
 S

L

T

A

A

C

N

I

D

N

A

H

R

C

D

E
T

Technical Standard

DRDA, Version 2, Volume 1:
Distributed Relational Database Architecture

(DRDA)

[This page intentionally left blank]

Open Group Technical Standard

DRDA, Version 2, Volume 1:

Distributed Relational Database Architecture (DRDA)

The Open Group

 December 1999, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners.

Open Group Technical Standard

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA)

Document Number: C911

Published in the U.K. by The Open Group, December 1999.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

This documentation and the software to which it relates are derived in part from copyrighted
materials supplied by International Business Machines. Neither International Business Machines
nor The Open Group makes any warranty of any kind with regard to this material, including but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
The Open Group shall not be liable for errors contained herein, or for any direct or indirect,
incidental, special, or consequential damages in connection with the furnishing, performance, or
use of this material.

ii Open Group Technical Standard (1999)

Contents

Chapter 1 The DRDA Specification... 1
 1.1 The DRDA Reference ... 2
 1.1.1 What it Means to Implement Different Levels of DRDA 2
 1.1.2 What it Means to Implement DRDA Level 4 2
 1.1.3 What it Means to Implement DRDA Level 3 5
 1.1.4 What it Means to Implement DRDA Distributed Unit of Work.... 8
 1.2 The FD:OCA Reference ... 12
 1.3 DDM Reference ... 13

Part 1 Database Access Protocol... 17

Chapter 2 Introduction to DRDA.. 19
 2.1 DRDA Structure and Other Architectures .. 19
 2.2 DRDA and SQL ... 19
 2.3 DRDA Connection Architecture.. 20
 2.4 Types of Distribution ... 20
 2.5 DRDA Protocols and Functions... 22

Chapter 3 Using DRDA—Overall Flows.. 25
 3.1 Introduction to Protocol Flows .. 25
 3.1.1 Initialization Flows.. 25
 3.1.2 Bind Flows... 29
 3.1.3 SQL Statement Execution Flows .. 31
 3.1.4 Commit Flows .. 32
 3.1.5 Termination Flows... 34

Chapter 4 The DRDA Processing Model and Command Flows 37
 4.1 DDM and the Processing Model.. 38
 4.2 DRDA’s Relationship to DDM ... 39
 4.3 The DRDA Processing Model... 40
 4.3.1 DRDA Managers .. 40
 4.3.1.1 SNA Communications Manager ... 40
 4.3.1.2 SNA Sync Point Communications Manager................................... 41
 4.3.1.3 TCP/IP Communications Manager.. 41
 4.3.1.4 Agent ... 41
 4.3.1.5 Supervisor .. 42
 4.3.1.6 Security Manager .. 42
 4.3.1.7 Directory ... 42
 4.3.1.8 Dictionary... 42
 4.3.1.9 Resynchronization Manager... 43
 4.3.1.10 Sync Point Manager.. 43
 4.3.1.11 SQL Application Manager .. 43

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) iii

Contents

 4.3.1.12 Relational Database Manager .. 45
 4.3.1.13 CCSID Manager .. 46
 4.3.2 The DRDA Processing Model Flow ... 46
 4.3.3 Product-Unique Extensions... 52
 4.3.4 Diagnostic and Problem Determination Support in DRDA 52
 4.4 DDM Commands and Replies ... 54
 4.4.1 Accessing a Remote Relational Database Manager.......................... 54
 4.4.2 DRDA Security Flows... 61
 4.4.2.1 Identification and Authentication Security Flows......................... 61
 4.4.3 Performing the Bind Operation and Creating a Package 67
 4.4.4 Deleting an Existing Package .. 72
 4.4.5 Performing a Rebind Operation.. 74
 4.4.6 Activating and Processing Queries .. 76
 4.4.6.1 Fixed-Row Protocol.. 78
 4.4.6.2 Limited Block Protocol (No LOB Data in Answer Set) 85
 4.4.6.3 Limited Block Protocol (LOB Data in Answer Set)........................ 90
 4.4.7 Executing a Bound SQL Statement .. 96
 4.4.7.1 Executing Ordinary Bound SQL Statements................................... 97
 4.4.7.2 Invoking a Stored Procedure that Returns Result Sets 100
 4.4.8 Preparing an SQL Statement ... 108
 4.4.9 Retrieving the Data Variable Definitions of an SQL Statement 110
 4.4.10 Executing a Describe Table SQL Statement.. 112
 4.4.11 Executing a Dynamic SQL Statement.. 114
 4.4.12 Commitment of Work in DRDA... 116
 4.4.12.1 Commitment of Work in a Remote Unit of Work.......................... 117
 4.4.12.2 Commitment of Work in a Distributed Unit of Work................... 120

Chapter 5 Data Definition and Exchange ... 137
 5.1 Use of FD:OCA.. 137
 5.2 Use of Base and Option Sets ... 138
 5.2.1 Basic FD:OCA Object Contained in DDM.. 138
 5.2.2 DRDA FD:OCA Object ... 140
 5.2.3 Early and Late Descriptors... 143
 5.3 Relationship of DRDA and DDM Objects and Commands............... 145
 5.3.1 DRDA Command to Descriptor Relationship................................... 145
 5.3.2 Descriptor Classes ... 149
 5.4 DRDA Descriptor Definitions .. 151
 5.5 Late Descriptors .. 152
 5.5.1 Late Array Descriptors ... 152
 5.5.1.1 SQLCA with Data Array Description... 153
 5.5.1.2 Data Array Description for Multi-Row Inserts............................... 155
 5.5.2 Late Row Descriptors.. 155
 5.5.2.1 Row Description for One Data Row ... 156
 5.5.2.2 Row Description for One Row with SQLCA and Data 157
 5.5.3 Late Group Descriptors .. 157
 5.5.3.1 SQL Data Value Group Description.. 159
 5.5.3.2 Overriding Output Formats ... 160
 5.6 Early Descriptors... 162

iv Open Group Technical Standard (1999)

Contents

 5.6.1 Initial DRDA Type Representation .. 162
 5.6.2 Early Array Descriptors.. 162
 5.6.2.1 SQLRSLRD Array Description... 163
 5.6.2.2 SQLCINRD Array Description .. 164
 5.6.2.3 SQLSTTVRB Array Description... 165
 5.6.2.4 SQLCA with SQLPA Array Description.. 166
 5.6.2.5 SQLCA with SQLDA Array Description ... 167
 5.6.3 Early Row Descriptors .. 168
 5.6.3.1 SQL Result Set Description... 168
 5.6.3.2 SQL Result Set Column Information Description 169
 5.6.3.3 SQL Statement Variables Description .. 170
 5.6.3.4 SQL Statement Row Description... 171
 5.6.3.5 SQL Object Name Row Description ... 172
 5.6.3.6 SQL Number of Elements Row Description 173
 5.6.3.7 SQL Privileges Area Repeating Group Row Description............. 174
 5.6.3.8 SQL Communication Area Row Description 175
 5.6.3.9 SQL Data Area Row Description... 176
 5.6.4 Early Group Descriptors .. 177
 5.6.4.1 SQL Result Set Group Description.. 177
 5.6.4.2 SQL Result Set Column Information Group Description 179
 5.6.4.3 SQL Statement Variables Group Description

 (DDM Levels Below 6)... 181
 5.6.4.4 SQL Statement Variables Group Description

 (DDM Level 6 and Above) .. 183
 5.6.4.5 SQL Statement Group Description ... 185
 5.6.4.6 SQL Object Name Group Description.. 186
 5.6.4.7 SQL Number of Elements Group Description................................ 187
 5.6.4.8 SQL Privileges Area Group Description.. 188
 5.6.4.9 SQL Communication Area Group Description.............................. 190
 5.6.4.10 SQL Communication Area Exceptions Group Description......... 191
 5.6.4.11 SQL Data Area Group Description

 (DDM Levels Below 6)... 192
 5.6.4.12 SQL Data Area Group Description

 (DDM Level 6 and Above) .. 194
 5.6.4.13 SQL User-Defined Data Group Description.................................... 196
 5.6.5 Early Environmental Descriptors ... 197
 5.6.5.1 Four-Byte Integer .. 201
 5.6.5.2 Two-Byte Integer... 202
 5.6.5.3 One-Byte Integer ... 203
 5.6.5.4 Sixteen-Byte Float ... 204
 5.6.5.5 Eight-Byte Float... 205
 5.6.5.6 Four-Byte Float .. 206
 5.6.5.7 Fixed Decimal .. 207
 5.6.5.8 Zoned Decimal .. 208
 5.6.5.9 Numeric Character ... 209
 5.6.5.10 Result Set Locator ... 210
 5.6.5.11 Eight-Byte Integer ... 211
 5.6.5.12 Large Object Bytes Locator ... 212

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) v

Contents

 5.6.5.13 Large Object Character Locator... 213
 5.6.5.14 Large Object Character DBCS Locator ... 214
 5.6.5.15 Row Identifier.. 215
 5.6.5.16 Date.. 216
 5.6.5.17 Time ... 217
 5.6.5.18 Timestamp.. 218
 5.6.5.19 Fixed Bytes ... 219
 5.6.5.20 Variable Bytes .. 220
 5.6.5.21 Long Variable Bytes.. 221
 5.6.5.22 Null-Terminated Bytes... 222
 5.6.5.23 Null-Terminated SBCS... 223
 5.6.5.24 Fixed Character SBCS .. 224
 5.6.5.25 Variable Character SBCS ... 225
 5.6.5.26 Long Variable Character SBCS... 226
 5.6.5.27 Fixed-Character DBCS (GRAPHIC).. 227
 5.6.5.28 Variable-Character DBCS (GRAPHIC)... 228
 5.6.5.29 Long Variable Character DBCS (GRAPHIC) 229
 5.6.5.30 Fixed Character Mixed .. 230
 5.6.5.31 Variable Character Mixed ... 231
 5.6.5.32 Long Variable Character Mixed... 232
 5.6.5.33 Null-Terminated Mixed... 233
 5.6.5.34 Pascal L String Bytes .. 234
 5.6.5.35 Pascal L String SBCS... 235
 5.6.5.36 Pascal L String Mixed... 236
 5.6.5.37 SBCS Datalink.. 237
 5.6.5.38 Mixed-Byte Datalink .. 238
 5.6.5.39 Large Object Bytes .. 239
 5.6.5.40 Large Object Character SBCS ... 240
 5.6.5.41 Large Object Character DBCS (GRAPHIC)..................................... 241
 5.6.5.42 Large Object Character Mixed ... 242
 5.6.6 Late Environmental Descriptors... 243
 5.7 FD:OCA Meta Data Summary ... 245
 5.7.1 Overriding Descriptors to Handle Problem Data 250
 5.7.1.1 Overriding Everything... 250
 5.7.1.2 Overriding Some User Data ... 252
 5.7.1.3 Assigning LIDs to O Triplets .. 252
 5.7.2 MDD Materialization Rules... 253
 5.7.3 Error Checking and Reporting for Descriptors 254
 5.7.3.1 General Errors.. 254
 5.7.3.2 MDD Errors.. 254
 5.7.3.3 SDA Errors.. 254
 5.7.3.4 GDA/CPT Errors .. 255
 5.7.3.5 RLO Errors.. 255
 5.8 DRDA Examples ... 256
 5.8.1 Environmental Description Objects... 256
 5.8.1.1 Early Environmental Descriptors .. 256
 5.8.1.2 Early Data Unit Descriptors.. 258
 5.8.1.3 Late Data Unit Descriptors ... 259

vi Open Group Technical Standard (1999)

Contents

 5.8.2 Command Execution Examples ... 259
 5.8.2.1 EXECUTE IMMEDIATE .. 260
 5.8.2.2 Open Query Statement .. 261
 5.8.2.3 Insert (Multi-Row).. 264
 5.8.2.4 Call (Stored Procedure) ... 265
 5.8.2.5 Call (Stored Procedure Returning Result Sets)............................... 267

Chapter 6 Names.. 269
 6.1 End Users.. 270
 6.1.1 Support for End-User Names.. 270
 6.2 RDBs .. 271
 6.3 Tables and Views .. 271
 6.4 Packages.. 273
 6.4.1 Package Name .. 273
 6.4.2 Package Consistency Token... 274
 6.4.3 Package Version ID.. 274
 6.4.4 Sections .. 275
 6.5 Stored Procedure Names... 277
 6.6 Synonyms and Aliases... 278
 6.7 Default Mechanisms for Standardized Object Names........................ 278
 6.8 Target Program.. 279

Chapter 7 DRDA Rules ... 281
 7.1 Connection Allocation (CA Rules).. 281
 7.2 Mapping of RMs to SQLSTATEs (CD Rules) .. 283
 7.3 Connection Failure (CF Rules) ... 283
 7.4 Commit/Rollback Processing (CR Rules) ... 284
 7.5 Connection Usage (CU Rules).. 287
 7.6 Conversion of Data Types (DC Rules) ... 288
 7.7 Data Representation Transformation (DT Rules) 290
 7.8 RDB-Initiated Rollback (IR Rules)... 294
 7.9 Optionality (OC Rules).. 295
 7.10 Program Binding (PB Rules) ... 296
 7.11 Security (SE Rules).. 299
 7.12 SQL Section Number Assignment (SN Rules)...................................... 300
 7.13 Stored Procedures (SP Rules) ... 301
 7.14 SET Statement (ST Rules).. 302
 7.15 Serviceability (SV Rules) ... 303
 7.16 Update Control (UP Rules)... 305
 7.17 Passing Warnings to the Application Requester (WN Rules) 306
 7.18 Names ... 307
 7.18.1 End-User Names (EUN Rules).. 307
 7.18.2 SQL Object Names (ON Rules)... 307
 7.18.3 Relational Database Names (RN Rules) ... 307
 7.18.4 Target Program Names (TPN Rules) ... 308
 7.19 Query Processing .. 310
 7.19.1 Blocking ... 310
 7.19.1.1 Block Formats (BF Rules) .. 310

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) vii

Contents

 7.19.1.2 Block Size (BS Rules) .. 313
 7.19.1.3 Chaining (CH Rules) .. 314
 7.19.2 Query Data Transfer Protocols (QP Rules)... 316
 7.19.3 Query Data or Result Set Transfer (QT Rules)................................... 318
 7.19.4 Additional Query and Result Set Termination Rules....................... 319
 7.19.4.1 Rules for OPNQRY, CNTQRY, CLSQRY, and EXCSQLSTT 320
 7.19.4.2 Rules for FETCH ... 325
 7.19.4.3 Rules for CLOSE ... 329

Chapter 8 SQLSTATE Usage .. 331
 8.1 DRDA Reply Messages and SQLSTATE Mappings............................. 331
 8.2 SQLSTATEs that DRDA References.. 333

Part 2 Environmental Support ... 339

Chapter 9 Environmental Support.. 341
 9.1 DDM Communications Model and Network Protocol Support 341
 9.2 Accounting ... 342
 9.3 Transaction Processing .. 342

Chapter 10 Security... 343
 10.1 DCE Security Mechanisms with GSS-API... 343
 10.2 Userid-Related Security Mechanisms... 345
 10.2.1 Userid and Password Security Mechanism.. 345
 10.2.2 Userid, Password, and New Password Security Mechanism......... 346
 10.2.3 Userid-Only Security Mechanism .. 347
 10.2.4 Userid and Password Substitute Security Mechanism.................... 348
 10.2.5 Userid and Encrypted Password Security Mechanism.................... 349

Chapter 11 Problem Determination.. 351
 11.1 Network Management Tools and Techniques...................................... 351
 11.1.1 Standard Focal Point Messages... 351
 11.1.2 Focal Point ... 351
 11.1.3 Correlation .. 352
 11.2 DRDA Required Problem Determination and Isolation

 Enhancements.. 353
 11.2.1 Correlation Displays ... 353
 11.2.2 DRDA Diagnostic Information Collection and Correlation 353
 11.2.2.1 Data Collection.. 353
 11.2.2.2 Correlation Between Focal Point Messages and

 Supporting Data.. 353
 11.3 Generic Focal Point Messages and Message Models........................... 354
 11.3.1 When to Generate Alerts .. 354
 11.3.2 Alerts and Alert Structure.. 354
 11.3.2.1 Alert Implementation Basics .. 354
 11.3.3 Error Condition to Alert Model Mapping .. 355
 11.3.3.1 Specific Alert to DDM Reply Message Mapping 355
 11.3.3.2 Additional Alerts at the Application Requester............................. 357

viii Open Group Technical Standard (1999)

Contents

 11.3.3.3 DRDA-Defined Alert Models ... 357
 11.3.4 Alert Example... 375
 11.3.4.1 Major Vector/Subvector/Subfield Construction........................... 375

Part 3 Network Protocols ... 383

Chapter 12 SNA... 385
 12.1 SNA and the DDM Communications Model.. 385
 12.2 What You Need to Know About SNA and LU 6.2............................... 386
 12.3 LU 6.2... 387
 12.4 LU 6.2 Verb Categories .. 388
 12.5 LU 6.2 Product-Support Subsetting .. 389
 12.6 LU 6.2 Base and Option Sets... 390
 12.6.1 Base Set Functions ... 390
 12.6.1.1 Basic Conversation Verb Category.. 390
 12.6.1.2 Type-Independent Verb Category... 390
 12.6.2 Option Set Functions... 390
 12.6.2.1 Basic Conversation Verb Category.. 390
 12.6.2.2 Type-Independent Verb Category... 391
 12.7 LU 6.2 and DRDA ... 392
 12.7.1 Initializing a Conversation .. 392
 12.7.1.1 LU 6.2 Verbs that the Application Requester Uses 392
 12.7.1.2 LU 6.2 Verbs that the Application Server Uses............................... 394
 12.7.1.3 Initialization Flows... 395
 12.7.2 Processing a DRDA Request.. 400
 12.7.2.1 LU 6.2 Verbs that the Application Requester Uses 401
 12.7.2.2 LU 6.2 Verbs that the Application Server Uses............................... 401
 12.7.2.3 Bind Flows.. 402
 12.7.2.4 SQL Statement Execution Flows ... 405
 12.7.3 Terminating a Conversation.. 407
 12.7.3.1 LU 6.2 Verbs that the Application Requester Uses 408
 12.7.3.2 LU 6.2 Verbs that the Application Server Uses............................... 408
 12.7.3.3 Termination Flow—SYNC_LEVEL(NONE) Conversation 409
 12.7.3.4 Termination Flow—SYNC_LEVEL(SYNCPT) Conversation...... 409
 12.7.4 Commit Flows on SYNC_LEVEL(NONE) Conversations.............. 410
 12.7.5 Rollback Flows on SYNC_LEVEL(NONE) Conversations............. 411
 12.7.6 Commit Flows on SYNC_LEVEL(SYNCPT) Conversations.......... 411
 12.7.7 Rollback Flows on SYNC_LEVEL(SYNCPT) Conversations......... 412
 12.7.8 Handling Conversation Failures .. 413
 12.7.9 Managing Conversations Using Distributed Unit of Work............ 413
 12.8 SNA Environment Usage in DRDA.. 414
 12.8.1 Problem Determination in SNA Environments................................. 414
 12.8.1.1 LUWID.. 414
 12.8.1.2 DRDA LUWID and Correlation of Diagnostic Information........ 414
 12.8.1.3 Data Collection.. 415
 12.8.1.4 Alerts and Supporting Data in SNA Environments 415
 12.8.2 Rules Usage for SNA Environments.. 415
 12.8.2.1 LU 6.2 Usage of Connection Allocation Rules................................ 415

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) ix

Contents

 12.8.2.2 LU 6.2 Usage of Commit/Rollback Processing Rules................... 416
 12.8.2.3 LU 6.2 Usage of Security (SE Rules).. 416
 12.8.2.4 LU 6.2 Usage of Serviceability Rules .. 417
 12.8.2.5 LU 6.2 Usage of Names ... 417
 12.8.3 Transaction Program Names... 419

Chapter 13 TCP/IP ... 421
 13.1 TCP/IP and the DDM Communications Model 421
 13.2 What You Need to Know About TCP/IP .. 421
 13.3 TCP/IP .. 422
 13.3.1 Transport Control Protocol (TCP) .. 422
 13.3.2 Application Services.. 423
 13.4 Sockets Interface ... 423
 13.5 TCP/IP and DRDA... 424
 13.5.1 Initializing a Connection.. 424
 13.5.1.1 Initialization Flows... 424
 13.5.2 Processing a DRDA Request.. 426
 13.5.2.1 Bind Flows.. 426
 13.5.2.2 SQL Statement Execution Flows ... 427
 13.5.3 Terminating a Connection.. 428
 13.5.4 Commit Flows .. 429
 13.5.4.1 Remote Unit of Work ... 429
 13.5.4.2 Distributed Unit of Work Using DDM Sync Point

 Manager .. 430
 13.5.5 Handling Connection Failures .. 432
 13.6 TCP/IP Environment Usage in DRDA .. 433
 13.6.1 Problem Determination in TCP/IP Environments 433
 13.6.1.1 Standard Focal Point Messages.. 433
 13.6.1.2 Focal Point Support .. 433
 13.6.1.3 Correlation and Correlation Display .. 433
 13.6.2 Rules Usage for TCP/IP Environments .. 434
 13.6.2.1 TCP/IP Usage of Connection Allocation Rules 434
 13.6.2.2 TCP/IP Usage of Commit/Rollback Processing Rules 434
 13.6.2.3 TCP/IP Usage of Security (SE Rules) ... 435
 13.6.2.4 TCP/IP Usage of Serviceability Rules.. 435
 13.6.2.5 TCP/IP Usage of Relational Database Names Rules 435
 13.6.2.6 TCP/IP Usage of PORT for DRDA Service Rules.......................... 435
 13.6.3 Service Names .. 436

Appendix A Building Statement-Level SQLCAs for Multi-Row
Fetches... 437

Appendix B DDM Managers, Commands, and Reply Messages 441
 B.1 DDM Manager Relationship to DRDA Functions 441
 B.2 DDM Commands and Reply Messages ... 442

 Glossary ... 507

x Open Group Technical Standard (1999)

Contents

 Index... 515

List of Figures

2-1 Degrees of Distribution of Database Function .. 21
2-2 DRDA Network.. 23
2-3 DRDA Network Implementation Example.. 23
3-1 Logical Flow: Initialization Flows with SNA Security........................... 27
3-2 Logical Flow: Initialization Flows with DCE Security........................... 28
3-3 Logical Flow: Bind Flows ... 30
3-4 Logical Flow: SQL Statement Execution Flows....................................... 32
3-5 Logical Flow: DRDA Two-Phase Commit.. 33
3-6 Logical Flow: DRDA One-Phase Commit Using DDM

Commands .. 34
3-7 Logical Flow: DRDA Two-Phase Commit Termination Flows

Using DDM Commands... 35
3-8 Logical Flow: SNA Termination Flows on Protected

Conversations... 35
4-1 DRDA Processing Model.. 47
4-2 DRDA Flows to Establish a Connection to a Remote

Database Manager ... 55
4-3 DCE Security Flow .. 62
4-4 Password Encryption or Substitution Flow ... 65
4-5 DRDA Flows: Binding and/or Package Creation (Part 1) 67
4-6 DRDA Flows: Binding and/or Package Creation (Part 2) 68
4-7 DRDA Flows: Dropping an Existing Package ... 72
4-8 DRDA Flows: Rebinding an Existing Package .. 74
4-9 DRDA Flows: Fixed-Row Protocol Query Processing (Part 1)............. 78
4-10 DRDA Flows: Fixed-Row Protocol Query Processing (Part 2)............. 79
4-11 DRDA Flows: Limited Block Protocol Query Processing

(No LOB Data).. 85
4-12 Limited Block Protocol (with LOB Data, rtnextall) (Part 1) 90
4-13 Limited Block Protocol (with LOB Data, rtnextall) (Part 2) 91
4-14 Limited Block Protocol Query Processing

(with LOB Data, rtnextrow)... 94
4-15 DRDA Flows: Executing a Bound SQL Statement.................................. 97
4-16 DRDA Flows: Executing a Stored Procedure (Part 1) 101
4-17 DRDA Flows: Executing a Stored Procedure (Part 2) 102
4-18 DRDA Flows: Preparing an SQL Statement... 108
4-19 DRDA Flows: Describing a Bound SQL Statement 110
4-20 DRDA Flows: Describing a Table ... 112
4-21 DRDA Flows: Immediate Execution of SQL Work................................. 114
4-22 DRDA Flows: Commit a Remote Unit of Work 117
4-23 DRDA Flows: Executing a Bound SQL CALL Statement...................... 119
4-24 DRDA Sample Configuration ... 121
4-25 DRDA RDBUPDRM Example Flow... 122
4-26 Single RDB Update at a DRDA Remote Unit of Work AS 124
4-27 Single RDB Update Using Distributed Unit of Work............................. 127

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) xi

Contents

4-28 Multi-Relational Database Update... 131
4-29 RDB at AS1 Initiates Rollback ... 135
4-30 RDB at AS2 Initiates Rollback ... 135
4-31 RDB at AS3 Initiates Rollback ... 136
5-1 Basic FD:OCA Object .. 138
5-2 Basic FD:OCA Object (DDM Level 6).. 139
5-3 Conceptual View of a DRDA FD:OCA Object .. 140
5-4 Conceptual View of a DRDA FD:OCA Object with LOB

Columns... 142
5-5 SQLDTARD Array Descriptor (SQLCAs and Data as

Reply Data).. 153
5-6 SQLDTAMRW Array Descriptor (Multi-Row Insert Data) 155
5-7 SQLDTA Row Descriptor... 156
5-8 SQLCADTA Row Descriptor (One Row with SQLCA and

Associated Data) .. 157
5-9 SQLDTAGRP Group Descriptor (Field Specs for One Row of

SQL Data) .. 159
5-10 SQLRSLRD Array Descriptor.. 163
5-11 SQLCINRD Array Descriptor ... 164
5-12 SQLSTTVRB Array Descriptor.. 165
5-13 SQLPARD Array Descriptor (SQLCA Followed by an SQLPA

as Reply Data)... 166
5-14 SQLDARD Array Descriptor (SQLCA Followed by an SQLDA

as Reply Data)... 167
5-15 SQLRSROW Row Descriptor (Information for One Result Set).......... 168
5-16 SQLCIROW Row Descriptor (Information for One Column).............. 169
5-17 SQLVRBROW Row Descriptor (All Information for one

Variable) ... 170
5-18 SQLSTT Row Descriptor (One SQL Statement) 171
5-19 SQLOBJNAM Row Descriptor (One SQL Object Name)...................... 172
5-20 SQLNUMROW Row Descriptor... 173
5-21 SQLPAROW SQLPA Repeating Group Row Descriptor 174
5-22 SQLCARD Row Descriptor (SQLCA as Presented on the Link) 175
5-23 SQLDAROW Row Descriptor (SQLDA Describing Variables

during Bind) .. 176
5-24 SQLRSGRP Group Descriptor (Information for One Result Set) 177
5-25 SQLCIGRP Group Descriptor (Information for One Column)............ 179
5-26 SQLVRBGRP Group Descriptor (Info. for One Variable)

(DDM Levels Below 6).. 181
5-27 SQLVRBGRP Group Descriptor (Info. for One Variable)

(DDM Level 6 and Above) ... 183
5-28 SQLSTTGRP Group Descriptor (One SQL Statement) 185
5-29 SQLOBJGRP Group Descriptor (One SQL Object Name)..................... 186
5-30 SQLNUMGRP Group Descriptor... 187
5-31 SQLPAGRP Group Descriptor.. 188
5-32 SQLCAGRP Group Descriptor (Nullable) ... 190
5-33 SQLCAXGRP Group Descriptor (Nullable)... 191
5-34 SQLDAGRP Group Descriptor (Info. for One Column)

xii Open Group Technical Standard (1999)

Contents

(DDM Levels Below 6).. 192
5-35 SQLDAGRP Group Descriptor (Info. for One Column)

(DDM Level 6 and Above) ... 194
5-36 SQLUDTGRP Group Descriptor (UDT Information for

One Column) .. 196
5-37 DRDA Type X‘32,33’ SQL Type 448,449 Variable

Character SBCS... 197
5-38 DRDA Type X‘02,03’ SQL Type 496,497 INTEGER 201
5-39 DRDA Type X‘04,05’ SQL Type 500,501 SMALL INTEGER................. 202
5-40 DRDA Type X‘06,07’ SQL Type n/a,n/a... 203
5-41 DRDA Type X‘08,09’ SQL Type 480,481 FLOAT (16) 204
5-42 DRDA Type X‘0A,0B’ SQL Type 480,481 FLOAT (8).............................. 205
5-43 DRDA Type X‘0C,0D’ SQL Type 480,481 FLOAT (4) 206
5-44 DRDA Type X‘0E,0F’ SQL Type 484,485 FIXED DECIMAL 207
5-45 DRDA Type X‘10,11’ SQL Type 488,489 ZONED DECIMAL............... 208
5-46 DRDA Type X‘12,13’ SQL Type 504,505 NUMERIC

CHARACTER... 209
5-47 DRDA Type X‘14,15’ SQL Type 972,973 RESULT SET

LOCATOR ... 210
5-48 DRDA Type X‘16,17’ SQL Type 492,493 EIGHT-BYTE

INTEGER... 211
5-49 DRDA Type X‘18,19’ SQL Type 960,961 LARGE OBJECT

BYTES LOCATOR.. 212
5-50 DRDA Type X‘1A,1B’ SQL Type 964,965 LARGE OBJ. CHAR.

SBCS LOCATOR .. 213
5-51 DRDA Type X‘1C,1D’ SQL Type 968,969 LARGE OBJ. CHAR.

DBCS LOCATOR ... 214
5-52 DRDA Type X‘1E,1F’ SQL Type 904,905 ROW IDENTIFIER 215
5-53 DRDA Type X‘20,21’ SQL Type 384,385 DATE.. 216
5-54 DRDA Type X‘22,23’ SQL Type 388,389 TIME .. 217
5-55 DRDA Type X‘24,25’ SQL Type 392,393 TIMESTAMP 218
5-56 DRDA Type X‘26,27’ SQL Type 452,453 FIXED BYTES......................... 219
5-57 DRDA Type X‘28,29’ SQL Type 448,449 VARIABLE BYTES 220
5-58 DRDA Type X‘2A,2B’ SQL Type 456,457 LONG VAR BYTES 221
5-59 DRDA Type X‘2C,2D’ SQL Type 460,461 NULL-TERMINATED

BYTES... 222
5-60 DRDA Type X‘2E,2F’ SQL Type 460,461 NULL-TERMINATED

SBCS.. 223
5-61 DRDA Type X‘30,31’ SQL Type 452,453 FIXED

CHARACTER SBCS.. 224
5-62 DRDA Type X‘32,33’ SQL Type 448,449 VARIABLE

CHARACTER SBCS.. 225
5-63 DRDA Type X‘34,35’ SQL Type 456,457 LONG VAR

CHARACTER SBCS.. 226
5-64 DRDA Type X‘36,37’ SQL Type 468,469 FIXED

CHARACTER DBCS... 227
5-65 DRDA Type X‘38,39’ SQL Type 464,465 VARIABLE

CHARACTER DBCS... 228

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) xiii

Contents

5-66 DRDA Type X‘3A,3B’ SQL Type 472,473 LONG VAR
CHARACTER DBCS... 229

5-67 DRDA Type X‘3C,3D’ SQL Type 452,453 FIXED
CHARACTER MIXED .. 230

5-68 DRDA Type X‘3E,3F’ SQL Type 448,449 VARIABLE
CHARACTER MIXED .. 231

5-69 DRDA Type X‘40,41’ SQL Type 456,457 LONG VARIABLE
CHARACTER MIXED .. 232

5-70 DRDA Type X‘42,43’ SQL Type 460,461 NULL-TERMINATED
MIXED.. 233

5-71 DRDA Type X‘44,45’ SQL Type 476,477 PASCAL L STRING
BYTES... 234

5-72 DRDA Type X‘46,47’ SQL Type 476,477 PASCAL L STRING
SBCS.. 235

5-73 DRDA Type X‘48,49’ SQL Type 476,477 PASCAL L STRING
MIXED.. 236

5-74 DRDA Type X‘4C,4D’ SQL Type 396,397 SBCS DATALINK................ 237
5-75 DRDA Type X‘4E,4F’ SQL Type 396,397 MIXED-BYTE

DATALINK.. 238
5-76 DRDA Type X‘C8,C9’ SQL Type 404,405 LARGE OBJECT

BYTES... 239
5-77 DRDA Type X‘CA,CB’ SQL Type 408,409 LARGE OBJECT

CHAR. SBCS ... 240
5-78 DRDA Type X‘CC,CD’ SQL Type 412,413 LARGE OBJECT

CHAR. DBCS .. 241
5-79 DRDA Type X‘CE,CF’ SQL Type 408,409 LARGE OBJECT

CHAR. MIXED ... 242
5-80 DRDA Type X‘30’, SQL Type 468, MDD Override Example—

Base ... 243
5-81 DRDA Type X‘30’, SQL Type 468, MDD Override Example—

Override... 244
10-1 Using GSS-API to Call DCE-Based Security Flows in DRDA 343
10-2 Userid and Password Authentication Flows ... 345
10-3 Userid, Password, and New Password Authentication Flows 346
10-4 Userid and Password Authentication Flows ... 347
10-5 Userid and Password Substitute Authentication Flows........................ 348
10-6 Userid and Encrypted Password Authentication Flows 349
11-1 Summary of Required Subvectors and Subfields 355
11-2 Subfield X‘85’ for Failure Causes Code Point X‘F0A3’ 359
11-3 Subfield X‘85’s for Actions Code Point X‘32D1’...................................... 360
11-4 Subfield X‘85’ for Actions Code Point X‘32A0’ 360
11-5 Subfield X‘85’s for Failure Causes Code Point X‘F0C0’......................... 372
11-6 Major Vector/Subvector/Subfield Construction.................................... 375
11-7 Alert Example for AGNPRMRM with Severity Code of 64

(Part 1) .. 376
11-8 Alert Example for AGNPRMRM with Severity Code of 64

(Part 2) .. 377
11-9 Alert Example for AGNPRMRM with Severity Code of 64

xiv Open Group Technical Standard (1999)

Contents

(Part 3) .. 378
12-1 DRDA Initialization Flows with LU 6.2 Security (Part 1)...................... 396
12-2 DRDA Initialization Flows with LU 6.2 Security (Part 2)...................... 397
12-3 DRDA Initialization Flows with DCE Security (Part 1)......................... 398
12-4 DRDA Initialization Flows with DCE Security (Part 2)......................... 399
12-5 DRDA Initialization Flows with DCE Security (Part 3)......................... 400
12-6 DRDA Bind Flows (Part 1) ... 403
12-7 DRDA Bind Flows (Part 2) ... 404
12-8 DRDA Bind Flows (Part 3) ... 405
12-9 DRDA SQL Statement Execution Flows (Part 1)..................................... 406
12-10 DRDA SQL Statement Execution Flows (Part 2)..................................... 407
12-11 Actual Flow: Termination Flows on SYNC_LEVEL(NONE)

Conversation... 409
12-12 Actual Flow: Termination Flows on SYNC_LEVEL(SYNCPT)

Conversation... 410
12-13 Commit Flow for a SYNC_LEVEL(NONE) Conversation 411
12-14 Actual Flow: Commit Flow on a SYNC_LEVEL(SYNCPT)

Conversation... 412
12-15 Actual Flow: Backout Flow on a SYNC_LEVEL(SYNCPT)

Conversation... 412
13-1 TCP/IP Components .. 422
13-2 DRDA Initialization Flows on TCP/IP with DCE Security 425
13-3 DRDA Bind Flows on TCP/IP .. 427
13-4 DRDA SQL Statement Execution Flows on TCP/IP.............................. 428
13-5 DRDA Termination Flows on TCP/IP .. 429
13-6 DRDA Server Abnormal Termination Flows on TCP/IP...................... 429
13-7 DRDA Commit Flows on TCP/IP.. 430
13-8 TCP/IP Distributed Unit of Work Commit Flow 431
13-9 TCP/IP Distributed Unit of Work Rollback Flow................................... 432

List of Tables

1-1 DDM Modeling and Description Terms.. 13
1-2 DDM Terms of Interest to DRDA Implementers 14
1-3 DDM Command Objects Used by DRDA .. 15
1-4 DDM Reply Data Objects Used by DRDA ... 16
4-1 DDM Commands Used in DRDA Flows .. 45
4-2 Access by the Minimum MGRLVLLS Parameter of EXCSAT

and EXCSATRD.. 57
4-3 Security Mechanism to secmec Value Mapping.. 62
5-1 Data Objects, Descriptors, and Contents for DRDA Commands........ 146
5-2 QRYDSC with Default Formats.. 161
5-3 OUTOVR with One Override Triplet .. 161
5-4 SQL Result Set Field Usage.. 178
5-5 SQL Result Set Column Information Field Usage 180
5-6 DRDA SQL Data Area Field Usage (DDM Levels Below 6) 182
5-7 DRDA SQL Data Area Field Usage (DDM Level 6 and Above) 184
5-8 DRDA SQL Privileges Area Repeating Field Usage............................... 189

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) xv

Contents

5-9 DRDA SQL Data Area Field Usage (DDM Levels Below 6) 193
5-10 DRDA SQL Data Area Field Usage (DDM Level 6 and Above) 195
5-11 DRDA SQL UDT Description Field Usage".. 196
5-12 MDD References Used in Early Environmental Descriptors................ 245
5-13 MDD References for Early Group Data Units ... 247
5-14 MDD References for Early Row Descriptors ... 248
5-15 MDD References for Early Array Descriptors ... 248
5-16 MDD References Used in Late Environmental Descriptors 249
5-17 MDD References for Late Group Data Units ... 249
5-18 MDD References for Late Row Descriptors ... 249
5-19 MDD References for Late Array Descriptors ... 250
5-20 TYPDEFNAM and TYPDEFOVR... 251
5-21 Complete set of Early Environmental Descriptors for QTDSQL370 .. 256
5-22 Complete set of Early Data Unit Descriptors... 258
5-23 Complete Set of Late Data Unit Descriptors.. 259
5-24 STATS Sample Table.. 260
5-25 EXECUTE IMMEDIATE Command Data... 260
5-26 EXECUTE IMMEDIATE Reply Data.. 260
5-27 Open Query Command Data .. 261
5-28 Open Query Reply Data ... 263
5-29 Multi-Row Insert Command Data ... 264
5-30 Object Data Stream Example for Execution of CALL Statement 265
5-31 Reply Data Stream Example for Execution of CALL Statement.......... 266
5-32 Reply Data Stream Example for Summary Component of Response 267
7-1 Maximal Example for OPNQRY .. 314
7-2 Maximal Example for the First Block of an EXCSQLSTT

that Returns Result Sets.. 315
7-3 AS Rules for OPNQRY, CNTQRY, CLSQRY ... 320
7-4 AR Rules for FETCH ... 325
7-5 AR Rules for CLOSE ... 329
8-1 DRDA Reply Messages (RMs) and Corresponding SQLSTATEs 331
11-1 Alerts Required for DDM Reply Messages .. 356
11-2 Additional Alerts Required at Application Requester........................... 357
11-3 Alert Model AGNPRM ... 358
11-4 Alert Model BLKERR .. 362
11-5 Alert Model CHNVIO... 363
11-6 Alert Model CMDCHK... 364
11-7 Alert Model CMDVLT .. 365
11-8 Alert Model DSCERR.. 366
11-9 Alert Model GENERR... 367
11-10 Alert Model PRCCNV .. 368
11-11 Alert Model QRYERR ... 369
11-12 Alert Model RDBERR.. 370
11-13 Alert Model RSCLMT ... 371
11-14 Alert Model SECVIOL .. 373
11-15 Alert Model SYNTAX ... 374
A-1 Setting of the Statement-Level SQLCA... 437
B-1 DDM Manager Relationship to DRDA Level .. 441

xvi Open Group Technical Standard (1999)

Contents

B-2 ABNUOWRM Reply Message Instance Variables.................................. 443
B-3 ACCRDB Command Instance Variables... 444
B-4 Reply Objects for the ACCRDB Command.. 444
B-5 ACCRDBRM Reply Message Instance Variables 445
B-6 ACCSEC Command Instance Variables.. 446
B-7 ACCSECRD Reply Object Instance Variables.. 446
B-8 AGNPRMRM Reply Message Instance Variables................................... 447
B-9 BGNBND Command Instance Variables .. 448
B-10 Command Objects for the BGNBND Command.................................... 448
B-11 Reply Objects for the BGNBND Command... 449
B-12 BGNBNDRM Reply Message Instance Variables 450
B-13 BNDSQLSTT Command Instance Variables.. 451
B-14 Command Objects for the BNDSQLSTT Command.............................. 451
B-15 Reply Objects for the BNDSQLSTT Command....................................... 451
B-16 CLSQRY Command Instance Variables.. 452
B-17 Reply Objects for the CLSQRY Command... 452
B-18 CMDATHRM Reply Message Instance Variables................................... 453
B-19 CMDCHKRM Reply Message Instance Variables 454
B-20 CMDNSPRM Reply Message Instance Variables 455
B-21 CMDVLTRM Reply Message Instance Variables.................................... 456
B-22 CMMRQSRM Reply Message Instance Variables................................... 457
B-23 CNTQRY Command Instance Variables .. 458
B-24 Reply Objects for the CNTQRY Command ... 458
B-25 DRPPKG Command Instance Variables ... 459
B-26 Reply Objects for the DRPPKG Command.. 459
B-27 DSCINVRM Reply Message Instance Variables 460
B-28 DSCPVL Command Instance Variables .. 461
B-29 Command Objects for the DSCPVL Command...................................... 461
B-30 Reply Objects for the DSCPVL Command... 461
B-31 DSCRDBTBL Command Instance Variables .. 462
B-32 Command Objects for the DSCRDBTBL Command.............................. 462
B-33 Reply Objects for the DSCRDBTBL Command....................................... 462
B-34 DSCSQLSTT Command Instance Variables... 463
B-35 Reply Objects for the DSCSQLSTT Command 463
B-36 DTAMCHRM Reply Message Instance Variables................................... 464
B-37 ENDBND Command Instance Variables .. 465
B-38 Reply Objects for the ENDBND Command... 465
B-39 ENDQRYRM Reply Message Instance Variables.................................... 466
B-40 ENDUOWRM Reply Message Instance Variables.................................. 467
B-41 EXCSAT Command Instance Variables... 468
B-42 EXCSATRD Reply Object Instance Variables... 468
B-43 EXCSQLIMM Command Instance Variables ... 469
B-44 Command Objects for the EXCSQLIMM Command............................. 469
B-45 Reply Objects for the EXCSQLIMM Command...................................... 469
B-46 EXCSQLSTT Command Instance Variables... 470
B-47 Command Objects for the EXCSQLSTT Command............................... 470
B-48 Reply Objects for the EXCSQLSTT Command.. 470
B-49 MGRDEPRM Reply Message Instance Variables.................................... 471

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) xvii

Contents

B-50 MGRLVLRM Reply Message Instance Variables 472
B-51 OBJNSPRM Reply Message Instance Variables 473
B-52 OPNQFLRM Reply Message Instance Variables 474
B-53 OPNQRY Command Instance Variables .. 475
B-54 Command Objects for the OPNQRY Command 475
B-55 Reply Objects for the OPNQRY Command... 475
B-56 OPNQRYRM Reply Message Instance Variables.................................... 476
B-57 PKGBNARM Reply Message Instance Variables.................................... 477
B-58 PKGBPARM Reply Message Instance Variables 478
B-59 PRCCNVRM Reply Message Instance Variables 479
B-60 PRMNSPRM Reply Message Instance Variables 480
B-61 PRPSQLSTT Command Instance Variables ... 481
B-62 Command Objects for the PRPSQLSTT Command 481
B-63 Reply Objects for the PRPSQLSTT Command.. 481
B-64 QRYNOPRM Reply Message Instance Variables.................................... 482
B-65 QRYPOPRM Reply Message Instance Variables..................................... 483
B-66 RDBACCRM Reply Message Instance Variables 484
B-67 RDBAFLRM Reply Message Instance Variables 485
B-68 RDBATHRM Reply Message Instance Variables 486
B-69 RDBCMM Command Instance Variable... 487
B-70 Reply Objects for the RDBCMM Command.. 487
B-71 RDBNACRM Reply Message Instance Variables.................................... 488
B-72 RDBNFNRM Reply Message Instance Variables 489
B-73 RDBRLLBCK Command Instance Variables.. 490
B-74 Reply Objects for the RDBRLLBCK Command 490
B-75 RDBUPDRM Reply Message Instance Variables 491
B-76 REBIND Command Instance Variables... 492
B-77 Command Objects for the REBIND Command 492
B-78 Reply Objects for the REBIND Command ... 492
B-79 RSCLMTRM Reply Message Instance Variables..................................... 493
B-80 RSLSETRM Reply Message Instance Variables 494
B-81 SECCHK Command Instance Variables ... 495
B-82 Command Objects for the SECCHK Command 495
B-83 Reply Objects for the SECCHK Command.. 495
B-84 SECCHKRM Reply Message Instance Variables..................................... 496
B-85 SQLERRRM Reply Message Instance Variables...................................... 497
B-86 SYNCCTL Command Instance Variables... 498
B-87 Command Objects for SYNCCTL .. 498
B-88 SYNCCRD Reply Object Instance Variables .. 499
B-89 SYNCLOG Reply Object Instance Variables .. 500
B-90 SYNCRSY Command Instance Variables ... 501
B-91 Command Objects for SYNCRSY... 501
B-92 SYNCRRD Reply Object Instance Variables .. 502
B-93 Reply Objects for SYNCRRD .. 502
B-94 SYNTAXRM Reply Message Instance Variables 503
B-95 TRGNSPRM Reply Message Instance Variables 504
B-96 VALNSPRM Reply Message Instance Variables 505

xviii Open Group Technical Standard (1999)

Preface

The Open Group

The Open Group is a vendor and technology-neutral consortium which ensures that multi-
vendor information technology matches the demands and needs of customers. It develops and
deploys frameworks, policies, best practices, standards, and conformance programs to pursue its
vision: the concept of making all technology as open and accessible as using a telephone.

The mission of The Open Group is to deliver assurance of conformance to open systems
standards through the testing and certification of suppliers’ products.

The Open group is committed to delivering greater business efficiency and lowering the cost and
risks associated with integrating new technology across the enterprise by bringing together
buyers and suppliers of information systems.

Membership of The Open Group is distributed across the world, and it includes some of the
world’s largest IT buyers and vendors representing both government and commercial
enterprises.

More information is available on The Open Group Web Site at http://www.opengroup.org.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on development of Technical and Product Standards and Guides, but which also
includes white papers, technical studies, branding and testing documentation, and business
titles. Full details and a catalog are available on The Open Group Web Site at
http://www.opengroup.org/pubs.

• Product Standards

A Product Standard is the name used by The Open Group for the documentation that records
the precise conformance requirements (and other information) that a supplier’s product must
satisfy. Product Standards, published separately, refer to one or more Technical Standards.

The ‘‘X’’ Device is used by suppliers to demonstrate that their products conform to the
relevant Product Standard. By use of the Open Brand they guarantee, through the Open
Brand Trademark License Agreement (TMLA), to maintain their products in conformance
with the Product Standard so that the product works, will continue to work, and that any
problems will be fixed by the supplier. The Open Group runs similar conformance schemes
involving different trademarks and license agreements for other bodies.

• Technical Standards (formerly CAE Specifications)

Open Group Technical Standards, along with standards from the formal standards bodies
and other consortia, form the basis for our Product Standards (see above). The Technical
Standards are intended to be used widely within the industry for product development and
procurement purposes.

Technical Standards are published as soon as they are developed, so enabling suppliers to
proceed with development of conformant products without delay.

Anyone developing products that implement a Technical Standard can enjoy the benefits of a
single, widely supported industry standard. Where appropriate, they can demonstrate
product compliance through the Open Brand.

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) xix

Preface

• CAE Specifications

CAE Specifications and Developers’ Specifications published prior to January 1998 have the
same status as Technical Standards (see above).

• Preliminary Specifications

Preliminary Specifications have usually addressed an emerging area of technology and
consequently are not yet supported by multiple sources of stable conformant
implementations. There is a strong preference to develop or adopt more stable specifications
as Technical Standards.

• Consortium and Technology Specifications

The Open Group has published specifications on behalf of industry consortia. For example, it
published the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum (now TMF). It also published Technology Specifications relating to
OSF/1, DCE, OSF/Motif, and CDE.

In addition, The Open Group publishes Product Documentation. This includes product
documentation—programmer’s guides, user manuals, and so on—relating to the DCE, Motif,
and CDE. It also includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

Versions and Issues of Specifications

As with all live documents, Technical Standards and Specifications require revision to align with
new developments and associated international standards. To distinguish between revised
specifications which are fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on The Open Group Web Site at http://www.opengroup.org/corrigenda.

Ordering Information

Full catalog and ordering information on all Open Group publications is available on The Open
Group Web Site at http://www.opengroup.org/pubs.

This Document

The Distributed Relational Database Architecture Specification comprises three volumes:

• Distributed Relational Database Architecture (DRDA) (the DRDA Reference)

• Formatted Data Object Content Architecture (FD:OCA) (the FD:OCA Reference)

• Distributed Data Management (DDM) Architecture (the DDM Reference)

This volume, Distributed Relational Database Architecture, describes the connectivity between
relational database managers that enables applications programs to access distributed relational

xx Open Group Technical Standard (1999)

Preface

data.

This volume describes the necessary connection between an application and a relational
database management system in a distributed environment. It describes the responsibilities of
these participants, and specifies when the flows should occur. It describes the formats and
protocols required for distributed database management system processing. It does not describe
an Application Programming Interface (API) for distributed database management system
processing.

This reference is divided into three parts. The first part describes the database access protocols.
The second part describes the environmental support that DRDA requires, which includes
network support. The third part contains the specific network protocols and characteristics of
the environments these protocols run in, along with how these network protocols relate to
DRDA.

Note:

To understand DRDA, the reader should be familiar with the following:

• Distributed Data Management (DDM)

• Formatted Data Object Content Architecture (FD:OCA)

• Structured Query Language (SQL) and Character Data Representation
Architecture (CDRA)

• At least one of the defined network protocols: Systems Network Architecture
(SNA) or TCP/IP

Intended Audience

This volume is intended for relational database management systems (DBMS) development
organizations. Programmers who wish to code their own connections between database
management systems can use this description of DRDA as a basis for their code.

Typographic Conventions

The following typographical conventions are used throughout this document:

• Bold font is used for system elements that must be used literally, such as interface names and
defined constants.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote function names and variable values such as interface
arguments.

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• The notation [EABCD] is used to identify an error value EABCD.

• Syntax, code examples, and user input in interactive examples are shown in fixed width font.

• Variables within syntax statements are shown in italic fixed width font.

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) xxi

Preface

Problem Reporting

For any problems with DRDA-based software or vendor-supplied documentation, contact the
software vendor’s customer service department. Comments relating to this Open Group
Technical Standard, however, should be sent to the addresses provided on the copyright page.

xxii Open Group Technical Standard (1999)

Trademarks

Motif, OSF/1, UNIX, and the ‘‘X Device’’ are registered trademarks and IT DialToneTM and
The Open GroupTM are trademarks of The Open Group in the U.S. and other countries.

HP-UX is a registered trademark of Hewlett-Packard Company.

The following are trademarks of the IBM Corporation in the United States and other countries:

AIX

AS/400

DATABASE 2

DB2

Distributed Relational Database Architecture

DRDA

IBM

MVS

Netview

OS/2

OS/390

OS/400

RISC System/6000

SQL/DS

System/390

VM

Intel is a registered trademark of Intel Corporation.

Microsoft and Windows NT are registered trademarks of Microsoft Corporation.

NFS is a registered trademark and Network File SystemTM is a trademark of Sun Microsystems,
Inc.

Solaris is a registered trademark of Sun Microsystems, Inc.

VAX is a registered trademark of Digital Equipment Corporation.

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) xxiii

Referenced Documents

These publications provide the background for understanding DRDA.

DRDA Overview

For an overview of DRDA, read:

• Open Group Technical Standard, December 1999, DRDA, Version 2, Volume 1: Distributed
Relational Database Architecture (DRDA) (C911) (this document).

The DRDA Processing Model and Command Flows

These publications help the reader to understand the DDM documentation and what is needed
to implement the base functions required for a DRDA product:

• Open Group Technical Standard, December 1999, DRDA, Version 2, Volume 3: Distributed
Data Management (DDM) Architecture (C913).

• Distributed Data Management Architecture General Information, GC21-9527 (IBM).

• Distributed Data Management Architecture Implementation Programmer’s Guide, SC21-9529 (IBM).

• Character Data Representation Architecture Reference, SC09-1390 (IBM).

• Character Data Representation Architecture Registry, SC09-1391 (IBM).

Communications, Security, Accounting, and Transaction Processing

For information about distributed transaction processing, see the following:

• CAE Specification, November 1995, Distributed Transaction Processing: The CPI-C
Specification, Version 2 (ISBN: 1-85912-135-7, C419), published by The Open Group.

The following publications contain background information adequate for an in-depth
understanding of DRDA’s use of TCP/IP:

• Internetworking With TCP/IP Volume I: Principles, Protocols, and Architecture, Douglas E. Corner,
Prentice Hall, Englewood Cliffs, New Jersey, 1991, SC31-6144 (IBM).

• Internetworking With TCP/IP Volume II: Implementation and Internals, Douglas E. Corner,
Prentice Hall, Englewood Cliffs, New Jersey, 1991, SC31-6145 (IBM).

• Internetworking With TCP/IP, Douglas E. Corner, SC09-1302 (IBM).

• UNIX Network Programming, W. Richard Stevens, Prentice Hall, Englewood Cliffs, New
Jersey, 1990, SC31-7193 (IBM).

• UNIX Networking, Kochan and Wood, Hayden Books, Indiana, 1989.

• Introduction to IBM’s Transmission Control Protocol/Internet Protocol Products for OS/2, VM, and
MVS, GC31-6080 (IBM).

• Transmission Control Protocol, RFC 793, Defense Advanced Research Projects Agency
(DARPA).

xxiv Open Group Technical Standard (1999)

Referenced Documents

Many IBM publications contain detailed discussions of SNA concepts and the LU 6.2
architecture. The following publications contain background information adequate for an in-
depth understanding of DRDA’s use of LU 6.2 functions:

• SNA Concepts and Products, GC30-3072 (IBM).

• SNA Technical Overview, GC30-3073 (IBM).

• SNA Transaction Programmer’s Reference Manual for LU Type 6.2, GC30-3084 (IBM).

• SNA LU 6.2 Reference: Peer Protocols, SC31-6808 (IBM).

• SNA Management Services: Alert Implementation Guide, SC31-6809 (IBM).

• SNA Format and Protocol Reference Manual: Architecture Logic For LU Type 6.2 SC30-3269 (IBM).

These are publications that contain background for DRDA’s use of The Open Group’s OSF DCE
security. A listing of security publications is available on The Open Group website at
http://www.opengroup.org, under publications. Many titles are available for browsing in HTML.

• CAE Specification, December 1995, Generic Security Service API (GSS-API) Base
(ISBN: 1-85912-131-4, C441), published by The Open Group.

• CAE Specification, August 1997, DCE 1.1: Authentication and Security Services (C311),
published by The Open Group as an electronic document (via ftp).

• The Open Group’s OSF DCE SIG Request For Comments 5.x, GSS-API Extensions for DCE,
available from The Open Group.

• IETF Request For Comments 1508, Generic Security Service Application Program Interface.

• IETF Request For Comments 1510, The Kerberos Network Authentication Service (V5).

Data Definition and Exchange

The following publications describe ISO SQL, FD:OCA, and CDRA:

• Open Group Technical Standard, December 1999, DRDA, Version 2, Volume 2: Formatted
Data Object Content Architecture (FD:OCA) (C912).

• ISO/IEC 9075: 1992, Information Technology — Database Language SQL (technically
identical to ANSI standard X3.135-1992).

• Character Data Representation Architecture Reference, SC09-1390 (IBM).

• Character Data Representation Architecture Registry, SC09-1391 (IBM).

• Character Data Representation Architecture, Executive Overview, GC09-1392 (IBM).

Other

• ANSI/IEEE Std. 745-1985, Binary Floating Point Arithmetic.

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) xxv

Referenced Documents

xxvi Open Group Technical Standard (1999)

Chapter 1

The DRDA Specification

The Distributed Relational Database Architecture Specification comprises three volumes:

• Distributed Relational Database Architecture (DRDA) (the DRDA Reference)

• Formatted Data Object Content Architecture (FD:OCA) (the FD:OCA Reference)

• Distributed Data Management (DDM) Architecture (the DDM Reference)

DRDA is an open, published architecture that enables communication between applications and
database systems on disparate platforms, whether those applications and database systems are
provided by the same or different vendors and whether the platforms are the same or different
hardware/software architectures. DRDA is a combination of other architectures and the
environmental rules and process model for using them. The architectures that actually comprise
DRDA are Distributed Data Management (DDM) and Formatted Data Object Content
Architecture (FD:OCA).

The Distributed Data Management (DDM) architecture provides the overall command and reply
structure used by the distributed database. Fewer than 20 commands are required to implement
all of the distributed database functions for communication between the Application Requester
(client) and the Application Server.

The Formatted Data Object Content Architecture (FD:OCA) provides the data definition
architectural base for DRDA. Descriptors defined by DRDA provide layout and data type
information for all the information routinely exchanged between the Application Requesters and
Servers. A descriptor organization is defined by DRDA to allow dynamic definition of user data
that flows as part of command or reply data. DRDA also specifies that the descriptors only have
to flow once per answer set, regardless of the number of rows actually returned, thus
minimizing data traffic on the wire.

It is recommended that the DRDA Reference be used as the main source of information and
roadmap for implementing DRDA. This section describes the relationships between the above
three volumes and provides the details on how they are used to develop a DRDA requester
(client) or server. Overviews of DDM and FD:OCA are provided in this section and in more
detail in the introductory sections of their respective volumes.

It is recommended that the introductory chapter of the DDM Reference, which describes its
overall structure and basic concepts, is read either before reading Chapter 4 on page 37 or in
conjunction with it. The rest of the DDM Reference should be used primarily as a reference
when additional detail is needed to implement the functions and flows as defined in the DRDA
Reference. Similarly, one can use the overview of FD:OCA below and the introductory section
of its respective volume and only refer to the details of the FD:OCA constructs as needed during
implementation.

DRDA can flow over either SNA or TCP/IP transport protocols and the details and differences
in doing so are provided in the third part of the DRDA Reference. It is expected that the
developer is familiar with whichever transport protocol will be supported, as that level of detail
is not provided in this documentation. Even if only implementing for TCP/IP, it is
recommended that the developer be familiar with the two-phase commit recovery model as
described in SNA LU 6.2 since that is the model used by DRDA for either of the transport
protocols.

Besides SNA and TCP/IP, DRDA also uses the following other architectures:

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) 1

The DRDA Specification

• Character Data Representation Architecture (CDRA)

• SNA Management Services Architecture (MSA) for problem determination support

• The Open Group Distributed Computing Environment (DCE)

For a better understanding of DRDA, the reader should have some familiarity with these
architectures. (See Referenced Documents on page xxiv.)

Finally, DRDA is based on the Structured Query Language (SQL) but is not dependent on any
particular level or dialect of it. It is not necessary to know the details of how to construct all the
SQL statements, only to recognize certain types of statements and any host variables they may
contain in order to map them to their DRDA equivalents.

1.1 The DRDA Reference
The DRDA Reference describes the necessary connection between an application and a relational
database management system in a distributed environment. It describes the responsibilities of
these participants, and specifies when the flows should occur. It describes the formats and
protocols required for distributed database management system processing. It does not describe
an Application Programming Interface (API) for distributed database management system
processing.

This reference is divided into three parts. The first part describes the database access protocols.
The second part describes the environmental support that DRDA requires, which includes
network support. The third part contains the specific network protocols and characteristics of
the environments these protocols run in, along with how these network protocols relate to
DRDA.

1.1.1 What it Means to Implement Different Levels of DRDA

This version of the DRDA reference includes DRDA application-directed Remote Unit of Work
(RUOW), DRDA application-directed Distributed Unit of Work (DUOW), the initial support for
DRDA database-directed Distributed Unit of Work (DUOW), and the totality of SQL-related
functions. It is written with the intention to allow an implementer to implement any of the
DRDA functions and either Remote Unit of Work or Distributed Unit of Work types of
distribution. DRDA, Version 2 adds support for an RDB implementer to provide support for
database-directed Distributed Unit of Work.

1.1.2 What it Means to Implement DRDA Level 4

Describe Input

Describe input is a performance and usability enhancement to allow an application requester to
obtain a description of input parameters from the RDB in a consistent format. Input parameters
for dynamic SQL can be described by the characteristics of their related columns, and this
column information is kept in the RDB catalog tables. Prior to DRDA Level 4, an application
requester was required to do SQL statement parsing and expensive catalog lookups to determine
the input parameter marker data types. With DRDA Level 4, to obtain a description of the input
parameters, the Describe SQL statement command can request the RDB to return the description
of input variables for a prepared SQL statement.

Describe input requires the following DDM support:

2 Open Group Technical Standard (1999)

The DRDA Specification The DRDA Reference

• Both Agent and SQLAM managers at Level 6.

• Support for the TYPSQLDA instance variable on the DSCSQLSTT command to request a
description of the input parameters of a prepared statement.

Database-Directed Access

In database-directed requests, an application connects to a relational database management
system (RDB) that can execute one or more SQL requests locally or route some or all of the SQL
requests to other RDBs. The RDB determines which system manages the data referenced by the
SQL statement and automatically directs the request to that system. Refer to Section 7.14 on
page 302 for description on when special registers are propagated.

Database-directed access requires the following DDM support:

• Both Agent and SQLAM managers at Level 6.

• Support for the EXCSQLSET command to propagate the settings of special registers to a
database server.

Two New Security Mechanisms

Two new security mechanisms are added to allow a user to be authenticated without requiring
passwords to flow in the data stream as clear text.

Password Encryption Security Mechanism (PWDENC) specifies a method to encrypt the
password. This mechanism authenticates the user like the userid and password mechanism, but
the password is encrypted and decrypted using 56-bit DES. Diffie-Hellman public-key
distribution is used to generate a shared private key. This Diffie-Hellman key and the userid are
used as the DES encryption and decryption seeds.

Password Substitution Security Mechanism (PWDSBS) specifies the use of a password
substitute. A password does not flow. A password substitute is generated and sent to the
application server. The application server generates the password substitute and compares it
with the application requester’s password substitute. If equal, the user is authenticated.

Password encryption and password substitute mechanisms require the following DDM support:

• Security Manager (SECMGR) at Level 6

• New security token instance variable in the access security command (ACCSEC) and reply
data (ACCSECRD)

Two New Data Types

Support for a datalink data type and an eight-byte integer data type are added. For details on
eight-byte integers and datalinks, refer to the early environmental descriptors described in
Chapter 5 on page 137.

Note: Datalinks extend the usefulness of relational databases by allowing SQL tables to
reference non-SQL data that is more appropriately stored in other types of files.
Video data, for example, may be able to be accessed much faster and more efficiently
if it is stored on some file server. With the introduction of the SQL datalink data type,
DRDA needs to be able to interchange this type of data between all RDBs. DRDA
does not define the semantics of the contents of the datalink data type. It only
provides the mechanism to pass the datalink value to and from an application
requester and application server.

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) 3

The DRDA Reference The DRDA Specification

Datalinks and eight-byte integers require the following DDM support:

• SQLAM Manager (SECMGR) at Level 6

New Bind Option Values

In support of user-defined functions (UDFs) and stored procedures, new bind option values for
package authorization rules are added. The previously supported values, OWNER and
REQUESTER, are inadequate to describe the additional complexity associated with the
definition and invocation of UDFs and stored procedures. Refer to the DDM Reference,
PKGATHRUL for a description of the new values.

The new package authorization rules require the following DDM support:

• SQLAM Manager (SECMGR) at Level 6

Object-Oriented Extensions

The following elements of object-oriented technology have been added:

• Support for User-defined Distinct Types (UDTs)

• Support for Large Objects (LOBs)

Support for User-defined Distinct Types (UDTs) requires an SQLAM manager at Level 6 and
includes the following:

• Support for a new early group, SQLUDTGRP

• Support for an enhanced SQLDAGRP which includes the SQLUDTGRP

Support for Large Objects (LOBs) requires an SQLAM manager at Level 6 and includes the
following:

• Support for two new FD:OCA data types, Generalized Byte String and Generalized Character
String

• Support for two new data types for eight-byte integers, allowing the manipulation of objects
whose lengths are greater than 2,147,483,647 bytes:

— Eight-byte Integers

— Nullable Eight-byte Integers

• Support for two new DRDA types for row identifiers, allowing the association of the data for
a large object column with the row in the base table to which it belongs:

— Row Identifier

— Nullable Row Identifier

• Support for 14 new DRDA types for LOB SQL types, allowing the manipulation of large
object types:

— Large Object Bytes

— Nullable Large Object Bytes

— Large Object Character SBCS

— Nullable Large Object Character SBCS

— Large Object Character DBCS

4 Open Group Technical Standard (1999)

The DRDA Specification The DRDA Reference

— Nullable Large Object Character DBCS

— Large Object Character Mixed

— Nullable Large Object Character Mixed

— Large Object Bytes Locator

— Nullable Large Object Bytes Locator

— Large Object Character Locator

— Nullable Large Object Character Locator

— Large Object Character DBCS Locator

— Nullable Large Object Character DBCS Locator

• Support in DRDA for sending and receiving the new LOB DRDA data types:

— SQLDTAGRP supports an FD:OCA placeholder indicator which is set on when LOB data
values flow as externalized data.

— SQLDAGRP supports 8-byte lengths.

— SQLVRBGRP supports 8-byte lengths.

• Support in DDM for sending and receiving the new LOB DRDA data types:

— Support for EXTDTA, a new DDM object to flow externalized FD:OCA data, and support
for the rules for how this data flows in the DDM data stream, as described in the
FIXROWPRC and the LMTBLKPRC terms

— Support for the outovropt instance variable in an OPNQRY command

— Support for the outovropt instance variable in an EXCSQLSTT command for stored
procedure calls

— Support for the rtnextdta instance variable in a CNTQRY command

— Support for an OUTOVR command data object for a CNTQRY command or for an
EXCSQLSTT command which is not a stored procedure call

• Support in DRDA for sending and receiving the new row identifier data types.

1.1.3 What it Means to Implement DRDA Level 3

This section provides an overview of the previous functions and support that were added for
DRDA, Version 1, including support for TCP/IP connections, enhanced security, stored
procedures, work load balancing, and the Data Staging Area for data replication. DRDA Remote
Unit of Work or DRDA Distributed Unit of Work may serve as the base for DRDA, depending on
the type of distribution supported by the requester.

DRDA includes the following functions that enhance the DRDA RUOW or DRDA DUOW
support:

• TCP/IP Communications manager can be supported on a DRDA RUOW base or DRDA
DUOW base.

• Enhanced Security can also be supported on a DRDA RUOW base or DRDA DUOW base.
Enhanced security includes additional support using Distributed Computing Environment
(DCE) security mechanisms and the capability to change a password at a server.

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) 5

The DRDA Reference The DRDA Specification

• Enhanced Sync Point Manager with optimized two-phase commit and optional resync server
support requires a DRDA DUOW base. A resync server allows an application requester to
migrate resynchronization responsibilities to an application server eliminating the
requirement of a recovery log at the application requester.

• Stored Procedures with result sets can be supported using a DRDA Distributed Unit of Work
base.

• Enhanced Bind Options can be supported using a DRDA Distributed Unit of Work base. This
allows unarchitected bind options (generic) to be sent to a server and provides a new
optional package authorization rule bind option.

• Server List allows a multi-homed relational database manager server to provide work load
balancing information to an application requester and can be supported using a DRDA
Distributed Unit of Work base.

• Data Staging Area which is independent of the DRDA type of distribution.

It is assumed that all required functions for DRDA Remote Unit of Work or DRDA Distributed
Unit of Work would be implemented as defined in this reference.

TCP/IP Communications

TCP/IP network connections requires the following DDM support:

• TCP/IP Communications Manager (CMNTCPIP) at Level 5 (see Section 4.3.1.3 on page 41
and Chapter 13 on page 421)

• Security Manager (SECMGR) at Level 5

Enhanced Security

New security mechanisms are provided to authenticate end users independent of the
communications manager being used. These are in addition to extending existing mechanisms
such as userid and password authentication using The Open Group’s OSF DCE and the ability to
change passwords for an authenticated end user. These new and enhanced security mechanisms
require a new security manager level. Both the requester and server must support the enhanced
security manager. Enhanced security requires the following DDM support:

• Security Manager (SECMGR) at Level 5

• Access security (ACCSEC) command and reply data (ACCSECRD) (see Section 4.4.2 on page
61 and Chapter 10 on page 343)

• Security check (SECCHK) command and reply message (SECCHKRM) (see Section 4.4.2 on
page 61 and Chapter 10 on page 343)

• SECVIOL alert (see Table 11-1 on page 356 and Table 11-14 on page 373)

• Support for at least one security mechanism outside of security provided by the network (see
Section 4.4.2 on page 61)

6 Open Group Technical Standard (1999)

The DRDA Specification The DRDA Reference

Enhanced Sync Point Manager

Distributed unit of work network connections use DDM to flow two-phase commit messages
and perform resynchronizations. Refer to the DDM Sync point overview (SYNCPTOV) for a
description of the enhancement. Enhanced Sync Point Manager support requires the following
DDM support:

• SNA LU 6.2 Communications (CMNAPPC) at Level 3 (see Section 4.3.1.1 on page 40) or
TCP/IP Communications Manager (CMNTCPIP) at Level 5 (see Section 4.3.1.3 on page 41)

• Sync Point Manager (SYNCPTMGR) at Level 5

SNA Sync Point Manager (CMNSYNMGR) at Level 4 is mutually exclusive with Sync Point
Manager at Level 5.

• Agent Resource Manager (AGENT) at Level 5

A new level is introduced to support a new type of RQSDSS, a request with no expected
reply.

• Resynchronization Manager (RSYNCMGR) at Level 5

Initiates resynchronization to complete in doubt units of work. If RSYNCMGR at Level 5 and
SYNCPTMGR at Level 5 is exchanged during the initialization of a connection, resync server
support may be used on the connection to perform a two-phase commit. If supported, the
application server performs logging and resynchronization on behalf of the application
requester.

Stored Procedures

Stored procedures with multi-row result sets require the following DDM support:

• SQL Application Manager (SQLAM) at Level 5

• Host variables in SQLDTARD that are associated with a CALL (see Section 4.4.7.1 on page
97)

• Handling commit and rollback in a stored procedure in a remote unit of work (see Commit
and Rollback Scenarios on page 122)

• Handling commit and rollback in a stored procedure in a distributed unit of work (see
Commit and Rollback Scenarios on page 122)

• Receipt of prcnamon EXCSQLSTT and the semantics of receiving it (see Section 4.4.7.1 on
page 97)

• Result sets (see Section 4.4.7.2 on page 100)

Server List

The Server List is an option on the access RDB reply message. It contains a weighted list of
network addresses that can be used to access the RDB. The list can be used by the requester to
work load balance future connections. Details of the server list and examples are in the DDM
references. Server List requires the following DDM support:

• SQL Application Manager (SQLAM) at Level 5

• Support of srvlston ACCRDBRM and the semantics of sending and processing it (see Section
4.4.3 on page 67)

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) 7

The DRDA Reference The DRDA Specification

Enhanced Bind Options

Package Authorization Rules bind option and generic bind options consist of the following DDM
support:

• SQL Application Manager (SQLAM) at Level 5

• Support of pkgathrulon BGNBND and the semantics of sending and processing it (see
Section 4.4.3 on page 67)

• Support of bndopt object on BGNBND and the semantics of sending and processing generic
bind options (see Section 4.4.3 on page 67)

Data Staging Area

Data Staging Area support is optional and will be described in a future Data Replication
Reference.

1.1.4 What it Means to Implement DRDA Distributed Unit of Work

This section provides an overview of the functions and support that are required to implement
DRDA Distributed Unit of Work distribution.

DRDA DUOW is made up of the following functions or support:

• DRDA Remote unit of work

• Distributed unit of work

• VAX and IEEE (non-byte reversed) ASCII machine types

• Multi-row Fetch

• Multi-row Insert

• Scrollable cursors

• Bind and Rebind options for I/O parallelism

• CCSID Manager

The first two functions listed are required functions for DRDA Distributed Unit of Work. While
not being directly tied to the type of distribution being supported, the rest of the functions
require SQLAM Level 4 and so are often also associated with DUOW. Of these other functions,
only the VAX and IEEE (non-byte reversed) ASCII machine types are required. Although a
function may be optional, it does require some amount of support in the DRDA components to
allow these optional functions to exist in the DRDA Distributed Unit of Work environment.

Remote Unit of Work

Functionally, DRDA Remote Unit of Work is a proper subset of DRDA Distributed Unit of Work.
To implement DRDA RUOW, implement only the DRDA RUOW functions. The functions that
are DRDA DUOW are marked in the text below.

8 Open Group Technical Standard (1999)

The DRDA Specification The DRDA Reference

Distributed Unit of Work

Distributed unit of work consists of support for the following:

• On the application requester:

— CMMRQSRM (see Section 4.4.12.2 on page 120)

— RDBUPDRM (see Section 4.4.12.2 on page 120)

— CMDVLTRM (see Section 4.4.12.2 on page 120, Table 11-1 on page 356, and Table 11-7 on
page 365)

— Two-phase commit protocols (see Section 3.1.4 on page 32, Commit and Rollback
Scenarios on page 122, Section 12.7.3.4 on page 409, Section 12.7.6 on page 411, Section
12.7.7 on page 412, and Section 12.7.9 on page 413)

— CRRTKN semantics and alert support (see Section 11.2.2.2 on page 353)

— Coexistence rules (see Section 4.4.12.2 on page 120, Section 12.7.8 on page 413, Section
12.7.9 on page 413)

— CMDVLT alert (see Table 11-1 on page 356 and Table 11-7 on page 365)

• On the application server:

— CMMRQSRM (see Section 4.4.12.2 on page 120)

— RDBUPDRM (see Section 4.4.12.2 on page 120)

— CMDVLTRM (see Section 4.4.12.2 on page 120)

— Two-phase commit protocols (see Section 3.1.4 on page 32, Section 4.4.12.2 on page 120,
Section 12.7.3.4 on page 409, Section 12.7.6 on page 411, and Section 12.7.7 on page 412)

— CRRTKN (semantics and alert support) (see Section 11.2.2.2 on page 353, Table 11-1 on
page 356, and Table 11-7 on page 365)

— CMDVLT alert (see Table 11-1 on page 356 and Table 11-7 on page 365)

VAX and IEEE ASCII (Non-Byte Reversed) Machine Types

The support for VAX and IEEE ASCII (non-byte reversed) machine types are required in DRDA
and consist of the following:

• On the application requester:

— Support for QTDSQLVAX (see Chapter 5 on page 137)

— Support for QTDSQLASC (see Chapter 5 on page 137)

• On the application server:

• Support for QTDSQLVAX (see Chapter 5 on page 137)

• Support for QTDSQLASC (see Chapter 5 on page 137)

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) 9

The DRDA Reference The DRDA Specification

Multi-Row Fetch

The support for multi-row fetch is optional in DRDA. If supported, it consists of the following:

• On the application requester:

— Support for nbrrow parameter on CNTQRY (see Section 4.4.6.1 on page 78), which
includes the ability to receive multiple rows when using fixed-row protocol.

— Sending FETCH on bind (see rule PB28 in Section 7.10 on page 296)

• On the application server:

— Receipt of nbrrow parameter on CNTQRY and the semantics of receiving it (see Section
4.4.6.1 on page 78)

— Receipt of FETCH on bind along with the semantics of receiving it (see rule PB28 in
Section 7.10 on page 296)

If not supported, the application server must still support the rejection of FETCH at BIND time
(see rule PB28, Section 7.10 on page 296).

Multi-Row Insert

The support for multi-row insert is optional in DRDA. If supported, it consists of the following:

• On the application requester:

— Support for nbrrow parameter on EXCSQLSTT (see Section 4.4.7 on page 96)

— Support for SQLDTAMRW multi-row insert RLO descriptor (see Section 5.2.3 on page
143)

• On the application server:

— Receipt of nbrrow parameter on EXCSQLSTT and the semantics of receiving it (see Section
4.4.7 on page 96)

— Support for SQLDTAMRW multi-row insert RLO descriptor (see Section 5.2.3 on page
143)

Scrollable Cursors

The support for scrollable cursors is optional in DRDA. If supported, it consists of the following:

• On the application requester:

— Support for qryrelscr parameter on CNTQRY (see Section 4.4.6.1 on page 78)

— Support for qryrownbr parameter on CNTQRY (see Section 4.4.6.1 on page 78)

— Support for qryrfrtbl parameter on CNTQRY (see Section 4.4.6.1 on page 78)

— Sending FETCH on bind (see rule PB28 in Section 7.10 on page 296)

• On the application server:

— Receipt of qryrelscr parameter on CNTQRY and the semantics of receiving it (see Section
4.4.6.1 on page 78)

— Receipt of qryrownbr parameter on CNTQRY and the semantics of receiving it (see Section
4.4.6.1 on page 78)

— Receipt of qryrfrtbl parameter on CNTQRY and the semantics of receiving it (see Section
4.4.6.1 on page 78)

10 Open Group Technical Standard (1999)

The DRDA Specification The DRDA Reference

— Receipt of FETCH on bind and the semantics of receiving it (see rule PB28 in Section 7.10
on page 296)

If not supported, the application server must still support:

• Rejection of FETCH at BIND time (see rule PB28 in Section 7.10 on page 296)

Bind and Rebind Options for I/O Parallelism

The support for bind and rebind options for I/O parallelism is optional in DRDA. If supported,
it consists of the following:

• On the application requester:

— Support for dgrioprl parameter on BGNBND (see Section 4.4.3 on page 67)

— Support for dgrioprl parameter on REBIND (see Section 4.4.5 on page 74)

• On the application server:

— Support for dgrioprl parameter on BGNBND (see Section 4.4.3 on page 67)

— Support for dgrioprl parameter on REBIND (see Section 4.4.5 on page 74)

If not supported, the application server must still support:

• Receipt of dgrioprl on BGNBND and REBIND.

CCSID Manager

The support for CCSID manager is optional in DRDA. If supported, it consists of the following:

• On the application requester:

— Support for specifying CCSIDMGR on EXCSAT (see Section 4.3.1.13 on page 46 and
Section 4.4.1 on page 54)

— Support for DDM character command parameters in CCSIDs 819, 850, and 500. It might
also support other CCSIDs. (See Section 4.3.1.13 on page 46 and Section 4.4.1 on page 54.)

• On the application server:

— Support for specifying CCSIDMGR on EXCSATRD (see Section 4.3.1.13 on page 46 and
Section 4.4.1 on page 54)

— Support for DDM character command parameters in CCSIDs 819, 850, and 500. It might
also support other CCSIDs. (See Section 4.3.1.13 on page 46 and Section 4.4.1 on page 54.)

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) 11

The FD:OCA Reference The DRDA Specification

1.2 The FD:OCA Reference
The FD:OCA Reference describes the functions and services that make up the Formatted Data
Object Content Architecture (FD:OCA). This architecture makes it possible to bridge the
connectivity gap between environments with different data types and data representation
methods by providing constructs that describe the data being exchanged between systems.

The FD:OCA is embedded in the Distributed Relational Database Architecture, which identifies
and brackets the Formatted Data Object in its syntax. DRDA describes the connectivity between
relational database managers that enables applications programs to access distributed relational
data and uses FD:OCA to describe the data being sent to the server and/or returned to the
requester. For example, when data is being sent to the server for inserting into the database or
being returned to the requester as a result of a database query, the data type (character, integer,
floating point, and so on) and its characteristics (length, precision, byte-reversed or not, and so
on) are all described by FD:OCA.

The FD:OCA Reference is presented in three parts:

• Overview material to give the reader a feel for FD:OCA. This material can be skimmed.

• Example material that shows how the FD:OCA mechanisms are used. This should be read
for understanding.

• References to the detailed FD:OCA descriptions. A few of these topics should be read up
front to gain experience with the style of presentation and the content of the first several
triplets. The rest can be read when the level of detail presented in that chapter is required.
This is reference material.

12 Open Group Technical Standard (1999)

The DRDA Specification DDM Reference

1.3 DDM Reference
The DDM Reference describes the architected commands, parameters, objects, and messages of
the DDM data stream. This data stream accomplishes the data interchange between the various
pieces of the DDM model.

DDM Guide

Although there are many concepts and terms in Distributed Data Management, there are only a
few that are key to the task of implementing a DRDA product. The suggested reading order for
the DDM material should provide a good starting point in understanding the DDM terms used
in DRDA. The intent is not to provide a complete list of DDM terms used by DRDA. For more
detailed information, see the DDM Reference.

Key DDM Concepts

The first task in dealing with Distributed Data Management (DDM) is to obtain some
background information to help place DDM in context. Table 1-1 lists the description and
modeling terms that provide the necessary background information in understanding DDM.

Table 1-1 DDM Modeling and Description Terms
__

DDM Term Term Title__
DDM Distributed Data Management Architecture__
CONCEPTS Concepts of DDM Architecture__
OOPOVR Object-oriented programming overview__
INHERITANCE Class inheritance__
SUBSETS Architecture subsets__
EXTENSIONS Product extensions to DDM Architecture__
LVLCMP Level compatibility__LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) 13

DDM Reference The DRDA Specification

Key DDM Concepts for DRDA Implementation

After becoming familiar with the DDM overview terms in Table 1-1 on page 13, it needs to be
understood that every DRDA implementation needs to provide the DDM components and
model structures listed in Table 1-2. The concept of a component is described in the overview
term for that component.

Table 1-2 DDM Terms of Interest to DRDA Implementers
__

DDM Term Term Title__
SQL Structured Query Language__
RDBOVR Relational database overview__
RDB Relational database__
SQLAM SQL Application Manager__
FDOCA Formatted Data Object Content Architecture (FD:OCA)__
SQLDTA SQL program variable data__
MGROVR Manager layer overview__
CMNOVR Communications overview__
CMNLYR Communications layers__
CMNMGR DDM communications manager__

LU 6.2 conversational communications manager (introduced in
DRDA Level 2)

CMNAPPC

__
LU 6.2 sync point conversational communications manager
(introduced in DRDA Level 2)

CMNSYNCPT

__
SYNCPTMGR Sync point manager__
AGENT Agent__
DSS Data Stream Structures__
OBJOVR Object layer overview__
SUPERVISOR Supervisor__
DICTIONARY Dictionary__
SECMGR Security manager__
DCESECOVR DCE security overview__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

14 Open Group Technical Standard (1999)

The DRDA Specification DDM Reference

DDM Command Objects in DRDA

Another important aspect in implementing DRDA is to understand the DDM command objects
used to flow the DRDA. The command objects are part of the DDM Relational Database (RDB)
model. Table 1-3 lists these command objects and groups them by function. None of the
parameters or parameter values associated with each command object are shown.

Table 1-3 DDM Command Objects Used by DRDA

DDM Term LL Term Title___
Connection establishment to a remote database manager___
EXCSAT Exchange server attributes___
ACCRDB L

L
L

Access RDB___
Package creation/rebind/remove___
BGNBND Begin binding of a package to an RDB___
BNDSQLSTT Bind SQL Statement to an RDB package___
ENDBND End binding of a package to an RDB___
REBIND Rebind an existing RDB package___
DRPPKG LL

L
L
L
L
L
L

DROP a package at an RDB___
Query Processing___
OPNQRY Open query___
CNTQRY Continue query___
CLSQRY LL

L
L
L

Close query___
Prepare/describe/execute SQL statements___
PRPSQLSTT Prepare SQL statement___
DSCSQLSTT Describe SQL statement___
DSCRDBTBL Describe RDB table___
DSCPVL Describe User privileges___
EXCSQLSTT Execute SQL statement___
EXCSQLIMM LL

L
L
L
L
L
L
L

Execute immediate SQL statement___
Commit/rollback unit of work___
RDBCMM RDB commit unit of work used by RUOW connections___
RDBRLLBCK RDB rollback unit of work used by RUOW connections___
SYNCCTL Sync point control request used for DUOW connections___
SYNCRSY L

L
L
L
L
L

Sync point resynchronization request used by DUOW connections___
Security processing___
ACCSEC Access security___
SECCHK L

L
L

Security check___
Propagating special register settings___
EXCSQLSET LL SET SQL environment___
Connection establishment to a remote database manager___
EXCSAT Exchange server attributes___
ACCRDB Access RDB___L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) 15

DDM Reference The DRDA Specification

Reply Objects and Messages

Table 1-4 gives a list of the normal DDM reply data objects. These include reply messages, reply
data, override data, query data descriptors, and query answer set data.

Table 1-4 DDM Reply Data Objects Used by DRDA
__

DDM Term Term Title__
EXCSATRD Server attributes reply data__
ACCRDBRM Access to RDB completed__
OPNQRYRM Open query complete__
ENDQRYRM End of query condition__
ENDUOWRM End unit of work condition__
RDBUPDRM Update at an RDB condition (Introduced in DRDA Level 2)__
SQLCARD SQL communications area reply data__
SQLDTARD SQL data reply data__
TYPDEFNAM Data type definition name__
TYPDEFOVR Data type definition override__
RSLSETRM RDB result set reply message__
SQLRSLRD SQL result set reply data__
QRYDSC Query answer set description__
QRYDTA Query answer set data__
ACCSECRD Access security reply data__
SECCHKRM Security check complete reply message__
SECTKN Security token reply data__
SYNCLOG Identifies the sync point log used for a unit of work__

Sync point control reply data in support of distributed unit of
work

SYNCCRD

__
Sync point resynchronization reply data in support of distributed
unit of work

SYNCRRD

__
SQL Result Set Column Info Reply DataSQLCINRD__
SQLDA Reply DataSQLDARD__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

16 DRDA Volume 1

Open Group Technical Standard

Part 1:

Database Access Protocol

The Open Group

Part 1: Database Access Protocol 17

18 DRDA Volume 1

Chapter 2

Introduction to DRDA

Distributed Relational Database Architecture (DRDA) is the architecture that meets the needs of
application programs requiring access to distributed relational data. This access requires
connectivity to and among relational database managers operating in like or unlike operating
environments. Structured Query Language (SQL) is the language that application programs use
to access distributed relational data. DRDA is the architecture that provides the needed
connectivity.

2.1 DRDA Structure and Other Architectures
DRDA requires the following architectures:

• Distributed Data Management (DDM) Architecture

• Formatted Data Object Content Architecture (FD:OCA)

DRDA uses Character Data Representation Architecture (CDRA). DRDA describes its use of Logical
Unit type 6.2 (LU 6.2) and Transmission Control Protocol/Internet Protocol (TCP/IP) for network
support, SNA Management Services Architecture (MSA) for problem determination support, and
The Open Group Distributed Computing Environment (DCE) security support.

For a better understanding of DRDA, some familiarity with these architectures is useful. See
Referenced Documents on page xxiv for a list of references that can provide helpful background
reading about these architectures.

DRDA uses DDM, FD:OCA, and CDRA as architectural building blocks. DRDA also assumes
the use of a network protocol and network management protocol as pieces of the architectural
building blocks. The specific form of each of the blocks is specified to ensure that system
programmers implement them in the same way for the same situations so that all programmers
can understand the exchanges. DRDA ties these pieces together into a data stream protocol that
supports this distributed cooperation.

2.2 DRDA and SQL
SQL is the database management system language and provides the necessary consistency to
enable distributed data processing across like or unlike operating environments. It allows users
to define, retrieve, and manipulate data across unlike environments. SQL provides access to
distributed relational data among interconnected systems that can be at different locations.

DRDA supports SQL as the standardized Application Programming Interface (API) for execution of
applications and defines flows (logical connections between the application and a database
management system) that the program preparation process can use to bind SQL statements for a
target relational database management system (DBMS).

An application uses SQL to access a relational database. When the requested data is remote, the
function receiving the application SQL request must determine where the data resides and
establish connectivity with the remote relational database system. One method used to make
this determination is the SQL CONNECT statement. An application using the CONNECT
statement directs the function receiving the application request to establish connectivity with a
named relational database system. The term that DRDA uses to represent the name of the

Part 1: Database Access Protocol 19

DRDA and SQL Introduction to DRDA

relational database (RDB) is RDB_NAME. The definition of RDB_NAME can be found in Section
6.2 on page 271.

Note:

A relational database system can have multiple RDB_NAMEs, where each
RDB_NAME represents a subset of the data managed by the relational database
system.

Also, SQL includes RDB_NAME as the high order qualifier of relational database objects
managed by the relational database system. See Section 6.3 on page 271 for details.

2.3 DRDA Connection Architecture
Connectivity in support of remote database management system processing requires a
connection architecture that defines specific flows and interactions that convey the intent and
results of remote database management system processing requests. DRDA provides the
necessary connection between an application and a relational database management system in a
distributed environment.

DRDA uses other architectures to describe what information flows between participants in a
distributed relational database environment.1 It also describes the responsibilities of these
participants and specifies when the flows should occur. DRDA provides the formats and
protocols required for distributed database management system processing, but does not provide
the Application Programming Interface (API) for distributed database management system
processing.

2.4 Types of Distribution
There are three degrees of distribution of database management system functions. Each degree
of distribution has different DRDA requirements. Figure 2-1 on page 21 illustrates the degrees of
distribution.

1. The terms distributed database and distributed relational database have the same meaning in this reference and are used
interchangeably. The term database always means relational database.

20 DRDA Volume 1

Introduction to DRDA Types of Distribution

__
Application-Directed Remote Unit of Work (DRDA Level 1)

— 1 DBMS per unit of work

— Multiple requests per unit of work

— 1 DBMS per request

— Application initiates commit

— Commitment at a single DBMS__LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

__
Application-Directed Distributed Unit of Work (DRDA Level 2)

— Several DBMSs per unit of work

— Application directs the distribution of work

— Multiple requests per unit of work

— 1 DBMS per request

— Application initiates commit

— Commitment coordination across multiple DBMSs__LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

__
Database-Directed Access (DRDA Level 4)

— Several DBMSs per unit of work

— Application directs requests to a DBMS

— DBMS distributes the unit of work to multiple DBMSs

— Multiple requests per unit of work

— 1 DBMS per request

— Application initiates commit

— Commitment coordination across multiple DBMSs

— Propagate special registers__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Figure 2-1 Degrees of Distribution of Database Function

The degrees of distribution are:

• Application-Directed Remote Unit of Work

With Remote Unit of Work, an application program executing in one system can access data at
a remote database management system using the SQL supported by that remote database
management system. Remote Unit of Work supports access to one database management
system within a unit of work.2 The application can perform multiple SQL statements within
the unit of work. When the application is ready to commit the work, it initiates the commit at
the database management system that is accessed for the unit of work. In the next unit of
work, the application can access the same database management system or another database
management system.

Part 1: Database Access Protocol 21

Types of Distribution Introduction to DRDA

• Application-Directed Distributed Unit of Work

With Distributed Unit of Work, within one unit of work, an application executing in one
system can direct SQL requests to multiple remote database management systems using the
SQL supported by those systems. However, all objects of a single SQL statement are
constrained to be at a single database management system.

When the application is ready to commit the work, it initiates the commit, and commitment
coordination is provided by a synchronization point manager.

Distributed Unit of Work allows:

— Update access to multiple database management systems in one unit of work

— Update access to a single database management system with read access to multiple
database management systems, in one unit of work

Whether an application can update multiple database management systems in a unit of work
is dependent on the existence of a synchronization point manager at the application’s
location, synchronization point managers at the remote systems, and two-phase commit
protocol support between the application’s location and the remote systems. Two-phase
commit protocols are discussed later.

• Database-Directed Distributed Unit of Work

In database-directed requests, an application connects to a relational database management
system (RDB) that can execute one or more SQL requests locally or route some or all of the
SQL requests to other RDBs. The RDB determines which system manages the data referenced
by the SQL statement and automatically propagates any special registers set by the
application and directs the request to that system. The DBMS is expected to support DUOW
connections, but allows restricted connectivity if it supports RUOW connections.

2.5 DRDA Protocols and Functions
At the Remote Unit of Work level, DRDA supports the connection between an application
process and the application server of a database management system (DBMS).

At the Distributed Unit of Work level, DRDA supports the connection between an application
process to application servers of multiple DBMSs, as well as an application server to multiple
database servers of multiple DBMSs.

DRDA provides one kind of connection protocol and two basic kinds of functions.

The connection protocol is:

• Application Support Protocol. Provides connection between application requesters (AR) and
application servers (AS).

The application requester supports the application end of the DRDA connection by making
requests to the application server, while the application server supports the database
management system end by answering these requests.

2. A unit of work can also be known as a transaction.

22 DRDA Volume 1

Introduction to DRDA DRDA Protocols and Functions

• Database Support Protocol. Provides connections between application servers and database
servers (DS). Prior to executing any SQL statements at a database server, special register
settings set by the application must be propagated to the database server.

The function types are:

• Application Requester Functions. Support SQL and program preparation services from
applications.

• Application Server Functions. Support requests that application requesters (ARs) have sent and
routes requests to database servers by connecting as an application requester.

• Database Server Functions. Support requests from application servers. Support the
propagation of special register settings.

These three functions are illustrated in Figure 2-2.

Application Support Protocol

/

/

Application

Application
Requester

DBMS

Application |
Server

Figure 2-2 DRDA Network

A single system can implement all of the functions. Such a system would behave appropriately
(differently) according to the role it is playing for any particular request.

This relationship is illustrated in Figure 2-3 on page 24.

Application Support Protocol

/

/

/

/

/

/

/

/

Application

Application
Requester

(OS/2)

Application
Server

Application
Requester

DBMS

Application
Server

Application
Server

DBMS

Application
Server

DBMS

Application

Application
Requester

(NT) Remote
Unit of Work

Distributed
Unit of Work

Figure 2-3 DRDA Network Implementation Example

Part 1: Database Access Protocol 23

DRDA Protocols and Functions Introduction to DRDA

Any database management systems could be in any position in this figure. Figure 2-3 shows
three places where databases (DBMS) from different vendors—for example, IBM, Microsoft,
Oracle, and so on—may be used. Implementations are based upon business requirements.

A developer might choose to implement either DRDA Remote Unit of Work or Distributed Unit
of Work. If a Remote Unit of Work component is being developed, all functions should be
implemented except those identified as DRDA Distributed Unit of Work. An implementer of a
subset of these functions is not required to support Distributed Unit of Work.

Some functions of this architecture are optional. These are defined in Section 1.1 on page 2, as
well as the optionality of the DDM commands, replies, and parameters as defined in the DDM
Reference.

This volume describes both Remote Unit or Work and Distributed Unit of Work, plus additional
functions that have been included since DRDA was first introduced. The type of support used is
dependent on the DRDA manager levels in use. See Chapter 4 on page 37 for details on DDM
managers.

24 DRDA Volume 1

Chapter 3

Using DRDA—Overall Flows

DRDA flows are high-level communication paths that pass information between application
environments and database management systems. Because these flows cross underlying
architecture boundaries, this chapter relates individual pieces of flows to the defining
architecture.

The rest of this volume describes the details of how DRDA uses each of the underlying
architectures and discusses each of these flows in greater detail.

3.1 Introduction to Protocol Flows
Application support protocol flows establish and define the connections for the information
exchange from executing application programs and application development programs to
database management systems.

The logical flow figures in this chapter are examples of the type of information that flows
between an application requester and an application server in support of a DRDA activity. The
figures refer to information flowing from the application requester as application end
information and to information flowing from the application server as database management
system end information. The arrows depict the direction of flow as opposed to the actual time of
flow.

Each figure uses verbs, commands, and terms from the underlying architectures. For the sake of
example, we assume the use of SNA as the network protocol in the example flows of this
chapter. Refer to Chapter 12 on page 385 for an explanation of the use of SNA verbs. Refer to
Chapter 4 on page 37 for an explanation of the use of DDM commands and terms. Refer to
Chapter 5 on page 137 for an explanation of the use of FD:OCA constructs.

3.1.1 Initialization Flows

An initialization flow occurs before, or as part of the response to, the first remote request from an
application program or an end user. The first remote request can be an explicit SQL CONNECT
statement, or an implicit SQL CONNECT due to some other SQL statement that implies a
connect to the database management system. Using DRDA Remote Unit of Work, an application
or end user can only connect to one relational database per unit of work. Using Distributed Unit
of Work, an application or end user can connect to multiple relational databases in a single unit
of work, but only one SQL connection is current at any time. The application or end user defines
which SQL connection is current through SQL calls. The target database of the SQL CONNECT
statement can be a local database, in which case DRDA protocols are not in use. An initialization
flow creates a network connection and prepares a remote DRDA execution environment for
executing a DRDA request.

A successful initialization flow results in an authenticated network connection between specific
products at understood release levels. Authentication processing is required in DRDA.
Authentication can occur by one or more of the following techniques:

• Through Distributed Computing Environment (DCE) security mechanisms

• Passing a userid and password in a DDM command

Part 1: Database Access Protocol 25

Introduction to Protocol Flows Using DRDA—Overall Flows

• Passing a userid only (equivalent to already verified) in a DDM command

• Passing a userid, password, and new password in a DDM command

• During SNA initialization processing through use of LU-LU Verification (Partner-LU
verification) and Conversation Level Security (End-user verification) as specified in the SNA
architecture

An initialization flow also propagates information for accounting and problem determination.
For example, the initialization flow specifies an end-user name and a unique correlation token. In
addition, TCP/IP connections provide a unique DDM unit of work identifier (UOWID), the
server’s IP address and PORT number. SNA connections provide a unique SNA logical unit of
work identifier (LUWID), server’s LU name, and transaction program name (TPN). These
provide the who, what, when, and where information useful for accounting in DRDA
environments.

A DRDA initialization flow uses a network protocol and DDM commands to create a connection
to a relational database.

Figure 3-1 on page 27 and Figure 3-2 on page 28 show the logical flow of information between an
application requester and an application server. Arrows depict the direction that information
flows rather than the time that actual physical flows occur on the link.

Figure 3-1 on page 27 assumes SNA security is used. Figure 3-2 on page 28 assumes the security
information is carried in DDM commands and responses. For this example, it is assumed that
DCE security is in use. Other possible security information, which along with DCE security is
likely for TCP/IP networks are:

• Userid and password

• Userid only

• Userid, password, and new password

Both figures assume:

• An SQL CONNECT statement was the remote request that started the initialization flow.

• The application server supports the DDM TYPDEF that the application requester specified.
The DDM TYPDEF specifies the data representation used when transmitting parameters and
values between the application requester and the application server. Other remote requests
(such as DDM BGNBND) cause similar flows of information.

• All SNA verbs and DDM commands execute successfully

26 DRDA Volume 1

Using DRDA—Overall Flows Introduction to Protocol Flows

Application End Information DBMS End Information

I am USER_ID; --->
I desire to connect to DRDA TPN
at NETID.LU_NAME using MODE_NAME;
I am part of LUWID
(SNA ALLOCATE)

I am RELEASE of AR from DRDA
ENVIRONMENT and request the
following DDM managers
(DDM EXCSAT)

<--- I am RELEASE of AS from DRDA
ENVIRONMENT and support
the following subset of
requested DDM managers
(DDM EXCSATRD)

I wish to access RDB_NAME --->
using DRDA flows with TYPDEF
(DDM ACCRDB)

<--- I support the TYPDEF specified
I will use DRDA flows with
TYPDEF
(DDM ACCRDBRM)

Figure 3-1 Logical Flow: Initialization Flows with SNA Security

Part 1: Database Access Protocol 27

Introduction to Protocol Flows Using DRDA—Overall Flows

Application End Information DBMS End Information

I desire to connect to DRDA TPN --->
at NETID.LU_NAME using MODE_NAME;
I am part of LUWID
(SNA ALLOCATE)

I am RELEASE of AR from DRDA
ENVIRONMENT and request the
following DDM managers
(DDM EXCSAT)

<--- I am RELEASE of AS from DRDA
ENVIRONMENT and support
the following subset of
requested DDM managers
(DDM EXCSATRD)

Here is the security mechanism --->
I wish to use
(DDM ACCSEC)

<--- I accept your security
mechanism
(DDM ACCSECRD)

I am USER_ID and here is --->
information to authenticate me
(DDM SECCHK)

<--- I accept who you are
and here is information to
authenticate me
(DDM SECCHKRM)

I accept who you are and --->
I wish to access RDB_NAME
using DRDA flows with TYPDEF
(DDM ACCRDB)

<--- I support the TYPDEF specified
I will use DRDA flows with
TYPDEF
(DDM ACCRDBRM)

Figure 3-2 Logical Flow: Initialization Flows with DCE Security

28 DRDA Volume 1

Using DRDA—Overall Flows Introduction to Protocol Flows

In Figure 3-1 on page 27 and Figure 3-2 on page 28, the material in parentheses shows the SNA
verbs and DDM commands and responses that carry the information.

For a more in-depth description of the initialization processing flows, see:

• For SNA, Figure 12-1 on page 396 and Figure 12-3 on page 398

• For TCP/IP, Figure 13-2 on page 425

3.1.2 Bind Flows

A DRDA bind flow results in the creation and storage of a package at an application server.

DRDA bind flows use a network protocol, DDM, FD:OCA, and CDRA. Figure 3-3 on page 30
shows the type of information that flows between an application requester and an application
server. Arrows depict the direction that information flows rather than the time that physical link
flows occur. Figure 3-3 on page 30 assumes:

• The connection has been established.

• The application requester is binding two SQL statements with application variable
definitions into a single package at the application server.

Part 1: Database Access Protocol 29

Introduction to Protocol Flows Using DRDA—Overall Flows

Application End Information DBMS End Information

I desire to Bind SQL --->
statements to PACKAGE with
CONSISTENCY TOKEN using the
following Bind options and
Parser options.
(DDM BGNBND)

<--- I executed BGNBND with the
following results
(DDM SQLCARD using FD:OCA)

Bind SQL STATEMENT as SECTION --->
in PACKAGE with CONSISTENCY
TOKEN referencing the following
application program host language
variable declarations
(DDM BNDSQLSTT, DDM SQLSTT,
and DDM SQLSTTVRB using FD:OCA)

<--- I executed BNDSQLSTT with the
following results
(DDM SQLCARD using FD:OCA)

Bind SQL STATEMENT as SECTION --->
in PACKAGE with CONSISTENCY
TOKEN referencing the following
application program host language
variable declarations
(DDM BNDSQLSTT, DDM SQLSTT,
and DDM SQLSTTVRB using FD:OCA)

<--- I executed BNDSQLSTT with the
following results
(DDM SQLCARD using FD:OCA)

I have completed BIND --->
(DDM ENDBND)

<--- I executed ENDBND with the
following results
(DDM SQLCARD using FD:OCA)

Figure 3-3 Logical Flow: Bind Flows

30 DRDA Volume 1

Using DRDA—Overall Flows Introduction to Protocol Flows

For a more in-depth description of the bind flows, see:

• For SNA, Figure 12-6 on page 403

• For TCP/IP, Figure 13-3 on page 427

3.1.3 SQL Statement Execution Flows

A DRDA SQL statement execution flow transmits a DDM command to an application server that
requests a relational database management system to execute an SQL statement and returns the
results to the application requester. There are several types of statement execution flows. Figure
3-3 on page 30 is an example of the flow that executes a previously bound SQL statement
involving a cursor and uses the DDM commands OPNQRY, CNTQRY, and CLSQRY to perform
functions analogous to the SQL cursor statements OPEN, FETCH, and CLOSE. If an application
server determines the SQL statement is for another RDB, the application server must propagate
any special registers set or changed by the application since the last request to that database
server (DS).

DRDA remote SQL statement requests often operate on multiple rows of multiple tables and can
cause the transmission of multiple rows from the application server to the application requester.
DRDA provides two data transfer protocols in support of these operations:

• Fixed row protocol3

• Limited block protocol

The fixed row protocol guarantees the return of exactly the number of rows the application
requested, or the number of rows available if it is less than the number of rows the application
requested, whenever the application requester receives row data. The limited block protocol
optimizes data transfer by guaranteeing the transfer of a minimum amount of data (that can be
part of a row, multiple rows, or multiple rows and part of a row) in response to each DRDA
request. Application requesters and application servers can use the limited block protocol for the
processing of a query that uses a cursor for read-only access to data.

See the terms FIXROWPRC4 and LMTBLKPRC in the DDM Reference for more details on fixed
row and limited block protocols.

DRDA SQL statement execution flows use a network protocol, DDM, FD:OCA, and CDRA.

Figure 3-4 on page 32 shows the type of information that flows between an application requester
and an application server. Arrows depict the direction that information flows rather than the
time that physical link flows occur.

This figure assumes that:

• The connection has been established.

• An OPEN and FETCH SQL statement sequence was the remote request that caused the SQL
statement execution flow to occur.

3. In DRDA Level 1 this was known as single row protocol. DRDA Level 2 introduced the optional support for multi-row fetches.
Single row fetch (single row protocol) is the default and is also a special case of fixed row protocol. DRDA application requesters
and application servers supporting only Remote Unit of Work are not required to support multi-row fetches.

4. The default for fixed row protocol is known as single row protocol (or single row fetch), and can be specified using the term
SNGROWPRC.

Part 1: Database Access Protocol 31

Introduction to Protocol Flows Using DRDA—Overall Flows

• The query does not require application input variable values.

• The query processing uses the limited block protocol and that query processing requires the
transmission of two blocks containing row data.

Application End Information DBMS End Information

I desire to Open Query for --->
SECTION of PACKAGE with
CONSISTENCY TOKEN using
BLOCKSIZE
(DDM OPNQRY)

<--- I executed the OPNQRY using
QUERY PROTOCOl TYPE with
the following results
(DDM OPNQRYRM with DDM QRYDSC
and DDM QRYDTA using FD:OCA)

Continue query processing --->
for SECTION of PACKAGE with
CONSISTENCY TOKEN using
BLOCKSIZE
(DDM CNTQRY)

<--- I executed the CNTQRY with
the following results
(DDM QRYDTA using FD:OCA
and DDM ENDQRYRM
with DDM SQLCARD using FD:OCA)

Figure 3-4 Logical Flow: SQL Statement Execution Flows

For a more in-depth description of the actual DRDA execute SQL statement flows, see:

• For SNA, Figure 12-9 on page 406

• For TCP/IP, Figure 13-4 on page 428

3.1.4 Commit Flows

A successful commit of the application’s work involves a coordinated commitment of all work
processed by the application since the last successful commit or startup of the application. This
process is also known as resource recovery processing, and the point where all resources are in a
consistent state is called a synchronization point. The flows involved with the commitment of
resources are dependent on the sync point manager in use between the application end and
DBMS end of the connection. The SNA communication sync point manager supports protected
network connections which use SNA-defined two-phase commit flows to commit the work. The
DRDA sync point manager uses DDM-defined sync point control flows to commit the work.
DDM flows are independent of the underlying communications manager.5

5. DDM sync point manager supports presumed abort and implied forget processing to optimize performance, eliminating all
logging requirements at an application requester. Also, optional resync server flows are defined to eliminate all logging
requirements for an unsecure requester. Refer to the SYNCPTOV term in the DDM Reference for an overview of DRDA’s two-
phase commit processing.

32 DRDA Volume 1

Using DRDA—Overall Flows Introduction to Protocol Flows

Remote Unit of Work connections use DRDA defined one-phase commit or two-phase commit
flows to commit the work. The type of DRDA commit flow used is dependent on the level of the
sync point manager identified during initialization. Without the support of a sync point
manager, DRDA one-phase commit is used to coordinate all commits. For work that involves
both protected and unprotected network connections, the application requester participates in
the processing of both flows. For information about committing work on Distributed Unit of
Work connections, refer to Figure 12-11 on page 409.

Figure 3-5 shows the type of information that flows between an application requester and
application server to commit work using DRDA two-phase flows.

