (sfd = open(slave, O_RDWR)) >= 0)

ret = tcgetattr(sfd, termios_p);
else

ret = -1;
if (sfd >= 0)

(void) close(sfd);
return ret;

#else
/* This code assumes tcgetattr() on the master returns the

settings of the slave (true for BSD-style pseudo-terminals) */
return tcgetattr(mfd, termios_p);

#endif
}

100 XPG3-XPG4 Base Migration Guide, Version 2

Program Migration and Portability Errors

5.5 Errors

5.5.1 Issue 4

The following symbolic name is added to the list of errors:

EILSEQ

This error is defined for use by certain of the WPI functions and indicates that a wide-character
code does not correspond to a valid character in the prevailing codeset, or that a byte sequence
does not form a valid wide-character code when converting from external to internal character
mappings.

The only other change to the list of errors in Issue 4 is in the description of the
[ENAMETOOLONG] error. Issue 3 indicates that this error is returned if a path component is
longer than {NAME_MAX} and {_POSIX_NO_TRUNC} is in effect. For alignment with the FIPS
requirements, {_POSIX_NO_TRUNC} must always be set on Issue 4 systems, hence the above
caveat is removed.

5.5.2 Issue 4, Version 2

A substantial number of error codes appeared with the creation of the Single UNIX Specification.
As well, some error values can be returned under new conditions. For example, a second
[ENAMETOOLONG] condition is defined for many interfaces that may report excessive length
of an intermediate result of pathname resolution of a symbolic link. New error values are listed
below:

EADDRINUSE EADDRNOTAVAIL EAFNOSUPPORT EALREADY
EBADMSG ECONNABORTED ECONNREFUSED ECONNRESET
EDESTADDRREQ EDQUOT EHOSTUNREACH EINPROGRESS
EISCONN ELOOP EMSGSIZE EMULTIHOP
ENETDOWN ENETUNREACH ENOBUFS ENODATA
ENOLINK ENOPROTOOPT ENOSR ENOSTR
ENOTCONN ENOTSOCK EOPNOTSUPP EOVERFLOW
EPROTO EPROTONOSUPPORT EPROTOTYPE ESTALE
ETIME ETIMEDOUT EWOULDBLOCK

Part 3: System Interfaces and Headers Migration 101

Interprocess Communication (IPC) Program Migration and Portability

5.6 Interprocess Communication (IPC)
The status of the msg*() and sem*() IPC functions in Issue 4 was changed from optional to
mandatory. The shm*() functions became part of the Shared Memory feature group. Thus all
XSI-conforming systems provide the same mechanisms for manipulating messages and
semaphores. However, X/Open is still considering the problem of generalised IPC, which is not
addressed by the IPC functions defined in Issue 4.

Note: The IEEE P1003.4 Standards Committee has developed alternative interfaces for
interprocess communication. These interfaces are currently published in
IEEE Std 1003.1b-1993 (POSIX.1b), and will be published in an amended POSIX-1
standard. Application developers are advised to write their code in such a way that
modules using IPC interfaces described in Issue 4 can be modified easily in the future
to use alternative interfaces.

102 XPG3-XPG4 Base Migration Guide, Version 2

Program Migration and Portability STREAMS

5.7 STREAMS
The X/Open UNIX Extension in Issue 4, Version 2 introduces traditional System V STREAMS to
the XSH specification. STREAMS are a method of implementing network services and other
character-based input/output mechanisms, with the STREAM being a full-duplex connection
between a process and a device. STREAMS provides direct access to protocol modules, and
optional protocol modules can be interposed between the process-end of the STREAM and the
device-driver at the device-end of the STREAM.

The XSH specification, Section 2.5, STREAMS, introduces X/Open UNIX STREAMS I/O, the
message types used to control them, an overview of the priority mechanism, and the interfaces
used to access them.

Part 3: System Interfaces and Headers Migration 103

Makefile Portability Program Migration and Portability

5.8 Makefile Portability
Makefiles are as much a part of the source-code to be ported, as the C-language files that
implement the application’s function. Every implementation of make has extended the syntax
and added functionality to serve specific groups of users, and satisfy certain perceived short-
comings of the original utility. Some of the disparate features found include:

• syntax to support parallel (multi-processor) execution

• additional special targets

• additional operators

• support for preprocessor-like functionality to ‘‘include’’ other files, and conditionally process
sections of the makefile

• changes in internal macro semantics when working with library targets

• support for remote execution.

The Single UNIX Specification defers to the POSIX.2 make utility. The POSIX.2 working group
chose to describe the most common features found in System V and BSD variants of make to
define the standard behaviour.

The special target .POSIX was defined such that if it appears prior to the first non-comment line
in a makefile it ensures that the makefile is processed in the standard manner. This target does
not prevent or preclude extended functions and features, but these extensions shall not alter the
behaviour of the ‘‘standard’’ definition. The only extension to the POSIX.2 standard definition of
make defined by the XCU specification is to allow for support for sccs. To use the extended sccs-
based default rules, the special target .SCCS_GET must appear in the makefile.

An organisation may have a considerable amount of history and folklore embedded in their
makefiles. Determining how old makefiles work can be a labour intensive part of porting an
application. Investing the effort in the first ‘‘port’’ of the makefiles to the Single UNIX
Specification definition of make means that they will be portable from that point forward to all
platforms that are X/Open UNIX or XPG4 Base branded, or support POSIX.2.

A number of issues to be aware of with the standard make:

• The default macro for the C-compiler is CC=c89, and not cc. The c89 compiler front-end
invokes the standard C-language compiler.

• Although the Single UNIX Specification extends its specification of makefile syntax to
support sccs, no support for RCS was added.

• Implementations support MAKEFLAGS with both the System V letter-string and the BSD
command-line syntax, but they need not support both behaviours intermixed together.

• The historical MAKESHELL feature is not supported.

• The −n option specifies that commands should be written to standard output but not
executed. However, it should be noted that commands with a plus sign (+) prefix will still be
executed. The System V behaviour of still executing command-lines that contain the strings
$(MAKE) or ${MAKE} when a −n option is present is not supported.

• While there is existing make practice that allows the use of blanks to delimit command-lines,
as well as the more traditional tab character, the standard make does not support this feature.

• New macros defined using other macros evaluate when the new macro is used, not when it
was defined.

104 XPG3-XPG4 Base Migration Guide, Version 2

Program Migration and Portability Makefile Portability

• The debug option (−d) is not specified although implementations will likely provide it in an
implementation-specific manner. The output format of the −p option to see the complete
presentation of macro definitions and target descriptions is not described.

Part 3: System Interfaces and Headers Migration 105

Program Migration and Portability

106 XPG3-XPG4 Base Migration Guide, Version 2

Chapter 6

Interface Tables

This chapter contains a table of all the interfaces defined in Issue 4, Version 2, complete with an
indication of their availability in Issue 3, the POSIX-1 standard, the POSIX-2 standard, the ISO C
standard, SVID3 and 4.3BSD. The following conventions are used in columns 2 through 7:

m Indicates that the interface is defined as mandatory.

o Indicates that the interface is defined as optional.

f Indicates that the interface is part of a feature group; refer to Section 5.1 on page 92 and
Section 1.7 on page 11 for a description of feature groups and under what conditions these
interfaces are mandatory or optional.

U Indicates that the interface is part of the X/Open UNIX Extension feature group, new with
Issue 4, Version 2.

† Indicates that the interface has been modified between Issue 4, and Issue 4, Version 2 for
X/Open UNIX conformance. These changes are typically additional error conditions,
although some modifications are quite extensive.

. Indicates that the interface is not specified.

The table is intended as a quick reference guide for programmers migrating or developing
applications for Issue 4 conformance. Products that brand to the XPG4 UNIX profile provide all
of the interfaces listed, regardless of whether or not they are part of a feature group. (The
interfaces that are part of the Encryption feature group are the only possible exception to this,
due to U.S. Government export restrictions on the decoding algorithm.)

Issue 4, POSIX-1
Interface Issue 3 Version 2 and POSIX-2 ISO C SVID3 4.3BSD

a64l () . U . . m .
abort() m m m m m m
abs() m m m m m m
access() m m† m . m m
acos() m m m m m m
acosh() . U . . m m
advance() m m . . m .
alarm() m m† m . m m
asctime() m m m m m m
asin() m m m m m m
asinh() . U . . m m
assert() m m m m m m
atan() m m m m m m
atan2() m m m m m m
atanh() . U . . m m
atexit() . m† . m m .
atof () m m m m m m
atoi () m m m m m m

Part 3: System Interfaces and Headers Migration 107

Interface Tables

Issue 4, POSIX-1
Interface Issue 3 Version 2 and POSIX-2 ISO C SVID3 4.3BSD

atol () m m m m m m
basename() . U . . m .
bcmp() . U . . . m
bcopy() . U . . . m
brk() . U . . m m
bsd_signal() . U
bsearch() m m m m m .
bzero() . U . . . m
calloc () m m m m m m
catclose () m m . . m .
catgets() m m† . . m .
catopen() m m† . . m .
cbrt() . U . . m m
ceil() m m m m m m
cfgetispeed() m m m . m .
cfgetospeed() m m m . m .
cfsetispeed() m m† m . m .
cfsetospeed() m m† m . m .
chdir() m m† m . m m
chmod() m m† m . m m
chown() m m† m . m m
chroot() m m† . . . m
clearerr() m m m m m m
clock () m m . m m .
close() m m† m . m m
closedir() m m m . m m
closelog () . U . . . m
compile() m m . . m .
confstr() . m m . . .
cos() m m m m m m
cosh() m m m m m m
creat() m m m . m m
crypt() o f . . m m
ctermid() m m m . m .
ctime() m m m m m m
cuserid() m m . . m .
daylight m m
dbm_clearerr() . U
dbm_close() . U
dbm_delete() . U
dbm_error() . U
dbm_fetch() . U
dbm_firstkey() . U
dbm_nextkey() . U
dbm_open() . U
dbm_store() . U

108 XPG3-XPG4 Base Migration Guide, Version 2

Interface Tables

Issue 4, POSIX-1
Interface Issue 3 Version 2 and POSIX-2 ISO C SVID3 4.3BSD

difftime() . m . m m .
dirname() . U
div() . m . m m .
drand48() m m . . m .
dup() m m m . m m
dup2() m m m . m m
ecvt() . U . . . m
encrypt() o f . . m m
endgrent() . U . . m m
endpwent() . U . . m m
endutxent() . U
environ m m m . . .
erand48() m m . . m .
erf() m m . . m m
erfc() m m . . m m
errno m m m m . .
execl() m m† m . m m
execv() m m† m . m m
execle() m m† m . m m
execve() m m† m . m m
execlp() m m† m . m m
execvp() m m† m . m m
exit() m m† m m m m
_exit() m m† m m m m
exp() m m m m m m
expm1() . U . . . m
fabs() m m m m m m
fattach () . U . . m .
fchdir() . U . . m .
fchmod() . U . . m m
fchown() . U . . m m
fclose() m m m m m m
fcntl() m m m . m m
fcvt() . U . . . m
FD_CLR() . U
FD_ISSET() . U
FD_SET() . U
FD_ZERO() . U
fdetach () . U . . m .
fdopen() m m m . m m
feof() m m m m m m
ferror() m m m m m m
fflush() m m m m m m
ffs() . U . . . m
fgetc() m m† m m m m
fgetpos() . m . m m .

Part 3: System Interfaces and Headers Migration 109

Interface Tables

Issue 4, POSIX-1
Interface Issue 3 Version 2 and POSIX-2 ISO C SVID3 4.3BSD

fgets() m m m m m m
fgetwc() . m†
fgetws() . m
fileno() m m m . m m
floor() m m m m m m
fmod() m m m m m .
fmtmsg() . U . . m .
fnmatch() . m m . . .
fopen() m m† m m m m
fork () m m† m . m m
fpathconf () m m m . m .
fprintf () m m† m m m m
fputc() m m† m m m m
fputs() m m m m m m
fputwc() . m†
fputws() . m
fread() m m m m m m
free() m m† m m m m
freopen() m m† m m m m
frexp() m m m m m m
fscanf() m m m m m m
fseek() m m† m m m m
fsetpos() . m . m m .
fstat() m m† m . m m
fstatvfs () . U . . m .
fsync() m m . . m m
ftell () m m m m m m
ftime() . U . . . m
ftok () . U
ftruncate() . U
ftw() m m† . . m .
fwrite() m m m m m m
gamma() m m . . m .
gcvt() . U . . . m
getc() m m m m m m
getchar() m m m m m m
getcontext() . U . . m .
getcwd() m m m . m .
getdate() . U . . m .
getdtablesize () . U . . . m
getegid() m m m . m m
getenv() m m m m m m
geteuid() m m m . m m
getgid() m m m . m m
getgrent() . U . . m m
getgrgid() m m m . m m

110 XPG3-XPG4 Base Migration Guide, Version 2

Interface Tables

Issue 4, POSIX-1
Interface Issue 3 Version 2 and POSIX-2 ISO C SVID3 4.3BSD

getgrnam() m m m . m .
getgroups() m m m . m m
gethostid () . U . . . m
getitimer() . U . . m m
getlogin () m m m . m m
getmsg() . U . . m .
getopt() m m m . m m
getpagesize () . U . . . m
getpass() m m . . m m
getpgid() . U . . m .
getpgrp() m m m . m m
getpid() m m m . m m
getpmsg() . U . . m .
getppid() m m m . m m
getpriority () . U . . . m
getpwent() . U . . m m
getpwnam() m m m . m m
getpwuid() m m m . m m
getrlimit() . U . . m m
getrusage() . U . . . m
gets() m m m m m m
getsid() . U . . m .
getsubopt() . U . . m .
gettimeofday () . U . . m m
getuid() m m m . m m
getutxent() . U
getutxid() . U
getutxline() . U
getw() m m . . m m
getwc() . m
getwchar() . m
getwd() . U . . . m
glob() . f m . . .
globfree() . f m . . .
gmtime() m m m m m m
grantpt() . U . . m .
hcreate() m m . . m .
hdestroy() m m . . m .
hsearch() m m
hypot() m m . . m m
iconv() . m
iconv_close () . m
iconv_open () . m
ilogb () . U
index() . U . . . m
initstate() . U . . . m

Part 3: System Interfaces and Headers Migration 111

Interface Tables

Issue 4, POSIX-1
Interface Issue 3 Version 2 and POSIX-2 ISO C SVID3 4.3BSD

insque() . U . . . m
ioctl () . U . . m m
isalnum() m m m m m m
isalpha () m m m m m m
isascii () m m m m m m
isastream() . U
isatty() m m m . m m
iscntrl() m m m m m m
isdigit () m m m m m m
isgraph() m m m m m m
islower() m m m m m m
isnan() m m . . m .
isprint() m m m m m m
ispunct() m m m m m m
isspace() m m m m m m
isupper() m m m m m m
iswalnum() . m
iswalpha () . m
iswcntrl() . m
iswctype() . m
iswdigit () . m
iswgraph() . m
iswlower() . m
iswprint() . m
iswpunct() . m
iswspace() . m
iswupper() . m
iswxdigit () . m
isxdigit () m m m m m m
j0() m m . . m m
j1() m m . . m m
jn() m m . . m m
jrand48() m m . . m .
kill () m m m . m m
killpg () . U . . . m
l64a () . U . . m .
labs() . m . m m .
lchown() . U . . m .
lcong48 () m m . . m .
ldexp() m m m m m m
ldiv () . m . m m .
lfind() m m . . m .
lgamma() m m . . m m
link () m m† m . m m
loc1 m m . . m .
localeconv () . m . m m .

112 XPG3-XPG4 Base Migration Guide, Version 2

Interface Tables

Issue 4, POSIX-1
Interface Issue 3 Version 2 and POSIX-2 ISO C SVID3 4.3BSD

localtime () m m m m m m
lockf () . U . . m .
locs m m . . m .
log() m m m m m m
log10 () m m m m m m
log1p () . U . . . m
logb() . U . . m m
_longjmp () . U . . . m
longjmp() m m† m m m m
lrand48() m m . . m .
lsearch() m m . . m .
lseek() m m m . m m
lstat() . U . . m m
makecontext() . U
malloc () m m m m m m
mblen() . m . m m .
mbstowcs() . m . m m .
mbtowc() . m . m m .
memccpy() m m . . m .
memchr() m m . m m .
memcmp() m m . m m .
memcpy() m m . m m .
memmove() . m . m m .
memset() m m . m m .
mkdir() m m† m . m m
mkfifo() m m† m . m .
mknod() . U . . m m
mkstemp() . U . . . m
mktemp() . U . . m m
mktime() m m m m m .
mmap() . U
modf() m m m m m m
mprotect() . U
mrand48() m m . . m .
msgctl() o m
msgget() o m
msgrcv() o m
msgsnd() o m
msync() . U
munmap() . U
nextafter() . U . . m .
nftw() . U . . m .
nice() m m† . . . m
nl_langinfo () m m . . m .
nrand48() m m . . m .
open() m m† m . m m

Part 3: System Interfaces and Headers Migration 113

Interface Tables

Issue 4, POSIX-1
Interface Issue 3 Version 2 and POSIX-2 ISO C SVID3 4.3BSD

opendir() m m† m . m m
openlog () . U . . . m
optarg m m m . m m
pathconf () m m† m . m .
pause() m m m . m m
pclose() m m m . m m
perror() m m m m m m
pipe() m m† m . m m
poll () . U . . m .
popen() m m m . m m
pow() m m m m m m
printf() m m m m m m
ptsname() . U . . m .
putc() m m m m m m
putchar() m m m m m m
putenv() m m . . m .
putmsg() . U . . m .
putpmsg() . U . . m .
puts() m m m m m m
pututxline() . U
putw() m m . . m m
putwc() . m
putwchar() . m
qsort() m m m m m m
raise() . m . m m .
rand() m m m m m m
random() . U . . . m
re_comp() . U . . . m
re_exec() . U . . . m
read() m m† m . m m
readdir() m m† m . m m
readlink () . U . . m m
readv() . U . . m m
realloc () m m m m m m
realpath () . U
regcmp() . U
regcomp() . f m . . .
regerror() . f m . . .
regex() . U . . . m
regexec() . f m . . .
regexp() m m
regfree() . f m . . .
remainder() . U . . m .
remove() m m m m m .
remque() . U . . . m
rename() m m† m m m m

114 XPG3-XPG4 Base Migration Guide, Version 2

Interface Tables

Issue 4, POSIX-1
Interface Issue 3 Version 2 and POSIX-2 ISO C SVID3 4.3BSD

rewind() m m m m m m
rewinddir() m m m . m m
rindex() . U . . . m
rint() . U . . . m
rmdir() m m† m m m m
sbrk() . U . . m m
scalb() . U . . m m
scanf() m m m m m m
seed48() m m . . m .
seekdir() m m† . . m m
select() . U . . . m
semctl() o m
semget() o m
semop() o m
setbuf() m m m m m m
setcontext() . U . . m .
setgid() m m m . m m
setgrent() . U . . m m
setitimer() . U . . m m
_setjmp() . U . . . m
setjmp() m m m m m m
setkey() o f . . m m
setlocale () m m m m m .
setlogmask () . U . . . m
setpgid() o m m . m .
setpgrp() . U . . m m
setpriority() . U . . . m
setpwent() . U . . m m
setregid() . U . . . m
setreuid() . U . . . m
setrlimit() . U . . m m
setsid() m m m . m .
setstate() . U . . . m
setuid() m m m . m m
setutxent() . U
setvbuf() m m . m m .
shmat() o f
shmctl() o f†
shmdt() o f
shmget() o f
sigaction () m m† m . m .
sigaddset() m m m . m .
sigaltstack () . U . . m .
sigdelset() m m m . m .
sigemptyset() m m m . m .
sigfillset() m m m . m .

Part 3: System Interfaces and Headers Migration 115

Interface Tables

Issue 4, POSIX-1
Interface Issue 3 Version 2 and POSIX-2 ISO C SVID3 4.3BSD

sighold () . U . . m .
sigignore() . U . . m .
siginterrupt() . U . . . m
sigismember() m m m . m .
siglongjmp () m m m . m .
signal() m m† . m m m
signgam m m
sigpause() . U . . m m
sigpending() m m m . m .
sigprocmask () m m m . m .
sigrelse() . U . . m .
sigset() . U . . m .
sigsetjmp() m m m . m .
sigstack () . U . . . m
sigsuspend() m m m . m .
sin() m m m m m m
sinh() m m m m m m
sleep() m m m . m m
sprintf() m m m m m m
sqrt() m m m m m m
srand() m m m m m m
srand48() m m . . m .
srandom() . U . . . m
sscanf() m m m m m m
stat() m m† m . m m
statvfs() . U . . m .
stderr m m m m m m
stdin m m m m m m
stdout m m m m m m
step() m m . . m .
strcasecmp() . U
strcat() m m m m m m
strchr() m m m m m .
strcmp() m m m m m m
strcoll() m m . m m .
strcpy() m m m m m m
strcspn() m m m m m .
strdup() . U . . m .
strerror() m m . m m .
strfmon() . f
strftime() m m m m m .
strlen() m m m m m m
strncasecmp() . U
strncat() m m m m m m
strncmp() m m m m m m
strncpy() m m m m m m

116 XPG3-XPG4 Base Migration Guide, Version 2

Interface Tables

Issue 4, POSIX-1
Interface Issue 3 Version 2 and POSIX-2 ISO C SVID3 4.3BSD

strpbrk() m m m m m .
strptime() . f
strrchr() m m m m m .
strspn() m m m m m .
strstr() m m m m m .
strtod() m m . m m .
strtok() m m m m m .
strtol() m m . m m .
strtoul() . m . m m .
strxfrm() m m . m m .
swab() m m . . m m
swapcontext() . U
symlink() . U . . m m
sync() . U . . m m
sysconf() m m m . m .
syslog() . U . . . m
system() m m . m m m
tan() m m m m m m
tanh() m m m m m m
tcdrain() m m m . m .
tcflow() m m m . m .
tcflush() m m m . m .
tcgetattr() m m m . m .
tcgetpgrp() o m m . m .
tcgetsid() . U . . m .
tcsendbreak() m m m . m .
tcsetattr() m m m . m .
tcsetpgrp() o m m . m .
tdelete() m m . . m .
telldir() m m . . m m
tempnam() m m . . m .
tfind() m m . . m .
time() m m m m m m
times() m m m . m m
timezone m m . . m .
tmpfile() m m m m m .
tmpnam() m m m m m .
toascii () m m . . m m
_tolower () m m . . m .
tolower() m m m m m m
_toupper() m m . . m .
toupper() m m m m m m
towlower() . m
towupper() . m
truncate() . U . . . m
tsearch() m m . . m .

Part 3: System Interfaces and Headers Migration 117

Interface Tables

Issue 4, POSIX-1
Interface Issue 3 Version 2 and POSIX-2 ISO C SVID3 4.3BSD

ttyname() m m m . m m
ttyslot () . U . . . m
twalk () m m . . m .
tzname m m m . m .
tzset() m m m . m .
ualarm() . U . . . m
ulimit() m m . . m .
umask() m m m . m m
uname() m m m . m .
ungetc() m m m m m m
ungetwc() . m
unlink() m m m . m m
unlockpt () . U . . m .
usleep() . U . . . m
utime() m m† m . m m
utimes() . U . . . m
valloc () . U . . . m
vfork () . U . . . m
vfprintf () m m . . m .
vprintf() m m . . m .
vsprintf() m m . . m .
wait() m m† m . m m
wait3() . U . . . m
waitid () . U . . m .
waitpid () m m m . m m
wcscat() . m
wcschr() . m
wcscmp() . m
wcscoll() . f
wcscpy() . m
wcscspn() . m
wcsftime() . f
wcslen() . m
wcsncat() . m
wcsncmp() . m
wcsncpy() . m
wcspbrk() . m
wcsrchr() . m
wcsspn() . m
wcstod() . m
wcstok() . m
wcstol() . m
wcstombs() . m . m m .
wcstoul() . m
wcswcs() . m
wcswidth() . m

118 XPG3-XPG4 Base Migration Guide, Version 2

Interface Tables

Issue 4, POSIX-1
Interface Issue 3 Version 2 and POSIX-2 ISO C SVID3 4.3BSD

wcsxfrm() . f
wctomb() . m . m m .
wctype() . m
wcwidth() . m
wordexp() . f m . . .
wordfree() . f m . . .
write() m m† m . m m
writev() . U . . m m
y0() m m . . m m
y1() m m . . m m
yn() m m . . m m

Part 3: System Interfaces and Headers Migration 119

Interface Tables

120 XPG3-XPG4 Base Migration Guide, Version 2

Chapter 7

System Interfaces

This chapter contains a section for each system interface defined in the XSH specification. Each
section identifies syntax and semantic changes made to the interface in Issue 4 (if any), complete
with examples where appropriate. Only changes that might affect an application programmer
are identified.

As stated earlier, all interfaces in Issue 4 are defined in terms of function prototypes. This is a
global comment on XSI Issue 4 and is not repeated individually in the following sections.

a64l()

Issue 4, Version 2:
The conversion interfaces a64l () and l64a () were first introduced in Issue 4,
Version 2 (X/OPEN UNIX).

Calls to l64a () may return a pointer to a static buffer, and therefore subsequent
calls to l64a () may overwrite the buffer.

abort()

Issue 4: The argument list is explicitly defined as void.

The DESCRIPTION section is updated to align precisely with the ISO C standard.
In the main, this means describing capability that is already supported on Issue 3
systems, but is not formally specified in Issue 3. For example, the following are all
defined:

• the order in which operations occur

• how the calling process is signalled

• how status information is made available to the host environment

• that the abort() function overrides blocking or ignoring of the SIGABRT signal.

abs()

Issue 4: No functional changes are made, but developers should note that in the
APPLICATION USAGE section, the phrase ‘‘{INT_MIN} is undefined’’ is replaced
with ‘‘{INT_MIN} might not be representable’’.

access()

Issue 4: The type of argument path is changed from char* to const char*.

Since the behaviour associated with {_POSIX_NO_TRUNC} is supported on all
Issue 4 systems, [ENAMETOOLONG] is always returned if a pathname
component is larger than {NAME_MAX}. On Issue 3 systems, pathname can be
truncated by the system, so the condition is silently ignored.

Issue 4, Version 2:
For X/OPEN UNIX conformance, a second [ENAMETOOLONG] condition is
defined that may report excessive length of an intermediate result of pathname
resolution of a symbolic link, and [ELOOP] will be returned if too many symbolic
links are encountered during pathname resolution.

Part 3: System Interfaces and Headers Migration 121

System Interfaces

acos()

Issue 4: The RETURN VALUE and ERRORS sections are substantially rewritten for
alignment with the ISO C standard and to rationalise error handling in the
mathematics functions. Specifically:

• [EDOM] may be returned if the value of x is ±Inf or NaN.

Note: Whether or not a system supports Inf and NaN is implementation-
dependent, meaning that portable applications should check for both zero
and NaN as possible error return values.

acosh()

Issue 4, Version 2:
The inverse hyperbolic functions acosh(), asinh() and atanh() were first introduced
in Issue 4, Version 2 (X/OPEN UNIX).

advance()

Issue 4: The header <regexp.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

The type of arguments string and expbuf are changed from char* to const char*.

The interface is marked TO BE WITHDRAWN, because improved capability is
now provided by interfaces introduced for alignment with the POSIX-2 standard.

alarm()

Issue 4: The header <unistd.h>, which contains the function prototype for this interface, is
included in the SYNOPSIS section.

Issue 4, Version 2:
The DESCRIPTION section has been updated to indicate that interactions with
the setitimer(), ualarm() and usleep() functions are unspecified.

asctime()

Issue 4: The type of argument timeptr is changed from struct tm* to const struct tm*.

The location of the tm structure is now defined.

Writers of portable applications are advised to use the strftime() function rather
than asctime(). The asctime() function returns a string containing English language
names and U.S. cultural conventions, whereas strftime() returns a string containing
locale-dependent language and cultural values.

asin()

Issue 4: The RETURN VALUE and ERRORS sections are substantially rewritten for
alignment with the ISO C standard and to rationalise error handling in the
mathematics functions. Specifically:

• [EDOM] may be returned if x is ±Inf or NaN.

• [ERANGE] may be returned if the result underflows.

122 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

Note: Whether or not a system supports Inf and NaN is implementation-
dependent, meaning that portable applications should check for both zero
and NaN as possible error return values.

asinh()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

assert()

Issue 4: No changes are made in this issue, although note that the description of NDEBUG
is moved from the APPLICATION USAGE section to the DESCRIPTION section.

atan()

Issue 4: The RETURN VALUE and ERRORS sections are substantially rewritten for
alignment with the ISO C standard and to rationalise error handling in the
mathematics functions. Specifically:

• [ERANGE] may be returned if the result underflows.

Note: Whether or not a system supports Inf and NaN is implementation-
dependent, meaning that portable applications should check for both zero
and NaN as possible error return values.

atan2()

Issue 4: The RETURN VALUE and ERRORS sections are substantially rewritten for
alignment with the ISO C standard and to rationalise error handling in the
mathematics functions. Specifically:

• [ERANGE] may be set if the result underflows.

Note: Note that whether or not a system supports Inf and NaN is
implementation-dependent, meaning that portable applications should
check for both zero and NaN as possible error return values.

atanh()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

atexit()

Issue 4: New function in Issue 4.

The atexit() function allows applications to specify tidy-up routines that are
entered automatically by the system when the program terminates normally.
These are entered in the reverse order of their registration.

Normal program termination is defined as a call to the exit() function or as a
return from main(). Thus, a program error that is not caught or ignored, or a call to
_exit(), bypasses this mechanism.

Issue 4, Version 2:
The APPLICATION USAGE section has been updated to indicate how the

Part 3: System Interfaces and Headers Migration 123

System Interfaces

application can determine {ATEXIT_MAX}, a constant added for X/OPEN UNIX
conformance.

atof()

Issue 4: The type of argument str is changed from char* to const char*.

Note: The capability provided by this interface is subsumed by the strtod()
function. The atof () function is retained in the interface definition for
compatibility with previous issues of the XSH specification, and because
it is used extensively by existing applications. New applications should
use the strtod() function, as it provides error checking of the input.

atoi()

Issue 4: The type of argument str is changed from char* to const char*.

Note: The capability provided by this interface is subsumed by the strtol()
function. The atoi () function is retained in the interface definition for
compatibility with previous issues of the XSH specification, and because
it is used extensively by existing applications. New applications should
use the strtol() function, as it provides error checking of the input.

atol()

Issue 4: The type of argument str is changed from char* to const char*.

Note: The capability provided by this interface is subsumed by the strtol()
function. The atol () function is retained in the interface definition for
compatibility with previous issues of the XSH specification, and because
it is used extensively by existing applications. New applications should
use the strtol() function, as it provides error checking of the input.

basename()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The basename() function returns a pointer to the final component of a pathname
pointed to by path, with trailing ’/’ characters removed. It may modify the string
pointed to by path, and may return a pointer to static storage that may then be
overwritten in a subsequent call to basename().

bcmp()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The bcmp() function compares the first n bytes of the area pointed to by s1 with the
area pointed to by s2. For portability to implementations conforming to earlier
versions of this document, memcmp() is preferred over this function.

124 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

bcopy()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The bcopy() function copies n bytes from the area pointed to by s1 to the area
pointed to by s2. For portability to implementations conforming to earlier versions
of this document, memmove() is preferred over this function.

brk()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The brk() and sbrk() functions are used to change the amount of space allocated for
the calling process. The behaviour of these functions is unspecified if the
application also uses any of the other memory functions (for example malloc (),
mmap() or free()). The brk() and sbrk() functions have been used in specialised
cases where no other memory allocation function provided the same capability.
Use of the mmap() function is now preferred as it can be used portably with all
other memory allocation functions and with any function that uses other allocation
functions.

bsd_signal()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

This function is a direct replacement for the BSD signal() function for simple
applications that are installing a single-argument signal handler function. If a BSD
signal handler function is being installed that expects more than one argument, the
application has to be modified to use sigaction (). The bsd_signal() function differs
from signal() in that the SA_RESTART flag is set and the SA_RESETHAND will be
clear when bsd_signal() is used. The state of these flags is not specified for signal().

bsearch()

Issue 4: The type of arguments key and base, and the type of arguments to the compar()
function, are changed from void* to const void*.

The requirement that the table be sorted according to compar() is no longer stated
in the DESCRIPTION. This change should not affect existing applications and is
made for alignment with the ISO C standard.

bzero()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The bzero() function places n zero-valued bytes in the area pointed to by s. For
portability to implementations conforming to earlier versions of this document,
memset() is preferred over this function.

Part 3: System Interfaces and Headers Migration 125

System Interfaces

calloc()

Issue 4: The description is updated to align with the ISO C standard. These changes are
largely superficial, although they should be noted as they may have a marginal
affect on some applications. Specifically:

• The order and contiguity of storage allocated by successive calls to this
function is unspecified.

• Each allocation yields a pointer to an object disjoint from any other object.

• The returned pointer points to the lowest byte address of the allocation.

• The behaviour is implementation-dependent if the space requested is zero size,
although the value returned must be either a null pointer or a unique pointer.

• A null pointer or a unique pointer is also returned if either nelem or elsize is
zero.

There is now no requirement for the implementation to support the inclusion of
<malloc.h>.

catclose()

Issue 4: Issue 4 defines that catclose () may return [EBADF] or [EINTR]. No errors are
defined in Issue 3.

catgets()

Issue 4: The type of argument s is changed from char* to const char*.

Issue 4 defines that catclose () may return [EBADF] or [EINTR]. No errors are
defined in Issue 3.

Issue 4, Version 2:
The RETURN VALUE section notes that errno may be set to indicate an error, and
the ERRORS section was updated to include the optional errors [EINVAL] and
[ENOMSG].

catopen()

Issue 4: The type of argument name is changed from char* to const char*.

The description is updated to indicate:

• the longevity of message catalogue descriptors; that is, they remain valid in a
process until closed or until one of the exec functions is called successfully

• the effects of oflag argument and the effects of the LC_MESSAGES category on
NLSPATH substitutions.

Issue 3 defines that NLSPATH substitutions are performed using the settings of the
LANG environment variable. Issue 4 supports this definition if the value of the
oflag argument is 0. If oflag is set to NL_CAT_LOCALE, the setting of the
LC_MESSAGES locale category is used for NLSPATH substitutions instead. This
feature is new in Issue 4.

Issue 4 defines that catopen() may return [EACCES], [EMFILE],
[ENAMETOOLONG], [ENFILE], [ENOENT], [ENOMEM] or [ENOTDIR]. Only
[ENOMEM] is defined in Issue 3.

126 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

Note: Message catalogues may not be valid after a call to one of the exec
functions. Note also that at present there are no guidelines for the
location of message catalogues. Make sure names are chosen that do not
conflict with catalogues used by other functions and the standard
utilities.

Issue 4, Version 2:
For X/OPEN UNIX conformance, a second [ENAMETOOLONG] condition is
defined that may report excessive length of an intermediate result of pathname
resolution of a symbolic link.

cbrt()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX). The
cbrt() function calculates the cube root of x.

ceil()

Issue 4: The RETURN VALUE and ERRORS sections are substantially rewritten for
alignment with the ISO C standard and to rationalise error handling in the
mathematics functions. Specifically:

• In Issue 4 [ERANGE] is set if the result overflows. In Issue 3 detection of this
condition is optional.

cfgetispeed()

Issue 4: The type of argument termios_p is changed from struct termios* to
const struct termios*.

Issue 4 states that the function returns exactly the value in the termios structure.
Issue 3 indicates that if this value is not obtained by a previous successful call to
tcgetattr(), the behaviour is undefined.

cfgetospeed()

Issue 4: The type of argument termios_p is changed from struct termios* to
const struct termios*.

Issue 4 states that the function returns exactly the value in the termios structure.
Issue 3 indicates that if this value is not obtained by a previous successful call to
tcgetattr(), the behaviour is undefined.

cfsetispeed()

Issue 4: No changes are made to this interface, although note that the setting of errno and
the [EINVAL] error are marked as extensions. This is done because these
conditions are not specified in the POSIX-1 standard.

Issue 4, Version 2:
The ERRORS section has been updated to indicate that a second [EINVAL]
condition may be detected if the speed given is outside the range of possible speed
values given in <termios.h>.

Part 3: System Interfaces and Headers Migration 127

System Interfaces

cfsetospeed()

Issue 4: No changes are made to this interface, although note that the setting of errno and
the [EINVAL] error are marked as extensions. This is done because these
conditions are not specified in the POSIX-1 standard.

Issue 4, Version 2:
The ERRORS section has been updated to indicate that a second [EINVAL]
condition may be detected if the speed given is outside the range of possible speed
values given in <termios.h>.

chdir()

Issue 4: The header <unistd.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

The type of argument path is changed from char* to const char*.

Since the behaviour associated with {_POSIX_NO_TRUNC} is supported on all
Issue 4 systems, [ENAMETOOLONG] is always returned if a pathname
component is larger than {NAME_MAX}. On Issue 3 systems, pathname can be
truncated by the system, so the condition is silently ignored.

Issue 4, Version 2:
For X/OPEN UNIX conformance, a second [ENAMETOOLONG] condition is
defined that may report excessive length of an intermediate result of pathname
resolution of a symbolic link, and [ELOOP] will be returned if too many symbolic
links are encountered during pathname resolution.

chmod()

Issue 4: The header <sys/types.h> is no longer required explicitly. This header is optional
on XSI-conformant systems, although the POSIX-1 standard shows it to be
included. Also note that any program that does include this header still compiles
and runs correctly.

