Technical Standard

System Interface Definitions
Issue 4, Version 2

tHE ()pern Group

[This page intentionally left blank]

X/Open CAE Specification

System Interface Definitions

Issue 4, \Version 2

X/Open Company Ltd.

O September 1994, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

Portions of this document are extracted from IEEE Std 1003.1-1990, copyright [0 1990 by the
Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE.

Portions of this document were extracted from IEEE Draft Standard P1003.2/D12, copyright O
1992 by the Institute of Electrical and Electronics Engineers, Inc. with the permission of the
IEEE. No further reproduction of this material is permitted without the written permission of
the publisher. IEEE Std 1003.2-1992, copyright O 1992 by the Institute of Electrical and
Electronics Engineers, Inc., and ISO/IEC 9945-2:1993, Information Technology — Portable
Operating System (POSIX) — Part 2: Shell and Utilities, are technically identical to IEEE Draft
Standard P1003.2/D12 in these areas.

Portions of this document are derived from copyrighted material owned by Hewlett-Packard
Company, International Business Machines Corporation, Novell Inc., The Open Software
Foundation, and Sun Microsystems, Inc.

X/0pen CAE Specification

System Interface Definitions Issue 4, Version 2

ISBN: 1-85912-036-9
X/0pen Document Number: C434

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/0pen Company Limited
Apex Plaza

Forbury Road

Reading

Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.co.uk

X/0pen CAE Specification (1994)

Chapter

Chapter
Chapter
Chapter

Chapter

Chapter

Chapter

11
1.2
13

41
4.2
43
44

51
52
53
531
532
533
534
535
5.3.6
54
54.1
542
55

6.1
6.2
6.3

7.1
7.2
7.3
731
7.3.2
733

INTFOAUCTION..........oivicc e 1
OVEINVIEW ...ttt sttt e b e e ne s 1
QL1001 2o (oo |V 2T 1
POFTADIIILY ..o s 2

GHOSSANY ... 7

File Format NOtation ..., 35

CRAraCter SEl ... 39
Portable Character Set..........ccoveiivcinceie e 39
(g T=1 7 To1 (=T gl =1 g Tolo T [T o [TRSN 40
C Language Wide-character COAEScocvvvvvrerviereinneinneeseeseenes 41
Character Set Description File..........ccocoviveiiiiinscee s 41

LOCAIE ... 45
(1T 1T | TSRS 45
(O 1] D o =1 L TR 46
Locale DEfiNITIONcccovveirirei s e 46

LC _CTYPE ...ttt saesnsnsnes 48
LC _COLLATE ...ttt eseesteenesre st sesassssssssssssssesesssssssssssnsnens 57
LC_MONETARY ...ttt sesssesnens 64
LC_NUMERIC.......cooiiiierieniesse ettt sessse s ssssssesssenes 68
IO I 1T 69
LC _IMESSAGES........oco et sese et 76
Locale Definition Grammar...........cccocovivveinsinseie e eseenens 78
Locale Lexical CONVENTIONS.........cccvcirieirieinese e 78
(o Tor=1 =X € Uy o 0 T LS 79
Locale Definition EXample.......cccociieiieiincciccc e 85

Environment Variables..........coiciciieciiecssns 89
Environment Variable Definitioncccccovivvenvicivnisei e 89
Internationalisation Variablesc..cccovivrviiiiin s 91
Other Environment Variables...........ccccoveivriiinciisciseecce e 94

Regular EXPreSSIONS. ..., 97
Regular Expression Definitionsccovcvvveineinncinncencene e 97
Regular Expression General Requirements............cccoceevveieveeinreeeninnnn, 99
Basic Regular EXPIreSSIONSccccccovveeeiieiireeneseneseeeseseesiesessssessseesenens 100

BREs Matching a Single Character or Collating Element................ 100
BRE Ordinary CharaCters..........cococieiveiinieienescnesesieseseesieesessesessesenens 100
BRE Special CharaCters.........cocvvveireirereieneeses s seseeseresasseseseens 100

System Interface Definitions Issue 4, Version 2 iii

Chapter

Chapter

734
735
7.3.6
7.3.7
7.3.8
7.4

74.1
742
743
74.4
74.5
7.4.6
74.7
7438
74.9
7.5

7.5.1
752
753

8.1
8.2

9.1
9.11
9.1.2
9.1.3
9.14
9.15
9.1.6
9.1.7
9.1.8
9.1.9
9.1.10
9.1.11
9.2
9.21
9.2.2
9.23
9.24
9.25
9.2.6