Application End Information DBMS End Information

I want to start a new unit of --->
work by sending the new
unit of work identifier
(DDM SYNCCTL new unit of
work identifier command)

<--- Set identifier for current
unit of work and participate
in the next commit

Prepare for commitment of the --->
current unit of work
(DDM SYNCCTL prepare to
commit command)

<--- Prepare for commitment of the
current unit of work
(DDM SYNCCRD request to
commit reply)

Commit the current unit of --->
work
(DDM SYNCCTL committed
command)

<--- Commit and forget the current
unit of work
(DDM SYNCCRD forget unit
of work reply)

Figure 3-5 Logical Flow: DRDA Two-Phase Commit

Figure 3-6 on page 34 shows the information that flows between an application requester and
application server to commit work using DRDA one-phase commit. In both flows, a request to
commit the work can result in the application server roll backing the unit of work.

Part 1: Database Access Protocol 33

Introduction to Protocol Flows Using DRDA—Overall Flows

Application End Information DBMS End Information

I want to commit the current --->
unit of work
(DDM RDBCMM, DDM EXCSQLSTT, or
DDM EXCSQLIMM)

<--- I committed the work
(DDM ENDUOWRM with SQLCARD
using FD:OCA)

Figure 3-6 Logical Flow: DRDA One-Phase Commit Using DDM Commands

The SQL application should explicitly use commit or rollback functions before termination. It is
the responsibility of the application requester, however, to ensure commit and rollback functions
are invoked at application termination. For details about committing work using SNA refer to
Figure 12-13 on page 411, or for TCP/IP refer to Figure 13-7 on page 430.

3.1.5 Termination Flows

A successful termination flow results in the orderly close of the network connection between the
application program or the end user and the DBMS. The termination of the network connection
between an application requester and an application server terminates the application server.

The normal or abnormal termination of an application causes the application requester to initiate
terminate network connection processing for the network connection associated with the
execution of the application. The normal termination of a protected connection must be
performed using a commit. The termination of an unprotected connection using DRDA two-
phase commit flows must perform a commit that indicates the connection is to be released when
the commit is successful. In terms of SNA, a DEALLOCATE on protected network connections
must be followed by the SNA command SYNCPT before the conversation is deallocated. In
terms of DRDA, a DDM sync point control is sent with the release connection indicator. The
connection is not disconnected if the unit of work results in a rollback. The semantics of a
disconnect of the network connection include an implied rollback. It is the responsibility of the
application server to ensure a rollback occurs when a network failure is detected.

Figure 3-7 on page 35 shows the type of information that flows between an application requester
and an application server to terminate a protected connection using DRDA two-phase flow.

34 DRDA Volume 1

Using DRDA—Overall Flows Introduction to Protocol Flows

Application End Information DBMS End Information

Prepare for commitment of the --->
current unit of work for a
released connection
(DDM SYNCCTL prepare to
commit with RLSCONV set
to TRUE)

<--- Prepare for commitment of
the current unit of work
(DDM SFNCCRD request to
commit reply)

Commit the current unit of --->
work
(DDM SYNCCTL committed)

<--- Commit and forget the current
unit of work
(DDM SYNCCRD forget unit of
work reply)

Terminate the network --->
connection

<--- Terminate the network
connection and application
server process

Figure 3-7 Logical Flow: DRDA Two-Phase Commit Termination Flows Using DDM Commands

Figure 3-8 shows the type of information that flows between an application requester and an
application server to deallocate a single SNA protected conversation.

Application End Information DBMS End Information

I desire to disconnect from --->
DRDA Transaction Program
(SNA DEALLOCATE, SNA SYNCPT)

<--- Receive deallocate and commit
notification. Commit unit of
work and terminate application
server process

Figure 3-8 Logical Flow: SNA Termination Flows on Protected Conversations

Part 1: Database Access Protocol 35

Using DRDA—Overall Flows

36 DRDA Volume 1

Chapter 4

The DRDA Processing Model and Command Flows

DRDA’s set of models allows the separation of an application from the relational data it will
process. If moving the data does not split it across systems, the process of moving the relational
data from the system containing the application or the application from the system containing
the relational data should not require changes to the application’s source code to get the same
results.

DRDA describes, through protocol models, the necessary interchanges between the application
(or an agent on its behalf) and one or more remote relational databases6 to perform the following
functions:

• Establish a connection between an application and a remote relational database.

• Bind an application’s host language variables and SQL statements to a remote relational
database.

• Execute those bound SQL statements, on the behalf of the application, in the remote
relational database and return the correct data or completion indication to the application.

• Execute dynamic SQL statements, on the behalf of an application, in a remote relational
database and return the correct data or completion indication to the application.

• Maintain consistent unit of work boundaries between an application and one or more remote
relational databases.

• Terminate the connection between an application and a remote relational database.

DRDA describes these functions as a series of commands and command replies that are sent
between the application (or an agent on its behalf) and a remote relational database. DRDA also
describes the correct flow of these commands and command replies between the application (or
an agent on its behalf) and a remote relational database. Included in the description of the
commands and flows are:

• Encoding/decoding rules for commands, parameters, and data

• Parameter values on commands and command replies:

— Optional/required

— Valid/not valid

— Assigned (constant/defined values)

— Defaults

• Valid command replies for each command

• Error messages valid for each command

• Recovery procedures for command error messages, when applicable

• Order in which commands can be sent

6. DRDA Remote Unit of Work is limited to one relational database per unit of work.

Part 1: Database Access Protocol 37

DDM and the Processing Model The DRDA Processing Model and Command Flows

4.1 DDM and the Processing Model
The DDM model, DDM terms, and DDM architecture define the functions and the command
flows that make up DRDA. To further explain the relationship of DRDA and DDM, this chapter:

• Presents the DDM processing model and relates it to SQL, relational database managers, and
DRDA.

• Presents the DDM server model, including manager objects, and relates it to the DRDA
model.

• Describes the normal flow of DDM commands (as examples) between an application
requester and an application server to accomplish the tasks of:

— Establishing connectivity between the application requester and application server

— Determining the functional capabilities of the application server

— Binding SQL statements in an application to a remote relational database

— Dropping a set of bound SQL statements from a remote relational database

— Executing a bound Query against a remote relational database

— Executing SQL statements

— Completing/terminating a unit of work

— Terminating the connection between application requester and application server upon
completion of the application

• Provides some examples of error conditions and the normal processing associated with them
in an application requester or application server.

• References other sections of this document and other documents for descriptions of:

— DDM terms

— FD:OCA descriptors

— DRDA command usage rules

— SNA LU 6.2 two-phase commit protocols

— DDM two-phase commit protocols

— The DCE Security mechanisms

38 DRDA Volume 1

The DRDA Processing Model and Command Flows DRDA

4.2 DRDA’s Relationship to DDM
This chapter describes the use of the DDM architecture to perform DRDA functions. The details
for DDM functions and examples are in the DDM references. The figures in this chapter contain
the DDM commands used to perform each of the DRDA functions. The exact syntax and
semantics of the DDM commands are described in the DDM Reference.

DDM is an architected data management interface used for data interchange among like or
unlike systems. The DDM architecture is independent of an implementing system’s hardware
architecture and its operating system. DDM provides a conceptual framework or model for
constructing common interfaces for data interchange between systems. The DDM data stream
(which consists of architected commands, parameters, objects, and messages) accomplishes the
data interchange between the various pieces of this model.

The references cited in Referenced Documents on page xxiv describe DDM in greater detail. The
reader should be familiar with the DDM Reference before reading this chapter. The level of
DDM documentation that should be referenced is dependent on the level of the DRDA
implementation. For example, for DRDA Level 3, see the DDM Level 5 documentation.

DDM describes the model for distributed relational database processing between relational
database management products. It also provides all the commands, parameters, data objects,
and messages needed to describe the interfaces between the various pieces of that model.

DRDA describes the contents of all the data objects that flow on either commands or replies
between the application requester (AR) and the application server (AS). The formats of these
objects are described in Chapter 5 on page 137. The Formatted Data Object Content Architecture
(FD:OCA) is used in that chapter as the underlying description architecture. FD:OCA is a
powerful architecture for data description, and DRDA uses a subset of that architecture. In this
volume, the terms FD:OCA descriptor (meaning a description expressed using FD:OCA) and the
unqualified word descriptor are used interchangeably and mean the same thing. In either case,
these terms refer to the DRDA data definitions included in Chapter 5 on page 137. FD:OCA data,
in this volume, means data defined by DRDA descriptions.

DDM describes the common interfaces for the interchange of data between more data models
than relational database management products support. Therefore, there are many more DDM
commands, parameters, data objects, and reply messages (all of which are described as terms in
the referenced documents) than are required in any implementation of distributed relational
database management. This chapter describes which of the DDM terms are part of DRDA.

This chapter also describes additional restrictions on the use of some of the DDM terms in order
to provide a consistent DRDA usage of DDM architecture, efficient implementations of DRDA,
and a more understandable architecture for implementers of relational database management
products. These restrictions are described in detail in Chapter 7 on page 281 and Chapter 5 on
page 137. Additionally, the normal or usual usage of the DDM terms is described through the
use of examples in Section 4.4 on page 54. For more background reading, see DDM Guide on
page 13 for the suggested reading order of the DDM Reference.

Part 1: Database Access Protocol 39

The DRDA Processing Model The DRDA Processing Model and Command Flows

4.3 The DRDA Processing Model
The system that contains an executing application that is requesting relational database
management functions on another system is called the source system in the DDM processing
model. The system that contains the relational database that provides the function is called
target system in the DDM model. The DDM source system is referred to as the application
requester in the DRDA processing model and the DDM target system is referred to as the
application server in the DRDA processing model.

The DDM processing model is a set of managers that act on or organize data within a DDM data
stream or within the manager itself. Figure 4-1 on page 47 shows all of the DDM managers
whose functions are defined in DRDA. The DDM managers shown include all the entities in this
illustration except the application, the relational database, and the communication support. The
support that each of the managers provides is discussed in Section 4.3.1.

For further information on the DDM processing model, the DDM server model, and DDM server
managers, see the introductory chapter of the DDM Reference. These sections also introduce
some of the terms and terminology used in the DDM architecture.

4.3.1 DRDA Managers

The DDM processing model is composed of managers that are grouped together and function as
servers. DRDA defines three DDM servers, the application requester (AR), the application server
(AS), and the database server (DS).

The next sections discuss each DDM manager used in DRDA processing. There are descriptions
for the function of the manager and the relationship between managers. Neither DDM nor
DRDA defines the interfaces between DDM managers. Neither DDM nor DRDA requires an
implementation to package the functions according to the DDM manager model.

A DRDA implementation of an application requester must be able to create the DDM
commands, command parameters, and command data objects to be sent to an application
server, and to receive the DDM reply messages and reply data objects that the application server
returns. A DRDA implementation of an application server must be able to receive the
commands, command parameters, and command data objects that an application requester has
sent, and, based upon the command requests, generate the appropriate reply messages and reply
data objects to be returned to the application requester.

The following sections discuss the managers that make up these servers.

4.3.1.1 SNA Communications Manager

The SNA LU 6.2 conversational communications manager (CMNAPPC) provides unprotected
conversational support for the agent in an application requester or application server. It
provides this support using conversational protocols that the local LU 6.2 communications
facilities provide in accordance with the description provided in Chapter 12 on page 385.

This DDM communications manager is the program associated with the transaction program
name (TPN) and an instance of it is created in the application server system when a request for
an application server is received.

It manages the DRDA protocols and rules that are to be used on top of the LU 6.2 support.

It builds the DDM data streams from the commands, parameters, data, and replies that the agent
passed to it. It also parses the DDM data stream (only to the data stream structure level) and
passes commands, parameters, data, and replies to the agent.

40 DRDA Volume 1

The DRDA Processing Model and Command Flows The DRDA Processing Model

4.3.1.2 SNA Sync Point Communications Manager

The SNA LU 6.2 sync point conversational communications manager (CMNSYNCPT) is
introduced in DRDA Distributed Unit of Work and is not required to be supported for DRDA
Remote Unit of Work. CMNSYNCPT provides protected conversational support for the agent in
an application requester or application server. It provides this support using conversational
protocols that the local SNA LU 6.2 communications facilities provide in accord with the
description provided in Chapter 12 on page 385.

This is the program associated with the transaction program name (TPN), and an instance of it is
created in the application server system when a request for an application server is received.

It manages the DRDA protocols and rules that are to be used on top of the LU 6.2 support.

It builds the DDM data streams from the commands, parameters, data, and replies that the agent
passed to it. It also parses the DDM data stream (only to the data stream structure level) and
passes commands, parameters, data, and replies to the agent.

4.3.1.3 TCP/IP Communications Manager

The TCP/IP communications manager (CMNTCPIP) provides TCP/IP network protocol
support for the agent in an application requester or application server. It provides this support
using TCP/IP protocols that the local TCP/IP communications facilities provide in accordance
with the description provided in Chapter 13 on page 421.

This DDM communications manager is the program associated with the DRDA well known port
and an instance of it is created in the application server system when a request for an application
server is received.

It manages the DRDA protocols and rules that are to be used on top of the TCP/IP support.

It builds the DDM data streams from the commands, parameters, data, and replies that the agent
passed to it. It also parses the DDM data stream (only to the data stream structure level) and
passes commands, parameters, data, and replies to the agent.

4.3.1.4 Agent

The function of an agent (AGENT) is to represent a requester to a server. There is an instance of
the agent present in both an application requester and an application or database server, and,
although there are some common functions in the two agents, there are additional functions that
depend on which of the agent environments is being considered.

In an application requester, the agent interfaces with the SQLAM to receive requests and pass
back responses.

In an application or database server, the agent interfaces to managers in its local server to
determine where the command should be sent to be processed, to allocate resources, to locate
resources, and to enforce security.

The agent in the application or database server represents the requester to the local server’s
supervisor to control and account for the memory, processor, file-storage, spooling, and other
resources a single user job/task uses.

The agent in an application or database server also represents the requester to its server’s
security manager. The application or database server’s security manager validates each request
the requester makes for a resource.

The agents in an application requester and in an application or database server interface to the
DDM communications manager for any required communications.

Part 1: Database Access Protocol 41

The DRDA Processing Model The DRDA Processing Model and Command Flows

To access remote relational databases, an agent in the application requester requests that the
DDM communications manager establish communications with an agent in the application or
database server on the system that owns the relational database. The agent in the application
requester directs all following requests for that relational database to the agent in the application
or database server.

4.3.1.5 Supervisor

The supervisor (SUPERVISOR) manages a collection of managers within a particular operating
environment.

The supervisor provides an interface to its local system services such as resource management,
directory, dictionary, and security services. The supervisor interfaces with the local system
services and the other managers.

The only command defined for the supervisor is the Exchange Server Attributes (EXCSAT)
command that allows two servers to determine their respective server class names and levels of
support.

4.3.1.6 Security Manager

The security manager (SECMGR) is part of the DDM model to represent security functions. Not
all security functions are defined in DRDA. Some of the details of security in DRDA are
described in Chapter 10 on page 343.

The primary functions of a security manager include:

• Participation in end-user identification and authentication processing for the security
mechanisms listed in Table 4-3 on page 62. (For example, DCE security, userid only, userid
and password, and so on.)

Note: If none of these security mechanisms are in use, the communications facilities
must perform the end-user identification and authentication functions.

• Ensure that the requester, which the agent represents, is only allowed to access relational
databases, commands, dictionaries, or directories in the manner for which it has been
authorized.

The authorization of a user to objects within a relational database is the responsibility of the
relational database manager. DDM provides various reply messages for rejecting commands
due to authorization failures.

4.3.1.7 Directory

A directory is an object that maps the names of instances of manager objects to their locations.
The directory manager (DIRECTORY) provides support for locating the managers that make up
a server (the AS).

The product, not DDM or DRDA, defines the interfaces to the directory manager.

4.3.1.8 Dictionary

A dictionary is a set of named descriptions of objects. A dictionary manager (DICTIONARY)
provides interfaces to use the object descriptions that are stored in the dictionary.

In an application requester, the agent and SQLAM use the dictionary to create valid DDM
command and data objects. They also use the dictionary to parse the reply data and messages
that are returned from the application server to determine what manager should process them
and what data is returned to the application.

42 DRDA Volume 1

The DRDA Processing Model and Command Flows The DRDA Processing Model

In an application server, the agent and SQLAM use the dictionary to parse the DDM command
and data objects that the application server has received from the application requester to
determine which manager is to process the request and what type of processing is to be done.
They also use the dictionary to construct valid reply messages and reply data to be returned to
the application requester.

4.3.1.9 Resynchronization Manager

The resynchronization manager is the system component that recovers protected resources
when a commit operation fails. If a commit operation fails and the outcome of the unit of work
may be in doubt, the resynchronization manager initiates resynchronization flows to resolve in-
doubt units of work.

Also, in conjunction with the sync point manager, the resynchronization manager provides
resync server support. If supported, an unsecure requester can migrate resynchronization
responsibilities to a server. The resync server logs unit of work state information and performs
resynchronization on behalf of the requester.

4.3.1.10 Sync Point Manager

The sync point manager is the system component that coordinates commit and rollback
operations among the various protected resources. With distributed updates, sync point
managers on different systems cooperate to ensure that resources reach a consistent state. The
protocols and flows used by sync point managers can also be referred to as two-phase commit
protocols.

The sync point manager can be called directly by the application to commit the unit of work or
by the SQLAM at the application requester on behalf of the application.

Sync point operations flow as DDM commands, objects, and replies using either TCP/IP or SNA
communications manager. The agent forwards sync point commands and objects to the
SYNCPTMGR which then interfaces to the RDB or SQLAM to perform sync point operations.
Sync point replies are sent from the SYNCPTMGR to the agent in the form of a DDM reply and
objects which are sent using the underlying communications manager.

For SNA protected conversations, the reference SNA LU 6.2 Reference: Peer Protocols (SC31-6808,
IBM) describes in greater detail the functions of a sync point manager as well as its relationship
to the resource managers and applications.

4.3.1.11 SQL Application Manager

The function of the SQL application manager (SQLAM) is to represent the application to the
remote relational database manager. There is an instance of the SQLAM present in both an
application requester and an application or an application server to a database server. An
SQLAM performs functions depending on which environment the application is in.

The SQLAM handles all DRDA flows. This manager is responsible for ensuring that the
application requester, application server, and database server are using the proper commands
and protocols.

In the application requester, the SQLAM processes the requests it receives from the application
or application server and invokes the corresponding function/operation from the SQLAM in the
application server through DRDA commands. Neither DDM nor DRDA defines the interface
that the SQLAM provides in the application requester for requests from the application.

In the application server, the SQLAM processes the requests it receives and invokes the
corresponding function/operation from the relational database manager. It uses interfaces that

Part 1: Database Access Protocol 43

The DRDA Processing Model The DRDA Processing Model and Command Flows

the relational database manager and other managers in its environment have defined. The target
SQLAM responds to the source SQLAM through architected reply messages and reply data.

Both source and target SQLAMs are responsible for data representation conversions as
necessary for DDM command and reply message parameters. Unless overridden by the DDM
Coded Character Set Identifier (CCSID) manager (CCSIDMGR), the character parameter values
are represented in CCSID 500.

The SQLAM is the only manager in either the application requester, application server, or
database server that understands the format of the command data objects and reply data objects.
It is, therefore, responsible for creating and interpreting all of the FD:OCA descriptors that the
application requester and application server pass between them.

The SQLAM at the application requester is responsible for converting numeric and character
data, if necessary, before passing data values to the application programs.

The SQLAM at the application server or database server is responsible for converting numeric
data, if necessary, before passing the data values to the relational database. The relational
database is responsible for performing any necessary character conversion.

The SQLAM at the application server or database server registers with the sync point manager
so that the SQLAM is kept informed of the status of the unit of work from the viewpoint of the
global environment.7

The SQLAM at the application requester can call the sync point manager to begin the resource
recovery process on behalf of the application. The application requester must also register with
the sync point manager to allow the application requester to manage commit and rollback to the
application servers that are not under sync point management control.

A list of the DDM commands that the SQLAM understands and handles, for DRDA flows, are
described briefly in Table 4-1 on page 45. This table contains only those DDM commands that an
implementation of DRDA flows requires. These commands are documented in the DDM
Reference as commands (and corresponding code points) of the same names.

DDM Guide on page 13 contains a full list of the DDM terms that are required to implement the
DRDA flows. Optional commands are indicated in the OPT’L column. See Section 7.9 on page
295 for details on optional commands. Section 4.4 on page 54 discusses the allowed and
recommended usage of these commands and some of the normal replies to these commands.

7. Not supported in DRDA Remote Unit of Work.

44 DRDA Volume 1

The DRDA Processing Model and Command Flows The DRDA Processing Model

Table 4-1 DDM Commands Used in DRDA Flows
__

DDM Command Description__LL LL LL

Access Relational Database—establishes a path to a named
relational database

ACCRDB

__
Begin Bind—starts the process of binding a package into a
relational database

BGNBND

__
BNDSQLSTT Bind SQL Statement—binds an SQL statement to a package__

End Bind—indicates that no more Bind commands will be sent
and the package is now complete

ENDBND

__
Drop Package—deletes a named package from a relational
database

DRPPKG

__
Rebind—rebinds an existing package into the same relational
database

REBIND (optional)

__
Prepare SQL Statement—binds, dynamically, a single SQL
statement to a section number in an existing package in a
relational database

PRPSQLSTT

__
Execute SQL Statement—executes a previously bound SQL
statement

EXCSQLSTT

__
Execute SQL Statement Immediate—executes the single SQL
statement sent with the command

EXCSQLIMM

__
Describe SQL Statement—requests definitions of either the
columns of the result table of a prepared/bound statement and
the names and labels of those columns or to obtain definitions of
the input parameters of a prepared statement

DSCSQLSTT

__
Describe Table Statement—describes the columns of a table and
the names and labels of those columns

DSCRDBTBL (optional)

__
Open Query—requests start of Query process (corresponds to a
DCL CURSOR, OPEN, and possibly multiple Fetches)

OPNQRY

__
CNTQRY Continue Query—resumes a Query that was interrupted__
CLSQRY Close Query—terminates a Query (corresponds to a CLOSE)__
RDBCMM Commit Transaction—commits the current unit of work__

Rollback Transaction—rolls back (backs out) the current unit of
work

RDBRLLBCK

__
EXCSQLSET (optional) Propagate special registers__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

The commands that the SQLAM handles do not define SQL, but several DDM commands carry
SQL statements. The SQLAM recognizes SQL statements but does not define the syntax and
semantics of those statements.

4.3.1.12 Relational Database Manager

A relational database manager (RDB) controls the storage and integrity of data in a relational
database. DRDA provides no command protocol or structure for relational database managers.
The relational database manager is the local interface for the SQLAM in the application server.
Neither DRDA nor DDM defines the interface to the relational database manager.

Part 1: Database Access Protocol 45

The DRDA Processing Model The DRDA Processing Model and Command Flows

The relational database is responsible for performing any necessary character conversions for
data received from the SQLAM.

For detailed definitions and descriptions of the functions the relational database managers
perform, see the product documentation for relational database management products.

4.3.1.13 CCSID Manager

The CCSIDMGR allows the specification of a single-byte character set CCSID to be associated
with character typed parameters on DDM command and DDM reply messages. The CCSID
manager level of the application requester is sent on the EXCSAT command and specifies the
CCSID that the application requester will use when sending character command parameters.
The application server will return its CCSID manager level on EXCSATRD specifying the CCSID
the application server intends to use for character reply message parameters.

Support for the CCSID manager is optional. The following CCSIDs are required when
supporting the CCSID manager: 500, 819, and 850. Other CCSIDs are optional. The following
CCSID values cannot be sent by the application requester: 65535 and 0. The application server
can reply using the following values:

0 The CCSIDMGR is not supported.

65535 The CCSIDMGR is supported but the CCSID value sent by the application requester is
not supported.

value The CCSID of the application server. This value must be one of the required CCSIDs if
the application requester sent one of the required CCSIDs. This is to guarantee the
application requester and application server will communicate if the application
requester is only capable of supporting the required CCSIDs.

If the CCSIDMGR is not supported, the default value is 500.

4.3.2 The DRDA Processing Model Flow

Figure 4-1 on page 47 illustrates DRDA’s usage of DDM. It relates distributed relational database
management processing to the models described in the DDM Reference. The following
discussion relates the terminology and concepts of DRDA to those of the DDM documentation
through this illustration.

The sync point manager8 in Figure 4-1 on page 47 is only used if the local operating environment
for the application requester and application server support sync point managers.

8. The sync point manager is only supported in Distributed Unit of Work.

46 DRDA Volume 1

The DRDA Processing Model and Command Flows The DRDA Processing Model

[18]

Application

Application Requester
[1]

[2]

[3]

[15]

[16]

[17]

Agent
- AGENT

SQL Appl.
Mgr. - SQLAM

Comm. Mgr.
- CMNxxxx

CCSID Mgr.
- CCSIDMGR

Dictionary
- DICTIONARY

Supervisor
- SUPERVISOR

Resync Mgr.
- RSYNCMGR

Security Mgr.
- SECMGR

Sync Point Mgr.
- SYNCPTMGR

Directory
- DIRECTORY

Application Server

CCSID Mgr.
- CCSIDMGR

Dictionary
- DICTIONARY

Supervisor
- SUPERVISOR

Resync Mgr.
- RSYNCMGR

Security Mgr.
- SECMGR

Sync Point Mgr.
- SYNCPTMGR

Directory
- DIRECTORY

[6]

[7]

[8]

[9]
[10]

[11]

[12]

Comm. Mgr.
- CMNxxxx

Agent
- AGENT

SQL Appl.
Mgr - SQLAM

Relational
DB Mgr. RDB

Relational
Database

[4]

[5]

[13]

[14]

Net; Fac;

Net; Fac;

/

Figure 4-1 DRDA Processing Model

Part 1: Database Access Protocol 47

The DRDA Processing Model The DRDA Processing Model and Command Flows

Note: The DDM Reference discusses in detail each of the managers represented in Figure
4-1 on page 47. See the term referenced in the box (for example, SQLAM in the SQL
Application Manager box) for the detailed DDM description.

The individual products, not DDM or DRDA, define the interfaces (syntax, semantics) between
any of the managers or other entities shown in Figure 4-1 on page 47.

DDM also groups managers into servers. In Figure 4-1 on page 47, all of the managers in the
source system form a server, which DRDA calls the application requester. In the target system,
all of the managers form a server, which DRDA calls the application server.

The numbered paragraphs that follow correspond to the numbers in Figure 4-1 on page 47 and
are a description of the interaction between each of the entities in the figure. The figure contains
all of the model entities that would exist for an application to access a relational database using
DRDA. This example assumes that the application’s SQL statements and associated host
variables were previously bound to the remote relational database. Some managers
initiate/maintain the connection, others are used by other managers for specific kinds of
services, and the rest are an integral part of the path between the application and the relational
database.

1 The application contains some set of SQL statements that have been previously bound
to the remote relational database. The source code for the application is transparent to
the location of the relational database to which it is bound. This transparency is
achieved when the application uses ISO Database Language SQL. If the application
uses SQL that is not part of ISO SQL, some loss of location or relational database
manager transparency can result.

The SQL application manager (SQLAM) represents the remote relational database to
the application. The entities that are between the application and the relational
database provide the transparency between the differences in hardware architectures,
operating systems, and relational database management products.

An application calls the SQL application manager whenever the application requests
services through the SQL interface. Neither DDM nor DRDA defines this interface, or
set of interfaces, even though some portions of the DDM commands in DRDA resemble
parts (or all) of these interfaces.

Calls to this interface are generated by the program preparation process and can be
different in each implementation. This interface is composed of input variables from
the application, SQL statements or identifiers of previously bound SQL statements, and
an area that is to be used to return completion information to the application. These
parameters and their associated values vary across the different implementations of
SQL application managers (SQLAMs).

In any implementation of an application requester, any manager in the model can
access the security manager to determine the user’s authority to access any of the local
resources (for example, the communications facilities). Neither the DDM architecture
nor DRDA completely defines the interface to the security manager.

2 The SQL application manager (SQLAM), when called, processes the request by
checking the parameters, translating the valid requests, and packaging the requests into
zero9 or more DDM commands and associated parameters and command data.

9. It is possible to have situations where no DDM commands would be generated for an application’s request. In this case, the
application requester would usually provide a proper response to the application. An example would be the application
attempting another FETCH operation after the cursor has been closed.

48 DRDA Volume 1

The DRDA Processing Model and Command Flows The DRDA Processing Model

The SQLAM uses functions modeled in the dictionary manager to determine the code
points (each DDM command, command parameter, data object, reply message, and
reply message parameter has a unique code point) to be used in the DDM commands.

As it constructs the commands, it also does any required data representation
conversion of command parameter values. Unless overridden by the DDM CCSID
manager (CCSIDMGR),10 the character parameter values are sent in CCSID 500.

Command data objects are constructed using code points that either imply the format
of the data or explicitly contain a description of the data that follows. No data
representation conversion is required for command data objects because the target
SQLAM is the receiver of the data object and, therefore, is responsible for any
conversion required.

It then passes these DDM commands to the source agent.

3 The agent receives the DDM commands, parameters, and data objects from the SQL
application manager and routes them to the DDM communications manager. It also
keeps track of each individual command, as it does for all commands passed to the
DDM communications manager, until a reply to the command is received.

4 The DDM communications manager (that is, CMNAPPC, CMNSYNCPT, CMNTCPIP,
and so on)11 receives the DDM command and creates a DDM data stream structure that
contains the command.

For each DDM command, a request data stream structure (RQSDSS) is created and the
command placed in it. A request correlation identifier is generated and placed in the
data stream to be used to associate this request with request data, replies to the request,
and data returned for the request. The request correlation identifier is returned to the
agent.

For each DDM command data object received, an object data stream structure
(OBJDSS) is created, and the command data object is placed in it. Each OBJDSS can
contain multiple command data objects, but they must all be part of the same
command. The request correlation identifier of the associated RQSDSS is also placed in
OBJDSS. The agent provided the request correlation identifier.

The DDM communications manager then invokes the local system’s network facilities.

5 The network facilities of the application requester send the commands, parameters, and
data objects, as data, through the network to their counterpart network facilities on the
application server system. The network facilities in the two systems are responsible for
keeping the network connection intact between the application requester and
application server as well as for error recovery for the network facilities.

6 Upon receipt of the data at the application server’s network facilities, the DDM
communications manager invokes the local network facilities to receive the data.

10. This CCSIDMGR is not supported in DRDA Remote Unit of Work.
11. The communications manager at both ends of the communications must match. For example:

• If the network connection is a LU 6.2 protected conversation, CMNSYNCPT is used.

• If the network connection is a LU 6.2 unprotected conversation, CMNAPPC is used.

• If the network connection is a TCP/IP connection, CMNTCPIP is used.

Part 1: Database Access Protocol 49

The DRDA Processing Model The DRDA Processing Model and Command Flows

In any implementation of an application server, any manager that is modeled, must
access the security manager to determine the user’s authority to access any of the local
resources (for example, the relational database). Neither the DDM architecture nor
DRDA completely defines the interface to the security manager.

7 The DDM communications manager decomposes the data stream it received as data. It
breaks the data stream up into the correct commands, parameters, and data objects and
passes them on to the agent along with the request correlation identifier. The
commands, parameters, data objects, and correlation identifier are the exact ones that
the application requester’s DDM communications manager sent.

8 The agent receives the information from the communications manager and validates
the target parameter of the command as well as any other command parameter and
value code points in them. If any errors are found, reply messages are created and
returned to the DDM communications manager.

If the command appears to be valid, it is packaged with all data objects (if any) for the
same command (all with the same request correlation identifier) and passed to the SQL
application manager for processing.

9 The SQL application manager (SQLAM) accepts the commands, parameters, and data
objects from the agent and transforms them into one or more calls to the relational
database manager it supports. DRDA does not define the interfaces of the relational
database manager.

The SQLAM is responsible for transforming any descriptors in the command data it
received to the interfaces that the relational database manager expects. It is also
responsible for converting numeric data from the application requester’s representation
to the application server’s representation when these are different. Because the
relational database handles tagged character data,12 the application server passes this
data directly to the relational database without conversion.

The SQLAM also carries out any required data representation conversion of command
parameter values. Unless overridden by the DDM CCSID manager (CCSIDMGR), the
character parameter values are received in CCSID 500.

10 The relational database manager receives the requests from the SQLAM, translates
character data if appropriate, and processes the requests against the relational database
that was indicated when the application server was established for this application’s
use.

It generates any answer set data, return codes, and error data, according to its product
specification, and returns these to the SQLAM. DRDA does not define these responses
and associated data.

11 The SQL application manager (SQLAM) transforms the responses and associated data
into DDM command reply data objects and reply messages. If any of the reply data
objects require explicit descriptions, then the SQLAM creates them, reversing the
process of step 9. No data representation conversion is required because the source
SQLAM is the receiver of the data object and, therefore, is responsible for all data
representation conversions on the reply data objects.

12. Tagged character data is data with coded character set identifiers (CCSIDs) associated with it.

50 DRDA Volume 1

The DRDA Processing Model and Command Flows The DRDA Processing Model

The target SQLAM sends any reply data objects and reply messages on to the agent.
The SQLAM also performs data representation conversion as required for reply
message parameter values that are sent. Unless overridden by the DDM CCSID
manager (CCSIDMGR), the character parameter values are sent and received in CCSID
500.

12 The agent receives the reply data objects and reply messages from the SQLAM and
returns them with the correct request correlation identifier to the DDM
communications manager.

13 The DDM communications manager receives the command reply data object or reply
message from the agent and creates a DDM data stream structure that contains the
reply.

For each reply message (if any), a reply data stream structure (RPYDSS) is created and
the reply message placed in it. Each RPYDSS can contain multiple reply messages, but
they must all correspond to the same request. The request correlation identifier of the
original request is also placed in the data stream to be used to associate this reply
message with that request.

For each reply data object (if any), an object data stream structure (OBJDSS) is created
and the reply data object placed in it. Each OBJDSS can contain multiple reply data
objects, but they must all correspond to the same request. The request correlation
identifier of the original request is also placed in the data stream to be used to associate
this reply data object with that request.

The DDM communications manager then invokes the local system’s network facilities
to pass the reply back to the application requester system.

14 The application server’s network facilities send the replies, as data, through the
network back to its counterpart network facilities on the application requester system.

15 Upon receipt of the data from the application server’s network facilities, the
communications manager invokes the local network facilities to receive the data.

16 The DDM communications manager decomposes the data stream it received as data.
Then it breaks the stream up into the correct reply data objects and reply messages and
passes them on to the agent along with the request correlation identifier.

17 The agent passes the reply data objects and reply messages to the SQLAM.

18 The SQLAM converts any DDM architecture required format data representation on
reply message parameters to the SQLAM required representation.

The SQLAM is responsible for transforming descriptors it received to the interfaces
expected by the application that made the request. Neither DDM architecture or
DRDA defines the actual form and format of the data/response to the application.

The SQL application manager (SQLAM) does any data representation conversion on
reply data objects to the representation that the application requires from the
representation of the application server. In this case, the SQLAM does both numeric
and character conversions.

Part 1: Database Access Protocol 51

The DRDA Processing Model The DRDA Processing Model and Command Flows

4.3.3 Product-Unique Extensions

In a DRDA environment, which contains multiple operating environment products and/or
multiple relational database management products, the participating DRDA implementations
must use only those code points described in the DDM Reference, according to the limitations
and rules that DRDA describes.

Each DRDA implementing product is required to implement the DDM EXCSAT and ACCRDB
commands (for application requesters) and EXCSATRD and ACCRDBRM replies (for
application servers) as described in Section 4.4.1 on page 54. Once the application requester and
application server have been introduced by this architected exchange and recognize each other
as a specific product pair, they can use, in addition to the DDM commands listed in Table 4-1 on
page 45, product-unique code points in further exchanges between the application requester and
application server.

DRDA implementing products cannot, however, implement unique extensions that are in
conflict with DRDA. For example, a product unique extension in a product that allows the start
of a new bind (package create) before a previous bind process had been completed would not be
allowed because it contradicts the DRDA rules for DRDA BIND flows.

The DDM Reference discusses additional detail on product extensions, specifically under the
DDM terms EXTENSIONS, CODPNT, CODPNTDR, and SUBSETS.

4.3.4 Diagnostic and Problem Determination Support in DRDA

The DRDA-defined flows contain facilities that are available to end users and customer support
organizations to assist in performing problem determination procedures.

The network facilities that support the application requester and application server might
provide many facilities that furnish diagnostics and do problem determination procedures.
These facilities can be used to supplement the DRDA facilities. For example, the LU 6.2 network
facilities are described in SNA LU 6.2 Reference: Peer Protocols (SC31-6808, IBM). Additional
facilities may be provided in specific communications product implementations that enhance
the problem determination capabilities in a particular system, application server, or application
requester.

The application requester and the application server exchange information that is intended to
identify the application requester and the application server to each other when the remote
relational database is accessed. This information includes the products being used, the levels of
those products, the operating systems being used, the name of the system each is executing in,
and the name of the execution thread in each system.

To the extent that this information is passed using values that end users and service personnel
easily understand/recognize, the tasks associated with problem determination and diagnostic
handling are simplified. Therefore, each implementing product is required to accurately reflect
its environment by assigning values in the parameters that carry this information as character
strings that are encoded using Coded Character Set Identifier (CCSID) 500, unless overridden by
the DDM CCSID manager (for additional information see the CDRA Reference). Each
application requester and application server is required to store (for potential use later) the
information the other has provided.

Character Data Representation Architecture (CDRA) defines CCSID values to identify the code
points used to represent characters, and the character data conversion of these code points, as
needed, to preserve the characters and their meanings.

Every command that an application requester sends to an application server has a number of
architected reply messages that the application server can return to the application requester.

52 DRDA Volume 1

The DRDA Processing Model and Command Flows The DRDA Processing Model

Each reply message contains data that can be used in problem determination procedures. The
return of a particular reply message can, by itself, facilitate problem determination procedures.

Each reply message also contains a severity code and, potentially, server diagnostics. The
severity codes values (see DDM term svrcod) are in the description of each of the reply messages.
The application server returns the data in the server diagnostic information field (see DDM term
srvdgn). The application requester handles the data only as a byte string. The application
requester must store it in its entirety for potential use later. The application server implementing
product provides the definition of the data contained in the server diagnostic information field.
This data can differ across the different application server implementations.

In some cases, the application requester can use information in an SQLCA that one of the
architected reply data objects returned to provide facilities for problem determination
procedures. This type of support can differ across the different application requester product
implementations.

Part 1: Database Access Protocol 53

DDM Commands and Replies The DRDA Processing Model and Command Flows

4.4 DDM Commands and Replies
The following sections describe the DDM commands and command replies that flow in typical
scenarios involving an application requester (AR) and an application server (AS).13 These flows
are equivalent between an application server (AS) and a database server (DS) but are not
specifically described. The terms application requester and application server can be
interchanged with an application server and a database server unless specifically identified in
the flow.

These sections contain flow diagrams and descriptions that show the normal or successful case,
and do not cover all possible error conditions or obscure usages. Errors and replies are
generalized rather than elaborated upon. Complete details of the commands, parameters,
command data, reply data, and error conditions/messages are available in the DDM Reference.

The usage of the underlying communications facilities is presented only when it is an integral
part of the DRDA processing.

4.4.1 Accessing a Remote Relational Database Manager

Figure 4-2 on page 55 indicates the DDM commands and replies that flow in the normal process
of establishing a connection for remote processing of DRDA requests. This set of flows
establishes a connection from an application requester to a remote application server. After the
application requester establishes the connection and until the connection has been terminated,
either normally or abnormally, the DRDA flows can use the connection.

13. It is possible to intermix DDM commands that are not part of DRDA in with the command flows that this section discusses.
However, these commands and their potential interaction are not discussed in this document.

54 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

DRDA
(Application Requester)

DRDA
(Application Server)

EXCSAT
extnam
mgrlvlls
srvclsnm
srvnam
srvrlslv

Exchange Server Attributes)
(external name)
(manager level list)
(server class name)
(server name)
(server release level)

ACCRDB
rdbnam
rdbacccl
typedefnam
typedefovr
rdbalwupd
prddta
sttstrdel
sttdecdel
prdid
crrtkn
trgdftrt

(Access Rel Database)
(RDB_NAME)
(access mgr. class)
(data type definition name)

(statement decimal delimiter)
(product-specific ID)
(correlation token)
(target default value return)

(data type character spec)
(RDB allow updates)
(product-specific data)
(statement string delimiter)

EXCSATRD
extnam
mgrlvlls
srvclsnm
srvnam
srvrlslv

(Reply Data Obj)
(external name)
(manager level list)
(server class name)
(server name)
(server release level)

ACCRDBRM
svrcod
typedefnam
typedefovr
srvdgn
prdid
pkgdftcst
crrtkn
usrid
srvlst

(ACCRDB Reply Message)
(severity code)
(data type definition name)
(data type character spec)
(server diagnostic information)
(product-specific ID)
(default character subtype)
(correlation token)
(user ID at target system)
(server list for target system)

[1]

[2]

[3]

[4]

[5]

Figure 4-2 DRDA Flows to Establish a Connection to a Remote Database Manager

The following is a brief description of some of the parameters for the DDM commands. The
DDM Reference provides a detailed description of the parameters.

1 The application requester makes a connection which includes establishing a network
connection (described in Part 3, Network Protocols) with the application server. Part 3
discusses the protocols and commands used to establish a network connection for each
of the DRDA-supported network protocols.

After establishing the network connection, the application requester describes itself and
the types of services that it desires from the application server.

The application requester builds an Exchange Server Attributes (EXCSAT) command,
identifying what product it is, what release and modification level it is at, and what this
application requester is known as in its environment. EXCSAT also lists the level of the
communications manager, the agent, the SQLAM, the relational database manager, and
any other resource managers that the application requester requires in the manager
level list. The application requester then sends the command to the application server.

Part 1: Database Access Protocol 55

DDM Commands and Replies The DRDA Processing Model and Command Flows

The following example of the EXCSAT command shows the parameters and values that
establish the connection between an application requester and an application server.

EXCSAT(
extnam("015190/JOB39/WSDD1234")
mgrlvlls(

mgrlvl(AGENT,5)
mgrlvl(SECMGR,5)
mgrlvl(CMNTCPIP,5)
mgrlvl(SYNCPTMGR,5)
mgrlvl(SQLAM,5)
mgrlvl(CCSIDMGR,500)
mgrlvl(RDB,3))

srvclsnm("QAS")
srvnam("RCHOLDB")
srvrlslv("QSQ02011"))

• The extnam is the name of a job, task, or process that the application requester
services. It is used for diagnostic/logging purposes. In this example, it is the name
of the job that contains the execution of the application that is invoking application
requester functions on the OS/400 system.

Note: This parameter is required and must contain the name of the application
requester’s execution thread in its operating environment. It must be a
name that an observer of the operating environment can easily associate
with its execution.

• The mgrlvlls is the minimum list necessary to determine that the source and target
manager levels are compatible for DRDA functions. The mgrlvlls on EXCSAT
represent the desired support that the application requester needs on the
application server. In this case, a DRDA TCP/IP application requester supports
Distributed Unit of Work and stored procedures, so it requests an agent (AGENT) at
Level 5, a security manager (SECMGR) at Level 5, a TCP/IP communications
manager (CMNTCPIP) at Level 5, a sync point manager (SYNCPTMGR) at Level 5,
an SQL application manager (SQLAM) at Level 5, and a relational database
manager (RDB) at Level 3.

If the application requester is a DRDA application requester that does not support
Distributed Unit of Work but does support stored procedures, it requests an agent
(AGENT) at Level 3, an SQL application manager (SQLAM) at Level 5, a relational
database manager (RDB) at Level 3, and an SNA communications manager
(CMNAPPC) at Level 3, or a TCP/IP communications manager (CMNTCPIP) at
Level 5 which requires a security manager (SECMGR) at Level 5.

If the application requester is a DRDA Remote Unit of Work application requester, it
requests an agent (AGENT) at Level 4, an SQL application manager (SQLAM) at
Level 3, a relational database manager (RDB) at Level 3, and a DDM
communications manager (CMNAPPC) at Level 3, or a TCP/IP communications
manager (CMNTCPIP) at Level 5 which requires a security manager (SECMGR) at
Level 5.

The value specified for the CCSID manager (CCSIDMGR) indicates what CCSID the
application requester uses when sending character typed command parameters. In
this example, the application requester is sending character command parameters in
CCSID 500. If the application server supports the CCSID manager, the CCSID used
by the application server for character reply parameters is returned by the

56 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

application server on EXCSATRD. In this example, the CCSID sent by the
application requester is one of the required CCSIDs (500, 819, or 850) and, assuming
the application server supports the CCSID manager, the application server must
return a required CCSID.

Note: The mgrlvlls parameter is required and must include the AGENT,
SQLAM, RDB, and a communication manager. The CCSID manager
(CCSIDMGR) is optional and is included as an example of the
negotiation for this function.

The table below, Table 4-2, summarizes the types of read and write access that can
be accomplished based on the mgrlvlls specified on EXCSAT and EXCSATRD.14

Table 4-2 Access by the Minimum MGRLVLLS Parameter of EXCSAT and EXCSATRD

AGENT 3 4 4 5___
SQLAM 3 4 4 4___
CMNAPPC 3 3___
CMNTCPIP 5 5 5___
CMNSYNCPT 4___
SYNCPTMGR 4 5__
Remote Unit of Work with Single-RDB Access yes no no no___
Distributed Unit of Work with Multi-RDB Read
and Single-RDB Write

no yes no no

Distributed Unit of Work with Multi-RDB Read
and Multi-RDB Write

no no yes yes

___L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Note: A blank entry indicates that the DDM manager is not applicable for the
requested level. CMNAPPC, CMNTCPIP, and CMNSYNCPT are mutually
exclusive. If CMNTCPIP is specified, SECMGR at Level 5 must be specified.

• The srvclsnm identifies the application requester. In this case, ’QAS’ indicates that
the application requester is the DB2 for OS/400 product. Server class names are
assigned for each product involved in DRDA. Server class names for products
involved in DRDA can be found at http://www.opengroup.org/tech/projects/drda.

Note: The srvclsnm term in the DDM Reference defines all the values that have
been assigned for srvclsnm. This parameter is required.

• The srvnam is the name of the application requester. This is not the name of the end
user but of the server itself. It is for diagnostic/logging purposes. In this case, the
name corresponds to the system name of the OS/400 in which the application
requester is executing.

Note: This parameter is required and must contain the name of the application
requester’s system identifier in the network of application requester and
application server. It must be a name that an observer of the network
containing the system can easily associate with the system in which the
application requester is executing.

14. The DRDA support for stored procedures, new bind options, and server list require SQLAM Level 5.

Part 1: Database Access Protocol 57

DDM Commands and Replies The DRDA Processing Model and Command Flows

• The srvrlslv is the current release level of the application requester and is for
diagnostic/logging purposes. Because this level applies to all managers at the
application requester site (or at the application server site on the EXCSATRD), it
cannot be specific to the DRDA service provider. It is considered optional in DRDA.
DRDA has provided the prdid parameter on ACCRDB and ACCRDBRM to identify
the release levels of the application requester and the application server.

In this example,15 the application requester has identified itself as the DB2 for
OS/400 product, running at Version 2, Release 1, Modification Level 1.

2 The application server receives the EXCSAT command, builds the reply data object,
Exchange Server Attributes Reply Data Object (EXCSATRD), and stores the data
received on the EXCSAT command for potential diagnostic/service uses. The
application server does not verify or check values in extnam, srvclsnm, srvnam, or
srvrlslv.

The application server places the levels of all managers requested in the reply data
along with the set of information that describes the application server and its
environment.

The following example shows the parameters and values that an EXCSATRD reply data
object uses.

EXCSATRD(
extnam("SYSD9876")
mgrlvlls(

mgrlvl(AGENT,5)
mgrlvl(SECMGR,5)
mgrlvl(CMNTCPIP,5)
mgrlvl(SYNCPTMGR,5)
mgrlvl(SQLAM,5)
mgrlvl(CCSIDMGR,500)
mgrlvl(RDB,3))

srvclsnm("QDB2")
srvnam("STLDB2A1")
srvrlslv("DSN03010"))

• The extnam is the name of a job, task, or process (in this example SYSD9876) that the
application server is running under. It is for diagnostic/logging purposes. In this
example, it is the name of the job that contains the execution of the application
server functions and DB2 for MVS. The rules for assigning a value to this parameter
are the same as in the application requester.

• The application server returns the mgrlvlls, which indicate the levels of the
requested (and only those requested) managers that the application server is
capable of supporting. The values in this example (an agent at Level 5; a DDM
communications manager, CMNTCPIP at Level 5; a security manager at Level 5; an
SQL application manager at Level 5; and a relational database manager at Level 3)
indicate that the application requester and application server can communicate with
DRDA flows, using DDM commands, at the level the application requester

15. The version, release, and modification levels defined in this example for srvrlslv are for example purposes only and do not
represent actual product levels.

58 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

requested.

The application server returns the CCSID in which it sends character reply
parameters using the CCSID manager level. This CCSID must be one of the required
CCSIDs (500, 819, or 850) if the application server supports the CCSID manager and
a required CCSID was received on EXCSAT. If the CCSID mgrlvl sent by the
application requester is not a required CCSID mgrlvl and the application server
cannot accept the CCSID mgrlvl, the application server returns the EXCSATRD with
a −1 CCSID mgrlvl specification.

If the application requester cannot accept the CCSID mgrlvl16 received from the
application server the conversation is terminated.

• The srvclsnm, srvnam, and srvrlslv have the same semantics as their counterparts on
the EXCSAT command and the rules for assigning values to these parameters are
the same as those at the application requester.

In this example, the application server has identified itself as a DB2 for OS/390
product, running at Version 5, Release 1, Modification Level 0 and executing on
system STLDB2A1.

3 When the application requester receives the reply data from the EXCSAT command, it
determines if the level of support that a target relational database manager can provide
is sufficient to meet its needs. If not, the application requester terminates the
conversation and returns an exception to the application. The application requester
does not verify or check the values in the extnam, srvclsnm, srvnam, or srvrlslv except
those that are needed to determine if the application requester and application server
are a specific product pair (see Section 4.3.3 on page 52 for details).

These returned values are stored for potential diagnostic/service uses. If the levels of
support are sufficient, the application requester creates the Access Relational Database
(ACCRDB) command and sends it to the application server.

• rdbnam contains the name of the desired relational database.

• The rdbacccl parameter indicates that the process will use DRDA flows for
processing a user application’s SQL requests.

• The typdefnam parameter indicates the data type to data representation mapping
definitions, which the application requester will use. Refer to Table 5-20 on page 251
for details.

• The typdefovr parameter indicates the desired Coded Character Set Identifiers
(CCSIDs) in the identified data type to data representation mapping definitions.
Refer to Table 5-20 on page 251 for details.

• The rdbalwupd parameter specifies whether the application server should allow
updates to occur. An update operation is defined as a change to an object at the
relational database, such that the change to the object is under commit/rollback
control of the work that the application requester initiates.

When the application requester specifies that no updates are allowed, the
application server must enforce this specification and, in addition, must not allow

16. The mgrlvlls defined in this example are for example purposes only and do not imply the product in the example provides
support for the specified managers or levels.

Part 1: Database Access Protocol 59

DDM Commands and Replies The DRDA Processing Model and Command Flows

the execution of a commit or rollback that the DDM command EXCSQLIMM or
EXCSQLSTT requested.

• The prddta parameter specifies product-specific information17 that the application
requester conveys to the application server if the srvclsnm of the target is not known
at the time ACCRDB is issued and the application requester must convey such
product-specific information.

• The sttstrdel and sttdecdel parameters respectively specify the statement string
delimiter and decimal delimiter for dynamic SQL.

• The prdid is the current release level of the application requester and is for
diagnostic/logging purposes. The prdid should be unique amongst the DRDA
implementers.

This parameter is required and must be of the form PPPVVRRM where:

ppp A three-character product identifier.

Refer to http://www.opengroup.org/tech/projects/drda for the current list of
product identifiers.

vv dd, where d is an integer and 0 ≤ d ≤ 9 (for single digit version numbers,
pad on the left with 0).

RR dd, where d is an integer and 0 ≤ d ≤ 9 (for single digit release numbers, pad
on the left with 0; 00 means no release number associated with the level of
the product).

M d, where d is an integer and 0 ≤ d ≤ 9 (0 means no modification level
associated with the level of the product).

• The trgdftrt parameter is optionally set to TRUE requesting the application server to
return its system defaults values in ACCRDBRM.

• The crrtkn parameter contains a correlation token. This parameter is optional in
DRDA Remote Unit of Work, and is required in DRDA Distributed Unit of Work
and DRDA Level 3. See Section 11.2.2.2 on page 353 for details on setting the value
of this token.

The application requester then sends the command to the application server.

4 When the application server receives the ACCRDB command, it verifies the command
and, assuming everything is acceptable, establishes a connection to the relational
database manager of the relational database requested, through a new instance of the
SQLAM.

It then generates an Access RDB complete reply message (ACCRDBRM) that indicates
a normal completion of this request and provides the application requester with
additional information about the application server.

• The typdefnam parameter indicates the type to representation mapping definition
that the application server uses. Refer to Chapter 5 on page 137 for details.

17. An application server must ignore product-specific information unless received from a like application requester.

60 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

The application server also indicates its desired CCSIDs in the identified data type
to data representation mapping definitions in the typdefovr parameter. Refer to
Chapter 5 on page 137 for details.

• The application server returns the prdid parameter, specifying the current release
level of the application server.

• If the trgdftrt parameter on ACCRDB was set to TRUE, the character subtype system
default is returned in pkgdftcst and the user ID is returned in usrid.

• The crrtkn parameter contains a correlation token. See Part 3, Network Protocols for
the format and settings of the token value in the specific network environments. The
crrtkn parameter is sent on the ACCRDBRM only if the crrtkn parameter is not
received on the ACCRDB.

• The srvlst parameter contains a weighted list of network addresses that can be used
to access the RDB. The list can be used by the requester to work load balance future
connections. This parameter is new in DRDA Level 3. Details of the server list and
examples are in the DDM references.

If the application server finds any abnormal conditions, it would generate and return a
DDM reply message, indicating the error condition and supporting diagnostic
information. The application server also would not complete the connection to the
relational database manager and the relational database.

5 The application server sends the ACCRDBRM or another DDM reply message to the
application requester. The application requester then determines if there is a proper
connection established to the requested relational database. If the typdefnam or typdefovr
parameters on an ACCRDBRM cannot be supported or the DDM reply message
indicates another error, then the error is indicated to the application in the appropriate
way. The errors will be indicated in the SQLCA for SQL errors or according to rules of
the specific product for non-SQL errors, and the conversation will be deallocated.

If the ACCRDBRM indicates no problems have been discovered, the application
requester will continue (either return to the application or begin working with the
connected application server) normal processing.

The application and the remote relational database have now completed the
connection. SQL requests, through defined flows, can now be executed in the
application server environment on behalf of the application in the application requester
environment.

4.4.2 DRDA Security Flows

This section describes the DDM commands and replies for flowing security information in
DRDA when not using the underlying communications manager for authentication. DRDA
provides flows for the security mechanisms listed in Table 4-3 on page 62. (For example, DCE
security, userid only, userid and password, and so on.)

4.4.2.1 Identification and Authentication Security Flows

The flows in this section indicate the DDM commands and replies that flow in the normal
process of establishing a connection while using DRDA-defined flows to perform identification
and authentication using various security mechanisms. The actual security mechanism that is in
use is dependent on the results of the negotiation during ACCSEC/ACCSECRD flows. The
security mechanism in use also defines the parameter values during SECCHK/SECCHKRM
flows.

Part 1: Database Access Protocol 61

DDM Commands and Replies The DRDA Processing Model and Command Flows

Table 4-3 Security Mechanism to secmec Value Mapping

Security Mechanism Secmec Value___
DCE dcesec___
Userid and password usridpwd___
Userid, password, and new password usridnwpwd___
Userid only usridonl___
Userid and password substitute usrsbspwd___
Userid and password encryption usrencpwd___L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

More information on the security mechanisms is available in Chapter 10 on page 343.

Figure 4-3 shows the DCE security flows:

DRDA
(Application Requester)

DRDA
(Application Server)

EXCSAT
mgrlvlls
.
.
.

Exchange Server Attributes)
(manager level list)

ACCRDB
.
.
.

(Access Rel Database)

(Access Security Data)
(security manager name)
(security mechanism)

ACCSEC
secmgrnm
secmec

(Security Check)
(security manager name)
(security mechanism)
(security token)

SECCHK
secmgrnm
secmec

SECTKN

EXCSATRD
mgrlvlls
.
.
.

(Reply Data Obj)
(manager level list)

ACCSECRD
secmec

(Access Security Reply Data)
(security mechanism)

SECCHKRM
svrcod
secchkod
srverrno
srvdgn

SECTKN

(SECCHK Reply Message)
(severity code)
(security check code)
(error number)
(server diagnostics)
(security token)

[1]

[2]

[3]

[4]

[6]

[5]

[7]

Figure 4-3 DCE Security Flow

The following is a brief description of some of the parameters for the DDM commands. The
DDM Reference provides a detailed description of the parameters.

1 The application requester specifies an AGENT at Level 3 and a SECMGR at Level 5 on
EXCSAT when requesting the use of DRDA flows for identification and authentication.

62 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

The AGENT and SECMGR requires the ACCSEC and SECCHK commands to flow
prior to ACCRDB. Neither command can flow after ACCRDB. The other mgrlvl values
that are required for establishing a connection are described in Section 4.4.1 on page 54.

EXCSAT(
mgrlvlls(

mgrlvl(AGENT,3)
mgrlvl(SECMGR,5)

.

.

.))

2 The application server receives the EXCSAT command and builds a reply data object
with an AGENT at Level 3 and a SECMGR at Level 5 indicating it can operate at that
security level. The application server sends the EXCSATRD reply data to the
application requester.

EXCSATRD(
mgrlvlls(

mgrlvl(AGENT,3)
mgrlvl(SECMGR,5)

.

.

.))

3 The application requester receives the EXCSATRD reply data which indicates the
application server supports an AGENT and SECMGR level that allows negotiation for
the type of identification and authentication mechanisms through the ACCSEC
command.

The secmec parameter indicates the type of security mechanism that will be used. The
secmec values per security mechanism mapping are defined in Table 4-3 on page 62.

In this example, the application requester requests DCE security so the dcesec value is
passed in the secmec parameter.

4 The application server receives the ACCSEC command. It supports the security
mechanism identified in the secmec parameter, so the application server reflects the
same security mechanism back to the application requester in the secmec parameter on
the ACCSECRD reply data object.

If the application server does not support the security class specified in the secmec
parameter on ACCSEC command, the application server returns a list of security
mechanism values that it does support in the secmec parameter on ACCSECRD reply
data object.

5 The application requester receives the ACCSECRD reply data object and calls security
services for the mechanism in use, to generate the security token required for security
processing. The actual process to generate the token is not specified by DRDA. The
Generic Security Services-Application Programming Interface (GSS-API) is a security
API for generating a DCE security token. A DRDA implementation might use another
interface, but the generated token must be equivalent to the token generated by
GSS-API.

If the values received in the secmec parameter on ACCSECRD do not match the values
sent in the secmec parameter on ACCSEC, the application requester either uses one of
the security mechanisms received on ACCSECRD or the application requester should

Part 1: Database Access Protocol 63

DDM Commands and Replies The DRDA Processing Model and Command Flows

drop the connection and return an SQLCA to the application with an SQLSTATE value
of X‘0A501’ indicating a connection could not be established.

The application requester passes the security token in a SECTKN object with the
SECCHK command. The secmec parameter value identifies the security mechanism in
use.

6 The application server receives the SECCHK command and uses the security context
information to perform end-user identification and authentication checks.

The actual process to perform the security checks using the security context
information is not specified by DRDA. The application server may either process the
values itself or it may call a security resource manager interface to process the values.

Assuming authentication is successful, the application server generates a SECCHKRM
reply message to return to the application requester. The secchkcd parameter identifies
the status of the security processing. The SECTKN carries security context information
to perform identification and authentication of the application server. There will not be
a SECTKN returned for userid and password mechanism and userid only mechanism.

A failure to authenticate the end user or successfully pass the security checks results in
breaking the chain if other commands are chained to the SECCHK command. The
svrcod parameter must contain a value of 8 or greater if the chain is broken.

7 The application requester receives the SECCHKRM reply message. Assuming
authentication at the application server is successful, the application requester verifies
the security token received in the SECTKN.

Assuming security processing is successful, the application requester sends an
ACCRDB command to the application server.

If security processing fails, the application requester might attempt recovery before
returning to the application. For example, if the security context information in the
security token has expired as indicated by the secchkcd value, the application requester
could request new security context information to send to the application server. If the
error condition is not recoverable, the application requester returns an SQLCA to the
application with an SQLSTATE value of X‘42505’ indicating a security verification
failure.

Figure 4-4 on page 65 shows the password encryption or substitution flows:

64 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

DRDA
(Application Requester)

DRDA
(Application Server)

EXCSAT
mgrlvlls

(Exchange Server Attributes)
(security manager level 6)

ACCRDB (Access RDB)

(Access Security Attributes)
(security manager name)
(usrencpwd(usrsbspwd))
(Security Token)

ACCSEC
secmgrnm
secmec
sectkn

(Security Check)
(security manager name)
(usrencpwd(usrsbspwd))
(Security Token)

SECCHK
secmgrnm
secmec
sectkn

EXCSATRD
mgrlvlls

(EXCSAT Reply)
(security manager level 6)

ACCSECRD
secmec
sectkn

(ACCSEC Reply)
(usrencpwd(usrsbspwd))
(Security Token)

SECCHKRM
secchkcd

(Security Check Reply)
(security return code)

[1]

[2]

[3]

[4]

[6]

[5]

[7]

Figure 4-4 Password Encryption or Substitution Flow

1 The application requester specifies a SECMGR at Level 6 on the EXCSAT command
when requesting the use of DRDA for identification and authentication. SECMGR Level
6 is required to support the SECTKN instance variable on the ACCSEC command and
the ACCSECRD reply as well as the new SECCHKCD instance variable on the
ACCSECRD reply.

2 The application server processes the EXCSAT command and builds a reply data object.
If the new SECTKN instance variable is supported on the ACCSEC command,
SECMGR Level 6 is returned; otherwise, only security mechanisms supported by
SECMGR Level 5 can be used to authenticate.

3 The application requester processes the reply. If the SECMGR is not at Level 6, the
application server does not support the new security flows. If the SECMGR is at Level
6, the ACCSEC command is built with the security mechanism (secmec) indicating
usrencpwd for password encryption or usrsbspwd for password substitution. For
password substitution, the application requester’s password encryption seed is
generated. For password encryption, a random large number x is generated and is used
to generate the connection key X where X is equal to (gx mod n)18. The connection key
or encryption seed is passed in the SECTKN object.

18. Refer to the DDM Reference, USRENCPWD, for a description of the values used to generate the Diffie-Hellman shared secret key
and the values used to encrypt and decrypt the password using DES.

Part 1: Database Access Protocol 65

DDM Commands and Replies The DRDA Processing Model and Command Flows

4 The application server processes the ACCSEC command. If the application server does
not support the requested security mechanism, it returns a list of supported
mechanisms; otherwise, the reply data is generated. For password substitute, the
application server’s encryption seed is generated. For password encryption, a random
large number y is generated and is used to generate the connection key Y where Y is
equal to (gy mod n). The encryption seed or connection key is returned in the SECTKN
object. The optional SECCHKCD instance variable is returned if and only if an error is
detected processing the application requester’s SECTKN. Possible errors are wrong
seed length or invalid value (a trivial seed).

5 The application requester processes the reply. The SECCHK command is built with the
SECTKN object containing the encrypted password or password substitute. For
password substitution, the substitute is generated using the application requester and
application server seeds. For password encryption, the received application server’s
connection key is used to generate the DES encryption seed k where k is equal to (Yx

mod n). The password is encrypted using the 56-bit DES encryption algorithm and the
encryption seed.

6 The application server processes the SECCHK command. For password substitution,
the substitute is generated using the application requester and application server seeds.
If the substitute is equal to the value in the SECTKN, the user is authenticated. For
password encryption, the application requester’s connection key is used to generate the
DES decryption seed k where k is equal to (Xy mod n). The password is decrypted
using the 56-bit DES decryption algorithm and k as the seed. The userid and password
is authenticated by the local security manager. The SECCHKRD is generated returning
the success or failure of the authentication.

7 If the user is identified and authenticated by the application server, the RDB can be
accessed.

66 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

4.4.3 Performing the Bind Operation and Creating a Package

Figure 4-5 indicates the DDM commands and replies that would flow in a normal DRDA bind
processing scenario. The usual result of this process is that the application requester and the
application server do the syntactic and semantic checking of the SQL statements embedded in
an application and the creation of a package at the remote relational database that binds the SQL
statements and host program variables in the application to the remote relational database. An
application can have multiple packages on multiple application servers.

DRDA
(Application Requester)

DRDA
(Application Server)

TYPDEFNAM
TYPEDEFOVR
SQLCARD

(Override for Typedefnam)
(Override for Typedefovr)
(SQLCARD Reply Data Obj)

[2]

BGNBND
rdbnam
pkgnamct

vrsnam
bndchkexs

(Begin Bind)
(RDB_NAME)
(package name and
consistency token)
(package version ID)
(bind existence checking)

[1]

pkgrplopt
pkgathopt
sttstrdel
sttdecdel

(package replacement option)
(package authorization options)
(statement string delimiter)
(statement decimal delimiter)

sttdatfmt
stttimfmt
pkgisolvl
bndcrtctl

(statement date format)
(statement time format)
(package isolation levels)
(bind checking level)

bndexpopt
pkgownid
rdbrlsopt
dftrdbcol

(bind explain option)
(package owner ID)
(RDB release option)
(default RDB collection ID)

title
qryblkctl
pkgdftcst
pkgdftcc

(a brief description)
(query block protocol control)
(default character subtype)
(package default CCSIDs)

decprc
pkgrplvrs
dgrioprl
pkgathrul

BNDOPT

(decimal precision)
(replace package version)
(degree of I/O parallelism)
(package authorization rules)
(Bind Option)

Figure 4-5 DRDA Flows: Binding and/or Package Creation (Part 1)

Part 1: Database Access Protocol 67

DDM Commands and Replies The DRDA Processing Model and Command Flows

[3]

(End Bind)
(RDB_NAME)
(package name and
consistency token)
(maximum section number)

ENDBND
rdbnam
pkgnamct

maxsctnbr

TYPDEFNAM
TYPDEFOVR
SQLCARD

(Override for Typdefnam)
(Override for Typdefovr)
(SQLCARD Reply Data Obj)

TYPDEFNAM
TYPDEFOVR
SQLCARD

(Override for Typdefnam)
(Override for Typdefovr)
(SQLCARD Reply Data Obj)

[4]

[6]

[5]

[7]

(Bind SQL Statement)
(RDB_NAME)
(package name, consistency
token, and section number)
(SQL statement number)

BNDSQLSTT
rdbnam
pkgnamcsn

sqlsttnbr
bndsttasm

TYPEDEFNAM
TYPDEFOVR
SQLSTT
TYPDEFNAM

(bind statement assumptions)
(Override for Typdefnam)
(Override for Typdefovr)
(SQL Statement)
(Override for Typdefnam)
(Override for Typdefovr)
(SQL Statement Variable
Descriptions)

TYPDEFOVR
SQLSTTVRB

Figure 4-6 DRDA Flows: Binding and/or Package Creation (Part 2)

The following is a brief description of some of the parameters for the DDM commands that this
document discusses. The DDM Reference provides a more detailed description of the
parameters.

1 After the application requester and the application server have established the proper
connection (described in Figure 4-2 on page 55), they can perform a bind operation.
Other flows can precede or follow the bind flow and be part of the same unit of work.

The application requester that is acting as the agent for the application performing the
bind function creates a Begin Bind (BGNBND) command, providing the name of the
package and a consistency token (used to verify that the resulting package and
application are synchronized during application execution) in the pkgnamct parameter,
and desired version ID for the package in the vrsnam parameter. A null value in the
vrsnam parameter indicates that no version ID is to be assigned for the package. The
pkgrplvrs parameter can be used to specify the version name of the package to be
replaced with the package being bound. The BGNBND command can also specify bind
options that control various aspects of bind processing at the application server.

dgrioprl is an optional parameter19 that informs the database to use I/O parallelism at
the specified degree, if available.

19. This parameter is not supported by DRDA Remote Unit of Work (SQLAM Level 3) application requesters and application
servers.

68 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

pkgathrul is an optional ignorable parameter20 that specifies which authorization ID
should be used when executing dynamic SQL in this package.

The application requester can also send additional bind options in BNDOPT command
objects. This allows the application requester to send a bind option to the server for
which no defined DRDA parameter or value exists.

The application requester then sends the command to the application server.

2 The application server receives the BGNBND command and determines if the package
name already exists in the requested relational database. It then determines if it can
support the options that the BGNBND command passes.

If the application server finds any errors in processing the BGNBND command or the
bind options, it generates and returns a BGNBNDRM reply message (indicating that
the Begin Bind operation failed) to the application requester.

In either case, the application server creates an SQLCARD as a reply data object and
returns it to the application requester. A detailed definition of the SQLCARD is in
Section 5.6.4.9 on page 190.

The optional reply data objects TYPDEFNAM and TYPDEFOVR can be supplied to
override the representation specification supplied on the earlier ACCRDBRM. If
specified, these reply data objects apply only until the end of the current reply; for
example, only for the SQLCA being returned. See Section 5.7.1.1 on page 250 for more
details.

• If the application server returns a BGNBNDRM reply message, it always precedes
the SQLCARD reply data object.

• After the application server processes a BGNBND and returned a SQLCARD reply
data object, which indicates that bind flows can continue for the named package, it
rejects any further BGNBND commands or any other DRDA command, except
BNDSQLSTT, until ENDBND,or processing that successfully ends the unit of work.
See Section 4.4.12.1 on page 117 and Section 4.4.12.2 on page 120 for a description of
commit and roll back processing in DRDA.

Any commands rejected for this reason receive the relational database Package Binding
Process Active (PKGBPARM) reply message.

The application server also rejects any BNDSQLSTT or ENDBND commands that do
not have the same value for the pkgnamct that appeared on the BGNBND command.

3 If the SQLCARD reply data object that the application server has returned to the
application requester indicates that the BGNBND command was not successful, the
application requester can change any of the parameters or options and send another
BGNBND command to the application server or it can return an exception to the
application that is doing the bind operation.

Assuming it receives a normal SQLCARD (no errors were indicated), the application
requester continues the bind process by creating and sending Bind SQL Statement
(BNDSQLSTT) commands. It creates each BNDSQLSTT command with the proper
package name, consistency token, and package section number in the pkgnamcsn

20. This parameter is only supported by DRDA Level 1 and DRDA Level 2 application requesters and application servers at SQLAM
Level 5.

Part 1: Database Access Protocol 69

DDM Commands and Replies The DRDA Processing Model and Command Flows

parameter, the source application statement number in the sqlsttnbr parameter, whether
there are statement assumptions in the bndsttasm parameter, and a single SQL
statement in the SQLSTT command data object. A detailed definition of the SQLSTT is
in Section 5.6.4.5 on page 185.

If the SQL statement that is being bound references any application variables, then the
SQLSTTVRB command data describes these variables. If a file reference is specified as
an input host variable, the application requester replaces the file reference variable in
the SQLSTTVRB with the underlying base LOB SQL data type. DRDA Level 4 only
supports file reference variables that the source system reads. A detailed description of
the contents of the SQLSTTVRB is in Section 5.6.2.3 on page 165.

The optional command data objects TYPDEFNAM and TYPDEFOVR can be specified.
When specified, they override the representation specification provided on the earlier
ACCRDB command. They are effective until the end of the command or until
overridden again.

See Section 5.7.1.1 on page 250 for more details.

• All SQL statements in an application program are input to the bind process at the
application server with some exceptions. See rule PB9 for these exceptions. The
application server determines what to do with each statement.

• The application requester must be tolerant of statements it does not understand. It
cannot fail to send the SQL statement to the application server because it does not
understand the syntax. The application requester must assign a unique non-zero
section number to each statement it does not understand. The application server
will thus be responsible for final validation of the statement. See Section 7.10 on
page 296 for details.

For all statements, the application requester must replace program variable
references with the :H variable indicator. This is to shield the application server
from program language characteristics in the host variable syntax. The description
of each referenced host variable must appear in the SQLSTTVRB command data
object in the exact order they are referenced in the SQL statement (the SQLSTT
command data object). If the SQL statement references any host application variable
more than once, it must restate that host application variable (in the proper
sequence) in the SQLSTTVRB. This includes a program variable reference that
specifies a procedure name within an SQL statement that invokes a stored
procedure. Note, however, that the stored procedure name value flows in the
prcnam parameter rather than in an SQLDTA on the EXCSQLSTT for that SQL
statement.

The original syntax of the referenced host variable is also included in the
SQLSTTVRB description of the host variable. This information is included for
diagnostic purposes.

• When both command data objects are present, the SQLSTT data object must come
before the SQLSTTVRB data object.

The application requester then sends the command to the application server.

4 The application server processes the BNDSQLSTT command and creates and returns an
SQLCARD reply data object to the application requester. If the application server
successfully processed SQLSTT, then it returns a normal SQLCARD. If the application
server finds any errors, it creates and returns an SQLCARD (indicating the error) to the
application requester.

70 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

5 If the SQLCARD reply data object that is returned to the application requester indicates
that the BNDSQLSTT command was not successful, the application requester returns
an exception to the application that is doing the bind operation.

Assuming it receives a normal SQLCARD reply data object, the application requester
continues the bind process by creating and sending additional BNDSQLSTT commands
to the application server.

After the application requester has processed all BNDSQLSTT commands to its
satisfaction, it sends an ENDBND command to the application server.

6 The application server receives and processes the ENDBND command and creates an
SQLCARD reply data object. If it finds no errors, it returns a normal SQLCARD.
Otherwise, the application server indicates a single error in the SQLCARD, which is
returned to the application requester. If an error results in no package at the application
server, the application server must generate an SQLSTATE value that does not begin
with characters 00, 01, or 02. The SQLSTATE values that begin with 00, 01, and 02 imply
the package was created. All other values imply the package was not created.

7 Assuming it receives a normal SQLCARD reply data object, the application requester
returns a normal indication to the application that is doing the bind operation. The
application can then either start another bind operation, commit the unit of work to
make the changes permanent, or roll back the unit of work to back out the changes. See
Section 4.4.12.1 on page 117 and Section 4.4.12.2 on page 120 for a description of
commit and rollback processing in DRDA.

If the SQLCARD reply data object that the application server has returned to the
application requester indicates that the ENDBND command was not successful, the
application requester returns an exception to the application that is doing the bind
operation.

Part 1: Database Access Protocol 71

DDM Commands and Replies The DRDA Processing Model and Command Flows

4.4.4 Deleting an Existing Package

Figure 4-7 indicates the DDM commands and replies that flow during a process that intends to
drop an existing package from a relational database. The normal result of these flows is that the
identified package no longer exists at the remote relational database, so attempts to execute
statements in that package now result in error conditions.

DRDA
(Application Requester)

DRDA
(Application Server)

DRPPKG
rdbnam
pkgnam
vrsnam

(Drop Package)
(RDB_NAME)
(package name)
(version ID)

TYPDEFNAM
TYPDEFOVR
SQLCARD

(Override for Typdefnam)
(Override for Typdefovr)
(SQLCARD Reply Data Obj)

[1]

[2]

[3]

Figure 4-7 DRDA Flows: Dropping an Existing Package

The following is a brief description of some of the parameters for the DDM commands that this
volume discusses. The DDM Reference provides a detailed description of the parameters.

1 An application requester can drop a package from a relational database after the
application requester and application server have established the proper connection
(described in Figure 4-2 on page 55). Other commands can precede or follow the drop
package command and be part of the same unit of work.

The application requester that is acting as the agent for the application performing the
drop package function creates the Drop Package (DRPPKG) command by providing the
desired package name in the pkgnamct parameter and the version ID of the package in
the vrsnam parameter. It then sends the command to the application server.

2 The application server receives and processes the DRPPKG command and creates an
SQLCARD reply data object. If the version ID in the vrsnam parameter contains a null
value, then the only version of the package identified in the pkgnam to be dropped is the
unnamed version. If the version ID in the vrsnam parameter contains a non-null value,
then the application server drops only that version of the package indicated in the
pkgnam parameter.

If the application server finds no errors, it removes the package from the relational
database (within the scope of the unit of work) and returns a normal SQLCARD reply
data object. Otherwise, the application server indicates a single error in the SQLCARD
reply data object, which is returned to the application requester, and the package
remains in the relational database.

3 Assuming it receives a normal SQLCARD reply data object, the application requester
returns the results to the application. The application either performs other operations
within the same unit of work, which can include dropping another package, or it can
commit or roll back the unit of work. See Section 4.4.12.1 on page 117 and Section
4.4.12.2 on page 120 for a description of commit and rollback processing in DRDA.

72 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

If the SQLCARD reply data object that the application server returns to the application
requester indicates that the DRPPKG command was not successful, the application
requester returns an exception to the application that is doing the drop operation.

Part 1: Database Access Protocol 73

DDM Commands and Replies The DRDA Processing Model and Command Flows

4.4.5 Performing a Rebind Operation

Figure 4-8 indicates the DDM commands and replies that would flow in a normal DRDA rebind
process. The usual result of this process is that the application server rebinds a previously bound
package at the relational database to the same remote relational database.

DRDA
(Application Requester)

DRDA
(Application Server)

[1]

TYPDEFNAM
TYPDEFOVR
SQLCARD

(Override for Typdefnam)
(Override for Typdefovr)
(SQLCARD Reply Data Obj)

[2]

[3]

REBIND
rdbnam
pkgnam
vrsnam
pkgisolvl
bndexpopt
pkgownid
rdbrlsopt
bndchkexs
dftrdbcol
dgrioprl
pkgathrul

BNDOPT

(Rebind Package)
(RDB_NAME)
(package name)
(version ID)
(package isolation levels)
(bind explain option)
(package owner ID)
(RDB release option)
(bind existence checking)
(default RDB collection ID)
(degree of I/O parallelism)
(package authorization rules)
(Bind Option)

Figure 4-8 DRDA Flows: Rebinding an Existing Package

The following is a discussion of the operations and functions that the application requester and
the application server perform.

1 After the application requester and the application server have established the proper
connection (described in Figure 4-2 on page 55), they can perform a rebind operation.
Other flows can precede or follow the rebind flow and be part of the same unit of work.

The application requester that is acting as the agent for the application performing the
rebind function creates a Rebind Package (REBIND) command, providing the name of
the package in the pkgnam parameter and the version ID of the desired package in the
vrsnam parameter.

The application requester doing the rebind also determines certain options that the
application server rebinding the package needs. These include checking for the
existence of all the referenced database objects and the binder’s authority to access
them, updating the authorizations associated with the package being replaced to show
the new owner, and setting the desired isolation level that the application server will
use when it executes the resulting package. These are all passed as optional parameters
of the REBIND command.

dgrioprl is an optional parameter21 that informs the database to use I/O parallelism at
the specified degree, if available.

21. This parameter is not supported by DRDA Level 1 application requesters or application servers.

74 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

pkgathrul is an optional ignorable parameter22 that specifies which authorization ID
should be used when executing dynamic SQL in this package.

The application requester can also send additional bind options in BNDOPT command
objects. This allows the application requester to send a bind option to the server for
which no defined DRDA parameter or value exists.

The application requester then sends the command to the application server.

2 The application server receives the REBIND command and determines if the package
name already exists in the requested relational database, determines if the requested
version ID exists, and determines if it can support the options that the application
requester has passed to it.

If the application server can support the options passed, it attempts to rebind the
package to the relational database. If it successfully rebinds the package, it returns a
normal SQLCA. If any errors occur, the SQLCA indicates them, and the application
server cannot rebind the package. There is only one SQLCA indicating the error.
SQLERRD3 contains the statement number of the first error, and SQLERRD4 contains
the total number of statements with error. See Figure 5-33 on page 191 for more about
SQLERRD3 and SQLERRD4.

In either case, the application server creates the SQLCA in an SQLCARD reply data
object and returns it to the application requester.

3 If the SQLCARD reply data object that is returned to the application requester indicates
that the REBIND command was not successful, the application requester returns an
exception to the application that is doing the rebind operation.

Assuming it receives a normal SQLCARD reply data object, the application requester
returns the results to the application. The application either performs other operations
within the same unit of work, which can include rebinding another package, or it can
commit or roll back the unit of work. See Section 4.4.12.1 on page 117 and Section
4.4.12.2 on page 120 for a description of commit and rollback processing introduced in
DRDA.

22. This parameter is only supported by application requesters and application servers at SQLAM Level 5.

Part 1: Database Access Protocol 75

DDM Commands and Replies The DRDA Processing Model and Command Flows

4.4.6 Activating and Processing Queries

Figure 4-9 on page 78 and Figure 4-11 on page 85 indicate the DDM commands and replies that
occur during normal DRDA query processing. These flows produce the desired effect needed to
satisfy application SQL statements of a DCL CURSOR, followed by an OPEN of the cursor, and
repeated FETCHs. They also accommodate the CLOSE of a cursor before or after all the rows of
the answer set have been fetched. The application requester returns the row data of the answer
set (which the application server has shipped to the application requester) to the application as
the application requests it.

The application server can send the row data of the answer set grouped into blocks containing
varying or fixed number of rows23 of data to the application requester per a single query request,
depending on options established for the query processing. A single row of data is a special case
of a fixed number of rows. For details on the description of query blocks and how they are used
in the fixed row and limited row query processing protocols, see the terms QRYBLK,
QRYBLKCTL, FRCFIXROW,24 FIXROWPRC,25 and LMTBLKPRC in the DDM Reference. Also
see the rules for Section 7.19 on page 310.

If connection is between an application server and database server, any new or changed special
register settings must be sent using the EXCSQLSET command prior to activating or processing
queries. The EXCSQLSET command is recommended to be chained with the next SQL-related
command.

Treatment of LOB Data

If any column in a query is of a LOB SQL data type, then the answer set may contain either the
actual LOB data for the column or a LOB locator instantiated by the target system to represent
the column in the answer set row. The application specifies how the LOB column is to be
returned by the target RDB for each row retrieved in the answer set. A new parameter on the
open query command allows the source system to indicate whether the form of a LOB column is
specifiable with each row or only with the first row fetched in the answer set.

If a LOB locator is to be returned for a LOB column in a query, the locator value flows as locator
data in the QRYDTA for the answer set.

If the LOB data value itself is to be returned for a LOB column in a query, the QRYDTA object
does not contain the value bytes for the LOB data column. Instead each such LOB data column
in the answer set is represented by an FD:OCA placeholder that contains only the length of the
LOB data. The value bytes in the data column are externalized and returned in an object called
the EXTDTA object. For more information about the FD:OCA placeholder, refer to Section 5.5.3
on page 157.

Each answer set row is returned in one or more query blocks. Each such row is called a base row;
it contains every column in the answer set in the form of either the data for that column or an
FD:OCA placeholder for the column if the data is externalized. If a base row has FD:OCA
placeholders for externalized FD:OCA data, the corresponding EXTDTAs are said to be
associated with the base row. Likewise, the EXTDTAs corresponding to the FD:OCA
placeholders in a QRYDTA object are said to be associated with the QRYDTA object.

23. A block containing a fixed number of rows is limited to a single row in DRDA Remote Unit of Work.
24. Term defined as FRCSNGROW in DDM Level 3 documentation.
25. Term defined as SNGROWPRC in DDM Level 3 documentation.

76 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

LOB data may also be sent as input host variables for a query. The non-LOB columns flow as
base input data in an SQLDTA command data object. LOB columns that are sent as LOB locators
flow in the SQLDTA as locator data, while LOB columns sent as data are represented by
FD:OCA placeholders in the SQLDTA. The data for LOB columns flows in EXTDTAs that follow
the SQLDTA. Such EXTDTAs are said to be associated with the base input data.

Refer to the following DDM terms for a description of query blocks and EXTDTAs objects and
how they are used in the fixed row and limited row query processing protocols:

• FIXROWPRC

• LMTBLKPRC

• EXTDTA

• EXTDTAOVR

• QRYBLK

The following sections describe the various flows that show how the application server returns
row data of the answer set to the application requester and how the application requester
requests more row data of the answer set from the application server, if it is available.

Part 1: Database Access Protocol 77

DDM Commands and Replies The DRDA Processing Model and Command Flows

4.4.6.1 Fixed-Row Protocol

Figure 4-9 indicates the DDM commands used in the fixed row protocol query processing flows.

DRDA
(Application Requester)

DRDA
(Application Server)

OPNQRYRM
svrcod
qryprctyp
sqlcsrhld
srvdgn

(Open Query Reply Message)
(severity code)
(query protocol type)
(hold cursor position)
(server diagnostic information)

[2]

[3]

OPNQRY
rdbnam
pkgnamcsn

qryblksz
qryblkctl

(Open Query)
(RDB_NAME)
(package name, consistency
token, and section number)
(query block size)
(query block protocol control)

[1]

TYPDEFNAM
TYPDEFOVR
SQLDTA

EXTDTA

(override for typdefnam)
(override for typdefovr)
(SQL program variable data)
(exclusively if there is LOB
input variable data)
(Externalized FD:OCA data)

(Continue Query)
(RDB_NAME)
(package name, consistency
token, and section number)
(query block size)
(number of fetch rows)

CNTQRY
rdbnam
pkgnamcsn

qryblksz
nbrrow
qryrelscr
qryownbr
qryrfrtbl

OUTOVR

(query relative scrolling action)
(query row number)
(query refresh answer set table)
(exclusively if LOB output
variable formats to be overidden)
(Output Override Descriptor)

TYPDEFNAM
TYPDEFOVR
QRYDSC

(override for typdefnam)
(override for typdefovr)
(Query Answer Set Desc
Reply Data Object)

Figure 4-9 DRDA Flows: Fixed-Row Protocol Query Processing (Part 1)

78 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

(Continue Query)
(RDB_NAME)
(package name, consistency
token, and section number)
(query block size)
(number of fetch or insert rows)

CNTQRY
rdbnam
pkgnamcsn

qryblksz
nbrrow

QRYDTA

EXTDTA

(Query Answer Set Data Reply
Data Object)
(exclusively if there is LOB
output variable data)
(Externalized FD:OCA data)

(End Query Reply Message)
(override for typdefnam)
(override for typdefovr)

[n]

[5]

[n+1]

[4]

qryrelscr
qryownbr
qryrfrtbl

OUTOVR
or
CLSQRY

(query relative scrolling action)
(query row number)
(query refresh answer set table)
(exclusively if LOB output
variable formats to be overridden)
(Output Override Descriptor)

ENDQRYRM
TYPDEFNAM
TYPDEFOVR
SQLCARD
or

TYPDEFNAM
TYPDEFOVR
SQLCARD

(SQLCARD Reply Data Obj)
(exclusively for non-scrolling
multi-row fetches without LOBs)
Query Set Answer Data Reply
Data Object)

SQLCARD
or

QRYDTA

ENDQRYRM
TYPDEFNAM
TYPDEFOVR

(End Query Reply Message)
(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)
(exclusively for CSLQRY)

(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)

Figure 4-10 DRDA Flows: Fixed-Row Protocol Query Processing (Part 2)

The following is a discussion of the operations and functions that the application requester and
the application server performs. Here is a brief description of some of the parameters for the
DDM commands. The DDM Reference provides a detailed description of the parameters.

1 After the application requester and the application server establish the proper
connection (described in Figure 4-2 on page 55), an application can do an OPEN
CURSOR request to the application requester. The application requester that is acting
as the agent for the application performing the open cursor function creates an Open
Query (OPNQRY) command providing the proper package name, consistency token,
and section number in the pkgnamcsn parameter. It also provides the query block size
(the size of the query blocks that the application server can return) that it desires in the
qryblksz parameter. The qryblkctl parameter specifies whether fixed-row query
protocols26 must be forced on the opened database cursor. If the query being opened
does not contain this parameter, then the application server selects the query protocol
to be used as specified in the package (see qryblkctl in Figure 4-5 on page 67). The
application requester places any input variables from the application in the SQLDTA
command data object and sends the command and data to the application server. For

Part 1: Database Access Protocol 79

DDM Commands and Replies The DRDA Processing Model and Command Flows

each of the input variables that are of a LOB SQL data type, the following occurs:

• If a LOB locator, the locator is sent with the SQLDTA object as a LOB locator DRDA
type.

• If LOB data, the application requester creates an FD:OCA placeholder for the data in
the SQLDTA and creates an EXTDTA object to contain the LOB value bytes obtained
from memory.

• If LOB file reference variable, the application requester creates an FD:OCA
placeholder for the data in the SQLDTA and creates an EXTDTA object to contain
the LOB value bytes obtained from the referenced file.

The application requester sends the OPNQRY command, the SQLDTA object, and the
associated EXTDTA objects, to the application server in the order listed, with EXTDTAs
flowing in the same order that their corresponding host variables were specified by the
application.

If the application data is not in the representation declared at ACCRDB, then the
optional objects TYPDEFNAM and TYPDEFOVR must be supplied. This will allow the
application server to correctly interpret the data that the application supplied. This
override applies to all the data that follows the override specification until either
another override is encountered or until the end of the command is reached. It is
effective for data flowing from the application requester to the application server.

Note: The block size specified in the qryblksz must be equal to or greater than 512
bytes and equal to or less than 32,767 bytes. If not, the application server
returns the VALNSPRM reply message and the application server does not
execute the command.

2 The application server receives and processes the OPNQRY command. The application
server determines that a fixed number of rows are to be returned per request because
the application can make multi-row fetches,27 or can update the rows or delete the rows
through the cursor instance, or the cursor might have been declared scrollable.28 The
application requester might not have been aware of the update capability of this cursor
instance.

If the application server successfully opens the indicated cursor, it creates an
OPNQRYRM reply message. If there is a warning SQLCA returned from the relational
database, an SQLCARD reply object will be built and will follow the OPNQRYRM. If
the query returns any LOB columns, then the application server must select the
FIXROWPRC if the application server indicates that output overrides may be sent with
each CNTQRY command. The application server also generates an FD:OCA data
descriptor of the row data in QRYDSC reply data object that follows either
OPNQRYRM or OPNQRYRM/SQLCARD reply sequence.

The application server then generates an FD:OCA data descriptor that describes each
returned row. The application server places the FD:OCA data descriptor of the row
data in the QRYDSC reply data object and sends it to the application requester. Section
5.5.3.1 on page 159 gives a detailed definition of the QRYDSC.

26. Also known as single row query protocols.
27. Multi-row fetches are not supported in DRDA Remote Unit of Work, at SQLAM Level 3.
28. Scrollable cursors are not supported in DRDA Remote Unit of Work, at SQLAM Level 3.

80 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

If the data retrieved from the relational database is not in the representation declared at
ACCRDBRM time, then the optional reply data objects TYPDEFNAM and
TYPDEFOVR must be supplied. These reply data objects will allow the application
requester to correctly interpret the data that the database management system
supplied. This override applies to all the data that follows the override specification.
For user data defined by this command, the overrides stay in effect until the data is
exhausted or the cursor is closed. The override remains in effect for any user data
returned by CNTQRY commands. The override does not apply to an SQLCARD
following an ENDQRYRM sent in response to CNTQRY. This override is in effect for
data flowing from the application server to the application requester.

• The application server sends the QRYDSC reply data object. The QRYDSC must
follow the OPNQRYRM reply message and if present, a warning SQLCARD.

• QRYDSC contains the description of an SQLCA and the row data. The application
server sends the SQLCA with each row of data in the QRYDTA reply data object.
This indicates any condition that can be present as a result of the row retrieval. See
Section 5.3 on page 145for detail on QRYDSC.

• If the OPNQRYRM reply message and the QRYDSC reply data object cannot be
contained within a single query block of the indicated size, then the OPNQRYRM
reply message appears first in the first query block and the QRYDSC is placed
immediately after it and can flow across as many additional query blocks as is
required to hold it. If the last block is not full, it is truncated at the end of the data
descriptor.

• The application server actually sends a QRYDSC reply data object that flows across
multiple query blocks as multiple QRYDSC reply data objects. Each QRYDSC reply
data object takes up a full query block except the first, and potentially the last, one.
The application requester pulls the multiple reply data objects back together into a
single QRYDSC data object.

• In response to an OPNQRY command, if the application server is not going to send
the QRYDSC reply data object, then a DDM error reply message must appear first in
the query block. For those reply messages that require an SQLCARD, the SQLCARD
reply data object, indicating the condition, follows the reply message in the query
block that is sent.

• In response to an OPNQRY command for a query that is currently suspended
(previously opened and has not been terminated), the application server returns a
QRYPOPRM reply message first in the query block.

3 The application requester receives the OPNQRYRM or OPNQRYRM/SQLCARD reply
message and QRYDSC reply data object from the application server and indicates to
the application that open processing was successful.

If the application specified an SQLDA to be used for the FETCH, then the application
requester may create an OUTOVR object to send to the application server as command
data for the CNTQRY command. The OUTOVR object is not required if there are no
LOB data columns in the row, but may be optionally sent by the application
requester.29 If multi-row fetch is requested, then all rows are fetched using the same
SQLDA.

Part 1: Database Access Protocol 81

DDM Commands and Replies The DRDA Processing Model and Command Flows

If any LOB data columns are in the row and the application wishes to receive a LOB
column in a form other than as data, then the application requester must create an
OUTOVR to send to the application server. The application server uses the overriding
OUTOVR to determine the format of the data returned. If no OUTOVR is sent with the
CNTQRY command, the application server fetches the data using the last OUTOVR
sent with a CNTQRY command for this query, or if none has been sent, it uses the
QRYDSC returned with the OPNQRYRM.

Note: At any time after the application requester has sent the OPNQRY command
and the application server has successfully processed it, and before the
application server has sent an ENDQRYRM reply message, the application
requester can send a Close Query (CLSQRY) command with the correct
package name, consistency token, and section number in the pkgnamcsn
parameter to the application server.

If the application server processes the CLSQRY command successfully, it
terminates the query and sends the application requester an SQLCARD
reply data object indicating that it has closed the query.

If it has already terminated (or not opened) the query, the application server
sends a QRYNOPRM reply message to the application requester indicating
the query is not open.

If the application requester receives a reply message indicating an error occurred, it
notifies the application of an error condition.

When the application requests the first row or rows (if multi-row fetches) from the
application requester, the application requester creates a Continue Query (CNTQRY)
command with the same value for pkgnamcsn that it supplied on the corresponding
OPNQRY command and sends CNTQRY and the optional OUTOVR object to the
application server. The application requester reflects the application requested multi-
row fetch and scrolling options in the nbrrow, qryrelscr, qryrownbr, and qryrfrtbl
parameters.30 The application requester can supply a different value in the qryblksz
parameter.

4 The application server receives the CNTQRY command and the OUTOVR, if present. It
processes the OUTOVR to create an SQLDA for passing to the relational database for
use when fetching the row or rows. It retrieves the first row or rows of the answer set,
places it in a QRYDTA reply data object with an SQLCA preceding each row, and sends
it to the application requester. The row or rows returned depend on the multi-row fetch
and scrolling parameters sent on CNTQRY, as well as the presence of LOB data in the
row.

If any LOB columns are in the row being retrieved, data will be returned as follows: All
LOB locators are returned in the QRYDTA object. Each LOB column is represented by
an FD:OCA placeholder in the QRYDTA and the LOB value bytes are returned in an
EXTDTA object following the QRYDTA. If more than one EXTDTA is returned, they are
returned in the order that their corresponding FD:OCA placeholders occur in the
QRYDTA object.

29. This is true for all SQLTYPEs that require server resolution of compatible data types. LOG SQLTYPEs are the only such at this
time.

30. These parameters are not supported in DRDA Level 1.

82 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

See Section 5.5.3.1 on page 159 for a detailed definition of QRYDTA.

• If a single row of the answer set data or the answer set of a multi-row fetch
(contained in a QRYDTA reply data object) cannot be contained within a single
query block of that size, then it will span two or more query blocks. If the last block
is not full, it is truncated at the end of the data.

• A QRYDTA data object that flows across multiple query blocks is actually sent as
multiple QRYDTA data objects. Each object takes up a full query block except
(potentially) the last one. The application requester must pull the reply data objects
back together into a single QRYDTA data object.

• In response to a CNTQRY command, if the application server is not going to send
the QRYDTA reply data object, then a DDM error reply message must appear first
in the query block. For those reply messages that require an SQLCARD, the
SQLCARD reply data object, indicating the condition, follows the reply message in
the query block that is sent.

• The response to the previous OPNQRY command defined the data that flows to the
application for this command. No further representation overrides are allowed for
row data.

5 The application requester receives the QRYDTA reply data object and maps the row
data to the application’s host variables. The application requester obtains LOB column
value bytes from the associated EXTDTA objects that follow the QRYDTA.

When the application requests the next row or rows from the application requester, the
application requester creates another CNTQRY command with the same value for
pkgnamcsn that it supplied on the corresponding OPNQRY command. The application
requester reflects application requested multi-row fetch and scrolling options in the
nbrrow, qryrelscr, qryrownbr, and qryrfrtbl parameters. The application requester can
supply a different value in the qryblksz parameter. It then sends CNTQRY to the
application server.

Steps 4 and 5 are repeated until the application does not request any more rows, the
application closes the cursor, or in the case of non-scrolling cursors, there are no more
rows of the answer set available.

Note: For multi-row fetches, the application requester must provide a statement
level SQLCA to the application. See Building the Statement-Level SQLCAs
for Multi-Row Fetch Operations on page 437 for guidance in building the
statement level SQLCA.

n For non-scrolling cursors, or queries (except dynamic queries with HOLD), if the
application server receives a CNTQRY command and fewer rows than requested are in
the answer set (this can even occur on the first CNTQRY command), the application
server generates an ENDQRYRM reply message and sends it to the application
requester followed by an SQLCARD reply data object that indicates the end of query
processing condition (SQLSTATE=02000). For multi-row fetches on a non-scrolling
cursor, there can be some rows returned before returning the ENDQRYRM. The
application server then closes the cursor.

For cursors that scroll or dynamic queries with the HOLD option, a CNTQRY that runs
out of rows in the answer set does not result in an ENDQRYRM and closed cursor. The
condition is reflected in the SQLCARD returned for the CNTQRY and if the cursor is
scrollable, the application can reposition the cursor for future fetches, or the application
can close the cursor.

Part 1: Database Access Protocol 83

DDM Commands and Replies The DRDA Processing Model and Command Flows

• At any time during query processing, the relational database might incur a problem
that causes the query to be terminated. For non-scrolling cursors, the application
server sends the ENDQRYRM reply message, followed by an SQLCARD reply data
object, which indicates the reason for failing to return another data row of the
answer set. If the error occurs during a multi-row fetch, the good rows are returned
with the ENDQRYRM and SQLCARD with the error indication.

For cursors that scroll, an ENDQRYRM is not returned. The error condition is
returned in the SQLCARD on the next CNTQRY.

• TYPDEFNAM and TYPDEFOVR can be sent before the SQLCARD to override the
descriptions. Any TYPDEFNAM or TYPDEFOVR sent in response to the OPNQRY
or a previous CNTQRY does not affect the description of the SQLCARD.

n+1 For non-scrolling cursors, when the application requester receives the ENDQRYRM
reply message, it knows that it has received the last row of answer data and that the
application server has closed the query, so it does not send any additional CNTQRY
commands to the application server.

The application requester receives an SQLCARD reply data object and reports the
indicated condition to the application.

If the application requester receives a request to CLOSE the cursor at this point, it does
not need to communicate with the application server as it knows the cursor is already
closed.

At this point, the application/application requester can continue with additional
defined DRDA flows with the resulting changes being in the same unit of work or it can
complete the unit of work in some defined fashion.

Note: The execution of a ROLLBACK, through any method, causes the
termination of a query. The execution of a COMMIT, through any method,
causes the termination of a query, except for queries with the HOLD option
in the DECLARE CURSOR statement.

84 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

4.4.6.2 Limited Block Protocol (No LOB Data in Answer Set)

Figure 4-11 indicates the DDM commands used by the limited block query processing flows
when there are no LOB outputs. Refer to Section 4.4.6.3 on page 90 if there are LOB data columns
in the answer set.

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

[3]

(Continue Query)
(RDB_NAME)
(package name, consistency
token, and section number)
(query block size)

CNTQRY
rdbnam
pkgnamcsn

qryblksz

QRYDTA (Query Set Answer Data Reply
Data Object)

[n]

[n+1]

[5]

OPNQRY
rdbnam
pkgnamcsn

qryblksz

(Open Query)
(RDB_NAME)
(package name, consistency
token, and section number)
(query block size)

[1]

TYPDEFNAM
TYPDEFOVR
SQLDTA
EXTDTA

(override for typdefnam)
(override for typdefovr)
(SQL program variable data)
(Externalized FD:OCA data)

[4]

(Continue Query)
(RDB_NAME)
(package name, consistency
token, and section number)
(query block size)

CNTQRY
rdbnam
pkgnamcsn

qryblksz

OPNQRYRM
svrcod
qryprctyp
sqlcsrhld
srvdgn

(Open Query Reply Message)
(severity code)
(query protocol type)
(hold cursor position)
(server diagnostic information)

TYPDEFNAM
TYPDEFOVR
QRYDSC

QRYDTA

(override for typdefnam)
(override for typdefovr)
(Query Answer Set Desc
Reply Data Object)
(Query Set Answer Data
Reply Data Object)

ENDQRYRM
TYPDEFNAM
TYPDEFOVR
SQLCARD

(End Query Reply Message)
(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)

QRYDTA (Query Set Answer Data Reply
Data Object)

Figure 4-11 DRDA Flows: Limited Block Protocol Query Processing (No LOB Data)

The following is a discussion of the operations and functions the application requester and the
application server perform. This is just a brief description of some of the parameters for the
DDM commands. See the DDM Reference for a detailed description of the parameters.

1 After the application requester and the application server have established the proper
connection (described in Figure 4-2 on page 55), an application can send an OPEN
CURSOR request to the application requester. The application requester acting as the
agent for the application performing the open cursor function, creates an Open Query

Part 1: Database Access Protocol 85

DDM Commands and Replies The DRDA Processing Model and Command Flows

(OPNQRY) command providing the proper package name, consistency token, and
section number in the pkgnamcsn parameter. It also provides the desired query block
size (the size of the query blocks that the application server can return) in the qryblksz
parameter.

The qryblkctl parameter specifies whether fixed row protocols must be forced on the
opened database cursor. If the query being opened does not include this parameter,
then the application server selects the query protocol to be used based on information
in the package (see qryblkctl in Figure 4-5 on page 67). Its absence here allows limited
block processing. The application requester places any input variables from the
application in the SQLDTA command data object and sends the command and the data
to the application server. Input host variables containing LOB data types are handled as
in Section 4.4.6.1 on page 78.

Note: The block size specified in the qryblksz must be equal to or greater than 512
bytes and equal to or less than 32,767 bytes. If not, the application server
returns the VALNSPRM reply message and the application server does not
execute the command.

2 The application server receives and processes the OPNQRY command. It then
determines that it will use limited block protocols because no SQL UPDATEs or
DELETEs are to be performed against the corresponding cursor, and the OPNQRY
command did not include the qryblkctl parameter. The qryblksz, which the application
requester has established and sent on the OPNQRY command, determines the size of
each query block.

If the application server successfully opens the cursor, it creates and sends an
OPNQRYRM reply message to the application requester.

If the relational database returned a warning SQLCA, then an SQLCARD will be sent.

The application server then generates an FD:OCA data descriptor that describes each
returned row. This description is placed in the QRYDSC reply data object that in turn is
placed in the first query block after the OPNQRYRM reply message or warning
SQLCARD, which the application server will return to the application requester.

The application server can also create a QRYDTA reply data object and place all or part
of the first data row and all or part of any of the next data rows in it until the QRYDTA
fills the rest of the last query block containing the last QRYDSC reply data object.

• The application server sends the QRYDSC reply data object. The QRYDSC must
follow the OPNQRYRM reply message or warning SQLCARD.

• QRYDSC contains the description of an SQLCA and the row data. The application
server sends the SQLCA with each row of data in the QRYDTA reply data object.
This indicates any condition that can be present as a result of the row retrieval. See
Section 5.3 on page 145 for detail on QRYDSC.

• If the OPNQRYRM reply message and the QRYDSC reply data object cannot be
contained within a single query block of the indicated size, then the OPNQRYRM
reply message and optional SQLCARD appear first in the first query block and the
QRYDSC is placed immediately after them. They can flow across as many
additional query blocks as is required to hold them.

• A QRYDSC reply data object that flows across multiple query blocks is actually sent
as multiple QRYDSC reply data objects. Each QRYDSC reply data object takes up a
full query block except the first and (potentially) the last one. The application
requester must pull the multiple reply data objects back together into a single

86 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

QRYDSC data object.

• If space is available in the last query block to be sent, the application server can
create a QRYDTA reply data object to fill the space that is left in this query block
(which contains some or all of the QRYDSC reply data object). The QRYDTA reply
data object can contain a single row, multiple rows, and/or a partial data row of the
answer set.

• For queries (except dynamic queries with HOLD), if the application server can place
all of the data rows in the answer set in the last query block and leave enough space
for the ENDQRYRM reply message and an SQLCARD reply data object, then it
places an ENDQRYRM reply message and the SQLCARD reply data object in that
query block and returns them to the application requester. If the ENDQRYRM reply
message and the SQLCARD reply data object do not fit in the remaining space, then
the application server does not send either to the application requester in this query
block.

If the application server sends the ENDQRYRM reply message and the SQLCARD
reply data object to the application requester, then the application server terminates
the query.

• In response to an OPNQRY command, if the application server is not going to send
the QRYDSC reply data object, then a DDM error reply message must appear first in
the first query block.

• In response to an OPNQRY command for a query that is currently suspended
(previously opened and has not been terminated), the application server returns a
QRYPOPRM reply message first in the query block.

3 The application requester receives the OPNQRYRM reply message and QRYDSC reply
data object from the application server and indicates to the application that open
processing was successful.

Note: At any time after the application requester has sent the OPNQRY command
and the application server has successfully processed it, and before the
application server has sent an ENDQRYRM reply message, the application
requester can send a Close Query(CLSQRY) command with the correct
package name, consistency token, and section number in the pkgnamcsn
parameter to the application server.

If the application server processes the CLSQRY command successfully, it
terminates the query and sends the application requester an SQLCARD
reply data object indicating the application server has closed the query.

If the application server had already terminated (or not opened) the query,
then it sends a QRYNOPRM reply message to the application requester
indicating the query is not open.

The application requester receives the reply data object from the application server and
processes it. If the application requester receives QRYDSC and QRYDTA reply data
objects, the first row data received in the QRYDTA reply data object is mapped to the
application’s host variables (when the application performs the first FETCH operation)
based on the description passed in the QRYDSC reply data object.

When the application requests the next row from the application requester (performs
the next FETCH operation), the application requester maps the next row from the
QRYDTA reply data object to the application’s host variables.

Part 1: Database Access Protocol 87

DDM Commands and Replies The DRDA Processing Model and Command Flows

When the application performs a FETCH and a complete row is no longer available in
the QRYDTA reply data object, the application requester creates a CNTQRY command
with the same value for pkgnamcsn as the corresponding OPNQRY command supplied.
A different value can be supplied in the qryblksz parameter and will result in the
application server returning a new size for the next query block.

4 When the application server receives the CNTQRY command, if it has a partial row
from the last OPNQRY or CNTQRY command, it places the partial row in the
QRYDTA reply data object. If it does not have a partial row, then it retrieves the next
data row from the answer set and places it in the QRYDTA reply data object with an
SQLCA. The first row or partial row returned can span query blocks. The application
server can continue to retrieve rows and place them in the QRYDTA reply data object
until the query block is full.

• The application server actually sends a QRYDTA data object that flows across
multiple query blocks as multiple QRYDTA data objects. Each object takes up a full
query block except (potentially) the last one created for a particular query. Then the
application requester must pull the reply data objects back together into a single
QRYDTA data object.