The type of argument path is changed from char* to const char*.

Since the behaviour associated with {_POSIX_NO_TRUNC} is supported on all
Issue 4 systems, [ENAMETOOLONG] is always returned if a pathname
component is larger than {NAME_MAX}. On Issue 3 systems, pathname can be
truncated by the system, so the condition is silently ignored.

Issue 4, Version 2:
The DESCRIPTION section was updated to describe X/OPEN UNIX functionality
relating to permission checks applied when removing or renaming files in a
directory having the S_ISVTX bit set.

For X/OPEN UNIX conformance, [ELOOP] will be returned if too many symbolic
links are encountered during pathname resolution, and a second
[ENAMETOOLONG] condition is defined that may report excessive length of an
intermediate result of pathname resolution of a symbolic link. The error return
[EINTR] also may be returned if a signal was caught during execution of the
function.

128 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

chown()

Issue 4: The header <sys/types.h> is no longer required explicitly. This header is optional
on XSI-conformant systems, although the POSIX-1 standard shows it to be
included. Also note that any program which does include this header still
compiles and runs correctly.

The header <unistd.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

The type of argument path is changed from char* to const char*.

Since the behaviour associated with {_POSIX_NO_TRUNC} is supported on all
Issue 4 systems, [ENAMETOOLONG] is always returned if a pathname
component is larger than {NAME_MAX}. On Issue 3 systems, pathname can be
truncated by the system, so the condition is silently ignored.

Issue 4 defines that [EPERM] is always returned when an attempt is made to
change the user ID of a file and the caller does not have appropriate privilege.
Detection of this condition is optional in Issue 3.

The value (uid_t)−1 for owner is added to the interface definition, to allow the
owner of a file to change the group ID only. This is a new extension.

Issue 4, Version 2:
For X/OPEN UNIX conformance, [ELOOP] will be returned if too many symbolic
links are encountered during pathname resolution, and a second
[ENAMETOOLONG] condition is defined that may report excessive length of an
intermediate result of pathname resolution of a symbolic link. The error returns
[EINTR] and [EIO] also may be returned if a signal was caught during execution of
the function, or an I/O error occurred while reading or writing the filesystem.

chroot()

Issue 4: The interface is marked TO BE WITHDRAWN, as there is no portable use that an
application can make of it. Application developers are therefore advised not to
make any use of this interface, or assume its existence on any XSI-conformant
system, as it will disappear from subsequent issues of the XSH specification.

Issue 4, Version 2:
For X/OPEN UNIX conformance, [ELOOP] will be returned if too many symbolic
links are encountered during pathname resolution, and a second
[ENAMETOOLONG] condition is defined that may report excessive length of an
intermediate result of pathname resolution of a symbolic link.

clearerr()

Issue 4: No changes are made to this interface in Issue 4.

Part 3: System Interfaces and Headers Migration 129

System Interfaces

clock()

Issue 4: The header <time.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

The description of this function in Issue 4, though functionally equivalent to
Issue 3, is rewritten for clarity and consistency with the ISO C standard. Issue 4
also defines that (clock_t)−1 is returned if the processor time used is not available,
or if its value cannot be represented.

Issue 4 defines that the value returned by this function is calibrated in units of
CLOCKS_PER_SECOND, which is a constant defined in <time.h>. Issue 3 states
that the return value is CPU time in microseconds. However, as
CLOCKS_PER_SECOND is defined to be 1 million on all XSI-conformant systems,
portable applications should not be affected by this change.

close()

Issue 4: The header <unistd.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

Issue 4, Version 2:
For X/OPEN UNIX conformance, the DESCRIPTION section was updated to
describe the actions of closing a file descriptor that refers to a STREAMS-based file
or either side of a pseudo-terminal.

Also, the error return [EIO] may be returned if an I/O error occurred while reading
or writing the filesystem.

closedir()

Issue 4: The header <sys/types.h> is no longer required explicitly. This header is optional
on XSI-conformant systems, although the POSIX-1 standard shows it to be
included. Also note that any program which does include this header still
compiles and runs correctly.

closelog()

Issue 4, Version 2:
The interfaces that control a system logging facility, closelog (), openlog (),
setlogmask () and syslog(), were first introduced in Issue 4, Version 2 (X/OPEN
UNIX).

compile()

Issue 4: The interface is marked TO BE WITHDRAWN, because improved capability is
now provided by interfaces introduced for alignment with the POSIX-2 standard
(see regcomp()).

The header <regexp.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

The type of argument endbuf is changed from char* to const char*.

130 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

confstr()

Issue 4: New function in Issue 4.

The confstr() function allows applications to obtain configuration-defined string
values, for example:

_CS_PATH This gives a value for the PATH environment variable that finds all
standard utilities.

Other values may be supported by specific implementations.

This interface is similar to sysconf(), except that it is used where string values
rather than numeric values are returned.

cos()

Issue 4: The RETURN VALUE and ERRORS sections are substantially rewritten for
alignment with the ISO C standard and to rationalise error handling in the
mathematics functions. Specifically:

• [EDOM] may be set if x is NaN or ±Inf.

• [ERANGE] may be set if the result underflows.

cosh()

Issue 4: The RETURN VALUE and ERRORS sections are substantially rewritten for
alignment with the ISO C standard and to rationalise error handling in the
mathematics functions. Specifically:

• [ERANGE] is set if the result overflows. In Issue 3 detection of this condition is
defined as optional.

creat()

Issue 4: The headers <sys/types.h> and <sys/stat.h> are no longer required explicitly.
These headers are optional on XSI-conformant systems, although the POSIX-1
standard shows these headers to be included. Also note that any program which
does include these headers still compiles and runs correctly.

The type of argument path is changed from char* to const char*.

crypt()

Issue 4: In Issue 4 this function is part of the Encryption feature group.

The header <unistd.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

The type of arguments key and salt are changed from char* to const char*.

Issue 4 explicitly defines the characters that can be used in the salt argument,
which are locale-independent. The definition given in Issue 3 is ambiguous, in that
it defines these characters in terms of RE ranges (which might in theory vary from
one locale to another). This is a clarification of the interface definition and does not
imply any functional change.

Part 3: System Interfaces and Headers Migration 131

System Interfaces

ctermid()

Issue 4: No changes are made to this interface, although it is rewritten for alignment with
the POSIX-1 standard.

ctime()

Issue 4: The type of argument clock is changed from time_t* to const time_t*.

Writers of portable applications are advised to use the strftime() function rather
than ctime(). The ctime() function returns a string containing English language
names and U.S. cultural conventions, whereas strftime() returns a string containing
locale-dependent language and cultural values.

cuserid()

Issue 4: The interface is marked TO BE WITHDRAWN, because of differences between the
historical definition of this interface and the definition published in the
IEEE Std 1003.1-1988 (POSIX.1) (and hence Issue 3). The interface is also removed
from the POSIX-1 standard.

The description is changed to indicate that an implementation can determine the
name returned by the function from the real or effective user ID of the process.
Hence the anomalous behaviour described above.

As indicated in the XSH specification, Issue 2 capability can be obtained by using:

getpwuid(getuid());

Issue 3 capability can be obtained by using:

getpwuid(geteuid());

daylight

Issue 4: No changes are made to this interface in Issue 4.

dbm_clearerr()

Issue 4, Version 2:
The dbm_ database functions were first introduced in Issue 4, Version 2 (X/OPEN
UNIX).

The set of functions create, access and modify a database. They are most useful for
fast lookup of relatively static information that is indexed by a single key. They do
not provide for multiple search keys per entry, they do not protect against multi-
user access, nor do they provide many of the other useful functions associated
with a more robust database management system.

dbm_close()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

132 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

dbm_delete()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

dbm_error()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

dbm_fetch()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

dbm_firstkey()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

dbm_nextkey()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

dbm_open()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

dbm_store()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

difftime()

Issue 4: New function in Issue 4.

This interface calculates the difference between two calendar times and returns the
result as a type double. The input times are values of type time_t, as returned, for
example, by the time() function.

dirname()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

It returns a pointer to a string that is the pathname of the parent directory of the
pathname pointed to by path. The dirname() function may modify the string
pointed to by path, and may return a pointer to static storage that may then be
overwritten in a subsequent call to dirname().

Part 3: System Interfaces and Headers Migration 133

System Interfaces

div()

Issue 4: New function in Issue 4.

This function divides one integer by another and returns a structure containing the
quotient and remainder. For example:

. . .
int a, b;
div_t result;
. . .
result = div (a, b);
printf ("quotient = %d, remainder = %d\n",

result.quot, result.rem);
. . .

drand48()

Issue 4: The header <stdlib.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

Also in the SYNOPSIS section, long is replaced by long int and unsigned short is
replaced by unsigned short int.

The description is changed to allow for implementations on which {LONG_BIT} is
larger than 32 bits.

dup()

Issue 4: The header <unistd.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

Text is added to the description indicating that the return value from dup2() is
fildes2 on successful completion, or −1 on failure. No functional change is implied
by this added text.

The list of errors is revised to describe the values returned by dup() and dup2()
separately. Again, this is intended for clarification and does not imply any change
in capability.

ecvt()

Issue 4, Version 2:
The ecvt(), fcvt() and gcvt(), functions that convert floating point-numbers to
strings were first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The ecvt() and fcvt() functions may return a pointer to static storage that may then
be overwritten in subsequent calls to these functions.

For portability to implementations conforming to earlier versions of this
document, sprintf() is preferred over this function.

134 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

encrypt()

Issue 4: In Issue 4 this function is part of the Encryption feature group.

The header <unistd.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

The description in Issue 4 states that the encoding algorithm for encryption is
implementation-dependent. More importantly, it states that decoding need not be
supported on all implementations; this is related to U.S. government restrictions
about DES decryption algorithms being exported outside the U.S.A.

In Issue 4 this function is part of the Encryption feature group.

environ

Issue 4: No changes are made to this interface in Issue 4.

endgrent()

Issue 4, Version 2:
The group database entry functions, endgrent(), getgrent() and setgrent(), were first
introduced in Issue 4, Version 2 (X/OPEN UNIX).

The return value of getgrent() may point to a static area which is overwritten by a
subsequent call to getgrent(), as well as getgrgid() or getgrnam().

Applications should avoid dependencies on fields in the group database,
regardless of how and where the group database is organised. These functions are
provided due to their historical usage. For portability to implementations
conforming to earlier versions of this document, and to avoid these dependencies,
getgrnam() and getgrgid() are preferred.

endpwent()

Issue 4, Version 2:
The user database entry functions, endpwent(), getpwent() and setpwent(), were first
introduced in Issue 4, Version 2 (X/OPEN UNIX).

The return value for getpwent() may point to a static area which is overwritten by a
subsequent call to getpwent(), as well as getpwuid() or getpwnam().

Applications should avoid dependencies on fields in the password database,
regardless of how and where it is organised. These functions are provided due to
their historical usage. For portability to implementations conforming to earlier
versions of this document, and to avoid these dependencies, getpwuid() is
preferred.

endutxent()

Issue 4, Version 2:
The user accounting database functions endutxent(), getutxent(), getutxid(),
getutxline(), pututxline() and setutxent(), were first introduced in Issue 4, Version 2
(X/OPEN UNIX).

The functions may return pointers to static storage, or may cache data, so
application developers should pay careful attention to the APPLICATION USAGE
section.

Part 3: System Interfaces and Headers Migration 135

System Interfaces

erand48()

Issue 4: The header <stdlib.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

Also in the SYNOPSIS section, unsigned short is replaced by unsigned short int.

erf()

Issue 4: The RETURN VALUE and ERRORS sections are substantially rewritten to
rationalise error handling in the mathematics functions. Specifically:

• [ERANGE] may be returned if the result underflows.

errno

Issue 4: Issue 4 guarantees that errno is set to zero at program startup, and that it is never
reset to zero by any XSI function. This is the case on Issue 3 systems, but it is not
stated explicitly in the interface definition.

Issue 4 is aligned with the ISO C standard, which permits errno to be a macro.

exec()

Issue 4: The header <unistd.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

The const keyword is added to identifiers of constant type (for example, path and
file).

Issue 4 defines that directory streams are closed in the new process image. The
state of these streams is undefined in previous issues.

Conversion descriptors are new in Issue 4 and have implications for various
system interfaces, including the exec family of functions. The state of conversion
descriptors (and message catalogue descriptors) in a new process image is
undefined. Thus, portable applications should not rely on their continued
availability outside the context of the process that opened them.

The description of exec is also updated to describe interactions with another new
function atexit(). In this case, the interface definition states that any previously
registered functions are no longer registered after a successful call to one of the
exec functions. The reasons for this are self-evident.

Shared memory is no longer optional.

Various changes are made to the ERRORS section, as follows:

• The description of the [ENOEXEC] error has been changed to indicate that this
error does not apply to the execlp() and execvp() functions.

• [ENOMEM] is returned if there is not enough memory to create the new
process.

• Since the behaviour associated with {_POSIX_NO_TRUNC} is supported on all
Issue 4 systems, [ENAMETOOLONG] is always returned if a pathname
component is larger than {NAME_MAX}. On Issue 3 systems, pathname can be
truncated by the system, so the condition is silently ignored.

136 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

Issue 4, Version 2:
The DESCRIPTION section has been updated for X/OPEN UNIX conformance to
reflect resources not preserved across the exec() call (alternate signal stacks,
memory mappings established through mmap()) and those that are (resource
limits, controlling terminal, interval timers). The effects of ST_NOSUID being set
for a file system are also defined.

For X/OPEN UNIX conformance, [ELOOP] will be returned if too many symbolic
links are encountered during pathname resolution, and a second
[ENAMETOOLONG] condition is defined that may report excessive length of an
intermediate result of pathname resolution of a symbolic link.

exit()

Issue 4: The header <unistd.h>, which contains the function prototype for the _exit()
function, is added to the SYNOPSIS section.

Various changes are made to define interactions with the atexit() function.
Specifically:

• Functions registered by atexit() are called in the reverse order of their
registration, as many times as they are registered.

• If a function registered by atexit() fails to return, any remaining functions
registered by atexit() are not called and the rest of exit() processing is not
completed. This can happen, for example, if the function calls _exit() or abort(),
or if it receives a signal that is not caught or ignored.

• If exit() is called more than once (for example, from within a function
registered by atexit()), the results are undefined.

Issue 4 defines job control as mandatory for all conforming implementations.
Issue 3 defines this capability as optional. The consequence for this interface is
that if a call to exit() causes a process group to become orphaned, and if any
member of the newly orphaned process group is stopped, a SIGHUP signal
followed by a SIGCONT signal is sent to the newly orphaned process group.

Issue 4, Version 2:
The DESCRIPTION section has been updated for X/OPEN UNIX conformance to
add appropriate references for interactions with wait3() and waitid (), to describe
interactions when SA_NOCLDWAIT is set or SIGCHLD is set to SIG_IGN, and to
describe how each mapped memory object is unmapped.

exp()

Issue 4: The RETURN VALUE and ERRORS sections are substantially rewritten for
alignment with the ISO C standard and to rationalise error handling in the
mathematics functions. Specifically:

• Issue 4 states that [EDOM] may be set if the value of x is NaN. Issue 3 defined
the detection of this condition as mandatory.

• Similarly, Issue 4 states that [ERANGE] may be returned if the result
underflows. Again, Issue 3 defined the detection of this condition as
mandatory.

Part 3: System Interfaces and Headers Migration 137

System Interfaces

expm1()

Issue 4, Version 2:
This function was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The expm1() function computes exponential functions. The APPLICATION
USAGE section describes that the value of expm1(x) may be more accurate than
exp(x)−1.0 for small values of x, and that expm1() and log1p () are useful for certain
financial calculations.

fabs()

Issue 4: The RETURN VALUE and ERRORS sections are substantially rewritten for
alignment with the ISO C standard and to rationalise error handling in the
mathematics functions. Specifically:

• [ERANGE] may be returned if the result underflows.

fattach()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The fattach () function attaches a STREAMS-based file descriptor to a file. A
successful call to fattach () causes all pathnames that name the file named by path to
name the STREAMS file associated with fildes, until the STREAMS file is detached
from the file. A STREAMS file can be attached to more than one file and have
several pathnames associated with it.

fchdir()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The fchdir() function behaves the same as chdir(), except that the directory that is
to be the new working directory is specified by the file descriptor fildes.

fchmod()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The fchmod() function behaves the same as chmod(), except that the file whose
permissions are to be changed is specified by the file descriptor fildes.

fchown()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The fchdir() function behaves the same as chdir(), except that the file whose group
and owner are to be changed is specified by the file descriptor fildes.

138 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

fclose()

Issue 4: The description is changed to indicate that fclose() performs a close() on the
underlying file descriptor. Issue 3 states that it called fclose() to do this, which is a
documentation error in Issue 3.

The following paragraph is withdrawn (by POSIX as well as X/Open) because of
the possibility of causing applications to malfunction, and the impossibility of
implementing these mechanisms for pipes:

‘‘If the file is not already at EOF, and the file is one capable of seeking, the file
offset of the underlying open file description is adjusted so that the next
operation on the open file description deals with the byte after the last one read
from, or written to, the stream being closed.’’

It is replaced with a statement that any subsequent use of stream is undefined.

Issue 4, Version 2:
The cross-reference to getrlimit() was added to the SEE ALSO section.

fcntl()

Issue 4: The headers <sys/types.h> and <unistd.h> are no longer required explicitly. These
headers are optional on XSI-conformant systems, although the POSIX-1 standard
shows these headers to be included.

The meaning of a successful F_SETLK or F_SETLKW request is clarified, after a
POSIX Request for Interpretation. This should not affect the operation of existing
applications that conform to Issue 3.

fcvt()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

FD_CLR()

Issue 4, Version 2:
The macros FD_CLR(), FD_ISSET(), FD_SET() and FD_ZERO() for synchronous
I/O multiplexing (see select()) were first introduced in Issue 4, Version 2 (X/OPEN
UNIX).

fdetach()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The fdetach () function detaches a STREAMS-based file from the file to which it was
attached by a previous call to fattach ().

Part 3: System Interfaces and Headers Migration 139

System Interfaces

fdopen()

Issue 4: The type of argument mode is changed from char* to const char*.

The use and settings of the mode argument are changed to include binary streams.
This change is made for alignment with the ISO C standard and should not affect
applications that conform to Issue 3, as these flags are additive rather than
replacements for Issue 3 flags. Note also that the b flag has no effect on an Issue 4
system.

feof()

Issue 4: No errors are defined for this interface in Issue 4. Issue 3 defines that [EBADF] can
be returned. However, as detection of this condition is not mandated in Issue 3, it
should not be relied on by conforming applications.

ferror()

Issue 4: No errors are defined for this interface in Issue 4. Issue 3 defines that [EBADF] can
be returned, but as detection of this error is not mandated, it should not affect
application portability.

fflush()

Issue 4: Issue 4 defines that if stream is a null pointer, the fflush() function performs
flushing actions on all output streams and update streams (on which the most
recent operation was not input). This feature of fflush() is not defined in Issue 3.

The following two paragraphs are withdrawn (by POSIX as well as X/Open)
because of the possibility of causing applications to malfunction, and the
impossibility of implementing these mechanisms for pipes:

‘‘If the stream is open for reading, any unread data buffered in the stream is
discarded.

For a stream open for reading, if the file is not already at EOF, and the file is one
capable of seeking, the file offset of the underlying open file description is
adjusted so that the next operation on the open file description deals with the
byte after the last one read from, or written to, the stream being flushed.’’

ffs()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The ffs() function finds the first bit set (beginning at the least significant bit) and
returns the index of that bit.

fgetc()

Issue 4: The description in Issue 4 is updated to make it clear that the function returns a
byte value. Issue 3 states that a character is returned, which can be misinterpreted
to mean a multi-byte sequence in locales that support multi-byte codesets.

The WPI functions fgetwc() and fgetws() are added to the list of functions that may
cause the st_atime field to be updated.

140 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

Issue 4 defines that error returns are generated when either the stream is
unbuffered, or data needs to be read into the stream buffer. This is a minor
clarification and should not affect application portability.

In Issue 3, generation of the [EIO] error depends on whether or not an
implementation supports job control. This capability is defined as mandatory in
Issue 4.

A note is added to the APPLICATION USAGE section in Issue 4, indicating how
an application can distinguish between an error condition and an end-of-file
condition.

Issue 4, Version 2:
The ERRORS section has been updated to include the condition where a physical
I/O error has occurred in the description of [EIO] for conformance to X/OPEN
UNIX.

fgetpos()

Issue 4: New function in Issue 4.

The fgetpos() function stores the current value of the file position indicator for the
specified stream into an object of type fpos_t. The interface is similar to ftell (),
except that the format of the stored information is unspecified; that is, it is not
necessarily a byte offset. The stream can be repositioned by calling fsetpos(),
passing the value of the file position indicator returned by a previous call to
fgetpos().

fgets()

Issue 4: The description in Issue 4 is updated to make it clear that the function reads bytes.
Issue 3 states that characters are read, which can be misinterpreted to mean multi-
byte sequences in locales that support multi-byte codesets.

The WPI functions fgetwc() and fgetws() are added to the list of functions that may
cause the st_atime field to be updated.

fgetwc()

Issue 4: New function in Issue 4 (WPI).

This interface is functionally equivalent to fgetc(), except that it returns a wide-
character code (rather than a byte). The return value is converted to type wint_t,
which contains either the wide-character code if the call is successful, or the
constant WEOF.

Issue 4, Version 2:
The ERRORS section has been updated to include the condition where a physical
I/O error has occurred in the description of [EIO] for conformance to X/OPEN
UNIX.

Part 3: System Interfaces and Headers Migration 141

System Interfaces

fgetws()

Issue 4: New function in Issue 4 (WPI).

This interface is functionally equivalent to fgets(), except that it returns a wide-
character string. Multi-byte sequences are automatically converted to values of
type wchar_t and stored in the array pointed to by ws.

fileno()

Issue 4: No changes are made to this interface in Issue 4, although note that detection of
the [EBADF] error is marked as an X/Open extension.

floor()

Issue 4: The RETURN VALUE and ERRORS sections are substantially rewritten for
alignment with the ISO C standard and to rationalise error handling in the
mathematics functions. Specifically:

• [ERANGE] is set if the result would cause overflow. In Issue 3 detection of this
condition is not guaranteed.

fmod()

Issue 4: The RETURN VALUE and ERRORS sections are substantially rewritten for
alignment with the ISO C standard and to rationalise error handling in the
mathematics functions. Specifically:

• [EDOM] may also be set if x is ±Inf. This is not specified in Issue 3.

• [ERANGE] may be set if the result would underflow.

fmtmsg()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The fmtmsg() function displays a message in the specified format on standard error
and/or a system console.

fnmatch()

Issue 4: New function in the POSIX.2 C-language Binding feature group in Issue 4.

This function matches a filename or pathname against a specified pattern,
returning zero for success, FNM_NOMATCH if there is no match, or another non-
zero value if an error occurs.

The fnmatch() function allows shell-like filename pattern matching to be
performed from the program level.

142 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

For example:

#include <stdio.h>
#include <fnmatch.h>

main (int argc, char **argv)
{

if (argc != 3) {
printf ("usage: fnmatch pattern string\n");
exit (1);

}

if (fnmatch (argv[1], argv[2], 0) == 0)
printf ("Match found\n");

else
printf ("No match\n");

exit (0);
}

which if called with the arguments:

fnmatch ’*.c’ foo.c

would display ‘‘Match found’’, and if called with the arguments:

fnmatch ’?.c’ foo.c

would display ‘‘No match’’.

The third argument to the function call is a flag, which if set to FNM_PATHNAME
forces slash characters in string to be matched explicitly.

fopen()

Issue 4: The type of arguments filename and mode are changed from char* to const char*.

The use and settings of the mode argument are changed to include binary streams.
This change is made for alignment with the ISO C standard and should not affect
applications that are compliant with Issue 3, as these flags are additive rather than
replacements for Issue 3 flags. Note also that the b flag has no effect on an Issue 4
system.

The fsetpos() function is added to the list of file positioning functions. This
interface is not published in Issue 3.

Since the behaviour associated with {_POSIX_NO_TRUNC} is supported on all
Issue 4 systems, [ENAMETOOLONG] is always returned if a pathname
component is larger than {NAME_MAX}. On Issue 3 systems, the pathname can
be truncated by the system, so the condition is silently ignored.

[EMFILE] may be set if {FOPEN_MAX} streams are currently open in the calling
process. This error is not defined in Issue 3.

Issue 4, Version 2:
For X/OPEN UNIX conformance, [ELOOP] will be returned if too many symbolic
links are encountered during pathname resolution, and a second
[ENAMETOOLONG] condition is defined that may report excessive length of an
intermediate result of pathname resolution of a symbolic link.

Part 3: System Interfaces and Headers Migration 143

System Interfaces

fork()

Issue 4: The argument list is explicitly defined as void.

The header <unistd.h> is added to the SYNOPSIS section. The header
<sys/types.h> is no longer required explicitly. This header is optional on XSI-
conformant systems, although the POSIX-1 standard shows it to be included.

Though functionally identical to Issue 3, the description of this interface in Issue 4
is reorganised to improve clarity and to align more closely with the POSIX-1
standard.

The description of the [EAGAIN] error is updated to indicate that this error can
also be returned if a system lacks the resources to create another process.

Issue 4, Version 2:
The DESCRIPTION section has been updated for X/OPEN UNIX conformance to
identify that interval timers are reset in the child process.

fpathconf()

Issue 4: No changes are made to this interface in Issue 4, although note that the function’s
return value is now defined in full as long int.

fprintf()

Issue 4: The type of the format argument is changed from char* to const char*.

The DESCRIPTION section is reworded or presented differently in a number of
places for alignment with the ISO C standard, and also for clarity. There are no
functional changes, except as noted elsewhere in this section.

The C and S conversion characters are added, indicating respectively a wide
character of type wchar_t and pointer to a wide-character string of type wchar_t*
in the argument list.

The ’ (single-quote) flag is added to the list of flag characters and marked as an
extension. This flag directs that the integer portion of the result of a decimal
conversion is formatted with the thousands grouping character.

Issue 4, Version 2:
The ERRORS section has been updated for X/OPEN UNIX conformance to add
the optional error [ENOMEM] for printf() and fprintf ().

fputc()

Issue 4: The description in Issue 4 is updated to make it clear that the function writes a byte
value. Issue 3 states that a character is written, which can be misinterpreted to
mean a multi-byte sequence in locales that support multi-byte codesets.

Issue 4 states that error returns are only generated either when the stream is
unbuffered, or if the stream buffer needs to be flushed. Though implicit in Issue 3,
this behaviour is not stated explicitly.

Issue 4 mandates that the [EIO] error is returned if the calling process is a member
of a background process group attempting to write to its controlling terminal,
TOSTOP is set, the process is neither ignoring nor blocking SIGTTOU, and the
process group of the process is orphaned. Detection of this condition in Issue 3
depends on whether an implementation supports job control.

144 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

Issue 4 states that [ENXIO] may be returned if a request is made to a non-existent
device, or if the request is outside the capabilities of the device. Detection of this
condition is mandated in Issue 3.

Issue 4, Version 2:
The ERRORS section has been updated to include the condition where a physical
I/O error has occurred in the description of [EIO] for conformance to X/OPEN
UNIX.

fputs()

Issue 4: The type of argument s is changed from char* to const char*.

The words ‘‘null character’’ in the description are replaced by ‘‘null byte’’, to make
it clear that this interface deals solely in byte values.

fputwc()

Issue 4: New function in Issue 4 (WPI).

This interface is functionally equivalent to fputc(), except that it accepts a wide-
character code as input. This is converted to a (possibly) multi-byte sequence
before writing.

Issue 4, Version 2:
The ERRORS section has been updated to include the condition where a physical
I/O error has occurred in the description of [EIO] for conformance to X/OPEN
UNIX.

fputws()

Issue 4: New function in Issue 4 (WPI).

This interface is functionally equivalent to fputs, except that it accepts a wide-
character string as input. Before writing, this is converted to a byte sequence,
which may contain multi-byte character codes (if defined in the current locale).

fread()

Issue 4: Issue 4 defines that if size or nitems is zero, fwrite() returns zero and the contents of
the array and the state of the stream remain unchanged. This capability is not
defined in Issue 3.

The fgetwc() and fgetws() functions are added to the list of functions that may
cause the st_atime field to be updated.

free()

Issue 4: Issue 4 states that the consequences of using a pointer that refers to freed space are
undefined. This is not stated explicitly in Issue 3, though it should be self-evident.

There is now no requirement for the implementation to support the inclusion of
<malloc.h>.

Issue 4, Version 2:
The DESCRIPTION section has been updated for X/OPEN UNIX conformance to
indicate that free() can be used to free memory allocated by valloc ().

Part 3: System Interfaces and Headers Migration 145

System Interfaces

freopen()

Issue 4: The type of arguments filename and mode are changed from char* to const char*.

In Issue 4, the term ‘‘name’’ is replaced by ‘‘pathname’’, to make it clear that the
interface is not limited to accepting filenames only.

Since the behaviour associated with {_POSIX_NO_TRUNC} is supported on all
Issue 4 systems, [ENAMETOOLONG] is always returned if a pathname
component is larger than {NAME_MAX}. On Issue 3 systems, the pathname can
be truncated by the system, so the condition is silently ignored.

The description of the [EMFILE] error has been changed to refer to {OPEN_MAX}
file descriptors rather than {FOPEN_MAX} file descriptors, directories and
message catalogues. This is an error in Issue 3.

Issue 4, Version 2:
For X/OPEN UNIX conformance, the ERRORS section has been updated to
indicate that [ELOOP] will be returned if too many symbolic links are encountered
during pathname resolution, and a second [ENAMETOOLONG] condition is
defined that may report excessive length of an intermediate result of pathname
resolution of a symbolic link.

frexp()

Issue 4: The name of the first argument is changed from value to num.

The RETURN VALUE and ERRORS sections are substantially rewritten for
alignment with the ISO C standard and to rationalise error handling in the
mathematics functions. Specifically:

• Issue 4 states that if num is ±Inf, num is returned and errno may be set to
[EDOM]]. Issue 3 defines that in these circumstances, an implementation-
dependent value is returned.

fscanf()

Issue 4: The type of argument format for all functions, and the type of argument s for the
sscanf() function, are changed from char* to const char*.

The description is updated in various places to align more closely with the text of
the ISO C standard. In particular, Issue 4 fully defines the L conversion character,
allows for the support of multi-byte coded character sets (although these are not
mandated by X/Open), and fills in a number of gaps in the definition (for example,
by defining termination conditions for the sscanf() function).

Following an ANSI interpretation, the effect of conversion specifications that
consume no input is better defined, and is no longer marked as an extension.

The C and S conversion characters are added, indicating a pointer in the argument
list to the initial wide-character code of an array large enough to accept the input
sequence.

Use of the terms ‘‘byte’’ and ‘‘character’’ is rationalised to make it clear when
single-byte and multi-byte values can be used. Similarly, use of the terms
‘‘conversion specification’’ and ‘‘conversion character’’ is more precise.

Various errors are corrected. For example, the description of the d conversion
character contains an erroneous reference to the strtod() function in Issue 3. This is

146 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

replaced in Issue 4 by reference to the strtol() function.

The description is updated in a number of places to indicate further implications of
the %n$ form of a conversion. All references to this capability, which is not
specified in the ISO C standard, are marked as extensions.

The ERRORS section is changed to refer to the entries for fgetc() and fgetwc(),
rather than re-presenting individual error values in this entry. This change does
not affect capability.

Note: If an application has any objects of type wchar_t, it must include either
<sys/types.h> or <stddef.h>.

fseek()

Issue 4: The type of argument offset is now defined in full as long int. In previous issues it
is defined as long.

Issue 3 states that ‘‘The fseek() function does not, by itself, extend the size of of a
file’’. This sentence is deleted from Issue 4, although no change of capability is
implied.

Issue 4 states that error returns are only generated either when the stream is
unbuffered, or if the stream buffer needs to be flushed. This is not stated explicitly
in Issue 3.

The ERRORS section is revised for consistency with lseek() and write().

Issue 4 mandates that the [EIO] error be returned if the calling process is a member
of a background process group attempting to write to its controlling terminal,
TOSTOP is set, the process is neither ignoring nor blocking SIGTTOU, and the
process group of the process is orphaned. Detection of this condition in Issue 3
depends on whether an implementation supports job control.

Issue 4 also explains how fseek() is used with wide-character input/output; this is
marked as a WP extension.

Issue 4, Version 2:
The ERRORS section has been updated to include the condition where a physical
I/O error has occurred in the description of [EIO] for conformance to X/OPEN
UNIX.

fsetpos()

Issue 4: New function in Issue 4.

The fsetpos() function sets the file position indicator of the specified stream to pos,
which is a value obtained from an earlier successful call to fgetpos(). This interface
is similar to fseek(), except that the contents of pos are unspecified; that is, the value
is not necessarily a byte offset.

Part 3: System Interfaces and Headers Migration 147

System Interfaces

fstat()

Issue 4: The header <sys/types.h> is no longer required explicitly. This header is optional
on XSI-conformant systems, although the POSIX-1 standard shows this header to
be included.

In the description, the words ‘‘extended security controls’’ are replaced by
‘‘additional or alternative file access control mechanisms’’. No functional change
is implied by this rewording.

Issue 4, Version 2:
For conformance to X/OPEN UNIX, the ERRORS section has been updated to
include the mandatory error [EIO] when a physical I/O error has occurred, and the
optional error [EOVERFLOW] when one of the values is too large to store in the
area pointed to by buf.

fstatvfs()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The statvfs() and fstatvfs () functions get file system information. It is unspecified
whether all members of the statvfs structure have meaningful values on all file
systems.

fsync()

Issue 4: The header <unistd.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

In the APPLICATION USAGE section, the words ‘‘require a file to be in a known
state’’ are replaced by ‘‘require modifications to a file to be completed before
continuing’’. No functional change is implied by this rewording.

ftell()

Issue 4: The function return value is now defined in full as long int. In Issue 3 it is defined
simply as long.

ftime()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The ftime() function sets the time and millitm members of the timeb structure.
For portability to implementations conforming to earlier versions of this
document, time() is preferred over this function.

ftok()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The ftok () function returns an IPC key based on path and id that is usable in
subsequent calls to msgget(), semget() and shmget(). For maximum portability, id
should be a single-byte character.

148 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

ftruncate()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The truncate() and ftruncate() functions are used to truncate a regular file to a
specified length.

ftw()

Issue 4: The type of argument path is changed from char* to const char*. The argument list
for the fn() function is also defined.

Issue 4 states that tree traversal continues until the tree is exhausted, an invocation
of fn returns a non-zero value, or some error other than [EACCES], is detected
within ftw(). Issue 3 does not contain the caveat about [EACCES], although no
functional change is implied as the significance of this error is dependent on the
setting of flag.

Since the behaviour associated with {_POSIX_NO_TRUNC} is supported on all
Issue 4 systems, [ENAMETOOLONG] is always returned if a pathname
component is larger than {NAME_MAX}. On Issue 3 systems, the pathname can
be truncated by the system, so the condition is silently ignored.

Issue 4, Version 2:
The DESCRIPTION section has been updated to account for symbolic links for
X/OPEN UNIX conformance. The DESCRIPTION section was further updated to
note that ftw() uses at most one file descriptor for each level in the tree, and
constrains ndirs to the range from 1 to {OPEN_MAX}.

The RETURN VALUE section has been updated to describe the case when ftw()
encounters an error other than [EACCESS].

The ERRORS section has been updated to indicate that [ELOOP] will be returned
if too many symbolic links are encountered during pathname resolution, and a
second [ENAMETOOLONG] condition is defined that may report excessive length
of an intermediate result of pathname resolution of a symbolic link.

fwrite()

Issue 4: The type of argument ptr is changed from void* to const void*.

The description is changed to make it clear that the function advances the file-
position indicator by the number of bytes successfully written rather than the
number of characters, which could include multi-byte sequences.

gamma()

Issue 4: This interface is marked TO BE WITHDRAWN, as it is functionally equivalent to
lgamma(). Hence the description is also changed to refer to the lgamma() entry.

Part 3: System Interfaces and Headers Migration 149

System Interfaces

gcvt()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to ecvt().

getc()

Issue 4: The description in Issue 4 is updated to make it clear that the function returns a
byte value. Issue 3 states that a character is returned, which can be misinterpreted
to mean a multi-byte sequence in locales that supports multi-byte codesets.

getchar()

Issue 4: The argument list is explicitly defined as void.

The description in Issue 4 is updated to make it clear that the function returns a
byte value. Issue 3 states that a character is returned, which can be misinterpreted
to mean a multi-byte sequence in locales that supports multi-byte codesets.

getcontext()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The getcontext() and setcontext() functions get and set the current user context
which includes the contents of the calling process’ machine registers, the signal
mask, and current execution stack.

A portable application cannot assume that the context includes any process-wide
static data, possibly including errno. Users manipulating contexts should take care
to handle these explicitly when required.

getcwd()

Issue 4: The header <unistd.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

Issue 4 states that if buf is a null pointer, the behaviour of getcwd() is undefined.
Issue 3 recommends that getcwd() should not be invoked with a null pointer as this
capability may be subject to withdrawal (without explaining what the capability
is).

To dig even further back into history, Issue 2 defined that if buf is a null pointer,
getcwd() obtains size bytes of space using malloc () and returns a pointer thereto. It
is this capability that is not recommended in Issue 3 and undefined in Issue 4.

While many implementations may support the capability defined in Issue 2,
portable applications should not rely on it.

150 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

getdate()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The getdate() function is used to convert a string representation of a date or time
into a broken-down time.