• For queries (except dynamic queries with HOLD), if the application server can place
all of the data rows in the answer set in the last query block and leave enough space
in that query block for the ENDQRYRM reply message and an SQLCARD reply
data object, then the application server places an ENDQRYRM reply message and
the SQLCARD reply data object in that query block and returns them to the
application requester. If the ENDQRYRM reply message and the SQLCARD reply
data object do not fit in the space remaining, then the application server will not
send either to the application requester in this query block. They will be sent as the
only responses to the next CNTQRY command.

If the application server sends the ENDQRYRM reply message and the SQLCARD
reply data object to the application requester, then the query is terminated.

• In response to a CNTQRY command, if the application server is not going to send
the QRYDTA reply data object, then a DDM error reply message must appear first
in the query block. For those reply messages that require an SQLCARD, the
SQLCARD reply data object, indicating the condition, follows the reply message in
the query block that is sent.

The application server then sends the query block to the application requester.

5 When the application requester receives the QRYDTA reply data object, it passes the
row data that spanned the previous query block and the one just received (if any) to the
application. The application requester maps the row data it received in the QRYDTA
reply data object to the application’s host variables (in response to the previously
unsatisfied FETCH operation) based on the description passed in the QRYDSC reply
data object at the beginning of the query processing.

When the application requests the next row from the application requester, the
application requester maps the next row from the QRYDTA reply data object to the
application’s host variables.

When a complete row is no longer available in the query block, the application
requester creates a CNTQRY command with the same value for pkgnamcsn as the
corresponding OPNQRY command supplied. The qryblksz parameter can contain a
different value and will result in a new size for the next query block the application
server will return.

88 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

Steps 4 and 5 are repeated until the application server returns the QRYDTA reply data
object with all of the last row of the answer set to the application requester, or until the
application does not request any more rows.

n When the application server receives the CNTQRY command, if it has a partial row
from the last OPNQRY or CNTQRY command it places the partial row in the QRYDTA
reply data object. If it does not have a partial row, then it retrieves the next data row
from the answer set and places it in a QRYDTA reply data object with an SQLCA. The
first row or partial row returned can span query blocks. The application server
continues to retrieve additional rows of the answer set and to place them in the
QRYDTA reply data object until it has retrieved the last row.

For queries (except dynamic queries with HOLD), after it has placed the last row of the
answer set (which completes the last QRYDTA reply data object) in the query block, the
application server generates an ENDQRYRM reply message and an SQLCARD reply
data object and places them in the query block.

The application server then closes the query and will no longer accept CNTQRY
commands for this cursor until an OPNQRY is again processed for this cursor.

The application server then sends the last query block to the application requester.

n+1 When the application requester receives the reply block, it passes the row data that
spanned the previous QRYDTA reply data object and the one just received (if any) to
the application. The application requester maps the row data it received in the
QRYDTA reply data object to the application’s host variables (in response to the
previously unsatisfied FETCH operation) based on the description passed in the
QRYDSC reply data object at the beginning of the query processing.

When the application requests the next row from the application requester, the
application requester maps the next row from the QRYDTA reply data object to the
application’s host variables.

When the application requester receives the ENDQRYRM reply message, it knows that
the application server has processed the last row of answer data. It knows the
application server has closed the query, so the application requester will not send any
additional CNTQRY commands to the application server.

If the application requester receives a request to CLOSE the cursor at this point, it does
not need to communicate with the application server as it knows the cursor is already
closed.

At this point, the application or the application requester can continue with additional
defined DRDA flows with the resulting changes being in the same unit of work, or it
can complete the unit of work in some defined fashion.

Note: The execution of a ROLLBACK, through any method, causes the
termination of a query. The execution of a COMMIT, through any method,
causes the termination of a query, except for queries with the HOLD option
in the DECLARE CURSOR statement.

Part 1: Database Access Protocol 89

DDM Commands and Replies The DRDA Processing Model and Command Flows

4.4.6.3 Limited Block Protocol (LOB Data in Answer Set)

The rtnextdta parameter determines the major processing flows when there are LOB data
columns in the answer set.

Figure 4-12 and Figure 4-13 on page 91 indicate the complete limited block processing flows
when the rtnextdta value is rtnextall.

Figure 4-12 and Figure 4-13 on page 91 also indicate partial limited block processing flows when
the rtnextdta value is rtnextrow. In addition, refer to Figure 4-14 on page 94 for additional
commands that apply in this case.

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

OPNQRY
rdbnam
pkgnamcsn

qryblksz
outovropt

(Open Query)
(RDB_NAME)
(package name, consistency
token, and section number)
(query block size)
(output override option)

[1]

TYPDEFNAM
TYPDEFOVR
SQLDTA

EXTDTA

(override for typdefnam)
(override for typdefovr)
(SQL program variable data)
(exclusively if there is LOB
input variable data)
(Externalized FD:OCA data)

[3]
(Continue Query)
(RDB_NAME)
(package name, consistency
token, and section number)
(query block size)
(query refresh answer set table)
(return of EXTDTA option)
(exclusively if LOB output
variable formats to be overridden)
(Output Override Descriptor)

CNTQRY
rdbnam
pkgnamcsn

qryblksz
qryrftrbl
rtnextdta

OUTOVR

OPNQRYRM
svrcod
qryprctyp
sqlcsrhld
srvdgn

(Open Query Reply Message)
(severity code)
(query protocol type)
(hold cursor position)
(server diagnostic information)

TYPDEFNAM
TYPDEFOVR
QRYDSC

(override for typdefnam)
(override for typdefovr)
(Query Answer Set Desc
Reply Data Object)

Figure 4-12 Limited Block Protocol (with LOB Data, rtnextall) (Part 1)

90 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

(Continue Query)
(RDB_NAME)
(package name, consistency
token, and section number)
(query block size)
(query refresh answer set table)

CNTQRY
rdbnam
pkgnamcsn

qryblksz
qryrftrbl
rtnextdta

OUTOVR

QRYDTA

EXTDTA

(Query Set Answer Data Reply
Data Object)
(exclusively if there is LOB
output variable data)
(Externalized FD:OCA data)

[5]

[4]

(return of EXTDTA option)
(exclusively if LOB output
variable formats to be overridden)
(Output Override Descriptor)

DRDA
(Application Requester)

DRDA
(Application Server)

[n+1]

[n]

ENDQRYRM
TYPDEFNAM
TYPDEFOVR
SQLCARD

(End Query Reply Message)
(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)

Figure 4-13 Limited Block Protocol (with LOB Data, rtnextall) (Part 2)

Part 1: Database Access Protocol 91

DDM Commands and Replies The DRDA Processing Model and Command Flows

Limited Block Protocol (rtnextdta=rtnextall)

This discussion is based on Figure 4-12 on page 90, Figure 4-13 on page 91, and the discussion in
Section 4.4.6.2 on page 85.

1 Refer to Section 4.4.6.2 on page 85, Step 1.

2 Refer to Section 4.4.6.2 on page 85, Step 2.

For each LOB data column, the FD:OCA placeholder indicator flag is set on to indicate
that the column data will be externalized and flow in an EXTDTA object. The column
data will flow in this manner unless the application overrides the descriptor using a
SQLDA with the FETCH request.

Since the answer set contains LOB data columns, no query data is returned at this time.
The first row is returned with the first CNTQRY command, allowing the application to
specify an overriding SQLDA with the FETCH request.

3 Refer to Section 4.4.6.2 on page 85, Step 3.

The parameter rtnextdta must be specified on each CNTQRY if a value other than the
default is desired.

If the application wishes to receive a LOB column in a form other than as data, then it
specifies a SQLDA descriptor on the FETCH request and the application requester must
create an OUTOVR to send to the application server. The application server uses the
overriding OUTOVR to determine the format of the data returned. If no OUTOVR is
sent to the application server, the application server fetches the data using the server
description of the data as given in the QRYDSC returned by the target with the
OPNQRYRM.

The application requester sends the CNTQRY command and the optional OUTOVR
object to the application server.

4 Refer to Section 4.4.6.2 on page 85, Step 4.

The application server receives and processes the CNTQRY. It processes the OUTOVR,
if sent, to specify the format in which the relational database is to fetch the row or rows.

The application server creates a QRYDTA reply object as in Section 4.4.6.2 on page 85,
Step 4.

In addition, LOB data columns are returned as follows: All LOB locators are returned in
the QRYDTA object. Each LOB column is represented by an FD:OCA placeholder in the
QRYDTA and the LOB value bytes are returned in an associated EXTDTA object
following the QRYDTA. If more than one EXTDTA is returned, they are returned in the
order that their corresponding FD:OCA placeholders occur in the QRYDTA object.

The application server sends the QRYDTA object to the application requester and
returns the EXTDTA objects according to the rtnextdta option.

In this discussion, the rtnextdta value is rtnextall:

The QRYDTA object is returned along with the EXTDTA objects associated with all
complete rows contained in the QRYDTA object. The EXTDTAs associated with a
partial row are not returned until the complete row is returned in the next QRYDTA
object.

The application requester may also request that extra query blocks be returned by
means of the maxblkext value. Even if extra query blocks are requested by the
application requester, the application server is not required to return any extra query

92 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

blocks nor is it required to return the number requested. The application server may
choose to return extra query blocks in some cases, but not in others. For example, the
application server may choose not to return extra query blocks if there are LOBs in the
answer set. If the application server does support the return of extra query blocks,
however, it must adhere to certain rules. For example, extra query blocks are not to be
sent if the extra blocks do not complete a row and do not contain a complete row.

If the application server returns extra query blocks when there are LOBs in the answer
set, the following applies:

• If maxblkext is zero, then no extra query blocks are returned. The query is
suspended after the last EXTDTA for the last complete row in the QRYDTA object is
returned to the source system.

• If maxblkext is n, where n is a positive value, then the first extra query block to be
returned is sent, followed by the EXTDTA objects associated with complete rows
contained in the extra query block. If the application server determines that it will
send extra query blocks for the query, then it sends the first extra query block
followed by the EXTDTAs associated with complete rows contained in the extra
query block. This repeats for all n extra query blocks to be sent or until the answer
set is complete.

• If maxblkext is −1, the application server returns a query block of answer set data,
followed by the EXTDTAs associated with the query block. If the application server
determines that it will send extra query blocks, then it returns the entire answer set,
including all QRYDTA objects and their associated EXTDTA objects.

5 Refer to Section 4.4.6.2 on page 85, Step 5.

The application requester receives the QRYDTA block. The first row data received in
the QRYDTA are mapped to the application’s host variables. Data represented in the
row by FD:OCA placeholders are to be obtained from EXTDTAs according to the
rtnextdta specified.

In this discussion, the rtnextdta value is rtnextall:

The application requester returns data to the application with each application FETCH
request, obtaining non-FD:OCA placeholder data from the QRYDTA block and LOB
value bytes from EXTDTAs associated with the FD:OCA placeholders in the row. If
extra blocks were returned, processing continues with the extra query blocks. If no
more complete rows are contained in the query blocks returned by the application
server, the application requester formats a CNTQRY command and sends it to the
application server.

n Refer to Section 4.4.6.2 on page 85, Step n. If LOB data is returned with the QRYDTA,
then even though the end of the query data is reached, the ENDQRYRM is not returned
until the next CNTQRY, in order to maintain the chaining rules for the QRYDTA and
EXTDTA objects being returned.

n+1 Refer to Section 4.4.6.2 on page 85, Step n+1.

Part 1: Database Access Protocol 93

DDM Commands and Replies The DRDA Processing Model and Command Flows

Limited Block Protocol (rtnextdta=rtnextrow)

This discussion is based on Figure 4-12 on page 90, Figure 4-13 on page 91, and the discussion in
Section 4.4.6.3 on page 90. Additional commands required for this case are included in Figure 4-
14.

DRDA
(Application Requester)

DRDA
(Application Server)

(Continue Query)

(query refresh answer set table)

CNTQRY
rdbnam
.
.
qryrftrbl

QRYDTA

EXTDTA

.

.

.

(Query Answer Set Reply
Data Object)

(Externalized FD:OCA data)

[4a]

[5]

[3]

[4]

[4b]

.

.
(Output Override Descriptor)

.

.
OUTOVR

[4a] and [4b] repeat until the LOBs are returned for the base data returned in [4]. The flow then
proceeds to [5] to get the next set of base data. If any data is returned, [4a] and [4b] are repeated
again.

Figure 4-14 Limited Block Protocol Query Processing (with LOB Data, rtnextrow)

1 Refer to Limited Block Protocol (rtnextdta=rtnextall) on page 92, Step 1.

2 Refer to Limited Block Protocol (rtnextdta=rtnextall) on page 92, Step 2.

3 Refer to Limited Block Protocol (rtnextdta=rtnextall) on page 92, Step 3.

4 Refer to Limited Block Protocol (rtnextdta=rtnextall) on page 92, Step 4.

In this discussion, the rtnextdta value is rtnextrow:

The initial CNTQRY command for the query returns one or more QRYDTA objects
containing one or more base data rows. No EXTDTAs associated with the base data are
returned. See Step 4a and Step 4b for the flow which returns the associated EXTDTA
objects.

4a The application requester returns data to the application for the first application
FETCH request after obtaining both the base data and the externalized data for the row.
The application obtains base data from the QRYDTA object.

If the base data row is complete and all of its LOB data columns are trivial (nullable
columns that are null or columns with zero placeholder values), then there is no
pending LOB data for this row and the application rueqester returns to the application
with the fetched base data.

94 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

If the base data row is complete and it has non-trivial LOB data columns (nullable
columns that are not null or columns with non-zero placeholder values), the
application requester sends a CNTQRY command to the application server to obtain
the associated EXTDTA objects.

If the base data row is not complete, this step reverts to Step 3 in Section 4.4.6.2 on page
85, where the CNTQRY command is sent to obtain or complete the base data for the
next row.

4b The application server receives the CNTQRY command.

For the next previously sent complete row of base data, the application server returns
the associated EXTDTA objects for the LOB columns pending for that base row.

If there are no more pending LOB data columns for previously sent rows, this step
reverts to Step 4 in Section 4.4.6.2 on page 85, where the CNTQRY command causes the
application server to obtain or complete the base data for the next row.

Steps 4a and 4b are repeated until the application requester processes all the complete
rows in the received QRYDTA objects or until the application does not fetch any more
rows.

5 Refer to Section 4.4.6.2 on page 85, Step 5.

n Refer to Section 4.4.6.2 on page 85, Step n.

n+1 Refer to Section 4.4.6.2 on page 85, Step n+1.

Part 1: Database Access Protocol 95

DDM Commands and Replies The DRDA Processing Model and Command Flows

4.4.7 Executing a Bound SQL Statement

This section describes the DDM commands and replies that flow during the execution of SQL
statements that have been bound by the bind process or the PRPSQLSTT command. Section
4.4.7.1 on page 97 describes the commands and replies that flow in most instances. Section
4.4.7.2 on page 100 describes the commands and replies that flow for an SQL statement that
invokes a stored procedure which returns result sets.

If connection is between an application server and database server, any new or changed special
register settings must be sent using the EXCSQLSET command prior to activating or processing
queries. The EXCSQLSET command is recommended to be chained next SQL command.

96 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

4.4.7.1 Executing Ordinary Bound SQL Statements

Figure 4-15 indicates the DDM commands and replies that flow during the execution of the
majority of SQL statements that can be bound by the bind process or the PRPSQLSTT command.
The usual result is that the application server makes the expected changes in the relational
database (within the unit of work) after the indicated bound SQL statement has successfully
executed. For a description of the commands and replies that flow for an SQL statement that
invokes a stored procedure which returns result sets, refer to Section 4.4.7.2 on page 100.

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

[3]

EXCSQLSTT
rdbnam
pkgnamcsn

outexp

(Execute SQL Statement)
(RDB_NAME)
(package name, consistency
token, and section number)
(output expected)

[1]

TYPDEFNAM
TYPDEFOVR
OUTOVR
SQLDTA
EXTDTA

(override for typdefnam)
(override for typdefovr)
(Output Override Descriptor)
(SQL application variable data)
(Externalized FD:OCA data)

TYPDEFNAM
TYPDEFOVR
SQLCARD
or
TYPDEFNAM
TYPDEFOVR
SQLDTARD
EXTDTA

(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)

(override for typdefnam)
(override for typdefovr)
(SQLDTARD Reply Data Obj)
(Externalized FD:OCA data)

nbrrow
prcnam
rdbcmtok

(number of fetch or insert rows)
(procedure name)
(commit ok)

Figure 4-15 DRDA Flows: Executing a Bound SQL Statement

The following is a discussion of the operations and functions the application requester and the
application server perform. This volume provides a brief description of some of the parameters
for the DDM commands. See the DDM Reference for a detailed description of the parameters.

1 After the application requester and the application server have established proper
connection (described in Figure 4-2 on page 55), prebound SQL statements referenced
in a package in a remote relational database can be executed. (See Section 4.4.3 on page
67 for a discussion of the DRDA flows needed to perform the bind.) Other DRDA flows
can precede or follow the execution of the prebound SQL statement referenced in the
package and be part of the same unit of work.

The application requester that is acting as the agent for the application performing the
execute SQL statement function creates the Execute SQL Statement (EXCSQLSTT)
command by providing the correct package name, consistency token, and section
number in the pkgnamcsn parameter. It also indicates in the outexp parameter whether
or not it expects output to be returned within an SQLDTARD reply data object as a
result of the execution of the SQL statement. The optional nbrrow parameter31 indicates
the number of rows to insert if the operation of the EXCSQLSTT is an SQL multi-row
insert. The optional rdbcmtok parameter informs the RDB whether or not to process
commit and rollback operations. The optional prcnam parameter identifies the stored

Part 1: Database Access Protocol 97

DDM Commands and Replies The DRDA Processing Model and Command Flows

procedure to be executed at the application server. The application requester also puts
any application variable values and their descriptions in the SQLDTA command data
object. All data types for host variables associated with a CALL or other statement that
invokes a stored procedure must be nullable when they flow on the wire, so if a data
type is non-nullable, it must be turned into the nullable form of the data type by the
application requester prior to sending to the application server.

All host variables associated with the parameter list of a stored procedure must be
reflected with a null indication or data in the SQLDTA.

If a CALL or other statement that invokes a stored procedure specifies the procedure
name using a host variable, then the prcnam parameter of the EXCSQLSTT specifies the
procedure name value. The procedure name value is not duplicated in any SQLDTA
command data object that might also flow with the EXCSQLSTT.

If the CALL or other statement that invokes a stored procedure does not specify the
procedure name using a host variable, then the value specified by the prcnam
parameter, if present, must match the procedure name value contained within the
section identified by pkgnamcsn. It sends the command and command data to the
application server.

The application requester may send LOB data as input host variables in the SQLDTA
that accompanies an EXCSQLSTT or as input parameters in the SQLDTA for an
EXCSQLSTT statement that is a CALL to a stored procedure. For each input host
variable that is a LOB data type, an FD:OCA placeholder is placed in SQLDTA and the
corresponding value bytes are flowed in an EXTDTA following the SQLDTA. The
EXTDTAs flow in the order that the FD:OCA placeholders occur in the associated
SQLDTA.

Note: For a stored procedure, output parameters that are LOBs are sent to the
application server along with input parameters. If an application wishes to
avoid sending this data to the application server, it must explicitly clear the
host variable before making the call.

For an SQL statement that is not a stored procedure call, output may or may not be
expected with the execution of the statement. If the expected output includes LOB data,
then the application requester must send an OUTOVR object to the application server if
the application wishes to receive a LOB locator in place of the actual data.

For an SQL statement that is a stored procedure call, if any of the output parameters is
a LOB type, then the SQLDTA describes the desired format of the output. An OUTOVR
object is not sent in this case and is rejected by the target system if it is sent.

2 The application server receives and processes the EXCSQLSTT command and creates
an SQLCARD reply data object or SQLDTARD reply data object. The requested
statement executes with the input variable values passed with the command, the
results are reflected in the referenced database manager (within the scope of the unit of
work), and an SQLCARD reply data object is returned. If errors occur during the
execution of the statement, the referenced database manager remains unchanged, and
the SQLCARD reply data object contains an indication of the error condition.

31. This parameter is not supported in DRDA Level 1.

98 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

If the execution of the SQL statement (a single row SELECT, statement that invokes a
stored procedure, or SET statement) generates output data, the application server
returns this data in the SQLDTARD reply data object.

All host variables associated with the parameter list of a stored procedure must be
reflected with a null indication or data in the SQLDTARD. The application server also
returns the SQLCA in the SQLDTARD, ahead of the data, indicating the normal
completion of SQL statement execution.

Note: If the execution of the statement generates output data, which was not
expected (indicated on the outexp parameter), then the application server
sends the SQLCARD to the application requester indicating an error and
does not send any output data.

If the section identified by pkgnamcsn exists in the package identified by pkgnamcsn, but
the section is not associated with a stored procedure, then the use of prcnam with
pkgnamcsn is invalid and the application server returns CMDCHKRM to the application
requester.

If the executed SQL statement is either a COMMIT or ROLLBACK, see Section 4.4.12.1
on page 117 and Section 4.4.12.2 on page 120 for a description of commit and rollback
processing in DRDA.

If any data is to be returned by the application server, the application server creates an
SQLDTARD. For each output host variable that is a LOB data type, an FD:OCA
placeholder is placed in the SQLDTARD and the corresponding value bytes are flowed
in a EXTDTA following the SQLDTARD. The EXTDTAs flow in the order that the
FD:OCA placeholders occur in the associated SQLDTARD.

If an OUTOVR object is received, it will be used to format the output, if output is
expected and the SQL statement is not a stored procedure call. For a stored procedure
call, the OUTOVR object is rejected. For an SQL statement that does not return output,
the OUTOVR object is rejected.

3 For a normal completion, the application requester returns to the application with the
successful indication. The application requester also returns any data in the
SQLDTARD reply data object to the application.

At this point, the application/application requester can continue with additional
defined DRDA flows.

If the SQLCARD reply data object that the application server returned to the
application requester indicates that the EXCSQLSTT command was not successful, the
application requester returns an exception to the application that is attempting to
execute the SQL statement.

Part 1: Database Access Protocol 99

DDM Commands and Replies The DRDA Processing Model and Command Flows

4.4.7.2 Invoking a Stored Procedure that Returns Result Sets

Figure 4-16 on page 101 indicates the DDM commands and replies that flow during the
execution of an SQL statement, previously bound by the bind process or the PRPSQLSTT
command, that invokes a stored procedure which returns result sets. These flows produce the
desired effect needed to satisfy an application program that executes a stored procedure and
FETCHes the rows from result sets generated by the execution of that stored procedure. The
application server ships the answer set data to the application requester and the application
requester then returns the row data of the answer sets to the application in whatever order the
application requests them. This example assumes that the application requester desires the
names for columns within results sets and is capable of processing answer set data returned in
the response to EXCSQLSTT. Although this example illustrates a stored procedure that returns
two result sets, DRDA (using SQLAM Level 5) supports the return of any number of result sets.
The example also assumes that the stored procedure has been defined with the commit on return
attribute and the result set cursors within the stored procedure are defined with the HOLD
option. Although result set cursors can return data according to the rules for either the fixed row
protocol or the limited block protocol, the example only shows the use of the limited block
protocol rules. Since result set cursors are unambiguously read-only, generally the rules for
limited block protocol can be used, so this example shows the predominate scenario. This choice
can be superseded, for example, if the EXCSQLSTT for the call statement specifies an outovropt
of outovrany , causing any result sets that return LOB output values to be returned using fixed
row protocol rules.

The application server sends the row data of the answer sets grouped into blocks following the
rules for limited block protocol and according to the options specified by the application
requester on the EXCSQLSTT and CNTQRY commands. For details on the description of answer
set blocks and how they are supported using the limited block protocol, see the terms QRYBLK,
QRYBLKCTL, QRYBLKSZ, LMTBLKPRC, MAXBLKEXT, and MAXRSLCNT in the DDM
Reference. Also see the rules for query processing in Section 7.19 on page 310.

The following example describes the various flows that show how the application server returns
row data of the answer sets to the application requester and how the application requester
requests more row data of the answer sets from the application server, if needed.

100 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

EXCSQLSTT
rdbnam
pkgnamcsn

outexp

(Execute SQL Statement)
(RDB_NAME)
(package name, consistency
token, and section number)
(output expected)

[1]

rslsetflg
outovropt

TYPDEFNAM
TYPDEFOVR

(result set flag)
(output override option)
(override for typdefnam)
(override for typdefovr)

prcnam
qryblksz
maxrslcnt
maxblkext
rdbcmtok

(procedure name)
(query block size)
(maximum result set count)
(maximum no. of extra blocks)
(commit ok)

ENDUOWRM
uowdsp

RSLSETRM
svrcod

(End unit of work)
(unit of work disposition)
(Result Set Reply Message)
(severity code)

pkgsnlst

srvdgn
TYPDEFNAM

(RDB package name, consistency
token, and section number list)
(server diagnostic information)
(override for typdefnam)

TYPDEFOVR
SQLCARD

TYPDEFNAM
TYPDEFOVR

(override for typdefovr)
(SQLCARD Reply Data Object)

** see note below figure **
(override for typdefnam)
(override for typdefovr)

SQLRSLRD (SQL Result Set Reply Data Object)

OPNQRYRM

svrcod
qryprctyp
sqlcsrhld
srvdgn

TYPDEFNAM
TYPDEFOVR
SQLCINRD

(Open Query Reply Message)
** result set #1 **

(severity code)
(query protocol type)
(hold cursor position)
(server diagnostic information)
(override for typdefnam)
(override for typdefovr)
(SQL result set column information
Reply Data Object)

QRYDSC

QRYDTA

(Query Answer Set Desc Reply
Data Object)
(Query Answer Set Data Reply
Data Object)

QRYDTA

QRYDTA

(Query Answer Set Data Reply
Data Object)

** extra block #1 **
(Query Answer Set Data Reply
Data Object)

** extra block #2 **

Figure 4-16 DRDA Flows: Executing a Stored Procedure (Part 1)

Part 1: Database Access Protocol 101

DDM Commands and Replies The DRDA Processing Model and Command Flows

[3]

(Continue Query)
(RDB_NAME)
(package name, consistency
token, and section number)
(query block size)
(maximum no. of extra blocks)

CNTQRY
rdbnam
pkgnamcsn

qryblksz
maxblkext

QRYDTA (Query Answer Set Data Reply
Data Object)

QRYDTA (Query Answer Set Data Reply
Data Object)

** extra block #1 **

QRYDTA

ENDQRYRM

(Query Set Answer Data Reply
Data Object)
(End Query Reply Message)

** end of result set #1 **

[n]

[n+1]

[5]

[4]

(Continue Query)
(RDB_NAME)
(package name, consistency
token, and section number)
(query block size)
(maximum no. of extra blocks)

CNTQRY
rdbnam
pkgnamcsn

qryblksz
maxblkext

TYPDEFNAM
TYPDEFOVR
SQLCARD

(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)

OPNQRYRM

svrcod
qryprctyp
sqlcsrhld
srvdgn

(Open Query Reply Message)
** result set #2 **

(severity code)
(query protocol type)
(hold cursor position)
(server diagnostic information)

TYPDEFNAM
TYPDEFOVR
SQLCINRD

(override for typdefnam)
(override for typdefovr)
(SQL result set column information
Reply Data Object)

QRYDSC

QRYDTA

(Query Answer Set Desc Reply
Data Object)
(Query Answer Set Data Reply
Data Object)

ENDQRYRM

TYPDEFNAM
TYPDEFOVR
SQLCARD

(End Query Reply Message)
** end of result set #2 **

(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Object)

Figure 4-17 DRDA Flows: Executing a Stored Procedure (Part 2)

Note: If there are host variables in the parameter list of the SQL statement that invoked the
stored procedure, then an SQLDTA command data object flows from the application
requester to the application server on the EXCSQLSTT command and an SQLDTARD
reply data object, rather than an SQLCARD, flows from the application server to the
application requester within the summary component of the response to the
EXCSQLSTT command.

The following is a discussion of the operations and functions the application requester and the
application server perform. This volume provides a brief description of some of the parameters
for the DDM commands. See the DDM Reference for a detailed description of the parameters.

Although Figure 4-16 on page 101 and Figure 4-17 assume that there are no LOBs in any of the
result sets, the following discussion indicates where LOB-related processing occurs. Refer to

102 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

Section 4.4.6 on page 76 for additional discussions of LOB-related processing for query result
sets.

1 After the application requester and the application server have established proper
connection (described in Figure 4-2 on page 55), prebound SQL statements referenced
in a package in a remote relational database can be executed. (See Section 4.4.3 on page
67 for a discussion of the DRDA flows needed to perform the bind.) Other DRDA flows
can precede or follow the execution of the prebound SQL statement referenced in the
package and be part of the same unit of work.

The application requester that is acting as the agent for the application performing the
execute SQL statement function creates the Execute SQL Statement (EXCSQLSTT)
command by providing the correct package name, consistency token, and section
number in the pkgnamcsn parameter. The application requester sets the outexp
parameter to TRUE or FALSE depending on whether it expects an SQLDTARD reply
data object to be returned within the response to the EXCSQLSTT. The optional32

prcnam parameter identifies the stored procedure to be executed at the application
server. The application requester specifies the query block size for the reply data
objects and reply messages that the application server can return for this command in
the qryblksz parameter.

Note: The block size specified in qryblksz must be equal to or greater than 512
bytes and equal to or less than 32,767 bytes. If not, the application server
returns the VALNSPRM reply message and the application server does not
execute the command.

The application requester specifies the maximum number of result sets the application
requester is capable of receiving in the maxrslcnt parameter. For this example, assume
that the value of the maxrslcnt parameter is two. The application requester specifies the
maximum number of extra data blocks that the application requester is capable of
receiving per result set in the maxblkext parameter. For this example, assume that the
value of the maxblkext parameter on EXCSQLSTT is two. The application requester is
also responsible for putting any application variable values and their descriptions in
the SQLDTA command data object. For this example, assume that there are no
application variable values. Thus, in this instance, the application requester does not
include an SQLDTA object as command data on the EXCSQLSTT command. The
application requester specifies whether it desires the application server to return name,
label, and comment information for the columns of result sets and whether it desires
the application server to return result answer set data in the response to EXCSQLSTT in
the rslsetflg parameter. For this example, assume that the application requester desires
the return of result set column names and answer set data. The rdbcmtok parameter is
set to TRUE in this example to allow the server to process the commit operation that
occurs as a result of the stored procedure call. The application requester sends the
command and command data to the application server.

2 The application server receives and processes the EXCSQLSTT command. The
maxrslcnt parameter limits the number of result sets that the application server may
return to two and indicates that the application requester expects result set data to be
returned by this command. Thus, the application server assumes the use of limited
block protocols. The maxblkext parameter limits the number of extra data blocks that

32. SQLAM Level 5 is required to support this parameter.

Part 1: Database Access Protocol 103

DDM Commands and Replies The DRDA Processing Model and Command Flows

the application server may return per result set to two. The qryblksz parameter
determines the size of each query block. The rslsetflg parameter indicates that the
application requester is capable of processing answer set data in the response to
EXCSQLSTT.

The application server invokes the stored procedure. The stored procedure executes
and generates result sets in the order required by the logic and state information of the
stored procedure. In this sample flow, the stored procedure generates two result sets.
Before the execution of the stored procedure completes, the stored procedure specifies
the order in which the application server is to return the result sets to the application
requester.

The execution of the stored procedure completes. Since the stored procedure was
defined with the commit on return attribute and rdbcmtok was specified as TRUE in the
EXCSQLSTT command, the application server initiates commit processing. When
commit processing completes successfully ENDUOWRM with uowdsp set to committed
becomes the first part of the response. The response continues with a summary
component and at most m result set components, where m is the value of the maxrslcnt
parameter, specified by the application requester on the EXCSQLSTT command. In this
sample flow, the value of the maxrslcnt parameter is two and the number of result sets
is also two. The result set components follow the summary component in the response
and are arranged in the order specified by the stored procedure for the return of result
sets to the application requester.

The application server constructs the summary component, which consists of an
RSLSETRM reply message, an SQLCARD reply data object, and an SQLRSLRD reply
data object. The RSLSETRM reply message contains a pkgsnlst parameter that lists the
pkgnamcsn values for the result sets in the order in which the application server will
return the result sets to the application requester.33 The SQLCARD reply data object
conveys information about the success of the SQL statement that invoked the stored
procedure. The SQLRSLRD reply data object sequences the locator value, name
information, and the number of rows for the result sets in the order in which the
application server will return the result sets to the application requester.

The application server then constructs the result set components for the result sets
generated by the execution of the stored procedure. Each result set component
contains at least the OPNQRYRM, the SQLCINRD, and the FD:OCA description of the
data (QRYDSC). The block containing the end of the FD:OCA description may be
completed, if room exists, with answer set data. Additional blocks of answer set data
may also be chained to the block containing the end of the FD:OCA description, up to
the maximum number of extra blocks of answer set data specified by the application
requester in the maxblkext parameter of the EXCSQLSTT command.

If any cursors in the stored procedure will result in LOB data being returned in the
answer set, then the application server does not return any QRYDTA for the cursor
until the application at the application requester issues a FETCH request. So, for each

33. At the time the application server constructs the OPNQRYRM reply message for a result set, the application server also
associates a pkgnamcsn, locator value, and name with the result set. Each pkgnamcsn value identifies a section in a package at the
application server that is assigned to the result set. The locator value is a unique identifier for the result set that allows the
application to describe, fetch rows from, or declare a cursor on the associated result set. The name conveys the semantic of the
result set and is returned to the application so that the application can associate the result set with application logic for
processing the result set.

104 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

such cursor returned by the stored procedure, the application server returns:

• OPNQRYRM

• SQLCINRD

• QRYDSC

In this sample flow, the response to the EXCSQLSTT command consists of five blocks.
The first block contains the summary component. The second block contains the
OPNQRYRM reply message, the SQLCINRD reply data object, the QRYDSC reply data
object, and a QRYDTA reply data object for the first result set. The third and fourth
blocks each contain an additional QRYDTA reply data object for the first result set. The
fifth block contains an OPNQRYRM reply message, the SQLCINRD reply data object,
the QRYDSC reply data object, a QRYDTA reply object, an ENDQRYRM reply
message, and an SQLCARD for the second result set. For each OPNQRYRM reply
message, the value of the qryprctyp parameter is LMTBLKPRC. The application server
sends the response to the application requester.

3 The application requester receives the ENDUOWRM reply message, RSLSETRM reply
message, the SQLCARD reply data object, and the SQLRSLRD reply data object from
the application server. The receipt of ENDUOWRM informs the application requester
that a commit operation occurred at the application server and the current unit of work
has terminated. As a result of this the application requester may have to perform
additional processing. See Section 4.4.12.2 on page 120 for details. The receipt of the
RSLSETRM informs the application requester that information about result sets follows
the SQLCARD. The application requester returns the execution results for the SQL
statement that invoked the stored procedure (the information content of the
SQLCARD) to the application at the application requester. If the number of result sets
returned by the application server exceeds the limit (that is, the MAXRSLCNT
parameter value) that the application requester is capable of receiving, the number of
extra blocks of answer set data returned by the application server for a result set
exceeds the limit (that is, the MAXBLKEXT parameter value) that the application
requester is capable of receiving, the number of result set entries within the SQL Result
Set Reply Data object (SQLRSLRD) returned by the application server does not match
the number of Open Query Complete reply messages (OPNQRYRMs) returned by the
application server, or the number of result set entries within the SQL Result Set Reply
Data object (SQLRSLRD) returned by the application server does not match the number
of entries within the RDB Package Name, Consistency Token, and Section Number List
(PKGSNLST) returned by the application server, then the application requester may
return SQLSTATE X‘58008’ or SQLSTATE X‘58009’ to the application.

The application requester receives the query blocks for each result set from the
application server. The application requester associates each query block with the
pkgnamcsn, locator value, and name of its result set and then stores the description and
answer set data associated with each result set for subsequent FETCH by the
application at the application requester.

No further flows are required between the application requester and the application
server for the transmission of additional answer set data unless the application issues a
FETCH that cannot be satisfied by the QRYDTA reply data object already stored at the
application requester for a result set. This sample flow assumes that the client
application at the application requester does issue a FETCH for the first result set that
the application requester cannot satisfy.

Part 1: Database Access Protocol 105

DDM Commands and Replies The DRDA Processing Model and Command Flows

If the application at the AR issues a FETCH using a descriptor, then the application
requester may optionally format an OUTOVR object and flow it to the application
server with the CNTQRY. The OUTOVR is required only if the application wishes to
receive LOB columns in a format other than as LOB data.

When the application performs a FETCH for the first result set and a complete row is
no longer available in the QRYDTA reply data object, the application requester creates
a CNTQRY command that specifies the pkgnamcsn value returned for that result set in
the pkgsnlst parameter of the RSLSETRM reply message. The application requester
may also specify different values for the qryblksz and maxblkext parameters of the
CNTQRY command from those specified on the EXCSQLSTT command. For this
sample flow, assume that the value of the maxblkext parameter on the CNTQRY
command is one.

4 The application server receives the CNTQRY command and identifies the result set
associated with the CNTQRY request through the section number contained within the
pkgnamcsn parameter. If it has a partial row from the EXCSQLSTT command, it places
the partial row in the QRYDTA reply data object. If it does not have a partial row, then
it retrieves the next data row from the answer set and places it in the QRYDTA reply
data object along with an SQLCA. The partial row or next row may span query blocks.
The block containing the end of the partial row or next row may be completed, if room
exists, with additional answer set data. Additional blocks of answer set data may also
be chained to this block of answer set data up to the maximum number of extra blocks
of answer set data specified by the application requester in the maxblkext parameter of
the CNTQRY command.

If the application server receives a CNTQRY with an OUTOVR object, then it either
accepts or rejects the OUTOVR object depending on the outovropt value on the
OPNQRY or EXCSQLSTT command. If it accepts the OUTOVR, it returns the output
data in the format given by the override descriptors.

Columns that will be returned as LOB data flow in the QRYDTA as FD:OCA
placeholders. The data values themselves flow in EXTDTA objects after the QRYDTA
object containing the associated row.

In this sample flow, the response to the CNTQRY command consists of two blocks.
Both blocks contain QRYDTA reply data objects containing answer set data from the
first result set. The application server sends the query blocks to the application
requester.

5 When the application requester receives the QRYDTA reply data object, it passes the
row data that spanned the previous query block and the one just received (if any) to the
application. The application requester maps the row data it received in the QRYDTA
reply data object to the application’s host variables (in response to the previously
unsatisfied FETCH operation) based on the description passed in the QRYDSC reply
data object within the response to the EXCSQLSTT command.

When the application requests the next row from the application requester, the
application requester maps the next row from the QRYDTA reply data object to the
application’s host variables.

When a complete row of the first result set is no longer available in the query block, the
application requester creates a CNTQRY command that specifies the pkgnamcsn value
returned for that result set in the pkgsnlst parameter of the RSLSETRM reply message.
The application requester may also specify different values on the qryblksz and
maxblkext parameters for the CNTQRY command than those specified on the

106 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

EXCSQLSTT command.

Steps 4 and 5 are repeated until the application server returns the QRYDTA reply data
object with all of the last row of the answer set for the first result set to the application
requester, or until the application does not request any more rows.

n The application server receives the CNTQRY command and identifies the result set
associated with the CNTQRY request through the section number contained within the
pkgnamcsn parameter. If it has a partial row from the last CNTQRY command, it places
the partial row in the QRYDTA reply data object. If it does not have a partial row, then
it retrieves the next data row from the answer set and places it in the QRYDTA reply
data object along with an SQLCA. The partial row or next row may span query blocks.
The application server continues to retrieve additional rows of the answer set and to
place them in the QRYDTA reply data object until it has retrieved the last row. After it
has placed the last row of the answer set (which completes the last QRYDTA reply data
object) in the query block, the application server generates an ENDQRYRM reply
message and an SQLCARD reply data object and places them in the query block.

The application server then closes the query and sends the last query block to the
application requester.

n+1 When the application requester receives the reply block, it passes the row data that
spanned the previous QRYDTA reply data object and the one just received (if any) to
the application. The application requester maps the row data it received in the
QRYDTA reply data object to the application’s host variables (in response to the
previously unsatisfied FETCH operation) based on the description passed in the
QRYDSC reply data object within the response to the EXCSQLSTT command.

When the application requests the next row from the application requester, the
application requester maps the next row from the QRYDTA reply data object to the
application’s host variables.

When the application requester receives the ENDQRYRM reply message, it knows that
the application server has processed the last row of answer data. It also knows that the
application server has closed the query, so the application requester will not send any
additional CNTQRY commands to the application server.

Part 1: Database Access Protocol 107

DDM Commands and Replies The DRDA Processing Model and Command Flows

4.4.8 Preparing an SQL Statement

Figure 4-18 indicates the DRDA commands and replies that flow during the preparation of a
single SQL statement. The usual result of this command is a prepared SQL statement in the
indicated package that an EXCSQLSTT command can later (within the same unit of work)
execute.

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

[3]

PRPSQLSTT
rdbnam
pkgnamcsn

rtnsqlda

(Prepare SQL Statement)
(RDB_NAME)
(package name, consistency
token, and section number)
(return SQL Data Area)

[1]

TYPDEFNAM
TYPDEFOVR
SQLSTT

(override for typdefnam)
(override for typdefovr)
(SQL Statement)

TYPDEFNAM
TYPDEFOVR
SQLDARD
or
TYPDEFNAM
TYPDEFOVR
SQLCARD

(override for typdefnam)
(override for typdefovr)
(SQLDARD Reply Data Object)

(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Object)

Figure 4-18 DRDA Flows: Preparing an SQL Statement

The following is a discussion of the operations and functions the application requester and the
application server perform. This is a brief description of some of the parameters for the DDM
commands. The DDM Reference provides a more detailed description of these parameters.

1 After the application requester and application server have established the proper
connection (described in Figure 4-2 on page 55), the application server can prepare
additional dynamic SQL statements (similar to bind), associated with a specified
package, and later, within the same unit of work, the statement can execute.

Note: Other commands can precede or follow the preparation and execution of
the SQL statement and be part of the same unit of work. The SQL statement
can be executed as many times as needed within the same unit of work that
it was prepared.

When the unit of work or the network connection terminates (normally or
abnormally), the package no longer references the prepared statement, so
the statement is no longer available for execution. However, when the unit
of work is terminated with a COMMIT, the package still references the
prepared statement for queries with the HOLD option in the DECLARE
CURSOR statement, and the statement is still available for execution.

The application requester creates the Prepare SQL Statement (PRPSQLSTT) command
by providing the correct package name, consistency token, and section number in the
pkgnamcsn parameter. If the application requester needs a description of the row data
that can be returned (when the statement being prepared is executed) as a result of a
SELECT statement being prepared, then it indicates this in the rtnsqlda parameter. The
application requester places the SQL statement to be prepared into the SQLSTT

108 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

command data object and sends the command to the application server.

2 The application server receives and processes the PRPSQLSTT command and SQLSTT
command data object and creates an SQLDARD reply data object or an SQLCARD
reply data object. The application server prepares the requested SQL statement for later
execution within this same unit of work. The application server performs a DESCRIBE
(SQL verb) on the prepared statement, if indicated in the rtnsqlda parameter, and uses
the returned row data descriptions to create an SQLDARD reply data object, which it
returns to the application requester.

If the statement that the application server was preparing was not an SQL SELECT
statement, then the SQLDARD reply data object will contain no SQLDA and a normal
SQLCA. (The SQLDARD reply data object also contains the SQLCA, so the application
server does not return the SQLCARD reply data object.)

If any errors occurred during the preparation of the SQL statement, the referenced
package will not successfully prepare the new SQL statement, and the application
server will return an SQLCA in either an SQLCARD reply data object or an SQLDARD
reply data object (which will contain no SQLDA) indicating the error condition.

3 If an SQLCA that was found in the SQLCARD reply data object or the SQLDARD reply
data object that the application server returned to the application requester indicates
the PRPSQLSTT command was not successful, the application requester returns an
exception to the application that is attempting to prepare the SQL statement.

Assuming it receives an SQLCARD reply data object or an SQLDARD reply data object
indicating a normal completion of the PRPSQLSTT command, the application requester
proceeds to return the successful indication to the application.

At this point, the application/application requester can continue with additional
defined DRDA flows with the resulting database management changes being in the
same unit of work, or it can execute the SQL statement that the process has prepared. A
user can prepare multiple SQL statements and execute them within the same unit of
work.

If the application requester is going to execute a prepared SQL statement next, it creates
and sends an EXCSQLSTT command as described in step 1 of Figure 4-15 on page 97 or
creates and sends an OPNQRY command as described in step 1 of Figure 4-9 on page
78.

Part 1: Database Access Protocol 109

DDM Commands and Replies The DRDA Processing Model and Command Flows

4.4.9 Retrieving the Data Variable Definitions of an SQL Statement

Figure 4-19 indicates the DRDA commands and replies that flow during the retrieval of the data
variable definitions associated with a bound SQL statement. The usual result of this command is
the return of the definitions of the data variables that the desired SQL statement has referenced.
The SQL statement can later be executed through an EXCSQLSTT command.

If connection is between an application server and database server, any new or changed special
register settings must be sent using the EXCSQLSET command prior to activating or processing
queries. The EXCSQLSET command is recommended to be chained next SQL command.

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

[3]

DSCSQLSTT
rdbnam
typsqlda
pkgnamcsn

(Describe SQL Statement)
(RDB_NAME)
(input|output)
(package name, consistency
token, and section number)

[1]

TYPDEFNAM
TYPDEFOVR
SQLDARD

(override for typdefnam)
(override for typdefovr)
(SQLDARD Reply Data Obj)

Figure 4-19 DRDA Flows: Describing a Bound SQL Statement

The following is a discussion of the operations and functions the application requester and the
application server perform. This is a brief description of some of the parameters for the DDM
commands. The DDM Reference provides a detailed description of these parameters.

1 After the application requester and the application server have established the proper
connection (described in Figure 4-2 on page 55), it is possible to request the application
server to provide either the description of the data variables that a particular SQL
statement in a specific bound package references or to obtain definitions of the input
parameters of a prepared statement.

The application requester creates the Describe SQL Statement (DSCSQLSTT) command
by providing the correct package name, consistency token, and section number in the
pkgnamcsn parameter. It then sends the command to the application server.

2 The application server receives and processes the DSCSQLSTT command. Then the
application server creates an SQLDARD containing the requested data variable
definitions for the indicated SQL statement and returns it to the application requester.
(The SQLDARD reply data object also contains the SQLCA, so the application server
does not return the SQLCARD reply data object.) If the application server found any
errors while it described the SQL statement, the SQLDARD reply data object will
contain an SQLCA, describing the error condition, and will not contain the data
variable definitions. In either case, the application server returns the SQLDARD reply
data object to the application requester.

Note: If the current unit of work had been abnormally terminated, then the
application server would have returned an SQLCARD reply data object and
an ABNUOWRM reply message instead of the SQLDARD reply data object.

110 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

3 If the application server returned an SQLDARD or SQLCARD reply data object to the
application requester indicating the DSCSQLSTT command was not successful, the
application requester returns an exception to the application that is attempting to
describe the SQL statement.

Assuming an SQLDARD reply data object, indicating a normal completion of the
DSCSQLSTT command is received, the application requester proceeds to return the
data variable definitions and the successful completion indication to the application.

At this point, the application/application requester can continue with additional
defined DRDA flows with the resulting database management changes being in the
same unit of work.

Part 1: Database Access Protocol 111

DDM Commands and Replies The DRDA Processing Model and Command Flows

4.4.10 Executing a Describe Table SQL Statement

Figure 4-20 indicates the DRDA commands and replies that flow when executing a Describe
Table SQL statement.

If connection is between an application server and database server, any new or changed special
register settings must be sent using the EXCSQLSET command prior to activating or processing
queries. The EXCSQLSET command is recommended to be chained next SQL command.

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

[3]

DSCRDBTBL
rdbnam

TYPDEFNAM
TYPDEFOVR
SQLOBJNAM

(Describe RDB Table)
(RDB_NAME)
(override for typdefnam)
(override for typdefovr)
(SQL object name)

[1]

TYPDEFNAM
TYPDEFOVR
SQLDARD

(override for typdefnam)
(override for typdefovr)
(SQLDARD Reply Data Obj)

Figure 4-20 DRDA Flows: Describing a Table

The following is a discussion of the operations and functions the application requester and the
application server perform. This is a brief description of some of the parameters for the DDM
commands. See the DDM Reference for a detailed description of the parameters.

1 After the application requester and the application server have established the proper
connection (described in Figure 4-2 on page 55), the SQL Describe Table statement
command can be executed. This command requests that a description of the relational
database table named in the SQLOBJNAM command data object be returned to the
requester.

The application requester creates the Describe RDB Table (DSCRDBTBL) command. It
places the SQL table name that is to be described in the SQLOBJNAM command data
object and sends it to the application server.

2 The application server receives and processes the DSCRDBTBL command. Normal
completion of this command results in the description of the named relational database
table being returned in the SQLDARD reply data object. If errors occur during the
execution of the command, the SQLDARD reply data object reports the exception
conditions that the relational database detected.

Note: If the current unit of work had been abnormally terminated, the application
server would have returned an SQLCARD reply data object and an
ABNUOWRM reply message instead of the SQLDARD reply data object.

3 If the SQLDARD reply data object indicates that the DSCRDBTBL command was
successful, the application requester returns the table description to the application that
is attempting to execute the Describe Table SQL statement.

At this point, the application/application requester can continue with additional
defined DRDA flows.

112 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

If the SQLDARD or SQLCARD reply data object that the application server returns to
the application requester indicates that the DSCRDBTBL command was not successful,
the application requester returns an exception to the application that is attempting to
execute the Describe Table SQL statement.

Part 1: Database Access Protocol 113

DDM Commands and Replies The DRDA Processing Model and Command Flows

4.4.11 Executing a Dynamic SQL Statement

Figure 4-21 indicates the DDM commands and replies that flow when a user is executing an SQL
statement that has not been previously bound to the relational database or prepared as an SQL
statement within the current unit of work. The usual result is that the application server makes
the expected changes in the relational database (within the scope of the current unit of work)
after the statement successfully executes.

If connection is between an application server and database server, any new or changed special
register settings must be sent using the EXCSQLSET command prior to activating or processing
queries. The EXCSQLSET command is recommended to be chained next SQL command.

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

[3]

EXSQLIMM
rdbnam
pkgnamcsn

(Execute SQL Stmt. Immediate)
(RDB_NAME)
(package name, consistency
token, and section number)

[1]

TYPDEFNAM
TYPDEFOVR
SQLCARD

(override for typdefnam)
(override for typdefovr)
(SQLCA reply data)

RDBUPDRM (update occurred)

TYPDEFNAM
TYPDEFOVR
SQLSTT

(override for typdefnam)
(override for typdefovr)
(SQL Statement)

Figure 4-21 DRDA Flows: Immediate Execution of SQL Work

The following is a discussion of the operations and functions the application requester and the
application server perform. This is a brief description of some of the parameters for the DDM
commands. See the DDM Reference for a detailed description of the parameters.

1 After the application requester and the application server have established the proper
connection (described in Figure 4-2 on page 55), the user can execute some SQL
statements without binding them in a package (see Section 4.4.3 on page 67) or
preparing them (see Section 4.4.8 on page 108). These SQL statements are limited to
those with no input host application variables or output row data. Other commands
can precede or follow the execution of this SQL statement and be part of the same unit
of work.

The application requester creates the EXECUTE IMMEDIATE SQL statement
(EXCSQLIMM) command by providing the correct package name, consistency token,
and section number in the pkgnamcsn parameter. The optional rdbcmtok parameter
informs the RDB whether or not it can process commit and rollback operations. The
SQL statement that is to be executed is placed in the SQLSTT command data and sent
to the application server.

2 The application server receives and processes the EXCSQLIMM command. It executes
the requested statement. The relational database reflects the results (within the scope of
the unit of work), and the application server returns an SQLCARD reply data object. If
errors occur during the execution of the statement, the relational database remains
unchanged and the SQLCARD reply data object contains an error condition indicator.

114 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

If the executed SQL statement is either a COMMIT or ROLLBACK, then see Section
4.4.12.1 on page 117 and Section 4.4.12.2 on page 120 for a description of commit and
rollback processing in DRDA.

3 If the SQLCARD reply data object that the application server returned to the
application requester indicates that the EXCSQLIMM command was not successful, the
application requester returns an exception to the application that is attempting to
execute the SQL statement.

Assuming it has received an SQLCARD reply data object indicating normal
completion, the application requester proceeds to return an indication of the normal
completion to the application.

At this point, the application/application requester can continue with additional
defined DRDA flows.

Part 1: Database Access Protocol 115

DDM Commands and Replies The DRDA Processing Model and Command Flows

4.4.12 Commitment of Work in DRDA

An application program normally initiates commit or rollback processing by calling the sync
point manager, or by executing a COMMIT or ROLLBACK SQL statement. Both static and
dynamic SQL COMMIT and ROLLBACK requests are valid in DRDA. In addition, a commit
operation can also occur as a result of an application program executing a stored procedure that
has been defined with the commit on return attribute. DRDA, however, does not support any
COMMIT or ROLLBACK options that might affect cursor positioning. In particular, cursor
positioning, except for cursors with the HOLD option, is lost during commit and rollback
processing in DRDA environments.

The SQL application should explicitly commit or roll back before termination. If the SQL
application is using the services of the sync point manager, and it terminates normally but does
not explicitly commit or rollback, the sync point manager will invoke the commit function. If the
SQL application is not using the services of the sync point manager, and it terminates normally
but does not explicitly commit or rollback, then the application requester must invoke the
commit function. The scope of the commit includes all relational databases that were part of the
unit of work as defined by SQL connection semantics. This can include local relational databases
that are not using DRDA protocols but might be under application requester control. If the SQL
application is not using the services of the sync point manager, and it terminates abnormally, the
application requester can invoke the rollback function, and it can depend on the implicit rollback
that accompanies network connection termination for databases connected using DRDA.

On unprotected network connections, the application server must inform the application
requester whenever commit or rollback processing completes at the application server, except
when the rollback is a result of the network connection termination. For application servers
supported by protected network connections, the sync point manager informs the application
requester when commit or rollback processing is complete.

Deadlocks or abnormal ending conditions at the application server can also cause rollback
processing at the application server.

Within DRDA environments, all forms of commit and rollback requests are equivalent.

In DRDA, the application requester plays an important role in helping coordinate the
commitment or roll back of work at all application servers involved in the unit of work. For
Remote Unit of Work, this is one application server; for Distributed Unit of Work, it can be many
application servers. The application requester is responsible for interoperating with the local
sync point manager, if it is involved in the unit of work. For Distributed Unit of Work, this
interoperation includes coordinating the work that is not supported by two-phase commit
protected network connections, and with the sync point manager that coordinates the work
supported by two-phase commit protected network connections. The responsibility of the
application requester also includes the proper management of the update privileges at all the
application servers, so that the integrity of the unit of work can be preserved during commit
processing. Also included in the commitment and rollback processing is the proper management
of the network connections that support the connections to the application servers. The
application requester must terminate these network connections when they are no longer
needed, as defined by SQL connection semantics.

116 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

4.4.12.1 Commitment of Work in a Remote Unit of Work

Figure 4-22 indicates the DDM commands and replies that flow to commit the unit of work on
DRDA Level 3 connections. Figure 4-23 on page 119 indicates the flows when commit is
included in a stored procedure on a DRDA level 1 application server.

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

[3]

RDBCMM
rdbnam

(RDB Commit Unit of Work)
(RDB_NAME)

[1]

TYPDEFNAM
TYPDEFOVR
SQLCARD

(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)

ENDUOWRM

svrcod
uowdsp
rdbnam
srvdgn

(end unit-of-work condition
Reply Message)
(severity code)
(unit-of-work disposition)
(RDB_NAME)
(server diagnostic information)

Figure 4-22 DRDA Flows: Commit a Remote Unit of Work

The following is a discussion of the operations and functions the application requester and the
application server perform. This is a brief description of some of the parameters for the DDM
commands. For a detailed description of the parameters, see the DDM Reference.

1 Assuming that all required work for the application requester is complete, and the last
application command is a static commit, or the application terminates normally
without issuing a commit, the application requester generates a Relational Database
Commit Unit of Work (RDBCMM) command.

The application requester can alternatively have created an RDB Rollback Unit of Work
(RDBRLLBCK) command if the changes made during the last unit of work should not
be made a permanent part of the relational database.

The application requester sends the command (in this case the RDBCMM command) to
the application server.

Note: Other acceptable DRDA flows can accomplish the commit or rollback of a
unit of work, but this method is preferred. However, for compatibility with
existing applications, the following methods are also acceptable.

The application can use the EXECUTE IMMEDIATE flows described in
Section 4.4.11 on page 114, where the SQL statement to be executed
(specified in the SQLSTT command data) is COMMIT <WORK> or
ROLLBACK <WORK>.

The application can use the prepare and execute flows described in Section
4.4.8 on page 108, where the SQL statement to be prepared and then
executed (specified in the SQLSTT command data) is COMMIT <WORK> or
ROLLBACK <WORK>.

Occurrences of COMMIT <WORK> or ROLLBACK <WORK> in the
application source do not result in BNDSQLSTT commands being sent from
the application requester to the application server during BIND processing.

Part 1: Database Access Protocol 117

DDM Commands and Replies The DRDA Processing Model and Command Flows

At application execution time, the application requester sends the
corresponding RDBCMM or RDBRLLBCK command when these SQL
statements are to be executed.

The information enclosed in the < > is optional.

2 The application server receives and processes the RDBCMM command. If the
application server finds no errors, the application server makes the remaining changes
in the relational database permanent, completes the unit of work, and returns an
ENDUOWRM reply message (indicating the application server completed the unit of
work) and a normal SQLCARD reply data object.

• The ENDUOWRM reply message always precedes the SQLCARD reply data object
when they are in response to an RDBCMM command.

• The application server returns the ENDUOWRM reply message as a result of any
command that causes normal termination of a unit of work. These commands
include RDBCMM, RDBRLLBCK, EXCSQLIMM (where the SQL statement being
executed is either a COMMIT or ROLLBACK), and EXCSQLSTT (where the
dynamically prepared SQL statement being executed is COMMIT or ROLLBACK).

Otherwise, the SQLCARD reply data object indicates a single error. The application
server returns the ENDUOWRM reply message and the SQLCARD to the application
requester and rolls back the unit of work.

3 The application requester:

• Receives the ENDUOWRM and SQLCARD from the application server.

• Checks the uowdsp parameter for the status of the unit of work (committed or rolled
back).

• Resets its indication of what cursors are open.

• Returns the SQLCA to the application if the application has not terminated.

A rollback will close all cursors.

If the application has terminated, the application requester terminates the network
connection to the application server using verbs and calls described in Part 3, Network
Protocols.

Figure 4-23 on page 119 indicates the DDM commands and replies that flow during the
execution of a statement that invokes a stored procedure such as a CALL statement that was
bound by the bind process or the PRPSQLSTT command. The stored procedure referenced by
the CALL performs a series of SQL statements which includes one or more requests to commit.

118 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

[3]

EXCSQLSTT
.
.
.

(Execute SQL Statement)

[1]

TYPDEFNAM
TYPDEFOVR
SQLDTARD

TYPDEFNAM
TYPDEFOVR
SQLDTA

(override for typdefnam)
(override for typdefovr)
(SQLDTARD Reply Data Obj)

(override for typdefnam)
(override for typdefovr)
(SQL application variable data)

ENDUOWRM
uowdsp

(update occurred reply message)
(unit of work disposition)

Process Stored Procedure
.
.
.

Figure 4-23 DRDA Flows: Executing a Bound SQL CALL Statement

The following is a discussion of the operations and functions the application requester and the
application server perform. This document provides a brief description of some of the
parameters for the DDM commands. See the DDM Reference for a detailed description of the
parameters.

1 After the application requester and the application server have established proper
connection, the application requester sends the command and command data to the
application server. In this case, the EXCSQLSTT references a CALL statement for a
stored procedure located at the application server.

2 The application server receives and processes the EXCSQLSTT command which
invokes the stored procedure. In this example, the stored procedure processing
includes some SQL requests to commit the unit of work. The requests to commit are
processed at the application server and the stored procedure continues processing until
the procedure is exited. The application server returns an ENDUOWRM with the
uowdsp set to indicate at least one commit occurred in the stored procedure. Regardless
of the number of commit or rollbacks that occur within the stored procedure, only one
ENDUOWRM is returned. If a rollback occurred along with a commit, then uowdsp is
set to indicate a rollback occurred.

If there are host variables, an SQLDTARD is returned along with the ENDUOWRM.

3 The application requester receives the results from the EXCSQLSTT statement and
returns the results to the application. See Section 4.4.7 on page 96 for details.

The application requester also performs cursor management operations dependent on
the value of the uowdsp parameter.

Part 1: Database Access Protocol 119

DDM Commands and Replies The DRDA Processing Model and Command Flows

4.4.12.2 Commitment of Work in a Distributed Unit of Work

The following sections describe the environment where the application directs the distribution
of work. The application explicitly connects to multiple databases within the same unit of work,
performs operations, commits, or rollbacks, and expects all resources to commit or roll back
together. It is the responsibility of the application requester to manage the connections and
coordinate or participate in the coordination of the commitment or rollback of all application
server participants in the unit of work.

Coexistence

To help the application requester manage the application server connections and still provide
coexistence support for old applications, the application requester must have information
available to it that describes whether the application is going to use resource recovery in the unit
of work. For example, if the application is to update multiple resources (database and possibly
non-database) per unit of work, then the application requires the services of a sync point
manager to coordinate resource recovery,and the application requester must know this to aid in
managing the connections to the application servers and update restrictions at the application
servers. This information is the basis for defining the DRDA update rules defined later in this
section. The application requester’s acquisition of this application information is not defined by
DRDA, but it is required to be available at the application requester.

There are two possible environments that result from the application’s use of the services of a
sync point manager for resource recovery. These environments are Single Relational Database
Update and Multi-Relational Database Update.

The Single Relational Database Update environment is where the services of a sync point
manager are not required to perform resource recovery for the unit of work. Because of this, only
one resource can be updated. This resource may or may not be a database resource, but within
the scope of this document, it is restricted to a database resource. All other resources are
restricted to read-only.

The Multi-Relational Database Update environment is where the services of a sync point
manager are required to perform resource recovery for the unit of work. Because of this, all
application servers that are on network connections protected by two-phase commit protocols
have update privileges. All application servers that are not on network connections protected by
two-phase commit protocols are restricted to read-only.

Figure 4-24 on page 121 displays a Distributed Unit of Work application requester with
connections to three application servers. AS1 is using DRDA Remote Unit of Work protocols.
AS2 and AS3 are using Distributed Unit of Work protocols, but with different levels—the sync
point manager (SYNCPTMGR Levels 4 and 5, respectively).

In Figure 4-24 on page 121, if the application is not using the services of the sync point manager
for resource recovery in the unit of work, then either AS1, AS2, or AS3 can have update
privileges, and the other two are restricted to read-only. This is an example of single relational
database update. If the application is using the sync point manager for resource recovery in the
unit of work, AS1 and AS2 are always restricted read-only, AS3 and any other application
servers supported by two-phase commit protected network connections can have update
privileges. This is an example of multi-relational database update.

120 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

Unprotected RUW connection

SNA or TCP/IP

SNA or TCP/IP

SNA or TCP/IP

Unprotected DUW connection

Protected by a Sync Point Mgr.

DRDA RUOW AS1

DRDA DUOW AS3
(SYNCPTMGR L5)

DRDA DUOW AS2
(SYNCPTMGR L4)

DRDA
AR

Figure 4-24 DRDA Sample Configuration

The application requester is responsible for managing the operation of the environment to make
sure that any update restrictions in effect are enforced and to take the necessary steps to ensure
rollback of the unit of work if any update restrictions are violated. The application requester, in
cooperation with the sync point manager (if available), is also responsible for coordinating the
commit or rollback of all DRDA participants in the unit of work.

The rules for deciding which application server gets update privileges and when are as follows.

Note: The rules are based on the goal that the full set of functions in SQLAM Level 5 are
available, no matter what type of distribution (or sync point manager level) is
supported.

• If the application is not using the services of a sync point manager in the unit of work:

— When connecting to an application server using Remote Unit of Work protocols, the
application server is allowed updates if only:

— There are no existing connections to any other application servers.

— All existing connections are to application servers using Remote Unit of Work
protocols, and these application servers are restricted to read-only.

— If a connection exists to an application server using Remote Unit of Work protocols with
update privileges, all other application servers are restricted to read-only. Otherwise, for
the duration of any single unit of work, the first application server using Distributed Unit
of Work protocols that performs an update is given update privileges, and all other
application servers are restricted to read-only.

• If the application is using the services of a sync point manager for the unit of work, only
connections to application servers using Distributed Unit of Work protocols that are
supported by two-phase commit protected network connections are allowed update
privileges.

The application requester uses the RDBALWUPD parameter on ACCRDB as defined in rule CR6
to control the update, dynamic COMMIT, and dynamic ROLLBACK privileges on application
servers.

For Distributed Unit of Work application servers, the application requester is notified by the
application servers the first time a DDM command results in an update at the application server
within the unit of work. This information is passed to the application requester on the DDM
reply message RDBUPDRM. Figure 4-25 on page 122 is an example of this flow for
EXCSQLIMM.

Part 1: Database Access Protocol 121

DDM Commands and Replies The DRDA Processing Model and Command Flows

DRDA
(Application Requester)

DRDA
(Application Server)

EXCSQLIMM
rdbnam
pkgnamcsn

(Exec SQL Stmt. Immediate)
(RDB_NAME)
(package name, consistency
token, and section number)

TYPDEFNAM
TYPDEFOVR
SQLSTT

(override for typdefnam)
(override for typdefovr)
(SQL Statement)

TYPDEFNAM
TYPDEFOVR
SQLCARD

(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)

RDBUPDRM (update occurred reply message)

Figure 4-25 DRDA RDBUPDRM Example Flow

When the application requester receives the RDBUPDRM, it checks whether this application
server is allowed updates. If not, the application requester must ensure that the unit of work
rolls back.

An application server can return an RDBUPDRM after every update, but it is required only after
the first update.

Commit and Rollback Scenarios

This section provides several scenarios to show the steps for committing and rolling back a
logical unit of work. The scenarios are categorized by configurations. The configurations are
different in terms of single relational database update using Remote Unit of Work protocols at an
application server, single relational database update using Distributed Unit of Work protocols at
an application server, and multi-relational database update. The single relational database
update scenarios are by definition not working under sync point management control for
resource recovery. The multi-relational database update scenarios are, by definition, working
under sync point management control for resource recovery.

In the scenarios, the steps for dynamic commit requests, dynamic rollback requests or execution
requests of stored procedures defined with the commit on return attribute assume the request is
directed to an application server that is allowed updates. If the request is directed to a read-only
(as a result of rdbalwupd on ACCRDB) restricted application server operating in a Remote Unit of
Work environment introduced in DRDA Level 1, an SQLSTATE of X‘2D528’ for commit or
SQLSTATE X‘2D529’ for rollback is returned to the application requester. If the local
environment allows it, the application requester should initiate processing of commit or rollback
based on the SQLSTATE. If the local environment does not allow the application requester to
initiate commit or rollback, the SQLSTATE should be returned to the application.

If a commit or rollback request is application-directed to a read-only application server
operating in a Distributed Unit of Work environment, a DDM reply message CMMRQSRM, with
the cmmtyp parameter indicating a commit or rollback, is returned to the application requester. If
the local environment allows it, the application requester will initiate commit or rollback
processing based on the value in the cmmtyp parameter. If the local environment does not allow
the application requester to initiate commit or rollback, an SQLCA should be returned to the
application with SQLSTATE X‘2D528’ enclosed for commit or SQLSTATE X‘2D529’ enclosed for
rollback.

122 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

An application server only begins commit processing if it is requested to commit. When using
the communications sync point manager, if an application requester receives a request to
commit (for example, an LU 6.2 TAKE_SYNCPT or DDM SYNCCTL request to commit
command) on a network connection with an application server, the application requester must
ensure that a rollback occurs.

Part 1: Database Access Protocol 123

DDM Commands and Replies The DRDA Processing Model and Command Flows

Single RDB Update When Using Remote Unit of Work

In the following commit and rollback scenario, the application is not using the services of the
sync point manager to coordinate resource recovery for the unit of work. The application server
that is allowed updates is operating at DRDA Remote Unit of Work (see AS1 in Figure 4-26) on
an unprotected network connection.

Unprotected RUW connection

SNA or TCP/IP

SNA or TCP/IP

Unprotected DUW connection

DRDA RUOW AS (AS1)

DRDA DUOW AS (AS2)

DRDA
DUOW

AS With
Updates

Figure 4-26 Single RDB Update at a DRDA Remote Unit of Work AS

All other application servers are restricted to read-only and, for this scenario, are assumed to be
on unprotected network connections. The scenario only describes the commit and rollback
flows. The application requester is responsible for performing all other local processing that is
required to complete the commit or rollback at the application requester.

• Dynamic Commit Steps

1. The commit request passes to the application server that is allowed updates using
either the EXCSQLIMM command or the EXCSQLSTT command. The EXCSQLIMM
command flow is described in Figure 4-21 on page 114. The EXCSQLSTT command
flow is described in Figure 4-15 on page 97.

2. The update application server is operating at DRDA Remote Unit of Work, so commit
processing occurs at the application server. The application server returns an
ENDUOWRM and SQLCARD to the application requester with the uowdsp parameter
on the ENDUOWRM indicating a commit succeeded at the application server.

3. The application requester receives the ENDUOWRM and SQLCARD from the update
application server. The application requester checks the value in the uowdsp parameter
and sends an RDBCMM command to all read-only application servers. See Figure 4-22
on page 117 for a description of the command flows for RDBCMM.

4. The read-only application servers receive the RDBCMM command and perform the
commit. The application servers return the results of the commits using ENDUOWRMs
and SQLCARDs.

5. The application requester receives the results from the read-only application servers.

Regardless of the outcome from the read-only application servers, the result returned to
the application must reflect the status of the work at the update application server.

If a read-only application server rolls back when it is asked to commit, the next time the
application performs a request to any application server, the application requester
returns SQLSTATE X‘51021’ to the application to inform it that it must issue a static
rollback. The application requester does not need to return an SQLSTATE X‘51021’ if
the application requester performed an implicit rollback and informed the application
the commit was successful and an implicit rollback occurred.

124 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

• Dynamic Rollback Steps

1. The rollback request passes to the application server that is allowed updates using
either the EXCSQLIMM command or the EXCSQLSTT command. The EXCSQLIMM
command flow is described in Figure 4-21 on page 114. The EXCSQLSTT command
flow is described in Figure 4-15 on page 97.

2. The update application server is operating at DRDA Remote Unit of Work, so rollback
processing occurs at the application server. The application server returns an
ENDUOWRM and SQLCARD to the application requester with the uowdsp parameter
on the ENDUOWRM indicating the rollback succeeded at the application server.

3. The application requester receives the ENDUOWRM and SQLCARD from the update
application server. The application requester checks the value in the uowdsp parameter
and sends an RDBRLLBCK command to all read-only application servers.

4. The read-only application servers receive the RDBRLLBCK command and perform the
rollback. The application servers return the results of the rollbacks using
ENDUOWRMs and SQLCARDs.

5. The application requester receives the results from the read-only application servers
and returns to the application the status of the work at the update application server.

Because the unit of work rolled back, the application requester resets all cursors to a
closed state.

• Static Commit Steps

1. The application requester receives the request for the embedded commit.

If the local environment does not allow static commits, the application requester must
return to the application an SQLCA with an SQLSTATE value of X‘2D521’.

2. The application requester sends an RDBCMM command to all read-only application
servers.

3. The read-only application servers receive the RDBCMM command and perform the
commit. The application servers return the results of the commits using ENDUOWRMs
and SQLCARDs.

4. The application requester receives the results from the read-only application servers. If
all read-only application servers commit successfully, the application requester sends
an RDBCMM command to the application server that is allowed updates.

If a read-only application server rolls back when it is asked to commit, the application
requester sends an RDBRLLBCK command to the application server that performed the
update. The application requester also rolls back the read-only application servers by
sending an RDBRLLBCK command to the application servers.

5. The application server that performed the update receives the RDBCMM command
and performs the commit. The application server returns the result of the commit using
an ENDUOWRM and SQLCARD.

6. The application requester receives the result from the update application server and
returns the status of the work at the update application server to the application.

If the update application server rolls back when it is asked to commit, the application
requester rolls back the read-only application servers by sending an RDBRLLBCK
command to the application servers.

Part 1: Database Access Protocol 125

DDM Commands and Replies The DRDA Processing Model and Command Flows

If the unit of work rolled back, the application requester resets all cursors to a closed
state.

• Static Rollback Steps

1. The application requester receives the request for the embedded rollback.

If the local environment does not allow static commits, the application requester must
return to the application an SQLCA with an SQLSTATE value of X‘2D521’.

2. The application requester sends an RDBRLLBCK command to all application servers.

3. The application servers receive the RDBRLLBCK command and perform the rollback.
The application servers return the results of the rollbacks using ENDUOWRMs and
SQLCARDs.

4. The application requester receives the results from the application servers and returns
to the application the status of the work at the update application server.

Because the unit of work rolled back, the application requester resets all cursors to a
closed state.

• Commit Steps

(for a stored procedure defined with the commit on return attribute)

1. The application server initiates commit processing when a stored procedure defined
with the commit on return attribute terminates.

2. The update application server is operating at DRDA Remote Unit of Work, so commit
processing occurs at the application server. The application server returns an
ENDUOWRM and either an SQLCARD or SQLDTARD to the application requester
with the uowdsp parameter on the ENDUOWRM indicating a commit succeeded at the
application server.

3. The application requester receives the ENDUOWRM and the SQLCARD or
SQLDTARD from the update application server. The application requester checks the
value in the uowdsp parameter and sends an RDBCMM command to all read-only
application servers.

4. The read-only application servers receive the RDBCMM command and perform the
commit. The application servers return the results of the commits using ENDUOWRMs
and SQLCARDs.

5. The application requester receives the results from the read-only application servers.

Regardless of the outcome from the read-only application servers, the result returned to
the application must reflect the status of the work at the update application server.

If a read-only application server rolls back when it is asked to commit, the next time the
application performs a request to any application server, the application requester
returns SQLSTATE X‘51021’ to the application to inform it that it must issue a static
rollback. The application requester does not need to return an SQLSTATE X‘51021’ if
the application requester performed an implicit rollback and informed the application
the commit was successful and an implicit rollback occurred.

126 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

Single RDB Update Using Distributed Unit of Work

In this commit and rollback scenario, the application is not using the services of the sync point
manager to coordinate resource recovery for the unit of work. The application server that is
allowed updates is operating using Distributed Unit of Work (see AS2 in Figure 4-27). AS1 is
operating using Remote Unit of Work, and is restricted to read-only. AS1 is restricted to an
unprotected network connection. For this scenario, AS2 is on an unprotected network
connection. The scenario describes only the commit and rollback flows. The application
requester is responsible for performing all other local processing that is required to complete the
commit or rollback at the application requester. There are slightly different scenarios depending
on whether the parameter rdbcmtok has the value TRUE.

Unprotected RUW connection

SNA or TCP/IP

SNA or TCP/IP

Unprotected DUW connection

DRDA RUOW AS (AS1)

DRDA DUOW AS (AS2)

DRDA
DUOW

AS With
Updates

Figure 4-27 Single RDB Update Using Distributed Unit of Work

• Dynamic Commit Steps

(rdbcmtok value is FALSE)

1. The commit request passes to the application server that is allowed updates using
either the EXCSQLIMM command or the EXCSQLSTT command. The EXCSQLIMM
command flow is described in Figure 4-21 on page 114. The EXCSQLSTT command
flow is described in Figure 4-15 on page 97.

2. Dynamic commits are not processed at application servers in this situation, so the
application server sends a CMMRQSRM with the value of the cmmtyp parameter set to
commit.

3. The application requester receives the CMMRQSRM, checks the value in the cmmtyp
parameter and sends an RDBCMM command to all read-only application servers.

The local environment can require the results of a failed dynamic commit to be
returned to the application instead of continuing with the commit processing. In this
case, the application requester returns to the application an SQLCA with an SQLSTATE
value of X‘2D528’.

4. The read-only application servers receive the RDBCMM command and perform the
commit. The application servers return the results of the commits using an
ENDUOWRM and SQLCARDs.

5. The application requester receives the results from the read-only application servers. If
all read-only application servers commit successfully, the application requester sends
an RDBCMM command to the application server that is allowed updates.

If a read-only application server rolls back when it is asked to commit, the application
requester sends an RDBRLLBCK to the update application server. The application
requester also rolls back the read-only application servers by sending an RDBRLLBCK
command to those application servers.

6. The update application server receives the RDBCMM command and performs the
commit. The application server returns the result of the commit using an ENDUOWRM

Part 1: Database Access Protocol 127

DDM Commands and Replies The DRDA Processing Model and Command Flows

and SQLCARD.

7. The application requester receives the result from the update application server and
returns the status of the work at the update application server to the application.

If the update application server rolls back when it is asked to commit, the application
requester rolls back the read-only application servers by sending an RDBRLLBCK
command to those application servers.

If the unit of work rolled back, the application requester resets all cursors to a closed
state.

• Dynamic Commit Steps

(rdbcmtok value is TRUE)

1. The commit request passes to the application server that is allowed updates using
either the EXCSQLIMM command or the EXCSQLSTT command.

2. Since rdbcmtok was specified as TRUE in the command, the application server processes
the commit request and sends an ENDUOWRM with uowdsp set to committed and an
SQLCARD. RDBUPDRM may also have to be sent.

3. The application requester receives the ENDUOWRM and SQLCARD. In a fashion
similar to a DRDA Distributed Unit of Work application requester that receives
ENDUOWRM from a DRDA Remote Unit of Work application server, the application
requester sends RDBCMM to all other read-only servers.

4. The read-only application servers receive the RDBCMM command and perform the
commit. The application servers return the results of the commits using ENDUOWRMs
and SQLCARDs.

5. The application requester receives the results from the read-only application servers.

Regardless of the outcome from the read-only application servers, the result returned to
the application must reflect the status of the work at the update application server.

If a read-only application server rolls back when it is asked to commit, the next time the
application performs a request to any application server, the application requester
returns SQLSTATE X‘51021’ to the application to inform it that it must issue a static
rollback. The application requester does not need to return an SQLSTATE X‘51021’ if
the application requester performed an implicit rollback and informed the application
the commit was successful and an implicit rollback occurred.

• Dynamic Rollback Steps

(rdbcmtok value of FALSE)

1. The rollback request passes to the application server that is allowed updates using
either the EXCSQLIMM command or the EXCSQLSTT command. The EXCSQLIMM
command flow is described in Figure 4-21 on page 114. The EXCSQLSTT command
flow is described in Figure 4-15 on page 97. The application server sends a
CMMRQSRM with the value of the cmmtyp parameter set to rollback.

2. The application requester receives CMMRQSRM and then sends an RDBRLLBCK
command to all application servers.

The local environment can require the results of the failed dynamic rollback to be
returned to the application instead of continuing with the rollback processing. The
application requester returns to the application an SQLCA with an SQLSTATE value of
X‘2D529’.

128 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

3. The application servers receive the RDBRLLBCK command and perform the rollback.
The application servers return the results of the rollbacks using ENDUOWRMs and
SQLCARDs.

4. The application requester receives the results from the application servers and returns
to the application the status of the work at the update application server.

Because the unit of work rolled back, the application requester resets all cursors to a
closed state.

• Dynamic Rollback Steps

(rdbcmtok value of TRUE)

1. The rollback request passes to the application server that is allowed updates using
either the EXCSQLIMM command or the EXCSQLSTT command.

2. Since rdbcmtok was specified as TRUE, the RDB processes the rollback and sends
ENDUOWRM with the value of uowdsp set to rolled back and an SQLCARD to the
application requester.

3. The application requester receives the ENDUOWRM and the SQLCARD. The
application requester then sends RDBRLLBCK to all the other servers.

4. The application servers receive the RDBRLLBCK command and perform the rollback.
The application servers return the results of the rollbacks using ENDUOWRMs and
SQLCARDs.

5. The application requester receives the results from the application servers and returns
to the application the status of the work at the update application server.

Because the unit of work rolled back, the application requester resets all cursors to a
closed state.

• Commit Steps

(for a Stored Procedure defined with the commit on return attribute, rdbcmtok value is FALSE)

1. The application server initiates commit processing when the stored procedure defined
with the commit on return attribute terminates.

2. Commits are not processed at the application server in this situation, so the application
server sends a CMMRQSRM with the value of the cmmtyp parameter set to commit.

3. The remaining steps are the same as steps 3 through 7 of the dynamic commit (rdbcmtok
value is FALSE) scenario above.

• Commit Steps

(for a Stored Procedure defined with the commit on return attribute, rdbcmtok value is TRUE)

1. The application server initiates commit processing when the stored procedure defined
with the commit on return attribute terminates.

2. Since rdbcmtok was specified as TRUE in the command, the application server processes
the commit request and sends an ENDUOWRM with uowdsp set to committed and
either an SQLCARD or SQLDTARD. Note that RDBUPDRM may also have to be sent.

3. The application requester receives the ENDUOWRM and the SQLCARD or
SQLDTARD. In a fashion similar to a DRDA Distributed Unit of Work application
requester that receives ENDUOWRM from a DRDA Remote Unit of Work application
server, the application requester sends RDBCMM to all other read-only servers.

Part 1: Database Access Protocol 129

DDM Commands and Replies The DRDA Processing Model and Command Flows

4. The read-only application servers receive the RDBCMM command and perform the
commit. The application servers return the results of the commits using ENDUOWRMs
and SQLCARDs.

5. The application requester receives the results from the read-only application servers.

Regardless of the outcome from the read-only application servers, the result returned to
the application must reflect the status of the work at the update application server.

If a read-only application server rolls back when it is asked to commit, the next time the
application performs a request to any application server, the application requester
returns SQLSTATE X‘51021’ to the application to inform it that it must issue a static
rollback. The application requester does not need to return an SQLSTATE X‘51021’ if
the application requester performed an implicit rollback and informed the application
the commit was successful and an implicit rollback occurred.

• Static Commit Steps

1. The application requester receives the request for the embedded commit.

If the local environment does not allow static commits, the application requester must
return to the application an SQLCA with an SQLSTATE value of X‘2D521’.

2. The application requester sends an RDBCMM command to all read-only application
servers.

3. The rest of the steps are identical to steps 4 through 7 for the dynamic commit steps in
this scenario.

• Static Rollback Steps

1. The application requester receives the request for the embedded commit rollback.

If the local environment does not allow static commits, the application requester must
return to the application an SQLCA with an SQLSTATE value of X‘2D521’.

2. The application requester sends an RDBRLLBCK command to all application servers.

3. The rest of the steps are identical to steps 4 through 7 for the dynamic rollback steps in
this scenario.

130 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

Multi-RDB Update

In this commit and rollback scenario, the application uses the services of the sync point manager
to coordinate resource recovery for the unit of work. All application servers using protected
Distributed Unit of Work connections are allowed updates (see AS3 in Figure 4-28). AS1 is
operating using Remote Unit of Work. AS2 is operating using Distributed Unit of Work but not
protected by a sync point manager. AS1 and AS2 are restricted to read-only. This scenario
describes only the commit and rollback flows. The application requester is responsible for all
other local processing that is required to complete the commit or rollback at the application
requester.

Unprotected RUW connection

SNA or TCP/IP

SNA or TCP/IP

SNA or TCP/IP

Unprotected DUW connection

Protected by a Sync Point Mgr.

DRDA RUOW (AS1)

DRDA DUOW (AS3)

DRDA DUOW (AS2)DRDA
AR

AS With
Updates

Figure 4-28 Multi-Relational Database Update

When the application requester calls the sync point manager on behalf of the application, the
local sync point manager interface is being used. This scenario assumes a Resource Recovery
Manager interface is being used or the DDM sync point manager Level 5 was identified on the
DDM EXCSAT command, although a private interface is also valid. For example, assume the
Resource Recovery Manager calls SRRCMIT and SRRBACK, which are examples of a sync point
manager interface for COMMIT and ROLLBACK. When the application requester participates as
a resource manager, the syntax for the sync point manager interface is not described because it is
specific to the operating environment.

• Dynamic Commit Steps

1. The commit request passes to one of the application servers that is allowed updates
using either the EXCSQLIMM command or the EXCSQLSTT command. The
EXCSQLIMM command flow is described in Figure 4-21 on page 114. The EXCSQLSTT
command flow is described in Figure 4-15 on page 97.

2. Dynamic commits are not allowed at application servers operating at DRDA
Distributed Unit of Work, so the application server sends a CMMRQSRM with the
value of the cmmtyp parameter set to commit.

Note that DRDA rules do not allow rdbcmtok to be sent to a server that is using a sync
point manager.

3. The application requester receives CMMRQSRM, checks the value in the cmmtyp
parameter, and acting on behalf of the application, calls the Resource Recovery
interface with SRRCMIT to commit all application servers that are allowed updates.
This initiates the sync-point flows as described in Part 3, Network Protocols.

The local environment can require the results of the failed dynamic commit to be
returned to the application instead of continuing with the commit processing. The
application requester returns to the application an SQLCA with an SQLSTATE value of
X‘2D528’.

Part 1: Database Access Protocol 131

DDM Commands and Replies The DRDA Processing Model and Command Flows

4. Because the application requester is registered with the sync point manager, the sync
point manager contacts the application requester to participate in the resource recovery
process.

5. When contacted during phase one of the two-phase commit process, the application
requester sends an RDBCMM command to all read-only application servers.

6. The read-only application servers receive the RDBCMM command and perform the
commit. The application servers return the results of the commits using ENDUOWRMs
and SQLCARDs. See Part 3, Network Protocols for a discussion of the levels of sync
point managers required to support update servers on protected network connections.

If an application server is on a protected network connection, and it receives an
RDBCMM command, the RDBCMM command is rejected. The application server
generates an alert and returns a CMDVLTRM to the application requester.

7. The application requester receives the results from the read-only application servers. If
all read-only application servers commit successfully, the application requester
responds to the sync point manager interface in phase one to commit.

If a read-only application server rolls back when it is asked to commit, or the
application requester receives a CMDVLTRM from an application server, or the
application requester receives any error reply message that does not allow the
application requester to proceed, the application requester responds with a rollback to
the sync point manager interface. The application requester also rolls back the read-
only application servers by sending an RDBRLLBCK command to the application
servers.

8. The sync point manager completes the resource recovery process, which includes
another call to the application requester during phase two of the two-phase commit
protocols.

If the phase two call from the sync point manager is rollback, the application requester
sends an RDBRLLBCK to the read-only application servers.

9. The application requester, acting on behalf of the application, receives the response
from the call to the sync point manager, and returns the result of the commit to the
application.

If the unit of work rolled back, the application requester resets all cursors to a closed
state.

• Dynamic Rollback Steps

1. The rollback request tells one of the application servers that is allowed updates using
either the EXCSQLIMM command or the EXCSQLSTT command. The EXCSQLIMM
command flow is described in Figure 4-21 on page 114. The EXCSQLSTT command
flow is described in Figure 4-15 on page 97.

2. Dynamic rollbacks are not allowed at application servers operating at DRDA
Distributed Unit of Work, so the application server sends a CMMRQSRM with the
value of the cmmtyp parameter set to rollback.

3. The application requester receives CMMRQSRM, checks the value in the cmmtyp
parameter, and acting on behalf of the application, calls the Resource Recovery
interface with SRRBACK to roll back all application servers that are allowed updates.
This initiates the rollback flows as described in Part 3, Network Protocols.

132 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

The local environment can require the results of the failed dynamic rollback to be
returned to the application instead of continuing with the rollback processing. The
application requester returns to the application an SQLCA with an SQLSTATE value of
X‘2D529’.

4. Because the application requester is registered with the sync point manager, the sync
point manager contacts the application requester to participate in the resource recovery
process.

5. When contacted during phase one of the two-phase commit process, the application
requester sends an RDBRLLBCK command to all read-only application servers.

6. The read-only application servers receive the RDBRLLBCK command and perform the
rollback. The application servers return the results of the rollbacks using
ENDUOWRMs and SQLCARDs.

If an application server is on a protected network connection and it receives an
RDBRLLBCK command, the RDBRLLBCK command is rejected. The application server
generates an alert and returns a CMDVLTRM to the application requester.

7. The application requester receives the results from the read-only application servers
and replies to the sync point manager with an acknowledgement to roll back.

8. The sync point manager completes the resource recovery process and returns the
results to the application requester.

9. The application requester, acting on behalf of the application, receives the response
from the call to the Resource Recovery interface, and returns the result of the rollback
to the application.

Because the unit of work was rolled back, the application requester resets all cursors to
a closed state.

• Commit Steps for a Stored Procedure defined with the commit on return attribute

1. The application servers initiate commit processing when the stored procedure defined
with the commit on return attribute terminates.

2. Commits are not processed at the application server in this situation, so the application
server sends a CMMRQSRM with the value of the cmmtyp parameter set to commit.

3. The rest of the steps are identical to steps 3 through 9 under dynamic commit for this
scenario.

• Static Commit Steps

1. The application requester receives the request for the embedded commit.

If the local environment does not allow static commits, the application requester must
return to the application an SQLCA with an SQLSTATE of X‘2D521’.

2. The application requester, acting on behalf of the application, calls the Resource
Recovery interface or the DDM sync point manager, to commit all application servers
that are allowed updates.

3. The rest of the steps are identical to steps 4 through 9 under dynamic commit for this
scenario.

• Static Rollback Steps

1. The application requester receives the request for the embedded rollback.

Part 1: Database Access Protocol 133

DDM Commands and Replies The DRDA Processing Model and Command Flows

If the local environment does not allow static commits, the application requester must
return to the application an SQLCA with an SQLSTATE of X‘2D521’.

2. The application requester, acting on behalf of the application, calls the DDM sync point
manager, to roll back all application servers that are allowed updates.

3. The rest of the steps are identical to steps 4 through 9 under dynamic rollback for this
scenario.

• Sync Point Manager Originating Commit Steps

1. The application commits the unit of work by calling the DDM sync point manager.

2. The rest of the steps are identical to steps 4 through 8 under dynamic commit for this
scenario.

3. The DDM sync point manager returns the results to the application.

If the unit of work rolled back, the application requester resets all cursors to a closed
state.

• Sync Point Manager Originating Rollback Steps

1. The application rolls back the unit of work by calling the DDM sync point manager.

2. The rest of the steps are identical to steps 4 through 8 under dynamic rollback for this
scenario.

3. The DDM sync point manager returns the results to the application.

Because the unit of work rolled back, the application requester resets all cursors to a
closed state.

Post-Commit Processing

After the commit processing completes as defined in Commit and Rollback Scenarios on page
122, the application can continue using the existing connections, and/or new ones. The
connections that remain active for the new unit of work are defined by the SQL semantics. These
semantics are defined by ISO/IEC 9075: 1992, Database Language SQL.

The update privileges for the existing connections and any new connections for the new unit of
work follow the rules defined in Coexistence on page 120.

134 DRDA Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

RDB-Initiated Rollback

In the following scenarios, a relational database has initiated rollback. A relational database
initiated rollback is due to an uncontrollable event on the relational database that requires it to
roll back immediately. The following scenarios describe the steps that occur, depending on
which application server initiates the rollback. Figure 4-29 and Figure 4-30 show unprotected
network connections between the application requester and application servers.

Unprotected RUW connection

SNA or TCP/IP

SNA or TCP/IP

SNA or TCP/IP

Unprotected DUW connection

Protected by a Sync Point Mgr.

DRDA RUOW AS (AS1)

DRDA DUOW AS (AS3)

DRDA DUOW AS (AS2)DRDA
DUOW

RDB
Initiates
Rollback

Figure 4-29 RDB at AS1 Initiates Rollback

The network connection between the application requester and AS1 is unprotected, so there is
not a sync point manager involved at AS1.

1. The relational database at AS1 rolls back.

2. AS1 returns an ABNUOWRM and SQLCARD to the application requester.

3. The application requester initiates rollback processing to all other application servers
involved in the unit of work. The steps for rolling back the other application servers are
described in Commit and Rollback Scenarios on page 122. The application requester
returns to the application the SQLCA received from AS1.

Unprotected RUW connection

SNA or TCP/IP

SNA or TCP/IP

SNA or TCP/IP

Unprotected DUW connection

Protected by a Sync Point Mgr.

DRDA RUOW AS (AS1)

DRDA DUOW AS (AS3)

DRDA DUOW AS (AS2)DRDA
DUOW

RDB
Initiates
Rollback

Figure 4-30 RDB at AS2 Initiates Rollback

The network connection between the application requester and AS2 is unprotected, so there is
not a sync point manager involved at AS2. The steps for this scenario are the same as the
previous scenario for rollback at AS1.

Part 1: Database Access Protocol 135

DDM Commands and Replies The DRDA Processing Model and Command Flows

Unprotected RUW connection

SNA or TCP/IP

SNA or TCP/IP

SNA or TCP/IP

Unprotected DUW connection

Protected by a Sync Point Mgr.

DRDA RUOW AS (AS1)

DRDA DUOW AS (AS3)

DRDA DUOW AS (AS2)DRDA
DUOW

RDB
Initiates
Rollback

Figure 4-31 RDB at AS3 Initiates Rollback

The network connection between the application requester and AS3 is protected, so there is a
sync point manager involved at AS3. This scenario is dependent on whether the sync point
manager at the application server is informed to roll back before responding to the application
requester. If the sync point manager is not informed to roll back at the application server before
responding to the application requester, the steps are the same as the previous scenario for
rollback at AS1. Replace AS1 in the steps with AS3. If the sync point manager is informed at the
application server before responding to the application requester, then the following steps are in
effect.

1. The sync point manager at the application server is invoked to roll back the unit of work.
The process of invoking the sync point manager is dependent on the operating
environment.

2. The sync point manager drives rollback, which includes sending the DDM SYNCCRD
rollback reply or an LU 6.2 BACKOUT to the application requester. AS3 does not have the
opportunity to send back an SQLCARD.

Informing the application server that a rollback has occurred depends on the operating
system and application server implementation. For example, if the SQLAM
implementation registers itself as a protected resource manager, it will be a participant in
the rollback processing.

3. The application requester receives a DDM SYNCCRD rollback reply or a
TAKE_BACKOUT on the connection to the application server. Assuming the use of a
Resource Recovery interface, the application requester issues a ROLLBACK request
(SRRBACK) and also rolls back all other application servers. If using the DDM sync point
manager, it sends the DDM SYNCCTL rollback command to roll back each of the other
application servers. The steps for rolling back the other application servers are described in
Commit and Rollback Scenarios on page 122. The application requester returns to the
application an SQLCA with an SQLSTATE of X‘40504’.

The local environment can require the application requester to respond back to the
application instead of issuing the SRRBACK command. For this case, the application
requester returns to the application an SQLCA with an SQLSTATE of X‘51021’.

136 DRDA Volume 1

Chapter 5

Data Definition and Exchange

The DRDA environment has several objectives for data description and data transmission.
Principal among these objectives are:

• Providing a faithful representation of SQL data

• Minimizing or eliminating data conversion activity between compatible environments

• Minimizing communications traffic

• Allowing staged implementation of DRDA

5.1 Use of FD:OCA
Formatted Data Object Content Architecture (FD:OCA) is the architecture for handling exchange
and interchange of field formatted information. The SQL Application Programming Interface
(API) shields application programmers from the actual underlying descriptive architecture.
FD:OCA provides means to describe both numeric and character information.

DRDA provides flexibility in the transmitted format of data. For example, when two identical
systems are using data, no conversions should be necessary. However, when they are different,
they must use clearly understood formats.

With FD:OCA, the descriptions can be sent along with the data, can be sent as a separate object
before the data is sent, or can be cached for use much later. DRDA uses only a subset of the total
FD:OCA function as defined in the FD:OCA documentation. Furthermore, DRDA imposes
restrictions on FD:OCA as described in this chapter.

FD:OCA allows specification of Simple Data Arrays with an arbitrary number of dimensions;
DRDA uses them to define only scalars. Similarly, Row LayOut (RLO) can be used repetitively to
produce an arbitrarily complex structure; for DRDA RLO usage is restricted to produce two
dimensional tables as the most complex data aggregate.

For more information on FD:OCA and other major terms in this chapter, see Referenced
Documents on page xxiv. These references are also useful for background reading.

Part 1: Database Access Protocol 137

Use of Base and Option Sets Data Definition and Exchange

5.2 Use of Base and Option Sets
DRDA uses a subset of the descriptive architecture that FD:OCA provides. DRDA uses the
following FD:OCA triplets34 or their abbreviations in describing data.

MDD Meta Data Definition

SDA Simple Data Array

GDA Group Data Array

CPT Continue Preceding Triplet

RLO Row LayOut

The following sections illustrate their usage.

To begin this discussion, it is important to see how data is described and presented applying
DRDA concepts in the use of the FD:OCA architecture.

5.2.1 Basic FD:OCA Object Contained in DDM

Figure 5-1 is the Basic FD:OCA Object:

Start the object

Describe the data

Provide the dataFDODTA

FDODSC

SQLDTA

Figure 5-1 Basic FD:OCA Object

DDM defines the terms FDODSC (FD:OCA Descriptor), QRYDSC (Query Descriptor), FDODTA
(FD:OCA Data), and QRYDTA (Query Data). Both descriptor objects are carriers for descriptors.
Both data objects are carriers for data. In commands where the descriptor and the data are

34. Triplet is a word used in FD:OCA almost the same way the term is used in DDM. A triplet consists of three parts:

1. A length

2. A type

3. The rest

Triplets are referred to by their type, such as the RLO or Row LayOut triplet.

138 DRDA Volume 1

Data Definition and Exchange Use of Base and Option Sets

available simultaneously (as is the case for command data flowing to the relational database) the
DDM command has a command data object (such as SQLDTA) that contains both the FDODSC
and the FDODTA objects. Where the presentation of the descriptor and data can be separated in
time and supplied with different commands (as is the case for query processing with OPNQRY
and CNTQRY), the QRYDSC and the QRYDTA objects are used separately without an outer
object. In both cases, the descriptor in the FDODSC, or QRYDSC describes the data contained in
the following FDODTA object, or QRYDTA objects.

In addition, DDM Level 6 adds new terms: EXTDTA and OUTOVR. EXTDTA is a data object that
allows data to flow as base data in an FDODTA or QRYDTA object or as externalized data in a
separate object. If a data item is to flow as externalized data, the descriptor object contains a
descriptor for the item with the FD:OCA placeholder indicator flag set on and the data object
contains a FD:OCA placeholder for the data item instead of the actual data. OUTOVR is a
descriptor object that allows the application requester to control the format of output host
variables returned by the application server. The descriptor flows from the application requester
with the command. It describes completely the data to be returned by the application server,
including GDAs, SDAs, and override LEDs and MDDs as required. As with QRYDSC objects
which flow separately from the corresponding QRYDTAs containing the data they describe,
there is no outer object for an OUTOVR object. See the DDM Reference (Architecture Level 6) for
details.

Start the object

Describe the data

Provide the base data,
with FD:OCA placeholders
for externalized data items

Provide the externalized
data associated with one
FD:OCA placeholder

FDODTA

FDODSC

SQLDTA

EXTDTA

Figure 5-2 Basic FD:OCA Object (DDM Level 6)

Part 1: Database Access Protocol 139

Use of Base and Option Sets Data Definition and Exchange

5.2.2 DRDA FD:OCA Object

To accomplish all data representation objectives, some special (DRDA-defined) usage of
FD:OCA descriptors is required. Figure 5-3 shows this usage.

MDD, GDA, and CPTs
for Row Fields
MDD and RLO
for Row Desc.
MDD and RLO
for Table Desc.

Start the object

Describe mappings from DRDA types
to their FD:OCA representations. These
mappings vary depending on the intended
data uasge and machine environment.

Describe the common objects, such as the
SQLCA or SQLDA in terms of the DRDA
types above. These descriptions are
invariant between environments.

User data is described by reference to the
environmental and DRDA object specs. The
data can be input data (from host variables)
or output data (from the database).

Provide the data

FDODSC

FDODTA

SQLDTA

ENVIRONMENTAL
DESCRIPTIONS,
a collection of
MDDs and SDAs.

FDODSC

DRDA OBJECT
DESCRIPTIONS,
a collection of
MDDs, GDAs,
and RLOs.

FDODSC

Figure 5-3 Conceptual View of a DRDA FD:OCA Object

The discussion that follows covers the concepts behind the DRDA FD:OCA objects. The FD:OCA
descriptors sections are shown in DDM FDODSC carrier objects. The FD:OCA data is shown in
DDM FDODTA objects. Both of these are shown as being contained in an SQLDTA carrier. When
these descriptors actually flow, not all of these parts will be physically present and in many

140 DRDA Volume 1

Data Definition and Exchange Use of Base and Option Sets

cases the carriers will be different.

The ENVIRONMENTAL DESCRIPTION section of the descriptor has a Simple Data Array
(SDA) to describe how each DRDA type is represented.35 DRDA defines an entire set of data
types for each environment supported. See Section 5.6.5 on page 197 for a complete listing.

An immediately preceding Meta Data Definition (MDD) specification relates each DRDA type
representation to its SDA (or GDA or RLO). DRDA defines meta data type references for each
DRDA type. FD:OCA defines that MDDs apply to other triplets that follow. The following SDA,
GDA, or RLO, thus, is the presentation for a particular DRDA type for this environment.

Each of the SDA, GDA, and RLO triplets is assigned a local identifier (LID) that is used as a short
label for references to these triplets. Using LIDs, triplets can refer to other triplets, which in turn
can refer to yet other triplets, and so on. A direct mapping from DRDA types can then be made
from DRDA type to LID and back. DRDA provides named sets of descriptors that establish a
firm relationship between LID and DRDA type. All types are provided in each set of
environmental descriptors; the representations vary from environment to environment.

The next section of the descriptor contains DRDA OBJECT DESCRIPTIONS. Objects such as the
SQLDA or SQLCA are defined in terms of the DRDA types described in the previous section.
These descriptions are not sensitive to environment. Everyone uses one set of identical
descriptors. However, the exact bits that flow when one implementation sends one of the
described objects to another implementation vary depending on the environmental descriptors
in use. These descriptors are also preceded with MDD triplets that define the DRDA semantics
of the FD:OCA descriptors.

The final section contains the description of user data. In most cases, environmental and DRDA
object descriptions form this description. The referenced SDAs and GDAs are assembled to
reflect the order and characteristics of the user and system data that flow. In some cases,
additional SDAs are required to handle data the database management system has returned. For
example, if the database management system has returned data in an unusual CCSID, an SDA
and an MDD (defining the DRDA semantics) are built to indicate that situation to the requester.
See Section 5.6.6 on page 243 for more detail.

The organization of the FD:OCA descriptive triplets as shown in Figure 5-3 on page 140 gives
the benefits of environment-independent specification of user data and commonly used
information blocks. This is tailored with environment definitions that show exactly (to the bit)
how each of these blocks really appears in each environment. They are different from
environment to environment. However, systems that use identical type representations will
exchange data with no conversion or translation.

A conceptual view of a DRDA FD:OCA object with LOB data is given below. It includes the
definition and flow of externalized FD:OCA data. Figure 5-4 on page 142 shows this usage.

35. For individual fields, DRDA types map very closely to SQL data types. Exceptions occur where inconsistencies in type
assignment method have occurred in SQL. For example, 4-byte and 2-byte integers are different SQL types, but 4-byte and 8-byte
floating point are not. DRDA also has types for common collections of fields where SQL does not.

Part 1: Database Access Protocol 141

Use of Base and Option Sets Data Definition and Exchange

MDD, GDA, and CPTs
for Row Fields
MDD and RLO
for Row Desc.
MDD and RLO
for Table Desc.

column 1 value
column 2 LOB ph
column 3 value
column 4 LOB ph

Start the object

Describe mappings from DRDA types
to their FD:OCA representations. These
mappings vary depending on the intended
data uasge and machine environment.

Describe the common objects, such as the
SQLCA or SQLDA in terms of the DRDA
types above. These descriptions are
invariant between environments.

User data is described by reference to the
environmental and DRDA object specs. The
data can be input data (from host variables)
or output data (from the database).

Provide the data. For LOB data, provide an
FD:OCA placeholder value (ph).

FDODSC

FDODTA

SQLDTA

ENVIRONMENTAL
DESCRIPTIONS,
a collection of
MDDs and SDAs.

FDODSC

DRDA OBJECT
DESCRIPTIONS,
a collection of
MDDs, GDAs,
and RLOs.

FDODSC

column 2 LOB value

Provide th LOB data as externalized
FD:OCA data.

EXTDTA

column 4 LOB value

Provide th LOB data as externalized
FD:OCA data.

EXTDTA

Figure 5-4 Conceptual View of a DRDA FD:OCA Object with LOB Columns

This DRDA FD:OCA object contains a row with four columns, two of which are LOB columns.
Note that the LOB columns are represented by FD:OCA placeholder values in FDODTA. The
actual LOB data values are carried in the EXTDTA object in the order in which they appear in the
FDODTA object.

142 DRDA Volume 1

Data Definition and Exchange Use of Base and Option Sets

5.2.3 Early and Late Descriptors

The environmental descriptors are the same for all data flowing in one direction over any
conversation. At the very latest, this information could flow with the data. At the very earliest,
DRDA for some set of known environments could define this information and reference it by
name. The named descriptor would contain a full set of SDAs to cover all SQL data types for a
particular environment. The actual FD:OCA SDAs are virtual. The products could do the proper
conversions, knowing at code design time the appropriate conversions to do under each
circumstance. These conversions are based strictly on the DRDA type used to represent the
value without interpretation of a real SDA. That saves both implementation cost and line time.

Section 5.6.5 on page 197 defines five DRDA environments: QTDSQL370, QTDSQL400,
QTDSQLX86, QTDSQLASC, and QTDSQLVAX machine representations. The TYPDEFNAM on
the ACCRDB command references these environments, and the associated early descriptors
never flow.

Common objects (such as SQLCAs) are the same for every product operating at the same level of
DRDA. These objects can be identified early. The latest time the user needs to determine the
descriptor set is at EXCSAT time. Descriptions of the common objects can be made with DRDA
named sets of descriptors that relate to the DRDA level being supported. By staying within the
set of DRDA defined common blocks, no runtime interpretation of FD:OCA triplets is required.

Section 5.6.4 on page 177 and the sections following the figure define these descriptors. These
are agreed to at EXCSAT time by means of MGRLVL parameter for the SQL Application
Manager, SQLAM X‘2407’. (See the DDM Reference for definitions of these variables.)

The descriptor of the final object is built of descriptions provided or implied at three separate
times: EXCSAT, ACCRDB, and finally right before user data transmission.

Objects defined by early descriptors need only contain the data; objects defined by late
descriptors must include the FD:OCA descriptor and the data. Often the DDM code point of the
command or reply implies the format of the data. In other cases, the descriptor must be sent.
There are three distinct cases:

1. The data format is completely implied by the DDM code point.

2. The data format varies from one instance to another of the DDM command or reply.

3. The data format varies but was defined in a preceding command or reply.

In the first case, the FD:OCA descriptor is not sent. The DDM code point relates to a DRDA-
defined FD:OCA descriptor. The FD:OCA descriptors for these fixed format data are known
early, and they reference the environment descriptors to set final representations. Thus, in the
case of fixed command data and reply data formats, the data immediately follows the DDM code
point. This case includes all commands in Table 5-1 on page 146, except for Execute SQL
Statement (EXCSQLSTT), Open Query (OPNQRY), and Continue Query (CNTQRY).

The second case corresponds to DRDA transmission of database rows or database input (host
variable) values. For these, the descriptor cannot be constructed until the data is presented for
transmission. These descriptors are late descriptors. There are four subcases:

2a. For some commands or replies, the DDM code point enclosing the command or reply
data provides a complete FD:OCA object using SQLDTA or SQLDTARD. Inside that
object, the FD:OCA descriptors are sent in an FDODSC object followed by the data in an
FDODTA object. This case includes the command data for Execute SQL Statement
(EXCSQLSTT) and Open Query (OPNQRY). This case also applies directly to reply data
when the size of the result is known in advance. This is the case for the result of Execute
SQL Statement (EXCSQLSTT), which can return at most one row of result data.