Historical versions of getdate() did not require that <time.h> declare the external
variable getdate_err, but it is now required. X/Open encourages application writers
to remove declarations of getdate_err, and instead incorporate the declaration by
including <time.h>.

getdtablesize()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The getdtablesize () function is used to get the file descriptor table size, and is
equivalent to a call to getrlimit() with the RLIMIT_NOFILE option.

getegid()

Issue 4: The header <unistd.h> is added to the SYNOPSIS section. The header
<sys/types.h> is no longer required explicitly; this header is optional on XSI-
conformant systems, although the POSIX-1 standard shows <sys/types.h> to be
included.

The argument list is explicitly defined as void.

getenv()

Issue 4: The type of argument name is changed from char* to const char*.

The description in Issue 4 is changed to indicate that the return string:

• must not be modified by an application

• may be overwritten by subsequent calls to getenv() or putenv()

• is not overwritten by calls to other X/Open system interfaces.

This does not represent a change in capability, but it does identify extra features of
the interface, of which programmers developing portable applications should be
aware.

geteuid()

Issue 4: The header <unistd.h> is added to the SYNOPSIS section. The header
<sys/types.h> is no longer required explicitly; this header is optional on XSI-
conformant systems, although the POSIX-1 standard shows <sys/types.h> to be
included.

The argument list is explicitly defined as void.

Part 3: System Interfaces and Headers Migration 151

System Interfaces

getgid()

Issue 4: The header <unistd.h> is added to the SYNOPSIS section. The header
<sys/types.h> is no longer required explicitly; this header is optional on XSI-
conformant systems, although the POSIX-1 standard shows <sys/types.h> to be
included.

The argument list is explicitly defined as void.

getgrent()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to endgrent().

getgrgid()

Issue 4: The header <sys/types.h> is no longer required explicitly; this header is optional
on XSI-conformant systems, although the POSIX-1 standard shows <sys/types.h>
to be included.

A note is added to the APPLICATION USAGE section advising that applications
wishing to check for errors should set errno to zero before calling getgrgid(). If
errno is set on return, an error occurred.

getgrnam()

Issue 4: The type of argument name is changed from char* to const char*.

The header <sys/types.h> is no longer required explicitly; this header is optional
on XSI-conformant systems, although the POSIX-1 standard shows <sys/types.h>
to be included.

A note is added to the APPLICATION USAGE section advising that applications
wishing to check for errors should set errno to zero before calling getgrnam(). If
errno is set on return, an error occurred.

getgroups()

Issue 4: The header <unistd.h> is added to the SYNOPSIS section. The header
<sys/types.h> is no longer required explicitly; this header is optional on XSI-
conformant systems, although the POSIX-1 standard shows <sys/types.h> to be
included.

A return value of zero is no longer permitted as {NGROUPS_MAX} must be
greater than zero. This change in Issue 4 is forced by alignment with the FIPS
requirements.

gethostid()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The gethostid () function retrieves a 32-bit identifier for the current host. X/Open
does not define the domain in which the return value is unique.

152 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

getitimer()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The getitimer() and setitimer() functions get and set the value of an interval timer.

getlogin()

Issue 4: The header <unistd.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

The argument list is explicitly defined as void.

The description is updated to state explicitly that the return value is a pointer to a
string giving the user name, rather than simply a pointer to the user name as stated
in Issue 3.

The APPLICATION USAGE section is changed to refer to getpwuid() rather than
cuserid(), which will be withdrawn in a future issue.

getmsg()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The getmsg() and getpmsg() functions retrieve the message at the head of the
STREAM head read queue associated with a STREAMS file.

getopt()

Issue 4: The header <unistd.h> is added to the SYNOPSIS section and <stdio.h> is
deleted.

The type of argument argv is changed from char** to char* const [].

The integer optopt is added to the list of external data items.

The description is largely rewritten, without functional change, for alignment with
the POSIX-2 standard, although the following differences should be noted:

• If the function detects a missing option argument, it returns a colon (:) and sets
optopt to the option character.

• The termination conditions under which getopt() returns −1 are extended. Also
note that the termination condition is explicitly −1, rather than the value of
EOF.

getpagesize()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The getpagesize () function returns the current page size. It is equivalent to
sysconf(_SC_PAGE_SIZE) and sysconf(_SC_PAGESIZE).

Part 3: System Interfaces and Headers Migration 153

System Interfaces

getpass()

Issue 4: The interface is marked TO BE WITHDRAWN, because of its misleading name and
because it provides dubious capability.

The header <unistd.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

The type of argument prompt is changed from char* to const char*.

In the DESCRIPTION section, reference to the character special file /dev/tty is
replaced by the phrase ‘‘the process’ controlling terminal’’. Issue 4 is more correct,
although there is no difference in implementation terms.

In Issue 4 the word ‘‘characters’’ is replaced by ‘‘bytes’’, to indicate that this
interface deals solely in single-byte values.

getpgid()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The getpgid() function returns the process group ID of the process whose process
IS is equal to pid.

getpgrp()

Issue 4: The header <unistd.h> is added to the SYNOPSIS section. The header
<sys/types.h> is no longer required explicitly; this header is optional on XSI-
conformant systems, although the POSIX-1 standard shows <sys/types.h> to be
included.

The argument list is explicitly defined as void.

getpid()

Issue 4: The header <unistd.h> is added to the SYNOPSIS section. The header
<sys/types.h> is no longer required explicitly; this header is optional on XSI-
conformant systems, although the POSIX-1 standard shows <sys/types.h> to be
included.

The argument list is explicitly defined as void.

getpmsg()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to getmsg().

getppid()

Issue 4: The header <unistd.h> is added to the SYNOPSIS section. The header
<sys/types.h> is no longer required explicitly; this header is optional on XSI-
conformant systems, although the POSIX-1 standard shows <sys/types.h> to be
included.

The argument list is explicitly defined as void.

154 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

getpriority()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The getpriority () and setpriority() functions get and set the scheduling priority of a
process, process group or user.

getpwent()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to endpwent().

getpwnam()

Issue 4: The header <sys/types.h> is no longer required explicitly; this header is optional
on XSI-conformant systems, although the POSIX-1 standard shows <sys/types.h>
to be included.

The type of argument name is changed from char* to const char*.

The APPLICATION USAGE section is expanded as follows:

• It warns that the return value may point to a static area that is overwritten by
subsequent calls to cuserid(), getpwnam() or getpwuid().

• It advises that applications wishing to check for errors should set errno to zero
before calling getgrnam(). If errno is set on return, an error occurred.

• It identifies how the various names associated with a process can be
determined.

getpwuid()

Issue 4: The header <sys/types.h> is no longer required explicitly; this header is optional
on XSI-conformant systems, although the POSIX-1 standard shows <sys/types.h>
to be included.

A note is added to the APPLICATION USAGE section advising that applications
wishing to check for errors should set errno to zero before calling getgrnam(). If
errno is set on return, an error occurred.

getrlimit()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The getrlimit() and setrlimit() functions obtain and set the limits on consumption
of a variety of resources for the calling process. Processes are able to set a soft limit
to any value less than a hard limit. Processes are able to lower a hard limit, but are
not able to raise a hard limit unless they have appropriate privileges.

Part 3: System Interfaces and Headers Migration 155

System Interfaces

getrusage()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The getrusage() function provides measures of the resources used by the current
process or its terminated and waited-for children.

gets()

Issue 4: The description in Issue 4 is updated to make it clear that the function reads bytes.
Issue 3 states that characters are read, which can be misinterpreted to mean multi-
byte sequences in locales that support multi-byte codesets.

getsid()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The getsid() function gets the process group ID of the process that is the session
leader of the process specified by pid.

getsubopt()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The getsubopt() function parses suboption arguments in a flag argument that was
initially parsed by getopt().

gettimeofday()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The gettimeofday () function obtains the current time, expressed as seconds and
microseconds since 00:00 Coordinated Universal Time (UTC), January 1, 1970, and
stores it in the timeval structure pointed to by tp.

getuid()

Issue 4: The header <unistd.h> is added to the SYNOPSIS section. The header
<sys/types.h> is no longer required explicitly; this header is optional on XSI-
conformant systems, although the POSIX-1 standard shows <sys/types.h> to be
included.

The argument list is explicitly defined as void.

getutxent()

Issue 4, Version 2:
The getutxent(), getutxid() and getutxline() functions were first introduced in
Issue 4, Version 2 (X/OPEN UNIX), to get user accounting database entries.

Refer to endutxent().

156 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

getw()

Issue 4: No changes are made to this interface in Issue 4.

getwc()

Issue 4: New function in Issue 4 (WPI).

This interface is functionally equivalent to getc(), except that it returns a wide-
character value. Conversion from multi-byte to wide-character form is done
automatically.

getwchar()

Issue 4: New function in Issue 4 (WPI).

This interface is functionally equivalent to getchar(), except that it returns a wide-
character value. Conversion from multi-byte to wide-character form is done
automatically.

getwd()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The getwd() function determines an absolute pathname of the current working
directory of the calling process. For portability to implementations conforming to
earlier versions of this document, getcwd() is preferred over this function.

glob()

Issue 4: New function in the POSIX.2 C-language Binding feature group in Issue 4.

The glob() function is a pathname generator that accepts a pattern used for
filename expansion and returns a list of pathnames that match. For example, to
obtain a list of files that match the pattern:

*.r

glob() can be called as follows:

glob("*.r", GLOB_NOCHECK, NULL, &globbuf);

The first argument contains the pattern to be matched. The second argument is a
flag, where GLOB_NOCHECK indicates that if pattern does not match any
pathname, then a list containing only the pattern is returned. The third argument
is a pointer to an optional error handling function, and the final argument is a
pointer to a structure of type glob_t.

On return from this call, globbuf.gl_pathc contains a count of the paths matched,
and globbuf.gl_pathv contains a pointer to the matched pathnames. The field
globbuf.gl_offs can be set on input to reserve slots at the beginning of gl_pathv.

Part 3: System Interfaces and Headers Migration 157

System Interfaces

gmtime()

Issue 4: The type of argument timer is changed from time_t* to const time_t*.

grantpt()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The grantpt() function changes the mode and ownership of the slave pseudo-
terminal device associated with the master pseudo-terminal counter part.

hcreate()

Issue 4: The type of argument nel is changed from unsigned to size_t.

hdestroy()

Issue 4: The argument list is explicitly defined as void.

hsearch()

Issue 4: The type of argument nel in the declaration of the hcreate() function is changed
from unsigned to size_t, and the argument list is explicitly defined as void in the
declaration of the hdestroy() function.

The type of the comparison key is explicitly defined as char*, the type of item.data
is explicitly defined as void*, and a statement is added indicating that hsearch()
uses strcmp() as the comparison function.

Issue 4 defines [ENOMEM] as an error that may be returned by this function. This
is not indicated in Issue 3.

hypot()

Issue 4: The RETURN VALUE and ERRORS sections are substantially rewritten to
rationalise error handling in the mathematics functions. Specifically:

• [ERANGE] may be returned if the result overflows or underflows.

iconv()

Issue 4: New function in Issue 4.

This interface provides code conversion facilities at the application level (see the
X/Open Internationalisation Guide, Version 2 for more details).

iconv_close()

Issue 4: New function in Issue 4.

This interface is the code conversion deallocation function, which is used
subsequent to calls to iconv() (see the X/Open Internationalisation Guide, Version
2 for more details).

158 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

iconv_open()

Issue 4: New function in Issue 4.

This interface is the code conversion allocation function, which is used prior to
calls to iconv() (see the X/Open Internationalisation Guide, Version 2 for more
details).

ilogb()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The ilogb () function returns the unbiased exponent part of x. The call ilogb(x) is
equivalent to (int)logb(x).

index()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The index() function is identical to strchr(). For portability to implementations
conforming to earlier versions of this document, strchr() is preferred over this
function.

initstate()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The initstate() function is one of the pseudo-random number generator functions,
along with random(), setstate() and srandom(). While some implementations of
random() have written messages to standard error, they do not conform to this
document.

insque()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The insque() and remque() functions manipulate queues built from doubly-linked
lists. These queues can be circular or linear.

Historical implementations of these functions described the arguments as being of
type struct qelem * rather than of type void *. This structure was commonly
defined in <search.h> as simply the two (forward and backward) links, and no
room for a data pointer or storage. If this method had been carried forward with
an ISO C compiler and the historical function prototype, in order to avoid
compilation warnings, most applications would require changes to cast pointers to
the structures actually used to become pointers to struct qelem. Specifying void *
as the argument type will not require applications to change (unless they
specifically reference struct qelem and depend upon its definition in <search.h>).

Part 3: System Interfaces and Headers Migration 159

System Interfaces

ioctl()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The ioctl () function performs a variety of control functions on STREAMS devices.
On non-STREAMS devices, the functions performed are implementation-defined.

isalnum()

Issue 4: The text of the DESCRIPTION and RETURN VALUE sections is revised in
Issue 4, although there are no functional differences between this issue and Issue 3.
Operation in the POSIX locale is now described elsewhere in the XSH specification.

isalpha()

Issue 4: The text of the DESCRIPTION and RETURN VALUE sections is revised in
Issue 4, although there are no functional differences between this issue and Issue 3.
Operation in the POSIX locale is now described elsewhere in the XSH specification.

isascii()

Issue 4: No changes are made to this interface in Issue 4.

isastream()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The isastream() function tests whether fildes, an open file descriptor, is associated
with a STREAMS-based file.

isatty()

Issue 4: The header <unistd.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

iscntrl()

Issue 4: The text of the DESCRIPTION and RETURN VALUE sections is revised in
Issue 4, although there are no functional differences between this issue and Issue 3.
Operation in the POSIX locale is now described elsewhere in the XSH specification.

isdigit()

Issue 4: The text of the DESCRIPTION and RETURN VALUE sections is revised in
Issue 4, although there are no functional differences between this issue and Issue 3.
Operation in the POSIX locale is now described elsewhere in the XSH specification.

160 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

isgraph()

Issue 4: The text of the DESCRIPTION and RETURN VALUE sections is revised in
Issue 4, although there are no functional differences between this issue and Issue 3.
Operation in the POSIX locale is now described elsewhere in the XSH specification.

islower()

Issue 4: The text of the DESCRIPTION and RETURN VALUE sections is revised in
Issue 4, although there are no functional differences between this issue and Issue 3.
Operation in the POSIX locale is now described elsewhere in the XSH specification.

isnan()

Issue 4: No changes are made to this interface in Issue 4.

isprint()

Issue 4: The text of the DESCRIPTION and RETURN VALUE sections is revised in
Issue 4, although there are no functional differences between this issue and Issue 3.
Operation in the POSIX locale is now described elsewhere in the XSH specification.

ispunct()

Issue 4: The text of the DESCRIPTION and RETURN VALUE sections is revised in
Issue 4, although there are no functional differences between this issue and Issue 3.
Operation in the POSIX locale is now described elsewhere in the XSH specification.

isspace()

Issue 4: The text of the DESCRIPTION and RETURN VALUE sections is revised in
Issue 4, although there are no functional differences between this issue and Issue 3.
Operation in the POSIX locale is now described elsewhere in the XSH specification.

isupper()

Issue 4: The text of the DESCRIPTION and RETURN VALUE sections is revised in
Issue 4, although there are no functional differences between this issue and Issue 3.
Operation in the POSIX locale is now described elsewhere in the XSH specification.

iswalnum()

Issue 4: New function in Issue 4 (WPI).

This interface is functionally equivalent to isalnum(), except that it accepts a wide-
character code as input.

iswalpha()

Issue 4: New function in Issue 4 (WPI).

This interface is functionally equivalent to isalpha (), except that it accepts a wide-
character code as input.

Part 3: System Interfaces and Headers Migration 161

System Interfaces

iswcntrl()

Issue 4: New function in Issue 4 (WPI).

This interface is functionally equivalent to iscntrl(), except that it accepts a wide-
character code as input.

iswctype()

Issue 4: New function in Issue 4 (WPI)

This interface is used with wctype() to provide classification facilities for all
character classes in a locale, including those for which there is no direct isw*()
function. The interface accepts a charclass argument of type wctype_t, which is a
value returned by a previous successful call to wctype().

For example, assume a program wishes to check for diacritical marks in locales
that support such objects:

...
int count = 0;
wint_t wchar;
wctype_t charclass = wctype("diacritical");
...
if (charclass != (wctype_t)0))

while ((wchar = getwchar()) != WEOF)
if (iswctype(wchar, charclass))
count += 1;

printf ("%d diacritical marks found\n", count);

...

In the above code sequence, the call to wctype() only returns a valid value when
the program is running in a locale that supports the identified character class; that
is, for which the class diacritical is defined in the localedef source file from which
the locale is generated.

iswdigit()

Issue 4: New function in Issue 4 (WPI).

This interface is functionally equivalent to isdigit (), except that it accepts a wide-
character code as input.

iswgraph()

Issue 4: New function in Issue 4 (WPI).

This interface is functionally equivalent to isgraph(), except that it accepts a wide-
character code as input.

162 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

iswlower()

Issue 4: New function in Issue 4 (WPI).

This interface is functionally equivalent to islower(), except that it accepts a wide-
character code as input.

iswprint()

Issue 4: New function in Issue 4 (WPI).

This interface is functionally equivalent to isprint(), except that it accepts a wide-
character code as input.

iswpunct()

Issue 4: New function in Issue 4 (WPI).

This interface is functionally equivalent to ispunct(), except that it accepts a wide-
character code as input.

iswspace()

Issue 4: New function in Issue 4 (WPI).

This interface is functionally equivalent to isspace(), except that it accepts a wide-
character code as input.

iswupper()

Issue 4: New function in Issue 4 (WPI).

This interface is functionally equivalent to isupper(), except that it accepts a wide-
character code as input.

iswxdigit()

Issue 4: New function in Issue 4 (WPI).

This interface is functionally equivalent to isxdigit (), except that it accepts a wide-
character code as input.

isxdigit()

Issue 4: The text of the DESCRIPTION and RETURN VALUE sections is revised in
Issue 4, although there are no functional differences between this issue and Issue 3.
Operation in the POSIX locale is now described elsewhere in the XSH specification.

j0()

Issue 4: The RETURN VALUE and ERRORS sections are substantially rewritten to
rationalise error handling in the mathematics functions. Specifically:

• [ERANGE] may be returned if underflow occurs.

Part 3: System Interfaces and Headers Migration 163

System Interfaces

jrand48()

Issue 4: The header <stdlib.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

The type of argument xsubi is defined in Issue 4 as an array of unsigned short int.
In Issue 3 it is simply (but equally) defined as an array of unsigned short.
Similarly, the type of jrand48() is changed from long to long int.

kill()

Issue 4: The header <sys/types.h> is no longer required explicitly; this header is optional
on XSI-conformant systems, although the POSIX-1 standard shows <sys/types.h>
to be included.

The description is changed to indicate that {POSIX_SAVED_IDS} is defined on all
XSI-conformant systems and, because of this, that the saved set-user-ID of the
calling process is checked in place of its effective user ID. Issue 3 does not
mandate that {POSIX_SAVED_IDS} must be set.

killpg()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The killpg () function sends the specified signal to the specified process group.

l64a()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to a64l ().

labs()

Issue 4: New function in Issue 4.

The labs() function computes the absolute value of a long integer.

lchown()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The lchown() function has the same effect as chown() except in the case where the
named file is a symbolic link. In this case, lchown() changes the ownership of the
symbolic link file itself, while chown() changes the ownership of the file or
directory to which the symbolic link refers.

164 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

lcong48()

Issue 4: The header <stdlib.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

The type of argument param is defined in Issue 4 as an array of unsigned short int.
In Issue 3 it is simply (but equally) defined as an array of unsigned short.

ldexp()

Issue 4: The RETURN VALUE and ERRORS sections are substantially rewritten for
alignment with the ISO C standard and to rationalise error handling in the
mathematics functions. Specifically:

• [ERANGE] is set if the value overflows. Issue 3 defines that an implementation
might set [ERANGE] in these circumstances.

ldiv()

Issue 4: New function in Issue 4.

The ldiv () function is equivalent to div(), except that it computes the quotient and
remainder of a long division.

lfind()

Issue 4: The type of the function return value is changed from char* to void*, the type of
the key and base arguments is changed from void* to const void*, and argument
declarations for the compar() function are added.

lgamma()

Issue 4: This page no longer points to the gamma() entry, but contains all information
relating to the lgamma() function on this page.

The RETURN VALUE and ERRORS sections are substantially rewritten to
rationalise error handling in the mathematics functions. Specifically:

• [ERANGE] may be set if the result underflows. The handling of underflow
conditions is not specified in Issue 3.

link()

Issue 4: The header <unistd.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

The type of arguments path1 and path2 are changed from char* to const char*.

Since the behaviour associated with {_POSIX_NO_TRUNC} is supported on all
Issue 4 systems, [ENAMETOOLONG] is always returned if a pathname
component is larger than {NAME_MAX}. On Issue 3 systems, the pathname can
be truncated by the system, so the condition is silently ignored.

Issue 4, Version 2:
For X/OPEN UNIX conformance, the ERRORS section has been updated to
indicate that [ELOOP] will be returned if too many symbolic links are encountered
during pathname resolution, the [EXDEV] error may also be returned if path1 refers
to a STREAM, and a second [ENAMETOOLONG] condition is defined that may
report excessive length of an intermediate result of pathname resolution of a

Part 3: System Interfaces and Headers Migration 165

System Interfaces

symbolic link.

loc1

Issue 4: The header <regexp.h> is added to the SYNOPSIS section.

localeconv()

Issue 4: New function in Issue 4.

This function sets the components of an object of type struct lconv with values
appropriate to the formatting of numeric quantities (monetary and otherwise) in
the current locale. This is a lower-level interface than strfmon() (see the X/Open
Internationalisation Guide, Version 2 for further details).

localtime()

Issue 4: The type of argument timer is changed from time_t* to const time_t*.

lockf()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The lockf () function allows sections of a file to be locked with advisory-mode locks.
Record-locking should not be used in conjunction with fopen(), fread(), fwrite() and
other stdio functions, as buffering may cause unexpected results. Applications
should use the more primitive, non-buffered functions, such as open().

locs

Issue 4: The header <regexp.h> is added to the SYNOPSIS section. This variable has been
marked TO BE WITHDRAWN.

log()

Issue 4: The RETURN VALUE and ERRORS sections are substantially rewritten for
alignment with the ISO C standard and to rationalise error handling in the
mathematics functions. Specifically:

• [EDOM] is set if x is negative. Issue 3 indicates that an implementation might
set this error.

• [EDOM] may be set if the value of x is NaN. Issue 3 indicates that [EDOM]
might be set if x is negative or zero.

• [ERANGE] may be set if the value of x is zero. Issue 3 indicates that [ERANGE]
might be set if x is zero, the logarithm of x could not be represented or the
result would cause overflow. These last two conditions are not described in
Issue 4.

166 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

log10()

Issue 4: The RETURN VALUE and ERRORS sections are substantially rewritten for
alignment with the ISO C standard and to rationalise error handling in the
mathematics functions. Specifically:

• [EDOM] is set if x is negative. This condition is not described in Issue 3.

• [EDOM] may be set if the value of x is NaN. Issue 3 indicates that [EDOM]
might be set if x is not greater than zero.

• [ERANGE] may be set if the value of x is zero. Issue 3 indicates that [ERANGE]
might be set if x is zero, the logarithm of x could not be represented or the
result would cause overflow. These last two conditions are not described in
Issue 4.

log1p()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The log1p () function computes the natural logarithm of 1.0 + x. The value of x
must be greater than −1.0.

logb()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The logb() function determines the radix-independent exponent of x.

_longjmp()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The _longjmp () and _setjmp() functions provide non-local goto capability and are
identical to longjmp() and setjmp() respectively, with the additional restriction that
_longjmp () and _setjmp() do not manipulate the signal mask.

The _longjmp () and _setjmp() functions are included to support programs written
to historical system interfaces. New applications should use siglongjmp () and
sigsetjmp() respectively.

longjmp()

Issue 4: No functional changes are made to this interface in Issue 4, although note that
implications of volatile-qualified types are described.

Issue 4, Version 2:
The DESCRIPTION section has been updated for X/OPEN UNIX conformance
and discusses the valid possibilities for the resulting state of the signal mask. Since
the effect of longjmp() and setjmp() on the signal mask is unspecified, applications
that depend upon the value of the signal mask should investigate the use of
_longjmp () and _setjmp() (which never modify the mask), or siglongjmp () and
sigsetjmp() (which can save and restore the mask under application control). For
portability to implementations conforming to earlier versions of this document,
siglongjmp () and sigsetjmp() are preferred.

Part 3: System Interfaces and Headers Migration 167

System Interfaces

lrand48()

Issue 4: The header <stdlib.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

The argument list is explicitly defined as void.

lsearch()

Issue 4: The type of argument key in the declaration of the lsearch() function is changed
from void* to const void*, the type arguments key and base have been changed
from void* to const void* in the declaration of the lfind() function, and the
arguments to compar() are defined for both functions.

lseek()

Issue 4: The header <sys/types.h> is no longer required explicitly; this header is optional
on XSI-conformant systems, although the POSIX-1 standard shows <sys/types.h>
to be included.

lstat()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The lstat() function behaves the same as stat(), except when path refers to a
symbolic link. In that case lstat() returns information about the link, while stat()
returns information about the file the link references.

makecontext()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The makecontext() and swapcontext() functions manipulate user contexts initialised
using getcontext().

malloc()

Issue 4: Issue 4 states that if size is zero, either a null pointer or a unique pointer that can be
successfully passed to free() is returned. This is not defined in Issue 3.

There is now no requirement for the implementation to support the inclusion of
<malloc.h>.

mblen()

Issue 4: New function in Issue 4.

The mblen() function determines the number of bytes in a (possibly multi-byte)
character, according to information in the LC_CTYPE category of the current
locale.

168 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

mbstowcs()

Issue 4: New function in Issue 4.

The mbstowcs() function converts a character string, possibly containing multi-byte
characters, to a wide-character string, according to information in the LC_CTYPE
category of the current locale.

mbtowc()

Issue 4: New function in Issue 4.

This function is similar to mbstowcs(), except that it only converts a single, possibly
multi-byte character to a wide-character code.

memccpy()

Issue 4: The type of argument s2 is changed from void* to const void*.

Issue 3 states, as an application note, that compliant implementations also support
inclusion of the header <memory.h>. This is done for backwards compatibility
with XPG2. Issue 4 does not promise that this header is provided, which may
cause applications dependent on this header to fail when compiled on an Issue 4
system.

This note applies to all the memory functions.

memchr()

Issue 4: The type of argument s is changed from void* to const void*.

memcmp()

Issue 4: The type of arguments s1 and s2 are changed from void* to const void*.

memcpy()

Issue 4: The type of argument s2 is changed from void* to const void*.

A note is added to Issue 4 indicating that memcpy() does not check for overflow in
the receiving memory area. This is also true in Issue 3, although the warning is not
stated explicitly.

memmove()

Issue 4: New function in Issue 4.

The memmove() function allows bytes to be copied between overlapping areas.
Otherwise, it is exactly like the memcpy() function.

memset()

Issue 4: No change is made to this interface in Issue 4.

Part 3: System Interfaces and Headers Migration 169

System Interfaces

mkdir()

Issue 4: The header <sys/types.h> is no longer required explicitly; this header is optional
on XSI-conformant systems, although the POSIX-1 standard shows <sys/types.h>
to be included.

The type of argument path is changed from char* to const char*.

Since the behaviour associated with {_POSIX_NO_TRUNC} is supported on all
Issue 4 systems, [ENAMETOOLONG] is always returned if a pathname
component is larger than {NAME_MAX}. On Issue 3 systems, the pathname can
be truncated by the system, so the condition is silently ignored.

Issue 4, Version 2:
For X/OPEN UNIX conformance, the ERRORS section has been updated to
indicate that [ELOOP] will be returned if too many symbolic links are encountered
during pathname resolution, and a second [ENAMETOOLONG] condition is
defined that may report excessive length of an intermediate result of pathname
resolution of a symbolic link.

mkfifo()

Issue 4: The header <sys/types.h> is no longer required explicitly; this header is optional
on XSI-conformant systems, although the POSIX-1 standard shows <sys/types.h>
to be included.

The type of argument path is changed from char* to const char*.

The description of [EACCES] is updated to indicate that this error is also returned
if write permission is denied to the parent directory.

Since the behaviour associated with {_POSIX_NO_TRUNC} is supported on all
Issue 4 systems, [ENAMETOOLONG] is always returned if a pathname
component is larger than {NAME_MAX}. On Issue 3 systems, the pathname can
be truncated by the system, so the condition is silently ignored.

Issue 4, Version 2:
For X/OPEN UNIX conformance, the ERRORS section has been updated to
indicate that [ELOOP] will be returned if too many symbolic links are encountered
during pathname resolution, and a second [ENAMETOOLONG] condition is
defined that may report excessive length of an intermediate result of pathname
resolution of a symbolic link.

mknod()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The mknod() function creates a new directory, or a new special or regular file
named by the pathname argument. The only portable use of mknod() is to create a
FIFO-special file. If mode is not S_IFIFO or dev is not 0, the behaviour of mknod() is
unspecified.

For portability to implementations conforming to earlier versions of this
document, mkfifo() is preferred over this function for making FIFO special files.

170 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

mkstemp()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The mkstemp() function replaces the contents of the string pointed to by template by
a unique filename, and returns a file descriptor for the file open for reading and
writing. This function thereby prevents any race conditions between testing
whether the file exists and opening it.

For portability to implementations conforming to earlier versions of this
document, tmpfile() is preferred over this function.

mktemp()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The mktemp() function replaces the contents of the string pointed to by template by
a unique filename. This function does not open a file of the name returned,
therefore it is possible for another process to create a file of the same name. Using
mkstemp() avoids this problem.

For portability to implementations conforming to earlier versions of this
document, tmpnam() is preferred over this function.

mktime()

Issue 4: The description in Issue 4 is changed to indicate the possible settings of tm_isdst,
and reference to setting of tm_sec for leap seconds or double leap seconds is
removed (although this capability is still supported).

mmap()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The mmap() function establishes a mapping between a process’ address space and
a file.

modf()

Issue 4: The name of the first argument is changed from value to x in the SYNOPSIS
section.

The RETURN VALUE and ERRORS sections are substantially rewritten for
alignment with the ISO C standard and to rationalise error handling in the
mathematics functions. Specifically:

• [ERANGE] may be returned if the result underflows.

Part 3: System Interfaces and Headers Migration 171

System Interfaces

mprotect()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The mprotect() function changes the access protections on the memory mappings
specified by the range [addr, addr + len), rounding up len to the next multiple of the
page size as returned by sysconf().

mrand48()

Issue 4: The header <stdlib.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

The argument list is explicitly defined as void.

msgctl()

Issue 4: As interprocess communication is mandatory in Issue 4, this interface is no longer
marked as OPTIONAL FUNCTIONALITY. The [ENOSYS] error is removed from
the ERRORS section.

Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the
SYNOPSIS section. However, because the POSIX-2 standard defines that headers
can be included more than once and in any order, existing applications should
continue to compile without needing to be modified.

Note: The IEEE P1003.4 Standards Committee has developed alternative
interfaces for interprocess communication. Refer to Section 5.6 on page
102.

msgget()

Issue 4: As interprocess communication is mandatory in Issue 4, this interface is no longer
marked as OPTIONAL FUNCTIONALITY. The [ENOSYS] error is removed from
the ERRORS section.

Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the
SYNOPSIS section. However, because the POSIX-2 standard defines that headers
can be included more than once and in any order, existing applications should
continue to compile without needing to be modified.

Note: The IEEE P1003.4 Standards Committee has developed alternative
interfaces for interprocess communication. Refer to Section 5.6 on page
102.

msgrcv()

Issue 4: As interprocess communication is mandatory in Issue 4, this interface is no longer
marked as OPTIONAL FUNCTIONALITY. The [ENOSYS] error is removed from
the ERRORS section.

Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the
SYNOPSIS section. However, because the POSIX-2 standard defines that headers
can be included more than once and in any order, existing applications should
continue to compile without needing to be modified.

172 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

The type of argument msgtype is now defined in full as long int.

Note: The IEEE P1003.4 Standards Committee has developed alternative
interfaces for interprocess communication. Refer to Section 5.6 on page
102.

msgsnd()

Issue 4: As interprocess communication is mandatory in Issue 4, this interface is no longer
marked as OPTIONAL FUNCTIONALITY. The [ENOSYS] error is removed from
the ERRORS section.

Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the
SYNOPSIS section. However, because the POSIX-2 standard defines that headers
can be included more than once and in any order, existing applications should
continue to compile without needing to be modified.

The type of argument msgp is changed from void* to const void*.

Note: The IEEE P1003.4 Standards Committee has developed alternative
interfaces for interprocess communication. Refer to Section 5.6 on page
102.

msync()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The msync() function writes all modified copies of pages over the range [addr, addr
+ len) to the underlying hardware, or invalidates any copies so that further
references to the pages will be obtained by the system from their permanent
storage locations. It should be used by programs requiring that a memory object
be in a known state.

Normal system activity can cause pages to be written to disk, therefore there are
no guarantees that msync() is the only control over when pages are or are not
written.

munmap()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The munmap() function removes the mappings for pages in the range [addr, addr +
len), rounding the len argument up to the next multiple of the page size as returned
by sysconf().

nextafter()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The nextafter() function computes the next representable double-precision
floating-point value following x in the direction of y.

Part 3: System Interfaces and Headers Migration 173

System Interfaces

nftw()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The nftw() function recursively descends the directory hierarchy rooted at path.
The nftw() function has a similar effect to ftw() except that it takes an additional
flags argument that provides additional control over the hierarchy traversal.

nice()

Issue 4: The header <unistd.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

A statement is added to Issue 4 indicating that the nice value can only be lowered
by a process with appropriate privilege. This is implied in Issue 3, by virtue of the
fact [EPERM] is defined to be returned if incr is negative, but it is not stated
explicitly.

Issue 4, Version 2:
The RETURN VALUE section has been updated for X/OPEN UNIX conformance
to indicate that a process’ nice remains unchanged if an error is detected.

nl_langinfo()

Issue 4: The header <nl_types.h> is removed from the SYNOPSIS section. Existing
applications that include this header should continue to compile on an Issue 4
system without needing to be modified.

nrand48()

Issue 4: The header <stdlib.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

The type of xsubi is defined in Issue 4 as unsigned short int. This is a pedantic
change and should not affect existing applications.

open()

Issue 4: The headers <sys/types.h> and <sys/stat.h> are no longer required explicitly; these
headers are optional on XSI-conformant systems, although the POSIX-1 standard
shows them to be included.

The type of argument path is changed from char* to const char*.

Various wording changes are made to the description in Issue 4 to improve clarity
and to align the text with the POSIX-1 standard. No functional changes are
implied by this rewording.

Since the behaviour associated with {_POSIX_NO_TRUNC} is supported on all
Issue 4 systems, [ENAMETOOLONG] is always returned if a pathname
component is larger than {NAME_MAX}. On Issue 3 systems, the pathname can
be truncated by the system, so the condition is silently ignored.

O_NDELAY is removed from the list of oflag values. As this flag is marked
WITHDRAWN in Issue 3, it should not affect existing applications (unless they are
XPG2-compliant, or older).

174 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

Issue 4, Version 2:
The DESCRIPTION section has been updated for X/OPEN UNIX conformance to
define the use of open flags with STREAMS files, and to identify special
considerations when opening the master side of a pseudo-terminal.

The ERRORS section has been updated for X/OPEN UNIX conformance to add
[EIO], [ELOOP] and [ENOSR] as mandatory errors, and [EAGAIN],
[ENAMETOOLONG] and [ENOMEM] as optional errors.

opendir()

Issue 4: The header <sys/types.h> is no longer required explicitly; this header is optional
on XSI-conformant systems, although the POSIX-1 standard shows <sys/types.h>
to be included.

The type of argument dirname is changed from char* to const char*.

Issue 3 contained the following statement:

‘‘The type DIR, which is defined in <dirent.h>, represents a directory stream,
which is an ordered sequence of all directory entries in a particular directory.’’

This is moved to the XBD specification in Issue 4. No change of capability is
implied.

The generation of an [ENOENT] error when dirname points to an empty string is
made mandatory. Detection of this condition is defined as optional in Issue 3.

Since the behaviour associated with {_POSIX_NO_TRUNC} is supported on all
Issue 4 systems, [ENAMETOOLONG] is always returned if a pathname
component is larger than {NAME_MAX}. On Issue 3 systems, the pathname can
be truncated by the system, so the condition is silently ignored.

Issue 4, Version 2:
For X/OPEN UNIX conformance, the ERRORS section has been updated to
indicate that [ELOOP] will be returned if too many symbolic links are encountered
during pathname resolution, and a second [ENAMETOOLONG] condition is
defined that may report excessive length of an intermediate result of pathname
resolution of a symbolic link.

openlog()

Issue 4, Version 2:
This function was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to closelog ().

optarg

Issue 4: Entry derived from getopt() in Issue 3, with the following changes:

• Item optopt is added to the list of external data items.

Part 3: System Interfaces and Headers Migration 175

System Interfaces

pathconf()

Issue 4: The type of argument path is changed from char* to const char*. Also the return
value of both functions is changed from long to long int.

Issue 4 states (in notes 2, 4 and 6) that it is unspecified whether an implementation
supports an association of the variable name with the specified file. Issue 3 states
that the behaviour of the interface is undefined in these circumstances.