Part 1: Database Access Protocol 143

Use of Base and Option Sets Data Definition and Exchange

If there are LOB values in the answer set, the descriptors indicate whether an FD:OCA
placeholder will flow for a column, and if so, each LOB data value will flow in an
EXTDTA following the SQLDTA or SQLDTARD in the order they appear in the FDODTA.

2b. For the result of Open Query (OPNQRY) and Continue Query (CNTQRY), the size of the
result is not known in advance. A Query Descriptor (QRYDSC) object is built to describe
the following data. The application server constructs as many Query Data (QRYDTA)
objects as are necessary to contain the entire result.

If there are LOB values in the answer set when the application server processes the
OPNQRY command, it assumes that LOB data values are to be returned for LOB data
columns. The QRYDSC indicates that FD:OCA placeholders will flow for each LOB
column. At CNTQRY time, the application requester may override the QRYDSC
description by sending an OUTOVR object. In this way, the application server knows
whether to send LOB data values or LOB locators for a LOB column. Because the
application server does not know the desired format of the data to be returned, it does not
send an QRYDTA object until the first CNTQRY is received.

2c. For an Execute SQL Statement (EXCSQLSTT) that invokes a stored procedure that returns
one or more result sets, the number and the size of the result sets is not known in
advance. A Query Descriptor (QRYDSC) object is built for each result set to describe the
data that follows. The application server constructs as many Query Data (QRYDTA)
objects for each result set as are necessary to contain the entire result.

If there are LOB values in the answer set when the stored procedure is executed, the
application server assumes that LOB data values are to be returned for LOB data columns
in a query result set. The QRYDSC carries FD:OCA placeholders for each LOB column. At
CNTQRY time, the application requester may override the QRYDSC description by
sending an OUTOVR object. In this way, the application server knows whether to send
LOB data values or LOB locators for a LOB column. Because the application server does
not know the desired format of the data to be returned, it does not send a QRYDTA object
until the first CNTQRY is received.

2d. If there are LOB data columns in the output of a command, then the Output Override
Descriptor Object (OUTOVR) may be sent with the command to specify the format of the
LOB columns. The command may either be a Continue Query (CNTQRY) requesting
additional rows in a query result set, or an Execute SQL Statement (EXCSQLSTT) where
the statement is not a stored procedure invocation.

The third case corresponds to the continuation of an interrupted set of rows in response to a
query or the execution of a stored procedure, such as the response to Continue Query
(CNTQRY). In this case, it is not necessary to describe the format of the rows being sent again
because the format is the same as the format of the rows of the query that were already sent
using the second form of DDM/FD:OCA data description and transmission. Therefore, the
receiver of a query result must retain the data description sent in response to the Open Query
and associate that description with the opened query.

144 DRDA Volume 1

Data Definition and Exchange Relationship of DRDA and DDM Objects and Commands

5.3 Relationship of DRDA and DDM Objects and Commands
This section describes the relationship between DRDA and DDM objects and commands.

5.3.1 DRDA Command to Descriptor Relationship

Data objects defined by DDM for DRDA can contain command data or reply data described by
either early or late FD:OCA descriptors. For the SQLCARD, SQLDARD, SQLPARD, SQLRSLRD,
SQLCINRD, SQLSTT, SQLSTTVRB, and SQLOBJNAM, the description of the data is completed
by the time ACCRDB completes. In these cases, the early descriptors are sufficient to define the
data that is flowing. The SQLDTA and SQLDTARD contain descriptors and data defined by
those late descriptors. The QRYDTA contains data defined by the QRYDSC late descriptor.

One or more FDODSCs or QRYDSCs are required to describe the data, and one or more
FDODTAs or QRYDTAs are required to contain the data.36 An FDODSC and an FDODTA are
contained within SQLDTA and SQLDTARD. When a QRYDSC or a QRYDTA is used, one of
each is all that is logically required. However, with the small block sizes DRDA allows, several
DDM objects can be required to contain the whole description or data. Also, transmission of the
data can begin before the entire result has been fetched from the database, so the result will be
sent in pieces. TYPDEFNAM and/or TYPDEFOVR can precede command data or reply data
objects as environmental overrides.

Table 5-1 on page 146 shows data associated with each DRDA command described in Section
4.3.1.11 on page 43. All descriptors named here are described later in this chapter.

Table 5-1 on page 146 consists of five columns. The first column names the command being
described. The second states whether command data (from application requester to application
server) or reply data (from application server to application requester) is described; therefore,
there are two rows for each command. The third column names the DDM carrier object, which is
a DDM code point defined in the DDM Reference. It will contain information described by the
DRDA descriptor named in the fourth column. In most cases, the third and fourth columns are
the same. In cases where several different DDM commands are required to carry the DRDA
object, these names will not match. This is most often the case when a command requires both
descriptor and data objects to flow on the link, and the DRDA object is split over command
boundaries. Note that CNTQRY has only the QRYDTA carrier because the descriptor has been
completely carried in the preceding OPNQRY or EXCSQLSTT command. The DRDA query
result will flow in response to an OPNQRY and zero or more CNTQRY commands. One or more
DRDA stored procedure result sets will flow in response to an EXCSQLSTT and zero or more

36. Although QRYDSC and SQLDARD both provide a description of the data, they are for different purposes and should not be
confused with each other. QRYDSC is part of the result of an OPNQRY or EXCSQLSTT to be used internally to describe the rows
being returned. SQLDARD is the result of a PRPSQLSTT or DSCSQLSTT and is mapped to an external SQLDA expected by the
application program. Only QRYDSC and not SQLDARD must be used as the basis of data representation for the data returned by
OPNQRY, EXCSQLSTT, and CNTQRY.

Part 1: Database Access Protocol 145

Relationship of DRDA and DDM Objects and Commands Data Definition and Exchange

CNTQRY commands. The fifth column is a description of the data content of the object.

Table 5-1 Data Objects, Descriptors, and Contents for DRDA Commands
__

DRDA
DRDA Command or DDM Object Descriptor Data Content

Command Reply Data Name Name Description__L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

ACCRDB Command None. None. None.__
ACCRDB Reply None. None. None.

or or
SQLCARD SQLCARD Return Code/Status__

BGNBND Command None. None. None.__
BGNBND Reply SQLCARD SQLCARD Return Code/Status__
BNDSQLSTT Command SQLSTT SQLSTT Modified SQL Statement

and and
Description of Variables that
appeared in the Statement

SQLSTTBRV SQLSTTVRB

__
BNDSQLSTT Reply SQLCARD SQLCARD Return Code/Status__
ENDBND Command None. None. None.__
ENDBND Reply SQLCARD SQLCARD Return Code/Status__
DRPPKG Command None. None. None.__
DRPPKG Reply SQLCARD SQLCARD Return Code/Status__
REBIND Command None. None. None.__
REBIND Reply SQLCARD SQLCARD Return Code/Status__

SQL Statement (No Variable
References)

PRPSQLSTT Command SQLSTT SQLSTT

__
PRPSQLSTT Reply SQLCARD SQLCARD Return Code/Status

or or
Result Row Description including
Labels

SQLDARD SQLDARD

__
EXCSQLSTT Command SQLDTA SQLDTA Data Descriptors and Values
(Notes 1, 2) or

SQLDTAMRW Data Descriptors and Values
or
OUTOVR SQLDTA
and
SQLDTA SQLDTA

or
SQLDTAMRW

or
SQLDTA SQLDTA

or
SQLDTAMRW

and
EXTDTA__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

146 DRDA Volume 1

Data Definition and Exchange Relationship of DRDA and DDM Objects and Commands

__
DRDA

DRDA Command or DDM Object Descriptor Data Content
Command Reply Data Name Name Description__L

L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

or
OUTOVR SQLDTA
and
SQLDTA SQLDTA

or
SQLDTAMRW

and
EXTDTA__

EXCSQLSTT Reply SQLCARD SQLCARD Return Code/Status
(Notes 2,3,4,5) and and

SQLRSLRD SQLRSLRD Information about Result Sets
and and
SQLCINRD SQLCINRD Column Information for a Result Set
and and
QRYDSC
and
QRYDTA

SQLDTARD Reply Data Descriptor and Values

or or
SQLDTARD SQLDTARD Return Code/Status and
and and Output Parameter Values

Information about Result SetsSQLRSLRD SQLRSLRD
and and
SQLCINRD SQLCINRD Column Information for a Result Set
and and
QRYDSC
and
QRYDTA

SQLDTARD Reply Data Descriptor and Values

or or
SQLDTARD SQLDTARD Return Code/Status and
and and Output Parameter Values
SQLRSLRD SQLRSLRD Information about Result Sets
and and
SQLCINRD SQLCINRD Column Information for a Result Set
and and
QRYDSC SQLDTARD Reply Data Descriptor and Values
and
EXTDTA Externalized FD:OCA Data
or or
SQLDTARD SQLDTARD Reply Data Descriptor and Values
or or
SQLDTARD SQLDTARD Reply Data Descriptor and Values
and
EXTDTA Externalized FD:OCA Data__

SQL Statement (No Variable
References)

EXCSQLIMM Command SQLSTT SQLSTT

__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Part 1: Database Access Protocol 147

Relationship of DRDA and DDM Objects and Commands Data Definition and Exchange

__
DRDA

DRDA Command or DDM Object Descriptor Data Content
Command Reply Data Name Name Description__L

L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

__
EXCSQLIMM Reply SQLCARD SQLCARD Return Code/Status__
DSCSQLSTT Command None. None. None.__
DSCSQLSTT Reply SQLCARD SQLCARD Return Code/Status

or or
Result Row or Input Parameter
Description Including Labels

SQLDARD SQLDARD

__
DSCRDBTBL Command SQLOBJNAM SQLOBJNAM SQL Table Name__
DSCRDBTBL Reply SQLCARD SQLCARD Return Code/Status

or or
SQLDARD SQLDARD Table Description__

OPNQRY Command SQLDTA SQLDTA Parameter Descriptor and Values
(Note 2) or or

SQLDTA SQLDTA
and
EXTDTA EXTDTA__

OPNQRY Reply SQLCARD SQLCARD Return Code/Status
(Note 6) or or

QRYDSC
and
QRYDTA

SQLDTARD Reply Data Descriptors and Values

__
CNTQRY Command OUTOVR SQLDTA Output Override Descriptor
(Note 2)__
CNTQRY Reply SQLCARD SQLCARD Return Code/Status
(Note 2) or or

QRYDTA SQLDTARD Reply Data Descriptor and Values
or or
QRYDTA
and
EXTDTA

SQLDTARD Reply Data Descriptor and Values

__
CLSQRY Command None. None. None.__
CLSQRY Reply SQLCARD SQLCARD Return Code/Status__
RDBCMM Command None. None. None.__
RDBCMM Reply SQLCARD SQLCARD Return Code/Status__
RDBRLLBCK Command None. None. None.

RDBRLLBCK Reply SQLCARD SQLCARD Return Code/Status__
EXCSQLSET Command None. None. None.__
EXCSQLSET Reply SQLCARD SQLCARD Return Code/Status__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Notes:

1. SQLDTAMRW is not supported in DRDA Level 1.

2. EXTDTA and OUTOVR are not supported in DRDA Levels 1, 2 or 3.

3. SQLRSLRD and SQLCINRD are not supported in DRDA Levels 1 or 2.

148 DRDA Volume 1

Data Definition and Exchange Relationship of DRDA and DDM Objects and Commands

4. If any LOB data is in the CALL parms, then the associated EXTDTAs must be
the last in the reply chain, so must flow after the result set objects.

5. If any LOB data is in a result set, then no QRYDTA is returned until the first
CNTQRY for the result set.

6. If any LOB data is in the query, then no QRYDTA is returned until the first
CNTQRY.

SQLDTA, SQLDTAMRW (SQLDTAMRW is not supported in DRDA Remote Unit of Work), and
SQLDTARD are the only late descriptors in Table 5-1 on page 146. SQLDTA, SQLDTAMRW, and
SQLDTARD have a dependency on the late descriptor, SQLDTAGRP. SQLDTARD also has a
dependency on SQLCADTA, which is another late descriptor. These are the only ones that must
be transmitted by FDODSC, or QRYDSC. Early descriptors and flows describe all other
command and reply data as stand-alone data in the appropriate DDM object.

5.3.2 Descriptor Classes

FD:OCA provides a powerful and flexible mechanism to model data or collections of data. To
describe DRDA objects, the FD:OCA constructs Simple Data Array (SDA), Group Data Array
(GDA), and Row Layout (RLO) triplets are used. Each SDA, GDA, and RLO is assigned, through
the Meta Data Definition triplet (MDD), a unique DRDA type. In the case of SDAs, the DRDA
type is always a data type that DRDA supports. Each group is assigned a DRDA type and
describes an ordered collection of other groups or Simple Data Arrays (possibly including length
overrides). A row is assigned a DRDA type and describes an ordered set of elements, each of
which is selected from one or more groups. An array is assigned a DRDA type and describes a
finite number of rows.

DRDA has four classes of descriptors that participate in defining user data. These classes are
described below:

1. Environmental descriptors show how each SQL and DRDA data type are represented on
the link. These descriptors are built from FD:OCA Meta Data Definition (MDD) triplets and
Simple Data Array (SDA) triplets.

These descriptors set maximum limits for lengths and indicate how floating point numbers
should be represented. The SDAs also represent integer data, such as byte reversed.

2. Group descriptors instantiate one or more fields into a collection or group. Groups can be
nullable as a whole, independent of the nullability of the individual component fields.
These descriptors are built from FD:OCA MDDs and GDA triplets (and Continue
Preceding Triplet (CPT) if needed).

These descriptors provide overrides for lengths or precision and scale of previously
specified environmental descriptors. For example, the general fixed decimal specification
allows up to 31 digits. Those 31 digits can be to the right of the decimal point. The group
descriptor specifies the actual values for some particular instance of a fixed decimal
number; for example, 5 digits with 2 to the right of the decimal point. A group of fields, so
defined, acquires a local identifier (LID) and can be subsequently referenced in later
descriptors by name.

DRDA requires a length override (non-zero value) for each referenced environmental
descriptor for output data (data originating at the application server) to optimize the
amount of storage allocated. The default SDA length for character data is 32767, which
allows an override up to that value. If no override is given, storage for the default 32767
might have to be allocated, even though space for one character can be all that is needed.

Part 1: Database Access Protocol 149

Relationship of DRDA and DDM Objects and Commands Data Definition and Exchange

To form nullable sets of fields, a group descriptor is used. A nullable group provides one
indicator byte that indicates the presence or absence of the whole group. The triplets that
such a descriptor references can be Environmental Descriptor SDAs (in which case the
overrides described above are applied as well) or other Group Descriptor GDAs (in which
case no overrides occur). The referenced GDAs can be either nullable or non-nullable.

3. Row descriptors instantiate a row of fields. Each row, like a row in a relational table, has
the same number of fields represented. Some fields can be null; some groups of fields can
be null (with just one null indicator); however, all fields are accounted for. These
descriptors are built from FD:OCA MDDs and RLO triplets.

The rows are constructed from previously specified groups. Where the group provided
specific length information about each field, the row strings the fields out into a one
dimensional vector. The groups that become part of the row can be a mixture of objects.
For example, the user data values that are returned as the result of a query are carried in a
row containing an SQLCA as well as the user data.

4. Array descriptors define open ended data structures. SQLDAs and user data are organized
as open ended repetitions of column descriptions and table data. These descriptions make
rows into tables, the size of which is determined by the amount of data that follows. These
descriptors are built from FD:OCA MDDs and RLO triplets.

References to row descriptors build these descriptors. The descriptors take one
dimensional vectors or rows and produce two dimensional tables. In the previous
example, the entire query result would be an array. There would be as many rows in the
array as there were rows in the answer set. Each of these rows would be the special
SQLCA/user data hybrid described above. (Nullability of the SQLCA group allows it to be
transmitted as a single byte in the normal case.)

The relationship between these DRDA classes is such that FD:OCA triplets of any class can
reference descriptors of the next lower numbered class only. This consistently maintains the
dimensionality of each class. The only exceptions to this next-lower rule are GDAs that build
Group Descriptors can reference both Environmental Descriptors and other Group Descriptors;
the result is still a group. Each of these classes corresponds to a meta data type used in MDD
descriptors for relational databases.

In addition, to comply with FD:OCA reference rules, all FD:OCA triplets referenced by any
triplet must precede that triplet. Therefore, all environmental triplets must precede the group
descriptor that references them. Similarly, all group triplets must precede the row triplets, and
these must precede the array describing triplets. See examples in Section 5.8.2 on page 259.

The early descriptors never actually flow on the link. The Environmental Descriptors are
determined by ACCRDB processing by means of TYPDEFNAM. The Group, Row, and Array
descriptors are agreed to during EXCSAT processing by means of the MGRLVL parameter for
the relational database manager.

The late descriptors physically flow on the link. These FD:OCA descriptors are always contained
within a DDM FDODSC, or QRYDSC. (See the blocking discussion in Chapter 7 on page 281.)

The data inside an FDODSC, or QRYDSC is always presented in high to low order byte ordering.
Other machines that use byte reversed numbers must translate the data because the numbers are
not byte reversed. There are no alphabetics, so CCSID is of no concern. There is also no floating
point data, so that is of no concern. The application requester and application server must send
the data exactly as shown in these examples. See the DDM Reference for more details and
diagrams.

150 DRDA Volume 1

Data Definition and Exchange DRDA Descriptor Definitions

5.4 DRDA Descriptor Definitions
Section 5.3.2 on page 149 described the logical dependency and physical ordering of the
descriptor triplets. This order is the proper sequence. First, define the basic descriptor building
blocks, assemble them into larger descriptor components, and finally assemble the descriptor
needed.

However, for DRDA, there are a large number of basic descriptor building blocks (such as the
data type information), which can obscure understanding of how descriptors are built. To avoid
this confusion, descriptor assembly will be explained using a top-down approach. Beginning
with the end product, which is the final descriptor, assembly will be broken down into its
component parts. Late arrays are discussed first, followed by late rows and late groups and then
early arrays, rows, and groups are presented. The environmental descriptors, early and late, are
discussed last. Until implementation time, the fine details of data types and machine
representation are not needed.

Part 1: Database Access Protocol 151

Late Descriptors Data Definition and Exchange

5.5 Late Descriptors
One class of DRDA objects’ descriptions are not known at connection time, but can only be
known at SQL statement execution time. These include descriptions of input host variables
passed by the application in support of OPNQRY and EXCSQLSTT, and descriptions of the
answer set returned in response to an OPNQRY or an EXCSQLSTT for an SQL static SELECT or
for an SQL CALL that invokes a stored procedure. In these cases, the number of host variables
or columns and their SQL data types and lengths are only known when the application executes
the statement. The description of the data is assembled dynamically and sent to the application
requester/application server along with (but preceding) the data. These are called late
descriptors.

The DRDA types are fixed at ACCRDB/ACCRDBRM processing. The SQL types of all input host
variables and constituent columns of an answer set must be mappable to one of these DRDA
types.

5.5.1 Late Array Descriptors

The following figures describe DRDA defined Late Array Descriptors. These array descriptors
are built on the one-dimensional row descriptors defined in Section 5.5.2 on page 155. These
array descriptors add one dimension to the structure of the objects (defined by rows). These
objects are all constructed with the FD:OCA Row Layout (RLO) triplet. Each descriptor consists
of a single RLO.

The format of these descriptors is described in Figure 5-5 on page 153 and Figure 5-6 on page
155. Each DRDA type consists of a Meta Data Definition (MDD) that states the DRDA semantics
of the descriptor followed by one RLO triplet that refers to the other RLO triplets.

The result is the definition of a two-dimensional object. This object is a logical array of
information. It can begin with a fixed number of occurrences of zero or more formats of lower
level rows. It can end with an indefinite number of occurrences of a single row format.

152 DRDA Volume 1

Data Definition and Exchange Late Descriptors

5.5.1.1 SQLCA with Data Array Description

Meta Data and Data Descriptor for SQLDTARD

Descriptor
Reference:
SQLCADTA

Descriptor in Hex: 07780005
0671F0E0

0401F0
0000

X’E0’ 0 (all) 0 (all)

Length
0

7

Row LID

Length
0

6

Identity
2

0

RepFactor

Identity
2

X’F0’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

ArrayUnit
X’04’

DRDA Type
6

SQLDTARD
X’F0’

Type
1

MDD
X’78’

Elem.Takn

Type
1

RLO
X’71’

1-byte1-byte 1-byte

Figure 5-5 SQLDTARD Array Descriptor (SQLCAs and Data as Reply Data)

These are the descriptions for the Late Array Descriptor parameters shown in Figure 5-5.

Upper Section of Figure
The Meta Data Definition applies to the descriptor that follows it. For DRDA, it specifies
exactly what the descriptor is used for. The same FD:OCA triplet can be used for several
purposes.

byte 0 The length of the FD:OCA MDD triplet is always 7 for DRDA.

byte 1 Meta Data Definition type indicator is always X‘78’ for MDDs.

byte 2 The Local Identifier for the MDD is always 0.

byte 3 Application Class for the MDD. The relational database is class X‘05’ for DRDA.
This byte is always X‘05’.

byte 4 Meta data type for the MDD is defined within the application class. DRDA has
defined four data types as described in Section 5.7 on page 245.

byte 5 Meta data reference type for the MDD. The DRDA style of reference is the next
byte contains the desired information. This is always X‘01’ for DRDA MDDs.

byte 6 Meta data reference value for this MDD. DRDA uses this value as the DRDA Type
indicator. Table 5-12 on page 245 describes the acceptable values.

Middle Section of Figure
In the middle section is an RLO triplet that refers to other RLO triplets. The RLO has a
header section (the small box with three parts) that contains the length, FD:OCA type, and
LID for the RLO.

Part 1: Database Access Protocol 153

Late Descriptors Data Definition and Exchange

The section below that (another box with three parts) can be short or long. It contains one or
more occurrences of the RLO’s repeating group, one occurrence for each row type to be
included in the final array.37

For each occurrence of a reference to a row descriptor RLO (a line in the box), there is a label
associated with the field, a pointer to the appropriate RLO, a number of elements taken
parameter (always 0 indicating that all of the elements of the row should be taken), and a
repetition factor. The repetition factor can be 0 for the last RLO reference. This factor
indicates that the final row appears an indefinite number of times. The actual number is not
known until the data is available.

Note: The page number of the definition of the referenced RLO appears to the right of
the box.

Descriptor in hex
The Descriptor in Hex section shows a fully constructed descriptor as an example.

37. This SQLDTARD descriptor has only one type of row. However, this description also applies to Section 5.6.2 on page 162, which
does, in fact, have multiple row types.

154 DRDA Volume 1

Data Definition and Exchange Late Descriptors

5.5.1.2 Data Array Description for Multi-Row Inserts

The SQLDTAMRW structure is not supported in DRDA Level 1.

Meta Data and Data Descriptor for SQLDTAMRW

Descriptor
Reference:
SQLDTA

Descriptor in Hex: 07780005
0671F4E4

0401F4
0000

X’E4’ 0 (all) 0 (all)

Length
0

7

Row LID

Length
0

6

Identity
2

0

RepFactor

Identity
2

X’F4’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

ArrayUnit
X’04’

DRDA Type
6

SQLDTAMRW
X’F4’

Type
1

MDD
X’78’

Elem.Takn

Type
1

RLO
X’71’

1-byte1-byte 1-byte

Figure 5-6 SQLDTAMRW Array Descriptor (Multi-Row Insert Data)

5.5.2 Late Row Descriptors

This section describes DRDA-defined Late Row Descriptors. These objects are all constructed
with the FD:OCA Row Layout (RLO) triplet and result in a one dimensional structure.

The format of these descriptors is only slightly different from the array descriptors. The top and
bottom are just like the late array descriptors (see Figure 5-5 on page 153). However, in the
middle there is one RLO triplet that refers to one or more group descriptors (GDAs) described in
Section 5.5.3 on page 157 and in Section 5.6.4 on page 177.

For each occurrence of a reference to a group descriptor GDA (a line in the box), there is a label
associated with the field, a pointer to the appropriate GDA, a parameter containing a count of
elements taken (always 0 indicating that all of the elements of the group should be taken), and a
repetition factor (always 1 indicating that exactly one occurrence of the group should be taken).

The result is the definition of a one dimensional object, a row or vector, or a control block
without any repeating groups.

Part 1: Database Access Protocol 155

Late Descriptors Data Definition and Exchange

5.5.2.1 Row Description for One Data Row

Meta Data and Data Descriptor for SQLDTA

Descriptor
Reference:
SQLDTAGRP

Descriptor in Hex: 07780005
0671E4D0

0301E4
0001

X’D0’ 0 (all) 1

Length
0

7

Row LID

Length
0

6

Identity
2

0

RepFactor

Identity
2

X’E4’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

Row Unit
X’03’

DRDA Type
6

SQLDTA
X’E4’

Type
1

MDD
X’78’

Elem.Takn

Type
1

RLO
X’71’

1-byte1-byte 1-byte

Figure 5-7 SQLDTA Row Descriptor

The SQLDTA describes all Input, Update, or Parameter fields for a single SQL statement or the
fields for one row of result data.

This descriptor carries type information (by SDA references from the SQLDTAGRP descriptor)
and length, precision, and scale information (in the SQLDTAGRP descriptor) and is packaged as
a single block (row).

156 DRDA Volume 1

Data Definition and Exchange Late Descriptors

5.5.2.2 Row Description for One Row with SQLCA and Data

Meta Data and Data Descriptor for SQLCADTA

Descriptor
Reference:
SQLCAGRP
SQLDTAGRP

Descriptor in Hex: 07780005
0971E054

0301E0
0001D000 01

X’54’
X’D0’

0 (all)
0 (all)

1
1

Length
0

7

Group LID

Length
0

9

Identity
2

0

RepFactor

Identity
2

X’E0’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

Row Unit
X’03’

DRDA Type
6

SQLCADTA
X’E0’

Type
1

MDD
X’78’

Elem.Takn

Type
1

RLO
X’71’

1-byte1-byte 1-byte

Figure 5-8 SQLCADTA Row Descriptor (One Row with SQLCA and Associated Data)

5.5.3 Late Group Descriptors

The group descriptors that follow collect field definitions together, specify length attributes,
provide ordering of the fields, provide nullability of the collection (with one null indicator), and
provide a local identifier (LID) for the group. The groups are all constructed with the FD:OCA
Group Data Array (GDA) triplet. For large groups (more than 84 fields), Continue Preceding
Triplet (CPT) is used repeatedly, as necessary, to contain enough GDA repeating groups.

The format of these descriptors is only slightly different from the row descriptors. The top and
bottom are the same as Figure 5-5 on page 153. However, in the middle is one GDA descriptor
(with 0 or more CPT triplets) where there was one RLO triplet. The GDA has a header section
(the small box with 3 parts) containing the length, FD:OCA type, and LID for the GDA. The box
below that (a box with 2 parts) can be short or long. It contains one or more occurrences of the
GDA repeating group, one occurrence for each field to be included in the group.

For each occurrence of a reference to an environmental SDA (a line in the box), there is a label
associated with the field, a pointer to the appropriate SDA, and the overriding length parameter.

The overriding length parameter is a 2-byte field.

• For all FD:OCA data types, except FD:OCA Generalized Strings, the last 15 bits of the
overriding length parameter is a signed 2-byte integer indicating the length of the data
described, according to the FD:OCA type of the data.

The first bit is ’0’b.

• For FD:OCA Generalized String data types, the overriding length parameter is a signed 2-
byte integer indicating the length of the length portion of the data.

Part 1: Database Access Protocol 157

Late Descriptors Data Definition and Exchange

The first bit is the FD:OCA placeholder indicator flag.

— If the FD:OCA placeholder indicator flag is set on (’1’b), the DRDA object carrying the
data described by the SQLDTAGRP contains only the length portion of the generalized
string. This data acts as FD:OCA placeholder for the value portion of the FD:OCA
Generalized String which is itself externalized to another DRDA object called the
EXTDTA.

The overriding length field gives the number of bytes in the FD:OCA placeholder.

— The FD:OCA placeholder indicator flag may not be set off (’0’b) in DRDA Level 4 for this
type of data. Thus, all such data must be externalized and must flow in an EXTDTA.

DRDA Level 4 specifies a length override value of 8, indicating that allowable placeholder
sizes are 2, 4, 6, or 8. The placeholder size is the minimum needed to hold the length value
for the largest possible data value. Thus, an FD:OCA Generalized String item whose
maximum length is less than 32767 has a 2-byte placeholder, while one whose maximum
length is less than 2147483647 has a 4-byte placeholder, and so on.

An EXTDTA object must flow for each FD:OCA Generalized String described, except if
the data is a nullable data item and the data is null or the data has a zero length (a
placeholder value of zero).

All of the numbers in the boxes are in decimal unless otherwise noted. See Section 5.6.6 on page
243 and Section 5.6.5 on page 197 for a discussion of environmental descriptors. The length
overrides are required (must not be zero) when referring to SDAs for output data (data
originating at the application server).

158 DRDA Volume 1

Data Definition and Exchange Late Descriptors

5.5.3.1 SQL Data Value Group Description

Meta Data and Data Descriptor for SQLDTAGRP

Length
0

7

Identity
2

0

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

GroupUnit
X’02’

DRDA Type
6

SQLDTAGRP
X’D0’

Type
1

MDD
X’78’

Env. LID

3N + 3
(N < 85)

Length Override

Length
0

Identity
2

X’D0’

Type
1

N-GDA
X’76’

Env. LID

3N + 3
(N < 85)

Length Override

Length
0

Identity
2

0

Type
1

CPT
X’7F’

Descriptor in Hex: 07780005
..76D0..
..7F00..

0201D0
........
........

2-bytes1-byte

as req’d
as req’d
as req’d

as req’d
as req’d
as req’d

as req’d
as req’d
as req’d

as req’d
as req’d
as req’d

........

........
........

Column Name
or User
Data Label:

Column 001
. . .
Column x

Note: Continue
Preceding Triplet
Needed to cover more
than 84 columns. CPT
is optional otherwise.

Column x+1
. . .
Column last

Figure 5-9 SQLDTAGRP Group Descriptor (Field Specs for One Row of SQL Data)

The dots for the descriptor in hex indicate that the values are not known until runtime.

Part 1: Database Access Protocol 159

Late Descriptors Data Definition and Exchange

5.5.3.2 Overriding Output Formats

For most output columns, the target system returns data for the column in a format determined
by the target. This format will be designated as the default format for the output column and is
dependent on the data type of the column. The default format is described in an FDODSC or
QRYDSC object returned by the target to the source system. The source system is responsible for
performing numeric conversions and character translations from the default format to the actual
format desired by the application.

This protocol is expanded for LOB data since applications may request that a LOB data column
be returned either as value bytes or as a locator value. Since a locator value is generated by the
target to represent the LOB column, the source system can only return a locator value to the
application if the target system generated it and returned it in that format.

The default format for a LOB output column is as data value bytes. If the application wants to
receive a locator value for the column, the source system sends a descriptor object, called the
OUTOVR command data object, with the command that returns LOB data columns as output.

The OUTOVR object contains descriptors that override the format of output data columns. It
consists of an SQLDTARD descriptor, including an SQLDTAGRP which overrides each output
column as follows:

• Each column whose format is not to be overridden is represented in the SQLDTAGRP by a
triplet consisting of a LID value of zero and a length override value of zero. Each such triplet
is known as a default triplet.

• Each column whose format is to be overridden is represented by a valid triplet. Each such
triplet is known as an override triplet.

• Only LOB locator LIDs may be specified in an override triplet.

• Each column in the output must be represented in the SQLDTAGRP by either a default triplet
or an override triplet.

• The ith triplet overrides the ith output column.

When an OUTOVR object is received with a command that returns output, then:

— If the ith triplet is a default triplet, then the ith column in the output is returned in the
default format.

— If the ith triplet is an override triplet, then the ith column in the output is returned in the
override format, if it is valid.

The following QRYDSC describes an answer set with three columns, an NFCS column, an NOCS
column, and an NRI column.

160 DRDA Volume 1

Data Definition and Exchange Late Descriptors

Table 5-2 QRYDSC with Default Formats

Reference Hex Representation Description___
DDM codepointQRYDSC 001F241A
Start nullable group descriptorSQLDTAGRP 0C76D0
Continue—one CHAR, one CLOB, and one
ROWID column

SQLDTAGRP 310014CB 00021F00 28

Start row descriptorSQLCADTA 0971E0
Continue—one group X’54’SQLCADTA 540001
Continue—one group X’D0’SQLCADTA D00001
Start array descriptorSQLDTARD 0671F0
Continue—all row X’E0’SQLDTARD E00000___L

L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L

To override the NOCS column (X’CB’ LID) in the above QRYDSC with an NOCL format (X’1B’
LID), the following OUTOVR object is sent with the CNTQRY command:

Table 5-3 OUTOVR with One Override Triplet

Reference Hex Representation Description___
DDM codepointOUTOVR 001F2415
Start nullable group descriptorSQLDTAGRP 0C76D0
Continue—one default triplet, one override
triplet for NOCL, one default triplet

SQLDTAGRP 0000001B 00040000 00

Start row descriptorSQLCADTA 0971E0
Continue—one group X’54’SQLCADTA 540001
Continue—one group X’D0’SQLCADTA D00001
Start array descriptorSQLDTARD 0671F0
Continue—all row X’E0’SQLDTARD E00000___L

L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L

Part 1: Database Access Protocol 161

Early Descriptors Data Definition and Exchange

5.6 Early Descriptors
During application requester to application server connection processing, a subset of the DRDA
object descriptions is fixed and cannot be changed for the duration of that connection. These
descriptors are called the DRDA early descriptors and consist of Simple Data Arrays (SDAs),
Group Data Arrays (GDAs), rows and arrays (RLOs). The Simple Data Arrays describe each data
type supported by DRDA and are called the Early Environmental Descriptors. Additionally, the
early descriptors include a small number of groups, rows, and arrays (GDAs and RLOs). Once
the connection process has been established, the application requester/application server need
only send the DRDA object to the application server/application requester; the descriptor will
not be sent.

An application requester or application server commits support to the early descriptors at two
distinct points during connection processing:

1. The Early DRDA Group, Row, and Array Descriptors are established during
EXCSAT/EXCSATRD processing by the manager level (MGRLVL) of the SQLAM.

2. The Early Environmental Descriptors (SDAs) are established during
ACCRDB/ACCRDBRM processing by TYPDEFNAM and TYPDEFOVR.

These descriptors represent the supported DRDA types and are fixed and identical across all five
environments: QTDSQL370, QTDSQLX86, QTDSQL400, QTDSQLASC, and QTDSQLVAX.
Accepting one of these environments commits the application requester or application server to
support all DRDA types in a specific machine representation. While the DRDA types cannot
change, data type representations can be changed at various points in the processing of
commands and replies.

5.6.1 Initial DRDA Type Representation

The DRDA type representations are initially established from TYPDEFNAM and TYPDEFOVR
on ACCRDB/ACCRDBRM. These are required parameters, and there are no defaults. The
representation of numeric DRDA types is defined by the TYPDEFNAM parameter, while the
representation of character data (Single Byte, Mixed, Graphic) is defined by the CCSIDs specified
by the TYPDEFOVR parameter. Once the DRDA data type representations have been resolved
(TYPDEFNAM and TYPDEFOVR), the Early Environmental Descriptors are complete.
Command and reply data can then be assembled or parsed subject to those representations.

5.6.2 Early Array Descriptors

Figure 5-12 on page 165 to Figure 5-21 on page 174 describe DRDA-defined Early Array
Descriptors. These are similar to the late array descriptors in that they make two dimensional
structures from one dimensional ones.

The arrays described contain database management system and application parameter
information. They describe only structures that the database management system knows of well
in advance. Because of this early understanding, these descriptors do not flow on the link. Rather
they are the foundation for DRDA Command and Reply data objects.

162 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.2.1 SQLRSLRD Array Description

Meta Data and Data Descriptor for SQLRSLRD

Descriptor
Reference:
SQLNUMROW
SQLRSROW

Descriptor in Hex: 07780005
09717F68

04017F
000116F00 00

X’68’
X’6F’

0 (all)
0 (all)

1
0 (all)

Length
0

7

Row LID

Length
0

9

Identity
2

0

RepFactor

Identity
2

X’7F’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

ArrayUnit
X’04’

DRDA Type
6

SQLRSLRD
X’7F’

Type
1

MDD
X’78’

Elem.Takn

Type
1

RLO
X’71’

1-byte1-byte 1-byte

Figure 5-10 SQLRSLRD Array Descriptor

The SQLRSLRD Array Descriptor figure describes information about the result sets contained
within the reply data of EXCSQLSTT.

Part 1: Database Access Protocol 163

Early Descriptors Data Definition and Exchange

5.6.2.2 SQLCINRD Array Description

Meta Data and Data Descriptor for SQLCINRD

Descriptor
Reference:
SQLNUMROW
SQLCIROW

Descriptor in Hex: 07780005
09717B68

04017B
00016B00 00

X’68’
X’6B’

0 (all)
0 (all)

1
0 (all)

Length
0

7

Row LID

Length
0

9

Identity
2

0

RepFactor

Identity
2

X’7B’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

ArrayUnit
X’04’

DRDA Type
6

SQLCINRD
X’7B’

Type
1

MDD
X’78’

Elem.Takn

Type
1

RLO
X’71’

1-byte1-byte 1-byte

Figure 5-11 SQLCINRD Array Descriptor

The SQLCINRD Array Descriptor figure describes column name information for result sets
contained within the reply data of EXCSQLSTT.

164 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.2.3 SQLSTTVRB Array Description

Meta Data and Data Descriptor for SQLSTTVRB

Descriptor
Reference:
SQLNUMROW
SQLVRBROW

Descriptor in Hex: 07780005
09717E68

04017E
00016E00 00

X’68’
X’6E’

0 (all)
0 (all)

1
0 (all)

Length
0

7

Row LID

Length
0

9

Identity
2

0

RepFactor

Identity
2

X’7E’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

ArrayUnit
X’04’

DRDA Type
6

SQLSTTVRB
X’7E’

Type
1

MDD
X’78’

Elem.Takn

Type
1

RLO
X’71’

1-byte1-byte 1-byte

Figure 5-12 SQLSTTVRB Array Descriptor

The SQLSTTVRB Array Descriptor figure describes the variables appearing in an SQL statement.

Part 1: Database Access Protocol 165

Early Descriptors Data Definition and Exchange

5.6.2.4 SQLCA with SQLPA Array Description

Meta Data and Data Descriptor for SQLPARD

Descriptor
Reference:
SQLCARD
SQLNUMROW
SQLPAROW

X’64’
X’68’
X’66’

0 (all)
0 (all)
0 (all)

1
1

0 (all)

Length
0

7

Row LID

Length
0

12

Identity
2

0

RepFactor

Identity
2

X’78’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

ArrayUnit
X’04’

DRDA Type
6

SQLPARD
X’78’

Type
1

MDD
X’78’

Elem.Takn

Type
1

RLO
X’71’

Descriptor in Hex: 07780005
0C717864

040178
00016800 01660000

1-byte1-byte 1-byte

Figure 5-13 SQLPARD Array Descriptor (SQLCA Followed by an SQLPA as Reply Data)

166 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.2.5 SQLCA with SQLDA Array Description

Meta Data and Data Descriptor for SQLDARD

Descriptor
Reference:
SQLCARD
SQLNUMROW
SQLDAROW

X’64’
X’68’
X’60’

0 (all)
0 (all)
0 (all)

1
1

0 (all)

Length
0

7

Row LID

Length
0

12

Identity
2

0

RepFactor

Identity
2

X’74’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

ArrayUnit
X’04’

DRDA Type
6

SQLDARD
X’74’

Type
1

MDD
X’78’

Elem.Takn

Type
1

RLO
X’71’

Descriptor in Hex: 07780005
0C717464

040174
00016800 01600000

1-byte1-byte 1-byte

Figure 5-14 SQLDARD Array Descriptor (SQLCA Followed by an SQLDA as Reply Data)

Part 1: Database Access Protocol 167

Early Descriptors Data Definition and Exchange

5.6.3 Early Row Descriptors

The next figures describe DRDA-defined Early Row Descriptors. These define one dimensional
rows or vectors of information that the database management system understands.

5.6.3.1 SQL Result Set Description

Meta Data and Data Descriptor for SQLRSROW

Descriptor
Reference:
SQLRSGRP X’5F’ 0 (all) 1

Length
0

7

Group LID

Length
0

6

Identity
2

0

RepFactor

Identity
2

X’6F’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

Row Unit
X’03’

DRDA Type
6

SQLRSROW
X’6F’

Type
1

MDD
X’78’

Elem.Takn

Type
1

RLO
X’71’

Descriptor in Hex: 07780005
06716F5F

03016F
0001

1-byte1-byte 1-byte

Figure 5-15 SQLRSROW Row Descriptor (Information for One Result Set)

168 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.3.2 SQL Result Set Column Information Description

Meta Data and Data Descriptor for SQLCIROW

Descriptor
Reference:
SQLCIGRP X’5B’ 0 (all) 1

Length
0

7

Group LID

Length
0

6

Identity
2

0

RepFactor

Identity
2

X’6B’

Class
3

Rel;DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

Row Unit
X’03’

DRDA Type
6

SQLCIROW
X’6B’

Type
1

MDD
X’78’

Elem.Takn

Type
1

RLO
X’71’

Descriptor in Hex: 07780005
06716B5B

03016B
0001

1-byte1-byte 1-byte

Figure 5-16 SQLCIROW Row Descriptor (Information for One Column)

Part 1: Database Access Protocol 169

Early Descriptors Data Definition and Exchange

5.6.3.3 SQL Statement Variables Description

Meta Data and Data Descriptor for SQLVRBROW

Descriptor
Reference:
SQLVRBGRP
(Note: Version depends on
the DDM Level.)

X’5E’ 0 (all) 1

Length
0

7

Group LID

Length
0

6

Identity
2

0

RepFactor

Identity
2

X’6E’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

Row Unit
X’03’

DRDA Type
6

SQLVRBROW
X’6E’

Type
1

MDD
X’78’

Elem.Takn

Type
1

RLO
X’71’

Descriptor in Hex: 07780005
06716E5E

03016E
0001

1-byte1-byte 1-byte

Figure 5-17 SQLVRBROW Row Descriptor (All Information for one Variable)

170 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.3.4 SQL Statement Row Description

Meta Data and Data Descriptor for SQLSTT

Descriptor
Reference:
SQLSTTGRP X’5C’ 0 (all) 1

Length
0

7

Group LID

Length
0

6

Identity
2

0

RepFactor

Identity
2

X’6C’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

Row Unit
X’03’

DRDA Type
6

SQLSTT
X’6C’

Type
1

MDD
X’78’

Elem.Takn

Type
1

RLO
X’71’

Descriptor in Hex: 07780005
06716C5C

03016C
0001

1-byte1-byte 1-byte

Figure 5-18 SQLSTT Row Descriptor (One SQL Statement)

This row descriptor consists of a single long variable character string that contains a full SQL
statement. The statement begins with the first character of the SQL verb (such as U for UPDATE)
and ends with the last non-blank character before any terminating punctuation.

The binder must specially treat SQL statements that contain references to program variables.
Detailed rules are listed in Section 7.10 on page 296.

Valid statements are defined in ISO/IEC 9075: 1992, Database Language SQL (hereafter abbreviated
to ISO SQL). Product-specific non-ISO SQL statements are described in the individual product
references.

Part 1: Database Access Protocol 171

Early Descriptors Data Definition and Exchange

5.6.3.5 SQL Object Name Row Description

Meta Data and Data Descriptor for SQLOBJNAM

Descriptor
Reference:
SQLOBJGRP X’5A’ 0 (all) 1

Length
0

7

Group LID

Length
0

6

Identity
2

0

RepFactor

Identity
2

X’6A’

Class
3

Rel;DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

Row Unit
X’03’

DRDA Type
6

SQLOBJNAM
X’6A’

Type
1

MDD
X’78’

Elem.Takn

Type
1

RLO
X’71’

Descriptor in Hex: 07780005
06716A5A

03016A
0001

1-byte1-byte 1-byte

Figure 5-19 SQLOBJNAM Row Descriptor (One SQL Object Name)

172 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.3.6 SQL Number of Elements Row Description

Meta Data and Data Descriptor for SQLNUMROW

Descriptor
Reference:
SQLNUMGRP X’58’ 0 (all) 1

Length
0

7

Group LID

Length
0

6

Identity
2

0

RepFactor

Identity
2

X’68’

Class
3

Rel;DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

Row Unit
X’03’

DRDA Type
6

SQLNUMROW
X’68’

Type
1

MDD
X’78’

Elem.Takn

Type
1

RLO
X’71’

Descriptor in Hex: 07780005
06716858

030168
0001

1-byte1-byte 1-byte

Figure 5-20 SQLNUMROW Row Descriptor

Part 1: Database Access Protocol 173

Early Descriptors Data Definition and Exchange

5.6.3.7 SQL Privileges Area Repeating Group Row Description

Meta Data and Data Descriptor for SQLPAROW

Descriptor
Reference:
SQLPAGRP X’56’ 0 (all) 1

Length
0

7

Group LID

Length
0

6

Identity
2

0

RepFactor

Identity
2

X’66’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

Row Unit
X’03’

DRDA Type
6

SQLPAROW
X’66’

Type
1

MDD
X’78’

Elem.Takn

Type
1

RLO
X’71’

Descriptor in Hex: 07780005
06716656

030166
0001

1-byte1-byte 1-byte

Figure 5-21 SQLPAROW SQLPA Repeating Group Row Descriptor

174 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.3.8 SQL Communication Area Row Description

Meta Data and Data Descriptor for SQLCARD

Descriptor
Reference:
SQLCAGRP X’54’ 0 (all) 1

Length
0

7

Group LID

Length
0

6

Identity
2

0

RepFactor

Identity
2

X’64’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

Row Unit
X’03’

DRDA Type
6

SQLCARD
X’64’

Type
1

MDD
X’78’

Elem.Takn

Type
1

RLO
X’71’

Descriptor in Hex: 07780005
06716454

030164
0001

1-byte1-byte 1-byte

Figure 5-22 SQLCARD Row Descriptor (SQLCA as Presented on the Link)

Part 1: Database Access Protocol 175

Early Descriptors Data Definition and Exchange

5.6.3.9 SQL Data Area Row Description

Meta Data and Data Descriptor for SQLDAROW

Descriptor
Reference:
SQLDAGRP
(Note: Version depends on
the DDM Level.)

X’50’ 0 (all) 1

Length
0

7

Group LID

Length
0

6

Identity
2

0

RepFactor

Identity
2

X’60’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

Row Unit
X’03’

DRDA Type
6

SQLDAROW
X’60’

Type
1

MDD
X’78’

Elem.Takn

Type
1

RLO
X’71’

Descriptor in Hex: 07780005
06716050

030160
0001

1-byte1-byte 1-byte

Figure 5-23 SQLDAROW Row Descriptor (SQLDA Describing Variables during Bind)

176 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.4 Early Group Descriptors

Figure 5-24 to Figure 5-34 on page 192 describe DRDA-defined Early Group Descriptors. These
define database management system understood groups of fields. As with the late descriptors,
length attributes, sequence, and collection nullability are specified.

5.6.4.1 SQL Result Set Group Description

Meta Data and Data Descriptor for SQLRSGRP

X’14’
X’3E’
X’32’
X’02’

Length
0

7

Env. LID

Length
0

15

Identity
2

0

Identity
2

X’5F’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

GroupUnit
X’02’

DRDA Type
6

SQLRSGRP
X’5F’

Type
1

MDD
X’78’

Length Override

Type
1

GDA
X’75’

Descriptor in Hex: 07780005
0F755F14

02015F
00043E00 1E32001E 020004

2-bytes1-byte

4
30
30

4

Data Label:

SQLRSLOCATOR
SQLRSNAME_m
SQLRSNAME_s
SQLRSNUMROWS

DRDA Type:

RSL
VCM
VCS
I4

Figure 5-24 SQLRSGRP Group Descriptor (Information for One Result Set)

Table 5-4 on page 178 describes the usage of each of the fields of the SQL Result Set group.

Part 1: Database Access Protocol 177

Early Descriptors Data Definition and Exchange

Table 5-4 SQL Result Set Field Usage
__

Field Name Usage__
Result set locator value. The value of this field should be unique
within the final SQL Result array.

SQLRSLOCATOR

__
SQLRSNAME_m
SQLRSNAME_s

Name of the result set as provided by the stored procedure that
generated the result set. This string can have any syntax that the
application requester can handle. The value of this field should
be unique within the final SQL Result array. SQLRSNAME_m
and SQLRSNAME_s are mutually exclusive; that is, only one can
be specified with a non-zero length. If both are non-zero, return
DTAMCHRM.__
The number of rows (or estimated number of rows) in the result
set.

SQLRSNUMROWS

__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Note: All fields above are required.

178 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.4.2 SQL Result Set Column Information Group Description

Meta Data and Data Descriptor for SQLCIGRP

X’3E’
X’32’
X’3E’
X’32’
X’3E’
X’32’

Length
0

7

Env. LID

Length
0

21

Identity
2

0

Identity
2

X’5B’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

GroupUnit
X’02’

DRDA Type
6

SQLCIGRP
X’5B’

Type
1

MDD
X’78’

Length Override

Type
1

GDA
X’75’

Descriptor in Hex: 07780005
15755B3E
00FE3200

02015B
001E3200 1E3E001E 32001E3E
FE

2-bytes1-byte

30
30
30
30

254
254

Data Label:

SQLCNAME_m
SQLCNAME_s
SQLCLABEL_m
SQLCLABEL_s
SQLCOMMENTS_m
SQLCOMMENTS_s

DRDA Type:

VCM
VCS
VCM
VCS
VCM
VCS

Figure 5-25 SQLCIGRP Group Descriptor (Information for One Column)

Table 5-5 on page 180 describes the usage of each of the fields of the SQL Result Set Column
Information group.

Part 1: Database Access Protocol 179

Early Descriptors Data Definition and Exchange

Table 5-5 SQL Result Set Column Information Field Usage
__

Field Name Usage__
SQLCNAME_m
SQLCNAME_s

Name of the column of a result set returned by a stored
procedure as it would appear in an SQL statement.
SQLCNAME_m and SQLCNAME_s are mutually exclusive; that
is, only one can be specified with a non-zero length. If both are
non-zero, then process as if DTAMCHRM had been received.__

SQLCLABEL_m
SQLCLABEL_s

Descriptive label associated with this column. SQLCLABEL_m
and SQLCLABEL_s are mutually exclusive; that is, only one can
be specified with a non-zero length. If both are non-zero, then
process as if DTAMCHRM had been received.__

SQLCCOMMENTS_m
SQLCCOMMENTS_s

Comments or remarks (long description) associated with this
column. SQLCCOMMENTS_m and SQLCCOMMENTS_s are
mutually exclusive; that is, only one can be specified with a non-
zero length. If both are non-zero, then process as if DTAMCHRM
had been received.__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Note: The fields above are not required. When names, labels, or comments are unavailable,
two zero-length strings (four bytes containing X‘00000000’) are returned for each
type of information that is unavailable.

180 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.4.3 SQL Statement Variables Group Description (DDM Levels Below 6)

Meta Data and Data Descriptor for SQLVRBGRP

X’04’
X’04’
X’02’
X’04’
X’26’
X’3E’
X’32’
X’3E’
X’32’

Length
0

7

Env. LID

Length
0

30

Identity
2

0

Identity
2

X’5E’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

GroupUnit
X’02’

DRDA Type
6

SQLVRBGRP
X’5E’

Type
1

MDD
X’78’

Length Override

Type
1

GDA
X’75’

Descriptor in Hex: 07780005
1E755E04
00023E00

02015E
00020400 02020004 04000226
40320040 3E004032 0040

2-bytes1-byte

2
2
4
2
2

64
64
64
64

Data Label:

SQLPRECISION
SQLSCALE
SQLLENGTH
SQLTYPE
SQLCCSID
SQLNAME_m
SQLNAME_s
SQLDIAGNAME_m
SQLDIAGNAME_s

DRDA Type:

I2
I2
I4
I2
FB
VCM
VCS
VCM
VCS

The abbreviations _m and _s stand for mixed and single, respectively.

Figure 5-26 SQLVRBGRP Group Descriptor (Info. for One Variable) (DDM Levels Below 6)

Table 5-6 on page 182 describes the usage of each of the fields of the DRDA SQL Data Area.

Part 1: Database Access Protocol 181

Early Descriptors Data Definition and Exchange

Table 5-6 DRDA SQL Data Area Field Usage (DDM Levels Below 6)
__

Field Name Usage__
Precision of a fixed decimal field—0 for other types.SQLPRECISION__
Scale of a fixed decimal or zoned decimal field—0 for other
types.

SQLSCALE

__
Length of the field—not counting the length field.SQLLENGTH__

SQLTYPE SQL Data Type associated with this field.__
SQLCCSID 0 or the CCSID for this column.__
SQLNAME_m
SQLNAME_s

Name of the program variable as it appeared in the original SQL
statement. This string can have any syntax that the application
requester can handle. The same name can be used several times
when structure expansions are performed. SQLNAME_m and
SQLNAME_s are mutually exclusive; that is, only one can be
specified with a non-zero length. If both are non-zero, return
DTAMCHRM.__

SQLDIAGNAME_m
SQLDIAGNAME_s

Some fully qualified name of a program variable. This string can
have any syntax that the application requester can handle. When
the values in this field are identical for different rows in the final
SQL Statement Variables Array, they refer to the same program
variable instance. A length of zero specifies the default. The
default value for this field is the value of the related SQLNAME.
SQLDIAGNAME_m and SQLDIAGNAME_s are mutually
exclusive; that is, only one can be specified with a non-zero
length. If both are non-zero, return DTAMCHRM.__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Note: All fields above are required.

182 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.4.4 SQL Statement Variables Group Description (DDM Level 6 and Above)

Meta Data and Data Descriptor for SQLVRBGRP

X’04’
X’04’
X’16’
X’04’
X’26’
X’3E’
X’32’
X’3E’
X’32’

Length
0

7

Env. LID

Length
0

30

Identity
2

0

Identity
2

X’5E’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

GroupUnit
X’02’

DRDA Type
6

SQLVRBGRP
X’5E’

Type
1

MDD
X’78’

Length Override

Type
1

GDA
X’75’

Descriptor in Hex: 07780005
1E755E04
00023E00

02015E
00020400 02160008 04000226
40320040 3E004032 0040

2-bytes1-byte

2
2
8
2
2

64
64
64
64

Data Label:

SQLPRECISION
SQLSCALE
SQLLENGTH
SQLTYPE
SQLCCSID
SQLNAME_m
SQLNAME_s
SQLDIAGNAME_m
SQLDIAGNAME_s

DRDA Type:

I2
I2
I8
I2
FB
VCM
VCS
VCM
VCS

The abbreviations _m and _s stand for mixed and single, respectively.

Figure 5-27 SQLVRBGRP Group Descriptor (Info. for One Variable) (DDM Level 6 and Above)

Table 5-7 on page 184 describes the usage of each of the fields of the DRDA SQL Data Area.

Part 1: Database Access Protocol 183

Early Descriptors Data Definition and Exchange

Table 5-7 DRDA SQL Data Area Field Usage (DDM Level 6 and Above)
__

Field Name Usage__
Precision of a fixed decimal field—0 for other types.SQLPRECISION__
Scale of a fixed decimal or zoned decimal field—0 for other
types.

SQLSCALE

__
Length of the field—not counting the length field.SQLLENGTH__

SQLTYPE SQL Data Type associated with this field.__
SQLCCSID 0 or the CCSID for this column.__
SQLNAME_m
SQLNAME_s

Name of the program variable as it appeared in the original SQL
statement. This string can have any syntax that the application
requester can handle. The same name can be used several times
when structure expansions are performed. SQLNAME_m and
SQLNAME_s are mutually exclusive; that is, only one can be
specified with a non-zero length. If both are non-zero, return
DTAMCHRM.__

SQLDIAGNAME_m
SQLDIAGNAME_s

Some fully qualified name of a program variable. This string can
have any syntax that the application requester can handle. When
the values in this field are identical for different rows in the final
SQL Statement Variables Array, they refer to the same program
variable instance. A length of zero specifies the default. The
default value for this field is the value of the related SQLNAME.
SQLDIAGNAME_m and SQLDIAGNAME_s are mutually
exclusive; that is, only one can be specified with a non-zero
length. If both are non-zero, return DTAMCHRM.__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Note: All fields above are required.

184 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.4.5 SQL Statement Group Description

Env. LID Length Override

2-bytes

Data Label:

SQLSTATEMENT_m
SQLSTATEMENT_s

DRDA Type:

LVCM
LVCS

Meta Data and Data Descriptor for SQLSTTGRP

Descriptor in Hex: 07780005
09755C40

02015C
7FFF347F FF

X’40’
X’34’

Length
0

7

Length
0

9

Identity
2

0

Identity
2

X’5C’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

GroupUnit
X’02’

DRDA Type
6

SQLSTTGRP
X’5C’

Type
1

MDD
X’78’

Type
1

GDA
X’75’

1-byte

32767
32767

Figure 5-28 SQLSTTGRP Group Descriptor (One SQL Statement)

This group defines a pair of variable character strings, one of which contains an SQL statement.
SQLSTATEMENT_m and SQLSTATEMENT_s are mutually exclusive; that is, only one non-zero
length value can be specified for the duplicated field SQLSTATEMENT. If both are non-zero,
return DTAMCHRM.

Part 1: Database Access Protocol 185

Early Descriptors Data Definition and Exchange

5.6.4.6 SQL Object Name Group Description

Env. LID Length Override

2-bytes

Data Label:

SQLOBJECTNAME_m
SQLOBJECTNAME_s

DRDA Type:

VCM
VCS

Meta Data and Data Descriptor for SQLOBJGRP

Descriptor in Hex: 07780005
09755A3E

02015A
00FE3200 FE

X’3E’
X’32’

Length
0

7

Length
0

9

Identity
2

0

Identity
2

X’5A’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

GroupUnit
X’02’

DRDA Type
6

SQLOBJGRP
X’5A’

Type
1

MDD
X’78’

Type
1

GDA
X’75’

1-byte

254
254

Figure 5-29 SQLOBJGRP Group Descriptor (One SQL Object Name)

This group defines a pair of variable character strings, one of which contains the name of a
collection, package, index, table, or view. The name can be a one, two, or three-part relational
database object name. SQLOBJECTNAME_m and SQLOBJECTNAME_s are mutually exclusive;
that is, only one non-zero length value can be specified for the duplicated field. If both are non-
zero, return DTAMCHRM.

186 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.4.7 SQL Number of Elements Group Description

Env. LID Length OverrideData Label:

SQLNUM

DRDA Type:

12

Meta Data and Data Descriptor for SQLNUMGRP

X’04’

Length
0

7

Length
0

6

Identity
2

0

Identity
2

X’58’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

GroupUnit
X’02’

DRDA Type
6

SQLNUMGRP
X’58’

Type
1

MDD
X’78’

Type
1

GDA
X’75’

2-bytes

Descriptor in Hex: 07780005
06755804

020158
0002

1-byte

2

Figure 5-30 SQLNUMGRP Group Descriptor

This group defines the number of entries in some DRDA array objects. It is used to allocate
internal storage for the object before the entire object is received.

Part 1: Database Access Protocol 187

Early Descriptors Data Definition and Exchange

5.6.4.8 SQL Privileges Area Group Description

Meta Data and Data Descriptors for SQLPAGRP

X’3E’
X’32’
X’3E’
X’32’
X’30’
X’30’
X’30’
X’30’

Length
0

7

Env. LID

Length
0

27

Identity
2

0

Identity
2

X’56’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

GroupUnit
X’02’

DRDA Type
6

SQLPAGRP
X’56’

Type
1

MDD
X’78’

Length Override

Type
1

GDA
X’75’

Descriptor in Hex: 07780005
1B75563E
00013000

020156
00123200 123E0012 32001230
01300001 300019

2-bytes1-byte

18
18
18
18

1
1
1

25

Data Label:

SQLPCOL_m
SQLPCOL_s
SQLPOBJ_m
SQLPOBJ_s
SQLPALS
SQLPOTP
SQLPOWN
SQLPPRVS

DRDA Type:

VCM
VCS
VCM
VCS
FCS
FCS
FCS
FCS

Figure 5-31 SQLPAGRP Group Descriptor

Table 5-8 on page 189 describes the usage of each of the fields of the SQL Privileges Area
Repeating data area.

188 DRDA Volume 1

Data Definition and Exchange Early Descriptors

Table 5-8 DRDA SQL Privileges Area Repeating Field Usage
__

Field Name Usage__
SQLPCOL_m
SQLPCOL_s

Collection-ID of the object being described. SQLPCOL_m and
SQLPCOL_s are mutually exclusive; that is, only one can be
specified with a non-zero length. If both are non-zero, then
process as if DTAMCHRM had been received.__

SQLPOBJ_m
SQLPOBJ_s

Name of an object being described. SQLPOBJ_m and
SQLPOBJ_s are mutually exclusive; that is, only one can be
specified with a non-zero length. If both are non-zero, then
process as if DTAMCHRM had been received.__

SQLPALS Specifies whether SQLPOBJ is an alias.__
SQLPOTP Object type.__

Specifies whether the user owns or has special authority on the
object.

SQLPOWN

__
String describing the privileges held by the executor of the
DESCRIBE PRIVILEGES command on the object being
described.

SQLPPRVS

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

SQL and the individual implementations of SQL define meanings of the values in each of the
fields in Table 5-8. See ISO SQL and specific product references for details.

Part 1: Database Access Protocol 189

Early Descriptors Data Definition and Exchange

5.6.4.9 SQL Communication Area Group Description

Meta Data and Data Descriptors for SQLCAGRP

X’02’
X’30’
X’30’
X’52’’

Length
0

7

Env. LID

Length
0

15

Identity
2

0

Identity
2

X’54’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

GroupUnit
X’02’

DRDA Type
6

SQLCAGRP
X’54’

Type
1

MDD
X’78’

Length Override

Type
1

N-GDA
X’76’

Descriptor in Hex: 07780005
0F765402

020154
00043000 05300008 520000

2-bytes1-byte

4
5
8
0

Reference or
Data Label:

SQLCODE
SQLSTATE
SQLERRPROC
SQLCAXGRP

DRDA Type:

I4
FCS
FCS
N/A

Figure 5-32 SQLCAGRP Group Descriptor (Nullable)

SQL and individual implementations define the semantics of the values of SQLCODE and
SQLSTATE.

The values default to 0 or the normal or non-error condition. Therefore, a null SQLCA indicates
everything is fine: SQLSTATE=’00000’. See ISO SQL and specific product references for details.
See also Chapter 8 on page 331.

190 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.4.10 SQL Communication Area Exceptions Group Description

Meta Data and Data Descriptors for SQLCAXGRP

Length
0

7

Env. LID

Length
0

63

Identity
2

0

Identity
2

X’52’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

GroupUnit
X’02’

DRDA Type
6

SQLCAXGRP
X’52’

Type
1

MDD
X’78’

Length Override

Type
1

N-GDA
X’76’

Descriptor in Hex: 07780005
3F765230
00040200
01300001
30000130

020152
00120200
04020004
30000130
00013000

2-bytes1-byte

Data Label:

SQLRDBNME
SQLERRD1
SQLERRD2
SQLERRD3
SQLERRD4
SQLERRD5
SQLERRD6
SQLWARN0
SQLWARN1
SQLWARN2
SQLWARN3
SQLWARN4
SQLWARN5
SQLWARN6
SQLWARN7
SQLWARN8
SQLWARN9
SQLWARNA
SQLERRMSG_m
SQLERRMSG_s

DRDA Type:

FCS
I4
I4
I4
I4
I4
I4
FCS
FCS
FCS
FCS
FCS
FCS
FCS
FCS
FCS
FCS
FCS
VCM
VCS

X’30’
X’02’
X’02’
X’02’
X’02’
X’02’
X’02’
X’30’
X’30’
X’30’
X’30’
X’30’
X’30’
X’30’
X’30’
X’30’
X’30’
X’30’
X’3E’
X’32’

18
4
4
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1

70
70

04020004
30000130
00013000
013E0046

02000402
00013000
01300001
320046

Figure 5-33 SQLCAXGRP Group Descriptor (Nullable)

SQL and individual implementations define the semantics of the values in each of the fields in
Figure 5-33. All fields default to normal or non-error condition. A null SQLCA indicates
everything is fine. See ISO SQL and product references for details.

SQLERRMSG_m and SQLERRMSG_s are mutually exclusive; that is, only one non-zero length
can be specified for the field SQLERRMSG. If both are non-zero, then process as if DTAMCHRM
had been received.

Part 1: Database Access Protocol 191

Early Descriptors Data Definition and Exchange

5.6.4.11 SQL Data Area Group Description (DDM Levels Below 6)

Meta Data and Data Descriptor for SQLDAGRP

Length
0

7

Env. LID

Length
0

36

Identity
2

0

Identity
2

X’50’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

GroupUnit
X’02’

DRDA Type
6

SQLDAGRP
X’50’

Type
1

MDD
X’78’

Length Override

Type
1

GDA
X’75’

Data Label:

SQLPRECISION
SQLSCALE
SQLLENGTH
SQLTYPE
SQLCCSID
SQLNAME_m
SQLNAME_s
SQLLABEL_m
SQLLABEL_s
SQLCOMMENTS_m
SQLCOMMENTS_s

Descriptor in Hex: 07780005
27755004
00023E00
FE3200FE

020150
00020400
1E32001E

2-bytes1-byte

02020004
3E001E32

04000226
001E3E00

DRDA Type:

I2
I2
I4
I2
FB
VCM
VCS
VCM
VCS
VCM
VCS

X’04’
X’04’
X’02’
X’04’
X’26’
X’3E’
X’32’
X’3E’
X’32’
X’3E’
X’32’

2
2
4
2
2

30
30
30
30

254
254

Figure 5-34 SQLDAGRP Group Descriptor (Info. for One Column) (DDM Levels Below 6)

Table 5-9 on page 193 describes the usage of each of the fields of the DRDA SQL Data Area.

192 DRDA Volume 1

Data Definition and Exchange Early Descriptors

Table 5-9 DRDA SQL Data Area Field Usage (DDM Levels Below 6)
__

Field Name Usage__
Precision of a fixed decimal field—0 for other types.SQLPRECISION__
Scale of a fixed decimal or zoned decimal field—0 for other
types.

SQLSCALE

__
Length of the field not counting the length field.SQLLENGTH__

SQLTYPE SQL Data Type associated with this field.__
SQLCCSID 0 or the CCSID for this column.__
SQLNAME_m
SQLNAME_s

Name of the column as it would appear in an SQL statement.
This field, at times, contains host variable names or the
derivation expression for derived columns (Col1+Col2).
SQLNAME_m and SQLNAME_s are mutually exclusive; that is,
only one can be specified with a non-zero length. If both are
non-zero, then process as if DTAMCHRM had been received.__

SQLLABEL_m
SQLLABEL_s

Descriptive label associated with this column. SQLLABEL_m
and SQLLABEL_s are mutually exclusive; that is, only one can be
specified with a non-zero length. If both are non-zero, then
process as if DTAMCHRM had been received.__

SQLCOMMENTS_m
SQLCOMMENTS_s

Comments or remarks (long description) associated with this
column. SQLCOMMENTS_m and SQLCOMMENTS_s are
mutually exclusive; that is, only one can be specified with a non-
zero length. If both are non-zero, then process as if
DTAMCHRM had been received.__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

DRDA requires each field of the SQL Data Area mentioned in Table 5-9. If a value is available
through DESCRIBE at the machine that is constructing this SQL Data Area, the relational
database manager at the application server must provide it and send it to the other end. When
SQLNAME, SQLLABEL, or SQLCOMMENTS is unavailable, two zero-length strings (four bytes
containing X‘00000000’) are returned for each.

Part 1: Database Access Protocol 193

Early Descriptors Data Definition and Exchange

5.6.4.12 SQL Data Area Group Description (DDM Level 6 and Above)

Meta Data and Data Descriptor for SQLDAGRP

Length
0

7

Env. LID

Length
0

36

Identity
2

0

Identity
2

X’50’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

GroupUnit
X’02’

DRDA Type
6

SQLDAGRP
X’50’

Type
1

MDD
X’78’

Length Override

Type
1

GDA
X’75’

Data Label:

SQLPRECISION
SQLSCALE
SQLLENGTH
SQLTYPE
SQLCCSID
SQLNAME_m
SQLNAME_s
SQLLABEL_m
SQLLABEL_s
SQLCOMMENTS_m
SQLCOMMENTS_s
SQLUDTGRP

Descriptor in Hex: 07780005
27755004
00023E00
FE3200FE

020150
00020400
1E32001E
510000

2-bytes1-byte

02160008
3E001E32

04000226
001E3E00

DRDA Type:

I2
I2
I8
I2
FB
VCM
VCS
VCM
VCS
VCM
VCS
N/A

X’04’
X’04’
X’16’
X’04’
X’26’
X’3E’
X’32’
X’3E’
X’32’
X’3E’
X’32’
X’51’

2
2
8
2
2

30
30
30
30

254
254

0

Figure 5-35 SQLDAGRP Group Descriptor (Info. for One Column) (DDM Level 6 and Above)

Table 5-10 on page 195 describes the usage of each of the fields of the DRDA SQL Data Area.

194 DRDA Volume 1

Data Definition and Exchange Early Descriptors

Table 5-10 DRDA SQL Data Area Field Usage (DDM Level 6 and Above)
__

Field Name Usage__
Precision of a fixed decimal field—0 for other types.SQLPRECISION__
Scale of a fixed decimal or zoned decimal field—0 for other
types.

SQLSCALE

__
Length of the field not counting the length field.SQLLENGTH__

SQLTYPE SQL Data Type associated with this field.__
SQLCCSID 0 or the CCSID for this column.__
SQLNAME_m
SQLNAME_s

Name of the column as it would appear in an SQL statement.
This field, at times, contains host variable names or the
derivation expression for derived columns (Col1+Col2).
SQLNAME_m and SQLNAME_s are mutually exclusive; that is,
only one can be specified with a non-zero length. If both are
non-zero, then process as if DTAMCHRM had been received.__

SQLLABEL_m
SQLLABEL_s

Descriptive label associated with this column. SQLLABEL_m
and SQLLABEL_s are mutually exclusive; that is, only one can be
specified with a non-zero length. If both are non-zero, then
process as if DTAMCHRM had been received.__

SQLCOMMENTS_m
SQLCOMMENTS_s

Comments or remarks (long description) associated with this
column. SQLCOMMENTS_m and SQLCOMMENTS_s are
mutually exclusive; that is, only one can be specified with a non-
zero length. If both are non-zero, then process as if
DTAMCHRM had been received.__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

DRDA requires each field of the SQL Data Area mentioned in Table 5-9 on page 193. If a value is
available through DESCRIBE at the machine that is constructing this SQL Data Area, the
relational database manager at the application server must provide it and send it to the other
end. When SQLNAME, SQLLABEL, or SQLCOMMENTS is unavailable, two zero-length strings
(four bytes containing X‘00000000’) are returned for each.

Part 1: Database Access Protocol 195

Early Descriptors Data Definition and Exchange

5.6.4.13 SQL User-Defined Data Group Description

Env. LID Length Override

2-bytes

Data Label:

SQLUDTNAME_m
SQLUDTNAME_s

DRDA Type:

VCM
VCS

Meta Data and Data Descriptor for SQLUDTGRP

Descriptor in Hex: 07780005
0976513E

020151
00FE3200 FE

X’3E’
X’32’

Length
0

7

Length
0

36

Identity
2

0

Identity
2

X’51’

Class
3

Rel.DB
X’05’

MD Ref Ty
5

Next Byte
X’01’

MD Type
4

GroupUnit
X’02’

DRDA Type
6

SQLUDTGRP
X’51’

Type
1

MDD
X’78’

Type
1

N-GDA
X’76’

1-byte

254
254

Figure 5-36 SQLUDTGRP Group Descriptor (UDT Information for One Column)

Table 5-11 describes the usage of each of the fields of the SQLUDTGRP.

Table 5-11 DRDA SQL UDT Description Field Usage"
__

Field Name Usage__
SQLUDTNAME_m and
SQLUDTNAME_s

The name of the user-defined data type describing the data in a
column. SQLUDTNAME_m and SQLUDTNAME_s are
mutually exclusive; that is, only one can be specified with a non-
zero length. If both are non-zero, then process as if DTAMCHRM
has been received.__L

L
L
L
L
L
L
L

L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L

DRDA requires each field of the SQL UDT Group Description mentioned in Table 5-11.

196 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.5 Early Environmental Descriptors

Figure 5-37 through Figure 5-71 on page 234 show how each of the DRDA database management
system environments represent each of the DRDA and SQL data types.

Figure 5-37 shows each of the parameters in the environment descriptor for one data type,
namely Variable Character SBCS data. Each type consists of a Meta Data Definition (MDD) that
states the DRDA semantics of the descriptor followed by a Simple Data Array (SDA) that says
how that type is to be represented.

Variable Character SBCS (Example)
Length

0
Identity

2
Class

3
MD Ref Ty

5
MD Type

4
DRDA Type

6
Type

1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’32’ (VCS)
X’33’ (NVCS)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID

Chr
Siz Mode Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

X’70’
X’70’

X’32’
X’32’

X’11’
X’91’

00000-00500(e)
00000-00500(e)

1
1

1
1

32767
32767

QTDSQL370 (System/370* Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005 010133
0C703391 000001F4 01017FFF

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,
or by a late environmental descriptor.

Figure 5-37 DRDA Type X‘32,33’ SQL Type 448,449 Variable Character SBCS

The upper box (the meta data triplet) is identical for all machine environments. There is only one
triplet defined per DRDA type. It is environment-independent.

The lower boxes in these figures are unique to each machine. The contents of these boxes are
described below. These are the descriptions for the parameters shown in Figure 5-37.

Above Lower Box
The name of the environment to which this descriptor belongs. A parenthetical
description follows the name. DRDA defines five environments:

• QTDSQL370 (System/390 processors)

• QTDSQL400 (AS/400 processors)

• QTDSQLX86 (Intel 80X86 processors)

• QTDSQLASC38 (IEEE non-byte-reversed ASCII processors)

Part 1: Database Access Protocol 197

Early Descriptors Data Definition and Exchange

• QTDSQLVAX (VAX processors)

These are the names of type definitions and appear as values in the TYPDEFNAM
parameter of DDM commands.

The example describes part of the ’QTDSQL370’ environment.

Lower Box
Each of the lower boxes contains the SDAs for the non-nullable and nullable form for
each environment specified.

Byte 0 The length of the FD:OCA SDA triplet. For DRDA, all SDAs are 12 bytes long.

Byte 1 Simple Data Array type indicator is always X‘70’ for SDAs.

Byte 2 The Local Identifier of this SDA. DRDA assigns this LID in the standard
environments and directly maps the LID to the DRDA Type. The formal
mapping from DRDA type to LID is through the associated FD:OCA MDD
specifications. DRDA types provide a mapping path from SQL Types to
FD:OCA representations.

Nullable SQL and DRDA types are all odd numbers and nullable type is one
number higher than the related non-nullable type. These values are shown in
hex.

For the example, two DRDA types are defined: X‘32’ corresponding to the SQL
type for non-nullable Variable Character SBCS strings and X‘33’
corresponding to the nullable SQL type.

Byte 3 The FD:OCA data type indicator shows exactly how the data is represented in
this environment. These values are shown in hex. For a detailed explanation of
these types, see the FD:OCA Reference.

The null indicator, when defined to be present, flows as an extra byte in front
of the actual data that can follow. This indicator is a one byte signed binary
integer (I1) and is filled with the least significant byte that SQL returned in its
indicator variable. All negative values (X‘80’-X‘FF’) represent various null
data conditions. Zero indicates a complete data value follows. Positive values
indicate truncation has occurred, but positive values do not occur due to
DRDA’s use of natural SQLDAs. SQL, not DRDA, specifies the following
values:

• 0 (X‘00’) data value follows

• −1 (X‘FF’) no data value follows

• −2 (X‘FE’) undefined result, no data value follows

• −3 to −128 (X‘FD’-X‘80’) reserved, no data value follows

In the example, FD:OCA type X‘11’ Character Variable Length represents
non-nullable strings in the System 390 environment. The Nullable type uses
FD:OCA type X‘91’.

38. An example of an QTDSQLASC machine is the IBM RS/6000, which has an IEEE floating point format and non-byte reversed
numbers. This contrasts with the Intel floating point format that has byte-reversed floating point and integer numbers.

198 DRDA Volume 1

Data Definition and Exchange Early Descriptors

Bytes 4-7
The CCSID identifies the encoding of the character data. Converting the
CCSID into binary form generates the four byte representation. This
information is in decimal. The FD:OCA rules state that if the high order 16 bits
of the CCSID field are zero, then the low order 16 bits are to be interpreted as a
CCSID rather than as a code page identification. DRDA uses the CCSID
format.

The CCSID is a pointer (16 bits) to a description of an encoding scheme, one or
more pairs of character set and code page, and possible additional coding-
related information (ACRI). See character data types in the FD:OCA Reference
and CDRA Reference for information about CCSIDs.

In FD:OCA, the containing architecture is allowed to establish its own
mechanisms for constructing valid FD:OCA descriptors. For DRDA, DDM
provides the TYPDEFOVR parameter on the ACCRDB command as the
means of establishing the CCSIDs to use for a connection. For any parameter
not sent on TYPDEFOVR (such as CCSIDMBC or CCSIDDBC) no character
data of any length greater than zero can flow with that type representation.

The CCSIDs shown in bytes 4 through 7 of the following figures are examples
only and not part of DRDA. DRDA does not define default CCSID values.
When a CCSID is required for one or more data value descriptions, either the
application requester or application server must provide a Late
Environmental Descriptor. When a CCSID is required for one or more data
value descriptors, specify it in one of the following ways:

1. TYPEDEFOVR parameter on ACCRDB/ACCRDBRM

This requires an MDD and an SDA. The MDD is exactly like the one for
the type being specified, and the SDA is the same except that a specific
CCSID is filled in. The GDA, which defines the data field characteristics,
references this new SDA. (See Section 5.6.6 on page 243.)

2. TYPDEFOVR DDM command/reply

3. Late environmental descriptor

See the CDRA Reference for additional information on available CCSIDs.

Byte 8 Character Size. This field indicates the number of bytes each character takes in
storage. The value 2 is used for GRAPHIC SQL Types; 1 is used for all other
character, date, time, timestamp, and numeric character fields. It must be 0 for
all other types.

For this example, the data is SBCS characters, so the character length is
specified as 1.

Byte 9 Mode. This field is used to specify mode of interpretation of FD:OCA
architecture for all variable length data types (including null terminated), such
as the SBCS variable character type used in the example. The low order bit of
this byte is used to control interpretation of Length Fields in SDAs for variable
length types. A ’0’ in that bit indicates that non-zero length field values
indicate the space reserved for data and that all the space is transmitted (or
laid out in storage) whether or not it contains valid data. In the case of the
example, the first two bytes of the data itself determine valid data length.

Part 1: Database Access Protocol 199

Early Descriptors Data Definition and Exchange

A ’1’ in this bit shows that non-zero length field values indicate the maximum
value of the length fields that the data will contain. Only enough space to
contain each data value is transmitted for each value.

The example above is a variable length field. Because DRDA does not want to
transmit unnecessary bytes, Mode is set to ’1’.

Bytes 10-11
The interpretation of these bytes for the example, as well as for most other
data types, is as follows:

This is the length of the field and is shown in decimal. It represents the
maximum valid value. When the Group Data Array triplet overrides it, the
value can be reduced. For character fields with only DBCS characters, this is
the length in characters (bytes/2). For all other cases, the length is in bytes. It
does not include the length of the length field (variable length types) or null
indicator (nullable types).

For the example, the maximum length of data allowed is 32767 bytes. On the
link, DRDA type X‘32’ could be up to 32769 bytes long and DRDA type X‘33’
up to 32770, which allows space for the length field and null indicators. The
maximum value is reduced, with a Group Data Array specification, to match
the actual field or column size.

Below Lower Box
Notes about values in the box. A lowercase alphabetic character identifies each note.
Inside the box, all lowercase alphabetic characters are references to notes.

In the example, note (e) is referenced from the CCSID field.

The following figures show the Simple Data Arrays (SDAs) that define the representations for
each DRDA type in each of the planned environments. These SDAs are bundled together
logically into an environmental descriptor set for each environment. The choice of which set to
use is made at ACCRDB time.

200 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.1 Four-Byte Integer

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’02’ (I4)
X’03’ (NI4)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’02’
X’03’

X’02’
X’03’

X’02’
X’03’

X’02’
X’03’

X’02’
X’03’

X’23’
X’A3’

X’23’
X’A3’

X’24’
X’A4’

X’23’
X’A3’

X’24’
X’A4’

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

4
4

4
4

4
4

4
4

4
4

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C7003A3

010103
00000000 00000004

Figure 5-38 DRDA Type X‘02,03’ SQL Type 496,497 INTEGER

The Intel Processor is the OS/2 processor.

Part 1: Database Access Protocol 201

Early Descriptors Data Definition and Exchange

5.6.5.2 Two-Byte Integer

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’04’ (I2)
X’05’ (NI2)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’04’
X’05’

X’04’
X’05’

X’04’
X’05’

X’04’
X’05’

X’04’
X’05’

X’23’
X’A3’

X’23’
X’A3’

X’24’
X’A4’

X’23’
X’A3’

X’24’
X’A4’

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
2

2
2

2
2

2
2

2
2

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C7005A3

010105
00000000 00000002

Figure 5-39 DRDA Type X‘04,05’ SQL Type 500,501 SMALL INTEGER

202 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.3 One-Byte Integer

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’06’ (I1)
X’07’ (NI1)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’06’
X’07’

X’06’
X’07’

X’06’
X’07’

X’06’
X’07’

X’06’
X’07’

X’23’
X’A3’

X’23’
X’A3’

X’24’
X’A4’

X’23’
X’A3’

X’24’
X’A4’

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

1
1

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C7007A3

010107
00000000 00000001

Figure 5-40 DRDA Type X‘06,07’ SQL Type n/a,n/a

Part 1: Database Access Protocol 203

Early Descriptors Data Definition and Exchange

5.6.5.4 Sixteen-Byte Float

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’08’ (BF16)
X’09’ (NBF16)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’08’
X’09’

X’08’
X’09’

X’08’
X’09’

X’08’
X’09’

X’08’
X’09’

X’40’
X’C0’

X’48’
X’C8’

X’47’
X’C7’

X’48’
X’C8’

X’49’
X’C9’

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

16
16

16
16

16
16

16
16

16
16

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C7009C0

010109
00000000 00000010

ModeBias
Res-

erved
Res-

erved

Figure 5-41 DRDA Type X‘08,09’ SQL Type 480,481 FLOAT (16)

204 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.5 Eight-Byte Float

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’0A’ (BF8)
X’0B’ (NBF8)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’0A’
X’0B’

X’0A’
X’0B’

X’0A’
X’0B’

X’0A’
X’0B’

X’0A’
X’0B’

X’40’
X’C0’

X’48’
X’C8’

X’47’
X’C7’

X’48’
X’C8’

X’49’
X’C9’

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

8
8

8
8

8
8

8
8

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C700BC0

01010B
00000000 00000008

ModeBias
Res-

erved
Res-

erved

Figure 5-42 DRDA Type X‘0A,0B’ SQL Type 480,481 FLOAT (8)

Part 1: Database Access Protocol 205

Early Descriptors Data Definition and Exchange

5.6.5.6 Four-Byte Float

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’0C’ (BF4)
X’0D’ (NBF4)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’0C’
X’0D’

X’0C’
X’0D’

X’0C’
X’0D’

X’0C’
X’0D’

X’0C’
X’0D’

X’40’
X’C0’

X’48’
X’C8’

X’47’
X’C7’

X’48’
X’C8’

X’49’
X’C9’

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

4
4

4
4

4
4

4
4

4
4

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C700DC0

01010D
00000000 00000004

ModeBias
Res-

erved
Res-

erved

Figure 5-43 DRDA Type X‘0C,0D’ SQL Type 480,481 FLOAT (4)

206 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.7 Fixed Decimal

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’0E’ (FD)
X’0F’ (NFD)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type Reserved

0 1 2 3 4 5 6 7 8 9 10 11

12
12

X’70’
X’70’

X’0E’
X’0F’

X’30’
X’B0’

0
0

0
0

0
0

31
31

31
31

12
12

X’70’
X’70’

X’0E’
X’0F’

X’30’
X’B0’

0
0

0
0

0
0

31
31

31
31

12
12

X’70’
X’70’

X’0E’
X’0F’

X’30’
X’B0’

0
0

0
0

0
0

31
31

31
31

12
12

X’70’
X’70’

X’0E’
X’0F’

X’30’
X’B0’

0
0

0
0

0
0

31
31

31
31

12
12

X’70’
X’70’

X’0E’
X’0F’

X’30’
X’B0’

0
0

0
0

0
0

31
31

31
31

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C700FB0

01010F
00000000 00001F1F

Mode

Fld Length
and

Prec;/Scale

Figure 5-44 DRDA Type X‘0E,0F’ SQL Type 484,485 FIXED DECIMAL

Part 1: Database Access Protocol 207

Early Descriptors Data Definition and Exchange

5.6.5.8 Zoned Decimal

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’10’ (ZD)
X’11’ (NZD)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type Reserved

0 1 2 3 4 5 6 7 8 9 10 11

12
12

X’70’
X’70’

X’10’
X’11’

X’33’
X’B3’

0
0

0
0

0
0

31
31

31
31

12
12

X’70’
X’70’

X’10’
X’11’

X’33’
X’B3’

0
0

0
0

0
0

31
31

31
31

12
12

X’70’
X’70’

X’10’
X’11’

X’35’
X’B5’

0
0

0
0

0
0

31
31

31
31

12
12

X’70’
X’70’

X’10’
X’11’

X’35’
X’B5’

0
0

0
0

0
0

31
31

31
31

12
12

X’70’
X’70’

X’10’
X’11’

X’35’
X’B5’

0
0

0
0

0
0

31
31

31
31

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C7011B3

010111
00000000 00001F1F

Mode

Fld Length
and

Prec;/Scale

Figure 5-45 DRDA Type X‘10,11’ SQL Type 488,489 ZONED DECIMAL

208 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.9 Numeric Character

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,
or by a late environmental descriptor.

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’12’ (N)
X’13’ (NN)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID

0 1 2 3 4 5 6 7 8 9 10 11

12
12

X’70’
X’70’

X’12’
X’13’

X’32’
X’B2’

00000-00500(e)
00000-00500(e)

1
1

0
0

31
31

31
31

12
12

X’70’
X’70’

X’12’
X’13’

X’32’
X’B2’

00000-00500(e)
00000-00500(e)

1
1

0
0

31
31

31
31

12
12

X’70’
X’70’

X’12’
X’13’

X’32’
X’B2’

00000-00850(e)
00000-00850(e)

1
1

0
0

31
31

31
31

12
12

X’70’
X’70’

X’12’
X’13’

X’32’
X’B2’

00000-00819(e)
00000-00819(e)

1
1

0
0

31
31

31
31

12
12

X’70’
X’70’

X’12’
X’13’

X’32’
X’B2’

00000-00819(e)
00000-00819(e)

1
1

0
0

31
31

31
31

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C7013B2

010113
000001F4 01001F1F

Mode

Fld Length
and

Prec;/Scale

Figure 5-46 DRDA Type X‘12,13’ SQL Type 504,505 NUMERIC CHARACTER

Part 1: Database Access Protocol 209

Early Descriptors Data Definition and Exchange

5.6.5.10 Result Set Locator

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’14’ (RSL)
X’15’ (NRSL)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’14’
X’15’

X’14’
X’15’

X’14’
X’15’

X’14’
X’15’

X’14’
X’15’

X’23’
X’A3’

X’23’
X’A3’

X’24’
X’A4’

X’23’
X’A3’

X’24’
X’A4’

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

4
4

4
4

4
4

4
4

4
4

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C7015A3

010115
00000000 00000004

Figure 5-47 DRDA Type X‘14,15’ SQL Type 972,973 RESULT SET LOCATOR

210 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.11 Eight-Byte Integer

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’16’ (I8)
X’17’ (NI8)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’16’
X’17’

X’16’
X’17’

X’16’
X’17’

X’16’
X’17’

X’16’
X’17’

X’23’
X’A3’

X’23’
X’A3’

X’24’
X’A4’

X’23’
X’A3’

X’24’
X’A4’

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

8
8

8
8

8
8

8
8

0
0

0
0

0
0

0
0

0
0

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C7017A3

010117
00000000 00000008

Figure 5-48 DRDA Type X‘16,17’ SQL Type 492,493 EIGHT-BYTE INTEGER

Part 1: Database Access Protocol 211

Early Descriptors Data Definition and Exchange

5.6.5.12 Large Object Bytes Locator

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’18’ (OBL)
X’19’ (NOBL)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’18’
X’19’

X’18’
X’19’

X’18’
X’19’

X’18’
X’19’

X’18’
X’19’

X’01’
X’81’

X’01’
X’81’

X’01’
X’81’

X’01’
X’81’

X’01’
X’81’

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C701981

010119
00000000 00000004

4
4

4
4

4
4

4
4

4
4

Figure 5-49 DRDA Type X‘18,19’ SQL Type 960,961 LARGE OBJECT BYTES LOCATOR

212 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.13 Large Object Character Locator

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’1A’ (OCL)
X’1B’ (NOCL)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’1A’
X’1B’

X’1A’
X’1B’

X’1A’
X’1B’

X’1A’
X’1B’

X’1A’
X’1B’

X’01’
X’81’

X’01’
X’81’

X’01’
X’81’

X’01’
X’81’

X’01’
X’81’

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C701B81

01011B
00000000 00000004

4
4

4
4

4
4

4
4

4
4

Figure 5-50 DRDA Type X‘1A,1B’ SQL Type 964,965 LARGE OBJ. CHAR. SBCS LOCATOR

Part 1: Database Access Protocol 213

Early Descriptors Data Definition and Exchange

5.6.5.14 Large Object Character DBCS Locator

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’1C’ (OCDL)
X’1D’ (NOCDL)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’1C’
X’1D’

X’1C’
X’1D’

X’1C’
X’1D’

X’1C’
X’1D’

X’1C’
X’1D’

X’01’
X’81’

X’01’
X’81’

X’01’
X’81’

X’01’
X’81’

X’01’
X’81’

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C701D81

01011D
00000000 00000004

4
4

4
4

4
4

4
4

4
4

Figure 5-51 DRDA Type X‘1C,1D’ SQL Type 968,969 LARGE OBJ. CHAR. DBCS LOCATOR

214 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.15 Row Identifier

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’1E’ (RI)
X’1F’ (NRI)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’1E’
X’1F’

X’1E’
X’1F’

X’1E’
X’1F’

X’1E’
X’1F’

X’1E’
X’1F’

X’02’
X’82’

X’02’
X’82’

X’02’
X’82’

X’02’
X’82’

X’02’
X’82’

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

1
1

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C701F82

01011F
00000000 00010028

40
40

40
40

40
40

40
40

40
40

Figure 5-52 DRDA Type X‘1E,1F’ SQL Type 904,905 ROW IDENTIFIER

Part 1: Database Access Protocol 215

Early Descriptors Data Definition and Exchange

5.6.5.16 Date

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,
or by a late environmental descriptor.

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’20’ (D)
X’21’ (ND)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’20’
X’21’

X’20’
X’21’

X’20’
X’21’

X’20’
X’21’

X’20’
X’21’

X’10’
X’90’

X’10’
X’90’

X’10’
X’90’

X’10’
X’90’

X’10’
X’90’

00000-00500(e)
00000-00500(e)

00000-00500(e)
00000-00500(e)

00000-00850(e)
00000-00850(e)

00000-00819(e)
00000-00819(e)

00000-00819(e)
00000-00819(e)

1
1

1
1

1
1

1
1

1
1

0
0

0
0

0
0

0
0

0
0

10
10

10
10

10
10

10
10

10
10

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C702190

010121
000001F4 0100000A

Chr
Siz

Res-
erved

Figure 5-53 DRDA Type X‘20,21’ SQL Type 384,385 DATE

216 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.17 Time

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,
or by a late environmental descriptor.

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’22’ (T)
X’23’ (NT)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’22’
X’23’

X’22’
X’23’

X’22’
X’23’

X’22’
X’23’

X’22’
X’23’

X’10’
X’90’

X’10’
X’90’

X’10’
X’90’

X’10’
X’90’

X’10’
X’90’

00000-00500(e)
00000-00500(e)

00000-00500(e)
00000-00500(e)

00000-00850(e)
00000-00850(e)

00000-00819(e)
00000-00819(e)

00000-00819(e)
00000-00819(e)

1
1

1
1

1
1

1
1

1
1

0
0

0
0

0
0

0
0

0
0

8
8

8
8

8
8

8
8

8
8

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C702390

010123
000001F4 01000008

Chr
Siz

Res-
erved

Figure 5-54 DRDA Type X‘22,23’ SQL Type 388,389 TIME

Part 1: Database Access Protocol 217

Early Descriptors Data Definition and Exchange

5.6.5.18 Timestamp

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,
or by a late environmental descriptor.

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’24’ (TS)
X’25’ (NTS)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’24’
X’25’

X’24’
X’25’

X’24’
X’25’

X’24’
X’25’

X’24’
X’25’

X’10’
X’90’

X’10’
X’90’

X’10’
X’90’

X’10’
X’90’

X’10’
X’90’

00000-00500(e)
00000-00500(e)

00000-00500(e)
00000-00500(e)

00000-00850(e)
00000-00850(e)

00000-00819(e)
00000-00819(e)

00000-00819(e)
00000-00819(e)

1
1

1
1

1
1

1
1

1
1

0
0

0
0

0
0

0
0

0
0

26
26

26
26

26
26

26
26

26
26

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C702590

010125
000001F4 0100001A

Chr
Siz

Res-
erved

Figure 5-55 DRDA Type X‘24,25’ SQL Type 392,393 TIMESTAMP

218 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.19 Fixed Bytes

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’26’ (FB)
X’27’ (NFB)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’26’
X’27’

X’26’
X’27’

X’26’
X’27’

X’26’
X’27’

X’26’
X’27’

X’01’
X’81’

X’01’
X’81’

X’01’
X’81’

X’01’
X’81’

X’01’
X’81’

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

32767
32767

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C702781

010127
00000000 00007FFF

Figure 5-56 DRDA Type X‘26,27’ SQL Type 452,453 FIXED BYTES

Part 1: Database Access Protocol 219

Early Descriptors Data Definition and Exchange

5.6.5.20 Variable Bytes

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’28’ (VB)
X’29’ (NVB)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’28’
X’29’

X’28’
X’29’

X’28’
X’29’

X’28’
X’29’

X’28’
X’29’

X’02’
X’82’

X’02’
X’82’

X’02’
X’82’

X’02’
X’82’

X’02’
X’82’

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

1
1

32767
32767

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C702982

010129
00000000 00017FFF

Mode

Figure 5-57 DRDA Type X‘28,29’ SQL Type 448,449 VARIABLE BYTES

220 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.21 Long Variable Bytes

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’2A’ (LVB)
X’2B’ (NLVB)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’2A’
X’2B’

X’2A’
X’2B’

X’2A’
X’2B’

X’2A’
X’2B’

X’2A’
X’2B’

X’02’
X’82’

X’02’
X’82’

X’02’
X’82’

X’02’
X’82’

X’02’
X’82’

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

1
1

32767
32767

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C702B82

01012B
00000000 00017FFF

Mode

Figure 5-58 DRDA Type X‘2A,2B’ SQL Type 456,457 LONG VAR BYTES

Part 1: Database Access Protocol 221

Early Descriptors Data Definition and Exchange

5.6.5.22 Null-Terminated Bytes

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’2C’ (NTB)
X’2D’ (NNTB)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’2C’
X’2D’

X’2C’
X’2D’

X’2C’
X’2D’

X’2C’
X’2D’

X’2C’
X’2D’

X’03’
X’83’

X’03’
X’83’

X’03’
X’83’

X’03’
X’83’

X’03’
X’83’

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

1
1

32767
32767

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C702D83

01012D
00000000 00017FFF

Mode

Figure 5-59 DRDA Type X‘2C,2D’ SQL Type 460,461 NULL-TERMINATED BYTES

222 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.23 Null-Terminated SBCS

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,
or by a late environmental descriptor.

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’2E’ (NTCS)
X’2F’ (NNTCS)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’2E’
X’2F’

X’2E’
X’2F’

X’2E’
X’2F’

X’2E’
X’2F’

X’2E’
X’2F’

X’14’
X’94’

X’14’
X’94’

X’14’
X’94’

X’14’
X’94’

X’14’
X’94’

00000-00500(e)
00000-00500(e)

00000-00500(e)
00000-00500(e)

00000-00850(e)
00000-00850(e)

00000-00819(e)
00000-00819(e)

00000-00819(e)
00000-00819(e)

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

32767
32767

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C702F94

01012F
000001F4 01017FFF

Mode
Chr
Siz

Figure 5-60 DRDA Type X‘2E,2F’ SQL Type 460,461 NULL-TERMINATED SBCS

Part 1: Database Access Protocol 223

Early Descriptors Data Definition and Exchange

5.6.5.24 Fixed Character SBCS

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,
or by a late environmental descriptor.

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’30’ (FCS)
X’31’ (NFCS)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’30’
X’31’

X’30’
X’31’

X’30’
X’31’

X’30’
X’31’

X’30’
X’31’

X’10’
X’90’

X’10’
X’90’

X’10’
X’90’

X’10’
X’90’

X’10’
X’90’

00000-00500(e)
00000-00500(e)

00000-00500(e)
00000-00500(e)

00000-00850(e)
00000-00850(e)

00000-00819(e)
00000-00819(e)

00000-00819(e)
00000-00819(e)

1
1

1
1

1
1

1
1

1
1

0
0

0
0

0
0

0
0

0
0

32767
32767

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C703190

010131
000001F4 01007FFF

Res-
erved

Chr
Siz

Figure 5-61 DRDA Type X‘30,31’ SQL Type 452,453 FIXED CHARACTER SBCS

224 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.25 Variable Character SBCS

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,
or by a late environmental descriptor.

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’32’ (VCS)
X’33’ (NVCS)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’32’
X’33’

X’32’
X’33’

X’32’
X’33’

X’32’
X’33’

X’32’
X’33’

X’11’
X’91’

X’11’
X’91’

X’11’
X’91’

X’11’
X’91’

X’11’
X’91’

00000-00500(e)
00000-00500(e)

00000-00500(e)
00000-00500(e)

00000-00850(e)
00000-00850(e)

00000-00819(e)
00000-00819(e)

00000-00819(e)
00000-00819(e)

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

32767
32767

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C703391

010133
000001F4 01017FFF

Mode
Chr
Siz

Figure 5-62 DRDA Type X‘32,33’ SQL Type 448,449 VARIABLE CHARACTER SBCS

Part 1: Database Access Protocol 225

Early Descriptors Data Definition and Exchange

5.6.5.26 Long Variable Character SBCS

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,
or by a late environmental descriptor.

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’34’ (LVCS)
X’35’ (NLVCS)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’34’
X’35’

X’34’
X’35’

X’34’
X’35’

X’34’
X’35’

X’34’
X’35’

X’11’
X’91’

X’11’
X’91’

X’11’
X’91’

X’11’
X’91’

X’11’
X’91’

00000-00500(e)
00000-00500(e)

00000-00500(e)
00000-00500(e)

00000-00850(e)
00000-00850(e)

00000-00819(e)
00000-00819(e)

00000-00819(e)
00000-00819(e)

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

32767
32767

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C703591

010135
000001F4 01017FFF

Mode
Chr
Siz

Figure 5-63 DRDA Type X‘34,35’ SQL Type 456,457 LONG VAR CHARACTER SBCS

226 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.27 Fixed-Character DBCS (GRAPHIC)

(f) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,
or by a late environmental descriptor.

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’36’ (FCD)
X’37’ (NFCD)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’36’
X’37’

X’36’
X’37’

X’36’
X’37’

X’36’
X’37’

X’36’
X’37’

X’10’
X’90’

X’10’
X’90’

X’10’
X’90’

X’10’
X’90’

X’10’
X’90’

00000-00300(f)
00000-00300(f)

00000-00300(f)
00000-00300(f)

00000-00301(f)
00000-00301(f)

00000-01200(f)
00000-01200(f)

00000-01200(f)
00000-01200(f)

2
2

2
2

2
2

2
2

2
2

0
0

0
0

0
0

0
0

0
0

16383
16383

16383
16383

16383
16383

16383
16383

16383
16383

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C703790

010137
0000012C 02003FFF

Res-
erved

Chr
Siz

Figure 5-64 DRDA Type X‘36,37’ SQL Type 468,469 FIXED CHARACTER DBCS

Part 1: Database Access Protocol 227

Early Descriptors Data Definition and Exchange

5.6.5.28 Variable-Character DBCS (GRAPHIC)

(f) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,
or by a late environmental descriptor.

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’38’ (VCD)
X’39’ (NVCD)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’38’
X’39’

X’38’
X’39’

X’38’
X’39’

X’38’
X’39’

X’38’
X’39’

X’11’
X’91’

X’11’
X’91’

X’11’
X’91’

X’11’
X’91’

X’11’
X’91’

00000-00300(f)
00000-00300(f)

00000-00300(f)
00000-00300(f)

00000-00301(f)
00000-00301(f)

00000-01200(f)
00000-01200(f)

00000-01200(f)
00000-01200(f)

2
2

2
2

2
2

2
2

2
2

1
1

1
1

1
1

1
1

1
1

16383
16383

16383
16383

16383
16383

16383
16383

16383
16383

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C703991

010139
0000012C 02013FFF

Mode
Chr
Siz

Figure 5-65 DRDA Type X‘38,39’ SQL Type 464,465 VARIABLE CHARACTER DBCS

228 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.29 Long Variable Character DBCS (GRAPHIC)

(f) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,
or by a late environmental descriptor.

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’3A’ (LVCD)
X’3B’ (NLVCD)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’3A’
X’3B’

X’3A’
X’3B’

X’3A’
X’3B’

X’3A’
X’3B’

X’3A’
X’3B’

X’11’
X’91’

X’11’
X’91’

X’11’
X’91’

X’11’
X’91’

X’11’
X’91’

00000-00300(f)
00000-00300(f)

00000-00300(f)
00000-00300(f)

00000-00301(f)
00000-00301(f)

00000-01200(f)
00000-01200(f)

00000-01200(f)
00000-01200(f)

2
2

2
2

2
2

2
2

2
2

1
1

1
1

1
1

1
1

1
1

16383
16383

16383
16383

16383
16383

16383
16383

16383
16383

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C703B91

01013B
0000012C 02013FFF

Mode
Chr
Siz

Figure 5-66 DRDA Type X‘3A,3B’ SQL Type 472,473 LONG VAR CHARACTER DBCS

Part 1: Database Access Protocol 229

Early Descriptors Data Definition and Exchange

5.6.5.30 Fixed Character Mixed

(g) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,
or by a late environmental descriptor.

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’3C’ (FCM)
X’3D’ (NFCM)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’3C’
X’3D’

X’3C’
X’3D’

X’3C’
X’3D’

X’3C’
X’3D’

X’3C’
X’3D’

X’10’
X’90’

X’10’
X’90’

X’10’
X’90’

X’10’
X’90’

X’10’
X’90’

00000-00930(g)
00000-00930(g)

00000-00930(g)
00000-00930(g)

00000-00932(g)
00000-00932(g)

00000-01200(g)
00000-01200(g)

00000-01200(g)
00000-01200(g)

1
1

1
1

1
1

1
1

1
1

0
0

0
0

0
0

0
0

0
0

32767
32767

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C703D90

01013D
000003A2 01007FFF

Res-
erved

Chr
Siz

Figure 5-67 DRDA Type X‘3C,3D’ SQL Type 452,453 FIXED CHARACTER MIXED

230 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.31 Variable Character Mixed

(g) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,
or by a late environmental descriptor.

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’3E’ (VCM)
X’3F’ (NVCM)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’3E’
X’3F’

X’3E’
X’3F’

X’3E’
X’3F’

X’3E’
X’3F’

X’3E’
X’3F’

X’11’
X’91’

X’11’
X’91’

X’11’
X’91’

X’11’
X’91’

X’11’
X’91’

00000-00930(g)
00000-00930(g)

00000-00930(g)
00000-00930(g)

00000-00932(g)
00000-00932(g)

00000-01200(g)
00000-01200(g)

00000-01200(g)
00000-01200(g)

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

32767
32767

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C703F91

01013F
000003A2 01017FFF

Mode
Chr
Siz

Figure 5-68 DRDA Type X‘3E,3F’ SQL Type 448,449 VARIABLE CHARACTER MIXED

Part 1: Database Access Protocol 231

Early Descriptors Data Definition and Exchange

5.6.5.32 Long Variable Character Mixed

X’40’ (LVCM)
X’41’ (NLVCM)

(g) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,
or by a late environmental descriptor.

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’40’
X’41’

X’40’
X’41’

X’40’
X’41’

X’40’
X’41’

X’40’
X’41’

X’11’
X’91’

X’11’
X’91’

X’11’
X’91’

X’11’
X’91’

X’11’
X’91’

00000-00930(g)
00000-00930(g)

00000-00930(g)
00000-00930(g)

00000-00932(g)
00000-00932(g)

00000-01200(g)
00000-01200(g)

00000-01200(g)
00000-01200(g)

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

32767
32767

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C704191

010141
000003A2 01017FFF

Mode
Chr
Siz

Figure 5-69 DRDA Type X‘40,41’ SQL Type 456,457 LONG VARIABLE CHARACTER MIXED

232 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.33 Null-Terminated Mixed

X’42’ (NTM)
X’43’ (NNTM)

(g) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,
or by a late environmental descriptor.

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’42’
X’43’

X’42’
X’43’

X’42’
X’43’

X’42’
X’43’

X’42’
X’43’

X’14’
X’94’

X’14’
X’94’

X’14’
X’94’

X’14’
X’94’

X’14’
X’94’

00000-00930(g)
00000-00930(g)

00000-00930(g)
00000-00930(g)

00000-00932(g)
00000-00932(g)

00000-01200(g)
00000-01200(g)

00000-01200(g)
00000-01200(g)

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

32767
32767

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C704394

010143
000003A2 01017FFF

Mode
Chr
Siz

Figure 5-70 DRDA Type X‘42,43’ SQL Type 460,461 NULL-TERMINATED MIXED

Part 1: Database Access Protocol 233

Early Descriptors Data Definition and Exchange

5.6.5.34 Pascal L String Bytes

X’44’ (PLB)
X’45’ (NPLB)

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,
or by a late environmental descriptor.

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’44’
X’45’

X’44’
X’45’

X’44’
X’45’

X’44’
X’45’

X’44’
X’45’

X’07’
X’87’

X’07’
X’87’

X’07’
X’87’

X’07’
X’87’

X’07’
X’87’

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

1
1

255
255

255
255

255
255

255
255

255
255

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C704587

010145
00000000 000100FF

Mode

Figure 5-71 DRDA Type X‘44,45’ SQL Type 476,477 PASCAL L STRING BYTES

234 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.35 Pascal L String SBCS

X’46’ (PLS)
X’47’ (NPLS)

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,
or by a late environmental descriptor.

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’46’
X’47’

X’46’
X’47’

X’46’
X’47’

X’46’
X’47’

X’46’
X’47’

X’19’
X’99’

X’19’
X’99’

X’19’
X’99’

X’19’
X’99’

X’19’
X’99’

00000-00500(e)
00000-00500(e)

00000-00500(e)
00000-00500(e)

00000-00850(e)
00000-00850(e)

00000-00819(e)
00000-00819(e)

00000-00819(e)
00000-00819(e)

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

255
255

255
255

255
255

255
255

255
255

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C704799

010147
000001F4 010100FF

Mode
Chr
Siz

Figure 5-72 DRDA Type X‘46,47’ SQL Type 476,477 PASCAL L STRING SBCS

Part 1: Database Access Protocol 235

Early Descriptors Data Definition and Exchange

5.6.5.36 Pascal L String Mixed

X’48’ (PLM)
X’49’ (NPLM)

(g) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,
or by a late environmental descriptor.

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’48’
X’49’

X’48’
X’49’

X’48’
X’49’

X’48’
X’49’

X’48’
X’49’

X’19’
X’99’

X’19’
X’99’

X’19’
X’99’

X’19’
X’99’

X’19’
X’99’

00000-00930(g)
00000-00930(g)

00000-00930(g)
00000-00930(g)

00000-00932(g)
00000-00932(g)

00000-01200(g)
00000-01200(g)

00000-01200(g)
00000-01200(g)

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

255
255

255
255

255
255

255
255

255
255

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C704999

010149
000003A2 010100FF

Mode
Chr
Siz

Figure 5-73 DRDA Type X‘48,49’ SQL Type 476,477 PASCAL L STRING MIXED

236 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.37 SBCS Datalink

X’4C’ (DLS)
X’4D’ (NDLS)

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

(x) The contents of this VARCHAR-like data type
must conform to DRDA rule DT20.

or by a late environmental descriptor.

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’4C’
X’4D’

X’4C’
X’4D’

X’4C’
X’4D’

X’4C’
X’4D’

X’4C’
X’4D’

X’11’
X’91’

X’11’
X’91’

X’11’
X’91’

X’11’
X’91’

X’11’
X’91’

00000-00500(e)
00000-00500(e)

00000-00500(e)
00000-00500(e)

00000-00850(e)
00000-00850(e)

00000-00819(e)
00000-00819(e)

00000-00819(e)
00000-00819(e)

1
1

1
1

1
1

1
1

1
1

1
1

(x)
(x)

(x)
(x)

(x)
(x)

(x)
(x)

(x)
(x)

1
1

1
1

1
1

1
1

32767
32767

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C704D91

01014D
000001F4 01017FFF

Mode
Chr
Siz

Figure 5-74 DRDA Type X‘4C,4D’ SQL Type 396,397 SBCS DATALINK

Part 1: Database Access Protocol 237

Early Descriptors Data Definition and Exchange

5.6.5.38 Mixed-Byte Datalink

X’4E’ (DLM)
X’4F’ (NDLM)

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

(x) The contents of this VARCHAR-like data type
must conform to DRDA rule DT20.

or by a late environmental descriptor.

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’4E’
X’4F’

X’4E’
X’4F’

X’4E’
X’4F’

X’4E’
X’4F’

X’4E’
X’4F’

X’11’
X’91’

X’11’
X’91’

X’11’
X’91’

X’11’
X’91’

X’11’
X’91’

00000-00930(e)
00000-00930(e)

00000-00930(e)
00000-00930(e)

00000-00932(e)
00000-00932(e)

00000-01200(e)
00000-01200(e)

00000-01200(e)
00000-01200(e)

1
1

1
1

1
1

1
1

1
1

1
1

(x)
(x)

(x)
(x)

(x)
(x)

(x)
(x)

(x)
(x)

1
1

1
1

1
1

1
1

32767
32767

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C704F91

01014F
00000930 01017FFF

Mode
Chr
Siz

Figure 5-75 DRDA Type X‘4E,4F’ SQL Type 396,397 MIXED-BYTE DATALINK

238 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.39 Large Object Bytes

(h) The placeholder indicator bit is set to ‘1’B.

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

X’C8’ (OB)
X’C9’ (NOB)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’C8’
X’C9’

X’C8’
X’C9’

X’C8’
X’C9’

X’C8’
X’C9’

X’C8’
X’C9’

X’50’
X’D0’

X’50’
X’D0’

X’50’
X’D0’

X’50’
X’D0’

X’50’
X’D0’

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

0
0

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C70C9D0

0101C9
00000000 00018008

8 (h)
8 (h)

8 (h)
8 (h)

8 (h)
8 (h)

8 (h)
8 (h)

8 (h)
8 (h)

Figure 5-76 DRDA Type X‘C8,C9’ SQL Type 404,405 LARGE OBJECT BYTES

Part 1: Database Access Protocol 239

Early Descriptors Data Definition and Exchange

5.6.5.40 Large Object Character SBCS

X’CA’ (OCS)
X’CB’ (NOCS)

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

(h) The placeholder indicator bit is set to ‘1’B.
or by a late environmental descriptor.

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’CA’
X’CB’

X’CA’
X’CB’

X’CA’
X’CB’

X’CA’
X’CB’

X’CA’
X’CB’

X’51’
X’D1’

X’51’
X’D1’

X’51’
X’D1’

X’51’
X’D1’

X’51’
X’D1’

00000-00500(e)
00000-00500(e)

00000-00500(e)
00000-00500(e)

00000-00850(e)
00000-00850(e)

00000-00819(e)
00000-00819(e)

00000-00819(e)
00000-00819(e)

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

8 (h)
8 (h)

8 (h)
8 (h)

8 (h)
8 (h)

8 (h)
8 (h)

8 (h)
8 (h)

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C70CBD1

0101CB
000001F4 01018008

Mode
Chr
Siz

Figure 5-77 DRDA Type X‘CA,CB’ SQL Type 408,409 LARGE OBJECT CHAR. SBCS

240 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.41 Large Object Character DBCS (GRAPHIC)

X’CC’ (OCD)
X’CD’ (NOCD)

(f) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

(h) The placeholder indicator bit is set to ‘1’B.
or by a late environmental descriptor.

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’CC’
X’CD’

X’CC’
X’CD’

X’CC’
X’CD’

X’CC’
X’CD’

X’CC’
X’CD’

X’51’
X’D1’

X’51’
X’D1’

X’51’
X’D1’

X’51’
X’D1’

X’51’
X’D1’

00000-00300(f)
00000-00300(f)

00000-00300(f)
00000-00300(f)

00000-00301(f)
00000-00301(f)

00000-01200(f)
00000-01200(f)

00000-01200(f)
00000-01200(f)

2
2

2
2

2
2

2
2

2
2

1
1

1
1

1
1

1
1

1
1

8 (h)
8 (h)

8 (h)
8 (h)

8 (h)
8 (h)

8 (h)
8 (h)

8 (h)
8 (h)

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C70CDD1

0101CD
0000012C 02018008

Mode
Chr
Siz

Figure 5-78 DRDA Type X‘CC,CD’ SQL Type 412,413 LARGE OBJECT CHAR. DBCS

Part 1: Database Access Protocol 241

Early Descriptors Data Definition and Exchange

5.6.5.42 Large Object Character Mixed

X’CE’ (OCM)
X’CF’ (NOCM)

(g) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

(h) The placeholder indicator bit is set to ‘1’B.
or by a late environmental descriptor.

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

12
12

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’70’
X’70’

X’CE’
X’CF’

X’CE’
X’CF’

X’CE’
X’CF’

X’CE’
X’CF’

X’CE’
X’CF’

X’51’
X’D1’

X’51’
X’D1’

X’51’
X’D1’

X’51’
X’D1’

X’51’
X’D1’

00000-00930(g)
00000-00930(g)

00000-00930(g)
00000-00930(g)

00000-00932(g)
00000-00932(g)

00000-01200(g)
00000-01200(g)

00000-01200(g)
00000-01200(g)

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

8 (h)
8 (h)

8 (h)
8 (h)

8 (h)
8 (h)

8 (h)
8 (h)

8 (h)
8 (h)

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

QTDSQLVAX (VAX Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C70CFD1

0101CF
000003A2 01018008

Mode
Chr
Siz

Figure 5-79 DRDA Type X‘CE,CF’ SQL Type 408,409 LARGE OBJECT CHAR. MIXED

242 DRDA Volume 1

Data Definition and Exchange Early Descriptors

5.6.6 Late Environmental Descriptors

DRDA does not define environmental descriptors that are used exclusively as Late
Environmental Descriptors. These descriptors are provided late because of a specific
representational situation that could not be determined until the user’s data was examined.

The Late Environmental Descriptors are constructed from an MDD triplet (to specify the
required DRDA semantics) and an SDA to describe the representation desired. In every case, the
MDD entry is exactly like the one for the DRDA type being overridden. An appropriately
different SDA follows this MDD.

Consider the following situation. An application running in the OS/2 environment is using the
extended box drawing characters provided in Character Set 919 in Code Page 437 (CCSID 437
defines this). The rest of the operations of the database manager are in Multilingual Latin-1
characters (CCSID 850). CCSID 850 would be specified in the TYPDEFOVR parameter that flows
with the ACCRDB DDM command at the time that a connection is made to the appropriate
server.

The fields containing the boxes are fixed-length character fields containing data coded in a
Single-Byte Character Set. Figure 5-80 is the standard representation for this information in this
environment. (This is taken from Section 5.6.5.24 on page 224.)

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

DRDA Type
X’30’ (FCS)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID

Chr
Siz Mode Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12 X’70’ X’30’ X’10’ 00000-00850(e) 1 0 32767

QTDSQLX86 (Intel 80X86 Processors)

Example Descriptor in Hex
(QTDSQLX86 nullable form)

07780005 010130
0C703010 00000352 01007FFF

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,
or by a late environmental descriptor.

Res-
erved

Prec;/Scale
or

Figure 5-80 DRDA Type X‘30’, SQL Type 468, MDD Override Example—Base

The definition in Figure 5-81 on page 244 specifies the other character set needed to properly
represent the box drawing character data.

Part 1: Database Access Protocol 243

Early Descriptors Data Definition and Exchange

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

DRDA Type
X’30’ (FCS)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID

Chr
Siz Mode Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12 X’70’ X’99’ X’10’ 00000-00437(h) 1 0 32767

QTDSQLX86 (Intel 80X86 Processors)

Example Descriptor in Hex
(QTDSQLX86 nullable form)

07780005 010130
0C709910 000001B5 01007FFF

(h) As a late descriptor, this CCSID value
overrides the TYPDEFOVR that flows
with ACCRDB.

Res-
erved

Prec;/Scale
or

Figure 5-81 DRDA Type X‘30’, SQL Type 468, MDD Override Example—Override

Only the SDA part of the descriptor has changed. In the original descriptor, LID X’30’ specified
850 as the CCSID. In the new descriptor, LID X’99’ specifies 437 as the CCSID.

The MDD specification is exactly the same for both. They are both DRDA Fixed-Length Single
Byte Character Set strings.

When the application requester or application server assembles the user data group descriptor,
references to LID X‘30’ imply SBCS data encoded in the standard way. References to LID X’99’
imply SBCS data encoded using the specially defined CCSID. Both types of data can be included
in the same row of user data. As many occurrences of either type as are necessary to describe the
data are included in the GDA triplet that defines the group.

Section 5.7.1 on page 250 provides more discussion of overriding descriptors.

This concludes the detailed discussion of building DRDA descriptor triplets. The remainder of
this chapter lists descriptors and examples in the order that the triplets must be assembled to be
processed correctly. That is, Environmental Descriptors precede Group Descriptors, which
precede Row Descriptors, which precede Array Descriptors. Early descriptors precede late
descriptors.

244 DRDA Volume 1

Data Definition and Exchange FD:OCA Meta Data Summary

5.7 FD:OCA Meta Data Summary
A data unit is the link representation of something that can be in a control block in storage.
DRDA defines the data units. SQL or the implementing product defines the control blocks.

DRDA uses the FD:OCA Meta Data Definition (MDD) to relate DRDA types and data units to
their FD:OCA representations. FD:OCA has defined the value 5 as the application class for
relational database. DRDA defines the meta data types and meta data references within that
application class.

DRDA defines four meta data types. These types are:

1. Relate DRDA and SQL data types to their representations.

2. Relate names of group data units to their representations.

3. Relate names of single row data units to their representations.

4. Relate names of array data units to their representations.

DRDA reserves all other meta data type values within application class 5 for future use.

Within each meta data type, DRDA provides a coded value as the meta data reference. Each of
these values corresponds to a particular data type or data unit. All meta data reference values
not shown in the tables below are reserved.

The following tables show all valid values that DRDA defines.

Table 5-12 MDD References Used in Early Environmental Descriptors

Meta Data
Reference

Application Meta Data DRDA-Type SQL Data
Class Type and Name Type Description___L

L
L
L
L

L
L
L
L
L

L
L
L
L
L

L
L
L
L
L

L
L
L
L
L

L
L
L
L
L

X‘05’ X‘01’ X‘02’(I4) 496 4-byte Integer
X‘05’ X‘01’ X‘03’(NI4) 497 Nullable 4-byte Integer
X‘05’ X‘01’ X‘04’(I2) 500 2-byte Integer
X‘05’ X‘01’ X‘05’(NI2) 501 Nullable 2-byte Integer
X‘05’ X‘01’ X‘06’(I1) n/a 1-byte Integer
X‘05’ X‘01’ X‘07’(NI1) n/a Nullable 1-byte Integer
X‘05’ X‘01’ X‘08’(BF16) (480) 16-byte Binary Floating Point
X‘05’ X‘01’ X‘09’(NBF16) (481) Nullable 16-byte Binary Floating Point
X‘05’ X‘01’ X‘0A’(BF8) 480 8-byte Binary Floating Point
X‘05’ X‘01’ X‘0B’(NBF8) 481 Nullable 8-byte Binary Floating Point
X‘05’ X‘01’ X‘0C’(BF4) 480 4-byte Binary Floating Point
X‘05’ X‘01’ X‘0D’(NBF4) 481 Nullable 4-byte Binary Floating Point
X‘05’ X‘01’ X‘0E’(FD) 484 Fixed Decimal
X‘05’ X‘01’ X‘0F’(NFD) 485 Nullable Fixed Decimal
X‘05’ X‘01’ X‘10’(ZD) 488 Zoned Decimal
X‘05’ X‘01’ X‘11’(NZD) 489 Nullable Zoned Decimal
X‘05’ X‘01’ X‘12’(N) 504 Numeric Character
X‘05’ X‘01’ X‘13’(NN) 505 Nullable Numeric Character
X‘05’ X‘01’ X‘14’(RSL) 972 Result Set Locator___L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Part 1: Database Access Protocol 245

FD:OCA Meta Data Summary Data Definition and Exchange

Meta Data
Reference

Application Meta Data DRDA-Type SQL Data
Class Type and Name Type Description___L

L
L
L
L

L
L
L
L
L

L
L
L
L
L

L
L
L
L
L

L
L
L
L
L

L
L
L
L
L

X‘05’ X‘01’ X‘15’(NRSL) 973 Nullable Result Set Locator
X‘05’ X‘01’ X‘16’(I8) 492 Eight-byte Integer
X‘05’ X‘01’ X‘17’(NI8) 493 Nullable Eight-byte Integer
X‘05’ X‘01’ X‘18’(OBL) 960 Large Object Bytes Locator
X‘05’ X‘01’ X‘19’(NOBL) 961 Nullable Large Object Bytes Locator
X‘05’ X‘01’ X‘1A’(OCL) 964 Large Object Character Locator
X‘05’ X‘01’ X‘1B’(NOCL) 965 Nullable Large Object Character Locator
X‘05’ X‘01’ X‘1C’(OCDL) 968 Large Object Character DBCS Locator
X‘05’ X‘01’ X‘1D’(NOCDL) 969 Nullable Large Obj. Char. DBCS Locator
X‘05’ X‘01’ X‘1E’(RI) 904 Row Identifier
X‘05’ X‘01’ X‘1F’(NRI) 905 Nullable Row Identifier
X‘05’ X‘01’ X‘20’(D) 384 Date
X‘05’ X‘01’ X‘21’(ND) 385 Nullable Date
X‘05’ X‘01’ X‘22’(T) 388 Time
X‘05’ X‘01’ X‘23’(NT) 389 Nullable Time
X‘05’ X‘01’ X‘24’(TS) 392 Timestamp
X‘05’ X‘01’ X‘25’(NTS) 393 Nullable Timestamp
X‘05’ X‘01’ X‘26’(FB) 452 Fixed Bytes
X‘05’ X‘01’ X‘27’(NFB) 453 Nullable Fixed Bytes
X‘05’ X‘01’ X‘28’(VB) 448 Variable Bytes
X‘05’ X‘01’ X‘29’(NVB) 449 Nullable Variable Bytes
X‘05’ X‘01’ X‘2A’(LVB) 456 Long Variable Bytes
X‘05’ X‘01’ X‘2B’(NLVB) 457 Nullable Long Variable Bytes
X‘05’ X‘01’ X‘2C’(NTB) 460 Null-Terminated Bytes
X‘05’ X‘01’ X‘2D’(NNTB) 461 Nullable Null-Terminated Bytes
X‘05’ X‘01’ X‘2E’(NTCS) 460 Null-Terminated SBCS
X‘05’ X‘01’ X‘2F’(NNTCS) 461 Nullable Null-Terminated SBCS
X‘05’ X‘01’ X‘30’(FCS) 452 Fixed Character SBCS
X‘05’ X‘01’ X‘31’(NFCS) 453 Nullable Fixed Character SBCS
X‘05’ X‘01’ X‘32’(VCS) 448 Variable Character SBCS
X‘05’ X‘01’ X‘33’(NVCS) 449 Nullable Variable Character SBCS
X‘05’ X‘01’ X‘34’(LVCS) 456 Long Variable Character SBCS
X‘05’ X‘01’ X‘35’(NLVCS) 457 Nullable Long Variable Character SBCS
X‘05’ X‘01’ X‘36’(FCD) 468 Fixed Character DBCS
X‘05’ X‘01’ X‘37’(NFCD) 469 Nullable Fixed Character DBCS
X‘05’ X‘01’ X‘38’(VCD) 464 Variable Character DBCS
X‘05’ X‘01’ X‘39’(NVCD) 465 Nullable Variable Character DBCS
X‘05’ X‘01’ X‘3A’(LVCD) 472 Long Variable Character DBCS
X‘05’ X‘01’ X‘3B’(NLVCD) 473 Nullable Long Variable Character DBCS
X‘05’ X‘01’ X‘3C’(FCM) 452 Fixed Character Mixed
X‘05’ X‘01’ X‘3D’(NFCM) 453 Nullable Fixed Character Mixed
X‘05’ X‘01’ X‘3E’(VCM) 448 Variable Character Mixed
X‘05’ X‘01’ X‘3F’(NVCM) 449 Nullable Variable Character Mixed
X‘05’ X‘01’ X‘40’(LVCM) 456 Long Variable Character Mixed___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

246 DRDA Volume 1

Data Definition and Exchange FD:OCA Meta Data Summary

Meta Data
Reference

Application Meta Data DRDA-Type SQL Data
Class Type and Name Type Description___L

L
L
L
L

L
L
L
L
L

L
L
L
L
L

L
L
L
L
L

L
L
L
L
L

L
L
L
L
L

X‘05’ X‘01’ X‘41’(NLVCM) 457 Nullable Long Variable Character Mixed
X‘05’ X‘01’ X‘42’(NTM) 460 Null-Terminated Mixed
X‘05’ X‘01’ X‘43’(NNTM) 461 Nullable Null-Terminated Mixed
X‘05’ X‘01’ X‘44’(PLB) 476 Pascal L String Bytes
X‘05’ X‘01’ X‘45’(NPLB) 477 Nullable Pascal L String Bytes
X‘05’ X‘01’ X‘46’(PLS) 476 Pascal L String SBCS
X‘05’ X‘01’ X‘47’(NPLS) 477 Nullable Pascal L String SBCS
X‘05’ X‘01’ X‘48’(PLM) 476 Pascal L String Mixed
X‘05’ X‘01’ X‘49’(NPLM) 477 Nullable Pascal L String Mixed
X‘05’ X‘01’ X‘4C’(DLS) 396 SBCS Datalink
X‘05’ X‘01’ X‘4D’(NDLS) 397 Nullable SBCS Datalink
X‘05’ X‘01’ X‘4E’(DLM) 396 Mixed-byte Datalink
X‘05’ X‘01’ X‘4F’(NDLM) 396 Nullable Mixed-byte Datalink
X‘05’ X‘01’ X‘C8’(OB) 404 Large Object Bytes
X‘05’ X‘01’ X‘C9’(NOB) 405 Nullable Large Object Bytes
X‘05’ X‘01’ X‘CA’(OCS) 408 Large Object Character SBCS
X‘05’ X‘01’ X‘CB’(NOCS) 409 Nullable Large Object Character SBCS
X‘05’ X‘01’ X‘CC’(OCD) 412 Large Object Character DBCS
X‘05’ X‘01’ X‘CD’(NOCD) 413 Nullable Large Object Character DBCS
X‘05’ X‘01’ X‘CE’(OCM) 408 Large Object Character Mixed
X‘05’ X‘01’ X‘CF’(NOCM) 409 Nullable Large Object Character Mixed___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Note: Multiple DRDA types can correspond to the same SQL data type. For example, the
DRDA types for FB, FCS, and FCM all correspond to SQL type 452.

Table 5-13 MDD References for Early Group Data Units
__

Meta Data
Application Meta Data Reference Data Unit

Class Type DRDA-Type Name DescriptionLL
L
L

LL
L
L

LL
L
L

LL
L
L

LL
L
L

LL
L
L

__
SQL Data Area group
description

X‘05’ X‘02’ X‘50’ SQLDAGRP

__
SQL User-defined Data Group
Description

X‘05’ X‘02’ X‘51’ SQLUDTGRP

__
SQL Communication Area
Exceptions group

X‘05’ X‘02’ X‘52’ SQLCAXGRP

__
SQL Communication Area
group description

X‘05’ X‘02’ X‘54’ SQLCAGRP

__
SQL Privileges Area group
description

X‘05’ X‘02’ X‘56’ SQLPAGRP

__
SQL Number of Elements group
description

X‘05’ X‘02’ X‘58’ SQLNUMGRP

__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Part 1: Database Access Protocol 247

FD:OCA Meta Data Summary Data Definition and Exchange

__
Meta Data

Application Meta Data Reference Data Unit
Class Type DRDA-Type Name DescriptionLL

L
L

LL
L
L

LL
L
L

LL
L
L

LL
L
L

LL
L
L

__
SQL Object Name group
description

X‘05’ X‘02’ X‘5A’ SQLOBJGRP

__
SQL Result Set Column
Information group description

X‘05’ X‘02’ X‘5B’ SQLCIGRP

__
SQL Statement group
description

X‘05’ X‘02’ X‘5C’ SQLSTTGRP

__
SQL Statement Variables group
description

X‘05’ X‘02’ X‘5E’ SQLVRBGRP

__
SQL Result Set group
description

X‘05’ X‘02’ X‘5F’ SQLRSGRP

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

Table 5-14 MDD References for Early Row Descriptors
__

Meta Data
Application Meta Data Reference Data Unit

Class Type DRDA-Type Name DescriptionLL
L
L

LL
L
L

LL
L
L

LL
L
L

LL
L
L

LL
L
L

__
SQL Data Area row descriptionX‘05’ X‘03’ X‘60’ SQLDAROW__
SQL Communication Area row
description

X‘05’ X‘03’ X‘64’ SQLCARD

__
SQL Privileges Area Repeating
group row description

X‘05’ X‘03’ X‘66’ SQLPAROW

__
SQL Number of Elements row
description

X‘05’ X‘03’ X‘68’ SQLNUMROW

__
SQL Object Name row
description

X‘05’ X‘03’ X‘6A’ SQLOBJNAM

__
SQL Result Set Column
Information row description

X‘05’ X‘03’ X‘6B’ SQLCIROW

__
SQL Statement row descriptionX‘05’ X‘03’ X‘6C’ SQLSTT__
SQL Statement Variables row
description

X‘05’ X‘03’ X‘6E’ SQLVRBROW

__
SQL Result Set row descriptionX‘05’ X‘03’ X‘6F’ SQLRSROW__L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table 5-15 MDD References for Early Array Descriptors
__

Meta Data
Application Meta Data Reference Data Unit

Class Type DRDA-Type Name DescriptionLL
L
L

LL
L
L

LL
L
L

LL
L
L

LL
L
L

LL
L
L

__
SQLCA and SQLDA array
description

X‘05’ X‘04’ X‘74’ SQLDARD
__L
L
L

L
L
L

L
L
L

L
L
L

L
L
L

L
L
L

248 DRDA Volume 1

Data Definition and Exchange FD:OCA Meta Data Summary

__
Meta Data

Application Meta Data Reference Data Unit
Class Type DRDA-Type Name DescriptionLL

L
L

LL
L
L

LL
L
L

LL
L
L

LL
L
L

LL
L
L

__
SQLCA and SQLPA array
description

X‘05’ X‘04’ X‘78’ SQLPARD

__
SQL Result Set Column
Information array description

X‘05’ X‘04’ X‘7B’ SQLCINRD

__
SQL Statement Variables array
description

X‘05’ X‘04’ X‘7E’ SQLSTTVRB

__
SQL Result Set array descriptionX‘05’ X‘04’ X‘7F’ SQLRSLRD__LL

L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

Table 5-16 MDD References Used in Late Environmental Descriptors
__

Meta Data
Reference

Application Meta Data DRDA-Type SQL Data
Class Type and Name Type DescriptionL

L
L
L
L

L
L
L
L
L

L
L
L
L
L

L
L
L
L
L

L
L
L
L
L

L
L
L
L
L

__
Same values as allowed for
Early Environmental
Descriptors

X‘05’ X‘01’ ∗∗∗ ∗∗∗∗∗∗

__LL
L
L
L

LL
L
L
L

LL
L
L
L

LL
L
L
L

LL
L
L
L

LL
L
L
L

Table 5-17 MDD References for Late Group Data Units

Meta Data
Application Meta Data Reference Data Unit

Class Type DRDA-Type Name DescriptionLL
L
L

LL
L
L

LL
L
L

LL
L
L

LL
L
L

LL
L
L

SQL Data Value group
description

X‘05’ X‘02’ X‘D0’ SQLDTAGRP

___L
L
L

L
L
L

L
L
L

L
L
L

L
L
L

L
L
L

Table 5-18 MDD References for Late Row Descriptors
__

Meta Data
Application Meta Data Reference Data Unit

Class Type DRDA-Type Name DescriptionLL
L
L

LL
L
L

LL
L
L

LL
L
L

LL
L
L

LL
L
L

__
Row description for one row
with SQLCA and data

X‘05’ X‘03’ X‘E0’ SQLCADTA

__
Row description for one data
row

X‘05’ X‘03’ X‘E4’ SQLDTA

__L
L
L
L
L
L

L
L
L
L
L
L

L
L
L
L
L
L

L
L
L
L
L
L

L
L
L
L
L
L

L
L
L
L
L
L

Part 1: Database Access Protocol 249

FD:OCA Meta Data Summary Data Definition and Exchange

Table 5-19 MDD References for Late Array Descriptors
__

Meta Data
Application Meta Data Reference Data Unit

Class Type DRDA-Type Name DescriptionLL
L
L

LL
L
L

LL
L
L

LL
L
L

LL
L
L

LL
L
L

__
SQLCA and Data array
definition

X‘05’ X‘04’ X‘F0’ SQLDTARD

__
Row description for multi-row
data

X‘05’ X‘04’ X‘F4’ SQLDTAMRW

__L
L
L
L
L
L

L
L
L
L
L
L

L
L
L
L
L
L

L
L
L
L
L
L

L
L
L
L
L
L

L
L
L
L
L
L

The MDDs in the previous tables show DRDA Types. The SDA, GDA, or RLO that follows the
MDD is the representation of that type. For ease of use, the standard DRDA descriptor examples
have LIDs equal to their DRDA types. This is not a permanent relationship. The relationship
exists for early descriptors only. When late environmental descriptors are required, this
relationship does not hold. The DRDA semantics are represented in the MDD. The MDD value
(DRDA type) should not be inferred from the LID of the descriptor that follows it.

5.7.1 Overriding Descriptors to Handle Problem Data

Descriptors are overridden using two distinct and interacting methods in DRDA.

• The first method overrides environmental specifications originally established at the time a
conversation is initiated. This is accomplished with TYPDEFNAM and TYPDEFOVR
specifications associated with the data that does not conform to the current specification.
This is a global method and can override environmental definitions for everything. See Table
5-20 on page 251 for explanation.

• The second method provides specific field level overrides for user data that does not conform
to the TYPDEFNAM and TYPDEFOVR specifications currently in effect. These overrides are
accomplished by specification of MDD/SDA pairs of FD:OCA triplets for each class of user
data that must be handled. The grouping triplets then refer to the new (special) SDAs to
specify the actual representation of the user’s data.

Detail concerning each method follows.

5.7.1.1 Overriding Everything

The example below shows the sequence of FD:OCA triplets that participate in the definition of
DRDA data in DRDA Level 3 and before.

TTTTTTTTTTTTT MMMMMMMMMMM OOOOOOOOOOOOOOOOOOOOOOOOOO UUUUUUUUUUU

EnvironmentalEnvironmental Grp Row Arr Grp Row Arr

Early Late

All early descriptor triplets are grouped together and all late descriptor triplets are grouped
together.

The example below shows the sequence of FD:OCA triplets that participate in the definition of
DRDA data in DRDA Level 4 and higher.

250 DRDA Volume 1

Data Definition and Exchange FD:OCA Meta Data Summary

TTTTTTTTTTTTT TTTTTTTTTTTTTMMMMMMMMMMM OOOOOOOOOOOOO UUUUUUUUUUUUU

EnvironmentalEnvironmental EnvironmentalGrp Row Arr Grp Row Arr

Early Late Early Late

Some early descriptor triplets are taken from the high-end of the late environmental descriptor
range to accommodate additional DRDA data types added to DRDA Level 4. They are treated
exactly like other early descriptor triplets at the low-end of the early environmental descriptor
range.

The early descriptor triplets are broken into two groups: the T triplets and the M triplets. The T
triplet values establish the basic representations for all DRDA data. They are established by
specifying TYPDEFNAM and/or TYPDEFOVR. The M triplets define DRDA information units
(such as SQLCA). They are established with the MGRLVL parameter on EXCSAT.

The T triplet values can be overridden for any command or reply by specifying a new value for
TYPDEFNAM or TYPDEFOVR. The override is effective for the life of the command or reply and
applies to all DRDA data not subsequently overridden. (See Section 5.7.1.2 on page 252.)

In some cases, TYPDEFNAM and TYPDEFOVR can be specified to override the representation
specification provided on the earlier ACCRDB command. They are effective until the end of the
command or until overridden again.

Table 5-20 illustrates the cases:

Table 5-20 TYPDEFNAM and TYPDEFOVR

Description in Description in
Effect for Effect for

Condition SQLSTT SQLSTTVRB___
Not supplied ACCRDB ACCRDB___
Supplied only before
SQLSTT

Override Supplied before
SQLSTT

Override Supplied before
SQLSTT___

Supplied only before
SQLSTTVRB

Override Supplied before
SQLSTTVRB

ACCRDB

Override supplied before
SQLSTT

Override Supplied before
SQLSTTVRB

Supplied both places

___LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

The M triplet values cannot be overridden. These are all grouping and structuring triplets. Any
changes to these would mean a change in what information was exchanged rather than just how
that information would be represented.

The T and M triplets persist across and throughout a connection to a relational database.
Overrides to these triplets and the O and U triplets persist only for the processing of one
command or reply.

Similarly, the late descriptor triplets are broken into two groups: the O triplets and the U
triplets. The O triplets provide specific overrides and are described in Section 5.7.1.2 on page 252.
The U triplets define actual user data, sometimes in combination with DRDA information units.
The U triplets reference O triplets and both T triplets and M triplets (which in turn reference T
triplets). Data described through the T and M triplets is affected by specification of
TYPDEFNAM and TYPDEFOVR.

Part 1: Database Access Protocol 251

FD:OCA Meta Data Summary Data Definition and Exchange

5.7.1.2 Overriding Some User Data

The key to overriding the representation specification for some or all user data without affecting
the rest of the user data and the DRDA information units lies within the override or O triplets.
These triplets are placed between the M triplets (which describe DRDA information units) and
the U triplets (which describe user data). Based on FD:OCA referencing rules, the U triplets can
reference the O triplets and thus provide special representations for user data. The M triplets,
however, cannot reference to the right, and, therefore, all the DRDA-defined early information
units are bound only to themselves and the T triplets.

MDD/SDA triplet pairs are provided for each class (such as Fixed-Length Character Strings with
Single Byte Characters) of user data that must be overridden. The SDA triplets are then referred
to appropriately by the grouping triplet to include the field in the data definition and to assign
length values as needed. The MDD triplet defines what sort of data is being defined in the
DRDA sense. The following SDA triplet describes the pattern of bits that will be used to
represent the data.

The TYPDEFNAM and TYPDEFOVR parameters have no effect on the O triplets. For example, if
CCSID 437 is specified in an O triplet, then the data must be in CCSID 437 independent of
whatever TYPDEFOVR parameter had been specified previously.

5.7.1.3 Assigning LIDs to O Triplets

There are only two considerations. First, stay within a range of 1 to 255, and second, select a LID
that does not interfere with references to the early triplets or other O triplets.

The example below shows the LID ranges used by this level of DRDA. Use this only as a guide.
These LID assignments are not fixed for all time. What is fixed is that the O triplets will never
overlap the M and T triplets, and, therefore, O triplet LIDs that match M or T triplet LIDs will
block reference to those triplets (SDAs, GDAs, or RLOs).

This example shows the sequence of FD:OCA triplets that participate in the definition of DRDA
data for DRDA Level 3 and lower.

TTTTTTTTTTTTT MMMMMMMMMMM

Environmental Grp Row Arr

Early

01----------------4F 5x 6x 7x
OOOOOOOOOOOOOOOOOOOOOOOOOO UUUUUUUUUUU

Environmental Grp Row Arr

Late

80------------------------- -----------------------CF Dx Ex Fx

In DRDA Level 4, the example is modified to reflect the fact that some LIDs in the late
environmental data range have been used for early descriptors for additional DRDA data types.
The example of LID assignments for DRDA Level 4 is as follows:

TTTTTTTTTTTTT MMMMMMMMMMM

Environmental Grp Row Arr

Early

01----------------4F 5x 6x 7x
OOOOOOOOOOOOO TTTTTTTTTTTTT UUUUUUUUUUU

Environmental Environmental Grp Row Arr

Late Early Late

80---------------------C7 C8---------------CF Dx Ex Fx

Observations:

1. The O triplet LIDs have space reserved for them according to the DRDA level in the
example shown above. These are:

• X‘80’ to X‘CF’ in DRDA Level 3 and lower

• X‘80’ to X‘C7’ in DRDA Level 4 and higher

252 DRDA Volume 1

Data Definition and Exchange FD:OCA Meta Data Summary

If assignments are restricted to this range, no conflicts will occur. This range provides
LIDs that can be used without concern for conflict.

2. O triplets (like T triplets) are not length-specific and can be reused for several fields of user
data. All character fields of the same style and CCSID can refer to the same O triplet with
length specification being tailored for each field with the GDA in the late group descriptor.

3. References to triplets are resolved one triplet at a time. In DRDA terms that means that all
of the triplets referenced from late group descriptors are resolved before any of the late
row descriptor references, and so on.

This fact allows any of the LIDs to the right of the late group descriptors to be used for late
environmental descriptors. This also allows reuse of LIDs assigned by DRDA to late row or
late array descriptors. This provides 32 more LIDs that can be used without consideration
of what the user’s data looks like.

4. If more override LIDS (more than 112 in DRDA Level 3 and below or more than 104 in
DRDA Level 4 and above) are required, specific user data must be examined. In addition,
the FD:OCA rules must be used that state that LID references are resolved to the first LID
that matches to the left of or earlier than the referencing triplet. Duplicates are legal.

Once an LID is selected for an O triplet, any triplet to the left of that O triplet with the same
LID will be inaccessible by triplets to the right of that O triplet.

However, for important cases, indirect reference through M triplets solves this. Assume,
for example, there is some user data where all the user 4-byte integer fields are byte
reversed, but the DRDA information units (such as the SQLCA) has integer fields in the
normal sequence. If X‘02’ is selected as the LID for the O triplet to specify this, no late
group descriptor (for example, no user data) could reference the regular 4-byte integer
format for the environment. However, the U triplets that define the user data will reference
M triplets to include DRDA information units. The first match to the left of the M triplet
will produce the normal environment’s integer. Thus, for some of the data that will flow
(the SQLCA) LID X‘02’ will mean regular sequence and for other data (the user’s data) it
will mean byte-reversed.

Using all these methods in combination, 250 unique LID values can be approached for O triplets.

5.7.2 MDD Materialization Rules

As shown for each of the specific definitions of triplets for DRDA types, each representation is
really a pair of triplets; an MDD that states the type followed by another triplet that states how it
is represented.

Section 5.2.3 on page 143 described several cases for which descriptors were required to
accompany DRDA data. In some cases, no descriptor information flowed and in others the late
descriptors flowed. This section further defines when MDD triplets must be included in late
descriptors, and when they can be omitted.

MD-1 Late descriptors that contain No Override Triplets can be built with no MDD triplets.
The receiver of the descriptors understands the descriptor format (the sequence of
triplets) for each command. DRDA has fixed these formats.

MD-2 Each Late Environmental triplet must be preceded by an MDD triplet that specifies its
DRDA type. All Override Triplets require preceding MDDs.

MD-3 Any descriptor that contains an MDD triplet must have an MDD triplet specification
for every other triplet to the right of the first MDD. If Override Triplets are provided
(these require an MDD), then the subsequent group, row, and array triplets must also

Part 1: Database Access Protocol 253

FD:OCA Meta Data Summary Data Definition and Exchange

be preceded by MDDs that define their types.

A simplified restatement of these rules is that if Override Triplets are required, then every triplet
in the late descriptor requires a corresponding MDD; otherwise, no MDD triplets are required.

The use of TYPDEFNAM and TYPDEFOVR specifications does not force the use of MDDs in any
late descriptors.

5.7.3 Error Checking and Reporting for Descriptors

Both FD:OCA and DRDA define error conditions. However, this volume defines all possible
FD:OCA descriptor syntax error conditions for DRDA. Therefore, descriptors need only pass
DRDA validity checks. If the receiver of an FDODSC finds it in error, the error must be reported
with a DDM message DSCINVRM. If the descriptor passes DRDA validity checks, but the data
does not to match the descriptors, the mismatch must be reported with a DDM message
DTAMCHRM.

5.7.3.1 General Errors

01 FD:OCA Triplet not used in DRDA descriptors or Type code invalid.

02 Triplet Sequence Error: the two possible sequences are:

1. GDA,(CPT,)RLO<,RLO> <== normal case with no overrides

2. MDD,SDA,(MDD,SDA,)MDD,GDA,(CPT,)\
MDD,RLO<,MDD,RLO>

where () indicates an optional repeating group and <> indicates a field allowed
only when arrays are expected.

03 An array description is required, and this one does not describe an array (probably too
many or too few RLO triplets).

04 A row description is required, and this one does not describe a row (probably too many
or too few RLO triplets).

05 Late Environmental Descriptor just received not supported (probably due to non-
support of requested overrides).

06 Malformed triplet; missing required parameter.

07 Parameter value not acceptable.

5.7.3.2 MDD Errors

11 MDD present is not recognized as DRDA Descriptor.

12 MDD Class not recognized as valid DRDA class.

13 MDD type not recognized as a valid DRDA type.

5.7.3.3 SDA Errors

21 Representation incompatible with DRDA type (in prior MDD).

22 CCSID not supported.

254 DRDA Volume 1

Data Definition and Exchange FD:OCA Meta Data Summary

5.7.3.4 GDA/CPT Errors

32 GDA references an LID that is not an SDA or GDA.

33 GDA length override exceeds limits.

34 GDA precision exceeds limits.

35 GDA scale > precision or scale negative.

36 GDA length override missing or incompatible with data type.

5.7.3.5 RLO Errors

41 RLO references an LID that is not an RLO or GDA.

42 RLO fails to reference a required GDA or RLO (for example, QRYDSC must include a
reference to SQLCAGRP).

Part 1: Database Access Protocol 255

DRDA Examples Data Definition and Exchange

5.8 DRDA Examples
This section provides DRDA examples for environmental descriptions and command execution.

5.8.1 Environmental Description Objects

The following is a sample of all the FD:OCA triplets required to specify the representations of
every DRDA type for one specific environment, QTDSQL370. As discussed earlier, the early
environment descriptor set is determined during the Access RDB phase of communication
establishment between requester and server. The early data unit descriptor set is determined
during EXCSAT based on the SQLAM’s MGRLVL. The late data unit descriptors must be sent
over the link as needed to accompany user data.

This example shows all data type and data unit representations. The descriptors shown are for
the System 390 environment. Each is contained in a DDM FDODSC object. The task to construct
an equivalent descriptor set for any other environment is straightforward. Just take all the
values listed in the boxes for that environment and construct the table.

The descriptors are divided into three groups based on when they are agreed to: Early
Environmental, Early Data, or Late Data (ACCRDB, EXCSAT, or user data transfer).

The FDODSC entry in Table 5-21 is a different format than the rest of the table (and the
headings). However, it is included to illustrate the assembly of the complete descriptor.

5.8.1.1 Early Environmental Descriptors

The Early Environmental Descriptors in Table 5-21 apply for SQLAM Level 3, SQLAM Level 4,
and SQLAM Level 5. The only exceptions are RSL and NRSL, which are not supported at
SQLAM Level 3 and SQLAM Level 4.

Table 5-21 Complete set of Early Environmental Descriptors for QTDSQL370
__

DRDA Type MDD Descriptor—HEX SDA, GDA, CPT, or RLO Descriptor—HEX__LL LL LL LL

FDODSC name=QTDSQL370 03860010 (Descriptor Object)
I4 07780005 010102 0C700223 00000000 00000004
NI4 07780005 010103 0C7003A3 00000000 00000004
I2 07780005 010104 0C700423 00000000 00000002
NI2 07780005 010105 0C7005A3 00000000 00000002
I1 07780005 010106 0C700623 00000000 00000001
NI1 07780005 010107 0C7007A3 00000000 00000001
BF16 07780005 010108 0C700840 00000000 00000010
NBF16 07780005 010109 0C7009C0 00000000 00000010
BF8 07780005 01010A 0C700A40 00000000 00000008
NBF8 07780005 01010B 0C700BC0 00000000 00000008
BF4 07780005 01010C 0C700C40 00000000 00000004
NBF4 07780005 01010D 0C700DC0 00000000 00000004
FD 07780005 01010E 0C700E30 00000000 00001F1F
NFD 07780005 01010F 0C700FB0 00000000 00001F1F
ZD 07780005 010110 0C701033 00000000 00001F1F
NZD 07780005 010111 0C7011B3 00000000 00001F1F
N 07780005 010112 0C701232 000001F4 01001F1F__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

256 DRDA Volume 1

Data Definition and Exchange DRDA Examples

__
DRDA Type MDD Descriptor—HEX SDA, GDA, CPT, or RLO Descriptor—HEX__LL LL LL LL

NN 07780005 010113 0C7013B2 000001F4 01001F1F
RSL 07780005 010114 0C701423 00000000 00000004
NRSL 07780005 010115 0C7015A3 00000000 00000004
I8 07780005 010116 0C701623 00000000 00000008
NI8 07780005 010117 0C7017A3 00000000 00000008
OBL 07780005 010118 0C701801 00000000 00000004
NOBL 07780005 010119 0C701981 00000000 00000004
OCL 07780005 01011A 0C701A01 00000000 00000004
NOCL 0778000 01011B 0C701B81 00000000 00000004
OCDL 07780005 01011C 0C701C01 00000000 00000004
NOCDL 07780005 01011D 0C701D81 00000000 00000004
RI 07780005 01011E 0C701E02 00000000 00010028
NRI 07780005 01011F 0C701F82 00000000 00010028
D 07780005 010120 0C702010 000001F4 0100000A
ND 07780005 010121 0C702190 000001F4 0100000A
T 07780005 010122 0C702210 000001F4 01000008
NT 07780005 010123 0C702390 000001F4 01000008
TS 07780005 010124 0C702410 000001F4 0100001A
NTS 07780005 010125 0C702590 000001F4 0100001A
FB 07780005 010126 0C702601 00000000 00007FFF
NFB 07780005 010127 0C702781 00000000 00007FFF
VB 07780005 010128 0C702802 00000000 00017FFF
NVB 07780005 010129 0C702982 00000000 00017FFF
LVB 07780005 01012A 0C702A02 00000000 00017FFF
NLVB 07780005 01012B 0C702B82 00000000 00017FFF
NTB 07780005 01012C 0C702C03 00000000 00017FFF
NNTB 07780005 01012D 0C702D83 00000000 00017FFF
NTCS 07780005 01012E 0C702E14 000001F4 01017FFF
NNTCS 07780005 01012F 0C702F94 000001F4 01017FFF
FCS 07780005 010130 0C703010 000001F4 01007FFF
NFCS 07780005 010131 0C701990 000001F4 01007FFF
VCS 07780005 010132 0C703211 000001F4 01017FFF
NVCS 07780005 010133 0C703391 000001F4 01017FFF
LVCS 07780005 010134 0C703411 000001F4 01017FFF
NLVCS 07780005 010135 0C703591 000001F4 01017FFF
FCD 07780005 010136 0C703610 0000012C 02003FFF
NFCD 07780005 010137 0C703790 0000012C 02003FFF
VCD 07780005 010138 0C703811 0000012C 02013FFF
NVCD 07780005 010139 0C703991 0000012C 02013FFF
LVCD 07780005 01013A 0C703A11 0000012C 02013FFF
NLVCD 07780005 01013B 0C703B91 0000012C 02013FFF
FCM 07780005 01013C 0C703C10 000003A2 01007FFF
NFCM 07780005 01013D 0C703D90 000003A2 01007FFF
VCM 07780005 01013E 0C703E11 000003A2 01017FFF
NVCM 07780005 01013F 0C703F91 000003A2 01017FFF
LVCM 07780005 010140 0C704011 000003A2 01017FFF
NLVCM 07780005 010141 0C704191 000003A2 01017FFF__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Part 1: Database Access Protocol 257

DRDA Examples Data Definition and Exchange

__
DRDA Type MDD Descriptor—HEX SDA, GDA, CPT, or RLO Descriptor—HEX__LL LL LL LL

NTM 07780005 010142 0C704214 000003A2 01017FFF
NNTM 07780005 010143 0C704394 000003A2 01017FFF
PLB 07780005 010144 0C704407 00000000 000100FF
NPLB 07780005 010145 0C704587 00000000 000100FF
PLS 07780005 010146 0C704619 000001F4 010100FF
NPLS 07780005 010147 0C704799 000001F4 010100FF
PLM 07780005 010148 0C704819 000003A2 010100FF
NPLM 07780005 010149 0C704999 000003A2 010100FF
DLS 07780005 01014C 0C704C11 000001F4 01017FFF
NDLS 07780005 01014D 0C704D91 000001F4 01017FFF
DLM 07780005 01014E 0C704E11 000003A2 01017FFF
NDLM 07780005 01014F 0C704F91 000003A2 01017FFF
OB 07780005 0101C8 0C70C850 00000000 00018008
NOB 07780005 0101C9 0C70C9D0 00000000 00018008
OCS 07780005 0101CA 0C70CA51 000001F4 01018008
NOCS 07780005 0101CB 0C70CBD1 000001F4 01018008
OCD 07780005 0101CC 0C70CC51 0000012C 02018008
NOCD 07780005 0101CD 0C70CDD1 0000012C 02018008
OCM 07780005 0101CE 0C70CE51 000003A2 01018008
NOCM 07780005 0101CF 0C70CFD1 000003A2 01018008__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

5.8.1.2 Early Data Unit Descriptors

The Early Data Unit Descriptors in Table 5-22 apply for SQLAM Level 3, SQLAM Level 4, and
SQLAM Level 5. The only exceptions are SQLRSGRP, SQLRSROW, SQLRSLRD, SQLCIROW,
SQLCIGRP, and SQLCINRD, which are not supported at SQLAM Level 3 and SQLAM Level 4.

Table 5-22 Complete set of Early Data Unit Descriptors
__

DRDA Type MDD Descriptor—HEX SDA, GDA, CPT, or RLO Descriptor—HEXLL LL LL LL__
FDODSC unnamed 00F80010 (Descriptor Object)__

24755004 00020400 02020004 04000226
00023E00 1E32001E 3E001E32 001E3E00
FE3200FE

SQLDAGRP 07780005 020150

__
3F765230 00120200 04020004 02000402
00040200 04020004 30000130 00013000
01300001 30000130 00013000 01300001
30000130 00013000 013E0046 320046

SQLCAXGRP 07780005 020152

__
SQLCAGRP 07780005 020154 0F765402 00043000 05300008 520000__

1B75563E 00123200 123E0012 32001230
00013000 01300001 300019

SQLPAGRP 07780005 020156

__
SQLNUMGRP 07780005 020158 06755804 0002__
SQLOBJGRP 07780005 02015A 09755A3E 00FE3200 FE__

15755B3E 001E3200 1E3E001E 32001E3E
00FE3200 FE

SQLCIGRP 07780005 02015B

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

258 DRDA Volume 1

Data Definition and Exchange DRDA Examples

__
DRDA Type MDD Descriptor—HEX SDA, GDA, CPT, or RLO Descriptor—HEXLL LL LL LL__

SQLSTTGRP 07780005 02015C 09755C40 7FFF347 FF__
1E755E04 00020400 02020004 04000226
00023E00 40320040 E3004032 0040

SQLVRBGRP 07780005 02015E

__
SQLRSGRP 07780005 02015F 0F755F14 00043E00 1E32001E 020004__
SQLDAROW 07780005 030160 06716050 0001__
SQLCARD 07780005 030164 06716454 0001__
SQLPAROW 07780005 030166 06716656 0001__
SQLNUMROW 07780005 030168 06716858 0001__
SQLOBJNAM 07780005 03016A 06716A5A 0001__
SQLCIROW 07780005 03016B 06716B5B 0001__
SQLSTT 07780005 03016C 06716C5C 0001__
SQLVRBROW 07780005 03016E 06716E5E 0001__
SQLRSROW 07780005 03016F 06716F5F 0001__
SQLDARD 07780005 040174 0C717464 00016800 01600000__
SQLPARD 07780005 040178 0C717864 00016800 01660000__
SQLCINRD 07780005 04017B 09717B68 00016B00 00__
SQLSTTVRB 07780005 04017E 09717E68 00016E00 00__
SQLRSLRD 07780005 04017F 09717F68 00016F00 00__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

5.8.1.3 Late Data Unit Descriptors

The Late Data Unit Descriptors in Table 5-23 apply for both SQLAM Level 3 and SQLAM Level
4. The only exception is SQLDTAMRW, which is not supported at SQLAM Level 3.

Table 5-23 Complete Set of Late Data Unit Descriptors
__

DRDA Type MDD Descriptor—HEX SDA, GDA, CPT, or RLO Descriptor—HEX__LL LL LL LL

FDODSC unnamed LLLL0010 (Descriptor Object)__
. . 76D0. . . 7F00..SQLDTAGRP 07780005 0201D0__

SQLCADTA 07780005 0301E0 0971E054 0001D000 01__
SQLDTA 07780005 0301E4 0671E4D0 0001__
SQLDTARD 07780005 0401F0 0671F0E0 0000__
SQLDTAMRW 07780005 0401F4 0671F4E4 0000__LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

5.8.2 Command Execution Examples

The following examples of DRDA command execution illustrate how the descriptors would be
assembled to produce actual flows.

These examples use Table 5-24 on page 260, which is resident in a QTDSQL370 machine and is
called STATS.

Part 1: Database Access Protocol 259

DRDA Examples Data Definition and Exchange

Table 5-24 STATS Sample Table

AGE SMALLINT WEIGHT SMALLINT NAME VARCHAR(20)
Nullable Nullable Not Null___

21 160 BOB___
30 190 JIM___
35 180 SAM___
25 170 JOE___
40 150 ROD___LL

L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

These examples assume that the application requester prefers the QTDSQLX86 environment.

5.8.2.1 EXECUTE IMMEDIATE

This is the SQL statement for the first example:

EXEC SQL EXEC IMMEDIATE ’GRANT SELECT ON STATS TO BRUCE’

Because this is an EXECUTE IMMEDIATE command, the application requester sends the
statement to the application server using DDM’s EXCSQLIMM. Table 5-1 on page 146 shows
that command data flows according to early descriptor SQLSTT and that reply data will always
be an SQLCA.

The actual bytes that flow to show this data are in Table 5-25. This table does not show the DDM
command proper and its parameters.

Table 5-25 EXECUTE IMMEDIATE Command Data
__

Reference Hex Representation Description__
DDM length and code point for SQL StatementSQLSTT 00262414__

001E 4752 414E5420
53454C45 4354204F
4E205354 41545320
544F2042 52554345 0000

30 (Length of Statement) GRANT SELECT ON
STATS TO BRUCE 00

SQLSTT

__LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

The length of the variable-length field is not byte reversed, but all the characters are sent in the
application requester’s preferred code (ASCII).

After the application server processes it, the application requester expects an SQLCA in
response. If it worked as expected, it would have an SQLCODE of 0 (SQLSTATE ’00000’). (See
Table 5-26.)

Table 5-26 EXECUTE IMMEDIATE Reply Data
__

Reference Hex Representation Description__
SQLCARD 00052408 DDM code point for SQLCARD__
SQLCARD FF Null SQLCARD—all OK__LL
L
L
L

LL
L
L
L

LL
L
L
L

LL
L
L
L

260 DRDA Volume 1

Data Definition and Exchange DRDA Examples

5.8.2.2 Open Query Statement

These are the SQL statements for this example (in PL/I):

EXEC SQL DECLARE mycursor CURSOR FOR
SELECT * FROM STATS WHERE WEIGHT > :WGT;

EXEC SQL OPEN mycursor;
EXEC SQL FETCH mycursor

INTO :VAGE:VAGEI, :VWGT:VWGTI, :VNAME;

Variable WGT has been declared as FLOAT(8) and has the value 175.07. Variable VNAME has
been declared as CHARACTER VARYING (30). All other variables have been declared as
FIXED(15).

This example shows execution of an Open Query request. The statement is previously bound
and the request to execute is sent from the application requester to the application server using
DDM’s OPNQRY command. Table 5-1 on page 146 shows that for OPNQRY command data
flows according to late descriptor SQLDTA and that reply data will be an SQLCARD (for error
cases) or data that the late descriptor SQLDTARD described.

Table 5-27 shows the actual bytes that flow to show the command data. It does not show the
DDM command proper and its parameters.

Table 5-27 Open Query Command Data

Reference Hex Representation Description___
OBJDSS 0027D003 xxxx Object Data Stream Structure___

DDM code point for SQL objects with FD:OCA
Descriptors and Data

SQLDTA 00212412

DDM code point for FD:OCA Descriptor objects

Note: MDD/SDA pairs for unusual data
would be here if they were required.
Also the presence of MDD/SDA
pairs here would force inclusion of
MDDs before each GDA and RLO
that follows.

FDODSC 00100010

SQLDTAGRP 0676D0 Start Nullable Group Descriptor—GDA Header___
SQLDTAGRP 0A0008 Continue—One Eight-Byte Float Field___
SQLDTA 0671E4 Start Row Descriptor—RLO Header___

Continue—One occurrence of all elements of
group X‘D0’, user data

SQLDTA D00001

FDODTA 000D147A DDM code point for FD:OCA Data objects___
FDODTA 000AD7A3 703DE265 40 The data—175.07 (in a nullable group)___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

The application requester sent the data as FLOAT(8) even though the table column being
compared was SMALLINT. The application requester also sent the data in its preferred format,
byte reversed. The database manager at the application server end does the conversion based on
the SQLDA that describes the input data.

After the application server processes the data, the application requester expects to see a
description of the data being returned and the data from the table. In addition, the application
server must handle all situations in which an error from the relational database can be reported
as a warning in the manner that produces the warning. The application requester is then

Part 1: Database Access Protocol 261

DRDA Examples Data Definition and Exchange

responsible for upgrading the warning to an error if the application has not made the request in
the manner that allows the warning to be passed. See Section 7.17 on page 306 for a description
of these responsibilities. If it worked as expected, it returns the descriptor, two rows of data, the
End of Query Reply Message, and an End of File SQLCA.

262 DRDA Volume 1

Data Definition and Exchange DRDA Examples

Table 5-28 Open Query Reply Data

Reference Hex Representation Description___
RPYDSS 0016D052 xxxx Reply Data Stream Structure___

00102205 00061149
00000006 21022417

OPNQRYRM Open Query Reply Message

OBJDSS 0043D053 xxxx Object Data Stream Structure___

DDM code point for FD:OCA Descriptor objects

Note: MDD/SDA pairs for unusual data
would be here if they were required.

QRYDSC 001F241A

SQLDTAGRP 0C76D0 Start Nullable Group Descriptor—GDA Header___

Continue—Two nullable SMALLINT and one
VARCHAR(20) field

SQLDTAGRP 05000205 00023200 14

SQLCADTA 0971E0 Start Row Descriptor—RLO Header X‘E0’___

Continue—One occurrence of all elements of
group X‘54’, SQLCA

SQLCADTA 540001

Continue—One occurrence of all elements of
group X‘D0’, User Data

SQLCADTA D00001

SQLDTARD 0671F0 Start Array Descriptor—RLO Header___

Continue—All occurrences of all elements of
row X‘E0’, SQLCA with user data

SQLDTARD E00000

QRYDTA 001E241B DDM code point for FD:OCA Data objects___

FF000000 230000B4
0003E2C1 D4

QRYDTA First Row—null SQLCA, 35, 180, SAM(3)

FF000000 1E0000BE
0003D1C9 D4

QRYDTA Second Row—null SQLCA, 30, 190, JIM(3)

RPYDSS 0010D052 xxxx Reply Data Stream Structure___
ENDQRYRM 000A220B 00061149 0004 End of Query Reply Message___
OBJDSS 001DD003 xxxx Object Data Stream Structure___

DDM code point for the SQLCARD (stand
alone)

SQLCARD 00172408

00000000 64F0F2F0
F0F0C4E2 D5E7D9C6
C3C8FF

EOF SQLCA (SQLCODE, SQLSTATE and
SQLERRPROC only)

SQLCARD

___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

The EOF SQLCA becomes null after SQLERRPROC because of the presence of the nullable
group SQLCAXGRP inside the SQLCARD.

The entire result was short enough to be included in the first block of data returned as a result of
the command. The program has to issue three fetches subsequent to the Open to get all of the
data and the EOF indicator. This data flows in DDM OBJDSSs and RPYDSSs.

Because EOF was reached within this block for the OPNQRY command, an ENDQRYRM
indicating that the cursor has been closed followed this object. On the third fetch, the application
requester receives the ENDQRYRM and the SQLCA. The application requester can then respond
to that fetch with the EOF SQLCA and give an SQLSTATE X‘00000’ SQLCA to the Close Cursor
request when the application issues it.

Part 1: Database Access Protocol 263

DRDA Examples Data Definition and Exchange

5.8.2.3 Insert (Multi-Row)

These are the SQL statements for this example (in PL/I):

EXEC SQL INSERT INTO STATS :NBR
ROWS VALUES (:NEWENTS)

Variable NBR is declared as a one-byte integer and has the value 2. Variable NEWENTS is
declared as an array of dimension 2. The array structure matches the columns of the STATS table
and has the following values:

40 170 ROBERT
25 160 STEVE

This example shows execution of a multi-row insert request. The INSERT statement was
previously bound, and the request to execute is sent from the application requester to the
application server using DDM’s EXCSQLSTT command.

Table 5-29 shows the actual bytes that flow to show the command data. It does not show the
DDM proper command and its parameters.

Table 5-29 Multi-Row Insert Command Data
__

Reference Hex Representation Description__
OBJDSS 0047D003 xxxx Object Data Stream Structure__

DDM code point for SQL objects with FD:OCA
descriptors and data

SQLDTA 00412412

__
DDM code point for FD:OCA descriptor objectsFDODSC 001C0010__
Start Nullable Group Descriptor—GDA HeaderSQLDTAGRP 0C76D0__
Continue—Two nullable SMALLINT fields and
one VARCHAR(20)

SQLDTAGRP 05000205 00023200 14

__
SQLDTA 0671E4 Start Row Descriptor—RLO Header__

Continue—One occurrence of all elements of
group X‘D0’, user data

SQLDTA D00001

__
SQLDTAMRW 0671F4 Start Array Descriptor—RLO Header__

Continue—All occurrences of all elements of
row X‘E4’, user data

SQLDTAMRW E40000

__
DDM code point for FD:OCA data objectsFDODTA 0021147A__

00000028 0000AA00
06D9D6C2 C5D9E2

FDODTA First row—40, 170, ROBERT(6)

__
00000019 0000A000
05E2E3C5 E5C5

FDODTA Second row—25, 160, STEVE(5)

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

264 DRDA Volume 1

Data Definition and Exchange DRDA Examples

5.8.2.4 Call (Stored Procedure)

The following example of DRDA command execution illustrates how the descriptors would be
assembled to produce actual flows for a CALL statement. The SQL statement for this example is:

EXEC SQL CALL RMTPROC
(:VAGE:VAGEI, :VWGT:VWGTI, :VNAME, ’ABC’, NULL, USER);

In this example the host variables are declared and set as follows:

• VWGT is FLOAT(8) and set to 175.07.

• VNAME is CHARACTER VARYING (20) and set to ’FRED’.

• VAGE is FIXED(15) and is not set.

The host indicator variables are set as follows:

• VAGEI is −1.

• VWGTI is 0.

The modes of all parameters are INPUT except for VAGE, which is OUTPUT.

Table 5-30 shows the data that flows in the OBJDSS (object data stream structure) which follows
the EXCSQLSTT command. Notice only host variable parameters flow.

Table 5-31 on page 266 shows an example reply data stream. Notice the use of −128 (X‘80’)
indicator values in the FDODTA to flag the second and third parameters as being INPUT only.

Table 5-30 Object Data Stream Example for Execution of CALL Statement

Reference Hex Representation Description___
OBJDSS 002C D003 xxxx Object Data Stream Structure___

DDM Length and code point (LLCP) for
SQLDTA

SQLDTA 0026 2412

DDM Length and code point (LLCP) for
FDODSC

FDODSC 0016 0010

Start Nullable Group Desc.-GDA headerSQLDTAGRP 0C76D0___
Continue-SMALLINT, 8 byte FLOAT,
VARCHAR(20), all nullable

SQLDTAGRP 050002 0B0008 330014

SQLDTA 0671E4 Start Row Descriptor - RLO Header___

Continue-One occurrence of all elements of
group X‘D0’, user data

SQLDTA D00001

DDM Length and code point (LLCP) for
FDODTA

FDODTA 0016147A

FDODTA 00 Non-null nullable group indicator___
FDODTA FF Null indicator for first parameter___

Data for second parameter (175.07) in nullable
field

FDODTA 000AD7A3 703DE265 40

Data for third parameter (’FRED’) in nullable
field

FDODTA 000004C6 D9C5C4

___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Part 1: Database Access Protocol 265

DRDA Examples Data Definition and Exchange

Table 5-31 Reply Data Stream Example for Execution of CALL Statement

Reference Hex Representation Description___
OBJDSS 0034 D002 xxxx Object Data Stream Structure___

DDM Length and code point (LLCP) for
SQLDTARD

SQLDTARD 002E 2413

FDODSC 001F 0010 DDM LLCP for FDODSC___

Start Nullable Group Desc.-GDA headerSQLDTAGRP 0C76D0___
Continue-SMALLINT, 8 byte FLOAT,
VARCHAR(20), all nullable

SQLDTAGRP 050002 0B0008 330014

Start Row Descriptor - RLO Header X‘E0’SQLCADTA 0971E0___
Continue-One occurrence of all elements of
group X‘54’, SQLCA

SQLCADTA 540001

Continue-One occurrence of all elements of
group X‘D0’, user data

SQLCADTA D00001

SQLDTARD 0671F0 Start Row Descriptor - RLO Header___

Continue-ALL occurrences of all elements of
group X‘E0’, SQLCA with user data

SQLDTARD E00000

FDODTA 000B147A DDM LLCP for FDODTA___
FDODTA FF Null SQLCA___
FDODTA 00 Non-null nullable group indicator___

Non-null first parameter (32) in nullable fieldFDODTA 000020___
Special INPUT-only null indicator values (−128)
for second and third parameters

FDODTA 8080

___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

266 DRDA Volume 1

Data Definition and Exchange DRDA Examples

5.8.2.5 Call (Stored Procedure Returning Result Sets)

The following example illustrates the actual flow for the summary component of the response to
an SQL statement that invokes a stored procedure and returns result sets. The example flow is
for the summary component of Figure 4-16 on page 101. The example assumes that the
RSLSETRM reply message does not contain a server diagnostic information (SRVDGN) reply
parameter, that there was no need for the application server to specify TYPDEFNAM and
TYPDEFOVR overrides, and that the SQLSTATE for the SQL statement that invoked the stored
procedure is X‘00000’.

Table 5-32 Reply Data Stream Example for Summary Component of Response
__

Reference Hex Representation Description__LL LL LL LL

RPYDSS 009CD052 xxxx Reply Data Stream Structure__
DDM length and code point (LLCP) for RDB
Result Set Reply Message

RSLSETRM 00962219

__
RDB Result Set Reply Message Severity CodeSVRCOD 00061149 0000__
DDM length and code point (LLCP) for RDB
Package Name, Consistency Token, and Section
Number List

PKGSNLST 008C2139

__
00442113 xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx

PKGNAMCSN PKGNAMCSN for result set #1

__
00442113 xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx

PKGNAMCSN PKGNAMCSN for result set #2

__
OBJDSS 0065D003 xxxx Object Data Stream Structure__

DDM length and code point (LLCP) for SQL
Communications Area Reply Data

SQLCARD 00052408

__
SQLCARD FF Null SQLCARD__

DDM length and code point (LLCP) for SQL
Result Set Reply Data

SQLRSLRD 005A240E

__
SQLRSLRD 0002 Number of result set entries

__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Part 1: Database Access Protocol 267

DRDA Examples Data Definition and Exchange

__
Reference Hex Representation Description__LL LL LL LL

xxxxxxxx 001Exxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx 0000xxxx
xxxx

Locator value, name, and number of rows for
result set #1

SQLRSLRD

__
xxxxxxxx 001Exxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx 0000xxxx
xxxx

Locator value, name, and number of rows for
result set #2

SQLRSLRD

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L

268 DRDA Volume 1

Chapter 6

Names

For DRDA, many named resources, such as SQL tables, must be uniquely accessible from
anywhere within a set of interconnected networks. The names must also be convertible as
necessary to addresses or routings in order to complete the connection between the application
that needs the data and the database management system that supplies the stored data.

In the DRDA environment, database management systems join networks, networks merge,
networks split, data moves from one database management system to another, and programs
migrate from one system to another. In short, the DRDA environment is constantly evolving.
Careful attention to the naming of users and resources is crucial for success in such a dynamic
environment.

A user’s identification and the authorities that go along with the ID should not change if the user
enters the environment from different machines. For example, all PCs in a pool of LAN-
connected PCs should have equivalent access to host data. As data migrates about the set of
interconnected networks to help performance or reliability, programs and stored queries should
not require modification. Physical changes to data configurations should not directly affect
users or programs.

In short, named entities in the DRDA environment need to be identified uniquely in their
operating environment. This can include worldwide global uniqueness. Global uniqueness can
be achieved through standardized naming structures or name registration organizations or a
combination of both.

This chapter describes DRDA naming conventions for:

• Names for end users

— The environment defines the allowable name structure.

— DRDA places restrictions on the name structure.

— The name structure does not guarantee uniqueness. The environment must guarantee
uniqueness.

• Names for relational databases

— DRDA defines name structure.

— RDB_NAME prefix registration allows for global uniqueness.

• Names for tables and views

— SQL defines name structure.

— Structure allows for global uniqueness.

• Names for packages

— SQL defines name structure.

— Structure allows for global uniqueness.

• Names for target programs

— Target program name structures will be different dependent on the communications
environment in effect (See Part 3, Network Protocols.)

Part 1: Database Access Protocol 269

Names

See Referenced Documents on page xxiv for sources that provide background information for
better understanding of this chapter.

6.1 End Users
An end-user name must be unique or uniquely identifiable at the relational database that is
being accessed.

6.1.1 Support for End-User Names

DRDA implementations provide the following support for DRDA end user names.

An end-user identification at the application requester consists of a single token that makes the
identification unique at one, or possibly more than one, application server.

Syntax

USER_ID
8 (8 bytes total)

The character string that represents an end user-name within DRDA flows has a maximum
length of 8 bytes and must consist of letters (A through Z) and numerics (0 through 9).

Semantics

USER_ID
Uniquely identifies a user within the scope of the user ID name space of an application
server. The application server should attempt to match the USER_ID to the name space
of the local security manager. For example, if USER_IDs are required to be in
uppercase, USER_IDs should be folded to uppercase before authentication.

The application requester passes the USER_ID to the application server by one of the following
methods:

• Through the network protocol; for example, in the LU 6.2 ALLOCATE verb

• Through the security context information passed in a DDM SECTKN object

• Through DDM usrid parameter passed on the SECCHK command

This support assumes the following:

• It is the responsibility of the end user to obtain a unique USER_ID at an application server.

• An end user can need a different USER_ID at each application server that contains data the
end user desires to access.

270 DRDA Volume 1

Names RDBs

6.2 RDBs
The name for a relational database is RDB_NAME.

Syntax

RDB_NAME
18 bytes total

An RDB_NAME has the same syntactic constraints as SQL identifiers with the exception that
RDB_NAME cannot contain the alphabetic extenders for national languages (#, @, and $, for
example). The valid characters are uppercase letters (A through Z), the numerics (0 through 9),
and the underscore character (_). The maximum length of an RDB_NAME is 18 bytes.

The description of the syntax of the RDB_NAME does not imply syntax checking is required in
DRDA. When the application tries to access the relational database, it finds the invalid
RDB_NAMEs. Invalid RDB_NAMEs are based on the non-existence of the RDB_NAMEs and not
on their syntax. The syntax of the RDB_NAME should be checked when the relational database
is created.

Semantics

RDB_NAME
Identifies a relational database. A relational database consists of a relational database
management system catalog and all the relational database objects that the catalog
describes, as well as the algorithms that access and manipulate the catalog and
database objects that the catalog describes.

Note: The SNA Netid Registry registers the first six bytes of the RDB_NAME. The
Open Group submits requests to register the first six bytes of an
RDB_NAME to the registrar of the SNA Netid Registry in response to
customer requests. For more details on the registration process, contact The
Open Group.

6.3 Tables and Views
The globally unique name for a table or view is RDB_NAME.COLLECTION.OBJECTID.

Syntax

RDB_NAME.COLLECTION.OBJECTID
18 18 18 (56 bytes total)

Section 6.2 defines the syntax of RDB_NAME. COLLECTION and OBJECTID have the same
syntactic constraints as SQL identifiers. COLLECTION and OBJECTID are further restricted to
be only in the single-byte character set (SBCS). The maximum length of COLLECTION is 18
bytes. The maximum length of OBJECTID is 18 bytes.

Part 1: Database Access Protocol 271

Tables and Views Names

Semantics

RDB_NAME
Identifies the relational database whose catalog contains information for the object.
Refer to Section 6.2 on page 271 for further detail.

DRDA requires that an application server support the receipt of RDB_NAME in table
and view names. DRDA defines the semantic characteristics of RDB_NAME.

COLLECTION
Identifies a unique collection of objects contained within the relational database that
RDB_NAME identifies.

OBJECTID
The combination of COLLECTION and OBJECTID uniquely identifies a table or view
within the identified relational database.

272 DRDA Volume 1

Names Packages

6.4 Packages
Each relational database management system provides a program preparation process that
prepares an SQL application program for execution.

A package is one of the outputs of applying the program preparation process to an SQL
application program. A package consists of sections that bind the SQL statements in an
application program to access paths at the relational database management system, which stores
the tables that the SQL statements reference. The relational database management system that
stores the tables also stores and manages the packages that reference the tables.

The package creation process consists of two logical steps:

• The first step extracts the SQL statements and any associated application variable
declarations from the application program and replaces the SQL statements with calls to
runtime database programs. In doing so, the first step also generates the runtime structures
that the application program passes to the runtime database programs during execution.

• The second step binds the extracted SQL statements to access paths at the relational database
management system that stores the tables.

The name of the package relates an application program to its selected access paths. The runtime
structures stored in the application program contain part of this name.

6.4.1 Package Name

The fully qualified name for a package, or database management system access module, is
RDB_NAME.COLLECTION.PACKAGEID.

Syntax

RDB_NAME.COLLECTION.PACKAGEID
18 18 18 (56 bytes total)

Section 6.2 on page 271 defines the syntax of RDB_NAME. COLLECTION and PACKAGEID
have the same syntactic constraints as SQL identifiers. COLLECTION and PACKAGEID are
further restricted to be in the Single-Byte Character Set (SBCS) only. The maximum length of
PACKAGEID is 18 bytes. For more information, see ISO/IEC 9075: 1992, Database Language SQL.

Semantics

RDB_NAME
Identifies the relational database that is the application server database manager for the
package (such as the relational database where creation of the access module occurs).
Refer to Section 6.2 on page 271 for further detail.

COLLECTION
Identifies a unique collection of packages contained within the relational database that
RDB_NAME identifies.

PACKAGEID
The combination of COLLECTION and PACKAGEID uniquely identifies a package
within the application server relational database.

The bind process provides the RDB_NAME, the COLLECTION, and the PACKAGEID
for the fully qualified package name.

Part 1: Database Access Protocol 273

Packages Names

6.4.2 Package Consistency Token

Each package also has an associated consistency token. The consistency token uniquely
identifies the SQL application program preparation process that prepared the source SQL
statements for execution. The relational database management system uses the consistency
token during SQL program execution to verify that the package it selects for database
management access is the instance of the package that the program preparation process
generated for the executing instance of the application program. Both the package name and the
consistency token flow at execution time to identify the package and confirm the relationship
between the package and the application program.

The first step of the program preparation process (see Section 6.4 on page 273) establishes the
consistency token. The first step can either generate the consistency token or receive the
consistency token as an input parameter.

Syntax

PACKAGE_CONSISTENCY_TOKEN
8 (8 bytes total)

A consistency token is a byte string of length 8.

Semantics

The consistency token uniquely identifies the SQL application program preparation process that
prepared the source SQL statements for execution. As such, it associates an execution instance of
an SQL application program with a particular instance of a package.

6.4.3 Package Version ID

In order to support orderly management of SQL application programs, it is necessary to
recognize that programs can exist in several versions, that the several versions can exist
simultaneously, and that each version will have its own package.

The objective of SQL application program version management is to allow a single SQL
application program to exist in multiple versions. All versions share the same identity as the
application program but must be distinguishable when the application creates new versions of
an SQL program, destroys existing versions, or selects the instance of the application program
used in other operations such as compile, link edit, and execute.

DRDA does not define how program management components externalize and support versions
of programs. However, because a package is the representation of database management access
requests for a version of an application program, DRDA incorporates a mechanism to name
versions of a package and to resolve an application program database management access
request to the proper version of the package.

DRDA supports SQL application program versions by associating a version ID attribute with a
package name that serves as the external identifier of the package. DRDA requires specification
of the version ID attribute during the creation or dropping of a package and during the granting
and revoking of package execution privileges. When a version of an application program
executes, the consistency token that the precompiler assigned is used as the execution time
selector of the package version.

The existence of a version ID attribute means that every version of a package has two unique
names: the package name plus version ID qualifier and the package name plus consistency token
qualifier. Users specify the version ID at the user interfaces. The relational database
management system uses the consistency token internally to uniquely identify the correct

274 DRDA Volume 1

Names Packages

package version for a particular instance of an SQL application program.

A package can have a null version ID. This means that the package has no versions or that one
version of the package is not qualified with an external identifier. A consistency token must exist
for each package and must be unique across all versions of a package.

Syntax

PACKAGE_VERSION_ID
254 (254 bytes total)

A version ID is a varying-length character string having a maximum length of 254 bytes.

Semantics

The version ID uniquely identifies an instance of a package to users.

6.4.4 Sections

A section number uniquely identifies a section within the referenced package. A section number
is a 2-byte signed binary integer. The maximum section number value is 32,767 and the
minimum section number value is 1.

During the bind process, the application requester sends a section number with a value between
one and MAXSCTNBR to each source SQL statement. MAXSCTNBR is a parameter on the DDM
command ENDBND. This parameter is a value greater than zero and less than 32K and allows
the relational database to ensure that the package contains the correct number of sections. The
program preparation process assigns section numbers in increasing order. Gaps in the sequence
(such as unassigned section numbers) are possible. The application server can see the section
numbers in the gaps later in the bind process if the section number in the gap was assigned
earlier at the application requester for a related SQL statement that did not flow (for example, a
Declare Cursor for a previously prepared statement), or might not see the section numbers until
they are executed.

The program preparation process at the application requester assigns the same section number
to all related SQL statements that have execution time dependencies. In particular, each declared
statement or cursor receives a unique section number. A cursor declared for a statement shares
the statement section number. And each SQL statement that references the declared statement or
cursor (FETCH, EXECUTE, OPEN, CLOSE, PREPARE) receives the same section number as the
referenced statement or cursor.

The program preparation process at the application requester assigns a unique section number
to each of the following: ALTER, CALL, COMMENT ON, CREATE, DELETE, DROP, EXPLAIN,
GRANT, INSERT, LABEL ON, LOCK, REVOKE, SELECT (embedded), SET, and UPDATE. The
program preparation process also assigns a unique section number to each incompletely
understood SQL statement.

The program preparation process at the application requester can assign one section number to
all EXECUTE IMMEDIATEs or more than one section number to the set of EXECUTE
IMMEDIATEs.

The bind process at the application server handles each EXECUTE IMMEDIATE with a different
section number as an independent statement. In products that generate sections, the bind
process at the application server generates a separate section for each EXECUTE IMMEDIATE
with a different section number.

All SQL statements in an application program are input to the bind process at the application
server with the following exceptions: INCLUDE, WHENEVER, PREPARE, EXECUTE,

Part 1: Database Access Protocol 275

Packages Names

EXECUTE IMMEDIATE, DESCRIBE, OPEN, FETCH,39 CLOSE, COMMIT, CONNECT,
ROLLBACK, RELEASE, SET CONNECTION, DISCONNECT, BEGIN DECLARE SECTION,
END DECLARE SECTION, and local statements.40 The application requester processes the
excepted statements.

ISO/IEC 9075: 1992, Database Language SQL defines the order in which SQL statements must be
input. Aside from the rules already stated, the manner in which the bind process handles an
individual SQL statement is specific to the environment.

40. FETCH statements that contain multi-row and scroll parameters flow at bind time to provide the application server optimization
hints in regard to cursors that fetch multi-rows and/or scroll. If the application server does not support multi-row and/or
scrolling, it must reject the FETCH at bind time so the application is informed of the multi-row and scrolling capabilities at the
application server. The flowing of FETCH at bind time is not supported in DRDA Level 1.

40. A local statement is understood by the precompiler and either processed completely by the precompiler, or it results in a call to
the application requester at runtime, which does not cause any flows to the application server.

276 DRDA Volume 1

Names Stored Procedure Names

6.5 Stored Procedure Names
The qualified form for a stored procedure name is RDB_NAME.COLLECTION.PROCEDURE.

Syntax

RDB_NAME.COLLECTION.PROCEDURE
18 18 18 (56 bytes total)

Section 6.2 on page 271 defines the syntax of RDB_NAME. COLLECTION and PROCEDURE
have the same syntactic constraints as SQL identifiers. COLLECTION and PROCEDURE are
further restricted to be only in the single-byte character set (SBCS). The maximum length of
COLLECTION is 18 bytes. The maximum length of PROCEDURE is 18 bytes.

Semantics

RDB_NAME
Identifies the relational database whose catalog contains information for the procedure.
Refer to Section 6.2 on page 271 for further detail.

DRDA requires that an application server support the receipt of RDB_NAME in stored
procedure names. DRDA defines the semantic characteristics of RDB_NAME.

COLLECTION
Identifies a unique collection of procedures contained within the relational database
that RDB_NAME identifies.

PROCEDURE
The combination of COLLECTION and PROCEDURE uniquely identifies a stored
procedure within the identified relational database.

Part 1: Database Access Protocol 277

Synonyms and Aliases Names

6.6 Synonyms and Aliases
The resolution of synonyms and aliases for DRDA tables and views occurs at the application
server for DRDA flows. DRDA, however, does not define the mechanism that resolves
synonyms and aliases. The particular resolution mechanisms are specific to the environment.

6.7 Default Mechanisms for Standardized Object Names
Refer to Section 6.3 on page 271 for a discussion of the DRDA-defined default values within
DRDA object names.

In general, DRDA does not define the mechanism that provides the default values for
components of DRDA table, view, and package names for DRDA flows. The particular
mechanisms for providing product default values are implementation-specific.

278 DRDA Volume 1

Names Target Program

6.8 Target Program
DRDA requires that an application requester (AR) specify the target program name of the
application server (AS) when allocating a network connection. The application requester
determines the program name of the application server during the process of resolving the
RDB_NAME of the application server to a network location. DRDA allows the use of any valid
program name that meets the standards of the communications environment that is in use (see
Part 3, Network Protocols) and that the application server supports.

To avoid potential name conflicts, the application server program name should be, but need not
be, a registered target program name.

DDM might also provide a registered target program name that can be used. The DDM target
program name would be used if the DDM implementation at the application server provided file
server functions in addition to DRDA functions.

DRDA defines default target program names. The default target program name must be
definable at each location that has an application server providing DRDA capabilities. An
application requester can then assume the existence of the default target program name at any
location providing DRDA capabilities, and default to a target program name when a request
requiring an initialization of a network connection does not specify a target program name.
Because target programs can have aliases, the default target program name can also have the
DDM default target program name or some other registered DRDA target program name.
DRDA, however, does not require that a DRDA target program have multiple target program
names.

See the following sections for an interpretation of target program names per environment:

• Section 12.8.3 on page 419

• Section 13.6.3 on page 436

Part 1: Database Access Protocol 279

Names

280 DRDA Volume 1

Chapter 7

DRDA Rules

This chapter consists of a topical collection of all the rules pertaining to DRDA usage. These
rules have been either described, alluded to, implied, or referenced in other chapters of the
DRDA reference.

The major exception to the collection of rules is the omission of architecture usage rules
contained in Chapter 5 on page 137. Chapter 5 on page 137 precisely describes the description
and formats of data exchanged between application requesters and application servers. See
Section 5.3 on page 145 for rules pertaining to this topic.

The following sections define the DRDA rules between an application requester (AR) and an
application server (AS). The rules are equivalent between an application server (AS) and a
database server (DS) but are not specifically described unless noted in the rule. The terms
application requester and application server can be interchanged with application server and
database server unless specifically identified in the rule.

7.1 Connection Allocation (CA Rules)
CA1 Only the application requester can initiate network connections between an application

requester and an application server.

CA2 Network connections between an application requester and an application server must
be started with the required characteristics as defined in the rule usage for the specific
network protocol in use (see Part 3, Network Protocols).

See rules usage for environment in these sections:

• Section 12.8.2.1 on page 415

• Section 13.6.2.1 on page 434

CA3 A connection between an application requester and an application server using remote
unit of work protocols must not be protected by a sync point manager.

A connection between an application requester and an application server using
distributed unit of work can be protected by a sync point manager or be unprotected. If
either the application requester or application server does not support a protected
connection, the connection must be established without a sync point manager.

See rules usage for environment in these sections:

• Section 12.8.2.1 on page 415

• Section 13.6.2.1 on page 434

CA5 ACCRDB must be rejected with MGRDEPRM when DRDA-required network
connection parameters are not specified or are specified incorrectly.

See rules usage for environment in this section:

• Section 12.8.2.1 on page 415

Not applicable in a TCP/IP environment.

CA10 Receivers of ACCRDB must understand the values of TYPDEFNAM and the
CCSIDSBC specification of TYPDEFOVR. If the receiver does not understand the

Part 1: Database Access Protocol 281

Connection Allocation (CA Rules) DRDA Rules

values, then it should return VALNSPRM. This should be handled like any other
VALNSPRM error on ACCRDB.

Values of CCSIDMBC and CCSIDDBC that the receiver does not understand should be
reported with an ACCRDBRM with a WARNING severity. Application requesters can
report the warning with SQLSTATE X‘01539’. If additional SQL statements use any
misunderstood CCSIDs, errors occur. These errors are then reported with an SQLCA
indicating data errors along with any reply message that is appropriate to the
command that encountered the error.

CA11 Receivers of ACCRDBRM must understand the values of TYPDEFNAM and the
CCSIDSBC specification of TYPDEFOVR. If the receiver does not understand the
values, then it should terminate the connection. This should be handled like a receipt
of a VALNSPRM error in the ACCRDBRM.

Values of CCSIDMBC and CCSIDDBC that the receiver does not understand should be
saved for possible problem determination actions later. Application requesters can
report the warning with an SQLSTATE of X‘01539’. If additional SQL statements use
any misunderstood CCSIDs, errors occur. These errors are then reported with an
SQLCA indicating data errors along with any reply message that would be appropriate
to the command that encountered the error.

When the ACCRDBRM received has the WARNING severity, that fact should be
recorded for possible later problem determination actions if it is not reported to the
application.

CA12 An application requester using distributed unit of work protocols can initialize a
connection with one or more application servers in a unit of work.

CA13 This rule is retired.

CA14 An application requester and application server must provide support for at least one
network protocol defined in Part 3, Network Protocols).

282 DRDA Volume 1

DRDA Rules Mapping of RMs to SQLSTATEs (CD Rules)

7.2 Mapping of RMs to SQLSTATEs (CD Rules)
CD1 If an application requester receives a valid reply message (RM) with a valid svrcod, the

application requester must return the SQLSTATE listed in Section 8.1 on page 331. If an
application requester receives an RM that is not valid in DRDA, or a valid RM with an
svrcod that is not valid in DRDA, the application requester returns SQLSTATE 58018.

CD2 If an SQLCARD accompanies an RM, the SQLCODE and SQLSTATE in the SQLCARD
should be passed to the application.

7.3 Connection Failure (CF Rules)
CF1 When a network connection fails, the application server must implicitly roll back the

effects of the unit of work and deallocate all database management resources
supporting the application.

CF2 When a network connection fails, the application requester must report the failure to
the application in the SQLCA.

Part 1: Database Access Protocol 283

Commit/Rollback Processing (CR Rules) DRDA Rules

7.4 Commit/Rollback Processing (CR Rules)
CR2 Application servers using remote unit of work protocols and application servers using

distributed unit of work but not protected by a sync point manager must inform the
application requester when the current unit of work at the application server ends as a
result of a commit or rollback request by an application or application requester
request. This information is returned in the RPYDSS, containing the ENDUOWRM
reply message. This RPYDSS is followed by an OBJDSS containing an SQLCARD with
information that is input to the SQLCA to be returned to the application. If multiple
commit or rollbacks occur prior to exiting a stored procedure, only one ENDUOWRM
is returned. See rule CR13 for setting the uowdsp parameter when multiple commit
and/or rollbacks occur in a stored procedure. See CR6 for the SQLSTATEs to return.

See rules usage for environment in these sections:

• Section 12.8.2.2 on page 416

• Section 13.6.2.2 on page 434

CR3 When a unit of work ends, the application requester must ensure, for all opened cursors
that did not have the HOLD option specified, that all query buffers containing
unprocessed data (Limited Block Protocols) are purged and that all cursors are in the
not open state.

When the HOLD option has been specified for a cursor, a commit does not close that
cursor; the application requester must leave that cursor open with its current position
in the buffer for the next Fetch.

Note: This includes cursors that were opened with the HOLD option specified
within a stored procedure invoked within the unit of work.

CR4 The ending of a network connection causes an application server initiated rollback. The
application server assumes termination of the SQL application associated with the
connection.

The SQL application should initiate commit or rollback functions prior to termination.
If the SQL application terminates normally but does not explicitly commit or rollback,
then the application requester must invoke the commit function before terminating the
network connection. If the SQL application terminates abnormally, the application
requester must invoke the rollback function before terminating the network connection.

CR5 An SQL COMMIT or ROLLBACK, when embedded in the application, is mapped to the
DDM commands RDBCMM and RDBRLLBCK, respectively. An SQL COMMIT or
ROLLBACK, when executed as dynamic SQL, is mapped to the DDM commands for
dynamic SQL—either EXCSQLIMM for EXECUTE_IMMEDIATE or PRPSQLSTT and
EXCSQLSTT for PREPARE followed by EXECUTE.

CR6 The parameter rdbalwupd of the DDM command ACCRDB is an application requester
specification of whether or not the application server is to allow update operations. An
update operation is defined as a change to an object at the relational database, such that
the change to the object is under commit/rollback control of the unit of work that the
application requester initiates.

When the application requester specifies that no updates are allowed, the application
server must enforce this specification and, in addition, must not allow the execution of
a commit or rollback that the DDM command EXCSQLIMM or EXCSQLSTT requested.

An application requester request that violates the no-update specification is to be
rejected with SQLSTATE X‘25000’ for update operations, SQLSTATE X‘2D528’ for

284 DRDA Volume 1

DRDA Rules Commit/Rollback Processing (CR Rules)

dynamic requests to commit, and SQLSTATE X‘2D529’ for dynamic requests to
rollback.

If the local environment allows it, the application requester should initiate processing
of commit or rollback for SQLSTATEs X‘2D528’ and X‘2D529’. If the local environment
does not allow the application requester to initiate commit or rollback, the SQLSTATEs
should be returned to the application.

The application requester may use rdbalwupd to ensure that the application performs
read-only operations while the application is executing in an environment that
supports access to a set of resources such that each member of the set is managed by a
distinct resource manager and consistency of the set is controlled by a two-phase
commit protocol initiated to the resource managers by the application manager.

CR8 An application server begins commit processing only if it is requested to commit by the
sync point manager. If an application requester receives a request to commit from the
sync point manager on the connection with an application server, the application
requester must ensure a rollback occurs for the unit of work.

See rules usage for environment in this section:

• Section 12.8.2.2 on page 416

Not applicable to TCP/IP.

CR9 An application server protected by a sync point manager can only process dynamic
commit or rollback requests or commit requests generated via a stored procedure
defined with the commit on return attribute if the parm rdbcmtok has a value of TRUE
indicating the server is allowed to process the commit or rollback.

Otherwise, the application server must refuse the commit or rollback request by
returning a CMMRQSRM to the application requester. The cmmtyp parameter must
indicate the type of request (commit or rollback).

CR10 If an application server is protected by a sync point manager and it receives an
RDBCMM or RDBRLLBCK, the RDBCMM or RDBRLLBCK must be rejected and a
CMDVLTRM must be returned to the application requester with the cmmtyp value
identifying the type of request (RDBCMM or RDBRLLBCK).

CR11 If an application server successfully commits through either a EXCSQLSTT or
EXCSQLIMM command but a read-only application server with held cursors rolls back,
the application requester must inform the application the commit successfully
completed. If the next application request is not a static rollback request, the
application requester must reject the request and return SQLSTATE 51021 to the
application unless the application requester has performed an implicit rollback and
informed the application both the commit was successful and an implicit rollback
occurred.

In the above situation the server performing the commit could be either a remote unit
of work server that is allowed updates or a distributed unit of work server that is
allowed to commit via the rdbcmtok parameter.

CR12 An application server using distributed unit of work must refuse SQL commit and SQL
rollback requests that are inside stored procedures. The refusal to perform the commit
or rollback is returned to the stored procedure. The stored procedure logic is
responsible to provide the appropriate results to the application.

CR13 The application server must return the results of the rollback in the uowdsp on
ENDUOWRM if both a rollback and a commit occur inside a stored procedure.

Part 1: Database Access Protocol 285

Commit/Rollback Processing (CR Rules) DRDA Rules

CR14 An application requester cannot send an rdbcmtok parameter set to the value TRUE to
an application server if that server is connected by a sync point manager, if that server
is read only, or if there is another server with uncommitted updates involved in the
transaction.

If an application server protected by a sync point manager receives rdbcmtok set to the
value TRUE the application server should generate an alert and return CMDVLTRM to
the application requester.

If a read-only application server receives rdbcmtok set to TRUE on a command and a
commit or rollback request occurs during execution of the command, then the commit
or rollback request should be rejected and an SQLSTATE X‘2D528’ for commit or
X‘2D529’ for rollback should be returned to the application requester.

286 DRDA Volume 1

DRDA Rules Connection Usage (CU Rules)

7.5 Connection Usage (CU Rules)
See the DDM Reference for descriptions of the DDM commands.

CU2 The first command required to flow over a DRDA connection is the DDM EXCSAT
command.

CU3 The first DRDA command required to flow over a DRDA connection is the DDM
ACCRDB command.

CU4 If the application server desires to terminate DDM command chaining, and there is no
appropriate DDM RM associated with the SQLCA, the application server must return
SQLERRRM to break the chain, if SQLERRRM is a valid reply to the command (for
instance, SQLERRRM is not a valid response to BNDSQLSTT).

CU5 Continue on error must not be specified in the Data Stream Structure (DSS) header. If
specified, a SYNTAXRM with a synerrcd =X‘04’ should be returned.

CU10 The DRDA level selected for use between an application requester and an application
server can be no higher than the highest common support level of the two participants.
This does not restrict an application requester from operating at different levels to
different application servers in the same unit of work.

CU11 An application server that supports the CCSID manager must return a required CCSID
manager-level value if the CCSID value received on EXCSAT is one of the required
CCSID manager-level values. The required CCSID manager-level values are 500, 819,
and 850.

The CCSID manager is not supported using SQLAM Level 3 protocols.

CU12 If a DRDA connection is supported by a SECMGR at Level 5, the initializing EXCSAT
must be immediately followed by one and only one ACCSEC/SECCHK exchange. Any
other attempts to send ACCSEC or SECCHK when SECMGR is Level 5 should be
rejected with PRCCNVRM with prccnvcd set to X‘10’.

CU13 If commands are chained, then any command which returns EXTDTA reply objects
must be the last command in the chain with the same correlation ID. If another
command with the same correlation ID is chained after that command, the application
server rejects the command with PRCCNVRM with prccnvcd set to X’13’.

Part 1: Database Access Protocol 287

Conversion of Data Types (DC Rules) DRDA Rules

7.6 Conversion of Data Types (DC Rules)
DC2 Conversion between a DRDA data stream data type and an application variable data

type is the responsibility of the application requester.

When converting floating point numbers, use the default rounding rule. That is, round
to the nearest value and away from zero in the case of two nearest values.

Exceptions may occur when converting from DRDA data stream data types to
application variable data types. The application program receives an SQLSTATE of
X‘22001’ for this error.

DC3 To promote interoperability among partners at different SQLAM levels, data types that
are supported starting at a given minimum SQLAM level will be subject to data
conversion.

If the application requester is at the minimum SQLAM level or higher, then the data
description and the data itself are converted before being sent to an application server
at a lower SQLAM level as follows:

1. Map any SQL host variable description X in an SQLVRBGRP to that of SQL type
Y before sending the SQLVRBGRP.

2. Map any data description X in an SQLDTAGRP to an equivalent DRDA type for Y
and convert its corresponding FD:OCA data from its source representation to its
equivalent SQL representation as type Y data before sending it.

__
Minimum

Source Type (X) Mapped Type (Y) SQLAM Level__
8-byte integer decimal(19,0) 6
row identifier varchar(40) for BIT data 6
datalink - SBCS long varchar(n) for SBCS data 6
datalink - MBCS long varchar(n) for MIXED data 6
BLOB Not defined. 6
CLOB - SBCS Not defined. 6
CLOB - MBCS Not defined. 6
DBCLOB Not defined. 6
BLOB locator Not defined. 6
CLOB locator Not defined. 6
DBCLOB locator Not defined. 6__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

If no data conversion is defined, the behavior depends on the descriptor group. If the
descriptor group is the SQLVRBGRP, the source SQL descriptor is sent to the
application server. If the descriptor group is the SQLDTAGRP, the application
requester rejects the command with an SQLSTATE of 56084.

DC4 To promote interoperability among partners at different SQLAM levels, data types that
are supported starting at a given minimum SQLAM level will be subject to data
conversion.

If the application server is at the minimum SQLAM level or higher, then the data
description and the data itself are converted before being sent to an application
requester at a lower SQLAM level as follows:

1. Map any SQL host variable description X in an SQLDAGRP to that of SQL type Y
before sending the SQLDAGRP.

288 DRDA Volume 1

DRDA Rules Conversion of Data Types (DC Rules)

2. Map any data description X in an SQLDTAGRP to an equivalent DRDA type for Y
and convert its corresponding FD:OCA data from its source representation to its
equivalent SQL representation as type Y data before sending it.

__
Minimum

Source Type (X) Mapped Type (Y) SQLAM Level__
8-byte integer decimal(19,0) 6
row identifier varchar(40) for BIT data 6
datalink - SBCS long varchar(n) for SBCS data 6
datalink - MBCS long varchar(n) for MIXED data 6
BLOB Not defined. 6
CLOB - SBCS Not defined. 6
CLOB - MBCS Not defined. 6
DBCLOB Not defined. 6
BLOB locator Not defined. 6
CLOB locator Not defined. 6
DBCLOB locator Not defined. 6__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

If no data conversion is defined, the behavior depends on the descriptor group. If the
descriptor group is the SQLDAGRP, the source SQL descriptor is sent to the application
requester. If the descriptor group is the SQLDTAGRP, the application server rejects the
command with an SQLSTATE of 56084.

DC5 To promote consistent behavior among DRDA partners who choose to provide
differing levels of support for DRDA types, data types that are supported starting at a
minimum SQLAM level will be subject to data conversion.

If an application requester at a given SQLAM level does not support a given data type
defined at that SQLAM level, then before presenting the data or its description to the
application, it must use the mapping defined in rule DC3 to convert the data or
descriptor received from an application server that does support that data type. If no
mapping is defined, the application requester rejects the command with an SQLSTATE
of 56084.

If an application server at a given SQLAM level does not support a given data type
defined at that SQLAM level, then before presenting the data or its description to the
relational database, it must use the mapping defined in rule DC4 to convert the data or
descriptor received from an application requester that does support that data type. If
no mapping is defined, the application server rejects the command with an SQLSTATE
of 56084.

Part 1: Database Access Protocol 289

Data Representation Transformation (DT Rules) DRDA Rules

7.7 Data Representation Transformation (DT Rules)
DT2 The data representation for all DRDA command input and output data other than

ACCRDB is in the format defined by the TYPDEFNAM and overrides (TYPDEFOVR)
exchanged on ACCRDB and ACCRDBRM or included in command or reply data
objects to override specifications for a particular command or object.

Note: DDM command parameters and reply message parameters are not
considered as input and output data. DDM defines representation of these
parameters. Only command data objects and reply data objects are affected
by the TYPDEFNAM that the ACCRDB command specified. Refer to
Section 4.4.1 on page 54 for more details on the ACCRDB DDM command.

DT3 All data representation transformations are the responsibility of the receiver of the data
object. With the exception of character data types, application servers do data
representation transformation for data received from application requesters;
application requesters do data representation transformation for data received from
application servers.

For all character data types that are received from the application requester (such as
data types that carry CCSIDs) the relational database has the responsibility of data
representation transformation when necessary.

For all data types that are received from the application server, the SQLAM has the
responsibility of data representation transformation when necessary. The DRDA
Reference defines all conversions of character data between CCSIDs.

DT4 A data representation transformation error (no representation of the character in the
application server CCSID) may occur when the application server transforms
application input string variable values, which the application server received from the
application requester, to its representation. The application program receives an
SQLSTATE of 22021 for this error.

DT5 A data representation transformation error (no representation of the character in the
application requester code page) may occur when the application requester transforms
string values, which the application requester received from the application server, to
its representation.

If the string value cannot be assigned to an application variable that has an indicator
variable, then the application program receives a warning SQLSTATE of 01520. If the
string value cannot be assigned to an application variable that does not have an
indicator variable, then the application program receives an error SQLSTATE of 22021.

DT6 An overflow error may occur when the application requester transforms a floating
point number, which the application requester received from the application server, to
its representation.

If an application variable size mismatch occurs for a value being returned to the
application program and the application variable has an indicator variable, then the
application program receives a warning SQLSTATE of 01515.

If an arithmetic exception occurs for a value being returned to the application program
and the application variable has an indicator variable, then the application program
receives a warning SQLSTATE of 01519.

If an application variable size mismatch occurs for a value being returned to an
application program and the application variable does not have an indicator variable,
then the application program receives an error SQLSTATE of 22001.

290 DRDA Volume 1

DRDA Rules Data Representation Transformation (DT Rules)

If an arithmetic exception occurs for a value being returned within an inner SELECT or
for a value being returned to an application variable in an application program that
does not have an indicator variable, then the application program receives an error
SQLSTATE of 22003, 22012, 22502, or 22504.

DT7 When transforming a floating point number (such as 370 floating point to IEEE floating
point), round to the nearest value and away from zero in the case of two nearest values.

DT8 If the representation of the data to be sent is different than the representations agreed to
at ACCRDB, then the application requester or the application server adds
TYPDEFNAM and TYPDEFOVR parameters to command or reply data objects, as
necessary, to correctly describe the data being sent. FDODSC and QRYDSC objects do
not change.

For a given command, the TYPDEFNAM and TYPDEFOVR objects are sent as
command data objects. The data representations of all the following command data
objects of that command are affected. The early and late group, row, and array
descriptors for these command data objects take their representations from these
TYPDEFNAM and TYPDEFOVR values. The same rules apply when TYPDEFNAM
and TYPDEFOVR objects precede any reply data objects returned to the command.

DT9 TYPDEFNAM may be specified as many times as necessary to correctly describe all
objects required for a command or returned in the reply to a command.

The overrides are in effect for only one command or the reply to one command.

DT10 The representation for all data received in QRYDTA objects from a single query
(SQLCAs and user data, including EXTDTA objects) is determined by
ACCRDB/ACCRDBRM or overrides effective at the time the QRYDSC is received. If
the application requester sends an OUTOVR object with a CNTQRY command, the
TYPEDEFNAM, TYPDEFOVR associated with the QRYDSC applies to the OUTOVR
object as well.

An SQLDARD is intended to be converted to an SQLDA for the application program
and should not be used as a description of the data on the wire. If the application
requester has received an SQLDARD for this section, then the description contained in
the SQLDA is returned to the application. The application requester does not use the
SQLDA as the basis for determining the representation of the data sent from the
application server. The sole determinant of data representation is the QRYDSC with the
TYPDEFNAM, TYPDEFOVR, specified on ACCRDBRM or any override received prior
to the QRYDSC object.

DT11 If an application requester cannot process a new value for TYPDEFNAM that is
received from an application server as part of a reply data object, then it must produce
an SQLCA for the application. The SQLCA indicates SQLSTATE 58017, specifying the
parameter that the application server requested, but that the application requester
could not support.

DT12 If an application server cannot process the new values for TYPDEFNAM that it
received from an application requester as part of a command data object, then it must
return VALNSPRM to the application requester. The application requester will handle
this like any other VALNSPRM error.

DT13 If an application requester cannot process data according to the CCSID specified for
this data, then it must produce an SQLCA for the application indicating SQLSTATE
57017 specifying the pair of CCSIDs for which conversion could not be performed.

Part 1: Database Access Protocol 291

Data Representation Transformation (DT Rules) DRDA Rules

DT14 If an application server cannot process data according to the CCSID specification for
this data then it must return an SQLCA indicating SQLSTATE 57017 specifying the pair
of CCSIDs for which conversion could not be performed.

DT15 The CCSID specified on a TYPDEFOVR overrides only the corresponding CCSID type
on the ACCRDB/ACCRDBRM for the duration of the command or reply, and only
until the corresponding CCSID type in the next TYPDEFOVR is found on the command
or reply. At completion of the command or reply, all CCSID specifications revert to
those established by ACCRDB or ACCRDBRM.

DT16 If the sender has not specified CCSIDMBC or CCSIDDBC on an
ACCRDB/ACCRDBRM, nor on a TYPDEFOVR of a command/reply data object, then
character data of that representation should not be sent unless explicitly defined by
MDD/SDA pairs.

The receiver of this data should return an SQLCA indicating SQLSTATE 57017 with
zero as the source CCSID token.

DT17 An application requester must change all non-nullable data types for host variables
associated with a statement that invokes a stored procedure (that is, CALL statement)
to the nullable version of the data type before sending the request to the application
server.

DT18 An application server must set the indicator variables for INPUT host variables
associated with a statement that invokes a stored procedure (that is, CALL statement)
to −128 prior to returning the host variables to the application requester.

DT19 TYPDEFNAM or TYPDEFOVR objects are ignored for any EXTDTA blocks or for extra
query blocks. For any given EXTDTA object, the overrides in effect for the object
containing the associated FD:OCA placeholder are also in effect for the EXTDTA.

DT20 A DATALINK data column may exist in a database management system and be
presented to an application as a structure containing non-character (viz, binary) data.
However, when a DATALINK column flows on the wire it must conform to the
following format. The two-byte length prefix must be set to the length of the string that
follows, as with a LONG VARCHAR type, and the contents of the string be as shown
below:

__
Position Field Name Description__

Character form of INTEGER version number,
padded with leading zeros.

1-5 VERSION

Four-byte character string indicating the link
type.

6-9 LINK_TYPE

Character form of INTEGER length of the
following URL field, padded with leading zeros
(assumes a length ≤ 99999).

10-14 URL_LENGTH

Eight blanks in initial version.15-22 (reserved)
Character string containing the URL of the
associated file, whose ending position, xx, is
URL_LENGTH + 22.

23-xx URL

Character string containing a comment about
the DATALINK, whose starting and ending
positions are URL_LENGTH + 23 (yy) and the
value of the 2-byte string prefix (zz).

yy-zz COMMENT

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

292 DRDA Volume 1

DRDA Rules Data Representation Transformation (DT Rules)

Note: The implementer of a DRDA application requester has complete freedom of
choice as to what to do with a received string for a DATALINK column. One
reasonable option is to extract the URL portion and return that to the user.
An application requester may choose to include the comment with the URL.
The DRDA architecture does not specify how the string is used. Normally,
an application would use a scaler function on the column to extract the
desired potion of the complete structure, in which case the DRDA type
would be that of the function and not be the DATALINK type.

Part 1: Database Access Protocol 293

RDB-Initiated Rollback (IR Rules) DRDA Rules

7.8 RDB-Initiated Rollback (IR Rules)
IR1 If the local environment at the application server does not initiate a global rollback

when the application server detects a relational database-initiated rollback, it must
send the reply message ABNUOWRM (RDB-initiated rollback) as the response to the
application requester request. Normally, this is the request currently being serviced.

However, if the request is an OPNQRY or CNTQRY using the Limited Block Protocol,
the response may have to be deferred until the next CNTQRY, adhering to rules QT2
through QT5 (see Section 7.19.3 on page 318). If the application server defers the
ABNUOWRM reply message, it must return the message as the response to the next
application requester command request, regardless of the type of request.

IR2 If an application requester receives a request to back out from the network facility on a
network connection with an application server, the application requester must ensure
that rollback occurs at all application servers involved in the unit of work.

294 DRDA Volume 1

DRDA Rules Optionality (OC Rules)

7.9 Optionality (OC Rules)
OC2 Application requesters do not have to send optional commands or optional parameters

on any command or all possible values of any parameter unless explicitly stated in this
volume.

OC3 Application servers must recognize all optional commands, parameters, and values.
They are allowed to reject optional commands and any commands that have optional
parameters that contain values other than the default for the optional components. The
application server might also reject required parameters that contain values not defined
by DDM as permissible values or that have lengths within the permissible range
supported by DDM but beyond the maximum length supported by the application
server. This should be reported with one of the four DDM not supported reply messages.
These are:

• CMDNSPRM for unsupported commands

• PRMNSPRM for unsupported parameters

• VALNSPRM for unsupported values

• OBJNSPRM for unsupported objects

OC4 Application servers do not have to send optional parameters of reply messages or reply
data objects. Application servers do not have to send every possible reply message. In
fact, the circumstances at a particular application server might make it impossible to
get to the situation an RM covered.