Since the behaviour associated with {_POSIX_NO_TRUNC} is supported on all
Issue 4 systems, [ENAMETOOLONG] is always returned if a pathname
component is larger than {NAME_MAX}. On Issue 3 systems, the pathname can
be truncated by the system, so the condition is silently ignored.

Issue 4, Version 2:
For X/OPEN UNIX conformance, the ERRORS section has been updated to
indicate that [ELOOP] will be returned if too many symbolic links are encountered
during pathname resolution, and a second [ENAMETOOLONG] condition is
defined that may report excessive length of an intermediate result of pathname
resolution of a symbolic link.

pause()

Issue 4: The header <unistd.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

The argument list is explicitly defined as void.

Issue 4 states that since the pause() function suspends indefinitely unless
interrupted by a signal, there is no successful completion return value. Issue 3 did
not contain the words ‘‘unless interrupted by a signal’’, although this is stated
elsewhere in the text. No change of capability is implied.

pclose()

Issue 4: As pclose() is specified in the POSIX-2 standard, it is no longer marked as an
extension in the XSH specification.

The simple description given in Issue 3 is replaced with a more complete
description in this issue. In particular, interactions between this function and
wait() and waitpid () are defined. The essential capability of the interface is the
same, but application developers are advised to check the Issue 4 entry as it spells
out hitherto unstated features of the interface.

perror()

Issue 4: The type of argument s is changed from char* to const char*.

A paragraph is added to Issue 4 defining the effects of this function on the st_ctime
and st_mtime fields of the standard error stream. This is implicit capability that is
simply not stated in Issue 3.

The language for error message strings is given as implementation-defined in
Issue 3. In Issue 4, message strings are defined as language-dependent; that is,
they are dependent on the locale in which the program that calls perror() is
running.

176 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

pipe()

Issue 4: The header <unistd.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

Issue 4, Version 2:
The DESCRIPTION section has been updated for X/OPEN UNIX conformance to
indicate that certain dispositions of fildes[0] and fildes[1] are unspecified.

poll()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The poll () function provides applications with a mechanism for multiplexing
input/output over a set of file descriptors. The poll () function supports regular
files, terminal and pseudo-terminal devices, STREAMS-based files, FIFOs and
pipes. (It also supports sockets, if the XPG4 Sockets component is supported.)

popen()

Issue 4: As popen() is specified in the POSIX-2 standard, it is no longer marked as an
extension in the XSH specification.

The type of arguments command and mode are changed from char* to const char*.

The description of this interface in Issue 4 is completely rewritten for alignment
with the POSIX-2 standard, although it describes essentially the same capability as
Issue 3.

The ERRORS section is added; it includes an indication that this interface may
return any of the errors defined for the fork () or pipe() functions.

The APPLICATION USAGE section is extended, with only notes about buffer
flushing being retained from Issue 3. Application developers are advised to read
this section as it contains useful background information about implementation of
the interface.

pow()

Issue 4: References to the matherr() function are removed.

The RETURN VALUE and ERRORS sections are substantially rewritten for
alignment with the ISO C standard and to rationalise error handling in the
mathematics functions. Specifically:

• Issue 4 states that [EDOM] is set if the value of x is negative and y is non-
integral. Issue 3 defines that the pow() function might fail under these
circumstances.

• Issue 4 states that [ERANGE] is set if the value to be returned would cause
overflow. Again, Issue 3 defines that the pow() function might fail and set
[ERANGE].

Part 3: System Interfaces and Headers Migration 177

System Interfaces

printf()

Issue 4: Refer to fprintf ().

ptsname()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The ptsname() function returns the name of the slave pseudo-terminal device
associated with a master pseudo-terminal device.

The value returned may point to a static data area that is overwritten by each call
to ptsname().

putc()

Issue 4: No changes are made to this interface in Issue 4.

putchar()

Issue 4: No changes are made to this interface in Issue 4.

putenv()

Issue 4: The header <stdlib.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

The type of argument string is changed from char* to const char*.

putmsg()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The putmsg() and putpmsg() functions create a message from a process buffer(s)
and send the message to a STREAMS file.

puts()

Issue 4: The type of argument s is changed from char* to const char*.

The description in Issue 4 is updated to make it clear that this function
manipulates bytes. Issue 3 incorrectly referred to characters, which can be
misinterpreted to mean multi-byte sequences in locales that support multi-byte
codesets.

pututxline()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to endutxent().

178 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

putw()

Issue 4: No changes are made to this interface in Issue 4.

putwc()

Issue 4: New function in Issue 4 (WPI).

This interface is functionally equivalent to putc(), except that it accepts a wide
character as input (encoded as a value of type wint_t), which it converts to a
possibly multi-byte sequence and outputs to stream.

Note that the only difference between putwc and fputwc is that the former can be
implemented as macro, meaning that stream may be evaluated more than once.
Thus, arguments should never be expressions with side-effects, for example:

putwc(wc, *f++);

For this reason, application developers are recommended to use the fputwc()
function in preference to putwc().

putwchar()

Issue 4: New function in Issue 4 (WPI).

This interface is functionally equivalent to putchar(), except that it accepts a wide
character as input (encoded as a value of type wint_t), which it converts to a
possibly multi-byte sequence and outputs to the standard output stream.

qsort()

Issue 4: The arguments to function compar() are formally defined in the SYNOPSIS
section. No functional change is implied by this.

raise()

Issue 4: New function in Issue 4.

The raise() function allows a program to send a signal, identified by the argument
sig, to itself. For example:

raise(SIGUSR1);

rand()

Issue 4: The argument list of the rand() function is explicitly defined as void.

The definition of srand() is added to the SYNOPSIS section, and the argument seed
is explicitly defined as unsigned int.

random()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to initstate().

Part 3: System Interfaces and Headers Migration 179

System Interfaces

read()

Issue 4: The header <unistd.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

The type of argument buf is changed from char* to void*, and the type of argument
nbyte is changed from unsigned to size_t.

Issue 4 states that the result is implementation-dependent if nbyte is greater than
{SSIZE_MAX}. This limit is defined by the constant {INT_MAX} in Issue 3. This is
unlikely to have any practical implications for applications, as the minimum
acceptable value for both constants is defined to be 32767.

The last paragraph of the description in Issue 4 states that if read() is interrupted
by a signal after it has successfully read some data, it returns the number of bytes
read. In Issue 3 it is optional whether read() returns the number of bytes read, or
whether it returns −1 with errno set to [EINTR].

Issue 4 mandates that the [EIO] error is returned if the calling process is a member
of a background process group attempting to read from its controlling terminal,
the process is ignoring or blocking SIGTTIN or the process group is orphaned.
Detection of this condition in Issue 3 depends on whether an implementation
supports job control.

Issue 4, Version 2:
The readv() function has been added to the SYNOPSIS section, for X/OPEN UNIX
conformance, and an operational description for readv() has been added to the
DESCRIPTION section, along with appropriate changes to the RETURN VALUE
and ERRORS sections.

The DESCRIPTION section has been updated for X/OPEN UNIX conformance to
describe reading data from STREAMS files.

The ERRORS section was reorganised to describe errors that apply generally to
both read() and readv(), and errors that apply specifically to readv(). The
[EBADMSG], [EINVAL] and [EISDIR] errors are also added.

readdir()

Issue 4: The header <sys/types.h> is no longer required explicitly; this header is optional
on XSI-conformant systems, although the POSIX-1 standard shows <sys/types.h>
to be included.

The description is updated to indicate that after a call to fork () either the parent or
the child (but not both) may continue processing the directory stream; otherwise
the results are undefined. This warning is not in Issue 3.

Issue 4, Version 2:
The DESCRIPTION section has been updated for X/OPEN UNIX conformance to
indicate the disposition of certain fields in struct direct when an entry refers to a
symbolic link.

The [ENOENT] error has been added to the ERRORS section.

180 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

readlink()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The readlink () function reads the contents of a symbolic link into buf.

Portable applications should not assume that the returned contents of the symbolic
link are null-terminated.

readv()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to read().

realloc()

Issue 4: The description is updated to align with the ISO C standard. These changes are
largely superficial, although they should be noted as they may have a marginal
effect on some applications. Specifically:

• The order and contiguity of storage allocated by successive calls to this
function is unspecified.

• Each allocation yields a pointer to an object disjoint from any other object.

• The returned pointer points to the lowest byte address of the allocation.

• If size is zero, either a null pointer or a unique pointer that can be successfully
passed to free() is returned.

realpath()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The realpath () function determines an absolute pathname that names the same file
as file_name, whose resolution does not involve ".", ".." or symbolic links.

re_comp()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The re_comp() and re_exec() functions compile and execute regular expressions.

These interfaces are marked TO BE WITHDRAWN, because improved capability
is now provided by interfaces introduced for alignment with the POSIX-2 standard
(see regcomp()). For portability to implementations conforming to earlier versions
of this document, regcomp() and regexec() are preferred over these functions.

Part 3: System Interfaces and Headers Migration 181

System Interfaces

regcmp()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The regcmp() and regex() functions compile and execute regular expressions.

These interfaces are marked TO BE WITHDRAWN, because improved capability
is now provided by interfaces introduced for alignment with the POSIX-2 standard
(see regcomp()). For portability to implementations conforming to earlier versions
of this document, regcomp() and regexec() are preferred over these functions.

regcomp()

Issue 4: New function in the POSIX.2 C-language Binding feature group in Issue 4.

Two versions of regular expressions are supported in Issue 4:

• The historical simple regular expressions, which provide backward
compatibility with earlier issues of the XSH specification.

• The improved internationalised version that complies with the POSIX-2
standard.

The first type is supported by the regexp() functions, but note that these will be
withdrawn in a future issue of the specification.

The second type is supported by the regcomp() functions, which include:

• regcomp(), which compiles a regular expression from a pattern string and stores
the results in a structure of type regex_t

• regexec(), which compares a string against a compiled regular expression
produced by regcomp()

• regfree(), which frees any memory allocated by regcomp()

• regerror(), which provides a mapping from error codes produced by the other
regular expression functions to printable strings.

Examples of how these functions can be used are given in the XSH specification.

regex()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to regcmp().

regexp()

Issue 4: The interface is marked TO BE WITHDRAWN, because improved capability is
now provided by interfaces introduced for alignment with the POSIX-2 standard
(see regcomp()).

The type of arguments instring, endbuf, string() and expbuf() are changed from
char* to const char*.

Issue 4 states that the regexp() functions can be implemented as macros. This has
always been true, even though it is not stated explicitly in earlier issues of the XSH
specification.

182 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

remainder()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The remainder() function returns the floating point remainder r = x − ny when y is
non-zero. The behaviour of remainder() is independent of the rounding mode.

remove()

Issue 4: The type of argument path is changed from char* to const char*.

remque()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to insque().

rename()

Issue 4: The type of arguments old and new are changed from char* to const char*.

Issue 4 states that if an error occurs, neither file is changed or created. This is not
stated explicitly in Issue 3.

Since the behaviour associated with {_POSIX_NO_TRUNC} is supported on all
Issue 4 systems, [ENAMETOOLONG] is always returned if a pathname
component is larger than {NAME_MAX}. On Issue 3 systems, the pathname can
be truncated by the system, so the condition is silently ignored.

Issue 4 defines that [EMLINK] is returned if the file named by old is a directory,
and the link count of the parent directory of new would exceed [LINK_MAX]. This
is an omission in Issue 3.

Issue 4, Version 2:
The DESCRIPTION section has been updated for X/OPEN UNIX conformance to
indicate the results of naming a symbolic link in either old or new.

The ERRORS section has been updated for X/OPEN UNIX conformance to add
[EIO] to indicate a physical I/O error has occurred, [ELOOP] to indicate too many
symbolic links were encountered during pathname resolution, and [EPERM] or
[EACCESS] to indicate a permission check failure when operating on directories
with S_ISVTX set. The ERRORS section was also updated to add a second
[ENAMETOOLONG] condition that may be reported for excessive length of an
intermediate result of pathname resolution of a symbolic link.

rewind()

Issue 4: No changes are made to this interface in Issue 4.

Part 3: System Interfaces and Headers Migration 183

System Interfaces

rewinddir()

Issue 4: The header <sys/types.h> is no longer required explicitly; this header is optional
on XSI-conformant systems, although the POSIX-1 standard shows <sys/types.h>
to be included.

The description is updated to indicate that after a call to fork () either the parent or
the child (but not both) may continue processing the directory stream; otherwise
the results are undefined. This warning is not in Issue 3.

rindex()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The rindex() function is identical to strrchr(). For portability to implementations
conforming to earlier versions of this document, strrchr() is preferred over this
function.

rint()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The rint() function returns the integral part nearest x in the direction of the current
rounding mode. The current rounding mode is implementation-dependent.

rmdir()

Issue 4: The header <unistd.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

The type of argument path is changed from char* to const char*.

The description in Issue 4 is extended to indicate that, if the directory is a root
directory or a current working directory, it is unspecified whether the function
succeeds, or whether it fails and sets errno to [EBUSY]. In Issue 3, the behaviour
under these circumstances is simply defined as ‘‘implementation-dependent’’.

Issue 4 states that if −1 is returned, the directory is not changed.

Since the behaviour associated with {_POSIX_NO_TRUNC} is supported on all
Issue 4 systems, [ENAMETOOLONG] is always returned if a pathname
component is larger than {NAME_MAX}. On Issue 3 systems, the pathname can
be truncated by the system, so the condition is silently ignored.

Issue 4, Version 2:
The DESCRIPTION section has been updated for X/OPEN UNIX conformance to
indicate the results of naming a symbolic link in path.

The ERRORS section has been updated for X/OPEN UNIX conformance to add
[EIO] to indicate a physical I/O error has occurred, [ELOOP] to indicate too many
symbolic links were encountered during pathname resolution, and [EPERM] or
[EACCESS] to indicate a permission check failure when operating on directories
with S_ISVTX set. The ERRORS section was also updated to add a second
[ENAMETOOLONG] condition that may be reported for excessive length of an
intermediate result of pathname resolution of a symbolic link.

184 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

sbrk()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to brk().

scalb()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The scalb() function computes x * rn, where r is the radix of the machine’s floating
point arithmetic. An application wishing to check for error situations should set
errno to 0 before calling scalb(). If errno is non-zero on return, or the return value is
NaN, an error has occurred.

scanf()

Issue 4: Refer to fscanf().

seed48()

Issue 4: The header <stdlib.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

Also in the SYNOPSIS section, unsigned short is replaced by unsigned short int.

seekdir()

Issue 4: The header <sys/types.h> is no longer required explicitly; this header is optional
on XSI-conformant systems although the POSIX-1 standard shows it to be
included.

The type of argument loc is expanded to long int.

Issue 4, Version 2:
The DESCRIPTION section has been updated for X/OPEN UNIX conformance to
indicate that a call to readdir() may produce unspecified results if either loc was not
obtained by a previous call to telldir(), or if there is an intervening call to
rewinddir().

select()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The select() function indicates which of the specified file descriptors is ready for
reading, ready for writing, or has an error condition pending. If the specified
condition is false for all of the specified file descriptors, select() blocks for up to the
specified timeout interval until the specified condition is true for at least one of the
specified file descriptors. The use of a timeout does not affect any pending timers
set up by alarm(), ualarm() or settimer().

Part 3: System Interfaces and Headers Migration 185

System Interfaces

semctl()

Issue 4: As interprocess communication is mandatory in Issue 4, this interface is no longer
marked as OPTIONAL FUNCTIONALITY. The [ENOSYS] error is removed from
the ERRORS section.

Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the
SYNOPSIS section. However, because the POSIX-2 standard defines that headers
can be included more than once and in any order, existing applications should
continue to compile without needing to be modified.

The last argument is now defined by an ellipsis symbol. In previous issues it is
defined as a union of the various types required by settings of cmd. These are now
defined individually in each description of permitted cmd settings.

Issue 4, Version 2:
The fourth argument to semctl() has been moved from the APPLICATION USAGE
section to the DESCRIPTION section, and references to its elements have been
made more precise.

Note: The IEEE P1003.4 Standards Committee has developed alternative
interfaces for interprocess communication. Refer to Section 5.6 on page
102.

semget()

Issue 4: As interprocess communication is mandatory in Issue 4, this interface is no longer
marked as OPTIONAL FUNCTIONALITY. The [ENOSYS] error is removed from
the ERRORS section.

Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the
SYNOPSIS section. However, because the POSIX-2 standard defines that headers
can be included more than once and in any order, existing applications should
continue to compile without needing to be modified.

Note: The IEEE P1003.4 Standards Committee has developed alternative
interfaces for interprocess communication. Refer to Section 5.6 on page
102.

semop()

Issue 4: As interprocess communication is mandatory in Issue 4, this interface is no longer
marked as OPTIONAL FUNCTIONALITY. The [ENOSYS] error is removed from
the ERRORS section.

The type of nsops is expanded to unsigned int.

Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the
SYNOPSIS section. However, because the POSIX-2 standard defines that headers
can be included more than once and in any order, existing applications should
continue to compile without needing to be modified.

The description in Issue 4 is updated to indicate that an implementation does not
modify the elements of sops unless the application uses implementation-dependent
extensions.

186 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

Note: The IEEE P1003.4 Standards Committee has developed alternative
interfaces for interprocess communication. Refer to Section 5.6 on page
102.

setbuf()

Issue 4: No changes are made to this interface in Issue 4.

setcontext()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to getcontext().

setgid()

Issue 4: The header <unistd.h> is added to the SYNOPSIS section. The header
<sys/types.h> is no longer required explicitly; this header is optional on XSI-
conformant systems, although the POSIX-1 standard shows <sys/types.h> to be
included.

setgrent()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to endgrent().

setitimer()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to getitimer().

_setjmp()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to _longjmp ().

setjmp()

Issue 4: This issue states that setjmp() is a macro or a function; previous issues state that it
is a macro. Warnings have also been added about the suppression of a setjmp()
macro definition.

Text describing the accessibility of objects after a longjmp() call is added to the
description in Issue 4. This text is imported from the entry for longjmp(). No
change of capability is implied.

Text describing the contexts in which calls to setjmp() are valid is moved to the
DESCRIPTION section in Issue 4 from the APPLICATION USAGE section in
Issue 3.

Part 3: System Interfaces and Headers Migration 187

System Interfaces

setkey()

Issue 4: In Issue 4 this function is part of the Encryption feature group.

The type of argument key is changed from char* to const char*.

setlocale()

Issue 4: The type of argument locale is changed from char* to const char*.

LC_MESSAGES is added to the list of category values. This category affects what
strings are expected or given by commands and utilities for affirmative/negative
responses, and the contents of messages (see catopen()).

The name POSIX is added to the list of standard locale names. The description of ""
is clarified: for XSI-conformant systems, this corresponds to the associated
environment variables, LC_* and LANG.

setlogmask()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to closelog ().

setpgid()

Issue 4: As job control is supported on all Issue 4-compliant systems, this interface is no
longer marked as OPTIONAL FUNCTIONALITY. The description in Issue 4 is
changed to reflect this, and the [ENOSYS] error is removed from the ERRORS
section.

The header <unistd.h> is added to the SYNOPSIS section. The header
<sys/types.h> is no longer required explicitly; this header is optional on XSI-
conformant systems, although the POSIX-1 standard shows <sys/types.h> to be
included.

setpgrp()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The setpgrp() function sets the process group ID of the calling process to the
process group ID of the calling process, if the calling process is not already a
session leader.

setpriority()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to getpriority ().

188 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

setpwent()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to endpwent().

setregid()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The setregid() function is used to set the real and effective group IDs of the calling
process. Only a process with appropriate privileges can set the real group ID and
effective group ID to any valid value.

setreuid()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The setreuid() function is used to set the real and effective user IDs of the calling
process. A process with appropriate privileges can set either ID to any value. An
unprivileged process can only set the effective user ID if the euid argument is equal
to either the real, effective or saved user ID of the process.

setrlimit()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to getrlimit().

setsid()

Issue 4: The header <unistd.h> is added to the SYNOPSIS section. The header
<sys/types.h> is no longer required explicitly; this header is optional on XSI-
conformant systems, although the POSIX-1 standard shows <sys/types.h> to be
included.

The argument list is explicitly defined as void.

setstate()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to initstat ().

setuid()

Issue 4: The header <unistd.h> is added to the SYNOPSIS section. The header
<sys/types.h> is no longer required explicitly; this header is optional on XSI-
conformant systems, although the POSIX-1 standard shows <sys/types.h> to be
included.

No functional changes are made in Issue 4, but it is worth noting that all references
to the saved set-user-ID are marked as extensions. This is because Issue 4 defines
this mechanism as mandatory, whereas the POSIX-1 standard defines that it is only

Part 3: System Interfaces and Headers Migration 189

System Interfaces

supported if {POSIX_SAVED_IDS} is set.

setutxent()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to endutxent().

setvbuf()

Issue 4: No changes are made to this interface in Issue 4, but note that because the setvbuf()
function is defined in the ISO C standard, it is no longer marked as an extension.

shmat()

Issue 4: In Issue 4, this function is part of the Shared Memory feature group.

Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the
SYNOPSIS section. However, because the POSIX-2 standard defines that headers
can be included more than once and in any order, existing applications should
continue to compile without needing to be modified.

The type of argument shmaddr is changed from char* to const void*.

Note: The IEEE P1003.4 Standards Committee has developed alternative
interfaces for interprocess communication. Refer to Section 5.6 on page
102.

shmctl()

Issue 4: In Issue 4, this function is part of the Shared Memory feature group.

Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the
SYNOPSIS section. However, because the POSIX-2 standard defines that headers
can be included more than once and in any order, existing applications should
continue to compile without needing to be modified.

Issue 4, Version 2:
The ERRORS section has been updated for X/OPEN UNIX conformance to
include [EOVERFLOW] as an optional error.

Note: The IEEE P1003.4 Standards Committee has developed alternative
interfaces for interprocess communication. Refer to Section 5.6 on page
102.

shmdt()

Issue 4: In Issue 4, this function is part of the Shared Memory feature group.

Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the
SYNOPSIS section. However, because the POSIX-2 standard defines that headers
can be included more than once and in any order, existing applications should
continue to compile without needing to be modified.

The type of argument shmaddr is changed from char* to const void*.

190 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

Note: The IEEE P1003.4 Standards Committee has developed alternative
interfaces for interprocess communication. Refer to Section 5.6 on page
102.

shmget()

Issue 4: In Issue 4, this function is part of the Shared Memory feature group.

Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the
SYNOPSIS section. However, because the POSIX-2 standard defines that headers
can be included more than once and in any order, existing applications should
continue to compile without needing to be modified.

Note: The IEEE P1003.4 Standards Committee has developed alternative
interfaces for interprocess communication. Refer to Section 5.6 on page
102.

sigaction()

Issue 4: The type of argument act is changed from struct sigaction* to
const struct sigaction*.

Issue 4 states that the consequence of attempting to set SIG_DFL for a signal that
cannot be caught or ignored is unspecified. The [EINVAL] error, describing one
possible reaction to this condition, has also been added to the ERRORS section.

The raise and signal() functions are added to the list of functions that are either re-
entrant or not interruptible by signals. The fpathconf () function is added to this list
and marked as an extension. The ustat() function is removed from the list, as this
function is withdrawn from Issue 4. It is no longer specified whether abort(),
chroot(), exit() and longjmp() also fall into this category of functions.

Issue 4, Version 2:
The following has been updated for X/OPEN UNIX conformance:

• The DESCRIPTION section describes sa_sigaction, the member of the
sigaction structure that is the signal-catching function.

• The DESCRIPTION section describes the SA_ONSTACK, SA_RESETHAND,
SA_RESTART, SA_SIGINFO, SA_NOCLDWAIT and SA_NODEFER settings of
sa_flags, and their implications and uses.

• The DESCRIPTION section specifies the effect if the action for the SIGCHLD
signal is set to SIG_IGN.

• The DESCRIPTION section includes additional text describing the effect if the
action is a pointer to a function. Additional text covers the case where
SA_SIGINFO is set. SIGBUS is added as a signal for which the behaviour of a
process is undefined following a normal return from the signal-catching
function.

• The APPLICATION USAGE section includes additional material describing
the use of an alternate signal stack; resumption of the process receiving the
signal; coding for compatibility with IEEE Std 1003.1b-1993 (POSIX.1b); and
implementations of signal-handling functions in BSD.

Part 3: System Interfaces and Headers Migration 191

System Interfaces

sigaddset()

Issue 4: The ERRORS section is changed to indicate that [EINVAL] may be produced by an
implementation. In Issue 3 this error is defined as mandatory.

sigaltstack()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The sigaltstack () function allows a process to define and examine the state of an
alternate stack of signal handlers. Signals that have been explicitly declared to
execute on the alternate stack will be delivered on the alternate stack.

sigdelset()

Issue 4: The ERRORS section is changed to indicate that [EINVAL] may be produced by an
implementation. In Issue 3 this error is defined as mandatory.

sigemptyset()

Issue 4: No changes are made to this interface in Issue 4, although note that spurious text
at the end of the RETURN VALUE section is removed.

sigfillset()

Issue 4: No changes are made to this interface in Issue 4, although note that spurious text
at the end of the RETURN VALUE section is removed.

sighold()

Issue 4, Version 2:
The sighold () and sigignore() functions to add a signal to the signal mask, or set a
signal disposition to be ignored, were first introduced in Issue 4, Version 2
(X/OPEN UNIX).

Refer to signal().

siginterrupt()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The siginterrupt() function is used to change the restart behaviour when a function
is interrupted by the specified signal.

The siginterrupt() function supports programs written to historical system
interfaces. A portable application, when being written or rewritten, should use
sigaction () with the SA_RESTART flag rather than siginterrupt().

192 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

sigismember()

Issue 4: The type of argument set is changed from sigset_t* to const sigset_t*.

The ERRORS section is changed to indicate that [EINVAL] may be produced by an
implementation. In previous issues this error is defined as mandatory.

siglongjmp()

Issue 4: No changes are made to this interface in Issue 4, although note that implications of
volatile-qualified types are added to the description.

signal()

Issue 4: Because signal() is specified in the ISO C standard, this function is no longer
marked as an extension.

The argument int is added to the definition of the func() function in the
SYNOPSIS section.

In Issue 3, this interface cross-referred to sigaction (). Issue 4 provides a complete
description of the function as defined in the ISO C standard.

Issue 4, Version 2:
The following has been updated for X/OPEN UNIX conformance:

• The sighold (), sigignore(), sigpause(), sigrelse() and sigset() functions have been
added to the SYNOPSIS section, and the DESCRIPTION section has been
updated appropriately to describe those interfaces.

• The RETURN VALUE section has been updated to describe the possible
returns from the sigset() function specifically, and all of the above functions
generally.

• The ERRORS section has been reorganised to describe possible error returns
from each of the functions individually.

• The APPLICATION USAGE section has been updated to describe certain
programming considerations associated with the X/OPEN UNIX functions.

signgam

Issue 4: The header <math.h> is added to the SYNOPSIS section.

sigpause()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to signal().

Part 3: System Interfaces and Headers Migration 193

System Interfaces

sigpending()

Issue 4: No changes are made to this interface in Issue 4.

sigprocmask()

Issue 4: The type of argument set is changed from sigset_t* to const sigset_t*.

The description in Issue 4 is updated to indicate that signals can also be generated
by the raise() function.

sigrelse()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to signal().

sigsetjmp()

Issue 4: Issue 4 states that sigsetjmp() is a macro or a function; Issue 3 states that it is a
macro. Warnings are added about the suppression of a sigsetjmp() macro
definition.

The description in Issue 4 is more complete than in Issue 3, though the essential
capability of the interface remains unchanged. For example:

• Issue 4 describes the accessibility of objects after a siglongjmp () call. This text is
imported from the entry for longjmp().

• Issue 4 describes the contexts in which calls to sigsetjmp() are valid. This text is
imported from setjmp().

sigstack()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The sigstack () function allows the calling process to indicate to the system an area
of its address space to be used for processing signals received by the process.

This function has been marked TO BE WITHDRAWN. A portable application,
whether being written or rewritten, should use sigaltstack () instead of sigstack ().
The APPLICATION USAGE section further describes caveats to be considered
due to differences in historical implementations.

sigsuspend()

Issue 4: The type of argument sigmask is changed from sigset_t* to const sigset_t*.

sin()

Issue 4: References to the matherr() function are removed.

The RETURN VALUE and ERRORS sections are substantially rewritten for
alignment with the ISO C standard and to rationalise error handling in the
mathematics functions. Specifically:

• [EDOM] may be set if the value of x is NaN, or x is ±Inf. Issue 3 defines
±HUGE_VAL rather than ±Inf.

194 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

• [ERANGE] may be returned if the result underflows. Issue 3 defines that
[ERANGE] may be returned if the magnitude of x is such that total or partial
loss of significance results.

sinh()

Issue 4: References to the matherr() function are removed.

The RETURN VALUE and ERRORS sections are substantially rewritten for
alignment with the ISO C standard and to rationalise error handling in the
mathematics functions. Specifically:

• [ERANGE] is returned if the result would cause overflow. Issue 3 defined this
as a ‘‘may fail’’ condition.

• [ERANGE] may be returned if the result would cause underflow. Issue 3 did
not mention this condition at all.

sleep()

Issue 4: The header <unistd.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

Issue 4, Version 2:
The DESCRIPTION section has been updated to indicate possible interactions
with the setitimer(), ualarm() and usleep() functions.

sprintf()

Issue 4: Refer to fprintf ().

sqrt()

Issue 4: References to the matherr() function are removed.

The RETURN VALUE and ERRORS sections are substantially rewritten for
alignment with the ISO C standard and to rationalise error handling in the
mathematics functions. Specifically:

• [EDOM] is returned if the value of x is negative. This is defined as a ‘‘may fail’’
in Issue 3.

srand()

Issue 4: The argument seed is explicitly defined as unsigned int.

srand48()

Issue 4: The header <stdlib.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

Also in the SYNOPSIS section, long is expanded to long int.

Part 3: System Interfaces and Headers Migration 195

System Interfaces

srandom()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to initstate().

sscanf()

Issue 4: Refer to fscanf().

stat()

Issue 4: The header <sys/types.h> is no longer required explicitly; this header is optional
on XSI-conformant systems, although the POSIX-1 standard shows this header to
be included.

The type of argument path is changed from char* to const char*.

The description is updated in Issue 4:

• to indicate the purpose of this interface

• to define the contents of stat structure members

• the words ‘‘extended security controls’’ are replaced by ‘‘additional or alternate
file access control mechanisms’’.

These changes are made for alignment with the POSIX-1 standard and do not
imply any functional change in the interface.

Since the behaviour associated with {_POSIX_NO_TRUNC} is supported on all
Issue 4 systems, [ENAMETOOLONG] is always returned if a pathname
component is larger than {NAME_MAX}. On Issue 3 systems, the pathname can
be truncated by the system, so the condition is silently ignored.

Issue 4, Version 2:
For X/OPEN UNIX conformance, the ERRORS section has been updated to
indicate that [EIO] will be returned if a physical I/O error has occurred, and
[ELOOP] will be returned if too many symbolic links are encountered during
pathname resolution. A second (optional) [ENAMETOOLONG] condition is
defined that may report excessive length of an intermediate result of pathname
resolution of a symbolic link, and [EOVERFLOW] has been added to indicate that a
value to be stored in a member of the stat structure would cause overflow.

statvfs()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to fstatvfs ().

196 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

stdin

Issue 4: No changes are made to this interface in Issue 4.

step()

Issue 4: The header <regexp.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

The type of arguments string and expbuf are changed from char* to const char*.

The interface is marked TO BE WITHDRAWN, because improved capability is
now provided by interfaces introduced for alignment with the XPG4
documentation (see regcomp()).

strcasecmp()

Issue 4, Version 2:
The strcasecmp() and strncasecmp() functions perform case-insensitive string
comparisons, and were first introduced in Issue 4, Version 2 (X/OPEN UNIX).

strcat()

Issue 4: The type of argument s2 is changed from char* to const char*.

The description in Issue 4 is changed to make it clear that this function
manipulates bytes rather than (possibly multi-byte) characters.

strchr()

Issue 4: The type of argument s is changed from char* to const char*.

The description in Issue 4 is changed to make it clear that this function
manipulates bytes rather than (possibly multi-byte) characters.

strcmp()

Issue 4: The type of arguments s1 and s2 are changed from char* to const char*.

The description in Issue 4 is changed to make it clear that this function
manipulates bytes rather than (possibly multi-byte) characters.

strcoll()

Issue 4: Because this function is defined in the ISO C standard, it is no longer marked as an
extension.

The type of arguments s1 and s2 are changed from char* to const char*.

Issue 3 contained a paragraph describing how the sign of the return value can be
determined. This statement is misleading as it is only allowed for character
ordering, whereas Issue 4 permits ordering by either string or character.

Part 3: System Interfaces and Headers Migration 197

System Interfaces

strcpy()

Issue 4: The type of argument s2 is changed from char* to const char*.

The description in Issue 4 is changed to make it clear that this function
manipulates bytes rather than (possibly multi-byte) characters.

strcspn()

Issue 4: The type of arguments s1 and s2 are changed from char* to const char*.

The description in Issue 4 is changed to make it clear that this function
manipulates bytes rather than (possibly multi-byte) characters.

strdup()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The strdup() function returns a pointer to a new string that is a duplicate of the
string pointed to by s1. The returned pointer can be passed to free().

strerror()

Issue 4: Because the strerror() function is defined in the ISO C standard, it is no longer
marked as an extension.

The description in Issue 4 is changed to indicate that the contents of error message
strings produced by this function are locale-dependent, as determined by the
setting of category LC_MESSAGES. There are a couple of points to note about this
statement:

• Issue 3 states that the message strings are language-dependent, which is not
completely accurate as language is only one element of a locale definition.

• LC_MESSAGES is a new category in Issue 4. Issue 3 does not define which
category is used to define error strings, nor indeed if they are localised at all.

strfmon()

Issue 4: New function in the Enhanced Internationalisation feature group in Issue 4.

The strfmon() provides an interface similar to strftime() for the formatting of
monetary values. It is a higher-level and generally more usable interface than
localeconv, for example:

198 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

double val;
char buf[MAXSIZE];
. . .
setlocale (LC_ALL, "");
. . .
if (strfmon (buf, MAXSIZE, "%#5=*n", val))

printf (
catgets (catd, setn, msgx,

"amount = %s\n"),
buf);

else
printf (

catgets (catd, setn, msgy,
"value too large \n"))

. . .

formats a monetary value with five digits to the left of the radix character, filled
with asterisks if necessary, producing output of the form:

$**123.45

strftime()

Issue 4: The type of argument format is changed from char* to const char*, and the type of
argument timptr is changed from struct tm* to const struct tm*.

In the description of the %Z conversion specification, the words ‘‘or abbreviation’’
are added to indicate that strftime() does not necessarily return a full timezone
name.

Various extensions are made to this interface in Issue 4, namely:

• The description defines a new set of modified conversion specifiers, which
provide access to alternative formats or specifications (for example, alternative
date and time representation).

• %C, %e, %u and %V are added to the list of valid conversion specifications.

While not defined in Issue 3, these features are additive and should not invalidate
existing Issue 3-compliant applications.

The text in Issue 4 is changed to make it clear when this function uses byte values
rather than (possibly multi-byte) character values.

strlen()

Issue 4: The type of argument s is changed from char* to const char*.

The description in Issue 4 is changed to make it clear that this function works in
units of bytes rather than (possibly multi-byte) characters.

Part 3: System Interfaces and Headers Migration 199

System Interfaces

strncasecmp()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to strcasecmp().

strncat()

Issue 4: The type of argument s2 is changed from char* to const char*.

The description in Issue 4 is changed to make it clear that this function
manipulates bytes rather than (possibly multi-byte) characters.

strncmp()

Issue 4: The type of arguments s1 and s2 are changed from char* to const char*.

The description in Issue 4 is changed to make it clear that this function
manipulates bytes rather than (possibly multi-byte) characters.

strncpy()

Issue 4: The type of argument s2 is changed from char* to const char*.

The description in Issue 4 is changed to make it clear that this function
manipulates bytes rather than (possibly multi-byte) characters.

strpbrk()

Issue 4: The type of arguments s1 and s2 are changed from char* to const char*.

The description in Issue 4 is changed to make it clear that this function works in
units of bytes rather than (possibly multi-byte) characters.

strptime()

Issue 4: New function in the Enhanced Internationalisation feature group in Issue 4.

The strptime() function provides the opposite capability to strftime() and converts
a character string containing the date and time to values stored in a tm structure,
under the control of a format string. For example:

. . .
if (strptime (argv[1], "%A %B %d %T", &tm) == NULL) {

puts (catgets (catd, NL_SETD, ERROR,
"incorrect date format");

exit (2)
}
. . .

which expects date and time as a string of the form:

Sun Mar 31 14:23:00

200 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

strrchr()

Issue 4: The type of argument s is changed from char* to const char*.

The description in Issue 4 is changed to make it clear that this function works in
units of bytes rather than (possibly multi-byte) characters.

strspn()

Issue 4: The type of arguments s1 and s2 are changed from char* to const char*.

The description in Issue 4 is changed to make it clear that this function works in
units of bytes rather than (possibly multi-byte) characters.

strstr()

Issue 4: The type of arguments s1 and s2 are changed from char* to const char*.

The description in Issue 4 is changed to make it clear that this function works in
units of bytes rather than (possibly multi-byte) characters.

strtod()

Issue 4: Because strtod is defined in the ISO C standard, it is no longer marked as an
extension in the XSH specification.

The type of argument str is changed from char* to const char*, and the name of the
second argument is changed from ptr to endptr.

The description is changed to make it clear when the function manipulates bytes
and when it manipulates characters.

strtok()

Issue 4: Because strtok() is defined in the ISO C standard, it is no longer marked as an
extension in the XSH specification.