OC5 Application requesters must recognize all optional parameters and values sent in reply
messages and reply data objects. They are allowed to discard any optional information
unless explicitly stated otherwise in this volume.

OC6 Application requesters must be prepared to receive Not Supported reply messages for
any optional components they send to an application server.

OC8 When an application requester does not specify an optional parameter that the target
application server supported, the application server must apply the default rules
specified in DDM.

OC9 When the end user and/or the application does not supply a parameter value, and the
parameter is required, the application requester must return an error message or apply
an application requester value to the parameter and specify the parameter on the
command.

OC10 When the end user and/or the application does not supply a parameter value, and the
parameter is optional, the application requester must not include the parameter on the
command but must allow the application server to apply the default value.

Part 1: Database Access Protocol 295

Program Binding (PB Rules) DRDA Rules

7.10 Program Binding (PB Rules)
PB1 The relational database name (RDB_NAME) contained in the package name supplied

on the BGNBND command must be the same as the RDB_NAME supplied on the
ACCRDB command.

PB2 After the application requester sends a BGNBND command to the application server
and receives a non-error response, the only valid command request to this application
server before ENDBND, RDBCMM, RDBRLLBCK, or resource recovery processing is
BNDSQLSTT.

PB3 The BNDSQLSTT command is valid only between the BGNBND and resource recovery
processing or between BGNBND and one of these commands: ENDBND, RDBCMM,
or RDBRLLBCK.

PB4 After the application requester sends a BGNBND command to the application server
and receives a non-error response, the package name supplied on the BNDSQLSTT and
ENDBND commands must be the same as the package name supplied on the BGNBND
command.

PB5 A new package that DRDA bind command sequence has bound becomes persistent
only after a commit.

PB6 If a rollback occurs prior to a commit, a DRDA bind command sequence does not
replace an old package.

PB7 A commit performs an implicit ENDBND.

PB8 A package can be dropped and then recreated without an intervening commit.
Conversely, a package can be created and then dropped without an intervening
commit.

PB9 SQL statements in an application program are input to the BIND process by a
BNDSQLSTT. The following statements are exceptions and should not flow at bind:
INCLUDE, WHENEVER, PREPARE, EXECUTE, EXECUTE IMMEDIATE, DESCRIBE,
OPEN, FETCH,41 CLOSE, COMMIT, CONNECT, ROLLBACK, RELEASE, SET
CONNECTION, DISCONNECT, BEGIN DECLARE SECTION, END DECLARE
SECTION, and local statements.42

The SQL statement is the SQLSTT command data object of the BNDSQLSTT command.

The processing for an individual SQL statement that the target relational database
performs is specific to the environment.

PB11 The order in which SQL statements must be submitted to the relational database’s
BIND process is defined in ISO/IEC 9075: 1992, Database Language SQL. For example,
the declaration of a SELECT must precede the corresponding OPEN, FETCH, and
CLOSE.

PB12 Each application variable referenced in an SQL statement to be bound must be
described by an SQLDTA FD:OCA description in the order in which the application

41. A connection using distributed unit of work protocols, the FETCH statement can flow to distributed application servers during
the bind process. (See rule Section 7.10).

42. A local statement is understood by the precompiler and either processed completely by the precompiler, or it results in a call to
the application requester at runtime, which does not cause any flows to the application server.

296 DRDA Volume 1

DRDA Rules Program Binding (PB Rules)

variable appears in the SQL statement.

This includes a program variable reference that specifies a procedure name within an
SQL statement that invokes a stored procedure. Note, however, that the stored
procedure name value flows in the prcnam parameter rather than in an SQLDTA on the
EXCSQLSTT for that SQL statement. The set of application variables so described is the
SQLSTTVRB command data object of the BNDSQLSTT command.

PB13 Any application variable references that show indicator variable usage map to a pair of
variables. The first variable has the characteristics of the user’s true data. The second
variable is a SMALL INTEGER and represents the indicator variable.

When the user’s data is sent at execution time, it is just one variable. That variable is
nullable if the corresponding column is nullable.

PB14 If an application server, or the relational database associated with the application
server, does not include in its BIND process a particular SQL statement, the response to
the application requester for such an SQL statement is an SQLCARD reply data object
with an error SQLSTATE.

PB17 The character string :H replaces each application variable reference (user data or
indicator) before it is sent to the application server for BIND.

It is allowable to have one or more blanks between the : and H.

PB19 SQL statements that the application requester does not understand are sent with the
following assumptions:

• All host variables are input variables.

• The statement is assigned a unique section number.

• The section is executed by an EXCSQLSTT command.

The BNDSQLSTT bndsttasm parameter is used to alert the application server of these
assumptions. If the assumptions are incorrect, the application server returns an
SQLSTATE of X‘42932’ for that statement. The application server has the final word on
validity of the statement.

A statement is not understood when the application requester cannot classify the
statement properly. That is, the application requester does not know the statement
type, or the application requester cannot tell which host variables are input or output.

PB20 If the application requester language processor supports structure or array references
to provide shorthand notation to refer to many program variable fields, then :Hs are
inserted into the SQL statement for each element of the structure or array. Commas
separate these :Hs (for example, :H,:H,:H for a three element structure or array).

If there is an indicator structure specified in the program variable reference, and if the
data structure has m more variables than the indicator structure, then the last m
variables of the data structures do not have the indicator variables.

If the data structure has m less variables than the indicator structure, the last m
variables of the indicator structure are ignored. Each substitution, if there is an
indicator variable, then becomes a pair of :Hs (for example, :H:H,:H:H,:H for a data
structure with 3 variables, and an indicator array with 2 elements).

It is allowable to have one or more blanks between the : and H.

PB26 A single variable represents any application variable references that do not show
indicator variable usage. That variable must use the non-nullable data type. See rule

Part 1: Database Access Protocol 297

Program Binding (PB Rules) DRDA Rules

PB13 for nullable cases.

PB27 If the application server receives an ENDBND to terminate bind processing, and an
error occurred during bind processing that prevents the successful generation of the
package, the SQLSTATE in the SQLCARD that the application server generates must
not begin with the characters 00, 01, or 02. The values 00, 01, and 02 imply the package
was created. All other values imply the package was not created.

PB28 An application requester that supports multi-row and/or scrollable cursors must flow a
FETCH statement at bind time if the FETCH statement contains multi-row and/or
scroll parameters. An application server that does not support multi-row and/or
scrollable cursors must reject the FETCH statement at bind time. If the application
server supports multi-row and/or scrollable cursors, it must accept the FETCH at bind
time. If the application server accepts FETCH statements at bind time, the application
server will use the section number associated with the cursor.

This rule does not apply to remote unit of work components.

PB29 BNDOPT should not be used to flow bind options and values for which codepoints are
explicitly defined in DRDA. For example, do not use BNDOPT to send the option
ISOLATION_ LEVEL = CURSOR_STABILITY to a server since PKGISOLVL has been
created for this purpose. Conflicts in bind options are detected by the application
server and are reported by returning an SQLSTATE of X‘56096’ to the application
requester.

298 DRDA Volume 1

DRDA Rules Security (SE Rules)

7.11 Security (SE Rules)
SE2 The application server must be able to obtain the verified end user name associated

with the connection.

See rules usage for environment in these sections:

• Section 12.8.2.3 on page 416

• Section 13.6.2.3 on page 435

SE3 If user identification and authentication security is not provided using SECMGR Level
5, an application requester must have send support for the types of security defined for
the specific network protocols defined in Part 3, Network Protocols. An application
server must have receive support for the types of security defined for the specific
network protocols defined in Part 3, Network Protocols. For example, if an end-user
name is provided on a network connection, the end-user name supplied in the DCE
security token takes precedence over the end-user name received from the network
facility.

See rules usage for environment in this section:

• Section 12.8.2.3 on page 416

SE5 If SECMGR is at Level 5, the application requester and application server must support
at least one of the security mechanisms defined in Chapter 10 on page 343.

SE6 Connections using the DCE security mechanism do not use GPSS channel bindings.

Part 1: Database Access Protocol 299

SQL Section Number Assignment (SN Rules) DRDA Rules

7.12 SQL Section Number Assignment (SN Rules)
SN1 A section number is between 1 and 32,767 inclusive.

SN2 When a statement requires the assignment of a unique section number, a section
number one larger than the previous number allocated is assigned. If this is the first
statement to be assigned a number, then it is assigned section number 1.

During the bind process, the application server can receive section numbers out of
sequence. The same section number is assigned to related SQL statements (see rule
SN3), but not all of these statements are sent to the application server during bind
processing (see rule Section 7.10 on page 296). Therefore, the first occurrence of a
section number the application server receives might not be the first SQL statement in
the related group. Unrelated statements can be interspersed among related statements
that share a section number.

An application server can, but is not required to, allow SQL statements that are not part
of a related statement group to arrive out of sequence.

At the conclusion of bind processing, gaps in the section numbers can exist in the
package. These gaps are the result of dynamic SQL statements that were not sent
during the bind process (see rule Section 7.10 on page 296), but may be referenced at
execution time.

SN3 The application requester assigns the same section number to all related SQL
statements that have execution time dependencies. Specifically, the application
requester assigns each declared statement or cursor a unique section number. A cursor
declared for a statement shares the statement section number.

Each SQL statement that references the declared statement or cursor (FETCH,
EXECUTE, OPEN, CLOSE, PREPARE) receives the same section number as the
referenced statement or cursor.

SN4 The application requester assigns a unique section number to the statements ALTER,
CALL, COMMENT ON, CREATE, DELETE, DROP, EXPLAIN, GRANT, INSERT,
LABEL ON, LOCK, SELECT (embedded), REVOKE, and UPDATE.

SN5 Each occurrence of EXECUTE_IMMEDIATE may be assigned a unique section number,
share a section number of one or more other EXECUTE_IMMEDIATEs, or all
EXECUTE_IMMEDIATEs may share the same section number.

SN7 The largest section number the application requester assigns to any statement is
communicated to the application server by the maxsctnbr parameter on the DDM
command ENDBND. Any gap between the highest section seen and the value of
maxsctnbr will be available for sections with dynamic statements.

SN8 Each section number that the application requester sends to the application server must
be unique. (For the related statements OPEN, FETCH, CLOSE and DECLARE
CURSOR, the DECLARE CURSOR is sent and FETCH is conditionally sent. See rule
Section 7.10 on page 296). The application server can process or discard any statement
with a duplicate section number that is subsequently received.

SN9 A section number may be repeated in flows to the application server when the
immediately prior statement was bound with errors and the current statement’s section
number matches that on the prior statement. In this case, the same section number may
be sent again.

The result of subsequent binds of the same section number reset error indicators
previously set for that section number.

300 DRDA Volume 1

DRDA Rules SQL Section Number Assignment (SN Rules)

7.13 Stored Procedures (SP Rules)
SP1 If both pkgnamcsn and prcnam are specified on an EXCSQLSTT for a CALL or other SQL

statement that invokes a stored procedure, then:

• If the section identified by pkgnamcsn exists in the package identified by pkgnamcsn,
but the section is not associated with a stored procedure, then the use of prcnam
with pkgnamcsn is invalid and the application server returns CMDCHKRM to the
application requester.

• If the CALL or other SQL statement specifies the procedure name using a host
variable, the section identified by pkgnamcsn exists in the package identified by
pkgnamcsn, and the section is associated with a stored procedure, then the
application server invokes the stored procedure by using the prcnam value.

• If the CALL or other statement that invokes a stored procedure does not specify the
procedure name using a host variable, then the value specified by the prcnam
parameter, if present, must match the procedure name value contained within the
section identified by pkgnamcsn.

SP2 If there are any host variables in the parameter list of a stored procedure (that is, CALL
statement), the presence of all variables should be reflected (by a null indication or
data) in both the SQLDTA that flows from the application requester, and the
SQLDTARD that is returned from the application server.

SP3 If a CALL or other statement that invokes a stored procedure specifies the procedure
name using a host variable, then the prcnam parameter of the EXCSQLSTT specifies the
procedure name value. The procedure name value is not duplicated in any SQLDTA
command data object that might also flow with the EXCSQLSTT.

SP4 In situations where a single application requester connects to more that one application
server during the execution of a client application, the application requester may
receive the same locator value within the SQLRSLRD from more than one application
server. It is the responsibility of the application requester to ensure that a locator value
returned to a client application is unique for a particular execution of that client
application.

Part 1: Database Access Protocol 301

SET Statement (ST Rules) DRDA Rules

7.14 SET Statement (ST Rules)
ST1 Non-local SET statements that set the content of a special register flows at BIND. The

following are local SET statements:

• SET CONNECTION

• SET CURRENT PACKAGESET

All other or unrecognized SET statements are considered non-local.

ST2 An application requester does not automatically propagate the setting of special
registers at the current application server when the application requester connects to a
new application server.

An application requester that flows non-local SET statements need not track the effect
of SET statements that set the contents of special registers at an application server.

Any application server that connects to a database server must track the execution of
SET statements and the effect of the contents of special registers. Prior to executing an
SQL command at a database server, any new or changed settings must be propagated
using the DDM EXCSQLSET command. EXCSQLSET contains an ordered list of SET
statements. The SET statements are used to set the special registers to the values at the
application server.

ST3 Non-local SET statements should be executed at an application server and a database
server in the order received.

ST4 If an application server or database server does not recognize a SET statement, it must
return a warning SQLSTATE with an SQLCARD object.

If a database server recognizes the SET statement but the processing of the statement
fails that should prevent the processing of any other SQL statements, the database
server must return an SQLERRRM reply message with an SQLCARD object.

302 DRDA Volume 1

DRDA Rules Serviceability (SV Rules)

7.15 Serviceability (SV Rules)
SV1 The application requester must generate diagnostic information and may notify a

network focal point when it receives an abnormal disconnect of the network connection
from the application server.

See rules usage for environment in these sections:

• Section 12.8.2.4 on page 417

• Section 13.6.2.4 on page 435

SV2 The application requester must generate diagnostic information and may notify a
network focal point when it receives the following DDM reply messages:

• AGNPRMRM svrcods 16,32,64

• CMDCHKRM svrcods 8,16,32,64

• CMDVLTRM svrcod 8

• DSCINVRM svrcod 8

• DTAMCHRM svrcod 8

• PRCCNVRM svrcods 8,16,128

• QRYNOPRM svrcod 8

• QRYPOPRM svrcod 8

• RDBNACRM svrcod 8

• RDBACCRM svrcod 8

• SECCHKRM svrcod 16

• SYNTAXRM svrcod 8

SV3 The application requester must generate diagnostic information and may notify a
network focal point when the application requester reaches a resource limit that
prevents continued normal processing.

SV4 The application requester must generate diagnostic information and may notify a
network focal point when a blocking rule is violated in the data received from the
application server.

SV5 The application requester must generate diagnostic information and may notify a
network focal point when a chaining rule is violated in the data received from the
application server.

SV6 The application server must generate diagnostic information and may notify a network
focal point when it generates the following DDM reply messages:

• AGNPRMRM svrcods 16,32,64

• CMDCHKRM svrcods 8,16,32,64

• CMDVLTRM svrcod 8

• DSCINVRM svrcod 8

• DTAMCHRM svrcod 8

• PRCCNVRM svrcods 8,16,128

Part 1: Database Access Protocol 303

Serviceability (SV Rules) DRDA Rules

• QRYNOPRM svrcod 8

• QRYPOPRM svrcod 8

• RSCLMTRM svrcods 8,16,32,64,128

• RDBNACRM svrcod 8

• RDBACCRM svrcod 8

• SECCHKRM svrcod 16

• SYNTAXRM svrcod 8

SV8 The unit of work identifier must be present in the network focal point message, in the
supporting data information, and in diagnostic information.

See rules usage for environment in these sections:

• Section 12.8.2.4 on page 417

• Section 13.6.2.4 on page 435

SV9 In a distributed unit of work environment, an application requester must send a
correlation token to the application server at ACCRDB using the crrtkn parameter. If a
correlation token exists for this unit of work, and it has the format the correlation token
as defined in Part 2, Environmental Support, then this token is used. If the existing
token does not have the correct format, or the token does not exist, then the application
requester must generate a correlation token.

See rules usage for environment in this section:

• Section 12.8.2.4 on page 417

SV10 In a distributed unit of work environment, the crrtkn value must be present in the
network focal point message, in the supporting data information, and in diagnostic
information.

304 DRDA Volume 1

DRDA Rules Update Control (UP Rules)

7.16 Update Control (UP Rules)
UP1 If the application is not using the services of a sync point manager in the logical unit of

work:

• When connecting to an application server using remote unit of work, the
application server is only allowed updates if either there are no existing connections
to any other application servers, or all existing connections are to application
servers using remote unit of work, and these application servers are restricted to
read-only.

• If a connection exists to an application server using remote unit of work with
update privileges, all other application servers are restricted to read-only.
Otherwise, for the duration of any single logical unit of work, the first application
server using distributed unit of work that performs an update is given update
privileges, and all other application servers are restricted to read-only.

UP2 If the application is using the services of a sync point manager in a unit of work, only
connections to application servers using distributed unit of work and protected by a
sync point manager are allowed update privileges.

UP3 Within a distributed unit of work, an application server must return an RDBUPDRM
the first time a DDM command results in an update at the application server. An
application server can, but is not required to, return an RDBUPDRM after subsequent
commands in the same logical unit of work that result in an update at the application
server.

The sending of RDBUPDRM is not supported when using SQLAM Level 3.

UP4 If there are multiple DDM reply messages in response to a DDM command of which
one is an RDBUPDRM, the RDBUPDRM must be the first reply message in the chain of
reply messages.

The receipt of RDBUPDRM is not supported when using SQLAM Level 3.

Part 1: Database Access Protocol 305

Passing Warnings to the Application Requester (WN Rules) DRDA Rules

7.17 Passing Warnings to the Application Requester (WN Rules)
WN1 When constructing a response to OPNQRY or EXCSQLSTT that contains answer set

data, the application server is responsible for obtaining an SQLDA for the answer set
that the relational database will deliver. This data area (DA) specifies:

• The maximum lengths of all variable-length results

• The nullability of any result value

• The derivation of a result value (such as col1/col2 is derived)

• CCSID of a character result value

This data area is used to determine which fields require the application server to
provide indicator variables.

WN2 For all variable-length result fields, the application server must provide space to
accommodate the maximum length result so that truncation does not occur when the
data is delivered from the relational database. This allows the relational database to
avoid all truncation warning or error reports.

WN3 For all nullable and derived fields, an indicator variable must be provided so that the
null conditions can be reported and errors can be avoided. For derived result values
(such as col1/col2), an indicator variable must be provided to allow the relational
database to report problems as warnings instead of errors.

WN4 The FD:OCA descriptor for all nullable and derived fields must use an FD:OCA
nullable data type.

WN5 The application requester is responsible for taking null indicators from FD:OCA data (1
leading byte) and converting them to values for indicator values. The following cases
can occur:

• Null indicator 0 to 127 (positive); a data value will follow. The data should be
placed in the host value. If truncation occurs, handle as SQL describes and fill in any
indicator variable the application provides.

• Null indicator −1 to −128 (negative); no data value will follow.

— If indicator variable is available, fill it with the value from the null indicator.

— If indicator variable is unavailable, turn SQL warning code into corresponding
error code. The application requester may also need to issue CLSQRY to the
application server that issues a close query to the relational database in order to
enforce the SQL semantics that the cursor is unusable after the error.

306 DRDA Volume 1

DRDA Rules Names

7.18 Names
The following sections define the rules for end-user names, SQL object names, relational
database names, and target program names.

7.18.1 End-User Names (EUN Rules)

EUN1 Character strings that represent end-user names or components of end-user names
within DRDA flows must contain only Character Set 1134 (uppercase A through Z and
0 through 9).

7.18.2 SQL Object Names (ON Rules)

ON1 DRDA requires that an application server support the receipt of three-part names for
tables, views, and packages. The following rules summarize the DRDA three-part
naming convention for tables, views, and packages (refer to Chapter 6 on page 269 for a
detailed description of the syntax and semantics of three-part names).

ON1A The globally unique fully qualified name for a table or view is
RDB_NAME.COLLECTION.OBJECTID. The maximum length of
COLLECTION is 18 bytes. The maximum length of an OBJECTID is 18 bytes.
COLLECTION and OBJECTID have the same syntactic constraints as SQL
identifiers but are limited to SBCS CCSIDs.

ON1B The fully qualified name for a package (database management system access
module) is RDB_NAME.COLLECTION.PACKAGEID. The maximum length
of COLLECTION is 18 bytes. The maximum length of a PACKAGEID is 18
bytes. The COLLECTION and PACKAGEID have the same syntactic
constraints as SQL identifiers but are limited to SBCS CCSIDs.

The period is the delimiter for components of a package name.

ON1C The fully qualified name for a section is
PACKAGENAME.SECTION_NUMBER. The maximum length of a
SECTION_NUMBER is 2 bytes. A section number is a 2 byte non-negative
binary integer.

ON1D The fully qualified name for a stored procedure is
RDB_NAME.COLLECTION.PROCEDURE. The maximum length of
COLLECTION is 18 bytes. The maximum length of a PROCEDURE is 18
bytes. The COLLECTION and PROCEDURE have the same syntactic
constraints as SQL identifiers but are limited to SBCS CCSIDs.

The period is the delimiter for components of a stored procedure.

7.18.3 Relational Database Names (RN Rules)

RN1 An RDB_NAME has the same syntactic constraints as SQL identifiers with the
exception that RDB_NAME cannot contain the alphabetic extenders for national
languages (#, @, and $, for example). The valid characters are uppercase letters (A
through Z), the numerics (0 through 9), and the underscore character (_).

The maximum length of an RDB_NAME is 18 bytes.

RN2 DRDA associates an RDB_NAME with a specific program at a unique network location.
DRDA, however, does not define the mechanism that derives the program and network
location from the RDB_NAME. The particular derivation mechanisms are specific to
the environment.

Part 1: Database Access Protocol 307

Names DRDA Rules

It is the responsibility of the application requester to determine the RDB_NAME name
of the relational database and to map this name to a program and network location.

See rules usage for environment in these sections:

• LU 6.2 Usage of Relational Database Names Rules on page 418

• Section 13.6.2.5 on page 435

RN3 More than one RDB_NAME may exist for a single network location.

See rules usage for environment in these sections:

• LU 6.2 Usage of Relational Database Names Rules on page 418

• Section 13.6.2.5 on page 435

RN4 DRDA permits the association of more than one RDB_NAME with a single program at
a network location.

See rules usage for environment in these sections:

• LU 6.2 Usage of Relational Database Names Rules on page 418

• Section 13.6.2.5 on page 435

7.18.4 Target Program Names (TPN Rules)

TPN1 The program names identifying implemented DRDA application servers can be a
registered DRDA program name, a registered DDM program name, or any non-
registered program name.

See rules usage for environment in these sections:

• LU 6.2 Usage of Transaction Program Names Rules on page 418

• Section 13.6.2.6 on page 435

TPN2 DRDA allows DDM file servers and DRDA SQL servers to use either the same program
name or different program names.

See rules usage for environment in these sections:

• LU 6.2 Usage of Transaction Program Names Rules on page 418

• Section 13.6.2.6 on page 435

TPN3 Registered DRDA program name structures for the specific network protocols are
defined in Part 3, Network Protocols.

See rules usage for environment in these sections:

• LU 6.2 Usage of Transaction Program Names Rules on page 418

• Section 13.6.2.6 on page 435

TPN4 Multiple DRDA program names may exist for a single network location.

See rules usage for environment in these sections:

• LU 6.2 Usage of Transaction Program Names Rules on page 418

• Section 13.6.2.6 on page 435

TPN5 A DRDA program name is unique within a network location.

308 DRDA Volume 1

DRDA Rules Names

See rules usage for environment in these sections:

• LU 6.2 Usage of Transaction Program Names Rules on page 418

• Section 13.6.2.6 on page 435

TPN6 Target programs that are registered DRDA program names must provide all the
capabilities that DRDA requires.

See rules usage for environment in these sections:

• LU 6.2 Usage of Transaction Program Names Rules on page 418

• Section 13.6.2.6 on page 435

TPN7 Target programs that provide DRDA capabilities may perform additional non-DRDA
work. These target programs are not required to perform additional non-DRDA work.

See rules usage for environment in these sections:

• LU 6.2 Usage of Transaction Program Names Rules on page 418

• Section 13.6.2.6 on page 435

TPN8 The registered default DRDA program names for the specific network protocols are
defined in Part 3, Network Protocols. The default DRDA program name must be
definable at each system that supports at least one application server providing DRDA
capabilities.

See rules usage for environment in these sections:

• LU 6.2 Usage of Transaction Program Names Rules on page 418

• Section 13.6.2.6 on page 435

Part 1: Database Access Protocol 309

Query Processing DRDA Rules

7.19 Query Processing
For query processing, there are rules for blocking, query data transfer protocols, and terminating,
interrupting, and continuing query data or result set transfer.

7.19.1 Blocking

Blocking refers to the process of sending query reply messages and query reply data objects in
uniformly sized units, known as query blocks. The application requester specifies the size of each
such unit. The application server strives to return all query responses in units of the desired size
by combining reply messages and reply data objects smaller than the specified block size into a
single query block or by breaking objects larger than the specified block size into multiple query
blocks.

All query reply messages and reply data objects are subject to blocking, except for EXTDTA
objects. Instead, EXTDTA objects are sent in query blocks that contain only the EXTDTA and are
as large as needed to contain the entire externalized FD:OCA data item.

In the blocking rules below, the following terminology is used: All query responses are returned
in units called query blocks. Query blocks that must adhere to the block size specification are
known as standard query blocks. Query blocks that are exempt from the block size specification
are known as non-standard query blocks.

The blocking rules are based on a minimum block size of 512 bytes for standard query blocks
(see rule BS2 in Section 7.19.1.2 on page 313). This size should be kept in mind when reading the
rules. To get a good understanding of any one rule, other blocking rules must be understood.
Apparent errors and misunderstandings in some rules may be resolved when read in
conjunction with other rules.

7.19.1.1 Block Formats (BF Rules)

Given that each DDM Data Stream Structure (DSS) is one SNA logical record, DRDA defines a
query data or result set transfer block to consist of one or more SNA logical records such that:

BF1 In a response to an OPNQRY or a CNTQRY command, each block sent, except the first
and last block of the answer set, begins with the DDM OBJDSS structure.

• The first block begins with an RPYDSS. See rule QP2 in Section 7.19.2 on page 316.

• The last block may begin with either an RPYDSS or an OBJDSS. See rules QT1, QT2,
QT3, and QT4 in Section 7.19.3 on page 318.

BF2 In a response to an EXCSQLSTT command, each block sent begins with either the DDM
OBJDSS or the DDM RPYDSS structure.

• The first block begins with an RPYDSS. See rule QP2 in Section 7.19.2 on page 316.

• An intermediate block begins with either an OPNQRYRM RPYDSS or an OBJDSS.
See rule BF9, rules BF14, BF15, BF16, and BF17, and rule QP2 in Section 7.19.2 on
page 316.

• The last block may begin with either an RPYDSS or an OBJDSS. See rules QT1, QT2,
QT3, and QT4 in Section 7.19.3 on page 318.

BF3 The FD:OCA description of answer set data for a query is contained in an OBJDSS that
is chained from an OPNQRYRM RPYDSS structure (see chaining rule CH1 in Section
7.19.1.3 on page 314).

The FD:OCA description of the answer set data may be totally contained in the block
containing the OPNQRYRM or may overflow to subsequent blocks. If overflow occurs,

310 DRDA Volume 1

DRDA Rules Query Processing

a two-byte length field and the DDM code point (QRYDSC) of the FD:OCA description
must follow the OBJDSS structure in each overflow block. The next byte of the FD:OCA
description follows the QRYDSC code point.

The FD:OCA description of answer set data for a result set is contained in an OBJDSS
that is chained from an SQLCINRD OBJDSS structure (see chaining rule CH1 in Section
7.19.1.3 on page 314).

The column information for the result set (SQLCINRD) may be totally contained in the
block containing the OPNQRYRM or may overflow to subsequent blocks. If overflow
occurs, a two-byte length field and the DDM code point of the SQLCINRD must follow
the OBJDSS structure in each overflow block. The next byte of the SQLCINRD data
follows the SQLCINRD code point.

The FD:OCA description of the answer set data may be totally contained in the block
that ends the column information for the result set (SQLCINRD) or may overflow to
subsequent blocks. If overflow occurs, a two-byte length field and the DDM code point
(QRYDSC) of the FD:OCA description must follow the OBJDSS structure in each
overflow block. The next byte of the FD:OCA description follows the QRYDSC code
point.

BF4 The answer set data follows the FD:OCA description of the data.

For Limited Block Protocols, where none of the answer set columns is of a LOB data
type, the answer set data may begin in the block that ends the FD:OCA description of
the data, if space remains, filling up the block with as much answer set data as will fit
into the block. It may be a partial row or multiple rows. If the application requester is
capable of accepting extra blocks of answer set data, then the application server may
chain additional blocks to the block that ends the FD:OCA description of the data.
Alternatively, the block containing the description of the data can be sent without
answer set data, deferring answer set data to the first CNTQRY command. An
application server should not send extra blocks of answer set data if the extra blocks
cannot either complete a row or contain at least one complete row.

For Limited Block Protocols, where some of the answer set columns are of a LOB data
type, the answer set containing the last portion of the description of the data must be
sent without any answer set data. Answer set data must be deferred to the first
CNTQRY when an optional OUTOVR command data object from the application
requester gives the desired format for the LOB data columns being returned in an
application FETCH request.

For Fixed Row Protocols, the answer set containing the last portion of the description of
the data must be sent without any answer set data. Answer set data must be deferred to
the first CNTQRY command.

The first four bytes of the answer set data is a two-byte length field and the DDM code
point (QRYDTA) for the answer set data. The entire answer set may be totally
contained in the block in which the answer set begins or the answer set may overflow
into subsequent blocks. If overflow occurs, a two-byte length field and the DDM code
point (QRYDTA) for the answer set data must follow the OBJDSS structure in each
overflow block. The next byte of answer set data follows the QRYDTA code point.

BF5 The two-byte length fields preceding the code points represent 4 bytes plus the length
of the SQLCINRD data, the FD:OCA description, or the answer set data contained in
the block in which the code point resides.

Part 1: Database Access Protocol 311

Query Processing DRDA Rules

BF7 The four bytes containing the length and code point for QRYDSC, QRYDTA, or the
SQLCARD, SQLDTARD, or SQLRSLRD of the summary component or the SQLCINRD
for an EXCSQLSTT command (see query data transfer protocols rule QP2 in Section
7.19.2 on page 316) that invoked a stored procedure cannot be split across blocks.

BF8 No block may contain more than one QRYDSC code point nor more than one QRYDTA
code point. A QRYDSC and a QRYDTA may both be contained in one OBJDSS or each
may be in a separate OBJDSS.

BF9 An OPNQRYRM always begins a new block. When multiple blocks are sent as a
response to an OPNQRY or a CNTQRY command, each standard block except the last
block must be full. A short standard block means that it is the last standard block for
the command. Only query blocks containing EXTDTAs (non-standard query blocks)
may follow the short block. When multiple blocks are sent as a response to an
EXCSQLSTT that invoked a stored procedure, each standard block must be full, except
that the blocks of the summary component (see query data transfer protocols rule QP2
in Section 7.19.2 on page 316), a block preceding a block that contains an OPNQRYRM,
or the last block may be short blocks.

BF10 An answer set row may span blocks.

BF12 When multiple blocks are sent in response to a single request (OPNQRY, CNTQRY, or
EXCSQLSTT), the last DSS of one block must be chained to the first DSS of the next
block.

BF13 If a standard block ends with a partial row of data that does not contain the end of that
row, the partial row must completely fill the block.

BF14 The RDB Result Set Reply Message (RSLSETRM) of the summary component for an
EXCSQLSTT command (see query data transfer protocols rule QP2 in Section 7.19.2 on
page 316) that invoked a stored procedure may be totally contained in the first block of
the result set or may overflow to subsequent blocks. If overflow occurs, a two-byte
length field and the DDM code point of the RSLSETRM must follow the RPYDSS
structure in each overflow block. The next byte of RSLSETRM data follows the
RSLSETRM code point.

BF15 The SQLCARD of the summary component for an EXCSQLSTT command (see query
data transfer protocols rule QP2 in Section 7.19.2 on page 316) that invoked a stored
procedure may be totally contained in a single block of the result set or may overflow
to a subsequent block. If overflow occurs, a two-byte length field and the DDM code
point of the SQLCARD must follow the OBJDSS structure in the overflow block. The
next byte of SQLCARD data follows the SQLCARD code point.

BF16 The SQLDTARD of the summary component for an EXCSQLSTT command (see query
data transfer protocols rule QP2 in Section 7.19.2 on page 316) that invoked a stored
procedure may be totally contained in a single block of the result set or may overflow
to subsequent blocks. If overflow occurs, a two-byte length field and the DDM code
point of the SQLDTARD must follow the OBJDSS structure in the overflow blocks. The
next byte of SQLDTARD data follows the SQLDTARD code point.

BF17 The SQLRSLRD of the summary component for an EXCSQLSTT command (see query
data transfer protocols rule QP2 in Section 7.19.2 on page 316) that invoked a stored
procedure may be totally contained in a single block of the result set or may overflow
to subsequent blocks. If overflow occurs, a two-byte length field and the DDM code
point of the SQLRSLRD must follow the OBJDSS structure in the overflow blocks. The
next byte of SQLRSLRD data follows the SQLRSLRD code point.

312 DRDA Volume 1

DRDA Rules Query Processing

BF18 Answer set data consists of base row data and externalized row data.

Base row data for an answer set row includes each column in the answer set row, either
as the column data itself or as an FD:OCA placeholder for the column data. If the base
row contains an FD:OCA placeholder for a column, the column data flows in an
associated EXTDTA object as externalized row data. A nullable column that is null has
no associated EXTDTA. A column with a zero length has no associated EXTDTA.

All base row data flows in QRYDTA objects.

Externalized row data flows in EXTDTA objects, according to Block Format Rule BF19
(see Section 7.19.1.1 on page 310) and Chaining Rules CH3 and CH4 (see Section
7.19.1.3 on page 314).

An answer set row may consist of only base row data or may consist of base row data
and externalized row data. A base row is complete when all the base row data for an
answer set row has been sent. An answer set row consisting of only base row data is
complete when the base row is complete; that is, when all columns in the answer set row
have been sent to the application requester as base row data. An answer set row
consisting of both base row data and externalized row data is complete when the base
row is complete and all associated EXTDTAs for the row have been sent.

Only columns that are FD:OCA Generalized String may be externalized. All other data
types must flow as base row data.

BF19 Blocking applies to all query reply messages and reply data objects except EXTDTA
objects.

Each EXTDTA always begins a new non-standard query block. The query block
consists of the complete EXTDTA object. No other query reply data or reply messages
may be contained in the query block.

An EXTDTA is contained in a single DSS and a DSS containing an EXTDTA does not
contain any other objects.

The complete query or result set response is composed of one or more blocks, each block
consisting of one or more DSSs.

For a description of the possible block formats, including the description of answer set data and
the reply messages for OPNQRY, CNTQRY, and EXCSQLSTT, see the DDM description of DDM
terms LMTBLKPRC (Limited Block Protocols) and FIXROWPRC (Fixed Row Protocols).43

7.19.1.2 Block Size (BS Rules)

BS1 The application requester determines the block size for standard query blocks. The
application server must send blocks equal to the application requester specified size.
The exceptions are the last block sent in response to an OPNQRY or CNTQRY and the
blocks of the summary component, a block preceding a block that contains an
OPNQRYRM, or the last block sent in response to an EXCSQLSTT. These blocks may be
short blocks (truncated). See rule BF9 in Section 7.19.1.1 on page 310, rule IR1 in Section
7.8 on page 294, and rules QT2, QT3, QT4, and QT5 in Section 7.19.3 on page 318.

43. Formerly known as SNGROWPRC in DDM Level 3 documentation.

Part 1: Database Access Protocol 313

Query Processing DRDA Rules

Block size is an operand of OPNQRY, CNTQRY, and EXCSQLSTT. Block size may
change on any or each CNTQRY request.

The block size does not apply to non-standard query blocks.

BS2 The minimum block size for standard query blocks is set at 512 bytes.

BS3 The maximum block size for standard query blocks is set at 32,767 bytes.

7.19.1.3 Chaining (CH Rules)

CH1 The DDM RPYDSS or OBJDSS chaining indicator must be used to chain multiple DSSs
in the same block. The symbol RPYDSS_52 represents an RPYDSS with the chaining
flag set (the DSSFMT is set to X‘52’). The symbol OBJDSS_53 represents an OBJDSS
with the chaining flag set (X‘53’) and OBJDSS_03 represents an OBJDSS without the
chaining flag set. The only valid chaining configurations for a block are the following:

Note: Parentheses surround optional repeatable OBJDSS_53s.

• (RPYDSS_52) - (OBJDSS_53) - OBJDSS_03

• (RPYDSS_52) - (OBJDSS_53) - RPYDSS_52 - (OBJDSS_53) - OBJDSS_03

• (OBJDSS_53) - OBJDSS_03

• (OBJDSS_53) - RPYDSS_52 - (OBJDSS_53) - OBJDSS_03

The following examples illustrate the relationship between DDM objects and their
requisite carriers. Table 7-1 is a maximal example that shows everything that can be
specified, in order, in a response to an OPNQRY that consists of a single block.

Table 7-1 Maximal Example for OPNQRY

DDM OBJECT DDM CARRIER__________________________________
OPNQRYRM RPYDSS
TYPDEFNAM OBJDSS
TYPDEFOVR OBJDSS
SQLCARD OBJDSS
TYPDEFNAM OBJDSS
TYPDEFOVR OBJDSS
QRYDSC OBJDSS
TYPDEFNAM OBJDSS
TYPDEFOVR OBJDSS
QRYDTA OBJDSS
TYPDEFNAM OBJDSS
TYPDEFOVR OBJDSS
ENDQRYRM RPYDSS
TYPDEFNAM OBJDSS
TYPDEFOVR OBJDSS
SQLCARD OBJDSS__________________________________L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table 7-2 on page 315 is a maximal example that shows everything that can be
specified, in order, in the first block of the response to an EXCSQLSTT that returns one
or more result sets.

314 DRDA Volume 1

DRDA Rules Query Processing

Table 7-2 Maximal Example for the First Block of an EXCSQLSTT that Returns Result Sets

DDM OBJECT DDM CARRIER__________________________________
RDBUPDRM RPYDSS
RSLSETRM RPYDSS
TYPDEFNAM OBJDSS
TYPDEFOVR OBJDSS
SQLDTARD OBJDSS
TYPDEFNAM OBJDSS
TYPDEFOVR OBJDSS
SQLRSLRD OBJDSS__________________________________LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

Each DDM object carried in an OBJDSS, except for EXTDTA objects, may be carried in
its own OBJDSS or combined with other objects to reduce the number of OBJDSSs sent.

Each EXTDTA object always flows in its own OBJDSS. In Table 7-1 on page 314, if
EXTDTAs are associated with the row or rows in the single query block, then each
flows in its own OBJDSS following the QRYDTA object containing the last column of its
containing row.

CH2 In all cases where more than one block of answer set data is returned in response to a
single request, except for the last block, the last (or only) DDM DSS in a block is
chained to the first (or only) DDM DSS in the next block.

CH3 The EXTDTA objects associated with a row cannot flow until the associated base row is
complete (that is, all columns in the corresponding base row have been sent).

CH4 The EXTDTA objects associated with an answer set row flow in the same order that
their corresponding FD:OCA placeholders appear in the base row.

All EXTDTA objects associated with a row must flow before other EXTDTAs from
subsequent rows can flow.

If the AR can accept extra query blocks, all EXTDTA objects associated with the row or
rows in a previous query block must flow before each subsequent extra query block can
flow.

CH5 If a base data object contains FD:OCA placeholders, then the EXTDTA objects to be sent
in the chain with the base data object must be chained in sequence after the base data
object.

The only object that may be chained after an EXTDTA is either another EXTDTA object
or a QRYDTA object for the same query.

If the command is a CNTQRY and the query is completed by the command, then the
ENDQRYRM should not be put in the query block, even if there is room for it in the
query block, if there are any EXTDTAs to be returned for the QRYDTA, either at the
same time as the QRYDTA (if rtnextall) or with the next CNTQRY (if rtnextrow).

If the command is an EXCSQLSTT for a stored procedure call with query result sets, the
EXTDTAs returned associated with the SQLDTARD containing the parameters must be
the last objects in the reply chain. They follow the results set information objects and
the query reply objects for the result sets. No extra query blocks may be returned with
any query result sets in this case.

Part 1: Database Access Protocol 315

Query Processing DRDA Rules

7.19.2 Query Data Transfer Protocols (QP Rules)

QP1 Fixed Row Protocol

In the non-error case, the response to OPNQRY consists of one or more blocks
containing the OPNQRY reply message (OPNQRYRM) and the FD:OCA description of
the data (QRYDSC). When multiple blocks are returned, the last DSS of block n is
chained to the first DSS of block n+1. The chaining indicator is not set in the last block.
No answer set data is included in the response.

The application requester must use CNTQRY to retrieve answer set data. Each use of
CNTQRY retrieves exactly the number of rows of answer set data requested by the
application, or the number of rows available in the answer set if more rows were
requested than available during multi-row fetches.44 The answer set is transmitted in
one or more blocks; the number of blocks depends on the number of rows (multi-row
fetches) returned, the size of the rows, and the number of EXTDTA objects to be sent.
When multiple blocks are returned, the last DSS of block n is chained to the first DSS of
block n+1. The chaining indicator is not set in the last block.

EXTDTA objects associated with retrieved rows are sent in accordance with Chaining
Rules CH3 and CH4 in Section 7.19.1.3 on page 314.

For non-scrolling cursors, the query is complete when a CNTQRY results in a returned
block containing an RPYDSS indicating end of query (ENDQRYRM) chained to an
OBJDSS containing an SQLCARD data object. If answer set data is contained in the
query block, then the query is complete when all EXTDTA objects associated with the
base rows in the object have been returned. The EXTDTAs associated with the object
must be received and processed before the subsequent reply message and objects in the
query block.

For cursors that scroll, the query completes when the application closes the cursor. This
results in a CLSQRY command flowing to the application server.

The DDM term FIXROWPRC more completely defines this protocol. See rules QT1,
QT2, QT3, and QT4 in Section 7.19.3 on page 318.

QP2 Limited Block Protocol

In the non-error case, the response to OPNQRY consists of one or more blocks
containing the OPNQRY reply message (OPNQRYRM) and the FD:OCA description of
the data (QRYDSC). The block containing the end of the FD:OCA description may be
completed, if room exists, with answer set data (adhering to Block Rules BF4, BF7, BF8,
and BF9 in Section 7.19.1.1 on page 310). If the application requester is capable of
accepting extra blocks of answer set data, then the application server may chain
additional blocks to the block that ends the FD:OCA description of the data. When
multiple blocks are returned, the last DSS of block n is chained to the first DSS of block
n+1. The chaining indicator is not set in the last block.

In the non-error case, the response to an EXCSQLSTT that returns result sets consists of
one or more blocks containing a summary component and one or more query result set
components. The query result set components follow the summary component. The
summary component consists of a a Result Set reply message (RSLSETRM), an

44. Multi-row fetch is not supported in DRDA Level 1.

316 DRDA Volume 1

DRDA Rules Query Processing

SQLCARD or SQLDTARD, and an SQLRSLRD. Each result set component consists of
the OPNQRY reply message (OPNQRYRM), the column name information for the
result set (SQLCINRD), and the FD:OCA description of the data (QRYDSC). Within
each result set component, the block containing the end of the FD:OCA description
may be completed, if room exists, with answer set data (adhering to Block Rules BF4,
BF7, BF8, and BF9 in Section 7.19.1.1 on page 310). Further, if the application server is
capable of accepting extra blocks of answer set data, then the application server may
chain additional blocks to the block that ends the FD:OCA description of the data
taking into account Chaining Rule CH5. When multiple blocks are returned, the last
DSS of block n is chained to the first DSS of block n+1. The chaining indicator is not set
in the last block.

The application requester must use CNTQRY to retrieve more answer set data.

• If none of the answer set columns can flow as externalized FD:OCA data in
EXTDTAs, each use of CNTQRY has a response consisting of as many blocks as
necessary to contain the end of a row. The block containing the end of a row may be
filled, if room exists, with additional answer set data. If the application requester is
capable of accepting extra blocks of answer set data, then the application server
may chain additional blocks to the block that ends the FD:OCA description of the
data.

• If any of the answer set columns can flow as externalized FD:OCA data in
EXTDTAs, the application requester specifies whether EXTDTA objects are to be
sent a row at a time or whether all EXTDTA objects associated with returned query
blocks are to be sent with the query blocks. Each use of CNTQRY has one of the
following responses:

— For the first CNTQRY, or a subsequent CNTQRY retrieving additional base row
data, the application server returns as many query blocks as necessary to contain
the end of a base row. The block containing the end of a row may be filled, if
room exists, with additional base row data. If the application requested that all
EXTDTAs be returned with the base data, then the EXTDTA objects for all
complete base rows in the command response are returned as non-standard
query blocks following that query block. The response is complete. The next
CNTQRY command retrieves additional base row data along with any
associated EXTDTAs.

If EXTDTA objects are to be returned a row at a time, no EXTDTAs are returned
with the base data. The response is complete. The next CNTQRY command
retrieves the EXTDTAs for the first base row for which there are associated
EXTDTAs. The application requester does not send a CNTQRY to retrieve
EXTDTAs if a base row has only null placeholders or placeholders with zero
lengths. After all base rows previously sent have been completed with any
associated externalized data, the next CNTQRY command retrieves additional
base row data.

— For a subsequent CNTQRY retrieving externalized row data associated with a
complete base row previously sent, the application server returns query blocks
containing the EXTDTAs corresponding to the FD:OCA placeholders in the base
row. This rule applies only if EXTDTAs objects are to be returned a row at a
time.

When multiple blocks are returned, the last DSS of block n is chained to the first DSS of
block n+1. The chaining indicator is not set in the last block.

Part 1: Database Access Protocol 317

Query Processing DRDA Rules

The query or result set is complete when a CNTQRY, OPNQRY, or an EXCSQLSTT
results in a returned block containing an RPYDSS indicating end of query
(ENDQRYRM) chained to an OBJDSS containing an SQLCARD data object. The
RPYDSS may or may not be chained from an OBJDSS containing the last row of answer
set data. If answer set data contained in the query block has any associated EXTDTAs
that are to be returned with a subsequent CNTQRY, then Chaining Rule CH5 applies to
the RPYDSS.

The DDM term LMTBLKPRC more completely defines this protocol. See rules QT1,
QT2, QT3, and QT4 in Section 7.19.3.

An attempt to UPDATE WHERE CURRENT OF CURSOR or DELETE WHERE
CURRENT OF CURSOR on a cursor that is fetching rows using the limited block
protocol results in an SQLSTATE of 42828.

QP3 The OPNQRY reply message (OPNQRYRM) indicates whether the application server is
using Fixed Row Protocols or Limited Block Protocols for the query or result set.

7.19.3 Query Data or Result Set Transfer (QT Rules)

QT1 The application server terminates an open query or result set when it receives and
processes a CLSQRY command or when it detects other conditions that implicitly
closed the cursor. Any time an implicit close occurs, one of the following reply
messages must be sent:

• ENDQRYRM: normal end of answer set data

• ABNUOWRM: RDB initiated Rollback

An OBJDSS containing an SQLCARD data object follows each of these messages.

A terminated query is the same as a query that has not yet been opened.

QT2 Each query terminating reply message (RPYDSS) must be chained to, and can only be
chained to, an OBJDSS carrying an SQLCARD data object. The SQLCARD may contain
additional information describing the reason for query termination.

For example, the reply message ABNUOWRM may be chained to an SQLCARD data
object that carries the name of a resource involved in a deadlock that generated a
relational database rollback operation.

QT3 The OBJDSS carrying the SQLCARD data object returned with a query terminating
reply message must be chained from the terminating reply message RPYDSS, must be
contained in the same response block as the RPYDSS, and must be the last item in the
response block.

QT4 The RPYDSS representing the query terminating reply message must be the first item in
the response block in the following cases:

• When the query data transfer protocol is Fixed Row with a single row fetch.

• When the query data transfer protocol is Limited Block and the reply message is
ABNUOWRM—RDB initiated Rollback.

See Section 7.8 on page 294 for a description.

In all other cases, the query terminating reply message RPYDSS may, if room exists in
the response block, be chained from the OBJDSS containing the last row of answer set
data, taking into account Chaining Rule CH5 if it applies.

318 DRDA Volume 1

DRDA Rules Query Processing

QT5 When the query terminating reply message RPYDSS containing an ENDQRYRM and
the associated SQLCARD data object OBJDSS are placed into a separate block
following the above rules, then the block can be sent only in response to a subsequent
CNTQRY command.

See rule IR1 in Section 7.8 on page 294 for the handling of the DDM reply message
ABNUOWRM.

7.19.4 Additional Query and Result Set Termination Rules

The following section provides additional rules for terminating queries and result sets within
DRDA flows. The objective of these rules is to avoid the CLSQRY request/response message
exchange between application requester and application server when possible and to keep
cursor states consistent between application requester and application server. The rules are in
figures that show a set of conditions and actions to be taken for the conditions. Each row of the
figure represents a condition or an action. Each column of the figure represents a set of
conditions and the actions that apply to the set of conditions. Thus, each column represents a
specific case. Each case is described in narrative form following the figure that contains the case.
For readability, the conditions and actions are separated and each column has a unique
identifier.

For example, in Table 7-3 on page 320, column H has the conditions that the cursor is open, a
CNTQRY command has been received, the SQL FETCH returned an end-of-data SQLCA, the
query is without the HOLD option, and room exists in the current block for the ENDQRYRM
RPYDSS chained to an SQLCARD OBJDSS. The actions are to perform an SQL CLOSE cursor,
mark the cursor as not open, create and place the ENDQRYRM/SQLCARD in the block, and
send the block to the application requester.

Part 1: Database Access Protocol 319

Query Processing DRDA Rules

7.19.4.1 Rules for OPNQRY, CNTQRY, CLSQRY, and EXCSQLSTT

Table 7-3 AS Rules for OPNQRY, CNTQRY, CLSQRY
__

Cases
Conditions A B C D E F G H I J K L M N O P Q__

CURSOR STATE:
NOT OPEN A D N P
OPEN B E F G H I J K L M O__

DRDA COMMAND:
CNTQRY A B G H I J K L
CLSQRY D E F M
OPNQRY N O P
EXCSQLSTT Q__

OPEN CURSOR FAILED P__
SQL FETCH RETURNED SQLCA

AND DATA ROW OR MULTI-ROWS G__
SQL FETCH RETURNED SQLCA

WITHOUT A DATA ROW
QUERY TERMINATING

OTHER H I
ROLLBACK J K

BLOCK IS EMPTY K
NON-QUERY TERMINATING L__

ROOM IN BLOCK FOR
RPYDSS/SQLCARD

YES H
NO I__

RPYDSS/SQLCARD STACKED B E F
ENDQRYRM F
OTHER E__L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

320 DRDA Volume 1

DRDA Rules Query Processing

Cases

Actions A B C D E F G H I J K L M N O P Q___
RETURN SQLCARD:

RC=’00000’ F
FROM RDB H M P___

CURSOR STATE:
NOT OPEN A B D E F H K M P
OPEN G I J L N O Q___

ISSUE SQL CLOSE CURSOR H I M___
PLACE RPYDSS/SQLCARD

IN BLOCK H___
STACK RPYDSS/SQLCARD I___
SEND ROLLBACK RPYDSS/CA K___
STACK ROLLBACK RPYDSS/CA J___
SEND STACKED RESPONSE B E___
PURGE STACK B E F___
SEND BLOCK F H I J L M___
PROCESS CNTQRY G___
SEND QRYNOPRM RPYDSS A D___
PROCESS OPNQRY N___
PROCESS EXCSQLSTT Q___
SEND QRYPOPRM RPYDSS O___
SEND OPNQFLRM RPYDSS/CA P___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Cases for Rules

CASE A The application server cursor state indicates that the cursor is not open. The
request from the application requester is a CNTQRY. The application server
returns a QRYNOPRM reply message indicating the cursor is not open. The cursor
state remains not open.

CASE B The application server cursor state indicates that the cursor is open. The request
from the application requester is a CNTQRY. The application server determines
that an RPYDSS and SQLCARD are stacked pending receipt of an application
requester request. There are two stacks to consider. This first stack would be the
reply message ENDQRYRM. See rules QT1, QT2, QT3, and QT4 in Section 7.19.3
on page 318. The other stack applies to all operations. The stacked reply message
would be ABNUOWRM. See rules QT1, QT2, QT3, and QT4 in Section 7.19.3 on
page 318, and rule IR1. The latter stack is always the first to be processed (for all
application requester requests, regardless of whether the request is for a query
operation or otherwise). ENDQRYRM applies only to non-scrolling cursors. The
cursor positioning for cursors that scroll can be moved to any row in the answer
set on the next FETCH. Therefore, the cursor should never be pre-closed by the
application server.

When an ABNUOWRM/SQLCARD is stacked, this response is sent for the
received request. The stack is purged. All cursor states are set to not open, and all
cursor stacks are purged (these cursor actions could have taken place when the
ABNUOWRM was created and placed upon the stack).

Part 1: Database Access Protocol 321

Query Processing DRDA Rules

When an ENDQRYRM/SQLCARD is stacked on a cursor, and when the next
request is a CNTQRY, this response is sent for the received request. The stack is
then purged. The cursor state is set to not open.

CASE D The application server cursor state indicates that the cursor is not open. The
request from the application requester is a CLSQRY. No pending responses are
stacked. The application server returns a QRYNOPRM reply message indicating
the cursor is not open. The cursor state remains not open.

CASE E The application server cursor state indicates that the cursor is open. The request
from the application requester is CLSQRY. The application server determines that
an ABNUOWRM and SQLCARD are stacked, pending receipt of an application
requester request. The stacked response is sent for the received request. The stack
is purged, and the cursor state is set to not open.

CASE F The application server cursor state indicates that the cursor is open. The request
from the application requester is CLSQRY. The application server determines that
an ENDQRYRM and SQLCARD are stacked, pending receipt of the next
application requester request for this cursor. This is a normal condition. The
application wants to close the cursor before reaching end of data.

In this situation, the application server has already reached end of data. Rather
than sending the stacked ENDQRYRM, the application server sends an SQLCARD
with an SQLSTATE of 00000. The cursor stack is purged, and the cursor state is set
to not open.

CASE G The application server cursor state indicates that the cursor is open. The request
from the application requester is a CNTQRY. The process CNTQRY action is
taken, which is tailored to the query data transfer protocol in effect for the cursor.
See rules QP1 and QP2 in Section 7.19.2 on page 316.

The SQL FETCH condition is a result of the PROCESS CNTQRY action. The
CNTQRY process also includes the process for spanning answer set rows across
multiple blocks and sending EXTDTA objects in non-standard query blocks. This is
not shown in the diagram.

CASE H The application server cursor state indicates that the cursor is open. The request
from the application requester is a CNTQRY. The process CNTQRY action
resulted in a relational database query terminating response to a FETCH request.
In DRDA, all query terminating responses to a FETCH for queries without the
HOLD option, are mapped to ENDQRYRM except a rollback, which is mapped to
ABNUOWRM.

In CASE H, we have an ENDQRYRM condition with enough room in the current
block for the ENDQRYRM reply message chained to an SQLCARD. The
SQLCARD will contain the SQLSTATE from the relational database. The
RPYDSS/SQLCARD is appended to any data already in the block. The OBJDSS in
the block, if one exists, is chained to the RPYDSS, which is chained to the
SQLCARD/OBJDSS. The application server closes the cursor by requesting the
relational database to close the cursor. The application server then sets the cursor
state to not open and sends the block.

CASE H also applies to the ABNUOWRM query terminating condition for fixed
row protocols.

This case does not apply if the command returns any base data for which there are
associated EXTDTAs. See CASE I instead.

322 DRDA Volume 1

DRDA Rules Query Processing

CASE I This is the same as CASE H except there is no room in the current block for the
RPYDSS/SQLCARD. The block is sent to the application requester without the
RPYDSS/SQLCARD (a short block). The RPYDSS/SQLCARD is stacked on the
cursor waiting for the next request. The cursor state remains open.

This case also applies if the command returns any base data for which there are
associated EXTDTAs.

CASE J This is the same as CASE I except the query terminating condition is a rollback
(ABNUOWRM). Because of rule QT4 (see Section 7.19.3 on page 318), the
ABNUOWRM must be the first DSS in the block. Therefore, if the block contains
any data, the ABNUOWRM/SQLCARD must be stacked waiting for the next
request from the application requester. The current block, with the accumulated
answer set data, is sent, and the cursor state remains open.

CASE K This is the same as CASE J when the current block is empty. Therefore, the
application server does not stack the ABNUOWRM/SQLCARD but instead sends
this response to the application requester. All cursors are set to the not open state.

CASE L The application server cursor state indicates that the cursor is open. The request
from the application requester is a CNTQRY. The process CNTQRY action
resulted in a FETCH request that returned an SQLCA without a data row, and the
application server has determined that this is not a query terminating condition.
This means the relational database can accept a subsequent FETCH. DRDA does
not define these conditions. The SQL semantic for FETCH as communicated by
SQLSTATEs determines these conditions, if they exist or if they will ever exist.

The DRDA-defined action for these conditions is for the application server to
interrupt the process of filling the block. That is, the application server returns a
short block to the application and waits for the next request. If any completed base
rows in the short block included FD:OCA placeholders for externalized data, the
associated EXTDTAs are returned according to rules QP1 and QP2 in Section 7.19.2
on page 316. The application may decide to issue another FETCH, resulting in
CNTQRY, close the cursor, resulting in CLSQRY, or rollback or terminate. The
application requester is not dependent upon nor sensitive to these conditions.
Therefore, the application server returns the SQLCA that the relational database
has provided as QRYDTA and with a null data row.

CASE M The application server cursor state indicates that the cursor is open. The request
from the application requester is CLSQRY. The application server requests the
relational database to close the cursor. The application server sets the cursor state
to not open and returns an SQLCARD to the application requester. The SQLCARD
is derived from the SQLCA that the relational database has returned for the SQL
close cursor operation.

CASE N The application server cursor state indicates that the cursor is not open. The
request from the application requester is OPNQRY. The application server
performs the OPNQRY process, which is not described. The cursor state is set to
open.

CASE O The application server cursor state indicates that the cursor is open. The request
from the application requester is OPNQRY. The cursor state remains open. The
application server returns the QRYPOPRM reply message indicating the cursor is
already open.

CASE P The application server cursor state indicates that the cursor is not open. The
request from the application requester is OPNQRY. The OPEN CURSOR fails. The

Part 1: Database Access Protocol 323

Query Processing DRDA Rules

application server returns the reply message OPNQFLRM chained to the
SQLCARD. The cursor state remains not open.

CASE Q The request from the application requester is an EXCSQLSTT that invokes a stored
procedure that returns one or more result sets. The application server executes the
stored procedure, which is not described. The cursor state for each result set is set
to open.

324 DRDA Volume 1

DRDA Rules Query Processing

7.19.4.2 Rules for FETCH

Table 7-4 AR Rules for FETCH
__

Cases
Conditions A B C D E F G H I J K L M N O P Q R S T__

CURSOR STATE:
NOT OPEN A
CLOSE ONLY B
OPEN C D E F G H I J K L M N O P Q R S__

POSITION IN BLOCK:
SQLCA/ROW D E N O P
SQLCA/NULL ROW OR

ROW/SQLSTATE>02999 F G H Q R S
RPYDSS I J K
END OF BLOCK L M__

CHAINING:
CHAINED TO DSS:

THIS BLOCK C F I N Q
NEXT BLOCK D G J L O R

NOT CHAINED E H K M P S__
MULTI_ROW FETCH:

YES N O P Q R S
NO C D E F G H
DOESN’T MATTER: A B I J K L M__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Cases

Actions A B C D E F G H I J K L M N O P Q R S T___
RETURN SQLCA:

EOQ - SQLSTATE=’02000’ B
NOT OPEN A
FROM AS QRYDTA C D E F G H
FROM AS SQLCARD I
BUILT BY AR N O P Q R S___

CURSOR STATE:
NOT OPEN A
CLOSE ONLY B I
OPEN C D E F G H L M N O P Q R S___

RETURN ROW OR
MULTI-ROWS C D E N O P___

ISSUE CNTQRY - RCV
ALL BLOCKS M___

GET NEXT RECEIVED
BLOCK L___

PROTOCOL ERROR J K___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Part 1: Database Access Protocol 325

Query Processing DRDA Rules

Cases for Rules

CASE A The application requester cursor state indicates that the cursor is not open. The
application requester, therefore, returns a cursor not open SQLCA to the
application and leaves the cursor state as not open.

CASE B The application requester cursor state indicates that the only valid operation
against the cursor is to close it. This is because the application server has processed
to end of data and has returned the ENDQRYRM and SQLCARD. The application
has probably issued another FETCH after having received the end of data SQLCA.
The application requester, therefore, returns another end of data SQLCA
(SQLSTATE 02000) and leaves the cursor state as close only.

CASE C The application requester cursor state indicates that the cursor is open, not
performing a multi-row fetch, and the application requester is positioned in the
block to an answer set row with the associated SQLCA (may be null). The OBJDSS
is chained to another DSS within the current block, but chaining is not relevant.
The application requester, therefore, returns the row and associated SQLCA to the
application and positions itself to the next data item in the block. The cursor state
remains OPEN.

The RETURN ROW OR MULTI-ROWS action includes the process of a row
spanned across blocks. If the row is a base row having FD:OCA placeholders, the
RETURN ROW OR MULTI-ROWS action includes the process of retrieving the
externalized data associated with each FD:OCA placeholder from an EXTDTA
object. If the EXTDTA objects for the query are being returned a row at a time, the
application requested must issue a CNTQRY command to receive the associated
EXTDTA objects. Retrieving the externalized data for the base row does not
change the application requester’s position in the query block being processed.
These processes are not shown in the diagram.

CASE D This is the same as CASE C; chaining is not relevant.

CASE E This is the same as CASE C; chaining is not relevant.

CASE F The application requester cursor state indicates that the cursor is open and that the
application requester is positioned in the block to a null answer set row and a
non-null SQLCA, or a non-null answer set row and the SQLSTATE is greater than
02999. The application requester therefore returns the SQLCA to the application
and positions itself to the next data item in the block. The cursor state remains
open; chaining is not relevant.

CASE G This is the same as CASE F; chaining is not relevant.

CASE H This is the same as CASE F; chaining is not relevant.

CASE I The application requester cursor state indicates that the cursor is open, and that
the application requester is positioned in the block to an RPYDSS, which is chained
to an SQLCARD in the current block. The application requester, therefore, returns
an SQLCA to the application, which is derived from the SQLCARD. The cursor
state is set to the close only state, meaning that the only valid operation against the
cursor is to close the cursor.

Note: If the RPYDSS is an ABNUOWRM, all cursor states are placed in the
NOT OPEN state. The rollback has reset all cursors. All buffers
associated with the cursors are reset to an empty state.

326 DRDA Volume 1

DRDA Rules Query Processing

CASE J The application requester cursor state indicates that the cursor is open and that the
application requester is positioned in the block to an RPYDSS, which is chained to
an SQLCARD in the next block. This is a protocol error.

CASE K The application requester cursor state indicates that the cursor is open and that the
application requester is positioned in the block to an RPYDSS, which is not chained
to an SQLCARD. This is a protocol error.

CASE L The application requester cursor state indicates that the cursor is open and that the
application requester is positioned at the end of the block. The last OBJDSS in the
block is chained to a DSS in the next block. The application requester receives the
next block, leaves the cursor state at OPEN, and positions itself at the beginning of
the new block. Then the application requester re-evaluates conditions based on the
data found in the next block.

CASE M The application requester cursor state indicates that the cursor is open and that the
application requester has positioned itself at the end of the block. The last OBJDSS
in the block is not chained. Therefore, the application requester must issue
CNTQRY and then receive the next block. Then the application requester re-
evaluates conditions based on the data found in the next block.

CASE N The application requester cursor state indicates the cursor is open, performing a
multi-row fetch,45 and the application requester is positioned to an answer set row
with the associated SQLCA (which may be null).

The answer set row is the nth row, where n is less than or equal to the number of
rows requested in the FETCH statement but not less than the number of
contiguous rows beginning at the first row requested up to the first terminating
condition. The application requester returns to the application a block of rows and
a statement-level SQLCA constructed from information in all of the SQLCAs
associated with the returned rows. The process of building the statement-level
SQLCA and returning associated rows is terminated by one of the following
conditions:

• All rows from the application server are processed.

In this case, the application requester positions itself at the end of the block.

• A row (possibly null) with an associated SQLSTATE greater than 02999 is
encountered. Processing of this row is deferred to the next FETCH.

In this case, the application requester positions itself at the error row.

• An RPYDSS is encountered. Processing of the RPYDSS is deferred to the next
FETCH.

In this case, the application requester positions itself at the RPYDSS.

Chaining is not relevant. The cursor state remains open.

The RETURN ROW OR MULTI-ROWS action includes the process of a row
spanned across blocks. If the row is a base row having FD:OCA placeholders, the
RETURN ROW OR MULTI-ROWS action includes the process of retrieving the
externalized data associated with each FD:OCA placeholder from an EXTDTA

45. Multi-row fetch is not supported in DRDA Level 1.

Part 1: Database Access Protocol 327

Query Processing DRDA Rules

object. If the EXTDTA objects for the query are being returned a row at a time, the
application requested may need to issue a CNTQRY command to retrieve the
associated EXTDTA objects. Retrieving the externalized data for the base row does
not change the application requester’s position in the query block being processing.
These processes are not shown in the diagram.

CASE O This is the same as CASE N; chaining is not relevant.

CASE P This is the same as CASE N; chaining is not relevant.

CASE Q The application requester cursor state indicates that the cursor is open, performing
a multi-row fetch, and that the application requester is positioned in the block to a
null answer set row and a non-null SQLCA or a non-null answer set row and the
SQLSTATE is greater than 02999. The application requester returns to the
application a statement-level SQLCA reflecting the error condition for the single
row. The row, if present, is not returned to the application. The application
requester positions itself to the next data item in the block. The cursor state
remains open; chaining is not relevant.

CASE R This is the same as CASE Q; chaining is not relevant.

CASE S This is the same as CASE Q; chaining is not relevant.

328 DRDA Volume 1

DRDA Rules Query Processing

7.19.4.3 Rules for CLOSE

Table 7-5 AR Rules for CLOSE
__

Cases
Conditions A B C D E F G H I J K L M N O P__

CURSOR STATE:
NOT OPEN A
CLOSE ONLY B
OPEN C D E F G__

RPYDSS IN RCVD BLOCKS:
YES C D E
NO F G__

RPYDSS CHAINED TO
SQLCARD OBJDSS IN
CURRENT BLOCK:

YES C
NO D__

RPYDSS CHAINED TO
UNRECEIVED BLOCK E__

OBJDSS CHAINED TO
UNRECEIVED BLOCK G__L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

__
Cases

Actions A B C D E F G H I J K L M N O P__
RETURN SQLCA:

RC=’00000’ B C
NOT OPEN A
FROM AS F__

CURSOR STATE:
NOT OPEN A B C F__

ISSUE CLSQRY F__
PROTOCOL ERROR D E G__L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L

Cases for Rules

CASE A The application requester cursor state indicates the cursor is not open. The
application requester, therefore, returns an SQLCA with a not open SQLSTATE of
24501. The cursor state remains not open.

CASE B The application requester cursor state indicates that the only valid operation
against the cursor is to close it. This is because the application server has processed
to end of data and has returned the ENDQRYRM and SQLCARD. The application
requester, therefore, returns an SQLCA with an SQLSTATE of 00000 to the
application.

CASE C The application requester cursor state indicates that the cursor is open. A query
terminating RPYDSS is in the current block and is chained to an SQLCARD in the
same block. The application requester returns an SQLCA to the application with an
SQLSTATE of 00000 and sets the cursor state to not open.

Part 1: Database Access Protocol 329

Query Processing DRDA Rules

CASE D The application requester cursor state indicates that the cursor is open. An
RPYDSS is in the current block but does not indicate chaining. This is a protocol
error.

CASE E The application requester cursor state indicates that the cursor is open. An
RPYDSS is in the current block but is chained to a DSS in the next block. This is a
protocol error.

CASE F The application requester cursor state indicates that the cursor is open. The current
block does not contain a query-terminating RPYDSS. This is a normal situation.
The application wants to close the cursor prior to viewing all the answer set data,
and the application server has not reached end of data. The application requester,
therefore, must issue a CLSQRY command to the application server and wait for
the reply. When the application requester receives the reply, it places the cursor in
the not open state and returns the SQLCA, which is derived from the SQLCARD
returned to the application by CLSQRY.

CASE G The application requester cursor state indicates that the cursor is open. The current
block does not contain an RPYDSS, but the last OBJDSS in the block is chained to
the next block. This is a protocol error, a violation of rule QP1 or QP2 (see Section
7.19.2 on page 316).

In Fixed Row Protocols, the last FETCH operation would have received all blocks
the application server sent and would have processed all the data in the blocks.

In Limited Block Protocols, the last operation, either a FETCH or OPEN, would
have received all the blocks the application server sent. The last block received
may have contained data the next operation would process, but the block would
not have been chained.

330 DRDA Volume 1

Chapter 8

SQLSTATE Usage

This chapter identifies the SQLSTATEs that DRDA specifically references. See
ISO/IEC 9075: 1992, Database Language SQL for definitions of SQLSTATEs referenced in DRDA as
well as other SQLSTATEs appropriate for error conditions not defined or not within the scope of
DRDA.

This chapter also identifies the SQLSTATEs that an application program receives following the
receipt of a DDM reply message at an application requester in response to a DRDA remote
request that the application requester made on behalf of the application program.

This chapter also provides a general description for each SQLSTATE that any other chapter of
this volume references.

8.1 DRDA Reply Messages and SQLSTATE Mappings
Table 8-1 lists the valid DDM reply messages and svrcods for DRDA. The table is also a mapping
between the reply messages and SQLSTATEs. If an application requester receives a valid reply
message with a valid svrcod, the application requester must return the SQLSTATE listed in the
table. If an application requester receives a reply message that is not valid in DRDA or a valid
reply message with an svrcod that is not valid in DRDA, the application requester returns the
SQLSTATE 58018.

Reply messages CMDVLTRM, CMMRQSRM, and RDBUPDRM are not supported in DRDA
Level 1.

Table 8-1 DRDA Reply Messages (RMs) and Corresponding SQLSTATEs
__

REPLY MESSAGE SVRCOD SQLSTATELL LL LL LL__
ABNUOWRM 8 SQLSTATE in SQLCARD__
ACCRDBRM 0 00000__
ACCRDBRM 4 01539__
AGNPRMRM 16,32,64 58009__
BGNBNDRM 8 SQLSTATE in SQLCARD__
CMDATHRM 8 58008 or 58009__
CMDCHKRM 0 Not returned__
CMDCHKRM 8 58008 or 58009__
CMDCHKRM 16,32,64,128 58009__
CMDNSPRM 8 58014__
CMDVLTRM 8 58008__
CMMRQSRM 8 Not returned or 2D528 or 2D529__
DSCINVRM 8 58008 or 58009__
DTAMCHRM 8 58008 or 58009__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Part 1: Database Access Protocol 331

DRDA Reply Messages and SQLSTATE Mappings SQLSTATE Usage

__
REPLY MESSAGE SVRCOD SQLSTATELL LL LL LL__
ENDQRYRM 4,8 SQLSTATE in SQLCARD__
ENDUOWRM 4 SQLSTATE in SQLCARD__
MGRDEPRM 8 58009__
MGRLVLRM 8 58010__
OBJNSPRM 8 58015__
OPNQFLRM 8 SQLSTATE in SQLCARD__
OPNQRYRM 0 SQLSTATE in SQLCARD__
PKGBNARM 8 58012__
PKGBPARM 8 58011__
PRCCNVRM 8 58008 or 58009__
PRCCNVRM 16,128 58009__
PRMNSPRM 8 58016__
QRYNOPRM 4 24501__
QRYNOPRM 8 58008 or 58009__
QRYPOPRM 8 58008 or 58009__
RDBACCRM 8 58008 or 58009__
RDBATHRM 8 08004__
RDBNACRM 8 58008 or 58009__
RDBAFLRM 8 SQLSTATE in SQLCARD__
RDBNFNRM 8 08004__
RDBUPDRM 0 Not returned__
RSCLMTRM 8,16 57012__
RSCLMTRM 32,64,128 57013__
RSLSETRM 0 SQLSTATE in SQLCARD__
SECCHKRM 0 Not returned__
SECCHKRM 8,16 42505__
SQLERRRM 8 SQLSTATE in SQLCARD__
SYNTAXRM 8 58008 or 58009__
TRGNSPRM 8 58008 or 58009__
VALNSPRM 8 58017__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

332 DRDA Volume 1

SQLSTATE Usage SQLSTATEs that DRDA References

8.2 SQLSTATEs that DRDA References
01515 This SQLSTATE reports a warning on a FETCH or SELECT into a host variable list or

structure that occurred because the host variable was not large enough to hold the
retrieved value. The FETCH or SELECT does not return the data for the indicated
SELECT item, the indicator variable is set to −2 to indicate the return of a NULL value,
and processing continues.

01519 This SQLSTATE reports an arithmetic exception warning that occurred during the
processing of an SQL arithmetic function or arithmetic expression that was in the
SELECT list of an SQL select statement, in the search condition of a SELECT or
UPDATE or DELETE statement, or in the SET clause of an UPDATE statement. For each
expression in error, the indicator variable is set to −2 to indicate the return of a NULL
value. The associated data variable remains unchanged, and processing continues.

01520 A string value cannot be assigned to a host variable because the value is not compatible
with the host variable.

This SQLSTATE reports a translation warning (no representation of the character in the
application requester CCSID) that may occur when translating a string value the
application server returned to the application requester. The string value cannot be
assigned to a host variable that has an indicator variable within a SELECT statement of
an application program. The value is incompatible with the host variable due to a
mismatch in data representation. The FETCH or SELECT does not return the data for
the indicated SELECT item, the indicator variable is set to −2 to indicate the return of a
NULL value, and processing continues.

01539 This SQLSTATE reports a character set restriction exception warning. The connection is
established, but only the single byte character set (SBCS) is supported. Any attempted
usage of the restricted CCSIDs results in an error.

01587 This SQLSTATE reports a pending response or a mixed outcome from at least one
participant during the two-phase process.

01615 Bind option ignored.

The bind operation continues. The first ignored option is reported in SQLERRMC.

02000 This SQLSTATE reports a No Data exception warning due to an SQL operation on an
empty table, zero rows identified in an SQL UPDATE or SQL DELETE statement, or the
cursor in an SQL FETCH statement was after the last row of the result table.

08001 The Application Requester is unable to establish the connection.

This SQLSTATE reports the failure of an attempt to make a DRDA connection. If the
associated SQLCODE is −30082, the failure was related to DRDA security protocols. In
that case, reason code 2 in the related message tokens specifies the detailed cause of the
failure.

08004 Server not found or server authorization failure

This SQLSTATE reports that a user attempted to access a relational database that
cannot be found or that a user is not authorized to access the relational database.

0A501 This SQLSTATE reports a failure to establish a connection to an application server. This
SQLSTATE should be used if the security mechanism specified by the application
server is not supported by the application requester.

22001 This SQLSTATE reports an error on a FETCH or SELECT into a host variable list or
structure that occurred because the host variable was not large enough to hold the

Part 1: Database Access Protocol 333

SQLSTATEs that DRDA References SQLSTATE Usage

retrieved value. The FETCH or SELECT statement is not executed. No data is returned.

22003, 22012, 22502, or 22504
This SQLSTATE reports an arithmetic exception error that occurred during the
processing of an SQL arithmetic function or arithmetic expression that was in the
SELECT list of an SQL select statement, in the search condition of a SELECT or
UPDATE or DELETE statement, or in the SET clause of an UPDATE statement. The
statement cannot be executed. In the case of an INSERT or UPDATE statement, no data
is updated or deleted.

22021 The value of a string host variable cannot be used as specified or a string value cannot
be assigned to a host variable because the value is not compatible with the host
variable.

This SQLSTATE reports a conversion error (no representation for a character in the
application server CCSID) that may occur when converting an application input string
variable to the application server’s representation. The value of the string host variable
is incompatible with its use due to a mismatch in data representation. The value
cannot be used as specified.

This SQLSTATE reports a conversion error (no representation of the character in the
application requester CCSID) that may occur when converting a string value the
application server returned to the application requester. The string value cannot be
assigned to a host variable that does not have an indicator variable within a SELECT
statement of an application program. The value is incompatible with the host variable
due to a mismatch in data representation. The FETCH or SELECT statement is not
executed. No data is returned. If the statement was a FETCH, then the cursor remains
open.

24501 Execution failed due to an invalid cursor state. The identified cursor is not open.

25000 Operation invalid for application execution environment.

This SQLSTATE reports the attempt to use SQL update operations to change data
within a relational database in a read-only application execution environment.

2D521 SQL COMMIT or ROLLBACK statements are invalid in the current environment.

This SQLSTATE reports the attempt to execute an SQL commit or rollback process in an
environment that does not allow SQL COMMIT or ROLLBACK statements.

2D528 Operation invalid for application execution environment.

This SQLSTATE reports the attempt to use EXCSQLIMM or EXCSQLSTT to execute a
COMMIT in a dynamic COMMIT restricted environment.

2D529 Operation invalid for application execution environment.

This SQLSTATE reports the attempt to use EXCSQLIMM or EXCSQLSTT to execute a
ROLLBACK in a dynamic ROLLBACK restricted environment.

40504 Unit of Work Rolled Back.

This SQLSTATE reports that the unit of work rolled back due to a system error. This
SQLSTATE is not used during commit processing.

42505 This SQLSTATE reports a failure to authenticate the end user during connection
processing to an application server.

42828 This SQLSTATE reports an attempt to DELETE WHERE CURRENT OF CURSOR or
UPDATE WHERE CURRENT OF CURSOR on a cursor that is fetching rows using a

334 DRDA Volume 1

SQLSTATE Usage SQLSTATEs that DRDA References

blocking protocol.

42932 Program preparation assumptions are incorrect.

This SQLSTATE reports that the program preparation assumptions in effect for a
BNDSQLSTT command are incorrect.

51021 Application must execute rollback.

SQL statements cannot be executed until the application process executes a rollback
operation.

56084 An unsupported SQLTYPE was encountered in a select-list or input-list.

This SQLSTATE reports that an SQL statement cannot be processed because of an
unsupported SQLTYPE. This error can occur when a sender detects an SQLTYPE that
cannot be sent to the receiver because the receiver is at an SQLAM level lower than the
minimum level at which the SQLTYPE is supported. The sender rejects the statement
with this SQLSTATE and the data is not sent. This error can also occur when a receiver
at a given SQLAM level detects an SQLTYPE that is supported at that SQLAM level,
but for which it does not provide support and for which there is no compatible
mapping according to Data Conversion rules (DC3 to DC5). The receiver rejects this
statement.

56095 Invalid bind option.

This SQLSTATE reports that one or more bind options were not valid at the server. The
bind operation terminates. The first bind option in error is reported in SQLERRMC.

56096 Conflicting bind options.

The bind operation terminates. The bind options in conflict are reported in
SQLERRMC.

57012 Execution failed due to unavailable resources that will not affect the successful
execution of subsequent commands or SQL statements.

This SQLSTATE reports insufficient target resources that are non-relational database
resources.

57013 Execution failed due to unavailable resources that will affect the successful execution of
subsequent commands or SQL statements.

This SQLSTATE reports insufficient target resources that are non-relational database
resources.

57014 This SQLSTATE reports the successful interrupt of a DRDA request.

57017 This SQLSTATE reports a lack of support for data conversion. Execution failed because
the CCSIDs required for data conversion are unsupported.

58008 Execution failed due to a distribution protocol error that will not affect the successful
execution of subsequent commands or SQL statements.

This SQLSTATE reports a DRDA protocol error that causes termination of processing
for a specific DRDA command or SQL statement.

Each of these errors is a programming error.

58009 Execution failed due to a distribution protocol error that caused deallocation of the
conversation.

Part 1: Database Access Protocol 335

SQLSTATEs that DRDA References SQLSTATE Usage

This SQLSTATE reports a DRDA protocol error that causes termination of processing
for a specific command or SQL statement. When an application requester returns this
SQLSTATE, the application requester must also deallocate the conversation on which
the application server reported the protocol error.

Each of these errors is a programming error.

58010 Execution failed due to a distribution protocol error that will affect the successful
execution of subsequent commands or SQL statements.

This SQLSTATE reports a DRDA protocol error that causes termination of processing
for a specific command or SQL statement and for any subsequent DRDA commands
and SQL statements that the application program issued.

A manager level not supported error may not be a programming error.

58011 Command invalid while bind process in progress.

This SQLSTATE reports an attempt to execute a specific DRDA DDM command that is
not valid while a Bind process is in progress. BNDSQLSTT, ENDBND, RDBCMM, and
RDBRLLBCK are the only legal commands while a Bind process is in progress.

58012 Bind process with specified package name and consistency token not active.

This SQLSTATE reports an attempt to execute a BNDSQLSTT or ENDBND for a bind
process that was not active.

58014 Command not supported error.

This SQLSTATE reports that the target does not support a particular command. The
error causes termination of processing of the command, but does not affect the
processing of subsequent DRDA commands and SQL statements that the application
program issued.

58015 Object not supported error.

This SQLSTATE reports that the target does not support a particular object. The error
causes termination of processing of the command, but does not affect the processing of
subsequent DRDA commands and SQL statements that the application program
issued.

58016 Parameter not supported error.

This SQLSTATE reports that the target does not support a particular parameter. The
error causes termination of processing of the command, but does not affect the
processing of subsequent DRDA commands and SQL statements that the application
program issued.

58017 Value not supported for parameter.

This SQLSTATE reports that the target does not support a particular parameter value.
The error causes termination of processing of the command, but does not affect the
processing of subsequent DRDA commands and SQL statements that the application
program issued.

58018 Reply message with not supported error.

This SQLSTATE reports the receipt of an RM with an RM code point that DRDA does
not recognize or with an svrcod value that DRDA does not recognize. The error does not
affect the processing of subsequent DRDA commands and SQL statements that the
application program issued.

336 DRDA Volume 1

SQLSTATE Usage SQLSTATEs that DRDA References

The cause of this error may be a mismatch in source and target manager levels or may
be a programming error.

58028 Unit of Work Rolled Back.

This SQLSTATE reports that the unit of work rolled back when it was requested to
commit. The rollback occurred as a result of a resource not capable of committing. This
SQLSTATE does not guarantee that all resources rolled back.

Part 1: Database Access Protocol 337

SQLSTATE Usage

338 DRDA Volume 1

Open Group Technical Standard

Part 2:

Environmental Support

The Open Group

Part 2: Environmental Support 339

340 DRDA Volume 1

Chapter 9

Environmental Support

Part 1, Database Access Protocol discusses the core of the architecture that makes it what it is, a
distributed relational database architecture. But this alone does not describe all that is needed to
provide a robust distributed relational database environment. This section describes the
characteristics of various components in a distributed environment that are necessary to provide
a robust environment that supports access to distributed relational databases. These
components are:

• Communications

• Security

• Accounting

• Transaction Processing

• Problem Determination

Part 3, Network Protocols discusses these components when implemented for specific network
protocols.

9.1 DDM Communications Model and Network Protocol Support
The key component of the DDM communications model is the DDM communications manager.
The DDM communications manager provides the following functions:

• Interfaces with local network facilities to receive and send DDM requests, replies, and data

• Routes received DDM requests and replies to the appropriate agent

• Accepts requests, replies, and data from an agent and packages them into the proper data
stream format for transmission

• Detects normal and abnormal termination of network connections and responds in an
appropriate fashion

For further detail, refer to the DDM term CMNMGR in the DDM Reference.

The purpose of the DDM communications model is to provide a conceptual framework for
viewing DRDA communications. DRDA, however, does not require that the communications
components of DRDA implementing products replicate the structure of the DDM
communications model. DRDA does require that the communications components of DRDA
implementing products implement DRDA request and response protocols.

DRDA does not require any particular network protocol, such as LU 6.2, TCP/IP, NetBIOS, for
flowing the DRDA protocol. DRDA does specify the network protocol must provide certain
characteristics that are required to provide robust support for a distributed relational database
environment. These characteristics are:

• Timely communication outage notification

• Guaranteed in order and complete delivery of network messages

• Propagation of information that allows both sides of the connection to identify the partner

Part 2: Environmental Support 341

DDM Communications Model and Network Protocol Support Environmental Support

The communication protocol might also provide additional functionality that could be used to
support the environment. Examples of this additional functionality are:

• Propagation of security and accounting information

• Propagation of synchronization point processing information

9.2 Accounting
DRDA requires the ability to acquire information useful for accounting. This information is
categorized as who, what, when, and where information. The who information is the end-user
name and it is provided through the network protocols or through DRDA mechanisms as
defined in identification and authentication processing. The what information is provided in
some of the network protocols or can be found in the DRDA-defined correlation token that is
passed on ACCRDB. The when information is provided by locally available clocks. The where
information is provided by mechanisms that extract the unique network identifier for the
participants in the network connection.

9.3 Transaction Processing
Transaction processing in DRDA is the process to commit or rollback a unit of work across one
or multiple application servers involved in the unit of work. DRDA works in cooperation with
the network protocols and synchronization point managers to provide this support. If a
network protocol does not support the two-phase commit process, then application servers that
are connected on those protocols have operational restrictions as defined by DRDA (see Section
4.4.12.2 on page 120).

342 DRDA Volume 1

Chapter 10

Security

DRDA requires the ability to identify and authenticate the end user associated with the DRDA
requests. Some network protocols such as LU 6.2, provide the ability to pass the information
necessary to identify and authenticate the end user. See Part 3, Network Protocols for a
description of this capability for the specific network protocols.

Not all network protocols provide this capability. For environments where this is the case,
DRDA defines DDM flows for passing security information (see Section 4.4.2 on page 61). DRDA
provides the ability for the application requester and application server to negotiate the security
mechanisms to use to provide the identification and authentication support. These mechanisms
are described in this chapter.

10.1 DCE Security Mechanisms with GSS-API
DRDA provides support for utilizing The Open Group’s DCE security mechanisms. This section
briefly describes the flows that perform identification and authentication through GSS-API with
DCE security. The description of GSS-API uses the Generic Security Services Application
Programming Interface (GSS-API). An implementation may choose another interface as long as
it is compatible with GSS-API.

Figure 10-1 provides a greatly simplified overview of the flows involved with calling GSS-API to
utilize DCE security mechanisms. The actual DCE processing to perform the identification and
authentication processing is described in the DCE documentation listed in Referenced
Documents on page xxiv. Following the figure is a description of the flows.

[1] [2]

[3]

[4] [5]

[6]

[7] [8]

Security Services
- Context Information
- Context Verification

Security Services
- Context Information
- Context Verification

Application
Requester

GSS-API

Application

Application
Server

Relational
Database

GSS-API

Figure 10-1 Using GSS-API to Call DCE-Based Security Flows in DRDA

1 The application makes a request that requires access to the application server. Acting
on behalf of the end user of the application, the application requester calls the security
services (gss_init_sec_context()) in order to obtain security context information for
accessing the application server. In this example, the application requester requests
mutual authentication by setting the gss_c_mutual_flag to true on the
gss_init_sec_context() call.

Part 2: Environmental Support 343

DCE Security Mechanisms with GSS-API Security

2 The security services return to the application requester, a major_status code of
GSS_S_CONTINUE_NEEDED and security context information to be passed to the
application server. The major_status code value indicates the security services
processing is not complete and the application requester will receive security context
information from the application server which will need to be passed to the security
services to continue processing.

3 The application requester passes the security context information to the application
server using a SECCHK command and a SECTKN object.

4 The application server calls the security services (gss_accept_security_context()) to
process the security context information.

5 The security services return to the application server, a major_status code of
GSS_S_COMPLETE and security context information to be returned to the application
requester. The major_status code value indicates the security services processing is
complete and authentication of the application requester is successful.

6 The application server passes the security context information to the application
requester using a SECCHKRM and a SECTKN object.

7 The application requester calls the security services (gss_init_security_context()) to
process the security context information.

8 The security services returns a major_status code value of GSS_S_COMPLETE
indicating the security services processing is complete and authentication of the
application server is successful.

344 DRDA Volume 1

Security Userid-Related Security Mechanisms

10.2 Userid-Related Security Mechanisms
DRDA provides the following userid-related security mechanisms:

• Userid and password

• Userid, password, and new password

• Userid-only

• Userid and password substitute

• Userid and encrypted password

The following sections provide overviews of these mechanisms.

10.2.1 Userid and Password Security Mechanism

[1]

[2] [3]

[4]

Security Services
- Context Information
- Context Verification

Application
Requester

Application

Application
Server

Relational
Database

Figure 10-2 Userid and Password Authentication Flows

The following description of the flows does not define the interface between the application
server and the security services. It is assumed that local services are available at the application
server to accept the userid and password and authenticate the userid based on this information.

1 The application makes a request that requires access to the application server. The
application requester acquires a password for the end user that is associated with the
application. The process to acquire the password is platform-specific. The application
requester passes the userid and password to the application server in the usrid and
password parameters on SECCHK.

2 The application server calls the security services to process the userid and password.

3 The security services returns an indication the end user is authenticated.

4 The application server returns a SECCHKRM to the application requester indicating
the authentication is successful.

Part 2: Environmental Support 345

Userid-Related Security Mechanisms Security

10.2.2 Userid, Password, and New Password Security Mechanism

[1]

[2] [3]

[4]

Security Services
- Context Information
- Context Verification

Application
Requester

Application

Application
Server

Relational
Database

Figure 10-3 Userid, Password, and New Password Authentication Flows

The following description of the flows does not define the interface between the application
server and the security services. It is assumed that local services are available at the application
server to accept the userid, password, and new password and to authenticate the userid and the
changing of the password based on this information.

1 The application makes a request that requires access to the application server. The
application requester acquires a password and new password for the end user that is
associated with the application. The process to acquire the passwords is platform-
specific. The application requester passes the userid, password, and new password to
the application server in the usrid, password, and newpassword parameters of SECCHK.

2 The application server calls the security services to process the userid and passwords.

3 The security services returns an indication that the end user is authenticated and that
the password has been replaced.

4 The application server returns a SECCHKRM to the application requester indicating
that the authentication and the changing of the password is successful.

346 DRDA Volume 1

Security Userid-Related Security Mechanisms

10.2.3 Userid-Only Security Mechanism

[1]

[2] [3]

[4]

Security Services
- Context Information
- Context Verification

Application
Requester

Application

Application
Server

Relational
Database

Figure 10-4 Userid and Password Authentication Flows

The following description of the flows does not define the interface between the application
server and the security services. It is assumed that local services are available at the application
server to accept the userid and password and authenticate the userid based on this information.

1 The application makes a request that requires access to the application server. A
password is not required between the application requester and application server, so
the application requester passes the userid to the application server in the usrid
parameter on SECCHK.

2 The application server calls the security services to process the userid.

3 The security services return an indication the end user is authenticated.

4 The application server returns a SECCHKRM to the application requester indicating
the authentication is successful.

Part 2: Environmental Support 347

Userid-Related Security Mechanisms Security

10.2.4 Userid and Password Substitute Security Mechanism

[1]

[5]

[6]

[2]

[3]

[4]

Application
Requester

Security Services Security Services

Application

Application
Server

Relational
Database

Figure 10-5 Userid and Password Substitute Authentication Flows

The following description of the flows does not define the interface between the application
server and the security services. It is assumed that local services are available at the application
requester and at the application server to perform the required functions described below:

1 The application makes a request that requires access to the application server. The
application requester sends an ACCSEC command with SECMEC value of
USRSBSPWD and SECTKN containing eight bytes of random data (application
requester’s) seed.

2 The application server saves the client’s seed and replies with ACCSECRD containing
the server’s seed in SECTKN which also consists of eight bytes of random data.

3 The application requester acquires a password for the end user that is associated with
the application. The process to acquire the password is platform-specific. The
application requester then creates a password substitute using the two seeds, the clear
text password, and the Data Encryption Standard (DES) algorithm, following the
procedure described in the PWDSBS term in the DDM Reference.

4 The application requester passes the userid and the password substitute to the
application server in the USRID and PASSWORD parameters on SECCHK.

5 The application server creates a password substitute of its own from its knowledge of
the seeds and the password to be validated. It compares the values it computes to that
which it received from the application requester. If they match, the user is validated.

6 The application server returns a SECCHKRM to the application indicating success or
failure based on the outcome of the authentication process.

348 DRDA Volume 1

Security Userid-Related Security Mechanisms

10.2.5 Userid and Encrypted Password Security Mechanism

[1]

[5]

[6]

[2]

[3]

[4]

Application
Requester

Security Services Security Services

Application

Application
Server

Relational
Database

Figure 10-6 Userid and Encrypted Password Authentication Flows

The following description of the flows does not define the interface between the application
server and the security services. It is assumed that local services are available at the application
requester and at the application server to perform the required functions described below.

1 The application makes a request that requires access to the application server. The
application requester sends an ACCSEC command with SECMEC value of
USRENCPWD and SECTKN containing the application requester’s connection key,
which is generated using the standard Diffie-Hellman key distribution algorithm to
generate a shared private key. See the PWDENC term in the DDM Reference.

2 The application server saves the client’s key and replies with ACCSECRD containing
the server’s connection key in SECTKN which also is generated using the Diffie-
Hellman algorithm.

3 The application requester acquires a password for the end user that is associated with
the application. The process to acquire the password is platform-specific. The
application requester then encrypts the password using the DES password, userid, and
generated Diffie-Hellman shared private key described in the DDM Reference.

4 The application requester passes the userid and the encrypted password to the
application server in the USRID and PASSWORD parameters on SECCHK.

5 The application server decrypts the encrypted password using the DES password,
userid, and generated Diffie-Hellman shared private key. It then asks the local security
subsystem to validate the userid/password combination.

6 The application server returns a SECCHKRM to the application indicating success or
failure based on the outcome of the authentication process.

Part 2: Environmental Support 349

Security

350 DRDA Volume 1

Chapter 11

Problem Determination

The DRDA environment involves remote access to relational database management systems.
Because the access is remote, enhancements to the local problem determination process were
needed. These enhancements use network management tools and techniques. DRDA-provided
enhancements are messages to focal points and a standard display for the correlation token
value. In DRDA, the correlator between focal point messages and locally generated diagnostic
information is the ACCRDB crrtkn parameter value.

In a remote unit of work environment, an application accesses only one database management
system at a time, so the requester can easily track the failing component when things go wrong.
The existing tools, which work for local applications, should be adequate for debugging most of
the problems. The DRDA tools and techniques discussed in this chapter enhance the process for
problem determination.

In distributed unit of work environment, an application accesses multiple database management
systems at the same time. An SQL statement can only operate on one database management
system at a time, and the application uses SQL connection management to indicate which
database management system is currently active. As in DRDA Level 1, a requester can
determine how to proceed when errors occur, so the current tools should be adequate.

For background information on this topic, see the references listed in Referenced Documents on
page xxiv.

11.1 Network Management Tools and Techniques
In addition to local tools, the DRDA environment should use the following tools or techniques
for problem determination and isolation. The use of these tools are recommended; however, use
of them is not mandatory.

11.1.1 Standard Focal Point Messages

A standard focal point message (that is, SNA alert) provides a generic format for reporting
problem-related information. This structure is flexible enough to report errors from all different
operating environments and is able to communicate with the network management program in
the environment where the error occurred.

11.1.2 Focal Point

A focal point is a consistent destination for all problem-related information. To operate in a
DRDA environment, a focal point can be beneficial because it provides a single point to view
problems. This point provides support personnel with all the information to solve a problem or
decide on the proper steps to get more information. A logical focal point would be a network
management program like Netview or Netview/PC. The focal point would need the ability to
talk with all other network management programs participating in the distributed environment.

Part 2: Environmental Support 351

Network Management Tools and Techniques Problem Determination

11.1.3 Correlation

Since a single problem might be related to work at multiple sites, a correlator value is needed to
tie the problem together as a single related problem. DRDA defines a correlation value for this.

The correlation value needs to be unique to avoid value collisions with other non-related units of
work. DRDA takes advantage of the inherent uniqueness of a network address and adds a time
stamp value to this string to provide uniqueness within that address.

The generic format of the correlation value exchanged when an application requester is
accessing an RDB is as follows:

Generic CRRTKN format:
x.yz where x is 1 to 8 bytes (variable), character

y is 1 to 8 bytes (variable), character
z is 6 bytes (fixed), binary

with a period (".") to delimit x from y, the total byte
count is a variable between 9 and 23.

The x.y positions represent the network address and the z position is used to create uniqueness,
of which a clock value might be used. In some cases, a unit of work identifier might fall into this
format, and is therefore a valid correlation value.

The specific values of each field are dependent on where the work started which might include a
non-DRDA environment. See Section 12.8.1 on page 414 and Section 13.6.1 on page 433 for the
specifics when the values are generated at an application requester in a particular network
environment.

It is also possible that a DRDA component will inherit a correlation value from some other
source. If that value conforms to the format defined by DRDA, then it is used as the correlation
value. Otherwise, the DRDA component must create a correlation value and provide a means to
map to the inherited value.

352 DRDA Volume 1

Problem Determination DRDA Required Problem Determination and Isolation Enhancements

11.2 DRDA Required Problem Determination and Isolation Enhancements
This section describes the DRDA requirements regarding correlation displays and collecting
diagnostic information.

11.2.1 Correlation Displays

Because the correlation value is used to correlate information across multiple sites, it is
important that a standard display of the correlation value is defined. The following are the rules
for displaying a correlation value:

1. The generic display of the correlation value is as follows:

Displaying a CRRTKN value:
x.y.z where x is 1 to 8 bytes (variable), character

y is 1 to 8 bytes (variable), character
z is 12 bytes (fixed), character

with periods (".") to delimit between x, y, and z
total byte count is variable between 16 and 30.

SNA example: NET.LU.123456789ABC
TCP/IP example: 09155467.9704.01234567689AB

11.2.2 DRDA Diagnostic Information Collection and Correlation

There is the need to:

• Collect supporting data for an error condition

• Correlate between focal point messages and supporting data

11.2.2.1 Data Collection

When an error condition occurs at an application requester or application server, data should be
gathered at that location. The data collection process should use the current tools available for
the local environment. An application requester and application server should collect diagnostic
information when it receives a reply message (RM) or generates an RM listed in Table 11-1 on
page 356. The application requester should gather diagnostic information when the network
connection is unexpectedly dropped such as an LU 6.2 DEALLOCATE with a type of ABEND in
an SNA environment.

11.2.2.2 Correlation Between Focal Point Messages and Supporting Data

Correlation between focal point messages and supporting data at each location, as well as cross
location, is done through correlation tokens. In DRDA, the correlation token is the ACCRDB
crrtkn parameter value. The crrtkn value can be inherited at the application requester from the
operating environment. If the inherited value matches the format of the DRDA-defined
correlation token, then it is sent at ACCRDB in the crrtkn parameter. If the application requester
does not inherit a correlation value, or the value does not match the format of a DRDA-defined
correlation token, then the application requester must generate a DRDA-defined correlation
token. The correlation value is required in focal point messages and supporting diagnostic
information.

Part 2: Environmental Support 353

Generic Focal Point Messages and Message Models Problem Determination

11.3 Generic Focal Point Messages and Message Models
This section discusses focal point messages in support of the environments in which DRDA
might be installed. There are several architectures that support focal point messages. Two of
these architectures are SNA Management Services Generic Alerts and Simple Network
Management Protocol (SNMP). Although these architectures are pervasive in the network
environment they were developed for (Alerts for SNA, SNMP for TCP/IP), they are not
restricted to those network environments. For example, SNA alerts might be used in a TCP/IP
network, hence alert models defined in DRDA are usable in multiple network environments.

The following message models assume the use of SNA alerts in the environment.

11.3.1 When to Generate Alerts

It is recommended that alerts be generated when the following conditions exist. Some of these
conditions have alert models defined for them. See Section 11.3.3 on page 355 for an example of
condition to alert model mappings.

• DRDA alerts must be generated whenever something happens that changes the availability
of database management system resources, or threatens to.

• Alerts must be generated for serious errors where intervention by an operator (rather than a
correction by a user) is required to correct the situation.

• Programming and protocols errors should be alerted.

• Alerts generated when supporting data about an error condition is collected. The alert will
point to this data.

• Security subversion attempts such as the identified reuse of the security context information
received in a SECTKN object.

11.3.2 Alerts and Alert Structure

The following sections describe the required alerts for conditions encountered at the application
server and application requester. The alerts for DRDA use the Generic Alert Architecture as a
model for the alert structure. The following figures define the subvectors, subfields, and code
points required.

The references listed in Referenced Documents on page xxiv should be used to gain a more
complete understanding of the architecture of generic alerts.

11.3.2.1 Alert Implementation Basics

The SNA Management Services: Alert Implementation Guide (SC31-6809, IBM) is a good starting
point for understanding the architecture of generic alerts. By categorizing the subvectors and
subfields using who, what, where, when, and why, an architect or implementer can be sure to
cover the needed information. Alerts should be recorded in a place available for support or
operations personnel to see and take action on. Figure 11-1 on page 355 categorizes the
subvectors, subfields, and code points used for DRDA.

354 DRDA Volume 1

Problem Determination Generic Focal Point Messages and Message Models

WHO___

Subvector Subfield Description___
X’10’ Product Set Identifier
X’11’ Product Identifier

X’08’ Product Number
X’04’ Version, Release, Modification
X’06’ Product Common Name___L

L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

WHAT___

Subvector Subfield Description___
X’92’ Generic Alert Data___LL

L
L
L

L
L
L

L
L
L

LL
L
L
L

WHERE___

Subvector Subfield Description___
X’05’ Hierarchy/Resource List

X’10’ Hierarchy Name List
X’11’ Associated Resource List___LL

L
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L
L

WHEN___

Subvector Subfield Description___
X’01’ Date/Time

X’10’ Local Date/Time___LL
L
L
L
L

LL
L
L
L

LL
L
L
L

LL
L
L
L
L

WHY___

Subvector Subfield Description___
X’93’ Probable Causes___
X’96’ Failure Causes

X’01’ Failure Causes
X’81’ Recommended Actions
X’85’ Detailed Data___

X’48’ Supporting Data Correlation
X’85’ Detailed Data (Supporting data ptr)___L

L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L

Figure 11-1 Summary of Required Subvectors and Subfields

11.3.3 Error Condition to Alert Model Mapping

The following sections define the specific error condition to alert model mapping. The tables do
not define all possible error conditions. When an error condition requires an alert, but an alert
model is not defined, an appropriate alert should be generated from the alert models defined
here.

11.3.3.1 Specific Alert to DDM Reply Message Mapping

Table 11-1 on page 356 defines the alert constructs to DDM reply messages (RM). The numbers
following the RM in column one are the severity codes (svrcods) of the RMs. The column labeled
where is the location in which the alert is to be generated. For each DDM RM created at the
application server, the specified alert must be generated at the application server. For each DDM
RM received at the application requester, the specified alert is generated at the application
requester.

Part 2: Environmental Support 355

Generic Focal Point Messages and Message Models Problem Determination

See the DDM Reference for a list of DDM reply messages and their accompanying severity
codes.

Table 11-1 Alerts Required for DDM Reply Messages
__

DDM RM Where Alert Model Additional InformationLL LL LL LL LL__
AGNPRMRM AGNPRM (see Table

11-3 on page 358)
See alert model and the DDM Reference
for information on DDM reply message
AGNPRMRM.

AR/AS

__
CMDCHKRM
8,16,32,64,128

CMDCHK (see Table
11-6 on page 364)

See alert model and the DDM Reference
for information on DDM reply message
CMDCHKRM.

AR/AS

__
CMDVLT (see Table 11-
7 on page 365)

See alert model and the DDM Reference
for information on DDM reply message
CMDVLTRM.

CMDVLTRM 8 AR/AS

__
DSCERR (see Table 11-8
on page 366)

See alert model and the DDM Reference
for information on DDM reply message
DSCINVRM.

DSCINVRM 8 AR/AS

__
DSCERR (see Table 11-8
on page 366)

See alert model and the DDM Reference
for information on DDM reply message
DTAMCHRM.

DTAMCHRM 8 AR/AS

__
PRCCNVRM
8,16,128

PRCCNV (see Table 11-
10 on page 368)

See alert model and the DDM Reference
for information on DDM reply message
PRCCNVRM.

AR/AS

__
QRYERR (see Table 11-
11 on page 369)

See alert model and the DDM Reference
for information on DDM reply message
QRYNOPRM.

QRYNOPRM 8 AR/AS

__
QRYERR (see Table 11-
11 on page 369)

See alert model and the DDM Reference
for information on DDM reply message
QRYPOPRM.

QRYPOPRM 8 AR/AS

__
RDBERR (see Table 11-
12 on page 370)

See alert model and the DDM Reference
for information on DDM reply message
RDBNACRM.

RDBNACRM 8 AR/AS

__
RDBERR (see Table 11-
12 on page 370)

See alert model and the DDM Reference
for information on DDM reply message
RDBACCRM.

RDBACCRM 8 AR/AS

__
RSCLMTRM
16,32,64,128

RSCLMT (see Table 11-
13 on page 371)

See alert model and the DDM Reference
for information on DDM reply message
RSCLMTRM.

AS

__
RSCLMT (see Table 11-
13 on page 371)

Alert Type in subvector X‘92’ defined as
X‘12’ for unknown. See alert model and
the DDM Reference for information on
DDM reply message RSCLMTRM.

RSCLMTRM 8 AS

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

356 DRDA Volume 1

Problem Determination Generic Focal Point Messages and Message Models

__
DDM RM Where Alert Model Additional InformationLL LL LL LL LL__

SECVIOL (see Table 11-
14 on page 373)

See alert model and the DDM Reference
for information on DDM reply message
SECCHKRM.

SECCHKRM 16 AR/AS

__
SYNTAX (see Table 11-
15 on page 374)

See alert model and the DDM Reference
for information on DDM reply message
SYNTAXRM.

SYNTAXRM 8 AR/AS

__LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

11.3.3.2 Additional Alerts at the Application Requester

Any blocking or chaining violations on data received at the application requester from the
application server should be alerted. Any Data Stream Structure (DSS) errors on data received at
the application requester from the application server should be alerted. A DEALLOCATE with a
type ABEND (abnormal end) without an accompanied RM, should be alerted. Resource limits
reached at the application requester should also be alerted. Table 11-2 defines the alert models to
be used for these conditions.

Table 11-2 Additional Alerts Required at Application Requester

Condition Alert Model Additional InformationLL LL LL LL___
RSCLMT (see Table 11-
13 on page 371)

Alert Type in subvector X‘92’
defined as X‘12’ for unknown.
See alert model and the DDM
Reference for information on
DDM reply message
RSCLMTRM.

Resource Limits Reached

BLKERR (see Table 11-4
on page 362)

See blocking rules, Section
7.19.1.1 on page 310.

Blocking Protocol Error

CHNVIO (see Table 11-
5 on page 363)

See chaining rules, Section
7.19.1.3 on page 314.

Chaining Violation

DEALLOCATE type
ABEND received from the
application server
without an accompanying
DDM reply message from
the application server

GENERR (see Table 11-
9 on page 367)

See SNA Transaction
Programmer’s Reference Manual
for LU Type 6.2 (GC30-3084,
IBM) for more information on
DEALLOCATE ABEND.

DSS error: Error in the
Data Stream Structure
received from the
application server

SYNTAX (see Table 11-
15 on page 374)

See the DDM Reference for
more information on Data
Stream Structures.