The type of argument s2 is changed from char* to const char*.

The description in Issue 4 is changed to make it clear that this function
manipulates bytes rather than (possibly multi-byte) characters.

strtol()

Issue 4: Because strtol() is defined in the ISO C standard, it is no longer marked as an
extension in the XSH specification.

The type of argument str is changed from char* to const char*, and the name of the
second argument is changed from ptr to endptr.

Issue 4 states that LONG_MAX or LONG_MIN is returned if the converted value
is too large or too small. In Issue 3, it is implementation-dependent what would
happen in these circumstances.

The description is changed to make it clear when the function manipulates bytes
and when it manipulates characters.

Part 3: System Interfaces and Headers Migration 201

System Interfaces

strtoul()

Issue 4: New function in Issue 4.

The stroul() function is similar to strtol, except that it converts a string to a type
unsigned long value.

strxfrm()

Issue 4: Because strxfrm() is defined in the ISO C standard, it is no longer marked as an
extension in the XSH specification.

The type of argument s2 is changed from char* to const char*.

The description in Issue 4 is changed to make it clear when the function
manipulates byte values and when it manipulates characters.

swab()

Issue 4: The header <unistd.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

The type of argument src is changed from char* to const void*, dest is changed
from char* to void*, and nbytes is changed from int to size_t.

The description now states that copying between overlapping objects results in
undefined behaviour. This caveat is not stated in Issue 3.

swapcontext()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to makecontext().

symlink()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The symlink() function creates a symbolic link, whose name is the pathname
pointed to by path2, and whose contents are the pathname pointed to by path1.

Like a hard link, a symbolic link allows a file to have multiple logical names. The
presence of a hard link guarantees the existence of a file, even after the original
name has been removed. A symbolic link provides no such guarantee. Symbolic
links, however, can cross file system boundaries.

sync()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The sync() function causes all information in memory that updates file systems to
be scheduled for writing out to all file systems.

202 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

sysconf()

Issue 4: The type of the function return value is expanded to long int.

The following variables are added to the list of configurable system variables that
can be interrogated by the sysconf() function:

BC_BASE_MAX
BC_DIM_MAX
BC_SCALE_MAX
BC_STRING_MAX
COLL_WEIGHTS_MAX
EXPR_NEST_MAX
LINE_MAX
_POSIX2_C_BIND
_POSIX2_C_DEV
_POSIX2_C_VERSION
_POSIX2_CHAR_TERM
_POSIX2_FORT_DEV
_POSIX2_FORT_RUN
_POSIX2_LOCALEDEF
_POSIX2_SW_DEV
_POSIX2_UPE
_POSIX2_VERSION
RE_DUP_MAX
STREAM_MAX
TZNAME_MAX
_XOPEN_VERSION
_XOPEN_CRYPT
_XOPEN_ENH_I18N
_XOPEN_SHM

Issue 4, Version 2:
For X/OPEN UNIX conformance, the ATEXIT_MAX, IOV_MAX, PAGESIZE,
PAGE_SIZE and _XOPEN_UNIX variables were added to the list of configurable
system values that can be determined by calling sysconf().

syslog()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to closelog ().

system()

Issue 4: Because system() is defined in the ISO C standard, it is no longer marked as an
extension in the XSH specification.

The name of the argument is changed from string to command, and its type is
changed from char* to const char*.

The DESCRIPTION and RETURN VAUE sections are completely replaced to
bring them in line with the POSIX-2 standard. They still describe essentially the
same capability as Issue 3, albeit that the definition is more complete.

Part 3: System Interfaces and Headers Migration 203

System Interfaces

The ERRORS section is changed to indicate that the system() function may return
error values described for fork ().

tan()

Issue 4: References to the matherr() function are removed.

The RETURN VALUE and ERRORS sections are substantially rewritten for
alignment with the ISO C standard and to rationalise error handling in the
mathematics functions. Specifically:

• [ERANGE] is set if the value to be returned would overflow. In Issue 3, this is a
‘‘may fail’’ condition.

tanh()

Issue 4: References to the matherr() function are removed.

The RETURN VALUE and ERRORS sections are substantially rewritten for
alignment with the ISO C standard and to rationalise error handling in the
mathematics functions. Specifically:

• Issue 3 states that [ERANGE] might be returned if the correct result would
underflow. This condition is not defined in Issue 4.

tcdrain()

Issue 4: Because job control is defined as mandatory in Issue 4, any attempts to use the
tcdrain() function from a process that is a member of a background process group,
causes the process group to be sent a SIGTTOU signal. In Issue 3, this behaviour is
only defined if _POSIX_JOB_CONTROL is defined.

Issue 4 defines that tcdrain() may fail with [EIO] set, but adds the following caveat:

‘‘In the POSIX-1 standard, the possibility of an [EIO] error occurring is
described in Section 7.1.1.4, Terminal Access Control, but it is not mentioned in
the tcdrain() interface definition. It has become clear that this omission is
unintended, so it is likely that the [EIO] error will be reclassified as a ‘‘will fail’’
when the POSIX-1 standard is next updated.’’

tcflow()

Issue 4: The descriptions of TCIOFF and TCION are reworded, indicating the intended
consequences of transmitting stop and start characters. Issue 3 implies that these
consequences are guaranteed.

Because job control is defined as mandatory in Issue 4, any attempts to use the
tcflow() function from a process that is a member of a background process group
causes the process group to be sent a SIGTTOU signal. In Issue 3, this behaviour is
only defined if _POSIX_JOB_CONTROL is defined.

Issue 4 defines that tcflow() may fail with [EIO] set, but adds the following caveat:

204 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

‘‘In the POSIX-1 standard, the possibility of an [EIO] error occurring is
described in Section 7.1.1.4, Terminal Access Control, but it is not mentioned in
the tcdrain() interface definition. It has become clear that this omission was
unintended, so it is likely that the [EIO] error will be re-classified as a ‘‘will fail’’
when the POSIX-1 standard is next updated.’’

tcflush()

Issue 4: The DESCRIPTION section is modified to indicate that the flush operation only
results if the call to tcflush() is successful.

Because job control is defined as mandatory in Issue 4, any attempts to use the
tcflush() function from a process that is a member of a background process group,
cause the process group to be sent a SIGTTOU signal. In Issue 3, this behaviour is
only defined if _POSIX_JOB_CONTROL is defined.

Issue 4 defines that tcflush() may fail with [EIO] set, but adds the following caveat:

‘‘In the POSIX-1 standard, the possibility of an [EIO] error occurring is
described in Section 7.1.1.4, Terminal Access Control, but it is not mentioned in
the tcdrain() interface definition. It has become clear that this omission was
unintended, so it is likely that the [EIO] error will be re-classified as a ‘‘will fail’’
when the POSIX-1 standard is next updated.’’

tcgetattr()

Issue 4: No changes are made to this interface in Issue 4, although the description is
expanded to more fully describe baud rates and how they are obtained.

tcgetpgrp()

Issue 4: The function is no longer marked OPTIONAL FUNCTIONALITY. This is because
job control is defined as mandatory for Issue 4 conforming implementations. The
[ENOSYS] error is removed from the ERRORS section.

The header <unistd.h> is added to the SYNOPSIS section. The header
<sys/types.h> is no longer required explicitly; this header is optional on XSI-
conformant systems, although the POSIX-1 standard shows <sys/types.h> to be
included.

Issue 4 states that if there is no foreground process, a value greater than 1 is
returned that does not match the process group ID of any existing process. This
capability is not defined in Issue 3.

tcgetsid()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The tcgetsid() function obtains the process group ID for the session for which the
terminal specified by fildes is the controlling terminal.

Part 3: System Interfaces and Headers Migration 205

System Interfaces

tcsendbreak()

Issue 4: Because job control is defined as mandatory in Issue 4, any attempts to use the
tcsendbreak() function from a process that is a member of a background process
group cause the process group to be sent a SIGTTOU signal. In Issue 3, this
behaviour is only defined if _POSIX_JOB_CONTROL is defined.

Issue 4 defines that tcsendbreak() may fail with [EIO] set, but adds the following
caveat:

‘‘In the POSIX-1 standard, the possibility of an [EIO] error occurring is
described in Section 7.1.1.4, Terminal Access Control, but it is not mentioned in
the tcdrain() interface definition. It has become clear that this omission was
unintended, so it is likely that the [EIO] error will be re-classified as a ‘‘will fail’’
when the POSIX-1 standard is next updated.’’

tcsetattr()

Issue 4: The type of argument termios_p is changed from struct termios* to
const struct termios*.

Three extra paragraphs are added to the description in Issue 4 describing:

• the requirements and results of calls that are partially successful

• constraints on usage of the termios structure pointed to by termios_p

• implementation restrictions on changes to the termios structure.

These changes are too extensive to repeat here and application developers are
advised to study them before use of the interface. Applications compliant with
Issue 3 should continue to work without change.

The [EINTR] error is added to the ERRORS section. The description of the
[EINVAL] error is extended to indicate that this error will also be returned if an
attempt is made to set an unsupported value in the termios structure.

Because job control is defined as mandatory in Issue 4, any attempts to use the
tcsetattr() function from a process that is a member of a background process
group, will cause the process group to be sent a SIGTTOU signal. In Issue 3, this
behaviour is only defined if _POSIX_JOB_CONTROL is defined.

Issue 4 defines that tcsetattr() may fail with [EIO] set, but adds the following
caveat:

‘‘In the POSIX-1 standard, the possibility of an [EIO] error occurring is
described in Section 7.1.1.4, Terminal Access Control, but it is not mentioned in
the tcdrain() interface definition. It has become clear that this omission was
unintended, so it is likely that the [EIO] error will be re-classified as a ‘‘will fail’’
when the POSIX-1 standard is next updated.’’

206 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

tcsetpgrp()

Issue 4: The function is no longer marked OPTIONAL FUNCTIONALITY. This is because
job control is defined as mandatory for XSI-conformant implementations. The
[ENOSYS] error is removed from the ERRORS section.

The header <unistd.h> is added to the SYNOPSIS section. The header
<sys/types.h> is no longer required explicitly; this header is optional on XSI-
conformant systems, although the POSIX-1 standard shows <sys/types.h> to be
included.

Text referring to how this interface should be supported on implementations that
do not support job control is removed.

tdelete()

Issue 4: The function return value is changed from char* to void*, the type of argument key
is changed from char* to const void*, rootp is changed from char** to void**, and
arguments to the compar() function are formally defined.

telldir()

Issue 4: The header <sys/types.h> is removed from the SYNOPSIS section.

The function return value is expanded to long int.

Issue 4, Version 2:
The DESCRIPTION section has been updated for X/OPEN UNIX conformance to
indicate that a call to telldir() immediately following a call to seekdir() returns the
loc value passed to the seekdir() call.

tempnam()

Issue 4: The type of arguments dir and pfx are changed from char* to const char*.

The description is changed to indicate that pfx is treated as a string of bytes and not
as a string of (possibly multi-byte) characters.

tfind()

Issue 4: The function return value is changed from char* to void*, the type of argument key
is changed from char* to const void*, rootp is changed from char** to void* const*,
and arguments to the compar() function are formally defined.

time()

Issue 4: The RETURN VALUE section is updated to indicate that (time_t)−1 is returned on
error.

times()

Issue 4: All references to the constant {CLK_TCK} are removed. Issue 4 applications are
advised to use:

sysconf(_SC_CLK_TCK);

to determine the number of clock ticks per second.

The RETURN VALUE section is updated to indicate that (clock_t)−1 is returned on
error.

Part 3: System Interfaces and Headers Migration 207

System Interfaces

timezone

Issue 4: Issue 4 defines that this variable contains the difference between UTC (Co-
ordinated Universal Time) and the local standard time. Issue 3 states that the
difference is indicated between GMT and the local standard time.

The type of timezone is expanded to extern long int.

tmpfile()

Issue 4: The argument list is explicitly defined as void.

The [EINTR] error is moved to the ‘‘will fail’’ part of the ERRORS section, and
[EACCES], [ENOTDIR] and [EROFS] are removed.

tmpnam()

Issue 4: No changes are made to this interface in Issue 4.

toascii()

Issue 4: No changes are made to this interface in Issue 4.

_tolower()

Issue 4: No changes are made to this interface in Issue 4.

tolower()

Issue 4: No functional changes are made to this interface in Issue 4, but the following
should be noted:

• Reference to ‘‘shift information’’ is replaced by ‘‘character-type information’’.

• The last paragraph of the description in Issue 3, describing default actions if no
case conversion information is defined, is removed. The POSIX locale is now
defined separately elsewhere in the XSH specification.

_toupper()

Issue 4: No changes are made to this interface in Issue 4.

toupper()

Issue 4: No functional changes are made to this interface in Issue 4, but the following
should be noted:

• Reference to ‘‘shift information’’ is replaced by ‘‘character-type information’’.

• The last paragraph of the description in Issue 3, describing default actions if no
case conversion information is defined, is removed. The POSIX locale is now
defined separately elsewhere in the XSH specification.

208 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

towlower()

Issue 4: New function in Issue 4 (WPI).

The towlower() function is similar to tolower(), except that it accepts a wide
character as input and returns the lower-case equivalent (if any), again encoded as
a wide character.

towupper()

Issue 4: New function in Issue 4 (WPI).

The towupper() function is similar to toupper(), except that it accepts a wide
character as input and returns the upper-case equivalent (if any), again encoded as
a wide character.

truncate()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

Refer to ftruncate().

tsearch()

Issue 4: The type of argument key in the definition of the tsearch() function is changed from
void* to const void*. The definitions of other functions have changed as indicated
on their respective entries.

Various minor wording changes are made in the description to improve clarity and
accuracy. In particular, additional notes have been added about constraints on the
first argument to the twalk () function.

ttyname()

Issue 4: The header <unistd.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

ttyslot()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The ttyslot () function returns the index of the current user’s entry in the user
accounting database.

twalk()

Issue 4: The type of argument root is changed from char* to const void*, and the argument
list to the action () function is formally defined.

Part 3: System Interfaces and Headers Migration 209

System Interfaces

tzname

Issue 4: The header <time.h> is added to the SYNOPSIS section.

tzset()

Issue 4: The argument list is explicitly defined as void.

ualarm()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The ualarm() function causes the SIGALRM signal to be generated for the calling
process after the number of real-time microseconds specified in the useconds
argument has elapsed.

ulimit()

Issue 4: The use of long is replaced by long int in the SYNOPSIS section and the
description.

Issue 4, Version 2:
The DESCRIPTION section has been updated for X/OPEN UNIX conformance to
revise the discussion of UL_GETFSIZE and UL_SETFSIZE to distinguish between
the soft and the hard file size limit of the process.

umask()

Issue 4: The header <sys/types.h> is no longer required explicitly. This header is optional
on XSI-conformant systems, although the POSIX-1 standard shows it to be
included.

Issue 4 defines that unspecified bits in the file mode creation mask can be restored
by a subsequent call to umask(), using a cmask value returned from an earlier call.
This is not specified in Issue 3.

uname()

Issue 4: Issue 4 states that the format of information stored in the utsname structure by the
uname() function is unspecified. This has always been the case, even though it is
not stated explicitly in earlier versions of the XSH specification.

Issue 4 also states that −1 is returned on error, although it does not define what
errors occur. It is conceivable, because name is a pointer to a structure, that some
implementations may check the pointer value and return [EFAULT] if it is invalid.

ungetc()

Issue 4: The fsetpos() function is added to the list of file-positioning functions in the
description. Also Issue 4 states that the file-position indicator is decremented by
each successful call to the ungetc() function, although note that XSI-conformant
systems do not distinguish between text and binary streams. Previous issues state
that the disposition of this indicator is unspecified.

The description is changed to make it clear that the ungetc() function manipulates
bytes rather than (possibly multi-byte) characters.

210 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

Issue 4 states that the file-position indicator is decremented by each successful call
to the ungetc() function, except that if its value is zero before the call, it is
indeterminate afterwards. The description in Issue 3 is slightly different and states:

• that the value of the file-position indicator is unspecified after a successful call
to the ungetc() function until all pushed-back characters are read or discarded

• that in the case that stream is stdin, and the stream is buffered, one character can
be pushed back onto the buffer without a previous read statement.

Because of the ambiguity in the Issue 3 definition of this function, applications
could not rely on the setting of the file-position indicator, so the changes listed
above should not affect portability. Also there is no loss of capability implied by
the Issue 4 definition of ungetc().

ungetwc()

Issue 4: New function in Issue 4 (WPI).

The ungetwc() function is functionally similar to ungetc(), except that it pushes a
wide character back onto stream. The only other thing to note about this function is
that the file position indicator may be decremented by more than one if the pushed
back wide character converts to a multi-byte sequence.

unlink()

Issue 4: The header <unistd.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

The type of argument path is changed from char* to const char*.

Since the behaviour associated with {_POSIX_NO_TRUNC} is supported on all
Issue 4 systems, [ENAMETOOLONG] is always returned if a pathname
component is larger than {NAME_MAX}. On Issue 3 systems, the pathname can
be truncated by the system, so the condition is silently ignored.

Issue 4, Version 2:
The DESCRIPTION section has been updated for X/OPEN UNIX conformance to
account for the case if path is a symbolic link.

For X/OPEN UNIX conformance, the ERRORS section has been updated to
indicate that [ELOOP] will be returned if too many symbolic links are encountered
during pathname resolution, and [EPERM] and [EACCESS] have been added to
indicate a permission check failure when operating on directories with S_ISVTX
set. A second [ENAMETOOLONG] condition is defined that may report excessive
length of an intermediate result of pathname resolution of a symbolic link.

unlockpt()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The unlockpt () function unlocks the slave pseudo-terminal device associated with
the master to which fildes refers.

Part 3: System Interfaces and Headers Migration 211

System Interfaces

usleep()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The usleep() function suspends the current process from execution for the number
of microseconds specified by the useconds argument.

The usleep() function is included for historical usage. The setitimer() function is
preferred over this function.

utime()

Issue 4: The header <sys/types.h> is no longer required explicitly. This header is optional
on XSI-conformant systems, although the POSIX-1 standard shows it to be
included.

The type of argument path is changed from char* to const char*, and times is
changed from struct utimbuf* to const struct utimbuf*.

Since the behaviour associated with {_POSIX_NO_TRUNC} is supported on all
Issue 4 systems, [ENAMETOOLONG] is always returned if a pathname
component is larger than {NAME_MAX}. On Issue 3 systems, the pathname can
be truncated by the system, so the condition is silently ignored.

Issue 4, Version 2:
For X/OPEN UNIX conformance, the ERRORS section has been updated to
indicate that [ELOOP] will be returned if too many symbolic links are encountered
during pathname resolution, and a second [ENAMETOOLONG] condition is
defined that may report excessive length of an intermediate result of pathname
resolution of a symbolic link.

utimes()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The utimes() function sets the access and modification times of the file pointed to
by the path argument to the value of the times argument. The utimes() function
allows time specifications accurate to the microsecond.

valloc()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The valloc () function has the same effect as malloc (), except that the allocated
memory will be aligned to a multiple of the value returned by
sysconf(_SC_PAGESIZE).

Applications should avoid using valloc (), and use malloc () or mmap() instead.

212 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

vfork()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The vfork () function has the same effect as fork (), except that the child process can
share code and data with the calling process (its parent). This speeds cloning
activity significantly at the risk of the integrity of the parent process if vfork () is
misused. The use of vfork () for any purpose except as a prelude to an immediate
call to an exec() function, or _exit() is not advised.

vfprintf()

Issue 4: Because these functions are specified in the ISO C standard, they are no longer
marked as extensions in the XSH specification.

The type of argument format is changed from char* to const char*.

Issue 3 states that these functions are called with an argument list as defined in
<varargs.h>, whereas Issue 4 states that this definition is found in <stdarg.h>. The
<varargs.h> header is still defined in Issue 4, but it is marked TO BE
WITHDRAWN. Thus applications that depend on this header still work correctly
on Issue 4 systems, but they may not work on later systems.

Note that this is one XSI function that requires two headers.

wait()

Issue 4: The header <sys/types.h> is no longer required explicitly. This header is optional
on XSI-conformant systems, although the POSIX-1 standard shows it to be
included.

Text describing conditions under which zero is returned when WNOHUNG is set
in options is modified in Issue 4. Specifically, the following caveats are added:

‘‘ . . . , it has at least one child process specified by pid for which status is not
available, and status is not available for any process specified by pid, . . . ’’

This is a correction to the description and does not affect application portability.

The words ‘‘If the implementation supports job control’’ are removed from the
description of WUNTRACED. This is because job control is defined as mandatory
for Issue 4 conforming implementations.

Issue 4, Version 2:
The DESCRIPTION section has been updated for X/OPEN UNIX conformance to
add the WCONTINUED options flag, and the WIFCONTINUED(stat_val) macro,
to explain the implications of setting the SA_NOCLDWAIT signal flag, or setting
SIGCHLD to SIG_IGN, and to explain what macros return non-zero values in
which cases.

Part 3: System Interfaces and Headers Migration 213

System Interfaces

wait3()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The wait3() function allows the calling process to obtain status information for
specified child processes. It can return resource usage information for the child
process as well.

waitid()

Issue 4, Version 2:
This interface was first introduced in Issue 4, Version 2 (X/OPEN UNIX).

The waitid () function suspends the calling process until one of its children changes
state.

wcscat()

Issue 4: New function in Issue 4 (WPI).

The wcscat() function is similar to strcat(), except that it concatenates two wide-
character strings.

wcschr()

Issue 4: New function in Issue 4 (WPI).

The wcschr() function is similar to strchr(), except that it scans a wide-character
string for the first occurrence of a specified wide-character code.

wcscmp()

Issue 4: New function in Issue 4 (WPI).

The wcscmp() function is similar to strcmp(), except that it compares two wide-
character strings.

wcscoll()

Issue 4: New function in the Enhanced Internationalisation feature group in Issue 4.

The wcscoll() function is similar to strcoll(), except that it compares two wide-
character strings using collating information in the program locale.

wcscpy()

Issue 4: New function in Issue 4 (WPI).

The wcscpy() function is similar to strcpy(), except that it copies one wide-
character string to another wide character string.

214 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

wcscspn()

Issue 4: New function in Issue 4 (WPI).

The wcscspn() function is similar to strcspn(), except that it computes the length of
the maximum initial segment of a wide character string that consists entirely of
wide-character codes not from another wide-character string.

wcsftime()

Issue 4: New function in the Enhanced Internationalisation feature group in Issue 4.

The wcsftime() function is similar to strftime(), except that it converts date and time
to a wide-character string. This function differs from the approved MSE working
draft in that the type of the format argument is wchar_t * in the MSE working draft
and char * in the XSH specification.

Note: This function is aligned with the ISO SC22/WG14/N104 draft of the ISO
Working Paper SC22/WG14/N205 dated 31 March 1992. The type of the
format argument may be changed.

wcslen()

Issue 4: New function in Issue 4 (WPI).

The wcslen() function is similar to strlen(), except that it computes the number of
wide-character codes in a wide-character string.

wcsncat()

Issue 4: New function in Issue 4 (WPI).

The wcsncat() function is similar to strncat(), except that it concatenates part of
two wide-character strings.

wcsncmp()

Issue 4: New function in Issue 4 (WPI).

The wcsncmp() function is similar to strncmp(), except that it compares part of two
wide-character strings.

wcsncpy()

Issue 4: New function in Issue 4 (WPI).

The wcsncpy() function is similar to strncpy(), except that it copies part of two
wide-character strings.

wcspbrk()

Issue 4: New function in Issue 4 (WPI).

The wcspbrk() function is similar to strpbrk(), except that it scans one wide-
character string for wide-character code specified in a second string.

Part 3: System Interfaces and Headers Migration 215

System Interfaces

wcsrchr()

Issue 4: New function in Issue 4 (WPI).

The wcsrchr() function is similar to strrchr(), except that it scans a wide-character
string for the last occurrence of a specified wide-character code.

wcsspn()

Issue 4: New function in Issue 4 (WPI).

The wcsspn() function is similar to strspn(), except that it computes the length of
the maximum initial segment of a wide-character string that consists entirely of
wide-character codes from another wide-character string.

wcstod()

Issue 4: New function in Issue 4 (WPI).

The wcstod() function is similar to strtod(), except that it converts a wide-character
string to a double precision number.

wcstok()

Issue 4: New function in Issue 4 (WPI).

The wcstok() function is similar to strtok(), except that it splits a wide-character
string into tokens. This function differs from the approved MSE working draft in
that there is an additional argument in the MSE working draft.

wcstol()

Issue 4: New function in Issue 4 (WPI).

The wcstol() function is similar to strtol(), except that it converts a wide-character
string to a long integer.

wcstombs()

Issue 4: New function in Issue 4.

This function converts a wide-character string of type wchar_t* to a character
string of type char*. This is normally done before outputting such a string to an
external storage medium.

Note: Explicit conversion is not required if wide-character strings are output via
the WPI standard I/O functions.

wcstoul()

Issue 4: New function in Issue 4 (WPI).

The wcstoul() function is similar to strtoul(), except that it converts a wide-
character string to an unsigned long integer.

216 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

wcswcs()

Issue 4: New function in Issue 4 (WPI).

The wcswcs() function is similar to strstr(), except that it locates a wide-character
substring in another wide-character string. This function differs from the
approved MSE working draft in that the name was changed to wcsstr() in the MSE
working draft.

wcswidth()

Issue 4: New function in Issue 4 (WPI).

The wcswidth() function computes the number of column positions in a wide-
character string. This is different from wcslen(), which returns the number of
wide-character codes in a wide-character string, irrespective of how many column
positions might be required to display the string.

wcsxfrm()

Issue 4: New function in the Enhanced Internationalisation feature group in Issue 4.

The wcsxfrm() function is similar to strxfrm(), except that it transforms two wide-
character strings.

wctomb()

Issue 4: New function in Issue 4 (WPI).

This function converts a wide-character code of type wchar_t to a byte string of
type char*. This is normally done before outputting such a code to an external
storage medium.

Note: Explicit conversion is not required if wide-character codes are output via
the WPI standard IO functions.

wctype()

Issue 4: New function in Issue 4 (WPI).

This interface is used with iswctype() to provide classification facilities for all
character classes in a locale, including those for which there is no direct
isw<class>() function. The interface accepts the name of a character class on input,
and returns a value of type wctype_t for use in subsequent calls to iswctype().

For example, the iswalpha () function could be implemented as:

iswalpha(wc) iswctype(wc, wctype("alpha"))

More usefully, this interface in combination with iswctype() provides a mechanism
for identifying character classes other than those defined for English language use.

Part 3: System Interfaces and Headers Migration 217

System Interfaces

wcwidth()

Issue 4: New function in Issue 4 (WPI).

This function is similar to wcswidth(), except that it computes the number of
column positions required to display a single wide character.

wordexp()

Issue 4: New function in the POSIX.2 C-language Binding feature group in Issue 4.

The wordexp() function performs word expansions the same as those performed by
the shell if words were part of a command line representing the arguments to a
utility. For example:

wordexp ("Those ’who can,’ do", &pwordexp, 0);

would result in three words being returned; that is:

Those
who can,
do

Note: wordexp() obeys the shell’s rules for quoting, parameter and command
substitution, and tilde, pathname and arithmetic expansion.

The structure pointed to by the second argument contains at least the fields:

we_wordc Count of words matched.

we_wordv Pointer to list of expanded words.

we_offs Slots to reserve at the beginning of we_wordv.

The third argument is a bit-significant list of flags that can be used to control the
specific operation of wordexp().

write()

Issue 4: The header <unistd.h>, which contains the function prototype for this interface, is
added to the SYNOPSIS section.

The type of argument buf is changed from char* to const void*, and the type of
argument nbyte is changed from unsigned to size_t.

Various minor changes are made to the description of write() in Issue 4, as follows:

• Issue 4 states that writing at end-of-file is atomic; that is, if the O_APPEND flag
is set, no intervening file modification occurs between changing the file offset
and the write operation. This behaviour is also true in Issue 3, even though it is
not stated explicitly.

• Issue 4 states that the result is implementation-dependent if nbyte is greater
than {SSIZE_MAX}. This limit is defined by the constant {INT_MAX} in Issue 3.
This is unlikely to have any practical implications for applications as the
minimum acceptable value for both constants is defined to be 32767.

• Issue 4 defines the consequences of activities following a call to write(). This is
clarification of the text and does not imply any functional differences to Issue 3.

• The text describing operations on pipes or FIFOs when O_NONBLOCK is set is
restructured to improve clarity.

218 XPG3-XPG4 Base Migration Guide, Version 2

System Interfaces

• Issue 4 states that if write() is interrupted by a signal after it has successfully
written some data, it returns the number of bytes written. In Issue 3 it is
optional whether write() returns the number of bytes written, or whether it
returns −1 with errno set to [EINTR].

Issue 4, Version 2:
The writev() function has been added to the SYNOPSIS section, for X/OPEN
UNIX conformance, and an operational description for writev() has been added to
the DESCRIPTION section, along with appropriate changes to the RETURN
VALUE and ERRORS sections.

The DESCRIPTION section has been updated for X/OPEN UNIX conformance to
describe writing data to STREAMS files.

The ERRORS section was reorganised to describe errors that apply generally to
both write() and writev(), and errors that apply specifically to writev(). The [EIO],
[ERANGE] and [EINVAL] errors are also added, and a second [ENXIO] error
return described.

y0()

Issue 4: References to the matherr() function are removed.

The RETURN VALUE and ERRORS sections are substantially rewritten to
rationalise error handling in the mathematics functions. Specifically:

• [ERANGE] may also be set if x is zero, or the correct result overflows or
underflows.

Part 3: System Interfaces and Headers Migration 219

System Interfaces

220 XPG3-XPG4 Base Migration Guide, Version 2

Chapter 8

Headers

8.1 Header and Name Space Rules
Issue 4, Version 2 of the XSH specification specifies headers from a number of formal standards
and specifications, and must handle the name space issues carefully. Each specification builds
on its predecessors. XPG3 Base includes everything from the POSIX-1 standard, and the
POSIX-1 standard includes everything from the ISO C standard. XPG4 Base includes
additionally the POSIX-2 standard and the MSE working draft. Issue 4, Version 2 adds the
X/Open UNIX Extension feature group, specifying core APIs of 4.3BSD, OSF AES and SVID3.

8.1.1 ISO C Headers

The ISO C standard describes general rules for implementations versus applications with respect
to headers and name space.

Headers:

1. Headers need not be regular text files and the characters between the < and > need not
name a source file.

2. Headers should be self-sufficient such that any standard header does not need any other
standard header to be included using #include before or after it (and thus headers can be
included in any order).

3. Headers should be idempotent, such that any standard header can be included any
number of times without causing problems.

4. Headers can provide macro versions of functions which should behave in a semantically
identical fashion. By undefining such a macro, a regular declaration of the function is
made visible.

5. Headers can assume that they are included outside of any file scope declaration or
definition.

6. Headers can assume that they are included prior to the first use of its functions, objects or
macros.

With the exception of <assert.h>, the ISO C standard headers are both self-sufficient and
idempotent.

The ISO C standard specifies the rules for its 15 standard headers. Items 2 through 6 listed
above for headers are requirements for these.

<assert.h> <locale.h> <stddef.h>
<ctype.h> <math.h> <stdio.h>
<errno.h> <setjmp.h> <stdlib.h>
<float.h> <signal.h> <string.h>
<limits.h> <stdarg.h> <time.h>

A compilation system can provide more headers, but a strictly conforming ISO C program can
only use these.

Part 3: System Interfaces and Headers Migration 221

Header and Name Space Rules Headers

Name space:

1. _[_A-Z][0-9a-z_A-Z]* are reserved for implementation use anywhere.

2. _[0-9a-z_A-Z]* are reserved for implementation use as identifiers with external linkage and
in any header as a tag or an ordinary identifier with file scope.

8.1.2 POSIX-1 Headers

Other standards disagree slightly regarding the contents of some of these headers. For example,
the POSIX-1 standard specifies that fdopen() is declared in <stdio.h>. To allow these two
standards to coexist, the POSIX-1 standard requires that the macro _POSIX_SOURCE be defined
using #define before a standard header is included. The POSIX-specific names are then declared
and no more than those permitted by POSIX.

The POSIX-1 standard specifies general rules for name space control through ‘‘feature test
macros’’.

1. Feature test macros have names that match _[_A-Z][0-9a-z_A-Z]*. (Thus use of such
names take advantage of the loophole left in the ISO C standard.) They almost always
match _[A-Z]+_SOURCE. The feature test macro for the POSIX-1 standard is
_POSIX_SOURCE.

2. If the feature test macro associated with a particular header is defined prior to its inclusion,
the header must obey the name space rules of the matching specification.

3. If such a header is included without the feature test macro being defined, it has no
restrictions (at least with respect to the associated specification).

The POSIX-1 standard specifies general rules for its headers.

1. [a-z_A-Z][0-9a-z_A-Z]*_t are reserved for all POSIX.1 headers. It is unclear whether this
reservation is intended to be in effect for those headers that are covered by the ISO C
standard. This makes the assumption that it does apply.

2. Each function must be declared with a prototype in at least one header (ISO C standard
implementations).

3. The default location for this declaration is <unistd.h>.

The POSIX-1 standard specifies the rules for its 12 standard headers and subsumes the 15
headers from the ISO C standard, giving additional rules to 6 of them.

<dirent.h> <sys/stat.h> <sys/wait.h>
<fcntl.h> <sys/times.h> <termios.h>
<grp.h> <sys/types.h> <unistd.h>
<pwd.h> <sys/utsname.h> <utime.h>

The 6 modified ISO C standard headers are:

<errno.h> <setjmp.h> <stdio.h>
<limits.h> <signal.h> <time.h>

222 XPG3-XPG4 Base Migration Guide, Version 2

Headers Header and Name Space Rules

8.1.3 XPG Headers

The XPG3 XSI specification set subsumes the POSIX-1 standard and specifies rules for 11 more
headers.

<ftw.h> <search.h> <sys/shm.h>
<langinfo.h> <sys/ipc.h> <ulimit.h>
<nl_types.h> <sys/msg.h> <varargs.h>
<regexp.h> <sys/sem.h>

A feature test macro named _XOPEN_SOURCE provides for all the X/Open extensions to the
ISO C standard, in a similar way to the _POSIX_SOURCE macro. The definition of
_XOPEN_SOURCE subsumes the use of _POSIX_SOURCE and _POSIX_C_SOURCE, ensuring
the appropriate POSIX name space is also exposed. If the system defines _XOPEN_UNIX, then
the application needs to further define _XOPEN_SOURCE_EXTENDED to completely expose
the correct name space.

The XPG4 XSI specification set additionally specifies that no more than one header need be
included to use any one function.

The XPG4 XSI specification set subsumes the POSIX-1 standard, and adds in the MSE working
draft and POSIX-2 standard headers.

<cpio.h> <iconv.h> <tar.h>
<fnmatch.h> <monetary.h> <wchar.h>
<glob.h> <regex.h> <wordexp.h>

Finally, the XSH specification, Issue 4, Version 2 is a superset of Issue 4 of the XSH specification,
adding in the X/Open UNIX Extension feature group. This adds the following headers:

<fmtmsg.h> <re_comp.h> <sys/resource.h> <sys/uio.h>
<libgen.h> <strings.h> <sys/statvfs.h> <sys/un.h>
<ndbm.h> <stropts.h> <sys/time.h> <syslog.h>
<poll.h> <sys/mman.h> <sys/timeb.h> <ucontext.h>
<utmpx.h>

Part 3: System Interfaces and Headers Migration 223

Names Safe to Use Headers

8.2 Names Safe to Use
The rules regarding when certain names are reserved are complicated. There are, however, four
fairly simple rules which if followed avoid collisions with any ISO C reserved names:

1. Use #include to include all system headers at the top of source files.

2. Do not define or declare any names that begin with an underscore.

3. Use an underscore or a capital letter somewhere within the first few characters of all file
scope tags and regular names.

Note: Beware of the va_ prefix found in stdarg.h.

4. Use a digit or a non-capital letter somewhere within the first few characters of all macro
names.

Note: Almost all names beginning with an E are reserved if <errno.h> is included.

Most implementations continue to add names to the standard headers. The _POSIX_SOURCE
macro is principally used to remove the added declarations.

224 XPG3-XPG4 Base Migration Guide, Version 2

Headers Header Migration Information

8.3 Header Migration Information
This section contains information for each header defined in the XSH specification. Each section
identifies changes made to the interface in Issue 4 (if any), complete with examples where
appropriate. Only changes that might affect an application programmer are identified.

<assert.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

<cpio.h>

Issue 4: This entry is moved from Supplementary Definitions, Issue 3.

Issue 4, Version 2:
Descriptions for C_ISLNK and C_ISSOCK were provided. These were previously
listed as reserved.

<ctype.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

<dirent.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

A statement is added to the description indicating that the internal format of
directories is unspecified. Also in the description of the d_name field, the text is
changed to indicate bytes rather than (possibly multi-byte) characters.

<errno.h>

Issue 4: The [EILSEQ] error is added and marked as an extension.

The [ENOTBLK] error is withdrawn.