___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

11.3.3.3 DRDA-Defined Alert Models

The next series of tables are models of alert categories DRDA uses. Table 11-1 on page 356 and
Table 11-2 refer to these tables. The tables map alertable conditions to the model, and indicate
further enhancements to the model, if necessary. Following Table 11-3 on page 358 is a
description of the subvectors, subfields, and code points. Because the majority of the subvectors,
subfields, and code points are common, the subsequent tables reference Table 11-3 on page 358
and add additional information if needed.

Part 2: Environmental Support 357

Generic Focal Point Messages and Message Models Problem Determination

Alert Model AGNPRM

This alert model is for permanent agent error conditions.

Table 11-3 Alert Model AGNPRM
__

Alert ID Number X‘2E0AA333’__
Alert Type X‘01’ Permanent__
Alert Description X‘2102’ Distributed Process Failed__
Probable Causes X‘1050’ Agent Program__
User Causes (none)__
Install Causes (none)__
Failure Causes X‘1050’ X‘F0A3’ Agent Error Failure Occurred On (sf85)__

Report The Following Logical Unit
Of Work Identifier (sf85)(sf85)(sf85)

Actions X‘32D1’

__
Perform Problem Determination
Procedure For (sf85)

X‘00B0’

__
Perform (sf83) Problem
Determination Procedures

X‘00E1’

__
X‘0500’ Run Appropriate Trace__
X‘2203’ Review Supporting Data At Alert Sender__
X‘30E1’ Contact Service Representative For (sf83)__
X‘32D0’ Report The Following (sf85)(sf85)(sf85)__
X‘32A0’ Report The Following (sf85)__

... ...__
Additional SVs X‘10’ SV Product Set Identifier__

X‘11’ SV Product Identifier__
X‘08’ SF Product Number__
X‘04’ SF Version, Release, Modification__
X‘06’ SF Product Common Name__
X‘05’ SV Hierarchy/Resource List__
X‘10’ SF Hierarchy Name List__
X‘11’ SF Associated Resource List__
X‘01’ SV Date/Time__
X‘10’ SF Local Date/Time__
X‘48’ SV Supporting Data Correlation__
X‘85’ SF Detailed Data (Supporting data ptr)__
X‘47’ SV MSU Correlation__
X‘20’ SF CRRTKN (LUWID or UOWID format)__

... ...__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

358 DRDA Volume 1

Problem Determination Generic Focal Point Messages and Message Models

The following descriptions of the fields in the above alert are only a summary. For a more
complete description, see the Referenced Documents on page xxiv.

Alert ID Number

The Alert Identification Number is a field in subvector X‘92’.

Alert Type

The Alert Type is a field in subvector X‘92’. X‘01’ in this model defines a permanent loss of
availability of the resource.

Alert Description

The Alert Description is a field in subvector X‘92’. It is a code point to define what has failed.

Probable Causes

The Probable Causes subvector is X‘93’. This subvector isolates the problem to a particular
component or process.

User Causes and Install Causes

DRDA does not require the User Causes and Install Causes subvectors.

Failure Causes

The Failure Causes subfield is X‘01’. This subfield is used with the Failure Causes subvector
X‘96’. This subvector and subfield relate the occurrences that might have happened to the
process or component listed in the Probable Causes subvector. The subfield X‘85’ in the Failure
Causes code point X‘F0A3’ should contain the following data beginning at byte 7. The subfield
X‘85’ uses the data ID code point X‘0087’ for relational database. The detailed data field contains
the actual RDB_NAME of the target relational database.

sf85

7

rdbname

Figure 11-2 Subfield X‘85’ for Failure Causes Code Point X‘F0A3’

Actions

The Recommended Actions subfield is X‘81’. This subfield is used in conjunction with subvector
X‘96’. This subfield defines the recommended actions for this error condition. A list of code
points define the recommended actions. The implementing products should choose the code
points that best fit their environment. Those code points should be listed in the order of priorities
with the most important coming first followed by the next most important.

Action code point X‘32D0’ should be used to report symptom string information if it is available.

DRDA requires code point X‘32D1’. This code point displays the SNA LUWID or DDM UOWID.
For DRDA Level 1 connections, the LUWID value is used for correlating the supporting data.
The format for the LUWID or UOWID should follow the format defined for the long form of the
display as defined in Section 12.8.1.2 on page 414. The three subfield X‘85’s in this code point
should be sent in the following order with the following data. The data ID code point X‘0000’

Part 2: Environmental Support 359

Generic Focal Point Messages and Message Models Problem Determination

should be used for all three subfield X‘85’s. In Figure 11-3 the first subfield X‘85’ contains the
NETID.LUNAME or IPADDR.PORT portion of the LUWID or UOWID followed by a period.
The second subfield X‘85’ contains the instance number, followed by a period and sequence
number. The third subfield X‘85’ is blank and needs to be coded as a blank.

sf85

7

netid.luname.

sf85

7

sf85

7

|instance.sequence

Figure 11-3 Subfield X‘85’s for Actions Code Point X‘32D1’

DRDA Level 2 requires code point X‘32A0’ if the crrtkn is available. This code point displays the
crrtkn value, which is the format of an unprotected LUWID, and is used for correlating
supporting data. The subfield X‘85’ contains the correlation value with the data ID code point of
X‘0101’ for correlation ID. Figure 11-4 displays the subfield X‘85’ that is associated with this
code point.

sf85

7

netid.luname.instance

Figure 11-4 Subfield X‘85’ for Actions Code Point X‘32A0’

Additional SV

The following subvectors and subfields are additional subvectors and subfields required in the
alert. They provide miscellaneous information to enhance the alert.

• Subvectors X‘10’ and X‘11’

These subvectors and the accompanying subfields define the resource that is in error. There
might be two subvector X‘10’s in an alert. The first one is for the alert sender. The second one
is for the resource that is experiencing the problem. If the resource experiencing the problem
is the same as the resource sending the alert, then only one subvector X‘10’ is present.

• Subvector X‘05’

This subvector and accompanying subfields are used to provide a map of the unit of work.
There should be two resource names defined in subfield X‘10’. These resource names are:

360 DRDA Volume 1

Problem Determination Generic Focal Point Messages and Message Models

1. AR to represent the application requester. The code point for resource type identifier
should be X‘42’ for requester.

2. AS to represent application server. The code point for resource type identifier should be
X‘43’ for server.

Following subfield X‘10’ is subfield X‘11’. This subfield is a list of associated resources for the
application requester and application server. These resources should be defined by preceding
the actual resource with an application requester or application server. For example, the
relational database related to an application server would be defined as AS rdbname, the user
ID related to the application requester on VM would be AR vmid.

Do not use subvector X‘04’ (SNA Address List) in the alerts. The use of subvector X‘05’
(Hierarchy Resource List) in conjunction with subfield X‘11’ (Associated Resource List)
allows the display of the logical components for the failing unit of work.

• Subvector X‘01’

This subvector and its accompanying subfield provide a date and time for the alert. The
optional extension of time field should be used for two bytes, which allows a 1/65535
fraction of a second.

• Subvector X‘48’

This subvector and its accompanying subfield is used as a pointer to supporting data for this
error. An example would be a trace data set or dump data set.

• Subvector X‘47’

This subvector and its accompanying subfield are used as an internal focal point token for
automatically correlating all alerts with the same token value. When requested, Netview
internally searches the Netview database to display all alerts with the same token value.

The value of subfield X‘20’ is in binary, and it should contain the crrtkn parameter followed
by two bytes of binary zeros. The subfield contains netid.luname.abcdef00 where abcdef is a 6-
byte binary number and 00 are two bytes of binary zeros.

This subvector and subfield are required in DRDA Level 2 if the crrtkn is available.

Part 2: Environmental Support 361

Generic Focal Point Messages and Message Models Problem Determination

Alert Model BLKERR

This alert model is for blocking protocol error conditions discovered at the application requester.
See the description for Table 11-3 on page 358 for a description of the subvectors, subfields, and
code points.

Table 11-4 Alert Model BLKERR

Alert ID Number X‘9A22708B’___
Alert Type X‘01’ Permanent___
Alert Description X‘2102’ Distributed Process Failed___
Probable Causes X‘1054’ Invalid Data Structure___
User Causes (none)___
Install Causes (none)___

X‘1054’
X‘1057’
X‘F0A3’

Invalid Data Structure Error
Blocking Protocol Error Failure Occurred On (sf85)

Failure Causes

Report The Following Logical Unit
Of Work Identifier (sf85)(sf85)(sf85)

Actions X‘32D1’

Perform Problem Determination
Procedure For (sf85)

X‘00B0’

__
Perform (sf83) Problem
Determination Procedures

X‘00E1’

__
X‘0500’ Run Appropriate Trace__
X‘2203’ Review Supporting Data At Alert Sender__
X‘30E1’ Contact Service Representative For (sf83)__
X‘32D0’ Report The Following (sf85)(sf85)(sf85)__
X‘32A0’ Report The Following (sf85)__

... ...___
Additional SVs X‘10’ SV Product Set Identifier___

X‘11’ SV Product Identifier__
X‘08’ SF Product Number__
X‘04’ SF Version, Release, Modification__
X‘06’ SF Product Common Name__
X‘05’ SV Hierarchy/Resource List__
X‘10’ SF Hierarchy Name List__
X‘11’ SF Associated Resource List__
X‘01’ SV Date/Time__
X‘10’ SF Local Date/Time__
X‘48’ SV Supporting Data Correlation__
X‘85’ SF Detailed Data (Supporting data ptr)__
X‘47’ SV MSU Correlation__
X‘20’ SF CRRTKN (LUWID or UOWID format)__

... ...___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

362 DRDA Volume 1

Problem Determination Generic Focal Point Messages and Message Models

Alert Model CHNVIO

This alert model is for Chaining Violation Error conditions discovered at the application
requester. See the description for Table 11-3 on page 358 for a description of the subvectors,
subfields, and code points.

Table 11-5 Alert Model CHNVIO
__

Alert ID Number X‘91EC5326’__
Alert Type X‘01’ Permanent__
Alert Description X‘2102’ Distributed Process Failed__
Probable Causes X‘1054’ Invalid Data Structure__
User Causes (none)__
Install Causes (none)__

X‘1054’
X‘1058’
X‘F0A3’

Invalid Data Structure Error
Chaining Protocol Error Failure Occurred On (sf85)

Failure Causes

__
Report The Following Logical Unit
Of Work Identifier (sf85)(sf85)(sf85)

Actions X‘32D1’

__
Perform Problem Determination
Procedure For (sf85)

X‘00B0’

__
Perform (sf83) Problem
Determination Procedures

X‘00E1’

__
X‘0500’ Run Appropriate Trace__
X‘2203’ Review Supporting Data At Alert Sender__
X‘30E1’ Contact Service Representative For (sf83)__
X‘32D0’ Report The Following (sf85)(sf85)(sf85)__
X‘32A0’ Report The Following (sf85)__

... ...__
Additional SVs X‘10’ SV Product Set Identifier__

X‘11’ SV Product Identifier__
X‘08’ SF Product Number__
X‘04’ SF Version, Release, Modification__
X‘06’ SF Product Common Name__
X‘05’ SV Hierarchy/Resource List__
X‘10’ SF Hierarchy Name List__
X‘11’ SF Associated Resource List__
X‘01’ SV Date/Time__
X‘10’ SF Local Date/Time__
X‘48’ SV Supporting Data Correlation__
X‘85’ SF Detailed Data (Supporting data ptr)__
X‘47’ SV MSU Correlation__
X‘20’ SF CRRTKN (LUWID or UOWID format)__

... ...__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Part 2: Environmental Support 363

Generic Focal Point Messages and Message Models Problem Determination

Alert Model CMDCHK

This alert model is for Command Check conditions. See the description for Table 11-3 on page
358 for a description of the subvectors, subfields, and code points.

Table 11-6 Alert Model CMDCHK

Alert ID Number X‘D67E885A’___
Alert Type X‘01’ Permanent___
Alert Description X‘2102’ Distributed Process Failed___
Probable Causes X‘1051’ Command Not Recognized___
User Causes (none)___
Install Causes (none)___

X‘1051’
X‘F0A3’

Command Not Recognized Failure
Occurred On (sf85)

Failure Causes

Report The Following Logical Unit
Of Work Identifier (sf85)(sf85)(sf85)

Actions X‘32D1’

Perform Problem Determination
Procedure For (sf85)

X‘00B0’

Perform (sf83) Problem
Determination Procedures

X‘00E1’

X‘0500’ Run Appropriate Trace___
X‘2203’ Review Supporting Data At Alert Sender___
X‘30E1’ Contact Service Representative For (sf83)___
X‘32D0’ Report The Following (sf85)(sf85)(sf85)___
X‘32A0’ Report The Following (sf85)___

... ...___
Additional SVs X‘10’ SV Product Set Identifier___

X‘11’ SV Product Identifier___
X‘08’ SF Product Number___
X‘04’ SF Version, Release, Modification___
X‘06’ SF Product Common Name___
X‘05’ SV Hierarchy/Resource List___
X‘10’ SF Hierarchy Name List___
X‘11’ SF Associated Resource List___
X‘01’ SV Date/Time___
X‘10’ SF Local Date/Time___
X‘48’ SV Supporting Data Correlation___
X‘85’ SF Detailed Data (Supporting data ptr)___
X‘47’ SV MSU Correlation___
X‘20’ SF CRRTKN (LUWID or UOWID format)___

... ...___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

364 DRDA Volume 1

Problem Determination Generic Focal Point Messages and Message Models

Alert Model CMDVLT

This alert model is for Command Violation conditions. This alert does not require support in
DRDA Level 1. See the description for Table 11-3 on page 358 for a description of the subvectors,
subfields, and code points.

Table 11-7 Alert Model CMDVLT
__

Alert ID Number X‘4821F0B5’__
Alert Type X‘01’ Permanent__
Alert Description X‘2102’ Distributed Process Failed__
Probable Causes X‘1052’ Conversation Protocol__
User Causes (none)__
Install Causes (none)__

X‘109F’ X‘F0A3’ Command Violation Failure
Occurred On (sf85)

Failure Causes

__
Report The Following Logical Unit
Of Work Identifier (sf85)(sf85)(sf85)

Actions X‘32D1’

__
Perform Problem Determination
Procedure For (sf85)

X‘00B0’

__
Perform (sf83) Problem
Determination Procedures

X‘00E1’

__
X‘0500’ Run Appropriate Trace__
X‘2203’ Review Supporting Data At Alert Sender__
X‘30E1’ Contact Service Representative For (sf83)__
X‘32D0’ Report The Following (sf85)(sf85)(sf85)__
X‘32A0’ Report The Following (sf85)__

... ...__
Additional SVs X‘10’ SV Product Set Identifier__

X‘11’ SV Product Identifier__
X‘08’ SF Product Number__
X‘04’ SF Version, Release, Modification__
X‘06’ SF Product Common Name__
X‘05’ SV Hierarchy/Resource List__
X‘10’ SF Hierarchy Name List__
X‘11’ SF Associated Resource List__
X‘01’ SV Date/Time__
X‘10’ SF Local Date/Time__
X‘48’ SV Supporting Data Correlation__
X‘85’ SF Detailed Data (Supporting data ptr)__
X‘47’ SV MSU Correlation__
X‘20’ SF CRRTKN (LUWID or UOWID format)__

... ...__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Part 2: Environmental Support 365

Generic Focal Point Messages and Message Models Problem Determination

Alert Model DSCERR

This alert model is for the data descriptor error conditions. See the description for Table 11-3 on
page 358for a description of the subvectors, subfields, and code points.

Table 11-8 Alert Model DSCERR
__

Alert ID Number X‘2257C33F’__
Alert Type X‘01’ Permanent__
Alert Description X‘2102’ Distributed Process Failed__
Probable Causes X‘1053’ Data Descriptor__
User Causes (none)__
Install Causes (none)__

X‘1053’ X‘F0A3’ Data Descriptor Error Failure
Occurred On (sf85)

Failure Causes

__
Report The Following Logical Unit
Of Work Identifier
(sf85)(sf85)(sf85)

Actions X‘32D1’

__
Perform Problem Determination
Procedure For (sf85)

X‘00B0’

__
Perform (sf83) Problem
Determination Procedures

X‘00E1’

__
X‘0500’ Run Appropriate Trace__
X‘2203’ Review Supporting Data At Alert Sender__
X‘30E1’ Contact Service Representative For (sf83)__
X‘32D0’ Report The Following (sf85)(sf85)(sf85)__
X‘32A0’ Report The Following (sf85)__

... ...__
Additional SVs X‘10’ SV Product Set Identifier__

X‘11’ SV Product Identifier__
X‘08’ SF Product Number__
X‘04’ SF Version, Release, Modification__
X‘06’ SF Product Common Name__
X‘05’ SV Hierarchy/Resource List__
X‘10’ SF Hierarchy Name List__
X‘11’ SF Associated Resource List__
X‘01’ SV Date/Time__
X‘10’ SF Local Date/Time__
X‘48’ SV Supporting Data Correlation__
X‘85’ SF Detailed Data (Supporting data ptr)__
X‘47’ SV MSU Correlation__
X‘20’ SF CRRTKN (LUWID or UOWID format)__

... ...__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

366 DRDA Volume 1

Problem Determination Generic Focal Point Messages and Message Models

Alert Model GENERR

This alert model is for error conditions that need an alert, but do not have a more specific alert
model to choose from. See the description for Table 11-3 on page 358 for a description of the
subvectors, subfields, and code points.

Table 11-9 Alert Model GENERR
__

Alert ID Number X‘46E34E31’__
Alert Type X‘12’ Unknown__
Alert Description X‘2102’ Distributed Process Failed__
Probable Causes X‘1000’ Software Program:__
User Causes (none)__
Install Causes (none)__

X‘10E1’ X‘F0A3’ Software Program (sf83) Failure
Occurred On (sf85)

Failure Causes

__
Report The Following Logical Unit
Of Work Identifier
(sf85)(sf85)(sf85)

Actions X‘32D1’

__
Perform Problem Determination
Procedure For (sf85)

X‘00B0’

__
Perform (sf83) Problem
Determination Procedures

X‘00E1’

__
X‘0500’ Run Appropriate Trace__
X‘2203’ Review Supporting Data At Alert Sender__
X‘30E1’ Contact Service Representative For (sf83)__
X‘32D0’ Report The Following (sf85)(sf85)(sf85)__
X‘32A0’ Report The Following (sf85)__

... ...__
Additional SVs X‘10’ SV Product Set Identifier__

X‘11’ SV Product Identifier__
X‘08’ SF Product Number__
X‘04’ SF Version, Release, Modification__
X‘06’ SF Product Common Name__
X‘05’ SV Hierarchy/Resource List__
X‘10’ SF Hierarchy Name List__
X‘11’ SF Associated Resource List__
X‘01’ SV Date/Time__
X‘10’ SF Local Date/Time__
X‘48’ SV Supporting Data Correlation__
X‘85’ SF Detailed Data (Supporting data ptr)__
X‘47’ SV MSU Correlation__
X‘20’ SF CRRTKN (LUWID or UOWID format)__

... ...__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Part 2: Environmental Support 367

Generic Focal Point Messages and Message Models Problem Determination

Alert Model PRCCNV

This alert model is for the Conversation Protocol Error condition. See the description for Table
11-3 on page 358 for a description of the subvectors, subfields, and code points.

Table 11-10 Alert Model PRCCNV
__

Alert ID Number X‘DA23E856’__
Alert Type X‘01’ Permanent__
Alert Description X‘2102’ Distributed Process Failed__
Probable Causes X‘1052’ Conversation Protocol__
User Causes (none)__
Install Causes (none)__

X‘1052’ X‘F0A3’ Conversation Protocol Error
Failure Occurred On (sf85)

Failure Causes

__
Report The Following Logical Unit
Of Work Identifier
(sf85)(sf85)(sf85)

Actions X‘32D1’

__
Perform Problem Determination
Procedure For (sf85)

X‘00B0’

__
Perform (sf83) Problem
Determination Procedures

X‘00E1’

__
X‘0500’ Run Appropriate Trace__
X‘2203’ Review Supporting Data At Alert Sender__
X‘30E1’ Contact Service Representative For (sf83)__
X‘32D0’ Report The Following (sf85)(sf85)(sf85)__
X‘32A0’ Report The Following (sf85)__

... ...__
Additional SVs X‘10’ SV Product Set Identifier__

X‘11’ SV Product Identifier__
X‘08’ SF Product Number__
X‘04’ SF Version, Release, Modification__
X‘06’ SF Product Common Name__
X‘05’ SV Hierarchy/Resource List__
X‘10’ SF Hierarchy Name List__
X‘11’ SF Associated Resource List__
X‘01’ SV Date/Time__
X‘10’ SF Local Date/Time__
X‘48’ SV Supporting Data Correlation__
X‘85’ SF Detailed Data (Supporting data ptr)__
X‘47’ SV MSU Correlation__
X‘20’ SF CRRTKN (LUWID or UOWID format)__

... ...__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

368 DRDA Volume 1

Problem Determination Generic Focal Point Messages and Message Models

Alert Model QRYERR

This alert model is for Cursor Error conditions. See the description for Table 11-3 on page 358for
a description of the subvectors, subfields, and code points.

Table 11-11 Alert Model QRYERR
__

Alert ID Number X‘3AED0327’__
Alert Type X‘01’ Permanent__
Alert Description X‘2102’ Distributed Process Failed__
Probable Causes X‘1055’ Invalid Cursor State__
User Causes (none)__
Install Causes (none)__

X‘1055’ X‘F0A3’ Invalid Cursor State Failure
Occurred On (sf85)

Failure Causes

__
Report The Following Logical Unit
Of Work Identifier (sf85)(sf85)(sf85)

Actions X‘32D1’

__
Perform Problem Determination
Procedure For (sf85)

X‘00B0’

__
Perform (sf83) Problem
Determination Procedures

X‘00E1’

__
X‘0500’ Run Appropriate Trace__
X‘2203’ Review Supporting Data At Alert Sender__
X‘30E1’ Contact Service Representative For (sf83)__
X‘32D0’ Report The Following (sf85)(sf85)(sf85)__
X‘32A0’ Report The Following (sf85)__

... ...__
Additional SVs X‘10’ SV Product Set Identifier__

X‘11’ SV Product Identifier__
X‘08’ SF Product Number__
X‘04’ SF Version, Release, Modification__
X‘06’ SF Product Common Name__
X‘05’ SV Hierarchy/Resource List__
X‘10’ SF Hierarchy Name List__
X‘11’ SF Associated Resource List__
X‘01’ SV Date/Time__
X‘10’ SF Local Date/Time__
X‘48’ SV Supporting Data Correlation__
X‘85’ SF Detailed Data (Supporting data ptr)__
X‘47’ SV MSU Correlation__
X‘20’ SF CRRTKN (LUWID or UOWID format)__

... ...__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Part 2: Environmental Support 369

Generic Focal Point Messages and Message Models Problem Determination

Alert Model RDBERR

This alert model is for Relational Database access errors. See the description for Table 11-3 on
page 358for a description of the subvectors, subfields, and code points.

Table 11-12 Alert Model RDBERR
__

Alert ID Number X‘36B0632B’__
Alert Type X‘01’ Permanent__
Alert Description X‘2102’ Distributed Process Failed__
Probable Causes X‘1056’ Relational Database Access__
User Causes (none)__
Install Causes (none)__

X‘1056’ X‘F0A3’ Relational Database Access Error
Failure Occurred On (sf85)

Failure Causes

__
Report The Following Logical Unit
Of Work Identifier (sf85)(sf85)(sf85)

Actions X‘32D1’

__
Perform Problem Determination
Procedure For (sf85)

X‘00B0’

__
Perform (sf83) Problem
Determination Procedures

X‘00E1’

__
X‘0500’ Run Appropriate Trace__
X‘2203’ Review Supporting Data At Alert Sender__
X‘30E1’ Contact Service Representative For (sf83)__
X‘32D0’ Report The Following (sf85)(sf85)(sf85)__
X‘32A0’ Report The Following (sf85)__

... ...__
Additional SVs X‘10’ SV Product Set Identifier__

X‘11’ SV Product Identifier__
X‘08’ SF Product Number__
X‘04’ SF Version, Release, Modification__
X‘06’ SF Product Common Name__
X‘05’ SV Hierarchy/Resource List__
X‘10’ SF Hierarchy Name List__
X‘11’ SF Associated Resource List__
X‘01’ SV Date/Time__
X‘10’ SF Local Date/Time__
X‘48’ SV Supporting Data Correlation__
X‘85’ SF Detailed Data (Supporting data ptr)__
X‘47’ SV MSU Correlation__
X‘20’ SF CRRTKN (LUWID or UOWID format)__

... ...__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

370 DRDA Volume 1

Problem Determination Generic Focal Point Messages and Message Models

Alert Model RSCLMT

This alert model is for the Resource Limit Reached condition. See the description for Table 11-3
on page 358 for a description of the subvectors, subfields, and code points.

Table 11-13 Alert Model RSCLMT
__

Alert ID Number X‘A70F6F9E’__
Alert Type X‘01’ Permanent__
Alert Description X‘2102’ Distributed Process Failed__
Probable Causes X‘1057’ Resource Limit Reached__
User Causes (none)__
Install Causes (none)__

X‘F0C0’ X‘F0A3’ Resource Limit Reached
(sf85)(sf85) Failure Occurred On (sf85)

Failure Causes

__
Report The Following Logical Unit
Of Work Identifier
(sf85)(sf85)(sf85)

Actions X‘32D1’

__
Perform Problem Determination
Procedure For (sf85)

X‘00B0’

Perform (sf83) Problem
Determination Procedures

X‘00E1’

X‘0500’ Run Appropriate Trace___
X‘2203’ Review Supporting Data At Alert Sender___
X‘30E1’ Contact Service Representative For (sf83)___
X‘32D0’ Report The Following (sf85)(sf85)(sf85)___
X‘32A0’ Report The Following (sf85)___

... ...__
Additional SVs X‘10’ SV Product Set Identifier__

X‘11’ SV Product Identifier___
X‘08’ SF Product Number___
X‘04’ SF Version, Release, Modification___
X‘06’ SF Product Common Name___
X‘05’ SV Hierarchy/Resource List___
X‘10’ SF Hierarchy Name List___
X‘11’ SF Associated Resource List___
X‘01’ SV Date/Time___
X‘10’ SF Local Date/Time___
X‘48’ SV Supporting Data Correlation___
X‘85’ SF Detailed Data (Supporting data ptr)___
X‘47’ SV MSU Correlation___
X‘20’ SF CRRTKN (LUWID or UOWID format)___

... ...__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

The two subfield X‘85’s for the Failure Cause code point X‘F0C0’ should contain the following
data beginning at byte 5 (see Figure 11-5 on page 372). The subfield X‘85’s are shown below in
the order they should appear in the Failure Causes Subfield. The first subfield X‘85’ uses the data
ID code point X‘00A7’ for resource. The detailed data field contains the name of the resource that

Part 2: Environmental Support 371

Generic Focal Point Messages and Message Models Problem Determination

has reached a limit, if available. If the resource name is not available, then the DDM code point
for the resource type should be used. The second subfield X‘85’ uses the data ID code point
X‘000E’ for reason code. The detailed data field contains the product-dependent reason code for
this error. If the reason code is not available, then this subfield uses the data ID code point of
X‘0000’ and does not contain any data.

sf85

7

resource name resource type

sf85

7

sf85

7

sf85

7

reason code

or

or

and

Figure 11-5 Subfield X‘85’s for Failure Causes Code Point X‘F0C0’

372 DRDA Volume 1

Problem Determination Generic Focal Point Messages and Message Models

Alert Model SECVIOL

This alert model is for security violation error conditions discovered at the application requester
or application server. See the description for Table 11-3 on page 358for a description of the
subvectors, subfields, and code points.

Table 11-14 Alert Model SECVIOL
__

Alert ID Number X‘50C0C0BC’__
Alert Type X‘01’ Permanent__
Alert Description X‘2102’ Distributed Process Failed__
Probable Causes X‘6700’ Security Problem__
User Causes (none)__
Install Causes (none)__

X‘107F’ X‘F0A3’ Distribution Session Not Created
Failure Occurred On (sf85)

Failure Causes

__
Report The Following Logical Unit
Of Work Identifier (sf85)(sf85)(sf85)

Actions X‘32D1’

__
Perform Problem Determination
Procedure For (sf85)

X‘00B0’

__
Perform (sf83) Problem
Determination Procedures

X‘00E1’

__
X‘0500’ Run Appropriate Trace__
X‘2203’ Review Supporting Data At Alert Sender__
X‘30E1’ Contact Service Representative For (sf83)__
X‘32D0’ Report The Following (sf85)(sf85)(sf85)__
X‘32A0’ Report The Following (sf85)__

... ...__
Additional SVs X‘10’ SV Product Set Identifier__

X‘11’ SV Product Identifier__
X‘08’ SF Product Number__
X‘04’ SF Version, Release, Modification__
X‘06’ SF Product Common Name__
X‘05’ SV Hierarchy/Resource List__
X‘10’ SF Hierarchy Name List__
X‘11’ SF Associated Resource List__
X‘01’ SV Date/Time__
X‘10’ SF Local Date/Time__
X‘48’ SV Supporting Data Correlation__
X‘85’ SF Detailed Data (Supporting data ptr)__
X‘47’ SV MSU Correlation__
X‘20’ SF CRRTKN (LUWID or UOWID format)__

... ...__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Part 2: Environmental Support 373

Generic Focal Point Messages and Message Models Problem Determination

Alert Model SYNTAX

This alert model is for the Data Stream Syntax Error condition. See the description for Table 11-3
on page 358for a description of the subvectors, subfields, and code points.

Table 11-15 Alert Model SYNTAX
__

Alert ID Number X‘C299284E’__
Alert Type X‘01’ Permanent__
Alert Description X‘2102’ Distributed Process Failed__
Probable Causes X‘1054’ Invalid Data Structure__
User Causes (none)__
Install Causes (none)__

X‘1054’ X‘F0A3’ Invalid Data Structure Error
Failure Occurred On (sf85)

Failure Causes

__
Report The Following Logical Unit
Of Work Identifier
(sf85)(sf85)(sf85)

Actions X‘32D1’

__
Perform Problem Determination
Procedure For (sf85)

X‘00B0’

__
Perform (sf83) Problem
Determination Procedures

X‘00E1’

__
X‘0500’ Run Appropriate Trace__
X‘2203’ Review Supporting Data At Alert Sender__
X‘30E1’ Contact Service Representative For (sf83)__
X‘32D0’ Report The Following (sf85)(sf85)(sf85)__
X‘32A0’ Report The Following (sf85)__

... ...__
Additional SVs X‘10’ SV Product Set Identifier__

X‘11’ SV Product Identifier__
X‘08’ SF Product Number__
X‘04’ SF Version, Release, Modification__
X‘06’ SF Product Common Name__
X‘05’ SV Hierarchy/Resource List__
X‘10’ SF Hierarchy Name List__
X‘11’ SF Associated Resource List__
X‘01’ SV Date/Time__
X‘10’ SF Local Date/Time__
X‘48’ SV Supporting Data Correlation__
X‘85’ SF Detailed Data (Supporting data ptr)__
X‘47’ SV MSU Correlation__
X‘20’ SF CRRTKN (LUWID or UOWID format)__

... ...__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

374 DRDA Volume 1

Problem Determination Generic Focal Point Messages and Message Models

11.3.4 Alert Example

This section provides an alert example.

11.3.4.1 Major Vector/Subvector/Subfield Construction

Figure 11-6 is a graphical representation of the major vector for an alert. It is comprised of a
length field, a key field, and multiple subvectors. The subvectors are comprised of other
subvectors and subfields. The subfields are comprised of data.

len key data

len key subfieldsubfield

. . .subvector subvector subvectorkeylen

Figure 11-6 Major Vector/Subvector/Subfield Construction

Figure 11-7 on page 376 is an example of an alert for an AGNPRMRM with severity code of 64.
This figure shows the Alert Major Vector that would be passed to a focal point. The related
subfields for each subvector are grouped together and labeled for ease of reading. The
hexadecimal identifiers for the fields serve two purposes. They are the actual hexadecimal
offsets into the major vector, and they are identifiers for the descriptions of these fields. The
descriptions of the fields follow the figure.

If two Product Set ID (X‘10’) subvectors are present, the first one is interpreted as the Alert
sender and the second one is interpreted as the resource experiencing the problem. If the
resource experiencing the problem is the resource sending the alert, then only one Product Set ID
subvector should be present.

Part 2: Environmental Support 375

Generic Focal Point Messages and Message Models Problem Determination

Alert Major Vector

[0] [2]

Hierarchy/Resource List Subvector and Accompanying Hierarchy Name

List Subfield and Associated Resource List Subfield

00EA 0000

[4] [5]

0538

[6] [7] [8] [9] [A] [D][C]

10 00 03 AR 40 420D

[E] [F] [11] [12]

03 AS 00 43

29 11 00 09 AR APPL1 00 40

[13] [14] [15] [16] [17] [1F] [20]

[21] [22] [2D] [2E]

0C AR sscpname 00 F4

[2F] [30] [3A] [3B]

0B AS rdbname 00 41

Generic Alert Data Subvector

[3C] [3D] [3E] [40] [41] [43]

0B 92 0000 01 2102 2E0AA333

Figure 11-7 Alert Example for AGNPRMRM with Severity Code of 64 (Part 1)

376 DRDA Volume 1

Problem Determination Generic Focal Point Messages and Message Models

Probable Causes Subvector

Failure Causes Subvector and Accompanying Failure Causes Subfield,

Detailed Data Subfields and Recommended Actions Subfield

[4B] [4C]

965C

[A1] [A2]

8502

[55] [56] [57] [58] [59] [5C][5B]

85 90 xx 0087 11 CCEEEErestofname17

[70] [71] [72] [73] [74] [77][76]

85 90 xx 0000 11 netidddd.lunameee.19

[89] [8A] [8B] [8C] [8D] [90][8F]

85 90 xx 0000 11 BA9876543210.000110

[47] [48] [49]

04 93 1050

[4D] [4E] [4F]

04 01 1050

[A3] [A4] [A5]

04 81 2203

[51] [52] [53]

19 01 F0A3

[6C] [6D] [6E]

36 81 32D1

Figure 11-8 Alert Example for AGNPRMRM with Severity Code of 64 (Part 2)

Part 2: Environmental Support 377

Generic Focal Point Messages and Message Models Problem Determination

Product Set ID Subvector and Accompanying Product ID Subvector,

[A7] [A8] [A9]

10 r23

[CA] [CB] [CC]

01 100D

[D7] [D8]

4812

[AA] [AB] [AC]

11 0420

[C2] [C3] [C4] [C6] [C8]

04 02 03 0008

[AD] [AE] [AF]

09 08 5665DB2

[B6] [B7] [B8]

0C 06 DATABASE 2*

[CD] [CE] [CF] [D0] [D1] [D2] [D3] [D4] [D5]

0A 10 58 02 0F 0E 050C 0FA3

[D9] [DA] [DB] [DC] [DD] [DF] [E0]

12 85 90 11xx 00DA SYS1.LOGREC

Software Program Number Subfield, Software Product Common Name

Subfield, and Software Product Common Level Subfield

Date/Time Subvector and Accompanying Local Date/Time Subfield

Supporting Data Subvector and Accompanying Detailed Data Subfield

Figure 11-9 Alert Example for AGNPRMRM with Severity Code of 64 (Part 3)

These are the descriptions of the fields in the alert example:

0 Length of MS Major Vector (2 bytes).

2 Key for MS Major Vector (2 bytes).

4 Length of Hierarchy Resource List Subvector in binary (1 byte).

378 DRDA Volume 1

Problem Determination Generic Focal Point Messages and Message Models

5 Key for Hierarchy Resource List Subvector (1 byte).

6 Length of Hierarchy Name List Subfield in binary (1 byte).

7 Key for Hierarchy Name List Subfield (1 byte).

8 Bit 0=0 so alert receiver does not modify the list. Bits 1 through 7 are reserved (1 byte).

9 Length of resource name + 1 in binary (1 byte).

A Resource name in uppercase alphanumeric EBCDIC characters. The name must not
exceed 8 characters. The name in the example is application requester for application
requester (2 bytes).

C Bit 0 is reserved. Bit 1 is equal to 0 or 1 dependent on whether this resource should be
displayed if the alert receiver can only display one resource. In the example, application
requester would not be displayed. Bits 2 through 7 are reserved (1 byte).

D Resource type identifier (1 byte).

E Length of resource name + 1 in binary (1 byte).

F Resource name. The name in the example is application server for the application
server. See field 9 for more information (2 bytes).

11 Bit 0 is reserved. Bit 1 is equal to 0 or 1 dependent on whether this resource should be
displayed if the alert receiver can only display one resource. In the example, application
server would be displayed. Bits 2 through 7 are reserved (1 byte).

12 Resource type identifier (1 byte).

13 Length of Associated Resources Subfield in binary (1 byte).

14 Key for Associated Resources Subfield (1 byte).

15 Reserved (1 byte).

16 Length of resource name + 1 in binary (1 byte).

17 The name of the resource in uppercase alphanumeric EBCDIC characters. The resource
with which it is associated precedes the name. This field is not to exceed 56 characters
(8 bytes). In the example the name of the resource is APPL1 and is associated with the
resource application requester (8 bytes).

1F Flags (1 byte).

20 Resource type identifier (1 byte).

21-3B Two more associated resource entries and they follow the same format as fields 16-20
(27 bytes).

3C Length of Generic Alert Data Subvector in binary (1 byte).

3D Key for Generic Alert Data Subvector (1 byte).

3E Bits 0, 1, and 2 equal 0 to represent alert is not directly initiated by operator, alert was
sent when the problem was detected, and alert sender is not reporting a previously
detected alert condition. Bits 3 through 15 are reserved (2 bytes).

40 Alert type, Permanent Error (1 byte).

41 Alert description code (2 bytes).

43 Alert ID number (4 byte hexadecimal value).

Part 2: Environmental Support 379

Generic Focal Point Messages and Message Models Problem Determination

47 Length of Probable Causes Subvector in binary (1 byte).

48 Key for Probable Causes Subvector (1 byte).

49 Probable causes code points (2 bytes).

4B Length of Failure Causes Subvector in binary (1 byte).

4C Key for Failure Causes Subvector (1 byte).

4D Length of Failure Causes Subfield in binary (1 byte).

4E Key for Failure Causes Subfield (1 byte).

4F Failure Causes code point (2 bytes).

51 Length of Failure Causes Subfield in binary (1 byte).

52 Key for Failure Causes Subfield (1 byte).

53 Failure Causes code point (2 bytes).

55 Length of Detailed Data Subfield in binary (1 byte).

56 Key for Detailed Data Subfield (1 byte).

57 Product ID code. Bits 0 through 3 equal 9 to indicate the product ID subvector being
indexed and the particular data to be extracted from this subvector. In this example, it
is a software product common name. Bit 4=0 for the alert sender Product Set ID. Bits 5
through 7 equal 0 to indicate the first Product Set ID subvector of the type defined
above, should be used (1 byte).

58 Reserved (1 byte).

59 Data ID equals 0087 (2 bytes).

5B Data encoding equals 11 for character set 00640-0500 (1 byte).

5C Detailed data. The example shows the RDB_NAME spelled out (16 bytes).

6C Length of Recommended Actions Subfield in binary (1 byte).

6D Key for Recommended Actions Subfield (1 byte).

6E Recommended action code point indicating Report The Following Logical Unit Of
Work Identifier (2 bytes).

70-77 The first subfield X‘85’. It has the netid.luname portion of the LUWID or UOWID (25
bytes).

89-90 The second subfield X‘85’. It has the instance and sequence number portions of the
LUWID or UOWID. The data displayed is the character representation of the 6-byte
binary instance number, followed by a period and the character representation of the
2-byte binary sequence number (24 bytes).

A1-A2 The last subfield X‘85’. It is blank (2 bytes).

A3 Length of Recommended Actions Subfield in binary (1 byte).

A4 Key for Recommended Actions Subfield (1 byte).

A5 Recommended action code point indicating Review Supporting Data at Alert Sender (2
bytes).

A7 Length of Product Set ID Subvector in binary (1 byte).

380 DRDA Volume 1

Problem Determination Generic Focal Point Messages and Message Models

A8 Key for Product Set ID Subvector (1 byte).

A9 Retired (1 byte).

AA Length of Product Identifier Subvector in binary (1 byte).

AB Key for Product Identifier Subvector (1 byte).

AC Bits 0-3 are reserved. Bits 4-7 equal 4 to indicate the software level (1 byte).

AD Length of Product Identifier Subfield in binary (1 byte).

AE Key for Product Identifier Subfield (1 byte).

AF Software product program number. Seven uppercase alphanumeric EBCDIC characters
(7 bytes).

B6-C8 These fields are two more Product Identifier subfields. The first one is Software Product
Common Name and the second is Software Product Common Level with version,
release, and modification level (20 bytes).

CA Length of Date/Time Subvector in binary (1 byte).

CB Key for Date/Time Subvector (1 byte).

CC Indicates the Date/Time is the local Date/Time (1 byte).

CD Length of Local Date/Time Subfield in binary (1 byte).

CE Key for Local Date/Time Subfield (1 byte).

CF-D1 The year, month, and day in binary (3 bytes).

D2-D4 The hours, minutes, and seconds in binary (3 bytes).

D5 The extension of time in binary and provides fractions of seconds (2 bytes).

D7 Length of Supporting Data Correlation Subvector in binary (1 byte).

D8 Key for Supporting Data Correlation Subvector (1 byte).

D9 Length of Detailed Data Subfield in binary (1 byte).

DA Key for Detailed Data Subfield (1 byte).

DB Product ID code (1 byte).

DC Reserved (1 byte).

DD Data ID equals X‘00DA’ for Log ID (2 bytes).

DF Data encoding equals 11 for character set 00640-0500 (1 byte).

E0 Detailed data. The example shows Sys1.Logrec as the log ID (11 bytes).

Part 2: Environmental Support 381

Problem Determination

382 DRDA Volume 1

Open Group Technical Standard

Part 3:

Network Protocols

The Open Group

Part 3: Network Protocols 383

384 DRDA Volume 1

Chapter 12

SNA

This chapter summarizes the characteristics of DRDA communications flow using the SNA
network environment.

12.1 SNA and the DDM Communications Model
SNA implementations of DRDA use the DDM Communications Managers. The DDM LU 6.2
Conversational Communications Manager (CMNAPPC) supports the base and option set
functions of LU 6.2 required by DRDA Level 1 implementations and DRDA Level 2 or DRDA
Level 3 implementations without resource recovery support. The DDM LU 6.2 Sync Point
Conversational Communications Manager (CMNSYNCPT) supports the base and option set
functions, including synchronization point support, that distributed unit of work
implementations require for coordinated resource recovery support. For further detail, see the
DDM terms CMNAPPC and CMNSYNCPT in the DDM Reference.

Part 3: Network Protocols 385

What You Need to Know About SNA and LU 6.2 SNA

12.2 What You Need to Know About SNA and LU 6.2
This chapter assumes some familiarity with Systems Network Architecture (SNA) concepts and
with LU 6.2. With a general exposure to these topics, it should be possible to understand how
DRDA’s use of LU 6.2 function compares with the many other types of usage that the general-
purpose LU 6.2 architecture permits. With more detailed knowledge, it should be possible to
understand how to use LU 6.2 function in DRDA environments. For a list of relevant LU 6.2
publications, see Referenced Documents on page xxiv.

The reader should also have some familiarity with DDM terms and the DDM model. A reader
with a general exposure to DDM should be able to understand how DRDA’s use of LU 6.2 relates
to the DDM communications managers of the DDM model.

Refer to Referenced Documents on page xxiv for the list of DDM publications.

386 DRDA Volume 1

SNA LU 6.2

12.3 LU 6.2
Logical Unit type 6.2 (LU 6.2) is the architecture for advanced program-to-program
communication (APPC). Products that implement LU 6.2 provide program-to-program
communications that are robust enough for distributed database management processing. The
robust features necessary for distributed database include:

• Timely failure notification

LU 6.2 is the program-to-program architecture that guarantees timely notification of network
connection and end node failures. Knowing when one user is done is of the utmost
importance in a database management environment where potentially thousands of users
can be sharing information.

• Propagation of security, authentication, authorization, and accounting information

LU 6.2 provides and permits the propagation of who, what, when, and where information
among the resource managers participating in a user transaction. Security, authentication,
and authorization information is essential for the proper control of access to managed data.
Accounting information is essential for the tracking of resource use and consumption.

• Synchronization point support

LU 6.2 provides support for coordinating updates across multiple systems. This is done
through resource recovery processing, which includes two-phase commit protocols on LU
6.2 conversations. This feature is not supported in DRDA Level 1.

DRDA relies on a subset of the LU 6.2 defined function. That subset includes function provided
by verbs from both the LU 6.2 base and option sets. This chapter identifies the LU 6.2 function
contained within the DRDA subset, relates the DRDA subset to DDM terms and the DDM
model, and discusses the characteristics of DRDA communications flows that are unique to
DRDA.

Part 3: Network Protocols 387

LU 6.2 Verb Categories SNA

12.4 LU 6.2 Verb Categories
The LU 6.2 protocol boundary consists of two categories of verbs: conversation verbs and
control-operator verbs.

1. Conversation verbs define the means for program-to-program communication. The three
types of conversation verbs are mapped, basic, and type-independent.

• Mapped conversation verbs provide functions for application programs written in
high-level application program languages. Application transaction programs use
mapped conversation verbs.

• Basic conversation verbs provide functions for end-user services or protocol
boundaries for end-user application transaction programs. LU services programs use
basic conversation verbs.

• Type-independent verbs provide functions that span both mapped and basic
conversation types (such as synchronization point services). Both application
transaction programs and LU services programs use type-independent verbs.

2. Control-operator verbs define the means for program or operator control of the LU’s
resources. Control-operator transaction programs use control-operator verbs to assist the
control operator in performing functions related to the control of an LU. LU 6.2
implementations that employ parallel sessions use control-operator verbs to define the
parallel session support that is available between them.

388 DRDA Volume 1

SNA LU 6.2 Product-Support Subsetting

12.5 LU 6.2 Product-Support Subsetting
LU 6.2 product-support subsetting of the verbs is defined by means of function groups or sets. A
set consists of all the functions that together represent an indivisible group for products to
implement; that is, a product implementing a particular set implements all of the functions
within the set.

The base set is the set of LU 6.2 verbs, parameters, return codes, and what-received indications
that all programmable LU 6.2 products support.

The option sets are the sets of LU 6.2 verbs, parameters, return codes, and what-received
indications that a product can support depending on the product. A product can support any
number of options sets or none. If a product supports an option set, then the product must
support all verbs, parameters, return codes, and what-received indications defined in the option
set.

Part 3: Network Protocols 389

LU 6.2 Base and Option Sets SNA

12.6 LU 6.2 Base and Option Sets
Implementations of DRDA must use LU 6.2 for communications and in support of security,
accounting, and transaction processing. Due to the complexity of distributed database
management system processing, DRDA requires both base and option set functions of LU 6.2.

Application requesters (ARs) and application servers (ASs) use basic conversation verbs. Unless
otherwise noted, all application requesters and application servers use each LU 6.2 function and
must accomplish their goals using the verbs listed below or equivalent local interfaces.

Any verbs outside the set listed in DRDA are not required by DRDA, and DRDA does not
provide any architecture for use of those verbs.

12.6.1 Base Set Functions

DRDA requires base set functions from the basic conversation and type-independent verb
categories.

12.6.1.1 Basic Conversation Verb Category

DRDA uses base set function provided by the following basic conversation verbs:

• ALLOCATE

• DEALLOCATE

• GET_ATTRIBUTES

• RECEIVE_AND_WAIT

• SEND_DATA

• SEND_ERROR

12.6.1.2 Type-Independent Verb Category

DRDA uses base set function provided by the following type-independent conversation verb:

• GET_TP_PROPERTIES

12.6.2 Option Set Functions

DRDA requires option set functions from the basic conversation verb category and type-
independent verb category. The numbers in the parentheses are option set numbers. If a verb
does not have an option set number, the verb is in the base set, but the function or variable
included to perform the function is an option set function. See the SNA Transaction Programmer’s
Reference Manual for LU Type 6.2 (GC30-3084, IBM) for details about option set numbers.

12.6.2.1 Basic Conversation Verb Category

DRDA uses option set function provided by the following basic conversation verbs:

• User ID Verification (Conversation-Level Security) (212)46

46. LU 6.2 Conversation-Level Security is optional if DCE user authentication mechanisms are in use.

390 DRDA Volume 1

SNA LU 6.2 Base and Option Sets

ALLOCATE

• Program-Supplied User ID and Password (Conversation-Level Security) (213)47

ALLOCATE

• Specify a synchronization level of SYNCPT (108)48

ALLOCATE

• Get the conversation state (108)49

GET_ATTRIBUTES

• PREPARE_TO_RECEIVE (105)

Only application requesters or application servers that require asynchronous receive
capabilities need use PREPARE_TO_RECEIVE.

• POST_ON_RECEIPT with TEST for Posting (103)

Only application requesters or application servers that require asynchronous receive
capabilities need use POST_ON_RECEIPT with TEST for Posting.

• POST_ON_RECEIPT

• TEST

12.6.2.2 Type-Independent Verb Category

DRDA uses option set function provided by the following type-independent conversation verbs:

• LUW_Identifier (243)

GET_TP_PROPERTIES

• Protected_LUW_Identifier (108)50

GET_TP_PROPERTIES

• SYNCPT (108)51

• BACKOUT (108)52

• SET_SYNCPT_OPTIONS (108)53

47. LU 6.2 Conversation-Level Security is optional if DCE user authentication mechanisms are in use.
48. Not supported in DRDA Level 1.
49. Not supported in DRDA Level 1.
50. Not supported in DRDA Level 1.
51. Not supported in DRDA Level 1.

Syncpt and Backout are the LU 6.2 verbs and terms for committing and rolling back the work, respectively. Because Commit and
Rollback are the accepted terms in relational databases to perform the function of committing and rolling back the work, this
reference will use the terms commit and rollback wherever the context is not directly related to LU 6.2.

52. Not supported in DRDA Level 1.

Syncpt and Backout are the LU 6.2 verbs and terms for committing and rolling back the work, respectively. Because Commit and
Rollback are the accepted terms in relational databases to perform the function of committing and rolling back the work, this
reference will use the terms commit and rollback wherever the context is not directly related to LU 6.2.

53. Not supported in DRDA Level 1.

SET_SYNCPT_OPTIONS is a verb in support of LU 6.2 verbs that provides synchronization point optimizations. DRDA
encourages the implementation of the synchronization point optimizations, but does not rely on or require the implementation of
these optimizations. If an implementation chooses to implement the optimization that allows a resource to vote read-only during
resource recovery processing, the resource cannot vote read-only if there are held cursors at that resource.

Part 3: Network Protocols 391

LU 6.2 and DRDA SNA

12.7 LU 6.2 and DRDA
Application requesters and application servers that provide DRDA capabilities use DRDA flows.
DRDA flows permit implementations of DRDA to initialize conversations, terminate
conversations, and process DRDA requests.

12.7.1 Initializing a Conversation

Initialization processing allocates a conversation and prepares a DRDA execution environment.
Only an application requester can start a conversation. Authentication occurs during
initialization processing through the required use of Conversation-Level Security (end-user
verification) as specified in the LU 6.2 architecture. The use of conversation-level security
verifies the end-user name associated with the conversation. Database management systems
verify that authenticated IDs have the authorization to perform DRDA database manager
requests.

Refer to Section 6.1 on page 270 and Section 6.1.1 on page 270for a detailed description of
architected end-user names.

Authentication between an application requester and application server occurs once per
conversation during ALLOCATE processing.

Initialization processing propagates the resource recovery level that is required for a particular
conversation. This is carried in the SYNC_LEVEL parameter of the LU 6.2 ALLOCATE verb.

Initialization processing also propagates basic accounting information. An LU 6.2 ALLOCATE
verb within the initialization flow specifies an end-user name, a logical unit of work ID
(LUWID), remote LUNAME, and transaction program name to provide the who, what, when,
and where information useful for accounting in DRDA environments.

The DDM Reference provides a general overview of the component communications flows that
comprise a DRDA initialization flow. See the DDM terms APPCMNI and SYNCMNI, which
discuss initiation of LU 6.2 communications.

12.7.1.1 LU 6.2 Verbs that the Application Requester Uses

The LU 6.2 verbs that the application requester uses for DRDA initialization flows are described
here. Unless otherwise specified, refer to the SNA Transaction Programmer’s Reference Manual for
LU Type 6.2 (GC30-3084, IBM) and to the SNA LU 6.2 Reference: Peer Protocols (SC31-6808, IBM) for
further detail.

ALLOCATE
ALLOCATE initiates a requester initialization verb sequence. The execution of the verb
first ensures that a session exists between the LU of an application requester and a
remote LU, and then allocates a basic conversation on that session between the
application requester and the specified remote transaction program (TP).

The LU_NAME value is a fully qualified LUNAME, as specified in the LU 6.2
architecture. The LU 6.2 architecture requires the LU_NAME parameter and continues
to permit use of unqualified LU_NAME values only for migration purposes. Products
that do not support fully qualified LU_NAME values can have difficulties working in
SNA network interconnect environments.

The transaction program name value can be a registered DRDA transaction program
name, registered DDM transaction program name, or any non-registered transaction
program name. Refer to Section 6.8 on page 279 for further detail.

392 DRDA Volume 1

SNA LU 6.2 and DRDA

Applications using the SQL language are not required to understand LU_NAME values
(qualified or unqualified) nor transaction program name values. The external name that
an application can use is RDB_NAME. DRDA does not define the mechanism by which
the application requester derives the NETID.LU_NAME and transaction program name
pair from the RDB_NAME. DRDA permits the association of multiple RDB_NAMEs
with a single transaction program name and NETID_LUNAME.

The TYPE parameter value must be BASIC_CONVERSATION. DRDA has no usage
requirement for mapped conversations.

The SYNC_LEVEL parameter value must be NONE for DRDA Level 1 and can be
SYNCPT for DRDA Level 2.

The remote LU must be able to obtain the verified end-user name associated with the
conversation. Unless the verified end-user name is provided by DCE security
mechanisms, DRDA requires the specification of SECURITY (PGM (USER_ID (variable)
PASSWORD (variable))) or SECURITY(SAME) on ALLOCATE. The remote LU and the
application server both use the authenticated USER_ID value for accounting purposes.
The application server uses the authenticated USER_ID value to validate requester
access to the remote database management system resources. Refer to Section 6.1 on
page 270 and Section 6.1.1 on page 270 for further detail about architected end-user
names.

SEND_DATA
Under normal circumstances, one or more SEND_DATA verbs follow ALLOCATE in a
requester initialization verb sequence. The SEND_DATA verb transmits DDM
commands and associated command data to the transaction program at the application
server. The DDM commands that can flow identify the application requester and
application server, establish requester and server capabilities, make relational database
management system capabilities available to the requester, and request database
management resources for processing a specific DRDA request.

Refer to Section 4.4.1 on page 54 for further detail on the DDM command sequences
that DRDA uses.

The DATA parameter specifies the variable that contains the data to be sent.

RECEIVE Operations
Under normal circumstances after the last SEND_DATA, one or more
RECEIVE_AND_WAIT or PREPARE_TO_RECEIVE, POST_ON_RECEIPT, TEST, and
RECEIVE_AND_WAIT verb sequences must be performed.

An application requester initialization flow uses RECEIVE_AND_WAIT for a
synchronous receive operation. The application requester uses a
RECEIVE_AND_WAIT to receive DDM command reply objects including the execution
results of application requester SQL statements.

An application requester initialization flow uses a sequence of
PREPARE_TO_RECEIVE, POST_ON_RECEIPT, TEST, and RECEIVE_AND_WAIT
verbs for an asynchronous receive operation. The use of POST_ON_RECEIPT and
TEST allows the application requester to perform other types of processing before
testing the conversation to determine whether reply object information is available for
receipt. Checking for end-user keyboard interrupts is an example of one type of
processing that the application requester can wish to perform. The application
requester uses a RECEIVE_AND_WAIT to receive DDM command reply objects
including the execution results of application requester SQL statements.

Part 3: Network Protocols 393

LU 6.2 and DRDA SNA

12.7.1.2 LU 6.2 Verbs that the Application Server Uses

The LU 6.2 verbs the application server uses for DRDA initialization flows are described here.
Unless otherwise specified, refer to the SNA Transaction Programmer’s Reference Manual for LU
Type 6.2 (GC30-3084, IBM) for further detail.

ATTACH Processing
LU 6.2 ATTACH processing in the communications product at the application server
creates the resource ID. The manner in which a particular LU 6.2 communications
product makes the resource ID available is specific to the environment.

GET_ATTRIBUTES
GET_ATTRIBUTES returns information about a conversation that the application
server uses for request processing. This information includes the mode name,
conversation state information,54 and partner LU name that can be used for accounting
purposes.

The RESOURCE parameter variable value for GET_ATTRIBUTES must specify the local
resource ID of the conversation about which the application server desires information.
The communications product at the application server creates the resource ID.

GET_TP_PROPERTIES
GET_TP_PROPERTIES returns information about the characteristics of the transaction
program that the application server requires for request processing and that
mechanisms specific to the environment can also use for accounting.

DRDA requires the SECURITY_USER_ID parameter. The SECURITY_USER_ID
parameter specifies the variable for returning the architected end-user name carried on
the allocation request that initiated the application requester initialization verb
sequence. The application server requires the architected end-user name value for
checking the requester’s authorization to access database management system objects
and for accounting purposes.

DRDA requires the LUW_IDENTIFIER or PROTECTED_LUW_IDENTIFIER55

parameter. This parameter specifies the variable for returning the logical unit of work
identifier associated with the transaction program. The application server can use the
logical unit of work identifier for accounting mechanisms specific to the environment.

RECEIVE Operations
An application server initialization flow uses RECEIVE_AND_WAIT for each
synchronous receive operation.

An application server initialization flow uses a sequence of POST_ON_RECEIPT, TEST,
and RECEIVE_AND_WAIT verbs for each asynchronous receive operation. The use of
POST_ON_RECEIPT and TEST allows the application server to perform other types of
processing before testing the conversation to determine whether a DDM command or
other information is available for receipt.

An application server uses a RECEIVE_AND_WAIT to receive a DDM command or the
SEND indication. The application server can send data to the application requester only
after it receives the SEND indication.

54. Conversation state information is useful for a transaction program to find out the state of the conversations prior to calling
SYNCPT. This can help avoid state checks or help resolve a SYNCPT call that generated a state check.

55. For protected conversations in DRDA Level 2

394 DRDA Volume 1

SNA LU 6.2 and DRDA

SEND_DATA
Under normal circumstances, one or more SEND_DATA verbs follow a
RECEIVE_AND_WAIT. The SEND_DATA verb transmits DDM command reply objects
including the execution results of application requester SQL statements. The DATA
parameter specifies the variable that contains the data to be sent.

12.7.1.3 Initialization Flows

The physical flow of information consists of a sequence of LU 6.2 verbs containing DDM
commands.

Figure 12-1 on page 396 and Figure 12-3 on page 398 depicts DDM command processing using
the LU 6.2 synchronous wait protocol verbs. DRDA also permits asynchronous wait protocols.
Figure 12-1 on page 396 depicts the initialization flows while using LU 6.2 security. Figure 12-3
on page 398 depicts the initialization flows while using DCE security mechanisms. The primary
difference between the two is the additional flows required to negotiate support for the security
mechanism and then pass the DCE security context information which contains the end-user
name and other security information.

An LU 6.2 ALLOCATE at the application requester causes the creation of a conversation
between the application requester and application server. This conversation is allocated with
SYNC_LEVEL(NONE) for DRDA Level 1 and can use SYNC_LEVEL(SYNCPT) for DRDA Level
2. Individual LU 6.2 SEND_DATA verbs at the application requester transmit each of the DDM
request data stream structures for EXCSAT, ACCRDB, and EXCSQLSTT, along with any
command data that the command can have. Individual LU 6.2 RECEIVE_AND_WAIT verbs at
the application requester then receive the DDM reply data stream structure or object data stream
structure response for each of the DDM commands. Other LU 6.2 RECEIVE_AND_WAIT verbs
at the application requester receive the SEND indications.

An LU 6.2 GET_ATTRIBUTES and an LU 6.2 GET_TP_PROPERTIES at the application server
obtain information about the conversation that is available to the application server following
allocation. The obtained information includes the LUWID, mode, end-user name,56 and partner
LU name that the application server requires for request processing and accounting. Individual
LU 6.2 RECEIVE_AND_WAIT verbs at the application server receive the DDM request data
stream structures or command data. Other LU 6.2 RECEIVE_AND_WAIT verbs at the
application server receive the SEND indications. Individual LU 6.2 SEND_DATA verbs at the
server then transmit the DDM object data stream and reply data stream response structures for
each of EXCSAT, ACCRDB, and EXCSQLSTT. LU 6.2 RECEIVE_AND_WAIT verbs at the
application server cause the SEND indication to flow along with the contents of the SEND
buffers.

Refer to Chapter 4 on page 37 for further detail about DRDA DDM command sequences.

The DRDA initialization flow while using LU 6.2 security consists of the following:

56. If DCE security mechanisms are in use, the end-user name provided in the DCE security context information take precedence
over the end-user name provided in the LU 6.2 ALLOCATE flow.

Part 3: Network Protocols 395

LU 6.2 and DRDA SNA

TP (Application Requester) LU NETWORK LU TP (Application Server)

ALLOCATE

RC=OK

SEND_DATA

DATA(Rqsdss(Excsat(Extnam, Mgrlvlls,
Srvclsnm, Srvnam, Srvrlslv)))

RC=OK

RECEIVE_AND_WAIT
(ALLOC, DATA, SEND)

LU 6.2 Attach Processing

GET_ATTRIBUTES

/* MODE NAME and PARTNER_LU_NAME */

GET_TP_PROPERTIES

/* SECURITY_USER_ID and LUW_IDENTIFIER */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=DATA /* EXCSAT */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

SEND_DATA

DATA(Objdss(Excsatrd(Extnam,Mgrlvlls,
Srvclsnm, Srvnam, Srvrlslv)))

RC=OK

RECEIVE_AND_WAIT
(DATA, SEND)

RC=OK
(DATA, SEND)

WHAT_RECEIVED=DATA /* EXCSATRD */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

SEND_DATA

DATA(Rqsdss(Accrdb(Rdbnam, Rdbacccl,
Typdefnam, Typdefovr,
optional parms)))

RC=OK

Figure 12-1 DRDA Initialization Flows with LU 6.2 Security (Part 1)

396 DRDA Volume 1

SNA LU 6.2 and DRDA

TP (Application Requester) LU NETWORK LU TP (Application Server)

RECEIVE_AND_WAIT
(DATA, SEND)

RC=OK

WHAT_RECEIVED=DATA /* ACCRDB */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

SEND_DATA

DATA(Rpydss(Accrdbrm(Svrcod, Typdefnam,
Typdefovr,
optional parms)))RC=OK

RECEIVE_AND_WAIT
(DATA, SEND)

RC=OK
(DATA, SEND)

WHAT_RECEIVED=DATA /* ACCRDBRM */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

Figure 12-2 DRDA Initialization Flows with LU 6.2 Security (Part 2)

The DRDA initialization flow while using DCE security mechanisms is shown in Figure 12-3 on
page 398.

Part 3: Network Protocols 397

LU 6.2 and DRDA SNA

TP (Application Requester) LU NETWORK LU TP (Application Server)

ALLOCATE

RC=OK

SEND_DATA

DATA(Rqsdss(Excsat(Extnam, Mgrlvlls,
Srvclsnm, Srvnam, Srvrlslv)))

RC=OK

RECEIVE_AND_WAIT
(ALLOC, DATA, SEND)

LU 6.2 Attach Processing

GET_ATTRIBUTES

/* MODE NAME and PARTNER_LU_NAME */

GET_TP_PROPERTIES

/* LUW_IDENTIFIER */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=DATA /* EXCSAT */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

SEND_DATA

DATA(Objdss(Excsatrd(Extnam,Mgrlvlls,
Srvclsnm, Srvnam, Srvrlslv)))

RC=OK

RECEIVE_AND_WAIT
(DATA, SEND)

RC=OK
(DATA, SEND)

WHAT_RECEIVED=DATA /* EXCSATRD */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

SEND_DATA

DATA(Rqsdss(Accsec(Secmec)))

RC=OK

Figure 12-3 DRDA Initialization Flows with DCE Security (Part 1)

398 DRDA Volume 1

SNA LU 6.2 and DRDA

TP (Application Requester) LU NETWORK LU TP (Application Server)

RECEIVE_AND_WAIT
(DATA, SEND)

RECEIVE_AND_WAIT
(DATA, SEND)

RC=OK

WHAT_RECEIVED=DATA /* ACCSEC */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

SEND_DATA

DATA(Rpydss(Accsecrd(Secmec)))

RC=OK

RECEIVE_AND_WAIT
(DATA, SEND)

RC=OK
(DATA, SEND)

WHAT_RECEIVED=DATA /* ACCSECRD */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

SEND_DATA

DATA(Rqsdss(Secchk) Objdss(Sectkn))

RC=OK

RECEIVE_AND_WAITRC=OK
(DATA, SEND)

WHAT_RECEIVED=DATA /* SECCHKRM */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=DATA /*SECTKN */

RC=OK

(DATA, SEND)

RC=OK

WHAT_RECEIVED=DATA /* SECCHK */

WHAT_RECEIVED=DATA /* SECTKN */

RECEIVE_AND_WAIT

RECEIVE_AND_WAIT

RC=OK

RC=OK

WHAT_RECEIVED=SEND

SEND_DATA

DATA(Rpydss(Secchkrm(Svrcod, Secchkcd,
Svcerrno, Svrdgn))

Objdss(Sectkn))

Figure 12-4 DRDA Initialization Flows with DCE Security (Part 2)

Part 3: Network Protocols 399

LU 6.2 and DRDA SNA

TP (Application Requester) LU NETWORK LU TP (Application Server)

RECEIVE_AND_WAIT
(DATA, SEND)

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

SEND_DATA

DATA(Rqsdss(Accrdb(Rdbnam, Rdbacccl,
Typdefnam, Typdefovr,
optional parms)))

RC=OK

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=DATA /* ACCRDB */

WHAT_RECEIVED=SEND

RECEIVE_AND_WAIT

SEND_DATA

RC=OK

RC=OK

RC=OK
(DATA, SEND)

WHAT_RECEIVED=DATA /* ACCRDBRM */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

(DATA, SEND)

DATA(Rpydss(Accrdbrm(Svrcod, Typdefnam,
Typdefovr,
optional parms)))

Figure 12-5 DRDA Initialization Flows with DCE Security (Part 3)

12.7.2 Processing a DRDA Request

DRDA requests exist for the processing of remote SQL statements and for the preparation of
application programs. DRDA request flows transmit a remote DRDA request and its associated
reply objects between an application requester and application server. Only an application
requester can initiate a DRDA request flow.

Because authentication occurs during initialization processing, DRDA requires no additional
authentication during DRDA request flows.

DRDA remote SQL statement requests often operate on multiple rows of multiple tables and can
cause the transmission of multiple rows from the application server to the application requester.
DRDA provides two data transfer protocols in support of these operations:

• Fixed-Row Protocol

• Limited Block-Protocol

Application requesters and application servers use the fixed-row protocol for the processing of a
query that can be the target of a WHERE_CURRENT_OF clause on an SQL UPDATE or DELETE
request, or for the processing of a multi-row fetch or fetch using a scrollable cursor. The fixed-
row protocol guarantees the return of no more than the number of rows requested by the

400 DRDA Volume 1

SNA LU 6.2 and DRDA

application whenever the application requester receives row data.

Application requesters and application servers use the limited block-protocol for the processing
of a query that uses a cursor for read-only access to data. The limited block-protocol optimizes
data transfer by guaranteeing the transfer of a minimum amount of data (which can be part of a
row, multiple rows, or multiple rows and part of a row) in response to each DRDA request.

Refer to Section 4.4.6 on page 76 for further detail on DRDA data transfer protocols.

The DDM Reference provides a general overview of the component communications flows that
comprise a DRDA request flow. The DDM terms APPSRCCR and APPSRCCD discuss
synchronous requester and server communications flows that occur during the processing of a
DRDA remote request.

12.7.2.1 LU 6.2 Verbs that the Application Requester Uses

The following discussion summarizes the LU 6.2 verbs the application requester uses for DRDA
request flows.

Unless otherwise specified, see the SNA Transaction Programmer’s Reference Manual for LU Type 6.2
(GC30-3084, IBM) for further detail.

SEND_DATA
One or more SEND_DATA verbs initiate a requester DRDA request verb sequence. The
SEND_DATA verb transmits DDM commands and command objects that request
remote database management resources for processing a specific remote DRDA
request.

The DATA parameter specifies the variable that contains the data to be sent. Refer to
Section 4.4.3 on page 67through Section 4.4.11 on page 114 for further detail on the
DDM command sequences that DRDA uses.

RECEIVE Operations
Under normal circumstances, either RECEIVE_AND_WAIT or a sequence of
PREPARE_TO_RECEIVE, POST_ON_RECEIPT, TEST, and RECEIVE_AND_WAIT
verbs must follow the SEND_DATA verb in an application requester DRDA request
verb sequence.

12.7.2.2 LU 6.2 Verbs that the Application Server Uses

The following discussion summarizes the LU 6.2 verbs the application server uses for DRDA
request flows.

Unless otherwise specified, see the SNA Transaction Programmer’s Reference Manual for LU Type 6.2
(GC30-3084, IBM) for further detail.

RECEIVE Operations
Under normal circumstances, either one or more RECEIVE_AND_WAIT verbs or one
or more sequences of POST_ON_RECEIPT, TEST, and RECEIVE_AND_WAIT verbs
initiate an application server DRDA request verb sequence.

SEND_DATA
Under normal circumstances, one or more SEND_DATA verbs follow the initial
RECEIVE_AND_WAIT. The SEND_DATA verb transmits DDM command reply objects
including the execution results of application requester SQL statements. The DATA
parameter specifies the variable that contains the data to be sent.

Part 3: Network Protocols 401

LU 6.2 and DRDA SNA

12.7.2.3 Bind Flows

The physical flow of information consists of a sequence of LU 6.2 verbs containing DDM
commands, FD:OCA data, SQL communication areas, and SQL statements.

Figure 12-6 on page 403 depicts DDM command processing using the LU 6.2 synchronous wait
protocol verbs. DRDA also permits asynchronous wait protocols. Figure 12-6 on page 403
assumes that DDM command chaining is not being used.

Individual LU 6.2 SEND_DATA verbs at the application requester transmit each of the DDM
request data stream structures for BGNBND, BNDSQLSTT, and ENDBND along with any
command data that the command can have. Individual LU 6.2 RECEIVE_AND_WAIT verbs at
the application requester then receive the DDM object data stream structure response for each of
the DDM commands. Other LU 6.2 RECEIVE_AND_WAIT verbs at the application requester
receive the SEND indications.

Individual LU 6.2 RECEIVE_AND_WAIT verbs at the application server receive each DDM
request data stream structure or command data stream structure. Other LU 6.2
RECEIVE_AND_WAIT verbs at the application server receive the SEND indications. Individual
LU 6.2 SEND_DATA verbs at the server then transmit the DDM object data stream and reply
data stream response structures for each of BGNBND, BNDSQLSTT, and ENDBND. LU 6.2
RECEIVE_AND_WAIT verbs at the application server cause the SEND indication to flow along
with the contents of the SEND buffers.

Refer to Chapter 4 on page 37 for further detail about DRDA DDM command sequences.

A bind flow is shown in Figure 12-6 on page 403.

402 DRDA Volume 1

SNA LU 6.2 and DRDA

TP (Application Requester) LU NETWORK LU TP (Application Server)

RECEIVE_AND_WAIT
(DATA, SEND)

SEND_DATA

DATA(Rqsdss(Bgnbnd(Pkgnamct, Pkgisolvl,
optional parms)))

RC=OK

RECEIVE_AND_WAIT

RC=OK

RC=OK
(DATA, SEND)

(DATA, SEND)

WHAT_RECEIVED=DATA /* SQLCARD */

RECEIVE_AND_WAIT

RECEIVE_AND_WAIT

RC=OK

RC=OK

WHAT_RECEIVED=SEND

(DATA, SEND)

RC=OK

WHAT_RECEIVED=DATA /* BGNBND */

WHAT_RECEIVED=SEND

RECEIVE_AND_WAIT

SEND_DATA

RC=OK

DATA(Objdss(Sqlcard))

RC=OK

WHAT_RECEIVED=DATA /* BNDSQLSTT */

WHAT_RECEIVED=DATA /* SQL STATEMENT */

WHAT_RECEIVED=DATA /* DECLARATIONS */

RECEIVE_AND_WAIT

RECEIVE_AND_WAIT

RC=OK

RC=OK

RECEIVE_AND_WAIT

SEND_DATA

DATA(Rqsdss(Bndsqlstt(Pkgnamcsn, optional parms))
Objdss(Sqlstt(SQL statement))
Objdss(Sqlsttvrb(declarations)))

Figure 12-6 DRDA Bind Flows (Part 1)

Part 3: Network Protocols 403

LU 6.2 and DRDA SNA

TP (Application Requester) LU NETWORK LU TP (Application Server)

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

SEND_DATA

RC=OK

DATA(Objdss(Sqlcard))

RC=OK

WHAT_RECEIVED=DATA /* BNDSQLSTT */

WHAT_RECEIVED=DATA /* SQL STATEMENT */

WHAT_RECEIVED=DATA /* DECLARATIONS */

RECEIVE_AND_WAIT

RECEIVE_AND_WAIT

RECEIVE_AND_WAIT

RC=OK

RC=OK

RC=OK

RECEIVE_AND_WAIT

RC=OK
(DATA, SEND)

(DATA, SEND)

WHAT_RECEIVED=DATA /* SQLCARD */

RECEIVE_AND_WAIT

RECEIVE_AND_WAIT

RC=OK

RC=OK

WHAT_RECEIVED=SEND

(DATA, SEND)

SEND_DATA

DATA(Rqsdss(Bndsqlstt(Pkgnamcsn, optional parms))
Objdss(Sqlstt(SQL statement))
Objdss(Sqlsttvrb(declarations)))

WHAT_RECEIVED=SEND

Figure 12-7 DRDA Bind Flows (Part 2)

404 DRDA Volume 1

SNA LU 6.2 and DRDA

TP (Application Requester) LU NETWORK LU TP (Application Server)

RECEIVE_AND_WAIT

RECEIVE_AND_WAIT

RC=OK

SEND_DATA

DATA(Objdss(Sqlcard))

RC=OK

RC=OK
(DATA, SEND)

WHAT_RECEIVED=DATA /* SQLCARD */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

(DATA, SEND)

RC=OK
(DATA, SEND)

WHAT_RECEIVED=DATA /* SQLCARD */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

(DATA, SEND)

SEND_DATA

DATA(Rqsdss(Endbnd(Pkgnamct, optional parms)))

RC=OK

WHAT_RECEIVED=DATA /* ENDBND */

WHAT_RECEIVED=SEND

RECEIVE_AND_WAIT

SEND_DATA

RC=OK

RC=OK

(DATA, SEND)
RECEIVE_AND_WAIT

DATA(Objdss(Sqlcard))

Figure 12-8 DRDA Bind Flows (Part 3)

12.7.2.4 SQL Statement Execution Flows

Figure 12-9 on page 406 depicts DDM command processing using the LU 6.2 synchronous wait
protocol verbs. DRDA also permits asynchronous wait protocols.

The physical flow of information consists of a sequence of LU 6.2 verbs containing DDM
commands, FD:OCA data descriptors, FD:OCA data, and DDM reply messages.

Individual LU 6.2 SEND_DATA verbs at the application requester transmit each of the DDM
request data stream structures for OPNQRY and CNTQRY. Individual LU 6.2
RECEIVE_AND_WAIT verbs at the application requester then receive the DDM object data
stream structure and reply message responses for the DDM commands. Other LU 6.2
RECEIVE_AND_WAIT verbs at the application requester receive the SEND indications.

Part 3: Network Protocols 405

LU 6.2 and DRDA SNA

Individual LU 6.2 RECEIVE_AND_WAIT verbs at the application server receive each DDM
request data stream structure. Other LU 6.2 RECEIVE_AND_WAIT verbs at the application
server receive the SEND indications. Individual LU 6.2 SEND_DATA verbs at the application
server then transmit the DDM object data stream and reply message response structures for each
of OPNQRY and CNTQRY. LU 6.2 RECEIVE_AND_WAIT verbs at the application server cause
the SEND indication to flow along with the contents of the SEND buffers.

Refer to Chapter 4 on page 37 for further detail about DRDA DDM command sequences.

Figure 12-9 shows the SQL statement execution flow.

TP (Application Requester) LU NETWORK LU TP (Application Server)

RECEIVE_AND_WAIT
(DATA, SEND)

SEND_DATA

DATA(Rqsdss(Opnqry(Pkgnamcsn, Qryblksz,
optional parms)))

RC=OK

RECEIVE_AND_WAIT

RC=OK

RC=OK

WHAT_RECEIVED=DATA /* OPNQRY */

WHAT_RECEIVED=SEND

RECEIVE_AND_WAIT

SEND_DATA

RC=OK

DATA(Rpydss(Opnqryrm(Svrcod, Qryprctyp,
optional parms))

Objdss(Qrydsc(data description)
(Qrydta(sqlca, row data)))

RECEIVE_AND_WAIT

RC=OK
(DATA, SEND)

WHAT_RECEIVED=DATA /* OPNQRYRM */

RECEIVE_AND_WAIT

RC=OK

RC=OK

RC=OK

WHAT_RECEIVED=DATA /* DATA DESCRIPTION,
SQLCA, and ROW DATA */

(DATA, SEND)

RECEIVE_AND_WAIT

WHAT_RECEIVED=SEND

SEND_DATA

DATA(Rqsdss(Cntqry(Pkgnamcsn, Qryblksz,
optional parms)))

Figure 12-9 DRDA SQL Statement Execution Flows (Part 1)

406 DRDA Volume 1

SNA LU 6.2 and DRDA

TP (Application Requester) LU NETWORK LU TP (Application Server)

RECEIVE_AND_WAIT
(DATA, SEND)

RECEIVE_AND_WAIT

RC=OK

RC=OK

WHAT_RECEIVED=DATA /* CNTQRY */

WHAT_RECEIVED=SEND

RECEIVE_AND_WAIT

SEND_DATA

RC=OK

DATA(Objdss(Qrydta(sqlca, row data))
Rpydss(Endqryrm(Svrcod, optional parms))
Objdss(Sqlcard))

RC=OK
(DATA, SEND)

WHAT_RECEIVED=DATA /* SQLCA and ROW DATA */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=DATA /* ENDQRYRM */

(DATA, SEND)

RC=OK

RECEIVE_AND_WAIT

RC=OK

RECEIVE_AND_WAIT

WHAT_RECEIVED=DATA /* SQLCARD */

WHAT_RECEIVED=SEND

Figure 12-10 DRDA SQL Statement Execution Flows (Part 2)

12.7.3 Terminating a Conversation

Terminate conversation processing deallocates a conversation thereby making the conversation
resources, including the underlying session, available for reuse at both the application requester
and application server. Under normal circumstances, only an application requester terminates a
conversation. In error situations, an application server can also terminate a conversation.

The deallocation of the conversation between an application requester and an instance of an
application server terminates the communications between the application requester and that
instance of the application server.

The application requester must ensure that all conversations associated with the execution of the
application are terminated when the application normally or abnormally terminates.

On a SYNC_LEVEL(NONE) conversation, a DEALLOCATE flows to the application server. The
DEALLOCATE includes an implied rollback at the application server. It is the responsibility of
the application server to ensure a rollback during local deallocation processing at the application
server.

On a SYNC_LEVEL(SYNCPT) conversation, the deallocation of the conversation is tied to
resource recovery processing. The DEALLOCATE flows with the LU 6.2 two-phase commit
protocols. If the logical unit of work rolls back, the conversation remains allocated. There is no
implied rollback for application servers on SYNC_LEVEL(SYNCPT) conversations. An

Part 3: Network Protocols 407

LU 6.2 and DRDA SNA

unconditional DEALLOCATE with a rollback must have a DEALLOCATION TYPE of
ABEND_*.

An application requester might not be able to issue a DEALLOCATE with TYPE of
SYNC_LEVEL prior to the beginning of resource recovery processing as a result of application
termination. The application requester must terminate the conversations after the initial resource
recovery process completes.

The DDM Reference provides a general overview of the communications flows that comprise a
DRDA terminate conversation flow. The DDM terms APPCMNT and SYNCMNT describe
termination of LU 6.2 communications associated with a conversation.

12.7.3.1 LU 6.2 Verbs that the Application Requester Uses

The LU 6.2 verbs the application requester uses for DRDA terminate conversation flows are
described here. Unless otherwise specified, refer to the SNA Transaction Programmer’s Reference
Manual for LU Type 6.2 (GC30-3084, IBM) for more detail.

DEALLOCATE
DEALLOCATE deallocates a conversation from the application requester, and
eventually causes the deallocation of the conversation from the application server.

The TYPE parameter value must be FLUSH or SYNC_LEVEL for normal deallocation
of a conversation. Either FLUSH or SYNC_LEVEL specifies the execution of the
function of the FLUSH verb and the deallocation of the conversation normally.

The LOG_DATA parameter value can be YES or NO. DRDA has no requirement to
place product-unique error information in the system error logs of the LUs supporting
this conversation.

SYNCPT
For conversations allocated SYNC_LEVEL(SYNCPT), the DEALLOCATE does not flow
until a SYNCPT verb is issued. Only one SYNCPT verb is needed to cause the
DEALLOCATE to flow on all conversations that were issued the
DEALLOCATE(SYNC_LEVEL). SYNCPT begins the two-phase commit process, and if
the logical unit of work successfully commits, the conversation is deallocated. If the
logical unit of work rolls back, the conversation remains allocated.

12.7.3.2 LU 6.2 Verbs that the Application Server Uses

The LU 6.2 verbs the application server uses for DRDA terminate conversation flows are
described here. Unless otherwise specified, refer to the SNA Transaction Programmer’s Reference
Manual for LU Type 6.2 (GC30-3084, IBM) for further detail.

DEALLOCATE
A DEALLOCATE deallocates the conversation locally from the application server. The
TYPE parameter must be LOCAL. A RECEIVE_AND_WAIT notifies the application
server that an incoming deallocate request has arrived.

The LOG_DATA parameter value can be YES or NO. DRDA has no requirement to
place product-unique error information in the system error logs of the LUs supporting
this conversation.

SYNCPT
For conversations allocated SYNC_LEVEL(SYNCPT), the SYNCPT verb is issued in
response to WHAT_RECEIVED=TAKE_SYNCPT_DEALLOCATE from a
RECEIVE_AND_WAIT call. If the logical unit of work commits successfully, the
application server issues a DEALLOCATE(LOCAL). If the logical unit of work backs

408 DRDA Volume 1

SNA LU 6.2 and DRDA

out, the conversation remains allocated.

12.7.3.3 Termination Flow—SYNC_LEVEL(NONE) Conversation

The physical flow of information consists of one LU 6.2 verb. An LU 6.2 DEALLOCATE at the
application requester causes the deallocation of a conversation between the application
requester and application server.

A RECEIVE_AND_WAIT at the application server receives the deallocate request, which causes
local deallocation of the conversation. Figure 12-11 shows the termination flow on a
SYNC_LEVEL(NONE) conversation.

TP (Application Requester) LU NETWORK LU TP (Application Server)

DEALLOCATE
(DEALLOCATE) RECEIVE_AND_WAIT

RC=OK

RC=OK
RC=DEALLOCATE_NORMAL

DEALLOCATE

TYPE(LOCAL)

Figure 12-11 Actual Flow: Termination Flows on SYNC_LEVEL(NONE) Conversation

12.7.3.4 Termination Flow—SYNC_LEVEL(SYNCPT) Conversation

Figure 12-12 on page 410 displays the flows involved with deallocating a
SYNC_LEVEL(SYNCPT) conversation. The flows are a simplified view of the two-phase commit
synchronization point process. The LU and sync point manager (SPM) function are combined to
avoid indicating the function split between the LU and the SPM. In practice, the LU and sync
point manager share the responsibility to complete the two-phase commit protocol flows. For an
in-depth description of the flows and the participating components, see the LU 6.2
documentation listed in Referenced Documents on page xxiv.

Part 3: Network Protocols 409

LU 6.2 and DRDA SNA

TP (Application Requester) LU/SPM NETWORK LU/SPM TP (Application Server)

DEALLOCATE

RECEIVE_AND_WAIT
SYNCPT

WHAT_RECEIVED

Prepare (Request Deallocate)

TAKE_SYNCPT_DEALLOCATE

SYNCPT
Request Commit

Committed

RC=OK

RC=OK

Forget

DEALLOCATE

TYPE(LOCAL)

RC=OK

TYPE(SYNC_LEVEL)

Figure 12-12 Actual Flow: Termination Flows on SYNC_LEVEL(SYNCPT) Conversation

12.7.4 Commit Flows on SYNC_LEVEL(NONE) Conversations

The physical flow of information for commit processing on SYNC_LEVEL(NONE)
conversations consists of a sequence of LU 6.2 verbs containing DDM commands, and DDM
reply messages.

An LU 6.2 SEND_DATA verb at the application requester transmits the DDM request data
stream structure for RDBCMM. An LU 6.2 RECEIVE_AND_WAIT verb at the application
requester then receives the DDM object data stream structure and reply message response for
the DDM command. An LU 6.2 RECEIVE_AND_WAIT verb at the application requester
receives the SEND indication.

An LU 6.2 RECEIVE_AND_WAIT verb at the application server receives the DDM request data
stream structure. An LU 6.2 RECEIVE_AND_WAIT verb at the application server receives the
SEND indication. An LU 6.2 SEND_DATA verb at the application server then transmits the DDM
object data stream and reply message response structure for the RDBCMM. An LU 6.2
RECEIVE_AND_WAIT verb at the application server causes the SEND indication to flow with
the contents of the SEND buffers.

Refer to Chapter 4 on page 37 for further detail about DRDA DDM command sequences.

Figure 12-13 on page 411 shows the commit execution flow.

410 DRDA Volume 1

SNA LU 6.2 and DRDA

TP (Application Requester) LU NETWORK LU TP (Application Server)

RECEIVE_AND_WAIT
(DATA, SEND)

SEND_DATA

DATA(Rqsdss(Rdbcmm(Rdbnam)))

RC=OK

RECEIVE_AND_WAIT

RC=OK

RC=OK

WHAT_RECEIVED=DATA /* RDBCMM */

WHAT_RECEIVED=SEND

RECEIVE_AND_WAIT

SEND_DATA

RC=OK

DATA(Rpydss(Enduowrm(Svrcod, Uowdsp,
Rdbnam,
optional parms))

Objdss(Sqlcard))

RECEIVE_AND_WAIT

RC=OK
(DATA, SEND)

WHAT_RECEIVED=DATA /* ENDUOWRM */

RECEIVE_AND_WAIT

RC=OK

RC=OK

WHAT_RECEIVED=DATA /* SQLCARD */

(DATA, SEND)

RECEIVE_AND_WAIT

WHAT_RECEIVED=SEND

Figure 12-13 Commit Flow for a SYNC_LEVEL(NONE) Conversation

12.7.5 Rollback Flows on SYNC_LEVEL(NONE) Conversations

The physical flow of information for rollback processing on SYNC_LEVEL(NONE)
conversations is the same as the commit flows on SYNC_LEVEL(NONE) conversations. See
Section 12.7.4 on page 410 and replace RDBCMM with RDBRLLBCK.

12.7.6 Commit Flows on SYNC_LEVEL(SYNCPT) Conversations

Figure 12-14 on page 412 displays the flows involved with committing the logical unit of work
on a SYNC_LEVEL(SYNCPT) conversation. The flows are a simplified view of the two-phase
commit synchronization point process. The LU and sync point manager (SPM) functions are
combined to avoid indicating the function split between the LU and the SPM. In practice, the LU
and the sync point manager share the responsibility to complete the two-phase commit protocol
flows. For an in-depth description of the flows and the participating components, see the LU 6.2
and documentation listed in Referenced Documents on page xxiv.

Part 3: Network Protocols 411

LU 6.2 and DRDA SNA

TP (Application Requester) LU/SPM NETWORK LU/SPM TP (Application Server)

RECEIVE_AND_WAIT
SYNCPT

WHAT_RECEIVED

Prepare

TAKE_SYNPT

SYNCPT
Request Commit

Committed

RC=OK
Forget

RC=OK

Figure 12-14 Actual Flow: Commit Flow on a SYNC_LEVEL(SYNCPT) Conversation

12.7.7 Rollback Flows on SYNC_LEVEL(SYNCPT) Conversations

Figure 12-15 displays the flows involved with rolling back the logical unit of work on a
SYNC_LEVEL(SYNCPT) conversation. The flows are a simplified view of the synchronization
point process. The LU and sync point manager (SPM) functions are combined to avoid
indicating the function split between the LU and the SPM. In practice, the LU and the sync point
manager share the responsibility to complete the synchronization point processing flows. For an
in-depth description of the flows and the participating components see the LU 6.2
documentation listed in Referenced Documents on page xxiv.

If a relational database initiates a rollback, the flows described here would begin with a
BACKOUT from the TP on the application server side.

TP (Application Requester) LU/SPM NETWORK LU/SPM TP (Application Server)

RECEIVE_AND_WAIT
BACKOUT

RC=BACKED_OUT

Backout FMH7

BACKOUT

RC=OK

RC=OK

+RSP

Figure 12-15 Actual Flow: Backout Flow on a SYNC_LEVEL(SYNCPT) Conversation

412 DRDA Volume 1

SNA LU 6.2 and DRDA

12.7.8 Handling Conversation Failures

LU 6.2 notifies both the application requester and the instance of the application server if the
conversation linking the application requester to the instance of the application server fails. The
application server must then implicitly roll back the effects of the application and deallocate all
database management resources supporting the application. In the case of a failure on a
SYNC_LEVEL(SYNCPT) conversation, the application requester and application server are
placed in a backout required state by the local LU. The application requester and application
server must issue a BACKOUT on the LU 6.2 interface. The application requester is also
responsible for rolling back the application servers that are not on SYNC_LEVEL(SYNCPT)
conversations.

In the case of a failure on a SYNC_LEVEL(NONE) conversation, the application requester is
responsible for rolling back all other resources involved in the logical unit of work. If there are
SYNC_LEVEL(SYNCPT) conversations, the application requester is responsible for issuing a
BACKOUT on the LU 6.2 interface.

After all resources are rolled back, the application requester must report the failure to the
application in the SQLCA. The application requester can then take one of two actions:

• Reject any subsequent SQL request from the application.

• Treat the next SQL request from the application as the beginning of a new unit of work. In
this case, it would begin the DRDA initialization sequence again.

If there is a conversation failure in the middle of two-phase commit processing, the application
server and application requester are waiting to regain control from the SYNCPT commands, so
conversation failure at this time does not require special DRDA processing. The sync point
manager initiates resync processing to complete the resource recovery process.

12.7.9 Managing Conversations Using Distributed Unit of Work

In a distributed unit of work environment, there can be several conversations involved in a
logical unit of work. Proper management of the conversations provides performance benefits
and optimizes the use of potentially limited conversation resources. The guideline for when a
conversation can be deallocated is defined by the SQL semantics for SQL connections.

Due to coexistence and possible system restrictions, a SYNC_LEVEL(SYNCPT) conversation can
be allocated to an application server that cannot operate at SYNC_LEVEL(SYNCPT). This can be
prevented if the application server can identify to its local LU the SYNC_LEVEL the application
server supports. If a SYNC_LEVEL(SYNCPT) conversation is successfully completed to an
application server that does not support SYNC_LEVEL(SYNCPT), the application server will
return a MGRDEPRM with deperrcd (01) at ACCRDB time. The application requester can allocate
a new conversation with SYNC_LEVEL(NONE), and issue a DEALLOCATE(SYNC_LEVEL) on
the SYNC_LEVEL(SYNCPT) conversation. The SYNC_LEVEL(SYNCPT) conversation will be
deallocated at the next successful commit.

Part 3: Network Protocols 413

SNA Environment Usage in DRDA SNA

12.8 SNA Environment Usage in DRDA
This section describes considerations for problem determination in SNA environments, and
rules usage and target program names usage in SNA environments.

12.8.1 Problem Determination in SNA Environments

The DRDA environment involves remote access to relational database management systems.
Because the access is remote, enhancements to the local problem determination process were
needed. These enhancements use Network Management tools and techniques. DRDA-required
enhancements are alert generation with implied focal point support and a standard display for
the logical unit of work identifier (LUWID). In DRDA Level 1, the LUWID is also used as a
correlator between alerts and locally generated diagnostic information. In DRDA Level 2, the
correlator between alerts and locally generated diagnostic information is the ACCRDB crrtkn
parameter value.

12.8.1.1 LUWID

The logical unit of work identifier (LUWID) is defined to be unique, and is used as the correlator
of information for DRDA Level 1. In DRDA Level 2, there can be two LUWIDs (protected and
unprotected) involved, so the ACCRDB crrtkn parameter value is used as the correlator of
information. If the application requester generates this value, it will use the value of the
unprotected LUWID. See Section 11.2.2.2 on page 353 for more information on crrtkn and
correlation.

12.8.1.2 DRDA LUWID and Correlation of Diagnostic Information

Because an LUWID plays an important role in correlation and work identification, DRDA
specifies guidelines for LUWID display.

The LUWID is a network-wide unique identifier for a logical unit of work. The standardization
of the display of the LUWID provides a consistent cross-product display. The LUWID display is
in 2 forms. The short form is for informational displays that do not require recovery procedures.
The long form includes a sequence number that helps in recovery procedures.

When displaying the short form of an LUWID, a product should include the fully qualified
LUNAME and LUW instance number in the display.

The specific rules for the short form of an LUWID display are as follows:

1. Display the NETID.LUNAME portion of the LUWID as character data in NETID.LUNAME
format (17 bytes maximum). The NETID and LUNAME are delimited by a period.

2. Display the LUW instance number as a string of hexadecimal characters (12 bytes total).
The LUNAME and instance number are delimited by a period.

When displaying the long form of an LUWID, a product should include the fully qualified
LUNAME, LUW instance number, and sequence number in the display.

The specific rules for the long form of an LUWID display are as follows:

1. Display the NETID.LUNAME portion of the LUWID as character data in NETID.LUNAME
format (17 bytes maximum).

2. Display the LUW instance number as a string of hexadecimal characters (12 bytes total).

3. Display the sequence number as a string of hexadecimal characters (4 bytes total).

LUWIDs are Netid.Luname followed by instance number followed by the sequence number (if
long form).

414 DRDA Volume 1

SNA SNA Environment Usage in DRDA

See ALLOCATE (Section 12.7.1.1 on page 392) for more information about LUWIDs.

12.8.1.3 Data Collection

When an error condition occurs at an application requester or application server, data should be
gathered at that location. The data collection process should use the current tools available for
the local environment. An application requester and application server must collect diagnostic
information when they receive a reply message (RM) or generate an RM that falls into the
category of the alerts defined in Table 11-1 on page 356. The application requester must gather
diagnostic information when it receives an LU 6.2 DEALLOCATE with a type of ABEND on the
conversation with the application server.

12.8.1.4 Alerts and Supporting Data in SNA Environments

Correlation between alerts and supporting data at each location, as well as cross-location, is
done through correlation tokens. Using remote unit of work, the correlation token is the
unprotected SNA LUWID. Using distributed unit of work, the correlation token is the ACCRDB
crrtkn parameter value. The crrtkn value can be inherited at the application requester from the
operating environment. If the inherited value matches the format of an SNA LUWID, then it is
sent at ACCRDB in the crrtkn parameter. If the application requester does not inherit a
correlation value, or the value does not match the format of an SNA LUWID, then the
application requester must use the value of the unprotected LUWID, without the sequence
number, as the crrtkn value. The correlation value is required in alerts and supporting diagnostic
information.

The alert points to supporting data with subvector X‘48’ in the alert major vector. The data field
in subfield X‘85’ for subvector X‘48’ must contain an identifier to the supporting data. This data
field is an identifier of the supporting data. This identifier is location-dependent and must be
good enough to uniquely identify the supporting data. Multiple subvector X‘48’s may be used in
the alert. See the model in Table 11-3 on page 358 for more information on the subvector X‘48’.
See the SNA Format and Protocol Reference Manual: Architecture Logic For LU Type 6.2 (SC30-3269,
IBM) for a description of the alert subvectors.

12.8.2 Rules Usage for SNA Environments

This section consists of the SNA usage of the rules defined in Chapter 7 on page 281.

12.8.2.1 LU 6.2 Usage of Connection Allocation Rules

CA2 Usage
Conversations between an application requester and an application server must be
basic conversations, TYPE(BASIC_CONVERSATION).

CA3 Usage
A conversation between an application requester and an application server using
remote unit of work protocols must have SYNC_LEVEL(NONE).

A conversation between an application requester and an application server using
distributed unit of work can have SYNC_LEVEL(NONE) or SYNC_LEVEL(SYNCPT).
If either the application requester or application server does not support
SYNC_LEVEL(SYNCPT), the conversation must have SYNC_LEVEL(NONE).

CA5 Usage
ACCRDB must be rejected with MGRDEPRM when DRDA-required LU 6.2
ALLOCATION parameters are not specified or are specified incorrectly.

Part 3: Network Protocols 415

SNA Environment Usage in DRDA SNA

The required LU 6.2 ALLOCATION parameters for ACCRDB in DRDA Level 1 are:

• TYPE(BASIC_CONVERSATION)

• SYNC_LEVEL(NONE)

• SECURITY(SAME) or
SECURITY(PGM(USER_ID(variable))(PASSWORD(variable)))

SECURITY(NONE) may be specified if user identification and authentication
security is provided outside of the network.

The required LU 6.2 ALLOCATION parameters for ACCRDB using distributed unit of
work protocols are:

• TYPE(BASIC_CONVERSATION)

• SYNC_LEVEL(NONE) or SYNC_LEVEL(SYNCPT)

• SECURITY(SAME) or
SECURITY(PGM(USER_ID(variable)) (PASSWORD(variable)))

SECURITY(NONE) may be specified if user identification and authentication
security is provided using SECMGR Level 5. See rule SE2 usage in Section 7.11 on
page 299.

12.8.2.2 LU 6.2 Usage of Commit/Rollback Processing Rules

CR2 Usage
Remote unit of work application servers and distributed unit of work application
servers with SYNC_LEVEL(NONE) must inform the application requester when the
current logical unit of work at the application server ends as a result of a commit or
rollback request by an application or application requester request (dynamic commit
and dynamic rollback are not allowed in distributed unit of work). This information is
returned in the RPYDSS, containing the ENDUOWRM reply message. This RPYDSS is
followed by an OBJDSS containing an SQLCARD with information that is input to the
SQLCA to be returned to the application. If multiple commit or rollbacks occur prior to
exiting a stored procedure, only one ENDUOWRM is returned. See rule CR13 in Section
7.4 on page 284 for setting the uowdsp parameter when multiple commit and/or
rollbacks occur in a stored procedure. See CR6 for the SQLSTATEs to return.

CR8 Usage
An application server using distributed unit of work begins commit processing only if
it is requested to commit. If an application requester receives an LU 6.2 TAKE_SYNCPT
on the conversation with an application server, the application requester must ensure a
rollback occurs for the logical unit of work.

DRDA Level 1 application requesters do not support the semantics of receiving
TAKE_SYNCPT on the conversation.

12.8.2.3 LU 6.2 Usage of Security (SE Rules)

SE2 The application server must be able to obtain the verified end user name associated
with the conversation. DRDA, therefore, requires one of the following mechanisms:

• The specification of one of the following LU 6.2-defined types of Conversation-
Level Security on ALLOCATE:

— SECURITY (PGM (USER_ID (variable) PASSWORD (variable) PROFILE
(variable)))

416 DRDA Volume 1

SNA SNA Environment Usage in DRDA

The USER_ID value and the PASSWORD value must adhere to LU 6.2 access
security information subfield constraints. The application server uses the
PASSWORD value to verify the identity of the end user making the allocation
request.

— SECURITY (SAME)

• The use of DCE-based security mechanisms for end-user identification and
authentication.

• DRDA-defined security mechanisms for end-user identification and authentication.

ACCRDB must be rejected with MGRDEPRM if the application server does not obtain
the verified end-user name.

SE3 If user identification and authentication security is not provided outside of the
network, an application requester must have send support for each of the types of
Conversation Level Security listed in rule SE2. An application server must have receive
support for each of the types of Conversation-Level Security listed in rule SE2.

SE4 If user identification and authentication security is provided outside of the network, the
security checks and values returned take precedence over the LU 6.2 security checks
and values returned. For example, if an end-user name is provided on ALLOCATE, the
end-user name supplied in the DCE security context information takes precedence over
the end-user name received on ALLOCATE.

12.8.2.4 LU 6.2 Usage of Serviceability Rules

SV1 Usage
The application requester must generate diagnostic information and optionally
generate an alert when it receives an LU 6.2 DEALLOCATE with a type ABEND from
the application server.

SV8 Usage
The SNA LUWID or crrtkn or the ACCRDB must be present in the alert, in the
supporting data information, and in diagnostic information.

SV9 Usage
Using distributed unit of work protocols, an application requester must send a
correlation token to the application server at ACCRDB using the crrtkn parameter. If a
correlation token exists for this logical unit of work, and it has the format of an SNA
LUWID, then this token is used. If the existing token does not have the format of an
SNA LUWID, or the token does not exist, then the application requester must send the
SNA unprotected LUWID. The crrtkn value does not include the sequence number
field of the LUWID.

12.8.2.5 LU 6.2 Usage of Names

This section describes usage of names for relational database names and for target program
names.

Part 3: Network Protocols 417

SNA Environment Usage in DRDA SNA

LU 6.2 Usage of Relational Database Names Rules

RN2 Usage
DRDA associates an RDB_NAME with a specific transaction program name at a unique
NETID.LUNAME. DRDA, however, does not define the mechanism that derives the
NETID.LUNAME and transaction program name pair from the RDB_NAME. The
particular derivation mechanisms are specific to the environment.

It is the responsibility of the application requester to determine the RDB_NAME name
of the relational database and to map this name to an SNA logical unit name and
transaction program name.

RN3 Usage
More than one RDB_NAME may exist for a single NETID.LUNAME. An RDB_NAME
must map to a single NETID.LUNAME and Transaction Program Name.

RN4 Usage
DRDA permits the association of more than one RDB_NAME with a single transaction
program name at a NETID.LUNAME.

LU 6.2 Usage of Transaction Program Names Rules

TPN1 Usage
The transaction program names identifying implemented DRDA application servers
and database servers can be a registered DRDA transaction program name, a registered
DDM transaction program name, or any non-registered transaction program name.

TPN2 Usage
DRDA allows DDM file servers and DRDA SQL servers to use either the same
transaction program name or different transaction program names.

TPN3 Usage
Registered DRDA transaction program names begin with X‘07F6’. See the SNA
Transaction Programmer’s Reference Manual for LU Type 6.2 (GC30-3084, IBM) for details
about registered transaction program names. DRDA transaction program names have
a length of 4 bytes. The remaining characters of the transaction program name are
Character Set 1134 A through Z and 0 through 9).

TPN4 Usage
Multiple DRDA transaction program names may exist for a single NETID.LUNAME

TPN5 Usage
A DRDA transaction program name is unique within an LU.

TPN6 Usage
Transaction programs (TPs) that are registered DRDA transaction program names must
provide all the capabilities that DRDA requires.

TPN7 Usage
TPs that provide DRDA capabilities may perform additional non-DRDA TP work.
These TPs are not required to perform additional non-DRDA TP work.

TPN8 Usage
The default DRDA transaction program name is X‘07F6C4C2’, and it is a registered
transaction program name. The DRDA transaction program name X‘07F6C4C2’ must
be definable at each LU that supports at least one application server providing DRDA
capabilities.

418 DRDA Volume 1

SNA SNA Environment Usage in DRDA

12.8.3 Transaction Program Names

SNA LU 6.2 requires that an application requester (AR) specify the transaction program name of
the application server (AS) when allocating a conversation. The application requester determines
the transaction program name of the application server during the process of resolving the
RDB_NAME of the application server to a NETID.LUNAME. DRDA allows the use of any valid
transaction program name that meets the standards of the SNA transaction program name
architecture and that the application server supports. Refer to the SNA Format and Protocol
Reference Manual: Architecture Logic For LU Type 6.2 (SC30-3269, IBM) and SNA Transaction
Programmer’s Reference Manual for LU Type 6.2 (GC30-3084, IBM) for more details on transaction
program name structure and use.

To avoid potential name conflicts, the application server transaction program name should be,
but need not be, a registered SNA transaction program name. DRDA has defined one registered
transaction program name that can be used. This transaction program name is X‘07F6C4C2’.
The first two bytes of this name (X‘07F6’) have been registered with SNA to represent the DRDA
functional class for transaction programs. DRDA transaction programs are classified as SNA
Service Transaction Programs because they provide SQL as the application interface rather than
LU 6.2 verbs.

DDM also provides a registered transaction program name that can be used. This transaction
program name is X‘07F0F0F1’. The DDM transaction program name would be used if the DDM
implementation at the application server provided file server functions in addition to DRDA
functions.

The default DRDA transaction program name is X‘07F6C4C2’. The DRDA transaction program
name X‘07F6C4C2’ must be definable at each LU that has an application server providing DRDA
capabilities. An application requester can then assume the existence of transaction program
name X‘07F6C4C2’ at any LU providing DRDA capabilities, and default to transaction program
name X‘07F6C4C2’ when a request requiring an ALLOCATE does not specify a transaction
program name. Because transaction programs can have aliases, the transaction program with
transaction program name X‘07F6C4C2’ can also have the DDM transaction program name
X‘07F0F0F1’ or some other registered DRDA transaction program name. DRDA, however, does
not require that a DRDA TP have multiple transaction program names.

Part 3: Network Protocols 419

SNA

420 DRDA Volume 1

Chapter 13

TCP/IP

This chapter summarizes the characteristics of DRDA communications flows using the TCP/IP
network environment.

13.1 TCP/IP and the DDM Communications Model
Implementations of DRDA use the DDM Communications Managers. The TCP/IP
Communications Manager (CMNTCPIP) supports the protocols defined by Transport Control
Protocol/Internet Protocol (TCP/IP). For further detail, see the DDM terms CMNTCPIP in the
DDM Reference.

13.2 What You Need to Know About TCP/IP
This chapter assumes some familiarity with TCP/IP and the sockets interface. The sockets
interface is used only as a convenience to model the functionality level and calls to drive the
TCP/IP protocols. With a general exposure to these topics, it should be possible to understand
DRDA’s use of TCP/IP. With more detailed knowledge, it should be possible to understand how
to use TCP/IP in DRDA environments. For a list of relevant TCP/IP publications, see
Referenced Documents on page xxiv.

The reader should also have some familiarity with DDM terms and the DDM model. A reader
with a general exposure to DDM should be able to understand how DRDA’s use of TCP/IP
relates to the DDM communications managers of the DDM model.

Refer to Referenced Documents on page xxiv for the list of DDM publications.

Part 3: Network Protocols 421

TCP/IP TCP/IP

13.3 TCP/IP
TCP/IP is made up of several parts that interact to provide network services to users. The parts
are Applications Services, TCP, UDP, IP, and Network. These parts and their relationship to each
other are graphically displayed in Figure 13-1. A brief description of the parts, follows the figure.

TCP
(reliable)

UDP
(unreliable)

Application Services

IP

Network

Figure 13-1 TCP/IP Components

13.3.1 Transport Control Protocol (TCP)

The transport control protocol is the level of service that DRDA needs to provide the integrity
required by DRDA. TCP services on top of IP provide the required functions.

The interface between the application program and TCP can be characterized as:

• Stream-oriented

The data is transferred between application programs in streams of bytes. The receiver
receives the bytes in the same sequence as sent.

• Virtual Circuit Connection

This is equivalent to a conversation in LU 6.2 terms. The applications are connected for the
duration of the work and both sides of the TCP/IP connection are aware of the network
address of the partner.