Issue 4, Version 2:
The following symbolic constants were added for X/OPEN UNIX conformance:

EADDRINUSE EADDRNOTAVAIL EAFNOSUPPORT EALREADY
EBADMSG ECONNABORTED ECONNREFUSED ECONNRESET
EDESTADDRREQ EDQUOT EHOSTUNREACH EINPROGRESS
EISCONN ELOOP EMSGSIZE EMULTIHOP
ENETDOWN ENETUNREACH ENOBUFS ENODATA
ENOLINK ENOPROTOOPT ENOSR ENOSTR
ENOTCONN ENOTSOCK EOPNOTSUPP EOVERFLOW
EPROTO EPROTONOSUPPORT EPROTOTYPE ESTALE
ETIME ETIMEDOUT EWOULDBLOCK

Part 3: System Interfaces and Headers Migration 225

Header Migration Information Headers

<fcntl.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

A reference to <unistd.h> is added for the definition of l_whence, SEEK_SET,
SEEK_CUR and SEEK_END, and marked as an extension.

A reference to <sys/stat.h> is added for the symbolic names of file modes used as
values of mode_t, and marked as an extension.

A reference to <sys/types.h> is added for the definition of mode_t, off_t and pid_t,
and marked as an extension.

A warning is added indicating that inclusion of <fcntl.h> may also make visible all
symbols from <sys/stat.h> and <unistd.h>. This is marked as an extension.

<float.h>

Issue 4: New header in Issue 4.

<fmtmsg.h>

Issue 4, Version 2:
New header in Issue 4, Version 2 for X/OPEN UNIX conformance.

<fnmatch.h>

Issue 4: New header in Issue 4.

<ftw.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

A reference to <sys/stat.h> is added for the definition of the stat structure, the
symbolic names for st_mode and the file type test macros.

A warning is added indicating that inclusion of <ftw.h> may also make visible all
symbols from <sys/stat.h>.

Issue 4, Version 2:
The DESCRIPTION section has been updated for X/OPEN UNIX conformance to
define the FTW structure, to include the declaration of nftw(), to add the FTW_SL
and FTW_SLN macros to support symbolic links, and to define macros for the
fourth argument to nftw().

<glob.h>

Issue 4: New header in Issue 4.

<grp.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

A reference to <sys/types.h> is added for the definition of gid_t and marked as an
extension.

Issue 4, Version 2:
For X/OPEN UNIX conformance, the endgrent(), getgrent() and setgrent()
functions are declared in this header.

226 XPG3-XPG4 Base Migration Guide, Version 2

Headers Header Migration Information

<iconv.h>

Issue 4: New header in Issue 4.

<langinfo.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

The constants CODESET, T_FMT_AMPM, ERA, ERA_D_FMT, ALT_DIGITS,
YESEXPR and NOEXPR are added.

Reference to the Gregorian calendar is removed.

The constants YESSTR and NOSTR are now defined as belonging to category
LC_MESSAGES. In previous issues they are defined as constants in category
LC_ALL.

A warning is added indicating that inclusion of <langinfo.h> may also make
visible all symbols from <nl_types.h>.

The APPLICATION USAGE section is expanded to recommend use of the
localeconv () function.

<libgen.h>

Issue 4, Version 2:
New header in Issue 4, Version 2 for X/OPEN UNIX conformance.

<limits.h>

Issue 4: This entry is largely restructured to improve symbol grouping. A great many
symbols, too numerous to mention, are also added for alignment with the POSIX-2
standard. Additional changes are made as follows:

• The constants INT_MIN, LONG_MIN and SHRT_MIN are changed from
values ending in 8 to values ending in 7.

• The DBL_DIG, DBL_MAX, FLT_DIG and FLT_MAX symbols are marked both
as extensions and TO BE WITHDRAWN.

• The LONG_BIT and WORD_BIT symbols are marked as extensions.

• The DBL_MIN and FLT_MIN symbols are withdrawn.

• Text introducing numerical limits now indicates that they are constant
expressions suitable for use in #if preprocessing directives.

• The minimum acceptable value for NGROUPS_MAX is changed from
_POSIX_NGROUPS_MAX to 8, indicating that supplementary groups are
supported on all conforming implementations. This change is made for
alignment with the FIPS requirements.

• A sentence is added to the DESCRIPTION section indicating that names
beginning with _POSIX can be found in <unistd.h>.

• The PASS_MAX and TMP_MAX symbols are marked TO BE WITHDRAWN.

• Use of the terms ‘‘bytes’’ and ‘‘characters’’ is rationalised to make it clear when
the description is referring to either single-byte values or possibly multi-byte
characters.

Part 3: System Interfaces and Headers Migration 227

Header Migration Information Headers

• CHARCLASS_NAME_MAX is added to the list of invariant values and marked
as an extension.

Issue 4, Version 2:
For X/OPEN UNIX conformance, the following Run-time Invariant Values have
been added: ATEXIT_MAX, IOV_MAX, PAGESIZE and PAGE_SIZE. The
following Minimum Value has been added: _XOPEN_IOV_MAX.

<locale.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

The definition of struct lconv is added.

A reference to <stddef.h> is added for the definition of NULL.

<math.h>

Issue 4: The description of HUGE_VAL is changed to indicate that this value is not
necessarily representable as a float.

The function declarations in this header are expanded to full ISO C prototypes.

The functions declared in this header are subdivided into those defined in the
ISO C standard, and those defined only by X/Open. Functions in the latter group
are marked as extensions, as is the external variable signgam.

Issue 4, Version 2:
For X/OPEN UNIX conformance, the following functions are now declared in this
header: acosh(), asinh(), atanh(), cbrt(), expm1(), ilogb (), log1p (), logb(), nextafter(),
remainder(), rint(), scalb().

<monetary.h>

Issue 4: New header in Issue 4.

<ndbm.h>

Issue 4, Version 2:
New header in Issue 4, Version 2 for X/OPEN UNIX conformance.

<nl_types.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

<poll.h>

Issue 4, Version 2:
New header in Issue 4, Version 2 for X/OPEN UNIX conformance.

228 XPG3-XPG4 Base Migration Guide, Version 2

Headers Header Migration Information

<pwd.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

Reference to the header <sys/types.h> is added for the definitions of gid_t and
uid_t. This is marked as an extension.

Issue 4, Version 2:
For X/OPEN UNIX conformance, the endpwent(), getpwent() and setpwent()
functions are declared in this header.

<regex.h>

Issue 4: New header in Issue 4.

<re_comp.h>

Issue 4, Version 2:
New header in Issue 4, Version 2 for X/OPEN UNIX conformance.

<regexp.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

The interface is marked TO BE WITHDRAWN.

<search.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

Reference to the header <sys/types.h> is added for the definition of size_t.

Issue 4, Version 2:
For X/OPEN UNIX conformance, the insque() and remque() are added to the list of
functions declared in this header.

<setjmp.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

The DESCRIPTION section is changed to indicate that all functions in this header
can also be declared as macros.

The types jmp_buf and sigjmp_buf are explicitly defined as array types. While
this is almost certainly the case on systems compliant with Issue 3 as well, it is not
mandated in the Issue 3 interface definition.

Issue 4, Version 2:
For X/OPEN UNIX conformance, _longjmp () and _setjmp() are added to the list of
functions declared in this header.

Part 3: System Interfaces and Headers Migration 229

Header Migration Information Headers

<signal.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

The description in Issue 4 is changed:

• to define the type sig_atomic_t

• to define the syntax of signal names and functions

• to define that SIGFPE is no longer limited to floating-point exceptions, but
covers all arithmetic errors.

The raise() function is added to the list of functions declared in this header.

A reference to <sys/types.h> is added for the definition of pid_t. This is marked as
an extension.

In the list of signals starting with SIGCHLD, the statement ‘‘but a system not
supporting the job control option is not obliged to support the capability of these
signals’’ is removed. This is because job control is defined as mandatory on XSI-
conformant implementations.

Issue 4, Version 2:
For X/OPEN UNIX conformance, the following changes have been made to
<signal.h>:

• The SIGBUS, SIGPOLL, SIGPROF, SIGSYS, SIGTRAP, SIGURG, SIGVTALRM,
SIGXCPU and SIGXFSZ signals have been added as supported signals.

• The sa_sigaction member is added to the sigaction structure, with the added
note that the storage used by sa_handler and sa_sigaction may overlap.

• The SA_ONSTACK, SA_RESETHAND, SA_RESTART, SA_SIGINFO,
SA_NOCLDWAIT, SS_ONSTACK, SS_DISABLE, MINSIGSTKSZ and
SIGSTKSZ constants are defined. The stack_t, siginfo_t and ucontext_t types
are defined. The sigstack structure is defined.

• A set of macros is defined as signal-specific reasons why a signal was generated
as values for si_code.

• The bsd_signal(), killpg (), sigaltstack (), sighold (), sigignore(), siginterrupt(),
sigpause(), sigrelse(), sigset() and sigstack () functions are added to the list of
functions declared in this header.

<stdarg.h>

Issue 4: New header in Issue 4.

<stddef.h>

Issue 4: New header in Issue 4.

230 XPG3-XPG4 Base Migration Guide, Version 2

Headers Header Migration Information

<stdio.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

The description in Issue 4 is restructured to group lists of macro names according
to how they are defined by an implementation (for example, whether they are
integral constant expressions, pointer constants, string constants, and so on).

The constant FILENAME_MAX is added to the list of integral constant
expressions. The text of FOPEN_MAX is also changed for consistency with the
ISO C standard.

The data type fpos_t is added. This is referred to in the APPLICATION USAGE
section in Issue 3.

The functions fgetpos() and fsetpos() are added to the list of functions declared in
this header.

The constant L_cuserid, and the external variables optarg , opterr , optind and optopt
are marked as extensions and TO BE WITHDRAWN.

The P_tmpdir constant is moved from the APPLICATION USAGE section to the
DESCRIPTION section and marked as an extension.

The va_list type, and a reference to the definition of size_t in <stddef.h>, are
added and marked as extensions.

The cuserid() and getopt() functions are marked TO BE WITHDRAWN.

The external variables optarg, opterr, optind and optopt are defined, marked as
extensions and marked TO BE WITHDRAWN.

A warning is added indicating that inclusion of <stdio.h> may also make visible
all symbols from <stddef.h>.

<stdlib.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

The minimum maximum value of RAND_MAX is defined to be at least 32767.

The name MB_CUR_MAX is added to the list of macro names defined in this
header, while div_t and ldiv_t are added to the list of defined types.

The names atexit(), div(), labs(), ldiv (), mblen(), mbstowcs(), mbtowc(), strtoul(),
wcstombs() and wctomb() are added to the list of functions declared in this header.

A reference is added to <stddef.h> and <wchar.h> for the definition of size_t.

A reference is added to <sys/wait.h> for definitions of the symbolic names and
macros defined for decoding the return value from the system() function.

The names drand48(), erand48(), jrand48(), lcong48 (), lrand48(), mrand48(),
nrand48(), putenv(), seed48(), setkey() and srand48() are added to the list of
functions declared in this header and marked as extensions.

A warning is added indicating that inclusion of <stdlib.h> may also make visible
all symbols from <stddef.h>, <limits.h>, <math.h> and <wchar.h>.

Issue 4, Version 2:
For X/OPEN UNIX conformance, the following functions have been added to the
list of functions declared in this header: a64l (), ecvt(), fcvt(), gcvt(), getsubopt(),

Part 3: System Interfaces and Headers Migration 231

Header Migration Information Headers

grantpt(), initstate(), l64a (), mktemp(), mkstemp(), ptsname(), random(), realpath (),
setstate(), srandom(), ttyslot (), unlockpt (), valloc ().

<string.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

The name memmove() is added to the list of functions declared in this header.

A reference is added to <stddef.h> for the definition of size_t.

A warning is added indicating that inclusion of <string.h> may also make visible
all symbols from <stddef.h>.

Issue 4, Version 2:
For X/OPEN UNIX conformance, the strdup() function is added to the list of
functions declared in this header.

<strings.h>

Issue 4, Version 2:
New header in Issue 4, Version 2 for X/OPEN UNIX conformance.

<stropts.h>

Issue 4, Version 2:
New header in Issue 4, Version 2 for X/OPEN UNIX conformance.

<sys/ipc.h>

Issue 4: Reference to the header <sys/types.h> is added for the definitions of uid_t, gid_t
and mode_t.

Issue 4, Version 2:
For X/OPEN UNIX conformance, the ftok () function is added to the list of
functions declared in this header.

<sys/mman.h>

Issue 4, Version 2:
New header in Issue 4, Version 2 for X/OPEN UNIX conformance.

<sys/msg.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

Reference to the header <sys/types.h> is added for the definitions of pid_t, time_t,
key_t and size_t.

A statement is added indicating that all symbolic constants in <sys/ipc.h> are
defined when this header is included.

232 XPG3-XPG4 Base Migration Guide, Version 2

Headers Header Migration Information

<sys/resource.h>

Issue 4, Version 2:
New header in Issue 4, Version 2 for X/OPEN UNIX conformance.

<sys/sem.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

Reference to the header <sys/types.h> is added for the definitions of pid_t, time_t,
key_t and size_t ().

A statement is added indicating that all symbolic constants in <sys/ipc.h> are
defined when this header is included.

<sys/shm.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

Reference to the header <sys/types.h> is added for the definitions of pid_t, time_t,
key_t and size_t.

A statement is added indicating that all symbolic constants in <sys/ipc.h> are
defined when this header is included.

<sys/stat.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

The description in Issue 4 is expanded to indicate:

• how files are uniquely identified within the system

• that times are given in units of seconds since the Epoch

• rules governing the definition and use of the file mode bits

• usage of the file type test macros.

Reference to the header <sys/types.h> is added for the definitions of dev_t, ino_t,
mode_t, nlink_t, uid_t, gid_t, off_t and time_t(). This has been marked as an
extension.

Reference to the S_IREAD, S_IWRITE and S_IEXEC file modes is removed.

Issue 4, Version 2:
For X/OPEN UNIX conformance, the following additions have been made to this
header:

• The st_blksize and st_blocks members have been added to the stat structure.

• The S_IFLNK value of S_IFMT is defined.

• The S_ISVTX file mode bit and S_ISLNK file type test macro are defined.

• The fchmod(), lstat() and mknod() functions are added to the list of functions
declared in this header.

Part 3: System Interfaces and Headers Migration 233

Header Migration Information Headers

<sys/statvfs.h>

Issue 4, Version 2:
New header in Issue 4, Version 2 for X/OPEN UNIX conformance.

<sys/time.h>

Issue 4, Version 2:
New header in Issue 4, Version 2 for X/OPEN UNIX conformance.

<sys/timeb.h>

Issue 4, Version 2:
New header in Issue 4, Version 2 for X/OPEN UNIX conformance.

<sys/times.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

Reference to the header <sys/types.h> is added for the definitions of clock_t.

This issue states that the times() function can also be defined as a macro.

<sys/types.h>

Issue 4: The data type ssize_t is added.

The description is expanded to indicate the required arithmetic types.

Issue 4, Version 2:
The id_t and useconds_t types are defined for X/OPEN UNIX conformance.

<sys/uio.h>

Issue 4, Version 2:
New header in Issue 4, Version 2 for X/OPEN UNIX conformance.

<sys/utsname.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

The description is changed to state that although the structure members are
character arrays of unspecified size, they are terminated by a null byte (not a null
character as stated in previous issues).

This issue states that the uname() function can also be defined as a macro.

<sys/wait.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

Reference to the header <sys/types.h> is added for the definition of pid_t and
marked as an extension.

Issue 4, Version 2:
For X/OPEN UNIX conformance, the following additions have been made:

• The WIFCONTINUED macro, the list of symbolic constants for use with the
options argument of waitid (), and the description of the idtype_t enumeration
type have all been added.

234 XPG3-XPG4 Base Migration Guide, Version 2

Headers Header Migration Information

• The wait3() and waitid () functions are added to the list of functions declared in
this header.

• A statement has been added indicating that inclusion of this header may also
make visible symbols from <signal.h> and <sys/resource.h>.

<syslog.h>

Issue 4, Version 2:
New header in Issue 4, Version 2 for X/OPEN UNIX conformance.

<tar.h>

Issue 4: This entry is moved from Supplementary Definitions, Issue 3.

Issue 4, Version 2:
For X/OPEN UNIX conformance, the significance of SYMTYPE as the value of
typeflag, and of TSVTX as the value of mode have been explained.

<termios.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

Some minor rewording of the description is done to align the text more exactly
with the POSIX-1 standard. No functional differences are implied by these
changes.

The list of mask name symbols for the c_oflag field have all been marked as
extensions, with the one exception of OPOST.

The following words are removed from the description of the c_cc array:

‘‘Implementations that do not support the job control option, may ignore the
SUSP character value in the c_cc array indexed by the VSUSP subscript.’’

This is because job control is defined as mandatory for XSI-conformant
implementations.

The mask name symbols IUCLC and OLCUC are marked TO BE WITHDRAWN.

Issue 4, Version 2:
For X/OPEN UNIX conformance, the tcgetsid() function is added to the list of
functions declared in this header.

<time.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

The range of tm_min is changed from [0,61] to [0,59].

Possible settings of tm_isdst and their meanings are added.

The names clock () and difftime() are added to the list of functions declared in this
header.

The symbolic name CLK_TCK is marked TO BE WITHDRAWN. Warnings about
its use have also been added.

Reference to the header <sys/types.h> is added for the definitions of clock_t, size_t
and time_t().

Part 3: System Interfaces and Headers Migration 235

Header Migration Information Headers

References to CLK_TCK are changed to CLOCKS_PER_SEC in part of the
DESCRIPTION section. The fact that CLOCKS_PER_SEC is always one millionth
of a second on XSI-conformant systems is marked as an extension.

External declarations for daylight, timezone and tzname are added. The first two are
marked as extensions.

The function strptime() is added to the list of functions declared in this header.

A note about the range of tm_sec is added to the APPLICATION USAGE section.

Issue 4, Version 2:
For X/OPEN UNIX conformance, the <time.h> header provides a declaration for
getdate_err, and the getdate() function is added to the list of functions declared in
this header.

<ucontext.h>

Issue 4, Version 2:
New header in Issue 4, Version 2 for X/OPEN UNIX conformance.

<ulimit.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

<unistd.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

A large number of new constants are defined for the sysconf() function, including
all those with prefixes _SC_2 and _SC_BC, plus:

_SC_COLL_WEIGHTS_MAX
_SC_EXPR_NEST_MAX
_SC_LINE_MAX
_SC_RE_DUP_MAX
_SC_STREAM_MAX
_SC_TZNAME_MAX
_SC_XOPEN_CRYPT
_SC_XOPEN_ENH_I18N
_SC_XOPEN_SHM

The confstr() function is added to the list of functions declared in this header,
complete with a new set of constants for alignment with the POSIX-2 standard.

This issue defines that the following symbolic constants are always defined:

_POSIX_CHOWN_RESTRICTED
_POSIX_NO_TRUNC
_POSIX_VDISABLE
_POSIX_SAVED_IDS
_POSIX_JOB_CONTROL

In Issue 3, they are only defined if the associated option is present.

The symbolic constants F_ULOCK, F_LOCK, F_TLOCK, F_TEST, GF_PATH,
IF_PATH and PF_PATH are withdrawn.

The required value of _XOPEN_VERSION is defined and the constant is marked as
an extension.

236 XPG3-XPG4 Base Migration Guide, Version 2

Headers Header Migration Information

The constants _XOPEN_XPG2, _XOPEN_XPG3 and _XOPEN_XPG4 are added.

The constants _POSIX2_* are added.

Reference to the header <sys/types.h> is added for the definitions of size_t,
ssize_t, uid_t, gid_t off_t and pid_t(). These are marked as extensions.

The names chroot(), crypt(), encrypt(), fsync(), getopt(), getpass(), nice() and swab()
are added to the list of functions declared in this header. With the exception of
getopt(), these are all marked as extensions.

Issue 4, Version 2:
For X/OPEN UNIX conformance, the following additions have been made to this
header:

• The feature group constant _XOPEN_UNIX is defined.

• The sysconf() symbolic constants _SC_ATEXIT_MAX, _SC_IOV_MAX,
_SC_PAGESIZE and _SC_PAGE_SIZE are defined.

• The following functions are added to the list of functions declared in this
header: brk(), fchown(), fchdir(), ftruncate(), getdtablesize (), gethostid (),
getpagesize (), getpgid(), getsid(), getwd(), lchown(), lockf (), readlink (), sbrk(),
setpgrp(), setregid(), setreuid(), symlink(), sync(), truncate(), ualarm(), usleep(),
vfork ().

• The symbolic constants F_ULOCK, F_LOCK, F_TLOCK and F_TEST are added.

<utime.h>

Issue 4: The function declarations in this header are expanded to full ISO C prototypes.

Reference to the header <sys/types.h> is added for the definition of time_t. This is
marked as an extension.

<utmpx.h>

Issue 4, Version 2:
New header in Issue 4, Version 2 for X/OPEN UNIX conformance.

<varargs.h>

Issue 4: The interface is marked TO BE WITHDRAWN.

The APPLICATION USAGE section is added, recommending use of <stdarg.h> in
preference to this header.

<wchar.h>

Issue 4: New header in Issue 4.

<wordexp.h>

Issue 4: New header in Issue 4.

Part 3: System Interfaces and Headers Migration 237

Headers

238 XPG3-XPG4 Base Migration Guide, Version 2

XPG3-XPG4 Base Migration Guide, Version 2

Part 4:

C-language Migration

X/Open Company Ltd.

Part 4: C-language Migration 239

240 XPG3-XPG4 Base Migration Guide, Version 2

Chapter 9

Introduction

This part describes techniques for writing C-language code that conforms to the referenced
ISO C standard. It highlights differences between the C language used in Issues 3 and 4 of the
Portability Guide. This chapter explains the approach used and identifies the commands used to
access C compilers.

9.1 Terminology
ISO C is the term used to refer to the language specified in the referenced ISO C standard. ISO C
is based on ANSI C, which is defined in the referenced ANSI C standard. The term Standard C is
frequently used to encompass ISO C and ANSI C. Because the standards are technically the
same, the term Standard C is not used elsewhere in this guide; the term ISO C is used. This
guide assumes the reader is already familiar with the C language in use before standardisation;
this is frequently termed Common Usage C or K&R C. The X/Open C language is documented
in the Programming Languages, Issue 3. It is a Common Usage C. Throughout the remainder of
this guide, the term X/Open C is used to describe the C language used before standardisation.

9.2 Approach
This part is useful for programmers who are:

• upgrading existing C-language code written for an Issue 3 X/Open C compiler

• writing new code which is to be compiled with an ISO C compiler.

The XCU specification describes X/Open’s interface to the ISO C compiler.

9.3 Compiler
The command c89 provides access to the language defined in the ISO C standard, whereas cc is
the command used to access X/Open C.

A program written to X/Open C can be compiled using the c89 command, provided that
migration guidelines given in this part of the guide are followed. In this case, X/Open C
function definitions are handled as functions with empty argument lists. Thus, compile-time
argument checking is bypassed, but the code should still compile and run correctly.

Part 4: C-language Migration 241

Introduction

242 XPG3-XPG4 Base Migration Guide, Version 2

Chapter 10

Function Prototypes

This chapter explains the implications of function prototypes, which are the most visible ISO C
addition to the syntax of the C language.

10.1 Function Declarations
A function declaration defines the return type of the function, the name of the function and an
optional list of arguments. The type of each argument is defined within the argument list, along
with an optional argument name. For example:

int f(int, char);

This declares a function that returns a type int. The name of the function is f() and it takes two
arguments. The first is a type int and the second is a type char.

The two arguments could also be named as in the following example:

int f(int i , char c);

The keyword void is used for two purposes in function prototypes. The first is for stating that a
function does not return a result. For example:

void f(int);

Here, the function f() has one argument but does not return a result.

Another use of void is to indicate that a function does not have any arguments, for example:

int f(void);

This states that the function f() does not take any arguments, but it does return a type int.

Note the difference between this second use of void and the following example:

int f();

This indicates that nothing is specified about the arguments, not necessarily that there are no
arguments.

There are two further details worth noting about function prototypes; the use of const and the
use of ellipsis (. . .). They are both used in the following example:

int fprintf(FILE *, const char *, . . .);

Using type const for the second argument indicates that it is a pointer to a type char string that is
not changed by this function. The ellipsis indicates that there are an unknown number of
additional arguments to this function (see Section 10.5 on page 248).

Part 4: C-language Migration 243

Function Declarations Function Prototypes

10.1.1 Argument Checking

The introduction of function prototypes means that the compiler can perform argument checks
for each function call, in a similar fashion to the lint command. The compiler produces a
warning indicating an improper pointer or integer combination; for example, if a function is
declared as:

int f(int);

and invoked by:

f("Hello");

10.1.2 Type Conversion

The introduction of function prototypes also means that arguments to functions are
automatically converted, if possible, to the type expected by the function. This conversion is the
same conversion that is performed during assignment. In the following example:

int f(float);
. . .

int i = 32;
. . .

f(i);

the call to the function converts the type int to a type float.

244 XPG3-XPG4 Base Migration Guide, Version 2

Function Prototypes Writing New Code

10.2 Writing New Code
ISO C includes rules that govern the mixing of old-style and new-style function declarations.
These rules recognise that there are many lines of existing C code that will not be converted to
use prototypes.

When writing an entirely new program, new-style function declarations should be used in
headers and new-style function declarations and definitions should be used in C source files.
However, if the code is to be compiled on an X/Open C compiler, the _ _STDC_ _ macro should
be used. This macro should be used with #ifdef or #if to decide which declarations to use
dependent on the type of compilation system as shown in Example 10-1.

Example 10-1 Use of the _ _STDC_ _ Macro

#ifdef _ _STDC_ _
#if _ _STDC_ _ - 0 == 1

void errmsg(int, . . .);
struct s *f(const char *);
int g(void);

#else
void errmsg();
struct s *f();
int g();

#endif
#else

void errmsg();
struct s *f();
int g();

#endif

If an ISO compiler is being used, the first three declarations are used; otherwise the last three
declarations are used. Note that the first three declarations say more about the functions than
the last three declarations.

It is good programming practice to declare and define all functions with prototypes. An ISO C
compiler issues a diagnostic message when two incompatible declarations exist for the same
function. This ensures that all calls agree with the definition of the functions, eliminating some
of the most common C programming mistakes.

Example 10-1 demonstrates the most robust way of handling this situation. The ISO C standard
says that a conforming implementation will define _ _STDC __ to have the value 1. However,
non-conforming implementations may still define _ _STDC_ _. For editorial purposes, the rest of
the examples in this part use a simpler preprocessor test, but recognise it is also less robust.

Part 4: C-language Migration 245

Updating Existing Code Function Prototypes

10.3 Updating Existing Code
There are four approaches possible when updating existing code to use function prototypes:

• Recompile without making any changes.

The compiler may provide warnings about mismatches in argument type and number.

• Add function prototypes to the headers.

This covers all calls to global functions. Example 10-1 on page 245, which shows the use of
_ _STDC_ _, is a good example of this change.

• Add function prototypes to the headers and start each source file with function prototypes
for its local functions.

This covers all calls to functions. However, this requires duplicating the interface for each
local function in the source file as shown in Example 10-2.

Example 10-2 Duplicating Interface

#ifdef _ _STDC_ _
static void del(struct s *);

#endif
. . .

static void del(p)
struct s *p;
{

. . .
}

Here the #ifdef . . . #endif lines are added to declare the function del(), but the function itself
is unchanged.

• Change all function declarations and definitions to use function prototypes.

This is the most extensive change. For Example 10-2 it involves changing del() to be:

static void del(struct s *p)
{

. . .
}

246 XPG3-XPG4 Base Migration Guide, Version 2

Function Prototypes Mixing Old and New Styles

10.4 Mixing Old and New Styles
If a function prototype declaration is to work with an old-style function definition, they must
both specify functionally identical interfaces. In ISO terminology, they must have compatible
types.

For functions with a variable number of arguments, ISO C ellipsis notation cannot be mixed and
the old-style function definitions as specified in <varargs.h>. However, the situation is
straightforward for functions with a fixed number of arguments. The types of the arguments
need to be specified as they are passed in X/Open C. For example, if the original definition of the
function is:

int f(i, l)
int i;
long l;
{

. . .
}

the function prototype declaration is:

int f(int, long);

However, it is also necessary to understand how the arguments are converted in X/Open C
when a function is called.

In X/Open C, each argument is converted just before it is passed to the called function. The
conversion is based on the default argument promotions. These specify that all integral types
narrower than type int are promoted to type int size, and any type float argument is promoted
to type double. These promotions are used to simplify both the compiler and the libraries.

Function prototypes are more expressive and hence the conversion can be exact. The specified
argument type is the actual type of the object that is passed to the function. This means that if a
function prototype is written to match an old-style function definition, the function prototype
cannot include arguments of the following types:

char signed char unsigned char
short signed short unsigned short
float

There still remain two complications with writing prototypes: typedef names and the
promotion rules for narrow unsigned types.

If arguments in old-style functions are declared using typedef names, such as off_t and ino_t, it
is important to know whether or not the typedef name designates a type that is affected by the
default argument promotions. For these two, off_t is a type long, so it is appropriate to use in a
function prototype. However, ino_t is a type unsigned short, so if it is used in a prototype, the
compiler issues a diagnostic message (possibly fatal), because the old-style definition and the
prototype specify different and incompatible interfaces.

The main incompatibility between X/Open C and ISO C is the promotion rule for the widening
of type unsigned char and type unsigned short to a value the size of type int. (See Chapter 11
on page 251.) ISO C converts them to type int if type int can represent all values of the original
type. Otherwise they are converted to type unsigned int.

The best approach is to change the old-style definition to specify either type int or type
unsigned int and to use the matching type in the function prototype. If the narrower object is
required, the value can be assigned to a local variable with the narrower type inside the function.

Part 4: C-language Migration 247

Variable Number of Arguments Function Prototypes

10.5 Variable Number of Arguments
The ISO C standard encourages the use of function prototypes to specify the types of a function’s
arguments. In order to support functions which have a variable number of arguments, such as
printf(), a special ellipsis terminator (. . .) is added to the language syntax. ISO C requires that
all declarations and the definition of such a function include the ellipsis terminator. This is
because an implementation might be required to do unusual things to handle a variable number
of arguments.

Since there are no names for the . . . part of the arguments, a special set of macros contained in
the <stdarg.h> header gives the function access to these arguments. Pre-ISO C used similar
macros contained in the <varargs.h> header.

Example

This example is an error-handling function errmsg(). This function returns void and has only
one fixed argument, of type int, that specifies details about the error message. This argument
may be followed by a filename, or a line number, or both, and these are followed by a format
similar to printf() and arguments that specify the text of the error message.

To allow earlier compilers to compile the example correctly, it makes extensive use of the
_ _STDC_ _ macro, which is only defined for ISO C compilation systems.

To declare the function in an appropriate header file:

#ifdef _ _STDC_ _
void errmsg(int code, . . .);

#else
void errmsg();

#endif

Note that ISO C permits the fixed arguments to be named.

In order to define errmsg(), old and new styles must be mixed, as described in Section 10.4 on
page 247.

First, include different headers, dependent on the compilation system:

#ifdef _ _STDC_ _
#include <stdarg.h>
#else
#include <varargs.h>
#endif

#include <stdio.h>

Include <stdio.h> because the program calls the functions fprintf () and vfprintf ().

248 XPG3-XPG4 Base Migration Guide, Version 2

Function Prototypes Variable Number of Arguments

For ISO C, the function’s declaration is the same as the one in the header file. For X/Open C, use
the identifiers va_alist and va_dcl:

void
#ifdef _ _STDC_ _
errmsg(int code, . . .)
#else
errmsg(va_alist) va_dcl /* note: no semicolon */
#endif

{
va_list ap;
char *fmt;
/* continued below */

The old-style variable argument mechanism does not allow fixed arguments to be specified. To
permit access to the fixed arguments before the variable arguments, the ellipsis must have a
handle. This is done by using the va_start () macro. The first argument to this macro is the
handle for the Single UNIX Specification; the second is the name of the argument immediately
before the ellipsis:

#ifdef _ _STDC_ _
va_start(ap, code);

#else
int code;
va_start(ap);
code = va_arg(ap, int); /* extract the fixed argument */

#endif

The rest of the code is the same for both compilation systems:

if (code & FILENAME)
(void)fprintf(stderr, "\"%s\": ", va_arg(ap, char *));

if (code & LINENUMBER)
(void)fprintf(stderr, "%d: ", va_arg(ap, int));

if (code & WARNING)
(void)fputs("warning: ", stderr);

fmt = va_arg(ap, char *);
(void)vfprintf(stderr, fmt, ap);

va_end(ap);
}

Both the va_arg () and va_end() macros work the same for the old-style and ISO C versions. Note
that va_arg () changes the value of ap , so the call to vfprintf () cannot be:

(void)vfprintf(stderr, va_arg(ap, char *), ap);

The macros FILENAME, LINENUMBER and WARNING must be defined in the same header in
which errmsg() is declared.

A sample call to errmsg() could be:

errmsg(FILENAME, file , "cannot open: %s\n", argv [i]);

It is also possible to declare and define functions that have no fixed arguments, for example:

int f(. . .);

Part 4: C-language Migration 249

Variable Number of Arguments Function Prototypes

For these functions, use va_start () with an empty second argument, as in the following:

va_start(ap,);

250 XPG3-XPG4 Base Migration Guide, Version 2

Chapter 11

Promotion

This chapter considers the implications of the change in the type of promotion used by ISO C
compilers. Promotion means changing the type of an object so that it is compatible with other
objects in an arithmetic expression. The difference between the promotion used in X/Open C
compilers and ISO C compilers is such that a program behaves differently, but without
complaint.

11.1 Converting Types
The following expression is valid only when both objects have the same numerical type:

i + c

If i is a type int and c is a type char, c must be converted to an integer before the addition can be
performed. This process is called promotion .

11.2 Background
In the referenced document by Kernighan and Ritchie the type unsigned specifies exactly one
type. There are no types of unsigned char, unsigned short or unsigned long. However, most C
compilers have added one or more of these. Different implementations chose different rules for
type promotions when these new types were mixed with other types.

Most X/Open C compilers use the rule called unsigned preserving. This rule states that when an
unsigned type needs to be promoted it is promoted to an unsigned type. It also states that
when an unsigned type is mixed with a signed type, the result is an unsigned type.

The other rule is called value preserving. This is the rule used by ISO C. It states that promotion
depends on the relative sizes of the types involved. For example, when a type unsigned char or
unsigned short is promoted, the resulting type is int if an int is large enough to represent all the
values of the smaller type. Otherwise the resulting type is unsigned int. This value preserving
rule produces the least surprises for most expressions.

The ISO C standard comments as follows:

QUIET CHANGE
A program that depends on unsigned preserving arithmetic conversions behaves
differently, probably without complaint. This is considered to be the most serious change
made by the Committee to a widespread current practice.

Part 4: C-language Migration 251

Using a Cast Promotion

11.3 Using a Cast
In the following code, a promotion is needed if a type unsigned char is smaller than a type int:

int f(void)
{

int i = -2;
unsigned char uc = 1;

return (i + uc) < 17;
}

This is an example where the result differs dependent on the promotion rule used. An ISO C
compiler may issue a warning for the (i + uc) operation to indicate that the result depends on the
promotion rule being used.

The result of the addition has type int when using value preserving promotion and unsigned int
for unsigned preserving promotion. However, the bit pattern is the same in both cases; for
example, on a two’s-complement machine:

i: 111 . . . 110 (-2)
+ uc: 000 . . . 001 (1)

111 . . . 111 (-1 or UINT_MAX)

This bit representation corresponds to −1 for type int and UINT_MAX for type unsigned int.
For objects of type int a signed comparison is used and the less-than test is true. For objects of
type unsigned int an unsigned comparison is used and the less-than test is false.

A cast should be used explicitly to define the behaviour that is required. This removes the
ambiguity from the expression.

The value preserving cast is:

(i + (int)uc) < 17

The unsigned preserving cast is:

(i + (unsigned int)uc) < 17

252 XPG3-XPG4 Base Migration Guide, Version 2

Promotion Same Result

11.4 Same Result
In the following code, two promotions are performed if types unsigned short and unsigned char
are both smaller than type int:

int f(void)
{

unsigned short us;
unsigned char uc;

return uc < us;
}

Both variables are promoted to either int or unsigned int, dependent on which promotion rule is
in force. Therefore the comparison is sometimes signed and sometimes unsigned. However,
the result is the same in either case, because both values are always non-negative and therefore
the sense of the comparison does not matter.

Part 4: C-language Migration 253

Integral Constants Promotion

11.5 Integral Constants
As with expressions, the rules for the types of certain integral constants have changed. In
X/Open C, an unsuffixed decimal constant has type int if its value fits in a type int; otherwise it
has type long. Similarly an unsuffixed octal or hexadecimal constant has type int if its value fits
in an unsigned int; otherwise it has type long.

In ISO C, the type of the constant is the first from one of the following lists:

unsuffixed decimal:
int, long, unsigned long

unsuffixed octal or hexadecimal:
int, unsigned int, long, unsigned long

u-suffixed or U-suffixed:
unsigned int, unsigned long

l-suffixed or L-suffixed:
long, unsigned long

ul-suffixed or UL-suffixed:
unsigned long

In the following code, the objects of type int have 16 bits:

int f(void)
{

int i = 0;

retur n i > 0xffff;
}

For an X/Open C compiler the constant’s type is int, with a value of −1 on a two’s-complement
machine. Therefore the result of the comparison is true.

For an ISO C compiler the constant’s type is unsigned int, with a value of 65535. Therefore the
result of the comparison is false.

Again, an appropriate cast clarifies the code and silences an ISO C compiler.

For X/Open C behaviour use:

i > (int)0xffff

For ISO C behaviour use:

i > (unsigned int)0xffff
or

i > 0xffffU

Note: The U suffix is a new feature of ISO C and probably produces an error message with
older C compilers.

254 XPG3-XPG4 Base Migration Guide, Version 2

Chapter 12

Tokenisation and Preprocessing

This chapter discusses the operations that transform each source file from a sequence of
characters into a sequence of tokens ready for parsing. These operations include recognition of
white spaces and comments, bundling consecutive characters into tokens, handling
preprocessing directive lines, and replacement of macros. These operations are probably the
least specified part of X/Open C; their ordering was never guaranteed.

This chapter also describes some new macros and the changes to the #define directive.

12.1 ISO C Translation Phases
ISO C specifies eight conceptual steps, called translation phases . Although an implementation
can merge adjacent phases together, the result must be the same as if they were distinct phases,
each performed in sequence.

1. Every trigraph sequence in the source file is replaced by a corresponding single character.

2. Every backslash and new-line character pair is deleted.

3. The source file is converted into preprocessing tokens and sequences of white spaces. Each
comment is effectively replaced by a space character.

4. Each preprocessing directive is handled and all macro invocations are replaced. Each
#include source file is run through phases 1 to 4, recursively, before its contents replace the
directive line.

5. All escape sequences in character constants and string literals are converted to their
character equivalents.

6. Adjacent string literals are concatenated and wide-character string literals are
concatenated.

7. Every preprocessing token is converted into a token. These tokens are then analysed for
correct syntax and semantics. The compiler then uses these tokens to generate the code.

8. All external object and function references are resolved, resulting in the final program.

Part 4: C-language Migration 255

Trigraph Sequences Tokenisation and Preprocessing

12.2 Trigraph Sequences
ISO C has nine trigraph sequences that were invented solely as a concession to character sets
that are deficient as far as ISO C is concerned. They are three-character sequences that name a
character that is not in the ISO/IEC 646: 1991 standard character set:

??< { ??([??’ ˆ
??> } ??)] ??! |
??= # ??- ˜ ??/ \

Be careful of their use; in the following example:

/* comment *??/
/* still a comment? */

the ??/ becomes a backslash. This backslash and the following newline are removed (during the
second translation phase) and the resulting characters are:

/* comment */* still a comment? */

The first forward slash from the second line is the end of the comment. The next token is *.

12.3 X/Open C Translation Phases
The X/Open C compilers do not follow such a simple sequence of phases, nor do they guarantee
when these steps are applied. A separate preprocessor recognises tokens and white spaces at the
same time that it replaces macros and handles directive lines. The output is then completely
retokenised by the compiler before it parses the language and generates the code.

The tokenisation process within the preprocessor is performed on a moment-by-moment basis
and macro replacement is done as a character-based operation and not as a token-based
operation. This means that tokens and white spaces could have a great deal of variation during
preprocessing.

There are a number of differences that arise between these two approaches. The following four
sections discuss differences in code behaviour due to line-splicing, macro replacement, string
literal production and token pasting.

12.4 Logical Source Lines
In X/Open C, backslash and new-line pairs are allowed only as a means to continue a directive,
a string literal or a character constant to the next line. ISO C extended the notion so that a
backslash and new-line pair can continue anything to the next line. The result is called a logical
source line . Therefore, any code that relies on the separate recognition of tokens on either side of
a backslash and new-line pair does not behave as expected with an ISO C compiler.

256 XPG3-XPG4 Base Migration Guide, Version 2

Tokenisation and Preprocessing Macro Replacement

12.5 Macro Replacement
Prior to ISO C, the macro replacement process was never described in any significant detail.
This vagueness spawned many divergent implementations. Any X/Open C code that relies on
anything fancier than constant replacement and simple macros is probably not truly portable.
There are a number of differences between the X/Open C macro replacement implementation
and the ISO C version. However, nearly all uses of macro replacement, with the exception of
token pasting and string literal production, produce exactly the same series of tokens as before.

The major change to macro replacement is to require macro arguments (other than those that are
operands of the macro substitution operators # and ##) to be expanded recursively prior to their
substitution in the replacement token list. However, this change seldom produces an actual
difference in the resulting tokens.

Part 4: C-language Migration 257

String Literal Production Tokenisation and Preprocessing

12.6 String Literal Production
In X/Open C, the following code:

#define str(a) "a!"
str(x y)

produced the string literal:

"x y!"

To do this, the preprocessor searched inside string literals (and character constants) for
characters that looked like the macro’s arguments.

ISO C recognised the importance of this feature, but could not condone operations on parts of
tokens. In ISO C, all invocations of the above macro produce the string literal:

"a!"

To achieve the desired effect in ISO C, make use of the # macro substitution operator and the
concatenation of string literals. A macro argument preceded by # has its corresponding
unexpanded argument tokens converted into a string literal:

#define str(a) #a "!"
str(x y)

The above produces the two string literals:

"x y" "!"

which, after concatenation, produces:

"x y!"

Unfortunately, there is no direct replacement for the analogous operation for character
constants. For example, in X/Open C:

#define CNTL(ch) (037 & ’ch’)
CNTL(L)

would produce:

(037 & ’L’)

which, in turn, evaluates to the ASCII <control>-L character.

The best solution for ISO C is to change all uses of this macro to:

#define CNTL(ch) (037 & (ch))
CNTL(’L’)

which is arguably more readable and more useful, as it can also be applied to expressions.

258 XPG3-XPG4 Base Migration Guide, Version 2

Tokenisation and Preprocessing Token Pasting

12.7 Token Pasting
In X/Open C, there are at least two ways to combine two tokens. Both invocations in the
following code produce a single identifier x1 out of the two tokens x and 1:

#define self(a) a
#define glue(a,b) a/**/b
self(x)1
glue(x,1)

In ISO C, both the above invocations produce the two separate tokens x and 1.

The second of the above two methods can be rewritten for ISO C by using the ## macro
substitution operator. This operator removes any white space around it and concatenates the
adjacent tokens to create a new token:

#define glue(a,b) a ## b
glue(x, 1)

Since ## is an actual operator, the invocation can be much freer with white space both in the
definition and invocation.

There is no direct approach to produce the first of the old-style pasting schemes. However, since
that scheme put the burden of the pasting at the invocation, it was used less frequently than the
second form.

Remember that # and ## should only be used when _ _STDC_ _ is defined.

12.8 New Macros
ISO C has five new predefinition macros. They are:

_ _LINE_ _ This is the current line number in decimal.

_ _FILE_ _ This is the name of the file being compiled, as a string literal.

_ _DATE_ _ This is the date of compilation, as a string literal.

_ _TIME_ _ This is the time of compilation, as a string literal.

_ _STDC_ _ This is the decimal constant 1. This indicates a conforming implementation.

These macros should not be defined using #define or undefined using #undef.

12.9 Changes to #define
The operation of the #define directive has some additional features and some additional
constraints as to how the directive can be used.

From the viewpoint of existing code, only the following constraints are relevant:

• Macros are no longer recursive. The name of the macro currently being expanded is not itself
expanded if it occurs in the replacement string.

• Preprocessing directives are not allowed within a list of arguments to a macro.

• A macro name should not be redefined without an intervening #undef directive, unless the
new definition is identical to the old one. If in doubt, the #undef directive should be used.
This is ignored if the specified identifier is not currently defined as a macro name.

Part 4: C-language Migration 259

Changes to #define Tokenisation and Preprocessing

260 XPG3-XPG4 Base Migration Guide, Version 2

Chapter 13

Types

This chapter explains the use of the ISO C type qualifiers category, which contains the keywords
const and volatile. It also describes the new types: incomplete, compatible and composite.
This chapter explains where new types are permitted, and why they are useful.

13.1 Using Type Qualifiers
If an object is declared as a type qualifier const, the compiler may place that object in read-only
memory. The program is not allowed to change its value and cannot make a further assignment
to it.

Declaring an object as a type qualifier volatile warns the compiler that unexpected,
asynchronous events may affect that object. Knowing this the compiler does not make any
assumptions about that object. For example, the compiler does not try to optimise that object.

13.1.1 Type Qualifiers in Derived Types

The type qualifiers are unique in that they may modify names declared with typedef, such as
size_t, and derived types, such as pointers. Derived types are those parts of the C language
declarations that construct more complex types from the basic types. Pointers, arrays, functions,
structures and unions are derived types. Except for functions, one or both type qualifiers can be
used to change the behaviour of a derived type.

An example use of the type qualifier const is:

const int five = 5;

This declares and initialises an object with type const int, whose value is not changed by a
correct program.

In fact, the order of the keywords is not significant to an ISO C compiler. For example, the
declarations:

int const five = 5;

and:

const five = 5;

are identical to the above declaration in their effects.

The next example shows a type qualifier const applied to a pointer to an integer; that is, to a
derived type:

int * const pci = &five ;

Here an object with type pointer to const int is declared, which initially points to the previously
declared object. Note that the pointer itself does not have a qualified type, but it points to a
qualified type. This means that the pointer can be changed to point to another integer, but it
cannot be used directly to modify the object that it points to.

The object that pci points to can be modified by using a cast, for example:

*(int *) pci = 17;

Part 4: C-language Migration 261

Using Type Qualifiers Types

Note that the behaviour of this code is undefined if pci actually points to a type const object.

The next example declares a type const pointer to a type int that is defined elsewhere in the
program:

extern int *const cpi;

Here, the value of cpi is not changed by a correct program, but it can be used to modify the object
to which it points. Notice that const comes after the * in the above declaration.

The following pair of declarations produces the same effect as the previous example:

typedef int *INT_PTR;
extern const INT_PTR cpi;

The next example results in a type qualifier const pointer to a const int:

const int *const cpci ;

13.1.2 The const Keyword

With hindsight, readonly would have been a better choice for this keyword than const. If const
is read as readonly, declarations such as:

char *strcpy(char *, const char *);

are more easily understood. Here, the second argument is only used to read type char values,
while the first argument overwrites the types char to which it points.

Furthermore, a pointer to a const int (as in a previous example), can still change the value of the
object to which it points by use of a cast.

The two main uses for const are:

• to declare, possibly large, compile-time initialised tables of information as unchanging

• to specify that pointer arguments do not modify the objects to which they point.

The first use allows a program’s data to be shared by other concurrent invocations of the same
program. Any attempt to modify this invariant data can be detected immediately by some sort
of memory protection fault.

The second use probably helps locate potential errors in programs. For example, functions that
temporarily place a null character into the middle of a string are detected at compile time, if
passed a pointer to a string that cannot be modified.

13.1.3 The volatile Keyword

For the programmer, volatile has several implications. For a compiler writer, it has one
implication: no code generation shortcuts can be taken when accessing such an object.

It is a programmer’s responsibility to declare every object that has the appropriate special
properties, with a type qualifier volatile.

Four example uses of volatile objects are:

• an object that is a memory-mapped I/O port

• an object that is shared between multiple concurrent processes

• an object that is modified by an asynchronous signal handler

262 XPG3-XPG4 Base Migration Guide, Version 2

Types Using Type Qualifiers

• an automatic storage duration object declared in a function that calls setjmp() and whose
value is changed between the call to setjmp() and a corresponding call to longjmp().

The first three examples are all instances of an object whose value can be modified at any point
during the execution of the program. For example, the seemingly infinite loop:

flag = 1;
while (flag)

;

is completely reasonable so long as flag has a type qualifier volatile, for example:

volatile int flag;

If the program is not going to loop forever, some asynchronous event needs to set flag to zero.

If flag does not have a type qualifier volatile, for example:

int flag;

the compilation system is free to change the above loop into a truly infinite loop that completely
ignores the value of flag .

The fourth example, involving variables local to functions that call setjmp(), is more involved.
There are no guarantees about the values for objects matching the fourth case. To provide the
most desirable behaviour, the longjmp() function would be required to examine every stack
frame between the function calling setjmp() and the function calling longjmp() for saved register
values. The possibility of asynchronously created stack frames makes this task even more
complex. Therefore most implementors only document the undesirable side effect.

When an automatic object is declared with a type qualifier volatile, the compilation system
knows that it has to produce code that exactly matches what the programmer wrote. Therefore,
the most recent value for such an object is always in memory and as such is guaranteed to be
up-to-date when longjmp() is called.

Part 4: C-language Migration 263

Incomplete Types Types

13.2 Incomplete Types
The ISO C standard uses the term incomplete type to formalise a fundamental aspect of the
language that is often misunderstood.

The ISO C standard separates types into three distinct sets:

• function types

• object types

• incomplete types.

Function types are well known. Object types cover everything else, except when the size of the
object is not known. Incomplete types refer to objects whose size is not known.

There are only three variations of incomplete types:

• void

• arrays of unspecified length

• structures and unions with unspecified content.

The type void differs from the other two in that it is an incomplete type that cannot be
completed; it serves as a special function return and argument type.

Examples of incomplete types, include:

char s[];
struct a { struct b * bp; };

where the content of struct b is not yet listed.

13.2.1 Completing Incomplete Types

An array type is completed by specifying the array size in a following declaration which is in the
same scope as the object.

An incomplete structure or union type is completed by specifying the content in a following
declaration which is in the same scope.

13.2.2 Declarations

Certain declarations can use incomplete types, but others require complete object types. Those
declarations that require object types are:

• array elements

• members of structures or unions

• objects local to a function.

All other declarations permit incomplete types. For example, the following are permitted:

• pointers to incomplete types

• functions returning incomplete types

• incomplete function argument types

• typedef names for incomplete types.

The return and argument types for functions are special. Except for void, an incomplete type
used in such a manner must be completed by the time the function is defined or called.

264 XPG3-XPG4 Base Migration Guide, Version 2

Types Incomplete Types

Note that since array and function argument types are rewritten to be pointer types, a seemingly
incomplete array argument type is not actually incomplete. The typical declaration of argv in
main():

char * argv [];

as an unspecified length array of type char pointers, is rewritten to be a pointer to char pointers,
and is therefore a complete type.

13.2.3 Expressions

Most expression operators require (complete) object types. The only three exceptions are:

• the unary & operator

• the first operand of the comma operator

• the second and third operands of the ?: operator.

Most operators that accept pointer operands also permit pointers to incomplete types, unless
pointer arithmetic is required.

13.2.4 Rationale

The ISO C standard would be simpler without incomplete types, but incomplete types allow
forward references in structures and unions, which cannot be done any other way in C.

The only way to get two structures that have pointers to each other (without resorting to
potentially invalid casts) is with incomplete types, for example:

struc t a { struct b *bp; };
struc t b { struct a *ap; };

13.2.5 Examples

Defining typedef names for incomplete structure and union types is quite useful. Complex data
structures that contain pointers to each other, can be simplified by declaring a list of typedef
statements as follows:

typedef struct item_tag Item;
typedef union note_tag Note;
typedef struct list_tag List;

. . .
struct item_tag { . . . };

. . .
struct list_tag {

List *next;
. . .

};

If structures and unions exist whose contents should not be available to the rest of the program,
the tag can be declared, without the contents, in a header. Other parts of the program can use
pointers to the incomplete structure or union without any problems, provided they do not
attempt to use any of its members.

Part 4: C-language Migration 265

Incomplete Types Types

Another useful incomplete type is an external array of unspecified length. It is not always
necessary to know the exact size of an array to make use of its contents, for example:

extern char *tzname[];
...
printf("Alternative time zone: %s\n", tzname[1]);

266 XPG3-XPG4 Base Migration Guide, Version 2

Types Compatible and Composite Types

13.3 Compatible and Composite Types
With ISO C it is possible to make two declarations for the same entity that are not identical. The
ISO C standard uses the term compatible type to denote those types that are close enough to be
considered the same.

Composite types are composite types, the result of combining two compatible types.

13.3.1 Multiple Declarations

If a C program were only allowed one declaration for each object or function, compatible types
would not be needed. However, function prototypes, separate compilation and linkage all
require such a capability.

Separate translation units (that is, source files) have different rules for type compatibility from
the rules for type compatibility within a single translation unit.

13.3.2 Separate Compilation

Since each compilation probably looks at different source files, most of the rules for compatible
types across separate compilations are structural in nature.

• Matching scalar (that is, integral, floating and pointer) types must be compatible, as if they
were in the same source file.

• Matching structures, unions and enumeration types must have the same number of
members, and each matching member must have a compatible type. This includes bit-field
widths.

• Matching structures and unions must have the members in the same order. The order of
enumeration type members does not matter.

• Matching enumeration type members must have the same value.

An additional requirement is that the names of members, including the lack of names for
unnamed members, must match for structures, unions and enumeration types. However, their
respective tags need not necessarily match.

13.3.3 Single Compilation

When two declarations in the same scope describe the same object or function, the two
declarations must specify compatible types. These two types are then combined into a single
composite type that is compatible with the first two.

Compatible types are defined recursively. At the bottom are the type specifier keywords, along
with the rules that say that type unsigned short is the same as type unsigned short int and that
a type without type specifiers is the same as one with type int.

All other types are compatible only if the types from which they are derived are compatible. For
example, two qualified types are compatible if the qualifiers, const and volatile, are identical and
the unqualified base types are compatible.

Part 4: C-language Migration 267

Compatible and Composite Types Types

13.3.4 Compatible Pointer Types

Two pointer types are compatible if the types they point to are compatible and the two pointers
are identically qualified. The qualifiers for a pointer are specified after the *, so that these two
declarations:

int *const cpi ;
int *volatile vpi ;

declare two differently qualified pointers to the same type: int.

13.3.5 Compatible Array Types

Two array types are compatible if their element types are compatible and, if both array types
have a specified size, they match. This last part means that an incomplete array type is
compatible both with another incomplete array type and an array type with a specified size.

13.3.6 Compatible Function Types

Two function types are compatible if their return types are compatible. If either or both function
types have prototypes, the rules get more complicated.

For two function types with prototypes to be compatible, they also must have the same number
of arguments, including use of the ellipsis notation, and the corresponding arguments must be
argument-compatible.

For an old-style function definition to be compatible with a function type with a prototype, the
prototype arguments must not end with an ellipsis and each of the prototype arguments must be
argument-compatible with the corresponding old-style argument, after application of the default
argument promotions.

For an old-style function declaration (not a definition) to be compatible with a function type
with a prototype, the prototype arguments must not end with an ellipsis (. . .) and all of the
prototype arguments must have types that are unaffected by the default argument promotions.

For two types to be argument-compatible, the types must be compatible after the top-level
qualifiers, if any, are removed, and after a function or array type is converted to the appropriate
pointer type.

Special Cases

There are a few surprises in this area. For example, type signed int behaves the same as type int.

Note also that each enumeration type must be compatible with some integral type. For portable
programs this means that enumeration types effectively are separate types; for the most part, the
ISO C standard views them in that manner.

13.3.7 Composite Type

The construction of a composite type from two compatible types is also defined recursively. The
ways compatible types can differ from each other are due either to incomplete arrays or to old-
style function types. As such, the simplest description of the composite type is that it is the type
compatible with both of the original types, including every available array size and every
available argument list from the original types.

268 XPG3-XPG4 Base Migration Guide, Version 2

Types Compatible and Composite Types

For example, the following two function declarations are compatible:

int f(int (*)(), double (*)[3]);
int f(int (*)(char *), double (*)[]);

The resultant composite type, which is compatible with both declarations, is:

int f(int (*)(char *), double (*)[3]);

Part 4: C-language Migration 269

Types

270 XPG3-XPG4 Base Migration Guide, Version 2

Chapter 14

Expressions

This chapter discusses the differences between X/Open C and ISO C in the rules for grouping
and evaluating expressions. It also describes some other changes to expressions.

14.1 X/Open C Rearrangement
X/Open C compilers are allowed to rearrange expressions involving adjacent operators that are
mathematically associative and commutative, even in the presence of parentheses.

An operator, op, is commutative if:

a op b = b op a

For example, + is commutative, but − is not.

An operator, op, is associative if:

(a op b) op c = a op (b op c)

+ is associative, but − is not.

The following example is used to compare X/Open C and ISO C features:

int i, *p, f(void), g(void);
i = *++p + f() + g();

For X/Open C, the following three possible groupings are valid for the example. The groupings
are shown using left and right braces:

i = { {*++p + f()} + g() };
i = { *++p + {f() + g()} };
i = { {*++p + g()} + f() };

Moreover, all of these groupings are valid for either of the following:

i = *++p + (f() + g());
i = (g() + *++p) + f();

If this expression is evaluated on an architecture for which either overflows cause an exception,
or when the sign of the value can be inverted across an overflow, these three groupings behave
differently if one of the additions overflows.

For such expressions on these architectures, the only recourse available in X/Open C is to split
the expression to force a particular grouping. The following are possible rewrites that enforce
the above three groupings respectively:

i = *++p; i += f(); i += g();
i = f(); i += g(); i += *++p;
i = *++p; i += g(); i += f();

Part 4: C-language Migration 271

The ISO C Rules Expressions

14.2 The ISO C Rules
ISO C does not allow the rearrangement of operations that are mathematically associative and
commutative but are not actually so on the target architecture. Thus, the precedence and
associativity of the ISO C grammar completely describes the grouping for all expressions. All
expressions must be grouped as they are parsed. This means that the example is grouped in the
following way:

i = { {*++p + f()} + g() };

However, note that this still does not mean that f() must be called before g(), nor that p must be
incremented before g() is called.

It does mean, however, that in ISO C, expressions need not be split to guard against unintended
overflows.

Parentheses

The ISO C standard is often erroneously described as honouring parentheses or evaluating
according to parentheses; this is not true.

In ISO C, expressions are grouped according to the way they are parsed. This means that
parentheses still only serve as a way of controlling how an expression is parsed. The natural
precedence and associativity of expressions carry exactly the same weight as parentheses.

If the example is:

i = (((*(++p)) + f()) + g());

it makes no difference to its grouping, and thus to its evaluation.

272 XPG3-XPG4 Base Migration Guide, Version 2

Expressions Advantages of Rearrangement

14.3 Advantages of Rearrangement
The reasons for the X/Open C rearrangement rules are:

• The rearrangements provide many more opportunities for optimisations, such as compile-
time constant folding.

• The rearrangements do not change the result of integral-typed expressions on most
machines.

• Some of the operations are both mathematically and computationally commutative and
associative on all machines.

In general, an implementation is permitted to deviate from the abstract machine description,
provided that deviations do not change the behaviour of a valid C program. Therefore any
rearrangement that has no effect on the application is permissible. The result is that this change
in C does not have a significant impact on most C programmers.

Part 4: C-language Migration 273

Other Changes to Expressions Expressions

14.4 Other Changes to Expressions

14.4.1 Type Float

A type float might not be lengthened to a type double when it appears in an expression. This
means that expressions with operands of type float might be computed at a lower precision than
double precision. Casts can be used to force double precision computations.

14.4.2 Pointer Subtraction

The resulting type of pointer subtraction no longer needs to be type int. It is a signed integral
type given the name ptrdiff_t in <stddef.h>.

14.4.3 Empty Structure Declarations

A special meaning is given to the form:

struct x;

This hides any previous declarations of x (as a tag) from an outer scope. This is useful when
declaring two mutually referencing structures. For example, the following code does not behave
as the programmer probably intended:

struct x {int i;};
{

struc t y { struct x *xp; };
struc t x { struct y *yp; };

}

The x of struct y refers to the outer declaration of x. But by adding the empty structure
declaration as follows:

struct x {int i;};
{

struct x;
struc t y { struct x *xp; };
struc t x { struct y *yp; };

}

the outer declaration of x is not associated with the inner declaration of y.

274 XPG3-XPG4 Base Migration Guide, Version 2

Expressions Scope of Identifiers

14.5 Scope of Identifiers
Many X/Open C compilers promote the scope of identifiers with external linkage to file scope.
However, in ISO C, identifiers declared in a nested scope are forgotten once the scope ends, for
example:

f1()
{

float ffun();
}

f2()
{

int i = ffun();
}

Here the declaration of ffun() is not visible in f2(). This means that no conversion is performed
because it is assumed that ffun() returns a type int.

14.5.1 String Literals

In X/Open C, each string literal is required to be distinct and modifiable. (This is why they are
called literals instead of constants.) ISO C allows these to be constant, permitting string literals
to be placed into read-only memory, as well as encouraging the elimination of duplicate
identical storage.

Code that modifies a string literal should replace the string with the name of a static array
initialised to contain the string, as follows:

p = make_temp("tempXXX");

should be replaced with:

static char template[] = "tempXXX";
. . .

p = make_temp(template);

if make_temp() overwrites the string’s characters, even if only temporarily.

Part 4: C-language Migration 275

Expressions

276 XPG3-XPG4 Base Migration Guide, Version 2

Chapter 15

Internationalisation

This chapter describes the internationalisation features of the ISO C standard:

• multi-byte characters

• wide-character codes.

It also explains how they are used.

15.1 Multi-byte Characters
The basic difficulty in an Asian environment is that a large number of ideograms are needed for
input and output. To work within the constraints of usual computer architectures, these
ideograms are encoded as sequences of bytes. The associated operating systems, application
programs and terminals understand these sequences as individual ideograms. These encodings
also allow single-byte characters to be intermixed with ideogram byte sequences. The difficulty
associated with recognising distinct ideograms depends on the encoding scheme used.

The term multi-byte character denotes a byte sequence that encodes a character, no matter what
encoding scheme is employed. All multi-byte characters are members of the extended character
set. A single-byte character is a special case of a multi-byte character. Essentially the only
requirement placed on a multi-byte character’s encoding is that it cannot use a null character as
part of its encoding.

The ISO C standard specifies that program comments, string literals, character constants and
header names are sequences of multi-byte characters.

15.2 Encoding Variations
An encoding scheme can be described as being stateless or stateful. In the first type, each multi-
byte character is self-identifying. This means that any multi-byte character can simply be
inserted between any pair of multi-byte characters. For example, one possible encoding choice is
that each byte of a character that is not a single byte has the high-order bit set; the number of
bytes in the character is determined by the value of the initial byte. The coded representation of
each character is determined by applying the codeset encoding rules that associate a numeric
value to each character.

In the second scheme, special shift bytes change the interpretation of subsequent bytes. An
example is the method by which most character terminals get in and out of line-drawing mode.
For this case, ISO C has the additional requirement that each comment, string literal, character
constant and header name must both begin and end in the unshifted state.

Part 4: C-language Migration 277

Wide-character Codes Internationalisation

15.3 Wide-character Codes
Some of the inconvenience of handling multi-byte characters would be eliminated if all
characters were of a uniform number of bytes or bits. There can be thousands of ideograms in a
character set, so a 16-bit or 32-bit sized integral value should be used to hold all its members.
The full Chinese alphabet includes more than 65000 ideograms.

ISO C includes the typedef name wchar_t as the implementation-defined integral type large
enough to hold all members of the extended character set, for example:

wchar_t c;

declares a wide-character code c which can hold any member of the extended character set.

For each wide-character code there is a corresponding multi-byte character and vice versa. The
wide-character code that corresponds to a character of the portable character set is required to
have the same value as the character of the portable character set. This requirement includes the
null character. However, there is no guarantee that the value of the macro EOF can be stored in
a wchar_t. (Just as EOF might not be representable as a char.)

15.4 Conversion Functions
Text recorded or generated externally to a program is normally encoded as a series of multi-byte
characters. To process these characters internally, it is often convenient first to convert them to
wide-character codes, process them, and convert them back to byte sequences for output. ISO C
provides five library functions for this purpose:

mblen() Length of next multi-byte character.

mbtowc() Convert multi-byte character to wide-character code.

wctomb() Convert wide-character code to multi-byte character.

mbstowcs() Convert multi-byte character string to wide-character string.

wcstombs() Convert wide-character string to multi-byte character string.

The following is an example use of mbtowc():

char *mb;
wchar_t wchar;

. . .
mbtowc(&wchar, mb, strlen(mb));

The argument mb points to a multi-byte character. After the call to mbtowc(), wchar holds the
equivalent wide-character code.

For most application programs, there is no need to convert any multi-byte characters to or from
wide-character codes. Utilities such as diff, for example, read in and write out multi-byte
characters, only needing to check for an exact byte-for-byte match. More complicated programs
that use regular expression pattern matching, such as grep, may need to understand multi-byte
characters. However, this knowledge can be localised to the functions that manage the regular
expressions. The utility grep requires no other special knowledge about how to handle multi-
byte characters.

278 XPG3-XPG4 Base Migration Guide, Version 2

Internationalisation Features of the C Language

15.5 Features of the C Language
ISO C provides wide-character constants and wide string literals. These have the same form as
their non-wide versions except that they are immediately prefixed by the letter L:

’x’ regular character constant
’Y=’ regular character constant
"abcY=xyz" regular string literal
L’x’ wide-character constant
L’Y=’ wide-character constant
L"abcY=xyz" wide string literal

Notice that multi-byte characters are valid in both the regular and wide versions. The sequence
of bytes necessary to produce the ideogram Y= is encoding-specific, but if it consists of more than
one byte, the value of the character constant ’Y=’ is implementation-defined.

When the compilation system encounters a wide-character constant or wide-string literal, each
multi-byte character is converted, as if by calling the mbtowc() function, into a wide-character
code. Thus:

L’Y=’ /* has type wchar_t */
L"abcY=xyz" /* has type wchar_t[8] */

Note the length of the string is eight because it is terminated by a zero-valued wchar_t.

Just as regular string literals can be used as a shorthand method for character array initialisation,
wide-string literals can be used to initialise wchar_t arrays:

wchar_t *wp = L"aY =z";
wchar_t x[] = L"aY =z";
wchar_t y[] = {L’a’, L’Y =’, L’z’, 0};
wchar_t z[] = {’a’, L’Y =’, ’z’, ’\0’};

In the above example, the three arrays x, y and z, and the sequence pointed to by wp, have the
same length and all are initialised with identical values.

Finally, adjacent wide-string literals are concatenated, just as with regular string literals.
However, adjacent regular and wide-string literals cannot be concatenated. In fact, a compiler is
not even required to complain if it does not accept such concatenations.

Part 4: C-language Migration 279

Internationalisation

280 XPG3-XPG4 Base Migration Guide, Version 2

Chapter 16

Standard Headers and Reserved Names

This chapter presents the various categories of reserved names and some rationale for their
reservations. This chapter also includes the set of naming rules for the reserved names.

16.1 Balancing Process
The ISO C standard includes library functions, macros and header files. This allows truly
portable C programs to be written, but it means that there is a large set of reserved names.

For backwards compatibility, the ISO C standard includes names like printf and NULL.
However, each name reserved in this way reduces the set of names available for free use in C
programs.

On the other hand, before standardisation, compiler writers were free to add both new keywords
to their compilers and names to headers. In this situation a program could not be guaranteed to
compile on a different compiler from the one on which it was developed. In fact, a program
might not even compile on the next release of the compiler on which it was developed.

Therefore, the ISO C standard permits extra names provided they conform to certain rules. The
ISO C standard contains 32 keywords and almost 250 names in its headers, none of which
necessarily follow any particular naming pattern.

Part 4: C-language Migration 281

Standard Headers Standard Headers and Reserved Names

16.2 Standard Headers
The ISO C standard provides 15 standard headers:

<assert.h> Assertion checking.

<ctype.h> Character handling.

<errno.h> Error conditions.

<float.h> Floating point limits.

<limits.h> Other data type limits.

<locale.h> Program locale.

<math.h> Mathematics.

<setjmp.h> Non-local jumps.

<signal.h> Signal handling.

<stdarg.h> Variable arguments.

<stddef.h> Common definitions.

<stdio.h> Standard input/output.

<stdlib.h> General utilities.

<string.h> String handling.

<time.h> Date and time.

A compilation system can provide more headers, but a strictly conforming ISO C program can
only use these.

Other standards disagree slightly regarding the contents of some of these headers. For example,
the POSIX-1 standard specifies that fdopen() is declared in <stdio.h>. To allow these two
standards to coexist, POSIX requires that the macro _POSIX_SOURCE be defined using #define
before a standard header is included. The POSIX-specific names are then declared and no more
than those permitted by POSIX. There is also a similar macro, _XOPEN_SOURCE, that provides
for all the X/Open extensions to the ISO C standard.

With the exception of <assert.h>, the ISO C standard headers are both self-sufficient and
idempotent. Self-sufficiency means that any standard header does not need any other standard
header to be included using #include before or after it. Idempotency means that any standard
header can be included any number of times without causing problems.

282 XPG3-XPG4 Base Migration Guide, Version 2

Standard Headers and Reserved Names Reserved Names

16.3 Reserved Names
The ISO C standard places further restrictions on an implementation’s libraries. In the past,
most programmers learned not to use names like read and write for their own functions. The
ISO C standard requires that only names reserved by it are introduced by references within the
implementation.

The ISO C standard reserves a subset of all possible names for implementations to use as they
choose. This class of names consists of identifiers that begin with an underscore and continue
with either another underscore or a capital letter. That is, all names that match the following
regular expression:

_[_A-Z][0-9_a-zA-Z]*

This means that, strictly speaking, a program’s behaviour is undefined if it uses such an
identifier.

However, undefined behaviour comes in different degrees. For an implementation that
conforms to the POSIX-1 standard, if _POSIX_SOURCE is used, the program’s undefined
behaviour consists of certain additional names in certain headers, and the program still
conforms to an accepted standard. This deliberate loophole in the ISO C standard allows
implementations to conform to seemingly incompatible specifications. On the other hand, an
implementation that does not conform to the POSIX-1 standard is free to behave in any manner
when encountering a name such as _POSIX_SOURCE .

The ISO C standard also reserves all other names that begin with an underscore for use in header
files as regular file scope identifiers and as tags for structures and unions, but not in local scopes.
This means that the common existing practice of naming functions like _filbuf and _doprnt to
implement hidden parts of the library is sanctioned.

ISO C reserves all names that match the following patterns. These are reserved for
implementations and future standards:

<errno.h> E[0-9A-Z].*
<ctype.h> (to|is)[a-z].*
<locale.h> LC_[A-Z].*
<math.h> existing function names suffixed with f or l
<signal.h> (SIG|SIG_)[A-Z].*
<stdlib.h> str[a-z].*
<string.h> (str|mem|wcs)[a-z].*

Names that begin with a capital letter are macros and are thus reserved only when the
associated header is included. The rest of the names designate functions and therefore cannot be
used to name global objects or functions.

Part 4: C-language Migration 283

Names Safe to Use Standard Headers and Reserved Names

16.4 Names Safe to Use
The rules regarding when certain names are reserved are complicated. There are, however, four
fairly simple rules which if followed avoid collisions with any ISO C reserved names:

1. Use #include to include all system headers at the top of source files.

2. Do not define or declare any names that begin with an underscore.

3. Use an underscore or a capital letter somewhere within the first few characters of all file
scope tags and regular names.

Note: Beware of the va_ prefix found in stdarg.h.

4. Use a digit or a non-capital letter somewhere within the first few characters of all macro
names.

Note: Almost all names beginning with an E are reserved if <errno.h> is included.

Most implementations continue to add names to the standard headers. The
_POSIX_SOURCE macro is principally used to remove the added declarations.