• Buffered Transfer

The data can be buffered into packets independent of the pieces the application program
transfers. The order of bytes is preserved and delivered in the same order sent.

• Unstructured Stream

The structure of the data is known only by the applications involved in the TCP/IP
connection. The applications must understand the stream content.

• Full Duplex Connection

TCP/IP connections allow concurrent transfer in both directions. The SQL interface is
synchronous, but DRDA can still take advantage of the full duplex feature. For example, an
application server might begin returning answer set data before the application requester has
completed sending a chain of commands, or an application requester may begin sending new
commands before the application server has completed sending the answer set back from the
previous command.

The reliability of TCP is provided by acknowledgments to the sender of a packet that the packet
was received at the destination. The sent packet and acknowledgment contain a sequence
number to test for duplication.

422 DRDA Volume 1

TCP/IP TCP/IP

13.3.2 Application Services

The application services part is made up of high-level and specific services for applications. The
application requester and application server are application services.

13.4 Sockets Interface
The sockets interface calls are defined in DRDA as a modeling tool to help describe the series of
flows to drive DRDA protocol on a TCP/IP connection. Another interface might be chosen, but
care should be taken to not introduce functions that are not supported at both ends of the
TCP/IP connection.

Part 3: Network Protocols 423

TCP/IP and DRDA TCP/IP

13.5 TCP/IP and DRDA
Application requesters and application servers that provide DRDA capabilities use DRDA flows.
DRDA flows permit implementations of DRDA to initialize TCP/IP connections, terminate
TCP/IP connections, and process DRDA requests.

The socket calls that are of interest to DRDA are:

Socket Creates an end point (socket) for communication.

Close Closes a socket.

Bind Establishes a local address for a socket.

Connect Initiates a TCP/IP connection on a socket.

Listen Listens for TCP/IP connection requests on a socket.

Accept Accepts a TCP/IP connection on a socket.

Write Sends data on a TCP/IP connection.

Read Receives data on a TCP/IP connection.

Getpeername
Gets the address of the peer to which the socket connects.

13.5.1 Initializing a Connection

Initialization processing allocates a TCP/IP connection and prepares a DRDA execution
environment. Only an application requester can start a TCP/IP connection. Authentication
occurs during initialization processing through the use of DRDA flows. Database management
systems verify that authenticated IDs have the authorization to perform DRDA database
manager requests.

Refer to Section 6.1 on page 270 and Section 6.1.1 on page 270for a detailed description of
architected end-user names.

Authentication between an application requester and application server occurs once per TCP/IP
connection during DDM security manager Level 5 access security (ACCSEC) and security check
(SECCHK) processing.

Initialization processing also propagates basic accounting information. The socket allows for the
identification of the peer socket on the TCP/IP connection. The end-user name is derived from
the SECCHK command. The correlation token is required to be passed when accessing the RDB
as the crrtkn on the ACCRDB.

The DDM Reference provides a general overview of the component communications flows that
comprise a DRDA initialization flow. See the DDM term TCPCMNI, which discusses initiation
of TCP/IP connections.

13.5.1.1 Initialization Flows

The physical flow of information consists of a sequence of socket calls containing DDM
commands. Figure 13-2 on page 425 depicts the initialization flows while using DRDA-defined
userid and password security or DCE security mechanisms.

A socket call followed by a connect call at the application requester causes the creation of a
TCP/IP connection between the application requester and application server. Individual write
calls at the application requester transmit each of the DDM request data stream structures for
EXCSAT, ACCRDB, and EXCSQLSTT, along with any command data that the command can

424 DRDA Volume 1

TCP/IP TCP/IP and DRDA

have. Individual read calls at the application requester then receive the DDM reply data stream
structure or object data stream structure response for each of the DDM commands.

Socket implementation-specific calls at the application server obtain information about the
TCP/IP connection that is available to the application server. The obtained information includes
the peer socket address. Individual read calls at the application server receive the DDM request
data stream structures or command data. Individual write calls at the server then transmit the
DDM object data stream and reply data stream response structures for each of EXCSAT,
ACCRDB, and EXCSQLSTT.

Refer to Chapter 4 on page 37 for further detail about DRDA DDM command sequences.

The DRDA TCP/IP initialization flow with negotiation for security mechanisms consists of the
following:

Socket (AR) TCP IP NETWORK IP TCP Socket (AS)

SOCKET

SOCKET

BIND

LISTEN

WRITE
(Rqsdss(Accsec(parms)))

READ
(next RQSDSS)

READ
(reply)

WRITE
(Objdss(Accsecrd(parms)))

WRITE
(Rqsdss(Secchk(parms)
Objdss(Sectkn))

READ
(next RQSDSS)

READ
(reply)

WRITE
(Objdss(Sectkn))

WRITE
(Rqsdss(Accrdb(parms)))

READ
(next RQSDSS)

READ
(reply)

WRITE
(Rpydss(Accrdbrm(parms)))

.

.

.

.

.

.

CONNECT ACCEPT

WRITE
(Rqsdss(Excsat(parms)))

READ
(next RQSDSS)

READ WRITE
(Objdss(Excsatrd(parms)))

Figure 13-2 DRDA Initialization Flows on TCP/IP with DCE Security

Part 3: Network Protocols 425

TCP/IP and DRDA TCP/IP

13.5.2 Processing a DRDA Request

DRDA requests exist for the processing of remote SQL statements and for the preparation of
application programs. DRDA request flows transmit a remote DRDA request and its associated
reply objects between an application requester and application server. Only an application
requester can initiate a DRDA request flow.

Because authentication occurs during initialization processing, DRDA requires no additional
authentication during DRDA request flows.

DRDA remote SQL statement requests often operate on multiple rows of multiple tables and can
cause the transmission of multiple rows from the application server to the application requester.
DRDA provides two data transfer protocols in support of these operations:

• Fixed-Row Protocol

• Limited Block-Protocol

Application requesters and application servers use the fixed-row protocol for the processing of a
query that can be the target of a WHERE_CURRENT_OF clause on an SQL UPDATE or DELETE
request, or for the processing of a multi-row fetch or fetch using a scrollable cursor. The fixed-
row protocol guarantees the return of no more than the number of rows requested by the
application whenever the application requester receives row data.

Application requesters and application servers use the limited block-protocol for the processing
of a query that uses a cursor for read-only access to data. The limited block-protocol optimizes
data transfer by guaranteeing the transfer of a minimum amount of data (which can be part of a
row, multiple rows, or multiple rows and part of a row) in response to each DRDA request.

Refer to Section 4.4.6 on page 76 for further detail on DRDA data transfer protocols.

The DDM Reference provides a general overview of the component communications flows that
comprise a DRDA request flow. The DDM terms TCPSRCCR and TCPSRCCD discuss requester
and server communications flows that occur during the processing of a DRDA remote request.

13.5.2.1 Bind Flows

The physical flow of information consists of a sequence of packets containing DDM commands,
FD:OCA data, SQL communication areas, and SQL statements.

Figure 13-3 on page 427 depicts DDM command processing using socket interface calls. Figure
13-3 on page 427 assumes that DDM command chaining is not being used.

Individual WRITE calls at the application requester transmit each of the DDM request data
stream structures for BGNBND, BNDSQLSTT, and ENDBND along with any command data that
the command can have. Individual READ calls at the application requester then receive the
DDM object data stream structure response for each of the DDM commands.

Individual READ calls at the application server receive each DDM request data stream structure
or command data stream structure. Individual WRITE calls at the server then transmit the DDM
object data stream and reply data stream response structures for each of BGNBND,
BNDSQLSTT, and ENDBND.

Refer to Chapter 4 on page 37 for further detail about DRDA DDM command sequences.

A bind flow is shown in Figure 13-3 on page 427.

426 DRDA Volume 1

TCP/IP TCP/IP and DRDA

Socket (AR) TCP IP NETWORK IP TCP Socket (AS)

WRITE
(Rqsdss(Bndsqlstt(parms))
Objdss(Sqlstt(SQL statement))
Objdss(Sqlsttvrb(declarations))

READ
(next RQSDSS)

READ
(reply)

WRITE
(Objdss(Sqlcard))

WRITE
(Rqsdss(Endbnd(parms)))

READ
(next RQSDSS)

WRITE
(Objdss(Sqlcard))

READ
(reply)

.

.

.

.

.

.

.

.

.

.

.

.

WRITE
(Rqsdss(Bgnbnd(parms)))

READ
(next RQSDSS)

READ
(reply)

WRITE
(Objdss(Sqlcard))

Figure 13-3 DRDA Bind Flows on TCP/IP

13.5.2.2 SQL Statement Execution Flows

Figure 13-4 on page 428 depicts DDM command processing using socket interface calls.

The physical flow of information consists of a sequence of packets containing DDM commands,
FD:OCA data descriptors, FD:OCA data, and DDM reply messages.

Individual WRITE calls at the application requester transmit each of the DDM request data
stream structures for OPNQRY and CNTQRY. Individual READ calls at the application
requester then receive the DDM object data stream structure and reply message responses for
the DDM commands.

Individual READ calls at the application server receive each DDM request data stream structure.
Individual WRITE calls at the application server then transmit the DDM object data stream and
reply message response structures for each of OPNQRY and CNTQRY.

Refer to Chapter 4 on page 37 for further detail about DRDA DDM command sequences.

Figure 13-4 on page 428 shows the SQL statement execution flow.

Part 3: Network Protocols 427

TCP/IP and DRDA TCP/IP

Socket (AR) TCP IP NETWORK IP TCP Socket (AS)

WRITE
(Rqsdss(Cntqry(parms)))

READ
(next RQSDSS)

READ
(reply)

WRITE
(Objdss(Qrydta(sqlca, row data))
Rpydss(Endqryrm(parms))
Objdss(Sqlcard))).

.

.

.

.

.

.

.

.

.

.

.

WRITE
(Rqsdss(Opnqry(parms)))

READ
(next RQSDSS)

READ
(reply)

WRITE
(Rpydss(Opnqryrm(parms))
Objdss(Qrydsc(data description))

(Qrydta(sqlca, row data)))

Figure 13-4 DRDA SQL Statement Execution Flows on TCP/IP

13.5.3 Terminating a Connection

Terminate connection processing closes a socket associated with the TCP/IP connection. Under
normal circumstances, only an application requester initiates termination of the socket. In error
situations, an application server can also initiate the termination of the socket.

The termination of the socket between an application requester and an instance of an application
server terminates the communications between the application requester and that instance of the
application server. The application server is also responsible to terminate the socket.

The application requester must ensure that all network connections associated with the
execution of the application are terminated when the application normally or abnormally
terminates.

On a TCP/IP connection, the application server receives an indication the socket is terminated.
The termination includes an implied rollback at the application server. It is the responsibility of
the application server to ensure a rollback during local termination processing at the application
server.

The DDM Reference provides a general overview of the communications flows that make up a
DRDA TCP/IP connection termination. The DDM term, TCPCMNT describes the termination of
a TCP/IP connection. Figure 13-5 on page 429 shows the termination of a TCP/IP connection.

428 DRDA Volume 1

TCP/IP TCP/IP and DRDA

Socket (AR) TCP IP NETWORK IP TCP Socket (AS)

CLOSE READ

CLOSE

.

.

.

.

.

.

Figure 13-5 DRDA Termination Flows on TCP/IP

Figure 13-6 shows the abnormal termination of a TCP/IP connection. If the application server
fails, the application server must attempt to return a permanent agent error reply message to
provide diagnostics of the error to the application requester.

Socket (AR) TCP IP NETWORK IP TCP Socket (AS)

WRITE
(RQSDSS)

READ
(next RQSDSS)

READ
(reply)

CLOSE

WRITE
(OBJDSS(Agnprmrm))

CLOSE

Server Fails

.

.

.

.

.

.

Figure 13-6 DRDA Server Abnormal Termination Flows on TCP/IP

13.5.4 Commit Flows

The physical flow of information for commit processing on TCP/IP connections consists of a
sequence of packets containing DDM commands, and DDM reply messages.

13.5.4.1 Remote Unit of Work

Commit Flows: A WRITE call at the application requester transmits the DDM RDBCMM to
commit the current unit of work. A READ call is issued to receive a response to the commit
request.

A READ call at the application server receives the DDM request data stream structure. The RDB
commits the unit of work. A WRITE call transmits the DDM ENDUOWRM, end unit of work,
and an SQLCA identifying the resolution of the commit.

Refer to Chapter 4 on page 37 for further detail about DRDA DDM command sequences.

Figure 13-7 on page 430 shows the commit execution flow.

Part 3: Network Protocols 429

TCP/IP and DRDA TCP/IP

Socket (AR) TCP IP NETWORK IP TCP Socket (AS)

WRITE
(Rqsdss(Rdbcmm(parms)))

READ

READ WRITE
(Rpydss(Enduowrm(parms))
Objdss(Sqlcard)).

.

.

.

.

.

Figure 13-7 DRDA Commit Flows on TCP/IP

Rollback Flows: The physical flow of information for rollback processing on TCP/IP connections
is the same as the commit flows on TCP/IP connections. See Figure 13-7 and replace RDBCMM
with RDBRLLBCK.

13.5.4.2 Distributed Unit of Work Using DDM Sync Point Manager

Commit Flows: The application requester invokes the DDM Sync Point Manager to coordinate
the commit.

Refer to DDM SYNCPTOV term for a definition of the DRDA Level 3 2-phase command
sequences and logging requirements. Figure 13-8 on page 431 shows the four message two-
phase commit with each application server that participated in the current unit of work. Prior to
starting any units of work the application requester exchanges log information with the
application server. The log information is used if the commit operation fails and
resynchronization is required to complete the commit operation. When initiating a unit of work
with an application server, the sync point manager at application requester issues a WRITE call
to transmit the new unit of work identifier sync point control request to the sync point manager
at the application server. No reply is expected from the application server.

To initiate the commit, the application requester sync point manager issues a WRITE call to
transmit the prepare to commit sync point control request to the application server. A READ call
is then issued to receive the reply from the application server’s sync point manager.

A READ call at the application server receives the prepare to commit sync control request. After
the RDB has prepared to commit, the sync point manager sends a request that the unit of work is
ready to be committed by issuing a WRITE call with a request to commit sync control reply data
back to the application requester. Another READ is issued to receive the outcome of the
commit.

At the application requester, the READ completes with the request to commit sync control reply
data. The sync point manager commits the unit of work and issues a WRITE call with the
committed sync control request to the application server specifying implicit or explicit forget
processing. Implicit forget processing is a performance option to save a network message and
improve overall commit performance. Another READ is issued to receive the outcome of the
commit at the application server.

The READ completes at the application server with the committed sync control request. The
sync point manager commits and forgets the unit of work. An optional WRITE call transmits the
forget sync control reply data to the application requester. Otherwise the next successful reply
infers the forget.

A READ call at the application requester receives the explicit forget or an implied forget. The
unit of work is forgotten and control is returned to the application requester and then to the
application.

430 DRDA Volume 1

TCP/IP TCP/IP and DRDA

Figure 13-8 shows the two-phase commit execution flow.

Socket (AR) TCP IP NETWORK IP TCP Socket (AS)

WRITE
(RQSDSS(Syncctl(Request_Log)))
OBJDSS(SyncLog))

WRITE
(RQSDSS(Syncctl(New UOWID)))

READ

READ

READ WRITE
(OBJDSS(SfncLog))

.

.

.

.

.

.

.

.

.

.

.

.

Exchange Sync Point Log Information

Start Unit of Work

Perform SQL Requests

Commit Unit of Work

WRITE
(RQSDSS(Syncctl(Prepare)))

READ

READ WRITE
(RPYDSS(Synccr

(Request_Commit))

WRITE
(RQSDSS(Syncctl(Committed)))

READ

READ WRITE
(RPYDSS(Synccrd(Forget))

Unit of Work is Committed

Figure 13-8 TCP/IP Distributed Unit of Work Commit Flow

Rollback Flows: The application requester invokes the DDM Sync Point Manager to coordinate
the rollback. Figure 13-9 on page 432 shows the one message rollback execution flow. The sync
point manager rollbacks the unit of work and issues a WRITE call with the rollback sync control
data stream structure to the application server.

A READ call at the application server receives the rollback sync control data stream structure.
The sync point manager rollbacks and forgets the unit of work.

Part 3: Network Protocols 431

TCP/IP and DRDA TCP/IP

Socket (AR) TCP IP NETWORK IP TCP Socket (AS)

WRITE
(RQSDSS(Syncctl(Request_Log)))
OBJDSS(SyncLog))

WRITE
(RQSDSS(Syncctl(New UOWID)))

WRITE
(RQSDSS(Syncctl(Rollback)))

READ

READ

READ

READ WRITE
(OBJDSS(SfncLog))

.

.

.

.

.

.

.

.

.

.

.

.

Exchange Sync Point Log Information

Start Unit of Work

Perform SQL Requests

Rollback Unit of Work

Figure 13-9 TCP/IP Distributed Unit of Work Rollback Flow

13.5.5 Handling Connection Failures

There are facilities available in TCP/IP to allow the application requester and the instance of the
application server to be informed if the TCP/IP connection linking the application requester to
the instance of the application server fails. The application server must then implicitly roll back
the effects of the application and deallocate all database management resources supporting the
application.

Distributed unit of work connections, in the case of a failure on a TCP/IP connection, the
application requester is responsible for rolling back all other resources involved in the unit of
work, which might include initiating backout processing to a sync point manager to backout the
application servers on protected network connections.

After all resources are rolled back, the application requester must report the failure to the
application in the SQLCA. The application requester can then take one of two actions:

• Reject any subsequent SQL request from the application.

• Treat the next SQL request from the application as the beginning of a new unit of work. In
this case, it would begin the DRDA initialization sequence again.

432 DRDA Volume 1

TCP/IP TCP/IP Environment Usage in DRDA

13.6 TCP/IP Environment Usage in DRDA
This section describes considerations for problem determination in TCP/IP environments, and
rules usage and target program names usage in TCP/IP environments.

13.6.1 Problem Determination in TCP/IP Environments

The DRDA environment involves remote access to relational database management systems.
Because the access is remote, enhancements to the local problem determination process were
needed. These enhancements use Network Management tools and techniques. These tools and
techniques are:

• Standard Focal Point Messages

• Focal Point support

• Correlation and Correlation display

• Data Collection

13.6.1.1 Standard Focal Point Messages

The commonly accepted focal point messages in the TCP/IP environment are Simple Network
Management Protocols (SNMP) traps. At this time, DRDA does not define SNMP traps.

13.6.1.2 Focal Point Support

DRDA assumes a focal point is available in a TCP/IP environment and assumes the use of SNA
alerts.

13.6.1.3 Correlation and Correlation Display

Correlation values that are generated in a TCP/IP environment have the following format:

x.yz
where:
x 8-byte character representation of the 4-byte IP address

of the application requester
. delimiter
y 4-byte character representation of the 2-byte socket address

of the application requester
z 6-byte binary value (possibly a clock value) that makes

the correlation value unique

The specific rules for the display of a correlation value generated are:

1. Display the correlation token in the format x.y.z.

2. Display the x.y portion of the correlation token as character data in x.y format (13 bytes).

3. Display the z part of the correlation value as a string of hexadecimal characters (12 bytes).
A period is used to delimit the x.y from z.

Part 3: Network Protocols 433

TCP/IP Environment Usage in DRDA TCP/IP

Correlation Between Focal Point Messages and Supporting Data

Correlation between focal point messages and supporting data at each location, as well as cross-
location, is done through correlation tokens. The correlation token is the ACCRDB crrtkn
parameter value. The crrtkn value can be inherited at the application requester from the
operating environment. If the inherited value matches the format of a DRDA-defined correlation
token (x.yz), then it is sent at ACCRDB in the crrtkn parameter. If the application requester does
not inherit a correlation value, or the value does not match the format of a DRDA-defined
correlation token, then the application requester must generate a correlation token. The
correlation value is required in focal point messages and supporting diagnostic information.

13.6.2 Rules Usage for TCP/IP Environments

This section consists of the TCP/IP usage of the rules defined in Chapter 7 on page 281.

13.6.2.1 TCP/IP Usage of Connection Allocation Rules

CA2 Usage
Connections between an application requester and an application server must have the
following socket options:

• SO_KEEPALIVE: keep connection alive to provide timely detection of a broken
connection.

• SO_LINGER: linger on close if data present to allow detection of a broken
connection.

CA3 Usage
A connection between an application requester and an application server using remote
unit of work protocols must use the SYNCPTMGR at Level 0.

A connection between an application requester and an application server using
distributed unit of work protocols can have SYNCPTMGR at Level 0 or SYNCPTMGR
at Level 5. If either the application requester or application server does not support
SYNCPTMGR at Level 5, the connection must use SYNCPTMGR at Level 0.

CA12 Usage
An application requester operating using distributed unit of work protocols can initiate
a TCP/IP connection with one or more application servers in a unit of work.

13.6.2.2 TCP/IP Usage of Commit/Rollback Processing Rules

CR2 Usage
Remote unit of work application servers or distributed unit of work application servers
on connections using SYNCPTMGR at Level 0 must inform the application requester
when the current unit of work at the application server ends as a result of a commit or
rollback request by an application or application requester request (dynamic commit
and dynamic rollback are not allowed in a distributed unit of work connection). This
information is returned in the RPYDSS, containing the ENDUOWRM reply message.
This RPYDSS is followed by an OBJDSS containing an SQLCARD with information that
is input to the SQLCA to be returned to the application. If multiple commit or rollbacks
occur prior to exiting a stored procedure, only one ENDUOWRM is returned. See rule
CR13 in Section 7.4 on page 284 for setting the uowdsp parameter when multiple
commit and/or rollbacks occur in a stored procedure. See CR6 for the SQLSTATEs to
return.

434 DRDA Volume 1

TCP/IP TCP/IP Environment Usage in DRDA

13.6.2.3 TCP/IP Usage of Security (SE Rules)

SE2 The application server must support SECMGR Level 5 to be able to obtain the verified
end-user name associated with the TCP/IP connection. DRDA Level 3, therefore,
requires one of the following mechanisms:

• The specification of one of the following DRDA supported security mechanisms:

— DCE-based security mechanism for end-user identification and authentication

— Userid and password (DDM usridpwd) security mechanism for end-user
identification and authentication

— Userid and new password (DDM usridnwpwd) security mechanism for end-user
identification, authentication, and the changing of the password

— Userid only (DDM usridonl) security mechanism for end-user identification

ACCRDB must be rejected with MGRDEPRM if the application server does not
obtain the verified end-user name.

13.6.2.4 TCP/IP Usage of Serviceability Rules

SV1 Usage
The application requester must generate diagnostic information and may generate a
focal point message when the TCP/IP connection to the application server ends
unexpectedly.

SV8 Usage
The DDM UOWID or the crrtkn on the ACCRDB must be present in the alert, in the
supporting data information, or in diagnostic information.

13.6.2.5 TCP/IP Usage of Relational Database Names Rules

RN2 Usage
DRDA associates an RDB_NAME with a specific port at a unique IP address. DRDA,
however, does not define the mechanism that derives the IP address and port pair from
the RDB_NAME. The particular derivation mechanisms are specific to the
environment.

It is the responsibility of the application requester to determine the RDB_NAME name
of the relational database and to map this name to an IP address and port.

RN3 Usage
More than one RDB_NAME may exist for a single IP address. An RDB_NAME must
map to an IP address and port.

RN4 Usage
DRDA permits the association of more than one RDB_NAME with a single port at an IP
address.

13.6.2.6 TCP/IP Usage of PORT for DRDA Service Rules

TPN1 Usage
The PORT identifying DRDA application servers and database servers must support
the registered TCP/IP well known port for a DRDA application server or any non-
registered TCP/IP port.

TPN2 DRDA allows DDM file servers and DRDA SQL servers to use either the same well
known port or different well known port.

Part 3: Network Protocols 435

TCP/IP Environment Usage in DRDA TCP/IP

TPN3 Usage
Registered TCP/IP well known port for a DRDA application server is 446.

TPN4 Usage
Multiple ports for a DRDA application server might exist for a single IP address.

TPN5 Usage
A well known port for an application server is unique for an IP address.

TPN6 Usage
A well known port for a DRDA application server must provide all the capabilities that
DRDA requires.

TPN7 Usage
The well known port that provide DRDA capabilities may perform additional non-
DRDA work. These ports are not required to perform additional non-DRDA.

TPN8 Usage
The DRDA well known port must be supported at each IP address with at least one
application server providing DRDA capabilities.

13.6.3 Service Names

TCP/IP requires that an application requester specify the port of the application server when
initiating a connection. The application requester determines the port of the application server
during the process of resolving the RDB_NAME of the application server to an IP address.
DRDA allows the use of any valid port that meets the standards of the TCP/IP architecture and
that the application server supports.

To avoid potential name conflicts, the application server port should be, but need not be, a
registered TCP/IP well known port for a DRDA application server. This well known port is 446.

The default DRDA well known port for an application server is 446. The default well known port
must be supported at each IP address that has an application server providing DRDA
capabilities. An application requester can then assume the existence of a well known port 446 at
any IP address providing DRDA capabilities, and default to port 446 when a request requiring a
TCP/IP connection does not specify a port.

436 DRDA Volume 1

Appendix A

Building Statement-Level SQLCAs for Multi-Row
Fetches

Building the Statement-Level SQLCAs for Multi-Row Fetch Operations

Table A-1 and the text that follows the table describes the building of the statement-level
SQLCAs for multi-row fetch operations. The text also defines when the SQLCA should be
returned to the application.

The actual process and data in the SQLCAs can vary by product, so the individual product
documentation should be consulted for the exact process and format.

Multi-row fetch is not supported in DRDA Level 1.

Table A-1 Setting of the Statement-Level SQLCA
__

Condition Action__LL LL LL

• No errors

• No warnings

• All requested rows returned

• SQLCODE = Execution of SQL statement was
successful

• SQLSTATE = ’00000’

• SQLERRD3 = Number of rows

• SQLERRD4 = Number of bytes used for each result
row

• SQLERRD5 = 0__

• No errors

• No warnings

• Fewer than all requested
rows returned, due to EOF

• SQLCODE = Execution of SQL statement was
successful

• SQLSTATE = ’00000’

• SQLERRD3 = Number of rows returned

• SQLERRD4 = Number of bytes used for each result
row

• SQLERRD5 = SQLCODE value for position of the
cursor is after the last row of the result table

If diagnostic area SQLCAs are provided, then the
diagnostic area SQLCA after the SQLCA for the last
good row will contain SQLSTATE X’02000’ and the
SQLCODE value for the position of the cursor is after
the last row of the result table__

• EOF

• No errors

• No warnings

• SQLCODE = value for position of the cursor is after
the last row of the result table

• SQLSTATE=’02000’

• SQLERRD3 = 0

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Part 3: Network Protocols 437

Building Statement-Level SQLCAs for Multi-Row Fetches

__
Condition Action__LL LL LL

• SQLERRD4 = Number of bytes used for each result
row

• SQLERRD5 = 0__

• No errors

• Warning Flags

• All requested rows returned

• SQLCODE = Execution of SQL statement was
successful

• SQLSTATE = SQLSTATE of last Warning

• SQLWARN0 = ’W’

• SQLWARNx = ’W’ (The warning flags are an
accumulation of all warning flags set while
processing the multi-row fetch.)

• SQLERRD3 = Number of rows returned

• SQLERRD4 = Number of bytes used for each result
row

• SQLERRD5 = 0__

• No errors

• Positive SQLCODE

• All requested rows returned

• SQLCODE = SQLCODE of last positive SQLCODE

• SQLSTATE = SQLSTATE equivalent to the SQLCODE

• SQLERRD3 = Number of rows returned

• SQLERRD4 = Number of bytes used for each result
row

• SQLERRD5 = 0__

• No errors

• Warning Flags

• Positive SQLCODE

• All requested rows returned

• SQLCODE = SQLCODE of last positive SQLCODE

• SQLSTATE = SQLSTATE equivalent to the SQLCODE

• SQLWARN0 = ’W’

• SQLWARNx = ’W’ (The warning flags are an
accumulation of all warning flags set while
processing the multi-row fetch.)

• SQLERRD3 = Number of rows returned

• SQLERRD4 = Number of bytes used for each result
row

• SQLERRD5 = 0__

• AS detected error (Assume
FETCH NEXT)

1. FETCH #1 - Return the good rows.

• SQLCODE = Execution of SQL statement was
successful

• SQLSTATE=’00000’

• SQLERRD3 = Number of rows returned

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

438 DRDA Volume 1

Building Statement-Level SQLCAs for Multi-Row Fetches

__
Condition Action__LL LL LL

• SQLERRD4 = Number of bytes used for each
result row

• SQLERRD5 = 0

2. FETCH #2 - Return the error.

• SQLCODE = error

• SQLSTATE = SQLSTATE equivalent to the
SQLCODE

• SQLERRD3 = 0

• SQLERRD5 = 0__

• AR detected error - 22002,
22001, 42806, 22021, or
55021.

1. FETCH #1 - Return the good rows.

• SQLCODE = Execution of SQL statement was
successful

• SQLSTATE=’00000’

• SQLERRD3 = Number of rows returned

• SQLERRD4 = Number of bytes used for each
result row

• SQLERRD5 = 0

2. What happens next depends on the type of
FETCH:

• If FETCH #2 is FETCH
FIRST/BEFORE/LAST/AFTER/ABSOLUTE,
no error.

• For any other type of FETCH then:

— SQLCODE = Value for cursor position is
unknown

— SQLSTATE = ’24513’

— SQLERRD3 = 0

— SQLERRD5 = 0__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

SQLERRD3 will contain the number of records actually fetched, and the SQLWARN flags will be
set if they were set during any single fetch operation. SQLERRD3 will also be set for single-row
fetches. SQLERRD3 is set at the application requester.

For multi-row fetches, SQLERRD4 will contain the number of bytes used for each result row.
This is the maximum row size. SQLERRD4 is set at the application requester.

For multi-row fetches, if the number of rows returned is less than the number of rows requested
on the FOR n ROWS clause due to reaching the end of cursor, then SQLERRD5 will contain an
SQLCODE value that indicates the position of the cursor after the last row of the result table.

The SQLCA stores errors and warnings found during the multi-row fetch. If an error results in
an SQLSTATE greater than X‘02999’ or an end-of-file condition, all good rows fetched before the
error or end-of-file are returned to the SQL application with SQLSTATE X‘00000’. The error or

Part 3: Network Protocols 439

Building Statement-Level SQLCAs for Multi-Row Fetches

end-of-file is not returned until the next fetch attempt, unless changes have been made to the
table which would cause another good row to be fetched. Consider the following examples,
where we attempt to fetch 10 rows with a multi-row fetch statement.

• An error condition is detected on the fifth row that would result in an SQLSTATE greater
than X‘02999’. SQLERRD3 will be set to 4 for the four returned rows, and the SQLSTATE will
be set to X‘00000’. The SQL application will get the error on the next fetch.

• An end-of-file condition is detected on the fifth row. SQLERRD3 will be set to 4 for the four
returned rows, and the SQLSTATE will be set to X‘00000’. SQLERRD5 will be set to indicate
the end-of-file condition. The SQL application will get the end of file (SQLSTATE X‘02000’) on
the next fetch.

• An end-of-file condition is detected on the fifth row. SQLERRD3 will be set to 4 for the four
returned rows, and the SQLSTATE will be set to X‘00000’. SQLERRD5 will be set to indicate
the end-of-file condition. After the FETCH, 1 more record is inserted into the table. On the
next FETCH call, an end-of-file condition is detected after the new row has been fetched.
SQLERRD3 will be set to 1 for the one returned row, and the SQLSTATE will be set to
X‘00000’. SQLERRD5 will be again set to the end-of-file condition. The SQL application will
get the end-of-file (SQLSTATE X‘02000’) on the next fetch.

For data mapping errors, if indicator variables are provided, return all rows to the SQL
application, marking the errors in the indicator variables. The SQLSTATE will contain the
warning from the last data mapping error, and the cursor will point at the last row fetched. If
only some or no indicator variables are provided, return all rows as above until the first data
mapping error is detected which does not have indicator variables. Return the good rows and set
the SQLSTATE and SQLCODE to reflect the execution for the returned rows. If the next fetch is
FIRST, BEFORE, AFTER, LAST, or ABSOLUTE, then reposition the cursor and no error is
returned. If the next fetch is NEXT, CURRENT, RELATIVE, or PRIOR, then return SQLSTATE
X‘24513’ and an SQLCODE that indicates the value for the cursor position is unknown. The
SQLERRM contains the SQLSTATE and SQLCODE of the error that caused the cursor to be
placed in an unknown position.

Consider the following examples where an attempt is made to fetch 10 rows:

• The host structure array provided indicator variables for every element of the structure and
the fifth and seventh rows have data mapping errors in them. The sixth row also has a
truncation warning. SQLERRD3 will be set to 10 for the ten returned rows, and the
SQLSTATE will be set to the warning from the seventh row fetched. The indicator variables
for the fifth and seventh row will indicate data mapping errors were found. SQLWARN1 will
be set to W to signal that a truncation occurred. The cursor will be on the tenth row.

• Structure array elements 1 through 5 have indicator variables for them, and structure
elements 6 through 10 do not. The fifth and seventh rows have data mapping errors in them.
SQLERRD3 will be set to 6 for the six returned rows, and the SQLSTATE will be set to the
warning from the fifth row fetched. The indicator variable for the fifth row will indicate a
data mapping error was found. The error will be returned as indicated in Table A-1 on page
437.

440 DRDA Volume 1

Appendix B

DDM Managers, Commands, and Reply Messages

This appendix is provided to help an implementer sort out what level of DDM managers are
required to support a specified level of DRDA, and also contains a summary of the required and
optional DDM commands and replies as they relate to each level of DRDA.

Section B.1 shows the relationship of types of distribution (Remote Unit of Work and Distributed
Unit of Work) to the DDM managers. Section B.2 on page 442 defines the DDM commands,
replies, and parameters in relationship to the DDM manager and in relationship to the DRDA
level.

B.1 DDM Manager Relationship to DRDA Functions
The following table associates the DDM managers with the specified DRDA types of
distribution. In some cases, the DDM level in the table is not specific; for example, "0 or 3". In
those cases, the DRDA level does not require a specific DDM manager level, but is dependent on
the level of function required and the level of manager required to support that function. For
example, if the product wants to implement all the recent DRDA Level functions on a DRDA
Remote Unit of Work base while using a TCP/IP network protocol, the product would build an
SQLAM Level 3 and CMNTCPIP Level 5 and would not build CMNAPPC, CMNSYNCPT, and
SYNCPTMGR support.

Table B-1 DDM Manager Relationship to DRDA Level
__

DRDA Remote DRDA Distributed DRDA
Manager Unit of Work Unit of Work Level 3__

AGENT 3 3 or 4 3, 4, or 5__
CCSID 0 or ccsid# 0 or ccsid# 0 or ccsid#__
CMNAPPC 0 or 3 3 0 or 3__
CMNSYNCPT 0 or 4 4 0 or 4__
CMNTCPIP 0 or 5 0 or 5 0 or 5__
RDB 3 3 3__
SQLAM 3 4 3, 4, or 5__
SYNCPTMGR 0, 4, or 5 4 or 5 0, 4, or 5__
SECMGR 1 1 5__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Part 3: Network Protocols 441

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

B.2 DDM Commands and Reply Messages
This section contains tables that associate DDM commands and replies in relationship to a
specific DDM manager level. The tables also associates the parameters for the commands and
replies in relationship to the DRDA levels.

The terms required or optional follow the definitions outlined in the DDM architecture for
REQUIRED and OPTIONAL. In some cases, we further qualify the item as conditional,
ignorable, mutually inclusive, mutually exclusive, or dependent. If it is Conditional, then there
are extra conditions placed on the term through DRDA or DDM. If it is Ignorable, Mutually
Inclusive, or Mutually Exclusive, the extra conditions are described in DDM. If it is Dependent,
then this parameter might be required dependent on the level of another manager that is
optional for this level of DRDA.

In some cases, DRDA overrides the optionality of the term. For example, the extnam instance
variable is optional in DDM but is required in DRDA. The requirement or optionality of a term is
shown in the following tables and includes the DRDA overrides.

The semantics of the support in the application requester and application server for required and
optional commands, replies, and data objects are described in the SUBSETS term in DDM.
Further overriding conditions are described in Section 7.9 on page 295.

If an item is listed as not defined, it is because the item is not defined for the designated level of
DRDA.

442 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The ABNUOWRM Reply Message

Table B-2 ABNUOWRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Rdbnam (relational database name) Required Required Required__
Srvdgn (server diagnostic information) Optional Optional Optional__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Part 3: Network Protocols 443

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The ACCRDB Command

Table B-3 ACCRDB Command Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Rdbacccl (access manager class) Required Required Required__
Crrtkn (correlation token) Optional Required Required__
Rdbnam (name of remote database) Required Required Required__
Prdid (product-specific identifier) Required Required Required__
Typdefnam (data type definition name) Required Required Required__
Typdefovr (data type definition override) Required Required Required__
Rdbalwupd (rdb to allow updates) Optional Optional Optional__

Optional/
Ignorable

Optional/
Ignorable

Optional/
Ignorable

Prddta (product-specific data)

__
Sttdecdel (decimal delimiter) Optional Optional Optional__
Sttstrdel (string delimiter) Optional Optional Optional__
Trgdftrt (target default values return) Optional Optional Optional__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table B-4 Reply Objects for the ACCRDB Command
__

SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5__

Typdefnam (data type definition name) Optional Optional Optional__
Typdefovr (data type definition override) Optional Optional Optional__
Sqlcard (SQLCA reply data) Optional Optional Optional__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

444 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The ACCRDBRM Reply Message

Table B-5 ACCRDBRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Prdid (product identifier) Required Required Required__
Typdefnam (data type definition name) Required Required Required__
Typdefovr (TYPDEF overrides) Required Required Required__
Rdbinttkn (RDB interrupt token) Optional Optional Optional__

Required/
Conditional

Required/
Conditional

Required/
Conditional

Crrtkn (correlation token)

__
Srvdgn (server diagnostic information) Optional Optional Optional__

Optional/
Conditional

Optional/
Conditional

Optional/
Conditional

Pkgdftcst (package default character subtype)

__
Optional/
Ignorable

Srvlst (target server list) Not defined Not defined

__
Optional/
Conditional

Optional/
Conditional

Optional/
Conditional

Userid (user ID at the target system)

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Part 3: Network Protocols 445

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The ACCSEC Command

Table B-6 ACCSEC Command Instance Variables

Instance Variable SECMGR Level 5___
Secmgrnm (security manager name) Optional/Ignorable___
Secmec (security mechanism) Required___LL
L
L
L

LL
L
L
L

LL
L
L
L

Table B-7 ACCSECRD Reply Object Instance Variables

Instance Variable SECMGR Level 5___
Secmec (security mechanism) Required___L
L
L

L
L
L

L
L
L

446 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The AGNPRMRM Reply Message

Table B-8 AGNPRMRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Rdbnam (relational database name) Optional Optional Optional__
Srvdgn (server diagnostic information) Optional Optional Optional__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Part 3: Network Protocols 447

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The BGNBND Command

Table B-9 BGNBND Command Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Rdbnam (name of remote database as in
ACCRDB)

Optional Optional Optional

__
Pkgnamct (package name and consistency
token)

Required Required Required

__
Vrsnam (package version name) Optional Optional Optional__
Pkgrplvrs (replaced package version name) Optional Optional Optional__
Bndchkexs (bind existence checking) Optional Optional Optional__
Bndcrtctl (bind creation control) Optional Optional Optional__
Bndexpopt (bind explain option) Optional Optional Optional__
Decprc (decimal precision) Optional Optional Optional__
Dftrdbcol (default RDB collection identifier) Optional Optional Optional__
Pkgathopt (package authorization option) Optional Optional Optional__
Pkgdftcc (package default CCSID) Optional Optional Optional__
Pkgdftcst (default character subtype) Optional Optional Optional__
Pkgisolvl (package isolation level) Required Required Required__
Pkgrplopt (package replacement option) Optional Optional Optional__
Pkgownid (package owner identifier) Optional Optional Optional__
Qryblkctl (query block protocol control) Optional Optional Optional__
Rdbrlsopt (RDB release option) Optional Optional Optional__
Sttdatfmt (date format of statement) Optional Optional Optional__
Sttdecdel (statement decimal delimiter) Optional Optional Optional__
Sttstrdel (statement string delimiter) Optional Optional Optional__
Stttimfmt (time format of statement) Optional Optional Optional__

Optional/
Ignorable

Optional/
Ignorable

Optional/
Ignorable

Title (brief description of package)

__
Optional/
Ignorable

Optional/
Ignorable

Dgrioprl (degree of I/O Parallelism) Not defined

__
Optional/
Ignorable

Pkgathrul (package authorization rules) Not defined Not defined

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table B-10 Command Objects for the BGNBND Command
__

SQLAM SQLAM SQLAM
Command Object Level 3 Level 4 Level 5__

Bndopt (bind option) Not defined Not defined Optional__L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

448 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

Table B-11 Reply Objects for the BGNBND Command
__

SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5__

Typdefnam (data type definition name) Optional Optional Optional__
Typdefovr (data type definition override) Optional Optional Optional__
Sqlcard (SQLCA reply data) Required Required Required__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Part 3: Network Protocols 449

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The BGNBNDRM Reply Message

Table B-12 BGNBNDRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Rdbnam (relational database name) Required Required Required__
Pkgnamct (rdb package name and consistency
token)

Required Required Required

__
Vrsnam (version name) Required Required Required__
Srvdgn (server diagnostic information) Optional Optional Optional__L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L

450 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The BNDSQLSTT Command

Table B-13 BNDSQLSTT Command Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Rdbnam (name of remote database as in
ACCRDB)

Optional Optional Optional

__
Pkgnamcsn (package name, consistency token
and section number)

Required Required Required

__
Sqlsttnbr (source application statement number) Optional Optional Optional__
Bndsttasm (bind statement assumptions) Optional Optional Optional__LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

Table B-14 Command Objects for the BNDSQLSTT Command
__

SQLAM SQLAM SQLAM
Command Object Level 3 Level 4 Level 5__

Typdefnam (data type definition name) Optional Optional Optional__
Typdefovr (data type definition override) Optional Optional Optional__
Sqlstt (SQL statement to be bound in the
application server package)

Required Required Required

__
Sqlsttvrb (description of each variable) Optional Optional Optional__LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

Table B-15 Reply Objects for the BNDSQLSTT Command
__

SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5__

Typdefnam (data type definition name) Optional Optional Optional__
Typdefovr (data type definition override) Optional Optional Optional__
Sqlcard (SQLCA reply data) Required Required Required__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Part 3: Network Protocols 451

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The CLSQRY Command

Table B-16 CLSQRY Command Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Rdbnam (name of remote database as in
ACCRDB)

Optional Optional Optional

__
Pkgnamcsn Required Required Required__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Table B-17 Reply Objects for the CLSQRY Command
__

SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5__

Typdefnam (data type definition name) Optional Optional Optional__
Typdefovr (data type definition override) Optional Optional Optional__
Sqlcard (SQLCA reply data) Required Required Required__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

452 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The CMDATHRM Reply Message

Table B-18 CMDATHRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Rdbnam (relational database name) Optional Optional Optional__
Srvdgn (server diagnostic information) Optional Optional Optional__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Part 3: Network Protocols 453

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The CMDCHKRM Reply Message

Table B-19 CMDCHKRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Rdbnam (relational database name) Optional Optional Optional__
Srvdgn (server diagnostic information) Optional Optional Optional__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

454 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The CMDNSPRM Reply Message

Table B-20 CMDNSPRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Codpnt (code point attribute) Required Required Required__
Rdbnam (relational database name) Optional Optional Optional__
Srvdgn (server diagnostic information) Optional Optional Optional__LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

Part 3: Network Protocols 455

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The CMDVTLRM Reply Message

Table B-21 CMDVLTRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Not defined Required Required__
Rdbnam (relational database name) Not defined Required Required__
Srvdgn (server diagnostic information) Not defined Optional Optional__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

456 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The CMMRQSRM Reply Message

Table B-22 CMMRQSRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Not defined Required Required__
Rdbnam (relational database name) Not defined Required Required__
Cmmtyp (commitment request type) Not defined Required Required__
Srvdgn (server diagnostic information) Not defined Optional Optional__LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

Part 3: Network Protocols 457

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The CNTQRY Command

Table B-23 CNTQRY Command Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Rdbnam (name of remote database as in
ACCRDB)

Optional Optional Optional

__
Pkgnamcsn (package name, consistency token
and section number)

Required Required Required

__
Qryblksz (query block size) Required Required Required__
Qryrelscr (query relative scrolling action) Not defined Optional Optional__
Qryrownbr (query row number) Not defined Optional Optional__
Qryrfrtbl (query refresh answer set table) Not defined Optional Optional__

Dependent
on SQLAM
level

Nbrrow (number of fetch rows) Not defined Optional

__
Maxblkext (maximum number of extra blocks) Not defined Not defined Optional__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table B-24 Reply Objects for the CNTQRY Command
__

SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5__

Typdefnam (data type definition name) Optional Optional Optional__
Typdefovr (data type definition override) Optional Optional Optional__

Required/
Conditional

Required/
Conditional

Required/
Conditional

Sqlcard (SQLCA reply data)

__
Qrydta (query answer set data) Optional Optional Optional__LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

458 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The DRPPKG Command

Table B-25 DRPPKG Command Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Rdbnam (name of remote database as in
ACCRDB)

Optional Optional Optional

__
Pkgnam (package grouping name and identifier) Required Required Required__
Vrsnam (version name) Optional Optional Optional__LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

Table B-26 Reply Objects for the DRPPKG Command
__

SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5__

Typdefnam (data type definition name) Optional Optional Optional__
Typdefovr (data type definition override) Optional Optional Optional__
Sqlcard (SQLCA reply data) Required Required Required__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Part 3: Network Protocols 459

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The DSCINVRM Reply Message

Table B-27 DSCINVRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Dscerrcd (description error code) Required Required Required__
Rdbnam (relational database name) Required Required Required__
Fdodsc (FD:OCA data descriptor) Required Required Required__
Fdodscoff (FD:OCA descriptor offset) Required Required Required__
Fdotrpoff (FD:OCA triplet offset) Required Required Required__
Fdoprmoff (FD:OCA triplet parameter offset) Required Required Required__
Srvdgn (server diagnostic information) Optional Optional Optional__L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L

460 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The DSCPVL Command

Table B-28 DSCPVL Command Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Rdbnam (name of remote database as in
ACCRDB)

Optional Optional Optional

__
Sqlobjtyp (SQL object type) Required Required Required__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Table B-29 Command Objects for the DSCPVL Command
__

SQLAM SQLAM SQLAM
Command Object Level 3 Level 4 Level 5__

Typdefnam (data type definition name) Optional Optional Optional__
Typdefovr (data type definition override) Optional Optional Optional__
Sqlobjnam (SQL object name) Required Required Required__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Table B-30 Reply Objects for the DSCPVL Command
__

SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5__

Typdefnam (data type definition name) Optional Optional Optional__
Typdefovr (data type definition override) Optional Optional Optional__

Required/
Mutually
Exclusive

Required/
Mutually
Exclusive

Required/
Mutually
Exclusive

Sqlpard (SQLPA reply data)

__
Required/
Mutually
Exclusive/
Conditional

Required/
Mutually
Exclusive/
Conditional

Required/
Mutually
Exclusive/
Conditional

Sqlcard (SQLCA reply data)

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

Part 3: Network Protocols 461

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The DSCRDBTBL Command

Table B-31 DSCRDBTBL Command Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Rdbnam (name of remote database as in
ACCRDB)

Optional Optional Optional

__LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

Table B-32 Command Objects for the DSCRDBTBL Command
__

SQLAM SQLAM SQLAM
Command Object Level 3 Level 4 Level 5__

Typdefnam (data type definition name) Optional Optional Optional__
Typdefovr (data type definition override) Optional Optional Optional__
Sqlobjnam (SQL object name) Required Required Required__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Table B-33 Reply Objects for the DSCRDBTBL Command
__

SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5__

Typdefnam (data type definition name) Optional Optional Optional__
Typdefovr (data type definition override) Optional Optional Optional__

Required/
Mutually
Exclusive

Required/
Mutually
Exclusive

Required/
Mutually
Exclusive

Sqldard (SQLDA reply data)

__
Required/
Mutually
Exclusive/
Conditional

Required/
Mutually
Exclusive/
Conditional

Required/
Mutually
Exclusive/
Conditional

Sqlcard (SQLCA reply data)

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

462 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The DSCSQLSTT Command

Table B-34 DSCSQLSTT Command Instance Variables

SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6___

Rdbnam (name of remote database
as in ACCRDB)

Optional Optional Optional Optional

Pkgnamcsn (package name,
consistency token and section
number)

Required Required Required Required

Typsqlda (input|output) — — — Optional___L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L

Table B-35 Reply Objects for the DSCSQLSTT Command
__

SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5__

Typdefnam (data type definition name) Optional Optional Optional__
Typdefovr (data type definition override) Optional Optional Optional__

Required/
Mutually
Exclusive

Required/
Mutually
Exclusive

Required/
Mutually
Exclusive

Sqldard (SQLDA reply data)

__
Required/
Mutually
Exclusive/
Conditional

Required/
Mutually
Exclusive/
Conditional

Required/
Mutually
Exclusive/
Conditional

Sqlcard (SQLCA reply data)

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

Part 3: Network Protocols 463

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The DTAMCHRM Reply Message

Table B-36 DTAMCHRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Rdbnam (relational database name) Required Required Required__
Srvdgn (server diagnostic information) Optional Optional Optional__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

464 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The ENDBND Command

Table B-37 ENDBND Command Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Rdbnam (name of remote database as in
ACCRDB)

Optional Optional Optional

__
Pkgnamct (package name and consistency
token)

Required Required Required

__
Maxsctnbr (maximum section number) Optional Optional Optional__LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

Table B-38 Reply Objects for the ENDBND Command
__

SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5__

Typdefnam (data type definition name) Optional Optional Optional__
Typdefovr (data type definition override) Optional Optional Optional__
Sqlcard (SQLCA reply data) Required Required Required__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Part 3: Network Protocols 465

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The ENDQRYRM Reply Message

Table B-39 ENDQRYRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Rdbnam (relational database name) Optional Optional Optional__
Srvdgn (server diagnostic information) Optional Optional Optional__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

466 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The ENDUOWRM Reply Message

Table B-40 ENDUOWRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Uowdsp (unit of work disposition) Required Required Required__
Rdbnam (relational database name) Optional Optional Optional__
Srvdgn (server diagnostic information) Optional Optional Optional__LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

Part 3: Network Protocols 467

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The EXCSAT Command

Table B-41 EXCSAT Command Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Extnam (external name) Required Required Required__
Mgrlvlls (manager level list) Required Required Required__
Spvnam (supervisor name) Optional Optional Optional__
Srvclsnm (server class name) Required Required Required__
Srvnam (server name) Required Required Required__

Optional/
Ignorable

Optional/
Ignorable

Optional/
Ignorable

Srvrlslv (server release level)

__LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

Table B-42 EXCSATRD Reply Object Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Extnam (external name) Required Required Required__
Mgrlvlls (manager level list) Required Required Required__
Srvclsnm (server class name) Required Required Required__
Srvnam (server name) Required Required Required__
Srvrlslv (server release level) Optional Optional Optional__LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

468 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The EXCSQLIMM Command

Table B-43 EXCSQLIMM Command Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Rdbnam (name of remote database as in
ACCRDB)

Optional Optional Optional

__
Pkgnamcsn (package name, consistency token
and section number)

Required Required Required

__
Rdbcmtok (RDB commit allowed) Not defined Optional Optional__LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

Table B-44 Command Objects for the EXCSQLIMM Command
__

SQLAM SQLAM SQLAM
Command Object Level 3 Level 4 Level 5__

Typdefnam (data type definition name) Optional Optional Optional__
Typdefovr (data type definition override) Optional Optional Optional__
Sqlstt (SQL statement) Required Required Required__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Table B-45 Reply Objects for the EXCSQLIMM Command
__

SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5__

Typdefnam (data type definition name) Optional Optional Optional__
Typdefovr (data type definition override) Optional Optional Optional__
Sqlcard (SQLCA reply data) Required Required Required__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Part 3: Network Protocols 469

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The EXCSQLSTT Command

Table B-46 EXCSQLSTT Command Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Rdbnam (name of remote database as in
ACCRDB)

Optional Optional Optional

__
Pkgnamcsn (package name, consistency token
and section number)

Required Required Required

__
Outexp (output expected) Optional Optional Optional__
Nbrrow (Number of insert rows) Not defined Optional Optional__
Prcnam (Procedure name) Not defined Optional Optional__
Qryblksz (Query block size) Not defined Not defined Optional__
Maxrslcnt (Maximum result set count) Not defined Not defined Optional__
Maxblkext (Maximum number of extra blocks) Not defined Not defined Optional__
Rslsetflg (Result set flags) Not defined Not defined Optional__
Rdbcmtok (RDB commit allowed) Not defined Optional Optional__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table B-47 Command Objects for the EXCSQLSTT Command
__

SQLAM SQLAM SQLAM
Command Object Level 3 Level 4 Level 5__

Typdefnam (data type definition name) Optional Optional Optional__
Typdefovr (data type definition override) Optional Optional Optional__
Sqldta (SQL program variable data) Optional Optional Optional__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Table B-48 Reply Objects for the EXCSQLSTT Command
__

SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5__

Typdefnam (data type definition name) Optional Optional Optional__
Typdefovr (data type definition override) Optional Optional Optional__

Required/
Mutually
Exclusive

Required/
Mutually
Exclusive

Required/
Mutually
Exclusive

Sqlcard (SQLCA reply data)

__
Required/
Mutually
Exclusive/
Conditional

Required/
Mutually
Exclusive/
Conditional

Required/
Mutually
Exclusive/
Conditional

Sqldtard (SQL data reply data)

__
Qrydsc (Query answer set description) Not defined Not defined Optional__
Qrydta (Query answer set data) Not defined Not defined Optional__
Sqlrslrd (SQL result set reply data) Not defined Not defined Optional__
Sqlcinrd (SQL result set column information
reply data)

Not defined Not defined Optional

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

470 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The MGRDEPRM Reply Message

Table B-49 MGRDEPRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Rdbnam (relational database name) Optional Optional Optional__
Deperrcd (manager dependency error code) Required Required Required__
Srvdgn (server diagnostic information) Optional Optional Optional__LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

Part 3: Network Protocols 471

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The MGRLVLRM Reply Message

Table B-50 MGRLVLRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Mgrlvla (manager level list) Required Required Required__
Srvdgn (server diagnostic information) Optional Optional Optional__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

472 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The OBJNSPRM Reply Message

Table B-51 OBJNSPRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Codpnt (code point attribute) Required Required Required__
Rdbnam (relational database name) Optional Optional Optional__
Srvdgn (server diagnostic information) Optional Optional Optional__LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

Part 3: Network Protocols 473

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The OPNQFLRM Reply Message

Table B-52 OPNQFLRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Rdbnam (relational database name) Required Required Required__
Srvdgn (server diagnostic information) Optional Optional Optional__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

474 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The OPNQRY Command

Table B-53 OPNQRY Command Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Rdbnam (name of remote database as in
ACCRDB)

Optional Optional Optional

__
Pkgnamcsn (package name, consistency token
and section number)

Required Required Required

__
Qryblksz (query block size) Required Required Required__
Qryblkctl (query block protocol control) Optional Optional Optional__
Maxblkext (Maximum number of extra blocks) Not defined Not defined Optional__LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

Table B-54 Command Objects for the OPNQRY Command
__

SQLAM SQLAM SQLAM
Command Object Level 3 Level 4 Level 5__

Typdefnam (data type definition name) Optional Optional Optional__
Typdefovr (data type definition override) Optional Optional Optional__
Sqldta (input variable data) Optional Optional Optional__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Table B-55 Reply Objects for the OPNQRY Command
__

SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5__

Typdefnam (data type definition name) Optional Optional Optional__
Typdefovr (data type definition override) Optional Optional Optional__
Sqlcard (SQLCA reply data) Optional Optional Optional__
Qrydsc (query answer set description) Required Required Required__

Optional/
Conditional

Optional/
Conditional

Optional/
Conditional

Qrydta (query answer set data)

__L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L

Part 3: Network Protocols 475

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The OPNQRYRM Reply Message

Table B-56 OPNQRYRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Qryprctyp (query protocol type) Required Required Required__
Sqlcsrhld (hold cursor position) Optional Optional Optional__
Srvdgn (server diagnostic information) Optional Optional Optional__LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

476 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The PKGBNARM Reply Message

Table B-57 PKGBNARM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Rdbnam (relational database name) Required Required Required__
Srvdgn (server diagnostic information) Optional Optional Optional__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Part 3: Network Protocols 477

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The PKGBPARM Reply Message

Table B-58 PKGBPARM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Rdbnam (relational database name) Required Required Required__
Srvdgn (server diagnostic information) Optional Optional Optional__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

478 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The PRCCNVRM Reply Message

Table B-59 PRCCNVRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Prccnvcd (conversational protocol error code) Required Required Required__
Rdbnam (relational database name) Optional Optional Optional__
Srvdgn (server diagnostic information) Optional Optional Optional__LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

Part 3: Network Protocols 479

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The PRMNSPRM Reply Message

Table B-60 PRMNSPRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Codpnt (code point attribute) Required Required Required__
Rdbnam (relational database name) Optional Optional Optional__
Srvdgn (server diagnostic information) Optional Optional Optional__LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

480 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The PRPSQLSTT Command

Table B-61 PRPSQLSTT Command Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Rdbnam (name of remote database as in
ACCRDB)

Optional Optional Optional

__
Pkgnamcsn (package name, consistency token
and section number)

Required Required Required

__
Rtnsqlda (specifies if SQLDA should be returned) Optional Optional Optional__LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

Table B-62 Command Objects for the PRPSQLSTT Command
__

SQLAM SQLAM SQLAM
Command Object Level 3 Level 4 Level 5__

Typdefnam (data type definition name) Optional Optional Optional__
Typdefovr (data type definition override) Optional Optional Optional__
Sqlstt (SQL Statement) Required Required Required__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Table B-63 Reply Objects for the PRPSQLSTT Command
__

SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5__

Typdefnam (data type definition name) Optional Optional Optional__
Typdefovr (data type definition override) Optional Optional Optional__

Required/
Mutually
Exclusive/
Conditional

Required/
Mutually
Exclusive/
Conditional

Required/
Mutually
Exclusive/
Conditional

Sqldard (SQLDA reply data)

__
Required/
Mutually
Exclusive/
Conditional

Required/
Mutually
Exclusive/
Conditional

Required/
Mutually
Exclusive/
Conditional

Sqlcard (SQLCA reply data)

__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Part 3: Network Protocols 481

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The QRYNOPRM Reply Message

Table B-64 QRYNOPRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Rdbnam (relational database name) Required Required Required__
Pkgnamcsn (package name, consistency token,
and section number)

Required Required Required

__
Srvdgn (server diagnostic information) Optional Optional Optional__LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

482 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The QRYPOPRM Reply Message

Table B-65 QRYPOPRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Rdbnam (relational database name) Required Required Required__
Pkgnamcsn (package name, consistency token,
and section number)

Required Required Required

__
Srvdgn (server diagnostic information) Optional Optional Optional__LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

Part 3: Network Protocols 483

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The RDBACCRM Reply Message

Table B-66 RDBACCRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Rdbnam (relational database name) Required Required Required__
Srvdgn (server diagnostic information) Optional Optional Optional__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

484 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The RDBAFLRM Reply Message

Table B-67 RDBAFLRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Rdbnam (relational database name) Required Required Required__
Srvdgn (server diagnostic information) Optional Optional Optional__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Part 3: Network Protocols 485

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The RDBATHRM Reply Message

Table B-68 RDBATHRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Rdbnam (relational database name) Required Required Required__
Srvdgn (server diagnostic information) Optional Optional Optional__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

486 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The RDBCMM Command

Table B-69 RDBCMM Command Instance Variable
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Rdbnam (name of remote database as in
ACCRDB)

Optional Optional Optional

__LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

Table B-70 Reply Objects for the RDBCMM Command
__

SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5__

Typdefnam (data type definition name) Optional Optional Optional__
Typdefovr (data type definition override) Optional Optional Optional__
Sqlcard (SQLCA reply data) Required Required Required__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Part 3: Network Protocols 487

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The RDBNACRM Reply Message

Table B-71 RDBNACRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Rdbnam (relational database name) Required Required Required__
Srvdgn (server diagnostic information) Optional Optional Optional__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

488 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The RDBNFNRM Reply Message

Table B-72 RDBNFNRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Rdbnam (relational database name) Required Required Required__
Srvdgn (server diagnostic information) Optional Optional Optional__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Part 3: Network Protocols 489

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The RDBRLLBCK Command

Table B-73 RDBRLLBCK Command Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Rdbnam (name of remote database as in
ACCRDB)

Optional Optional Optional

__LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

Table B-74 Reply Objects for the RDBRLLBCK Command
__

SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5__

Typdefnam (data type definition name) Optional Optional Optional__
Typdefovr (data type definition override) Optional Optional Optional__
Sqlcard (SQLCA reply data) Required Required Required__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

490 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The RDBUPDRM Reply Message

Table B-75 RDBUPDRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Not defined Required Required__
Rdbnam (relational database name) Not defined Required Required__
Srvdgn (server diagnostic area) Not defined Optional Optional__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Part 3: Network Protocols 491

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The REBIND Command

Table B-76 REBIND Command Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Rdbnam (name of remote database as in
ACCRDB)

Optional Optional Optional

__
Pkgnam (package name) Required Required Required__
Vrsnam (package version name) Optional Optional Optional__
Pkgisolvl (package isolation level) Optional Optional Optional__
Bndexpopt (bind explain option) Optional Optional Optional__
Pkgownid (package owner identification) Optional Optional Optional__
Rdbrlsopt (RDB release option) Optional Optional Optional__
Bndchkexs (bind existence checking) Optional Optional Optional__
Dftrdbcol (default RDB collection identifier) Optional Optional Optional__

Optional/
Ignorable

Optional/
Ignorable

Dgrioprl (degree of I/O Parallelism) Not defined

__
Optional/
Ignorable

Pkgathrul (package authorization rules) Not defined Not defined

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table B-77 Command Objects for the REBIND Command
__

SQLAM SQLAM SQLAM
Command Object Level 3 Level 4 Level 5__

Bndopt (bind option) Not defined Not defined Optional__L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

Table B-78 Reply Objects for the REBIND Command
__

SQLAM SQLAM SQLAM
Command Object Level 3 Level 4 Level 5__

Typdefnam (data type definition name) Optional Optional Optional__
Typdefovr (data type definition override) Optional Optional Optional__
Sqlcard (SQLCA reply data) Required Required Required__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

492 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The RSCLMTRM Reply Message

Table B-79 RSCLMTRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Required/
Conditional

Required/
Conditional

Required/
Conditional

Rdbnam (relational database name)

__
Rscnam (resource name information) Optional Optional Optional__
Rsctyp (resource type information) Optional Optional Optional__
Prdid (product-specific identifier) Optional Optional Optional__
Rsncod (reason code information) Optional Optional Optional__
Srvdgn (server diagnostic area) Optional Optional Optional__L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L

Part 3: Network Protocols 493

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The RSLSETRM Reply Message

Table B-80 RSLSETRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Not defined Not defined Optional__
Pkgsnlst (RDB Package name, consistency token,
and section number list)

Not defined Not defined Optional

__
Srvdgn (Server diagnostics) Not defined Not defined Optional__LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

494 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The SECCHK Command

Table B-81 SECCHK Command Instance Variables

Instance Variable SECMGR Level 5___
Secmgrnm (security manager name) Optional/Ignorable___
Secmec (Security mechanism) Required___
Password (Password) Optional/Conditional___
Newpassword (New Password) Optional/Conditional___
Usrid (Userid) Optional/Conditional___LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

Table B-82 Command Objects for the SECCHK Command

Command Object SECMGR Level 5___
Sectkn (security token) Optional/Conditional___L
L
L

L
L
L

L
L
L

Table B-83 Reply Objects for the SECCHK Command

Reply Object SECMGR Level 5___
Sectkn (security token) Optional/Conditional___L
L
L

L
L
L

L
L
L

Part 3: Network Protocols 495

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The SECCHKRM Reply Message

Table B-84 SECCHKRM Reply Message Instance Variables

Reply Object SECMGR Level 5___
Svrcod (severity code) Required___
Secchkcd (security check code) Required___
Svcerrno (error number) Optional/Ignorable/Conditional___
Srvdgn (Server diagnostics) Optional___LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

496 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The SQLERRRM Reply Message

Table B-85 SQLERRRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Rdbnam (relational database name) Optional Optional Optional__
Srvdgn (server diagnostic area) Optional Optional Optional__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Part 3: Network Protocols 497

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The SYNCCTL Command

Table B-86 SYNCCTL Command Instance Variables

Instance Variable SECMGR Level 5___
Synctype (sync point operation type) Required___
Rlsconv (Release Conversation) Optional___
Uowid (Unit of Work Identifier) Optional___
Forget (Forget Unit of Work) Optional___LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

Table B-87 Command Objects for SYNCCTL

Command Object SECMGR Level 5___
Synclog (Sync point log) Optional___L
L
L

L
L
L

L
L
L

498 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The SYNCCRD Reply Object

Table B-88 SYNCCRD Reply Object Instance Variables

Instance Variable SECMGR Level 5___
Synctype (Sync point operation type) Required___L
L
L

L
L
L

L
L
L

Part 3: Network Protocols 499

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The SYNCLOG Reply Object

Table B-89 SYNCLOG Reply Object Instance Variables

Command Object SECMGR Level 5___
Rdbnam (Relational Database Name) Required___
Logname (Log Name) Required___
Logtstmp (Log Timestamp) Required___
Cnntkn (Connection Token) Required___

Optional — mutually exclusive
with Ipaddr)

Snaaddr (SNA Resync Address)

Optional — mutually exclusive
with Snaaddr)

Ipaddr (TCP/IP Resync Address)

Tcphost (TCP/IP Domain Qualified Host Name) Optional — mutually exclusive

with Snaaddr)___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L

500 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The SYNCRSY Command

Table B-90 SYNCRSY Command Instance Variables

Instance Variable SECMGR Level 5___
Rsynctyp (Resync Type) Required___
Uowid (Unit of Work Identifier) Optional___
Uowstate (Unit of Work State) Optional___LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

Table B-91 Command Objects for SYNCRSY

Command Object SECMGR Level 5___
Synclog (Sync point log) Optional___L
L
L

L
L
L

L
L
L

Part 3: Network Protocols 501

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The SYNCRRD Reply Object

Table B-92 SYNCRRD Reply Object Instance Variables

Instance Variable SECMGR Level 5___
Rsynctyp (Resync Type) Required___
Uowid (Unit of Work Identifier) Optional___
Uowstate (Unit of Work State) Optional___LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

Table B-93 Reply Objects for SYNCRRD

Reply Object SECMGR Level 5___
Synclog (Sync point log) Optional___L
L
L

L
L
L

L
L
L

502 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The SYNTAXRM Reply Message

Table B-94 SYNTAXRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Synerrcd (syntax error code) Required Required Required__
Codpnt (code point attribute) Optional Optional Optional
Rdbnam (relational database name) Optional Optional Optional__
Srvdgn (server diagnostic area) Optional Optional Optional__LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

Part 3: Network Protocols 503

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The TRGNSPRM Reply Message

Table B-95 TRGNSPRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Rdbnam (relational database name) Optional Optional Optional__
Srvdgn (server diagnostic area) Optional Optional Optional__L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

504 DRDA Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The VALNSPRM Reply Message

Table B-96 VALNSPRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5__

Svrcod (severity code) Required Required Required__
Codpnt (code point attribute) Required Required Required__
Rdbnam (relational database name) Optional Optional Optional__
Srvdgn (server diagnostic area) Optional Optional Optional__LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

Part 3: Network Protocols 505

DDM Managers, Commands, and Reply Messages

506 DRDA Volume 1

Glossary

This glossary defines terms as they are used for DRDA. If a term is not included here, see the
other references listed in Referenced Documents on page xxiv about that topic.

alert
An error message sent to the system services control point (SSCP) at the host system.

API
Application Programming Interface.

Application Programming Interface (API)
The interface that application programs use to request services from some program such as
a DBMS.

application requester (AR)
The source of a request to a remote relational database management system (DBMS).

application server (AS)
The target of a request from an application requester. The DBMS at the application server
site provides the data.

application support protocol
The protocol that connects application requesters and application servers.

AR
Application Requester.

AS
Application Server.

bind
In DRDA, the process by which the SQL statements in an application program are made
known to a DBMS over Application Support Protocol flows. During a bind, output from a
precompiler or preprocessor is converted to a control structure called a package.

CCSID
Coded Character Set Identifier.

CDRA
Character Data Representation Architecture. The architecture that defines CCSID values to
identify the codes (code points) used to represent characters, and the (character data)
conversion of these codes, as needed, to preserve the characters and their meanings.

Coded Character Set Identifier (CCSID)
A 16-bit number identifying a specific set of encoding scheme identifiers, character set
identifiers, code page identifiers, and other relevant information that uniquely identifies the
coded graphic character representation used.

commit on return
An attribute of a stored procedure definition indicating that the transaction is to be
committed immediately upon successful (that is, no negative SQLCODE) return from the
stored procedure.

connectivity
A technology that enables different systems to communicate with each other.

Part 3: Network Protocols 507

Glossary

conversation
A logical connection between two programs over an LU type 6.2 session that allows them to
communicate with each other while processing a transaction.

data integrity

1. Within the scope of a unit of work, either all changes to the database management
systems are completed or none of them are. The set of change operations are
considered an integral set.

2. The condition that exists as long as accidental or intentional destruction, alteration, or
loss of data does not occur.

database-directed distributed unit of work
A variant of distributed unit of work in which a user or application directs SQL statements
to a targeted DBMS, which then directs the SQL statement, if needed, to another DBMS for
execution at the DBMS. As in distributed unit of work, the user or application can, within a
single unit of work, read and update data on multiple DBMSs. Each SQL statement may
access only one DBMS.

Database Management System (DBMS)
An integrated set of computer programs that collectively provide all of the capabilities
required for centralized management, organization, and control of access to a database that
is shared by many users.

database server (DS)
The target of a request received from an application server.

database support protocol
The protocol used to connect application servers and database servers.

DBCS
Double-byte character set.

DBMS
Database management system.

DCE
Distributed Computing Environment

DDM
Distributed Data Management Architecture. The architecture that allows an application
program to work on data that resides in a remote system. The data may be in files or in
relational databases. DRDA is built on the DDM architecture.

Distributed Computing Environment (DCE)
The name of the distributed environment developed by the Open Software Foundation.
DCE is composed of common services required to provide an open distributed computing
environment.

distributed request
An extension of the distributed unit of work method of accessing distributed relational data
in which each SQL statement may access data located at several different systems. This
method supports join and union operations that cross system boundaries and inserts of data
selected from other sites.

distributed unit of work
A method of accessing distributed relational data in which a user or application can, within
a single unit of work, read and update data on multiple DBMSs. The user or application

508 DRDA Volume 1

Glossary

directs each SQL statement to a particular DBMS for execution at that DBMS. Each SQL
statement may access only one DBMS.

double-byte character set (DBCS)
A character set, such as a set of Japanese ideographs, that requires two-byte code points to
identify the characters.

DRDA
Distributed Relational Database Architecture. A connection protocol for distributed
relational database processing. DRDA comprises protocols for communication between an
application and a remote database, and communications between databases. DRDA
provides the connections for remote and distributed processing.

DRDA Connection
A connection between an application requester and application server for the purposes of
performing DRDA requests. A DRDA connection generically includes any other
connections that are required to allow an application requester and application server to
communicate (for example, network connection, SQL connection, and so on). DRDA is
sometimes qualified with a numeric value (that is, 1, 2, and so on) to indicate the connection
supports that level of DRDA.

DS
Database server.

dynamic SQL
SQL statements that are prepared and executed within a program while the program is
executing. In dynamic SQL, the SQL source is contained in host language variables rather
than being coded in the application program. The SQL statement might change several
times during the program’s execution.

execution
The process of carrying out an instruction or instructions of a computer program by a
computer.

execution thread
A process or task that provides for the execution of a sequence of operations. One operation
occurs at a time. Operations are single threaded. Commonly, resources (such as locks) are
associated with execution threads, and the thread becomes the anchor point for managing
such resources.

Extended Privilege Attribute Certificate (EPAC)
A DCE construct that contains Extended Registry Attributes in addition to the principal’s
identity and group memberships.

Extended Registry Attribute (ERA)
A user-defined attribute in the DCE Security Registry. Each ERA has a schema entry that is
the data dictionary entry defining the attribute type. Instances of the attribute containing
values can be attached to principal, group, organization, or policy nodes in the DCE
Security Registry database.

flow
The passing of a message from one process to another. The passing of messages of a
particular type between processes. For example, DRDA flows are those that consist only of
messages described by DRDA as part of the DRDA protocols.

FD:OCA
Formatted Data Object Content Architecture. An architected collection of constructs used to
interchange formatted data.

Part 3: Network Protocols 509

Glossary

GSS-API
Generic Security Services-Application Programming Interface. A programming interface for
accessing generic security services. GSS-API is available in DCE for utilizing DCE security
outside of RPC.

host variable
In an application program, a program variable referenced by SQL statements.

instantiate
To create an instance of something.

LID
Local identifier

like
Two or more similar or identical operating environments. For example, like distribution is
distribution between two OS/2 database managers with compatible server attribute levels.

local identifier (LID)
An identifier or short label that is mapped by the environment to a named resource.

logical unit (LU)
A port through which an end user accesses the SNA network in order to communicate with
another end user and through which the end user accesses the functions provided by
system services control points (SSCP).

logical unit of work (LUW)
The work that occurs between the start of a transaction and commit or rollback and between
commit and rollback actions after that. It defines the set of operations that must be
considered part of an integral set. See data integrity.

logical unit-of-work identifier (LUWID)
A name—consisting of a fully-qualified LU network name, an LUW instance number, and
an LUW sequence number—that uniquely identifies a logical unit of work within a network.

Logical Unit type 6.2 (LU 6.2)
The SNA logical unit type that supports general communication between programs in a
distributed processing environment.

LU
Logical unit.

LU 6.2
Logical Unit type 6.2.

LUW
Logical unit of work.

LUWID
Logical unit of work identifier.

MBCS
Mixed-byte character set.

mixed-byte character set (MBCS)
A character set containing a mixture of characters from single byte and double byte
character sets.

MSA
SNA Management Services Architecture. The architecture that provides services to assist in

510 DRDA Volume 1

Glossary

the management of SNA networks.

Mutual Authentication
The name of the authentication process where the server authenticates the client and the
client authenticates the server.

network connection
A logical connection between two endpoints in a network. A network connection allows the
two endpoints to communicate.

package
The control structure produced when the SQL statements in an application program are
bound to a relational DBMS. The DBMS uses the control structure to process SQL
statements encountered during statement execution.

plan
A form of package where several programs’ SQL statements are collected together during
bind to create a plan. DRDA does not support the concept of plan.

port
A term used in TCP/IP that specifies the portion of a socket that identifies the logical input
or output channel associated with a process.

principal
An entity whose identity can be authenticated. In terms of DRDA and DCE, this would be
the end user initiating a database request.

program preparation process
That process, usually involving programmers, whereby a program is written, possibly
precompiled, compiled, possibly link-edited, and bound. Thus, the program is made
available for execution. This process and the tools available to assist in this process vary
greatly among the various systems that may support DRDA.

protected conversation
A protected conversation is an LU 6.2 conversation that supports two-phase commit
protocols for resource recovery.

protected network connection
A network connection that is supported by protocols that allow for coordinated resource
recovery (for example, two-phase commit protocols).

protected resource
A resource that is updated in a synchronized manner during resource recovery processing.

protocol
The rules governing the functions of a communication system that must be followed if
communication is to be achieved.

RDB
Relational database. All the data that can be accessed via RDB_NAME. For example, a
catalog and all the data described therein, or for OS/400, all collections with their associated
catalogs as well as all other database libraries on a particular system.

RDB_NAME
The DRDA globally unique name for an RDB.

relational data
Data stored in a relational database management system.

Part 3: Network Protocols 511

Glossary

remote unit of work
The form of SQL distributed processing where the application is on a system different from
the RDB. A single application server services all remote unit of work requests within a
single unit of work.

Replay
A security attack in which a perpetrator observes valid authentication information that is
passed between two partners, and then uses that information to gain access to one of the
partners by sending the exact same information.

resource recovery
The process that allows logical units of work to set new synchronization points, or to allow
a unit of work to roll back to the most recently established synchronization point. In LU 6.2
terms, this is sometimes known as synchronization point processing.

robust
A characteristic of a network protocol that provides functions required by DRDA. For
example, instant notification to both parties of a connection when failure occurs to either
party or the connection between them.

SBCS
Single-byte character set.

security context information
A string of bytes received from a GSS--API call (gss_init_sec_context() and
gss_accept_sec_context()) to be used to set up a security context between an application
requester and application server. Setting up a security context includes verifying the
partner. This is also known as identification and authentication.

semantics
The part of a construct’s description that describes the function of the construct.

single-byte character set (SBCS)
A character set that requires one-byte code points to identify the characters.

SNA
Systems Network Architecture.

socket
A term used in TCP/IP that specifies an address which specifically includes a port identifier;
that is, the concatenation of an Internet Address with a TCP port.

SQL
Structured Query Language. A standardized language for defining and manipulating data
in a relational database.

SQL Connection
An SQL connection is a logical connection between an SQL application program and a
DBMS where the SQL application issues SQL calls to perform database functions.

SSCP
System services control point.

synchronization point (sync point)
The beginning or end of a unit of work. It is used as a reference point to which resources can
be restored if a failure occurs during the unit of work.

synchronization point manager
The component of an operating environment that coordinates commit and rollback

512 DRDA Volume 1

Glossary

operations on protected resources.

system services control point (SSCP)
A focal point within an SNA network for managing the configuration, coordinating network
operator and problem determination requests, and providing directory services and other
session services for end users of a network.

Systems Network Architecture (SNA)
The description of the logical structure, formats, protocols, and operational sequences for
transmitting information units through and controlling the configuration and operation of
networks.

target program name (TPN)
The name by which a program participating in a network connection is known. Normally,
the initiator of a network connection will identify the name of the program it wishes to
connect to (see transaction program name).

TCP/IP
Transmission Control Protocol/Internet Protocol. An Internet standard transport protocol
that provides reliable, full duplex, stream service.

TP
Transaction program.

TPN
Target program name. See target program name, transaction program name, and well
known port.

transaction
See Logical Unit of Work

transaction program (TP)
A program that processes transactions in an SNA network. There are two kinds of
transaction programs: application transaction programs and service transaction programs.

transaction program name
The name by which each program participating in an LU 6.2 conversation is known.
Normally, the initiator of a conversation will identify the name of the program it wishes to
connect to at the other LU. When used in conjunction with an LU name, it identifies a
specific transaction program in the network.

triplet
An FD:OCA triplet consists of three parts:

1. a length byte

2. a type byte

3. one or more parameter-value bytes

Triplets are referred to by their type, such as Row LayOut triplet (RLO). Triplets may refer
to other triplets using LIDs.

two-phase commit protocols
The protocols used by a sync point manager to accomplish a commit operation.

unit of work
A sequence of SQL commands that the database manager treats as a single entity. The
database manager ensures the consistency of data by verifying that either all the data
changes made during a unit of work are performed or none of them are performed.

Part 3: Network Protocols 513

Glossary

Universal Unique Identifier (UUID)
A DCE term that identifies a unique identifier of an end user. A DCE realm has a unique
identifier in the set of realms. Userids within a realm have unique identifiers. If the realm
UUID is included with the end-user UUID, the resultant UUID is universally unique.

unlike
Two or more different operating environments. For example, unlike distribution is
distribution between DB2 for VM and DB2 for MVS.

unprotected conversation
An unprotected conversation is an LU 6.2 conversation that does not support two-phase
commit protocols for coordinated resource recovery.

unprotected network connection
A network connection that is not supported by protocols that allow for coordinated
resource recovery (for example, two-phase commit protocols).

UUID
Universal Unique Identifier.

well-known port
A port that is registered with the Internet as providing a specified type of support (for
example, DRDA application server).

514 DRDA Volume 1

Index

crrtkn ...60, 415
extnam..58
qryblksz ..80, 83
srvclsnm (server class name)...................................57
srvdgn ..53
sttstrdel ..60
svrcod ...53
typdefovr ..61
ABEND ..116, 353, 408, 415
ABNUOWRM110, 135, 294, 318, 331
access path ...273
access relational database.......................................44
accounting..342
accounting information..................26, 387, 392, 424
ACCRDB44, 52, 54, 59, 145, 162

...200, 256, 395, 400, 425
ACCRDBRM 60-61, 81, 152, 162, 282, 290, 331, 400
ACCSEC...62, 397, 425
ACCSECRD...62, 397, 425
actions ...359
additional SV...360
agent ..41, 49-50, 56
AGNPRM alert..358
AGNPRMRM..303, 331
alert..507
alert descriptions ..359
alert example ...375
alert generation ...354
alert implementation basics354
alert model mapping ...355
alert models ...357
alert structures ..354
alert to reply message mapping355
alert types...359
alerts ..354
alerts and supporting data415
alerts at application requester..............................357
alias..278
ALLOCATE ...270, 390, 392
alphabetic extender..271
API ...507
API (Application Programming Interface)..........20
APPC...387
APPCMNI ..392
APPCMNT...408
application program version management274

application programming interface (API)...........20
Application Programming Interface (API)........507
application requester ...40
application requester (AR)...........22, 25, 40, 54, 507
application server ...40
application server (AS)22, 25, 54, 507
application services..423
application support protocol...................22, 25, 507
APPSRCCD..401
APPSRCCR ..401
AR ..507
array description...163-165
array descriptor...166
AS...507
assigning LIDs to 0 triplets...................................252
assigning override ..252
asynchronous wait ...395
ATTACH...394
authenticated conversation25
authentication.................................345, 387, 392, 424
authorization ...387
BACKOUT ...391, 413
base and option sets...138
base row data ..313
base set functions ...390
base set of LU 6.2 ..389
basic conversation..415
basic conversation verb...391
basic FD:OCA object contained in DDM...........138
BF rule ...310
BGNBND...............................44, 67, 69, 145, 402, 426
BGNBNDRM...69, 331
bind...29, 31, 273, 507
bind flow..67, 69, 71, 402, 426
bind flows ..402, 426
bind option values..4
bind options...8, 69
BLKERR alert...362
block chaining rule (CH rule)314
block format rule (BF rule)310
block size rule (BS rule) ...313
blocking ..310
blocking protocol error357, 362
blocking rule..310
BNDOPT ..69, 75, 298
BNDSQLSTT44, 67, 69-70, 118, 145, 402, 426

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) 515

Index

BNDSTTASM...297
BS rule ...313
building statement level SQLCAs437, 440
CA rule..281-282
causes ..359
CCSID ..11, 50, 52, 59, 61, 162

......................199, 244, 253, 282, 287, 290, 292, 307

..334, 507
CCSID manager ..46, 49
CCSIDDBC...282
CCSIDMBC..282
CCSIDSBC..282
CD rule..283
CDRA ...19, 52, 199, 507
CF rule...283
CH rule ...314
chaining rule (CH rule) ...314
chaining violation...357
character data representation architecture19

..52, 199
character set restriction ...334
CHNVIO alert ...363
CLSQRY.....................................31, 44, 78, 82, 87, 145
CMDATHRM ..331
CMDCHK alert ...364
CMDCHKRM..303, 331
CMDNSPRM...295, 331
CMDVLT alert ...365
CMDVLTRM...........................132-133, 285, 303, 331
CMMRQSRM..........122, 127-129, 132-133, 285, 331
CMNAPPC ..40, 49, 385
CMNMGR..341
CMNSYNCPT...41, 49, 385
CMNTCPIP manager...421
CMNTCPIP manager) ...41
CNTQRY31, 44, 78, 81-82, 143, 145, 312
code point ..49, 143
coded character set identifier...........................11, 50

............................52, 59, 61, 162, 199, 244, 253, 282
...287, 290, 292, 307, 334

Coded Character Set Identifier (CCSID)............507
coded character set identifier manager................46
codepoint..52
CODPNT ..52
CODPNTDR ..52
coexistence ...120-121, 124
COLLECTION ..271, 273
command and reply flow..54
command data object...44
command execution example..............................259
command to descriptor relationship..................145

commit ..32
COMMIT99, 116, 121-122, 125, 127-128, 131
commit ..134
commit and rollback ..118
commit and rollback processing rule.................284
commit and rollback rule284-285
commit and rollback scenario..............................124
commit flow...117-118
commit flows...429

on SYNC_LEVEL(NONE) conversation410
on SYNC_LEVEL(SYNCPT) conversation ...411

commit on return..507
commit unit of work ..116
commit unit of work DDM flow117
commit/rollback processing........................416, 434
commitment of work ...116
communication area

group description...190
row description...175

communication area exceptions
group description...191

communication connection..................................299
communications manager40, 49

.......................................51, 55-56, 59, 341, 385, 421
CONNECT statement..................................19, 25-26
connection allocation...415
connection allocation rule (CA rule)...........281-282
connection allocation rules...................................434
connection failure (CF rule)..................................283
connection usage rule (CU rule)..........................287
connectivity...20, 38, 507
consistency token ...274
continue preceding triplet....................138, 149, 157
control-operator verb...388
conversation..392, 508
conversation allocation rule.................................282
conversation failures..413
conversation flow...282, 316
conversation level...390
conversation protocol error..................................368
conversation rule281-282, 287
conversation verb ...388
conversation verb category390
conversation-level security390, 392
conversational communications manager40

..50, 385
correlation ..352
correlation displays..353
correlation of diagnostic information414
correlation token............................351, 353, 415, 434
correlation, alerts and supporting data415

516 Open Group Technical Standard (1999)

Index

correlation, focal point messages........................353
CPT ...138, 149, 157
CR rule ..284
creating a package ..67
CU rule..287
cursor error condition..369
data area group description.........................192, 194
data area row description.....................................176
data array description..153
data collection ...415
data definition and exchange...............................137
data descriptor ..143
data integrity ...508
data representation transformation....................291
data representation transformation rule ...290, 292
data staging area...8
data stream structure error...................................357
data stream syntax error374
data type conversion rule (DC rule)288
data types ...3
data value group description...............................159
Database Management System (DBMS)............508
database server..40
database server (DS) ..508
database support protocol....................................508
database-directed access ...3
database-directed distributed unit of work508
date description ..216
DBCS ...508
DBCS (GRAPHIC) ..227-229
DBMS ..508
DC rule..288
DCE.................................25, 61-64, 299, 417, 435, 508
DCE security ...343, 417
DDM..26, 31, 38-40, 44, 49-50

..............................52, 54, 69, 79, 118, 275, 385, 402

...421, 426, 508
DDM bind flow ...426
DDM command objects in DRDA.........................15
DDM concepts...13
DDM concepts for DRDA implementation.........14
DDM reader guide..13
DDM servers..40
deadlocks..116
DEALLOCATE...............353, 357, 390, 407, 415, 417
deallocation type....................................353, 408, 415
decimal description..207-208
default triplet...160
degrees of distribution...22
DESCRIBE..109
describe input ..2

describe table...112
descriptor classes..149
descriptor definitions...151
descriptor object ...138
dgrioprl ...68
diagnostic data collection415
diagnostic information

collection and correlation353
diagnostic support..52
dictionary manager..42, 49
directory manager ..42
disconnect ..303
display...414
Distributed Computing Environment (DCE)...508
Distributed Data Management385
distributed request ...22, 508
distributed unit of work ..9
Distributed Unit of Work..20
distributed unit of work................................430, 508
double-byte character set (DBCS)509
DRDA ...281, 509
DRDA Connection ...509
DRDA managers...40
DRDA rules..281
drop package ...72
DRPPKG...44, 72, 145
DS...509
DSCERR alert ..366
DSCINVRM...254, 303, 331
DSCPVL..145
DSCRDBTBL44, 112-113, 145
DSCSQLSTT44, 110-111, 145
DT rule ..290
DTAMCHRM177, 179, 181, 183

...............185-186, 188, 191-192, 194, 254, 303, 331
dynamic commit and rollback.............................116
dynamic execution ...114
dynamic rollback....................................128, 130, 132
dynamic SQL.....................60, 108-109, 114-115, 509
dynamic SQL scenario...........................127-128, 131
early array descriptor ..162
early data unit descriptors....................................258
early descriptor ...143
early descriptors ...162
early environmental description.........................256
early environmental descriptor197, 199-200
early environmental descriptors197
early group descriptors ...177
early row descriptors ...168
eight-byte description..205
eight-byte integer..211

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) 517

Index

end user ..417
end user name ...270
end-user name...270
end-user name rule (EUN rule)307
ENDBND44, 67, 71, 145, 275, 402, 426
ENDQRYRM78, 81, 84-85, 87-88, 105

...107, 263, 331, 406, 427
ENDUOWRM117, 119, 124, 126, 133

...284, 331, 410, 416, 429
enhanced bind options ..8
enhanced security...6
enhanced sync point manager7
enterprise code..271
environmental description...........................141, 143
environmental description objects......................256
environmental descriptor149
error checking..254
error condition to alert model mapping............355
error reporting...254
EUN rule...307
exchange server attribute52, 54

..................................58, 62, 143, 287, 395, 400, 425
EXCSAT52, 54, 58, 62, 143, 287, 395, 400, 425
EXCSAT (exchange server attribute)..................162
EXCSATRD52, 54, 58, 62, 162
EXCSQLIMM............44, 114-115, 121, 145, 260, 284
EXCSQLSTT........................44, 97, 100, 108, 118-119

......................................143, 145, 284, 395, 400, 425
execute SQL statement ..97
EXECUTE_IMMEDIATE.......................................260
execution ..509
execution flow...405-406, 427
execution thread...52, 509
Extended Privilege Attribute Certificate (EPAC)509
Extended Registry Attribute (ERA)....................509
externalized row data..313
failure causes ...359
failure notification..387
FD:OCA ...39, 137, 143, 245

......................................250, 252, 254, 256, 310, 509
FDODSC...150
FDODTA...138
fixed byte description ..219
fixed character mixed description.......................230
fixed character SBCS description224
fixed decimal description......................................207
fixed-character description...................................227
fixed-row protocol..31, 78
FIXROWPRC31, 84, 316, 400, 426
float ..204-206
flow25, 29, 31-32, 34-35, 54, 67, 114-115, 509

focal point messages351, 354, 434
Formatted Data Object Content Architecture
(FD:OCA)19
four-byte description.....................................201, 206
GDA..................................141, 149, 157, 199-200, 252
GDA/CPT errors ..255
general errors...254
generating alerts ...354
generic focal point messages................................354
GENERR alert..367
GET_ATTRIBUTES.................................390, 394-395
GET_TP_PROPERTIES390, 394-395
group data array141, 149, 157, 199-200, 252
GSS-API..343, 510
gss_accept_security_context

function ..344
gss_accept_sec_context

function ..512
gss_init_security_context

function ..344
gss_init_sec_context

function ..343, 512
handling conversation failures413
hexadecimal descriptor ...154
host variable ..510
I/O parallelism ...11
ID number alert...359
immediate SQL statement execution114
initialization flow.............................25, 395, 397, 400
initialization flows..424
initializing a conversation392
initializing a TCP/IP connection.........................424
INSERT command..264
install causes..359
instantiate...510
integer..201-203
INTRDBRQS..44, 145
IR rule..294
large object bytes ..239
large object bytes locator212
large object character

DBCS (GRAPHIC)..241
DBCS locator ...214
locator ...213
SBCS..240

large object character mixed242
late array descriptors ...152
late data unit descriptors259
late descriptor ...143, 152
late environmental descriptor199, 243
late group descriptors..157

518 Open Group Technical Standard (1999)

Index

late row descriptors ...155
level 1 ..8
level 2 ..2, 8
level 3 ..5
level 4 ..2
LID ..149, 198, 252-253, 510
LID (local identifier)141, 157
LID example ..252
like ...510
limited block protocol31, 85

LOB data...90
LMTBLKPRC........................31, 85, 89, 313, 400, 426
LOB data...76
local identifier141, 149, 198, 252-253
local identifier (LID)...510
logical flow ..400, 426
logical unit (LU)..510
logical unit of work ..414
logical unit of work (LUW)510
logical unit of work identifier414
Logical Unit type 6.2 (LU 6.2)510
logical unit-of-work identifier26, 392, 414-415, 417
logical unit-of-work identifier (LUWID)510
LOG_DATA..408
long variable bytes description221
long variable character description229
long variable character mixed description........232
long variable character SBCS description226
LU ..510
LU 6.2..407-408, 413, 416, 510
LU 6.2 (Logical Unit 6.2)353, 385, 388, 414, 417
LU 6.2 base and option sets390
LU 6.2 flow ..400, 402, 406
LU 6.2 initialization flow.......................................395
LU 6.2 initialization processing392
LU-LU verification ...392
LUNAME ...392
LUW ..510
LUWID...............................26, 392, 414-415, 417, 510
LUW_Identifier ...391
LUW_IDENTIFIER...394
LU_NAME ...392
major subfield construction..................................375
major subvector construction375
major vector construction.....................................375
managing conversation...413
mapping of RMs to SQLSTATEs (CD rule)283
mapping reply messages355
materialization rules ..253
MAXBLKEXT ..100
MAXRSLCNT..100

MAXSCTNBR ...275, 300
MBCS...510
MDD138, 141, 149, 153, 197, 243, 247, 250, 253
MDD errors ..254
message models ..354
meta data definition.......................................138, 141

..............................149, 153, 197, 243, 247, 250, 253
meta data description..153
meta data summary ...245
MGRDEPRM...331, 413
MGRLVLRM..331
mixed-byte character set (MBCS)........................510
mixed-byte datalink...238
model mapping...355
MSA...19, 510
multi-RDB scenario..132, 134
multi-relational database update120, 131, 136
multi-row fetch10, 316, 437, 440
multi-row insert..10, 264
Multilingual Latin-1...243
Mutual Authentication..511
name syntax...271
name tables and views ..271
naming conventions..............................269, 279, 419
network connection.................25, 124, 428-429, 511
network connections..120
network management351, 414
non-standard query blocks...................................310
null-terminated bytes description.......................222
null-terminated mixed description.....................233
null-terminated SBCS description223
nullable ...191
number of elements group description187
number of elements row description173
numeric character description.............................209
OBJDSS ..49, 51, 310, 315, 425
object data stream structure....49, 51, 310, 315, 425
object name group description............................186
object name row description........................172, 318
object name rule (ON rule)...................................307
object-oriented extensions ..4
OBJECTID ..271
OBJNSPRM..295, 331
OC rule..295
ON rule ...307
one-byte description ..203
OPNQFLRM..331
OPNQRY...........31, 44, 78-79, 88, 143, 145, 261, 316
OPNQRYRM..................78, 81, 85, 87, 331, 406, 427
option set functions..390
option set of LU 6.2 ..389

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) 519

Index

optionality (OC rule) ...295
optionality rules..295
override triplet ..160, 252
overriding descriptor.....................................252, 254
overriding descriptors ...250
overriding everything..250
overriding output formats....................................160
overriding user data...252
package ..29, 31, 67, 273, 511
package consistency token274
PACKAGEID...273
Pascal L string bytes...234
Pascal L string description....................................235
Pascal L string mixed...236
passing USER_ID..270
passing warning to application requester rule.306
PASSWORD...393
PB rule...296
pkgathrul..69, 75
PKGBNARM..331
PKGBPARM ..69, 331
plan..511
port ..511
post-commit processing..134
POST_ON_RECEIPT393-394, 401
PRCCNV alert ...368
PRCCNVRM ...303, 331
PREPARE_TO_RECEIVE.....................391, 393, 401
principal..511
privileges area group description188
privileges area repeating group

row description...174
PRMNSPRM..295, 331
probable causes...359
problem determination351, 414-415, 433-434
problem determination and isolation353
process model..40
process model flow...49-50
product-unique extensions.....................................52
program binding rule (PB rule)296
Program name...279
program preparation process275, 511
program to program communication387
protected conversation..511
protected network connection.............................511
protected resource..511
PROTECTED_LUW_IDENTIFIER391, 394
protocol ..31, 511
PRPSQLSTT44, 108-109, 145, 284
PWDENC ...3
PWDSBS..3

QP rule ..316
qryblkctl..79
qryblksz ..79
QRYDSC......................................86, 88, 107, 143, 316
QRYDTA..82, 138, 143, 311
QRYERR alert..369
QRYNOPRM...87, 303, 331
QRYPOPRM..81, 87, 303
QT rule..318
query block chaining rule (CH rule)...................314
query block format rule (BF rule)310, 313
query block size rule (BS rule)313
query blocks...310
query data ..138
query data transfer protocol rule (QP rule)316
query flow..67, 78, 80
query process...76
query termination rule ..282
query termination, interruption, continuation.318
RDB ...45, 511
RDB initiated rollback rule294
RDB initiated rollback scenario135
RDBACCRM ...303, 331
RDBAFLRM...331
RDBATHRM..331
RDBCMM...44, 117-118, 145
RDBERR alert ..370
RDBMS..19
RDBNACRM...303, 331
RDBNFNRM..331
RDBRLLBCK.....................................44, 145, 411, 430
RDBUPDRM ...121, 305, 331
RDB_NAME..271, 273, 511
RDB_NAME rule (RN rule)..................................307
READ socket call ..427
REBIND ..44, 74-75, 145
RECEIVE operations......................................393, 401
RECEIVE_AND_WAIT.........390, 395, 405-406, 408
referencing overrides...252
referencing rule ...252
relational data..511
relational database access error...........................370
relational database commit unit of work117
relational database manager................45, 50, 56, 59
relational database name rule (RN rule)307
relational database names271
relational database names rules435
relational database-initiated rollback rule294
Remote Unit of Work...21
remote unit of work.......................................429, 512
Replay ...512

520 Open Group Technical Standard (1999)

Index

reply data object ...44, 50
reply data stream structure............................51, 263

......................................310, 318, 400, 406, 425, 427
reply message ...60, 117, 406
reply objects and messages16
request correlation identifier............................49, 51
required base set functions...................................390
required option set function.................................390
resource limit reached...................................357, 371
resource recovery.......................................32, 44, 124

......................................132, 134, 281, 284, 413, 512
resource recovery interface116, 131
result set column information

row description...169
result set column information group179
result set group description177
result set locator..210
result set row description168
resynchronization manager....................................43
RLO137-138, 141, 149-150, 152, 155, 157, 252
RLO errors..255
RN rule..307
robust ..512
ROLLBACK ...89, 116
rollback ...117
ROLLBACK..121-122
rollback flow..430
rollback flows

on SYNC_LEVEL(NONE) conversation411
on SYNC_LEVEL(SYNCPT) conversation ...412

rollback unit of work ...117
row identifier...215
row layout137-138, 141, 149-150, 152, 155, 157, 252
RPYDSS51, 263, 310, 318, 400, 406, 425, 427
RQSDSS ..49
RSCLMT alert..371
RSCLMTRM ..331
RSLSETFLG ...100
RSLSETRM ..100, 331
RSYNCMGR (resynchronization manager)........43
rule CA5..281
rule usage ...415-416
rule usage of relational database names............418
rules for CLOSE ..329
rules for CLSQRY ...320
rules for CNTQRY..320
rules for EXCSQLSTT ..320
rules for FETCH..325
rules for OPNQRY..320
rules usage for TCP/IP environments434
rules usage fpr SNA...415

SBCS223-226, 235, 307, 333, 512
SBCS datalink ..237
scrollable cursors ..10
SDA..........137-138, 141, 143, 149, 197, 200, 243, 252
SE rule ...299
SECCHK ..62, 397, 425
SECCHKRM62, 303, 331, 397, 425
SECMGR ..42, 50
section number..275
section number assignment rule (SN rule)300
security6, 25, 61, 270, 390, 416
security context information........................343, 512
security flow ..64
security manager41-42, 50, 56
security mechanism

userid and encrypted password......................349
userid and password ...345
userid and password substitute......................348
userid, password, new password346
userid-only...347

security mechanisms..3
security rule (SE rule) ..299
security violation error..373
SECURITY_USER_ID ..394
SECVIOL alert ...373
semantics..512
SEND_DATA..........................390, 393, 395, 401, 405
SEND_ERROR ..390
server list ..7
serviceability rule (SV rule)303
serviceability rules ...417, 435
SET statement (ST rule)...302
SET_SYNCPT_OPTIONS391
severity codes..53, 355
simple data array....................................137-138, 141

......................................143, 149, 197, 200, 243, 252
single relational database update120
single-byte character set223-226, 235, 307, 333
single-byte character set (SBCS)..........................512
sixteen-byte description..204
SN rule ..300
SNA...25-26, 35, 385, 512
SNA environment usage.......................................414
SNA Management Services Architecture............19
SNA sync point communications manager41
socket ..512
socket calls ...427
sockets interface..423
SP rule ...301
special register...302
SQL..19, 25-26, 31, 61, 69

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) 521

Index

...............114-116, 159, 168-177, 179, 181, 185-187
.......................190-192, 194, 196, 274, 307, 405-406
..427, 512

SQL application manager56
SQL Connection..512
SQL EXECUTE IMMEDIATE...............................114
SQL EXECUTE_IMMEDIATE275, 284
SQL object name rule (ON rule)..........................307
SQL object names (ON rules)...............................307
SQL statement execution flow405, 427
SQLAM (SQL application manager)43, 45

..48, 51, 162
SQLCA.......................................53, 153, 157, 166, 175

...260, 263, 283, 437, 440
SQLCADTA...153, 157
SQLCAGRP...157, 175, 190
SQLCARD ...67, 71, 73, 75, 97

.................................99-100, 108, 114, 118, 145, 166
...175, 263, 318

SQLCAXGRP...190-191
SQLCCSID...181, 192, 194
SQLCIGRP...169, 179
SQLCINRD..145, 164
SQLCIROW ...164, 169
SQLCNAME..179
SQLCOMMENTS...192, 194
SQLDA ...167, 176, 198
SQLDAGRP...176, 192, 194
SQLDARD108-110, 112, 145, 167
SQLDAROW ...167, 176
SQLDIAGNAME..181
SQLDTA..78, 80, 85-86, 97-98

...139, 143, 145, 155-156
SQLDTAGRP...156-157, 159
SQLDTAMRW ..145, 155
SQLDTARD.................................97, 99-100, 145, 153
SQLERR..437, 440
SQLERRD...191
SQLERRMSG...191
SQLERRRM...287, 331
SQLLABEL...192, 194
SQLLENGTH..181, 192, 194
SQLNAME ..181, 192, 194
SQLNUM..187
SQLNUMGRP...173, 187
SQLNUMROW163-166, 173
SQLOBJECTNAME..186
SQLOBJGRP ..186
SQLOBJNAM..112, 145, 172
SQLPA...166
SQLPAGRP..174, 188

SQLPALS..188
SQLPARD ..145, 166
SQLPAROW..166, 174
SQLPCOL...188
SQLPOBJ ..188
SQLPOTP ...188
SQLPOWN...188
SQLPPRVS ...188
SQLPRECISION.....................................181, 192, 194
SQLRDBNAME...191
SQLRSGRP ..168, 177
SQLRSLOCATOR...177
SQLRSLRD..100, 145, 163
SQLRSNAME..177
SQLRSROW...163, 168
SQLSCALE ..181, 192, 194
SQLSTATE64, 83, 122, 282-283

...285, 288, 290, 331, 437
SQLSTATEMENT ...185
SQLSTT67, 70, 108-109, 114, 145, 171, 251, 260
SQLSTTGRP..171, 185
SQLSTTVRB......................................67, 145, 165, 251
SQLTYPE ...181, 192, 194
SQLUDTGRP...196
SQLUDTNAME..196
SQLVRBGRP ...170, 181
SQLVRBROW..165, 170
SQLWARN...191
SRRBACK...136
SRRCMIT ...131
SSCP ..512
ST rule ...302
staging area ..8
standard focal point messages.............................433
standard query blocks ...310
standardized object name.....................................278
statement execution flow......................405-406, 427
statement execution logical flow...........................31
statement group description................................185
statement row description....................................171
statement variables group....................................181
statement variables row description..................170
static commit ...133
static commit and rollback116
static rollback ..130, 133
stored procedure DDM flow119
stored procedure name ...277
stored procedures ...7
stored procedures rule (SP rule)..........................301
Structured Query Language...................................19
subfield ...360

522 Open Group Technical Standard (1999)

Index

subvector..360
supervisor ..42, 46
SV rule...303
sync point manager..7, 22, 43

.........................56, 116, 120, 134, 136, 408-409, 413
synchronization point32, 387
synchronization point (sync point).....................512
synchronization point manager512
synchronous wait protocol verbs........................395
SYNCMNT...408
SYNCPTMGR22, 43, 116, 120, 136, 408-409, 413
SYNCPTOV ...7
SYNC_LEVEL.................................392, 407, 413, 415
SYNERRCD ...287
synonym...278
SYNTAX alert ..374
SYNTAXRM..287, 303, 331
system services control point (SSCP).................513
Systems Network Architecture385
Systems Network Architecture (SNA)...............513
TAKE_BACKOUT ..136
TAKE_SYNCPT ..123
target program ..279
target program name...308
target program name (TPN).................................513
target program name rule (TPN rule)308
TCP/IP..421-422, 513
TCP/IP and DRDA ..424
TCP/IP communications ..6
TCP/IP communications manager...............41, 421
TCP/IP connection ..424, 436
TCP/IP connection rule usage.............................434
TCP/IP correlation value display433-434
TCP/IP environment usage in DRDA433
TCP/IP flow ..427, 429
TCP/IP initialization flow425
TCP/IP initialization processing.........................424
TCP/IP packet flow ...426
TCPCMNI ..424
TCPCMNT ...428
TCPSRCCD..426
TCPSRCCR ..426
terminating conversations407-409
terminating network connection.................428-429
termination...35
termination flows ...34
termination, interruption, continuation318
time description..217
timely communication outage notification.......341
timely failure notification387
timestamp description...218

token..415
tool and program..414
TP...513
TPN ...26, 40-41, 308, 513
transaction..513
transaction processing...342
transaction program (TP)......................................513
transaction program name .26, 40-41, 418-419, 513
transparency ..48
transport control protocol422
transport control protocol/internet protocol ...421
TRGNSPRM...331
triplet ..138, 141, 149, 157

.......................................197, 243, 250-251, 253, 513
triplet override ..200
two-byte description..202
two-phase commit32, 43, 116

...............................120, 131, 134, 305, 407-409, 413
two-phase commit protocols513
TYPDEFNAM.......................................54, 67, 74, 145

..............................162, 198, 250, 252, 254, 282, 290
TYPDEFOVR...54, 67, 97, 100

......................................162, 197, 252, 254, 282, 291
type-independent verb..................................388, 390
unique identifier ...414
unit of work ...37, 116-117

...............................120-121, 134, 282, 304, 414, 513
Universal Unique Identifier (UUID)...................514
unlike...514
unprotected conversation.....................................514
unprotected network connection........................514
UOWID (unit of work identifier)26
UP rule ..305
update control rule (UP rule)305
update privilege ...116, 120
usage of names..417
user causes ...359
user ID verification...390
user-defined data group..196
userid and encrypted password..........................349
Userid and Password...61, 64
userid and password ...345
userid and password substitute348
Userid Only..61, 64
userid security...345
userid, password, new password346
userid-only...347
USER_ID ..270, 393
UUID ...514
VALNSPRM........................80, 86, 282, 291, 295, 331
variable byte description220

DRDA, Version 2, Volume 1: Distributed Relational Database Architecture (DRDA) 523

Index

variable character mixed description.................231
variable character SBCS description...................225
variable-character description.............................228
verb..419
verb categories ..388
verb, LU 6.2..388
version ID...275
warning...437
well known port..41
well-known port ...514
WN rule ..306
WRITE socket call...427
zoned decimal description208

524 Open Group Technical Standard (1999)

	c911cov.pdf
	Page 1

	blank.pdf
	Page 1