284 XPG3-XPG4 Base Migration Guide, Version 2

Index

!... ..38
#define

changes ...259
$HOME...62
<assert.h>...225
<cpio.h>..225
<ctype.h>..225
<dirent.h>...225
<errno.h>..225
<fcntl.h> ...226
<float.h> ...226
<fmtmsg.h> ...226
<fnmatch.h> ..226
<ftw.h> ...226
<glob.h>..226
<grp.h> ...226
<iconv.h>..227
<langinfo.h> ..227
<libgen.h> ..227
<limits.h> ...227
<locale.h>...228
<math.h> ..228
<monetary.h>..228
<ndbm.h>...228
<nl_types.h>..228
<poll.h>...228
<pwd.h> ...229
<regex.h>..229
<regexp.h>...229
<re_comp.h>..229
<search.h>..229
<setjmp.h> ...229
<signal.h>...230
<stdarg.h>..230
<stddef.h>..230
<stdio.h>...231
<stdlib.h> ...231
<string.h>...232
<strings.h> ...232
<stropts.h>...232
<sys/ipc.h>..232
<sys/mman.h>..232
<sys/msg.h>..232
<sys/resource.h>..233
<sys/sem.h> ..233
<sys/shm.h>..233

<sys/stat.h>...233
<sys/statvfs.h> ...234
<sys/time.h>...234
<sys/timeb.h>...234
<sys/times.h> ...234
<sys/types.h> ...234
<sys/uio.h>..234
<sys/utsname.h>..234
<sys/wait.h> ...234
<syslog.h>..235
<tar.h>...235
<termios.h>..235
<time.h> ...235
<ucontext.h>..236
<ulimit.h>...236
<unistd.h>..236
<utime.h>...237
<utmpx.h> ...237
<varargs.h>..237, 248
<wchar.h> ..237
<wordexp.h>...237
[[. ..38
]] . ..38
_CS_PATH ...131
_longjmp() ...167
_POSIX2* ..237
_POSIX2_CHAR_TERM203
_POSIX2_C_BIND..203
_POSIX2_C_DEV..203
_POSIX2_C_VERSION..203
_POSIX2_FORT_DEV..203
_POSIX2_FORT_RUN ...203
_POSIX2_LOCALEDEF...203
_POSIX2_SW_DEV ..203
_POSIX2_UPE ...203
_POSIX2_VERSION...203
_POSIX_CHOWN_RESTRICTED6, 236
_POSIX_C_SOURCE..93
_POSIX_JOB_CONTROL204-206, 236
_POSIX_NGROUPS_MAX227
_POSIX_NO_TRUNC6, 101, 121, 128-129

......................136, 143, 146, 149, 165, 170, 174-176
..183-184, 196, 211-212, 236

_POSIX_SAVED_IDS ...236
_POSIX_SOURCE...93
_POSIX_VDISABLE.....................................6, 30, 236

XPG3-XPG4 Base Migration Guide, Version 2 285

Index

_SC_ATEXIT_MAX..237
_SC_COLL_WEIGHTS_MAX..............................236
_SC_EXPR_NEST_MAX236
_SC_IOV_MAX ...237
_SC_LINE_MAX...236
_SC_PAGESIZE...237
_SC_PAGE_SIZE ..237
_SC_RE_DUP_MAX ..236
_SC_STREAM_MAX..236
_SC_TZNAME_MAX ..236
_SC_XOPEN_CRYPT ..236
_SC_XOPEN_ENH_I18N236
_SC_XOPEN_SHM ..236
_setjmp() ..187
_tolower() ..208
_toupper()..208
_XOPEN_CRYPT..203
_XOPEN_ENH_I18N...203
_XOPEN_IOV_MAX..228
_XOPEN_SHM..203
_XOPEN_SOURCE ..93
_XOPEN_SOURCE_EXTENDED..........................93
_XOPEN_UNIX ..203, 237
_XOPEN_VERSION203, 236
_XOPEN_XPG2...237
_XOPEN_XPG3...237
_XOPEN_XPG4...237
_ _STDC_ _ ...245-246, 248
a64l() ...121
abort() ...121
abs() ..121
access() ...121
acos()...122
acosh() ..122
admin ..50

affected by LC_CTYPE..20
separating arguments..31

advance() ...122
alarm()..122
alias..38, 50

affected by LC_CTYPE..20
aliases ..38
ALT_DIGITS ..227
application

existing..4, 9
new ..4

ar ..50
affected by LC_CTYPE..20
affected by LC_TIME...21

ARFLAGS...23

arguments
variable number..248

arithmetic expansion ...41
asa ..38, 50

affected by LC_CTYPE..20
asctime()...122
asin() ...122
asinh()...123
assert() ..123
at ..50

affected by LC_CTYPE..20
affected by LC_TIME...21

atan()...123
atan2()...123
atanh() ..123
atexit() ..123
ATEXIT_MAX...124, 203, 228
atof() ...124

affected by LC_CTYPE..20
atoi()..124

affected by LC_CTYPE..20
atol()..124

affected by LC_CTYPE..20
awk ..28, 50

affected by LC_COLLATE19
affected by LC_CTYPE..20
affected by LC_NUMERIC.................................21
separating arguments..31

banner ...52
basename..53

affected by LC_CTYPE..20
basename() ..124
batch ..53

affected by LC_CTYPE..20
affected by LC_TIME...21

bc ..53
affected by LC_CTYPE..20

bcmp() ..124
bcopy() ...125
BC_BASE_MAX..203
BC_DIM_MAX..203
BC_SCALE_MAX...203
BC_STRING_MAX...203
bg ...38, 53

affected by LC_CTYPE..20
brk() ..125
bsd_signal() ...125
bsearch()...125
built-in

regular...46
special ...46

286 X/Open Guide (1995)

Index

byte ..14
bzero() ..125
C language

common usage..241
introduction...241
ISO ...241
Issue4 environment..7
K&R...241
X/Open ..241

c89 ..38, 53
affected by LC_CTYPE..20

cal ...53
affected by LC_CTYPE..20
affected by LC_TIME...21

calendar ..53
affected by LC_CTYPE..20
affected by LC_TIME...21

calloc() ..126
cancel...54

affected by LC_CTYPE..20
cast

using..252
cat ...54

affected by LC_CTYPE..20
catclose() ..126
catgets()..126
catopen() ..126

affected by LC_MONETARY.............................22
cbrt() ...127
CC ..23
cc ..54

affected by LC_CTYPE..20
separating arguments..31

cd..55
affected by LC_CTYPE..20

ceil() ..127
cfgetispeed()..127
cfgetospeed()...127
CFLAGS..23
cflow ..55

affected by LC_COLLATE19
affected by LC_CTYPE..20
separating arguments..31

cfsetispeed() ..127
cfsetospeed() ...128
changes

#define ..259
character ...14

multi-byte ..14, 277
set ...14-15
set description file ..15

set, extended..277
set, portable ...15
wide...277-278

CHARCLASS_NAME_MAX228
charmap..15
CHARSET ..23
chdir() ...128
chgrp..55

affected by LC_CTYPE..20
chmod ...55

affected by LC_CTYPE..20
chmod()..128
chown..55

affected by LC_CTYPE..20
chown() ..129
chroot ..55
chroot()...129
cksum..38, 56

affected by LC_CTYPE..20
clearerr()...129
CLK_TCK...207, 236
clock() ...130
CLOCKS_PER_SECOND130
close() ...130
closedir() ..130
closelog()..130
cmp ..56

affected by LC_CTYPE..20
COCKS_PER_SEC..236
codeset ..14
CODESET...227
codeset

ASCII...15
Kanji ..14
multi-byte support ...16

col...56
affected by LC_CTYPE..20

COLL_WEIGHTS_MAX203
comm...56

affected by LC_COLLATE19
affected by LC_CTYPE..20

command ...38, 56
affected by LC_CTYPE..20
interpreter, selecting ..38
language ...37
names, reserved ..38
search ..43
shell ...43

command substitution ..41
Common Usage C ..7, 241
compatible type ..261, 267

XPG3-XPG4 Base Migration Guide, Version 2 287

Index

array ..268
declaration ...267
function ..268
pointer...268
separate compilation ...267
single compilation..267

compatible types...247
compilation environment93
compile()..130
component definitions...11
composite type..261, 267-268
compress ..38, 56

affected by LC_CTYPE..20
conformance statements ...11
confstr()..131
const ..243, 261-262, 267
constant

integral..254
converting types ...251
cos()...131
cosh() ..131
cp..28, 57

affected by LC_COLLATE19
affected by LC_CTYPE..20
affected by LC_MESSAGES21

cpio ..57
affected by LC_COLLATE19
affected by LC_CTYPE..20
affected by LC_TIME...21

creat()..131
crontab ..57

affected by LC_CTYPE..20
crypt() ...131
csplit ..28, 57

affected by LC_COLLATE19
affected by LC_CTYPE..20
separating arguments..31

ctags...28, 57
affected by LC_COLLATE19
affected by LC_CTYPE..20

ctermid() ..132
ctime() ..132
cu..58

affected by LC_CTYPE..20
cuserid() ...132
cut ..58

affected by LC_CTYPE..20
separating arguments..31

CW.....................9, 26-27, 31, 37-39, 42, 45-47, 69, 77
cxref ...58

affected by LC_COLLATE19

affected by LC_CTYPE..20
separating arguments..31

date ..58
affected by LC_CTYPE..20
affected by LC_TIME...21

DATEMSK..23
daylight...132
DBL_DIG..227
DBL_MAX..227
DBL_MIN...227
dbm_clearerr() ..132
dbm_close()...132
dbm_delete() ...133
dbm_error() ...133
dbm_fetch() ...133
dbm_firstkey() ..133
dbm_nextkey() ...133
dbm_open()...133
dbm_store() ...133
dd ...59

affected by LC_CTYPE..20
definitions...13
delta ...59

affected by LC_CTYPE..20
separating arguments..31

df ..59
affected by LC_CTYPE..20

diff ..59
affected by LC_CTYPE..20
affected by LC_TIME...21

difftime() ..133
dircmp...60

affected by LC_COLLATE19
affected by LC_CTYPE..20

directory structure..29
dirname...60

affected by LC_CTYPE..20
dirname() ...133
dis...60

affected by LC_CTYPE..20
separating arguments..31

div()...134
div_t...231
drand48() ...134
du ...60

affected by LC_CTYPE..20
syntax modified ..31

dup() ...134
EACCESS126, 149, 170, 183-184, 208, 211
EADDRINUSE..101, 225
EADDRNOTAVAIL101, 225

288 X/Open Guide (1995)

Index

EAFNOSUPPORT..101, 225
EAGAIN...144, 175
EALREADY...101, 225
EBADF..126, 140
EBADMSG...101, 180, 225
EBUSY...184
echo..61

affected by LC_CTYPE..20
ECONNABORTED..101, 225
ECONNREFUSED ...101, 225
ECONNRESET ...101, 225
ecvt() ...134
ed..28, 61

affected by LC_COLLATE19
affected by LC_CTYPE..20
syntax modified ..31

EDESTADDRREQ..101, 225
EDOM......................131, 137, 142, 166-167, 177, 194
EDQUOT..101, 225
EFAULT ..210
egrep..28, 62

syntax modified ..31
EHOSTUNREACH ..101, 225
EILSEQ ...101, 225
EINPROGRESS...101, 225
EINTR126, 128-129, 180, 206, 219
EINVAL....................126-128, 180, 192-193, 206, 219
EIO.....................129-130, 141, 144-145, 147-148, 175

...............................180, 183-184, 196, 204-206, 219
EISCONN ..101, 225
EISDIR...180
ellipsis ...243, 247-248, 268
ELOOP.....................101, 121, 128-129, 137, 143, 146

.......................149, 165, 170, 175-176, 183-184, 196

..211-212, 225
EMFILE ..126, 143, 146
EMLINK ...183
empty structure...274
EMSGSIZE ...101, 225
EMULTIHOP...101, 225
ENAMETOOLONG.......................101, 121, 127-129

...............136-137, 143, 146, 149, 165, 170, 174-176

..183-184, 196, 211-212
encrypt()...135
endgrent() ..135
endpwent() ..135
endutxent()..135
ENETDOWN...101, 225
ENETUNREACH...101, 225
ENFILE ...126
ENOBUFS ..101, 225

ENODATA...101, 225
ENOENT..175, 180
ENOEXEC..136
ENOLINK ..101, 225
ENOMEM..126, 136, 158, 175
ENOMSG..126
ENONENT...126
ENOPROTOOPT..101, 225
ENOSR ...101, 175, 225
ENOSTR...101, 225
ENOSYS ...172-173, 186, 207
ENOTBLK ..225
ENOTCONN...101, 225
ENOTDIR...126, 208
ENOTSOCK ..101, 225
ENV ...23
env ...62

affected by LC_CTYPE..20
syntax modified ..31

environ..135
environment variables.......................................14, 23
ENXIO ..145, 219
EOPNOTSUPP..101, 225
EOVERFLOW.........................101, 148, 190, 196, 225
EPERM129, 174, 183-184, 211
EPROTO...101, 225
EPROTONOSUPPORT101, 225
EPROTOTYPE ..101, 225
ERA..227
erand48()..136
ERANGE..........................123, 127, 131, 136-138, 142

..............158, 163, 165-167, 171, 177, 195, 204, 219
ERA_D_FMT ...227
erf()..136
EROFS...208
errno ..136
errors ...101
ESTALE...101, 225
ETIME...101, 225
ETIMEDOUT...101, 225
EWOULDBLOCK...101, 225
ex..28, 62

affected by LC_COLLATE19
affected by LC_CTYPE..20
affected by LC_MESSAGES21
separating arguments..31
syntax modified ..31

exec()...136
EXINIT ..62
exit()..137
exp() ..137

XPG3-XPG4 Base Migration Guide, Version 2 289

Index

expand ..38, 63
affected by LC_CTYPE..20
syntax modified ..31

expansion
arithmetic ...41
parameter ...40
tilde..39

expm1() ..138
expr..28, 63

affected by LC_COLLATE19
affected by LC_CTYPE..20

expression ..271
incomplete types ..265
rearrangement...271-272

EXPR_NEST_MAX...203
extended character set ...277
external variable

quick reference..107
fabs() ...138
false..63
fattach() ..138
FC...23
fc ..38, 63

affected by LC_CTYPE..20
FCEDIT ...23
fchdir()..138
fchmod() ..138
fchown()...138
fclose() ..139
fcntl() ..139
fcvt()..139
fdetach() ...139
fdopen()..140
FD_CLR()...139
feature groups ...92
feof()..140
ferror() ..140
FFLAGS...23
fflush() ..140
ffs() ..140
fg ..38, 63

affected by LC_CTYPE..20
fgetc()..140
fgetpos() ...141
fgets()..141
fgetwc() ..141
fgetws() ..142
fgrep ..63

syntax modified ..31
file...63

affected by LC_CTYPE..20

FILENAME_MAX ..231
fileno() ..142
find...28, 63

affected by LC_COLLATE19
affected by LC_CTYPE..20
affected by LC_MESSAGES21

floor() ..142
FLT_DIG ...227
FLT_MAX...227
FLT_MIN ..227
fmod()...142
fmtmsg() ..142
fnmatch() ...142

affected by LC_COLLATE19
FNM_NOMATCH..142
FNM_PATHNAME..143
fold...38, 63

affected by LC_CTYPE..20
fopen() ..143
FOPEN_MAX ...143, 146, 231
fork() ...144
fort77 ...38, 64

affected by LC_CTYPE..20
fpathconf()...144
fprintf()...144

affected by LC_CTYPE..20
affected by LC_NUMERIC.................................21

fputc() ...144
fputs() ...145
fputwc() ...145
fputws()..145
fread() ...145
free()..145
freopen() ..146
frexp() ...146
fscanf()..146

affected by LC_CTYPE..20
affected by LC_NUMERIC.................................21

fseek() ...147
fsetpos() ...147
fstat()...148
fstatvfs() ...148
fsync()...148
ftell() ...148
ftime() ...148
ftok() ...148
ftruncate() ..149
ftw() ..149
function...38

declaration ...243
prototype..243

290 X/Open Guide (1995)

Index

quick reference..107
fwrite()..149
F_LOCK ..236-237
F_SETLK...139
F_SETLKW...139
F_TEST ..236-237
F_TLOCK..236-237
F_ULOCK...236-237
gamma()...149
gcvt()...150
gencat ..64

affected by LC_CTYPE..20
general terminal interface30
GET..23
get...64

affected by LC_CTYPE..20
separating arguments..31
syntax modified ..31

getc() ...150
getchar() ...150
getconf...64

affected by LC_CTYPE..20
getcontext() ...150
getcwd() ...150
getdate() ...151
getdtablesize() ..151
getegid() ...151
getenv() ..151
geteuid()...151
getgid() ...152
getgrent() ...152
getgrgid() ...152
getgrnam()...152
getgroups() ..152
gethostid() ...152
getitimer()..153
getlogin()..153
getmsg() ...153
getopt()...153
getopts...65

affected by LC_CTYPE..20
getpagesize() ...153
getpass()...154
getpgid() ..154
getpgrp() ..154
getpid()...154
getpmsg()...154
getppid() ..154
getpriority()...155
getpwent() ...155
getpwnam()...155

getpwuid()...155
getrlimit()...155
getrusage()...156
gets() ...156
getsid() ...156
getsubopt() ..156
gettimeofday() ..156
getuid()...156
getutxent() ...156
getw() ...157
getwc()..157
getwchar() ...157
getwd() ...157
GFLAGS..23
GF_PATH ...236
glob()...157

affected by LC_COLLATE19
GLOB_NOCHECK...157
glossary...13
gmtime() ..158
grantpt() ...158
grep..28, 65

affected by LC_COLLATE19
affected by LC_CTYPE..20

hash..65
affected by LC_CTYPE..20

hcreate() ...158
hdestroy() ..158
head...38, 65

affected by LC_CTYPE..20
syntax modified ..31

header..281
standard..282

HISTFILE..23
HISTSIZE..23
hsearch() ..158
hypot()..158
iconv ..65

affected by LC_CTYPE..20
iconv() ..158
iconv_close() ...158
iconv_open() ...159
id ..66

affected by LC_CTYPE..20
identifier ...37

scope ...275
IFS ..39
IF_PATH ...236
ilogb() ...159
incomplete type ..261, 264

completing ...264

XPG3-XPG4 Base Migration Guide, Version 2 291

Index

declaration ...264
expression ..265
rationale..265
typedef..265

incomplete types...264
index() ..159
initstate()..159
insque() ..159
integral constants ...254
interactive use ...31
interactive user..10
interface ..3
internationalisation ..14
interprocess

communication ...102
INT_MAX ..180, 218
INT_MIN ...121, 227
invoking commands ..31
ioctl()...160
IOV_MAX ..203, 228
IPC ...102
isalnum()..160

affected by LC_CTYPE..20
isalpha() ...160

affected by LC_CTYPE..20
isascii() ...160
isastream()...160
isatty() ..160
iscntrl() ...160

affected by LC_CTYPE..20
isdigit() ...160
isgraph()...161

affected by LC_CTYPE..20
islower() ...161

affected by LC_CTYPE..20
isnan()...161
ISOC ..7, 241
isprint()...161

affected by LC_CTYPE..20
ispunct() ...161

affected by LC_CTYPE..20
isspace() ...161

affected by LC_CTYPE..20
isupper()...161

affected by LC_CTYPE..20
iswalnum() ..161

affected by LC_CTYPE..20
iswalpha()..161

affected by LC_CTYPE..20
iswcntrl()..162

affected by LC_CTYPE..20

iswctype() ..162
affected by LC_CTYPE..20

iswdigit()..162
affected by LC_CTYPE..20

iswgraph() ...162
affected by LC_CTYPE..20

iswlower()..163
affected by LC_CTYPE..20

iswprint() ...163
affected by LC_CTYPE..20

iswpunct() ...163
affected by LC_CTYPE..20

iswspace()..163
affected by LC_CTYPE..20

iswupper() ...163
affected by LC_CTYPE..20

iswxdigit() ...163
affected by LC_CTYPE..20

isxdigit()...163
IUCLC...30, 235
j0()..163
jobs...38, 66

affected by LC_CTYPE..20
join ...66

affected by LC_COLLATE19
affected by LC_CTYPE..20
syntax modified ..31

jrand48()...164
keyword

const ..262
volatile ..262

kill ..66
affected by LC_CTYPE..20
syntax modified ..31

kill()...164
killpg() ..164
l64a() ...164
labs() ...164
LANG..23-24, 126, 188
lchown() ...164
lcong48() ..165
LC_*...188
LC_ALL ..18, 23-24, 227
LC_COLLATE ...24
LC_CTYPE ...24, 168-169
LC_MESSAGES....................23-24, 33, 126, 188, 227
LC_MESSGES..198
LC_MONETARY ..24
LC_NUMERIC ..24
LC_TIME ..24
ldexp() ..165

292 X/Open Guide (1995)

Index

LDFLAGS...23
ldiv() ...165
ldiv_t ...231
LEX ..23
lex...28, 66

affected by LC_COLLATE19
affected by LC_CTYPE..20
syntax modified ..31

lfind() ..165
LFLAGS ..23
lgamma()..165
line ...67
LINENO..23
LINE_MAX......................16, 32, 50, 53, 55-62, 64-66

.........68-69, 71, 74-75, 77-78, 80, 83-84, 86-88, 203
link()..165
LINK_MAX..183
lint ..67

affected by LC_CTYPE..20
separating arguments..31

ln ..67
affected by LC_CTYPE..20

loc1...166
locale ...14, 18, 38, 67

affected by LC_CTYPE..20
localeconv() ...166

affected by LC_MONETARY.............................22
affected by LC_NUMERIC.................................21
affected by LC_TIME...21

localedef ...15, 38, 68
affected by LC_COLLATE19
affected by LC_CTYPE..20
affected by LC_MESSAGES21

localtime()..166
lockf()..166
locs ...166
log()...166
log10()...167
log1p() ..167
logb()...167
logger ..38, 68

affected by LC_CTYPE..20
logical source line ...256
logname ..68

affected by LC_CTYPE..20
longjmp() ...167
LONG_BIT...134, 227
LONG_MAX..201
LONG_MIN ..201, 227
lp ..68

affected by LC_CTYPE..20

affected by LC_TIME...21
separating arguments..31

LPDEST...68
lpstat ..68

affected by LC_CTYPE..20
affected by LC_TIME...21
separating arguments..31

lrand48()...168
ls. ..68

affected by LC_COLLATE19
affected by LC_CTYPE..20
affected by LC_TIME...21

lsearch()..168
lseek() ...168
lstat()...168
L_cuserid..231
m4 ..68

affected by LC_CTYPE..20
separating arguments..31

macro
expansion ...257
new..259
quick reference..107

mail ..69
affected by LC_CTYPE..20
affected by LC_TIME...21

mailx..69
affected by LC_CTYPE..20
affected by LC_TIME...21

make ..69
affected by LC_CTYPE..20

makecontext() ...168
makefiles

portability ..104
MAKEFLAGS..23
MAKESHELL ..23
malloc() ..168
man..70

affected by LC_CTYPE..20
MANPATH ..23
mblen()...168, 278

affected by LC_CTYPE..20
mbstowcs()..169, 278

affected by LC_CTYPE..20
mbtowc() ...169, 278

affected by LC_CTYPE..20
MB_CUR_MAX ..16, 231
memccpy()...169
memchr() ...169
memcmp() ...169
memcpy()...169

XPG3-XPG4 Base Migration Guide, Version 2 293

Index

memmove()...169
memset() ..169
mesg ..70

affected by LC_CTYPE..20
MINSIGSTKSZ..230
mkdir...70

affected by LC_CTYPE..20
mkdir() ...170
mkfifo ..70

affected by LC_CTYPE..20
mkfifo() ..170
mknod() ...170
mkstemp() ...171
mktemp() ...171
mktime() ..171
mmap()...171
modf()...171
MORE..23
more ..28, 38, 70

affected by LC_COLLATE19
affected by LC_CTYPE..20
syntax modified ..31

mprotect()..172
mrand48() ..172
msg*() ...102
msgctl() ..172
msgget() ...172
msgrcv() ...172
msgsnd() ..173
MSGVERB..23
msync()...173
multi-byte character...277

conversion functions ...278
encoding...277

multi-byte codeset support
kernel...16
utilities ..16

multi-byte sequence...14
munmap()..173
mv..28, 71

affected by LC_COLLATE19
affected by LC_CTYPE..20
affected by LC_MESSAGES21

name space...93
NAMETOOLONG ...126
NAME_MAX..................101, 121, 128-129, 136, 143

146, 149, 165, 170, 174-176, 183-184, 196, 211-212
naming ..37
NDEBUG..123
newgrp..71

affected by LC_CTYPE..20

syntax modified ..31
nextafter() ..173
nftw() ..174
NGROUPS_MAX ...227
nice...38, 71

affected by LC_CTYPE..20
syntax modified ..31

nice() ...174
nl ..28, 71

affected by LC_COLLATE19
affected by LC_CTYPE..20
separating arguments..31
syntax modified ..31

NLSPATH ..24, 126
NL_CAT_LOCALE...126
nl_langinfo()..174

affected by LC_COLLATE19
affected by LC_CTYPE..20
affected by LC_MONETARY.............................22
affected by LC_NUMERIC.................................21
affected by LC_TIME...21

nm ..71
affected by LC_COLLATE19
affected by LC_CTYPE..20

NOEXPR...227
nohup ..72

affected by LC_CTYPE..20
NOSTR..227
NPROC ...23
nrand48() ...174
octet ...14
od ...72

affected by LC_CTYPE..20
affected by LC_NUMERIC.................................21

OLCUC ...235
OLDPWD ...23, 55
open() ...174
opendir() ..175
openlog()..175
OPEN_MAX..146, 149
operators...37
OPOST ..235
OPTARG...23
optarg..175, 231
OPTERR..23
OPTIND..23
optind..231
optopt..231
output devices...29
O_APPEND ...218
O_NDELAY ...174

294 X/Open Guide (1995)

Index

O_NONBLOCK ..218
pack ...72

affected by LC_CTYPE..20
PAGESIZE..203, 228
PAGE_SIZE..203, 228
parameter expansion ...40
parentheses ..272
PASS_MAX ..227
paste ..73

affected by LC_CTYPE..20
separating arguments..31

patch ..73
affected by LC_CTYPE..20
affected by LC_TIME...21

PATH ..23, 46, 131
pathchk ...38, 73

affected by LC_CTYPE..20
pathconf() ..176
PATH_MAX...16
pattern matching ..45
pause()..176
pax ...28, 38, 73

affected by LC_COLLATE19
affected by LC_CTYPE..20
affected by LC_MESSAGES21
affected by LC_TIME...21

pcat ..74
affected by LC_CTYPE..20

pclose() ...176
perror() ...176

affected by LC_MONETARY.............................22
PF_PATH..236
pg ...28, 74

affected by LC_COLLATE19
affected by LC_CTYPE..20

pipe() ..177
pointer subtraction...274
poll() ...177
popen() ...177

affected by LC_COLLATE19
portability...8, 13
portable character set...15
POSIX_SAVED_IDS.......................................164, 190
pow() ..177
PPID...23
pr ..74

affected by LC_CTYPE..20
affected by LC_TIME...21
separating arguments..31

preprocessing ..255
PRINTER ..68

printf..38, 75
affected by LC_CTYPE..20
affected by LC_NUMERIC.................................21

printf() ..178
affected by LC_CTYPE..20

PROCLANG ..23
profile definitions ...11
profiles

UNIX93...12
UNIX95...12
XPG4 ...11
XPG4 Base ..11
XPG4 Base95..11
XPG4 UNIX..11

PROJECTDIR...23
promotion ..247, 251

same result...253
prs ..75

affected by LC_CTYPE..20
separating arguments..31

ps..75
affected by LC_CTYPE..20
affected by LC_TIME...21
separating arguments..31

PS3 ...23
PS4 ...23
ptsname()...178
putc() ..178
putchar() ..178
putenv() ...178
putmsg() ..178
puts() ..178
pututxline() ...178
putw()...179
putwc()...179
putwchar()...179
PWD ..23, 55
pwd..75
P_tmpdir...231
qsort() ...179
raise() ..179
rand() ..179
RANDOM ..23
random() ..179
RAND_MAX ...231
read..75

affected by LC_CTYPE..20
read() ..180
readdir() ...180
readlink() ...181
readv() ..181

XPG3-XPG4 Base Migration Guide, Version 2 295

Index

realloc() ..181
realpath() ...181
rearrangement

advantages...273
ISOC ..272
X/Open C ..271

red..28, 75
redirection ..42
regcmp()...182
regcomp() ..182

affected by LC_COLLATE19
affected by LC_CTYPE..20

regex()...182
regexec()

affected by LC_COLLATE19
affected by LC_CTYPE..20

regexp() ..182
regular built-in ..46
regular expressions ..14, 26
remainder()..183
remove()...183
remque()...183
rename()...183
renice...38, 75

affected by LC_CTYPE..20
reserved

command names ..38
reserved name...281, 283

avoiding ...224, 284
rewind() ...183
rewinddir() ..184
re_comp()...181
RE_DUP_MAX..203
rindex()...184
rint() ..184
rm...28, 76

affected by LC_COLLATE19
affected by LC_CTYPE..20
affected by LC_MESSAGES21

rmdel ...76
affected by LC_CTYPE..20
separating arguments..31

rmdir..76
affected by LC_CTYPE..20

rmdir() ..184
sact ...76

affected by LC_CTYPE..20
SA_NOCLDWAIT..230
SA_ONSTACK ..230
SA_RESETHAND...230
SA_RESTART ..230

SA_SIGINFO ...230
sbrk()...185
scalb() ...185
scanf() ...185

affected by LC_CTYPE..20
sccs...38, 76

affected by LC_CTYPE..20
scope of identifier ...275
sdb..76
SECONDS ..23
sed..28, 77

affected by LC_COLLATE19
affected by LC_CTYPE..20

seed48() ..185
seekdir() ...185
SEEK_CUR...226
SEEK_END...226
SEEK_SET...226
select ..38
select() ..185
sem*()..102
semctl()...186
semget() ...186
semop() ..186
setbuf() ...187
setcontext()..187
setgid() ...187
setgrent()..187
setitimer() ..187
setjmp() ..187
setkey()...188
setlocale()...188

affected by LC_CTYPE..20
affected by LC_MONETARY.............................22
affected by LC_NUMERIC.................................21
affected by LC_TIME...21

setlogmask()..188
setpgid() ...188
setpgrp()...188
setpriority() ...188
setpwent()..189
setregid()..189
setreuid()..189
setrlimit() ...189
setsid() ..189
setstate()...189
setuid() ...189
setutxent()..190
setvbuf()...190
sh ..78

affected by LC_COLLATE19

296 X/Open Guide (1995)

Index

affected by LC_CTYPE..20
shell..37

commands..43
shift bytes ...277
shm*() ...102
shmat() ...190
shmctl() ..190
shmdt()...190
shmget() ...191
SHRT_MIN ..227
SID_DFL ...191
SIGABRT ..121
sigaction() ..191
sigaddset() ...192
sigaltstack() ...192
SIGBUS ...230
SIGCHLD ...230
SIGCONT ...137
sigdelset() ..192
sigemptyset() ..192
sigfillset() ...192
SIGFPE..230
sighold() ...192
SIGHUP ..137
siginterrupt()...192
sigismember() ...193
siglongjmp() ..193
signal()..193
signgam ..193
sigpause() ..193
sigpending() ..194
SIGPOLL...230
sigprocmask() ...194
SIGPROF ..230
sigrelse()...194
sigsetjmp() ...194
sigstack()..194
SIGSTKSZ...230
sigsuspend()..194
SIGSYS ..230
SIGTRAP ..230
SIGTSTP..30
SIGTTIN ...30, 180
SIGTTOU30, 144, 147, 204-206
SIGURG ..230
SIGVTALRM..230
SIGXCPU..230
SIGXFSZ ...230
sin() ...194
sinh()...195
sleep...78

affected by LC_CTYPE..20
sleep() ...195
sort ...78

affected by LC_COLLATE19
affected by LC_CTYPE..20
affected by LC_NUMERIC.................................21
separating arguments..31
syntax modified ..31

special built-in...46
spell..78

affected by LC_CTYPE..20
split ..79

affected by LC_CTYPE..20
syntax modified ..31

sprintf() ..195
affected by LC_CTYPE..20

sqrt()..195
srand() ..195
srand48() ..195
srandom() ..196
sscanf() ...196

affected by LC_CTYPE..20
SSIZE_MAX...180, 218
SS_DISABLE..230
SS_ONSTACK ...230
standard header ..282
stat() ..196
statvfs() ..196
stdin...197
step() ...197
strcasecmp() ..197
strcat() ..197
strchr() ..197
strcmp()..197
strcoll() ...197

affected by LC_COLLATE19
strcpy() ...198
strcspn() ...198
strdup() ..198
STREAMS...103
STREAM_MAX...203
strerror()...198

affected by LC_CTYPE..20
affected by LC_MONETARY.............................22

strfmon() ..198
affected by LC_MONETARY.............................22
affected by LC_NUMERIC.................................21

strftime() ..199
affected by LC_CTYPE..20
affected by LC_TIME...21

string literal..275

XPG3-XPG4 Base Migration Guide, Version 2 297

Index

string literal production ..258
strings..38, 79

affected by LC_CTYPE..20
syntax modified ..31

strip..79
affected by LC_CTYPE..20

strlen() ..199
strncasecmp()..200
strncat() ..200
strncmp() ...200
strncpy()...200
strpbrk() ...200
strptime() ...200
strrchr() ..201
strspn() ...201
strstr() ...201
strtod()..201

affected by LC_CTYPE..20
affected by LC_NUMERIC.................................21

strtok()..201
strtol() ...201

affected by LC_CTYPE..20
strtoul() ..202

affected by LC_CTYPE..20
strxfrm() ...202

affected by LC_COLLATE19
stty ...79

affected by LC_CTYPE..20
substitution

command ...41
sum ..79

affected by LC_CTYPE..20
swab() ...202
swapcontext() ...202
symlink()..202
sync() ..202
sysconf()...203
syslog() ...203
system interfaces...3
system()..203

affected by LC_COLLATE19
S_IEXEC..233
S_IREAD...233
S_IWRITE...233
tabs...79

affected by LC_CTYPE..20
separating arguments..31

tail ..80
affected by LC_CTYPE..20
syntax modified ..31

talk ...80

affected by LC_CTYPE..20
tan()...204
tanh() ..204
tar ...28, 80

affected by LC_COLLATE19
affected by LC_CTYPE..20
affected by LC_MESSAGES21
affected by LC_TIME...21

tcdrain()..204
tcflow() ...204
tcflush() ..205
tcgetattr() ...205
tcgetpgrp()...205
tcgetsid() ..205
TCIOFF ...204
TCION ..204
tcsendbreak() ..206
tcsetattr()..206
tcsetpgrp() ...207
tdelete() ..207
tee...80

affected by LC_CTYPE..20
telldir()..207
terminal interface

1..30
terminal types..29
test..80

affected by LC_CTYPE..20
tfind()..207
tilde expansion ..39
time..38, 81

affected by LC_CTYPE..20
affected by LC_NUMERIC.................................21

time() ..207
times()...207
timezone ...208
TMPDIR..25
tmpfile() ...208
tmpnam()...208
TMP_MAX ...227
toascii()...208
token pasting ...259
tokens ..255
tolower() ..208

affected by LC_CTYPE..20
TOSTOP ...144, 147
touch..81

affected by LC_CTYPE..20
syntax modified ..31

toupper()..208
affected by LC_CTYPE..20

298 X/Open Guide (1995)

Index

towlower()...209
affected by LC_CTYPE..20

towupper() ..209
affected by LC_CTYPE..20

tput ..38, 81
affected by LC_CTYPE..20

tr. ..82
affected by LC_COLLATE19
affected by LC_CTYPE..20

translation phases
ISOC ..255
X/Open C ..256

transparency ..15
trigraph sequences..255-256
true...83
truncate() ...209
tsearch() ...209
tsort..83

affected by LC_CTYPE..20
tty ...83

affected by LC_CTYPE..20
syntax modified ..31

ttyname() ...209
ttyslot()...209
twalk() ..209
type ..83

affected by LC_CTYPE..20
compatible ...261, 267
composite...261, 267
conversion..251
float..274
incomplete ...261, 264

type conversion ..244, 247
type qualifier..261

compatible ...267
derived type...261
using..261

typedef..247, 278
incomplete type ..265

TZ...25, 58
tzname ..210
TZNAME_MAX..203
tzset() ..210
T_FMT_AMPM...227
ualarm() ...210
ulimit ...83

affected by LC_CTYPE..20
ulimit() ...210
umask..83

affected by LC_CTYPE..20
umask() ..210

unalias...38, 83
affected by LC_CTYPE..20

uname..83
affected by LC_CTYPE..20

uname() ..210
uncompress..38, 83

affected by LC_CTYPE..20
unexpand ...38, 84

affected by LC_CTYPE..20
unget..84

affected by LC_CTYPE..20
separating arguments..31

ungetc() ..210
ungetwc()...211
uniq..84

affected by LC_CTYPE..20
syntax modified ..31

unlink()...211
unlockpt() ..211
unpack...84

affected by LC_CTYPE..20
usleep()...212
utility syntax..31
utime()..212
utimes() ..212
uucp...85

affected by LC_COLLATE19
affected by LC_CTYPE..20
affected by LC_TIME...21
separating arguments..31

uudecode..38, 85
affected by LC_CTYPE..20

uuencode..38, 85
affected by LC_CTYPE..20

uulog ...85
affected by LC_CTYPE..20
affected by LC_TIME...21

uuname...85
affected by LC_CTYPE..20

uupick ...85
affected by LC_CTYPE..20
separating arguments..31

uustat...85
affected by LC_CTYPE..20
affected by LC_TIME...21
separating arguments..31

uuto..85
affected by LC_CTYPE..20

uux ...85
affected by LC_CTYPE..20
syntax modified ..31

XPG3-XPG4 Base Migration Guide, Version 2 299

Index

val...86
affected by LC_CTYPE..20
separating arguments..31

valloc()..212
vfork()...213
vfprintf() ..213
vi ..28, 86

affected by LC_COLLATE19
affected by LC_CTYPE..20
separating arguments..31
syntax modified ..31

void ...243, 264
volatile ..261-262, 267
vprintf()

affected by LC_CTYPE..20
wait ..86

affected by LC_CTYPE..20
wait() ..213
wait3() ..214
waitid()...214
wall ..86
wc...86

affected by LC_CTYPE..20
wchar_t ...278-279
wcscat() ..214
wcschr()..214
wcscmp() ...214
wcscoll()...214

affected by LC_COLLATE19
wcscpy()...214
wcscspn()...215
wcsftime()..215

affected by LC_TIME...21
wcslen()..215
wcsncat()..215
wcsncmp()...215
wcsncpy() ..215
wcspbrk()...215
wcsrchr() ..216
wcsspn()...216
wcstod() ...216

affected by LC_CTYPE..20
affected by LC_NUMERIC.................................21

wcstok() ...216
wcstol()...216

affected by LC_CTYPE..20
wcstombs()..216, 278

affected by LC_CTYPE..20
wcstoul() ..216

affected by LC_CTYPE..20
wcswcs() ..217

wcswidth() ..217
wcsxfrm()...217

affected by LC_COLLATE19
wctomb() ...217, 278

affected by LC_CTYPE..20
wctype() ...217

affected by LC_CTYPE..20
wcwidth() ..218
what...87

affected by LC_CTYPE..20
who ..87

affected by LC_CTYPE..20
affected by LC_TIME...21

wide character ...277-278
constants ..279

wide string literals..279
wide-character codes ...255
WNOHUNG..213
wordexp() ..218

affected by LC_COLLATE19
WORD_BIT ..227
write...87

affected by LC_CTYPE..20
write() ...218
WUNTRACED..213
xargs ..28, 87

affected by LC_COLLATE19
affected by LC_CTYPE..20
affected by LC_MESSAGES21
separating arguments..31
syntax modified ..31

XCASE...30
XPG4

profiles ..11
y0() ..219
YACC...23
yacc ..88

affected by LC_CTYPE..20
YESEXPR..227
YESSTR ...227
YFLAGS..23
zcat...38, 88

affected by LC_CTYPE..20

300 X/Open Guide (1995)

	g501cov.pdf
	Page 1

	blank.pdf
	Page 1