Contents

PEriods iN BRES.........c.oviiiiieeeieieie st 100
RE Bracket EXPIreSSIONccocvrieeisieiseeeseseseseressssee e e esessesessesenes 101
BREs Matching Multiple Characters.........cc.ccccovvveniiincieneie e 103
BRE PreCeAENCE ..ottt 104
BRE EXPression ANCNOIING.......ccovuvriiirisiesce s sese e e seens 104
Extended Regular EXPreSSioNSc.cccovveievieieneinnennieeseeneseneseneseenes 105
EREs Matching a Single Character or Collating Element................ 105
ERE Ordinary CharaCters..........cccveeiveiineenssenesesiesesesseeesessesessesenens 105
ERE Special CharaCters..........cocvvveiricinereieseeses s seseses s seseseens 105
Periods iN ERES.......c.ccoviiieiceeeene et 106
ERE Bracket EXPreSSiON.......c.ccccvvciriiierieineee s sessesessesesssseneseens 106
EREs Matching Multiple Characters.........cc.ccocovvvveneiineieneie e 106
ERE AREINAtioN....ccoiiiieieeii e 107
ERE PreCedENCEc.oviiviieee ettt 107
ERE EXPression ANCNOIING......cccouvrieirisenisce e sese e e seens 107
Regular EXpression Grammar.........ccc..coveeenensesenesieesesesesssesesessssens 108
BRE/ERE Grammar Lexical Conventions..........c.coccceeervneiencninieenen, 108
RE and Bracket EXpression Grammarcc.ccevveereeneeresenessenessenens 109
ERE GFamMIMAr.....c.ccoiiiiiiieisieieiesees et 112
Directory Structure and DEVICEScocovmeriseriiiesrisssionnn, 113
Directory Structure and Files ... 113
Output Devices and Terminal TYPESccvvvevrrerereierereseieseesieeseesenns 114
General Terminal Interface..........ccooovvieeinecincrcecrieesenn, 115
Interface CharacteriStiCs ... 115
Opening a Terminal Device File ... 115
PrOCESS GFOUPSviviieeeiereeieeesteseesesteseeeeesteseesesseseesesssseessesessessessssessensens 115
The Controlling Terminal..........cccocoovrveincincierre s 115
Terminal Access CONLIOlcccoviiirnieeii s 116
Input Processing and Reading Data............cccocevvvereriernevesiesieinsiennnns 116
Canonical Mode INPUt ProCeSSINGcoeovveervreiesenesieseseseseseereseeenens 117
Non-canonical Mode INput Processing........ccccveevverveinneeienernnernsennns 117
Writing Data and Output Processingc.ccovveivveievsieseresinsesiesennnnns 118
Special CharaCters.........coccvieiniiiie e 119
MOdEmM DISCONNECT........cooiieieiiiirreeeee s 120
Closing a Terminal Device File ..o, 120
Parameters That Can Be Set.........ccccceieirvnnnceiennreee e 121
The termios StFUCLUIE ..o 121
L] 0181 1Y, 0T =T SRR 121
L@ 10 4010 1 1Y, (o o =TS 122
CONIOl MOAES........oeiiiciiiir e 124
LOCAI MOAES ...ttt 126
Special Control Charactersccoveivveiineincenc e 127

X/0pen CAE Specification (1994)

Contents

Chapter 10 Utility CONVENLIONS......ccooooeiveses e 129
10.1 Utility Argument SYNTAXcccooevreiineinneinsseeses s esessens 129
10.2 Utility Syntax GUIAEIINEScccvriciriceisee e 132
[0 [GO 135
List of Tables
2-1 Job Control JOb ID FOrMALS......cccoieeiciiiecie et 19
3-1 Escape Sequences and Associated ACLIONSccovvervverevereniesesieseeinnens 36
4-1 Portable CharacCter SEt.........ocoeviiiiiiicece s 39
4-2 CoNtrol CharaCter SEL........coiiiiiicececeee e 42
5-1 Valid Character Class Combinations.........cccocceecviiivi i cvese e 52
8-1 Control Character NAMEScceecviiiiiee e s 114

System Interface Definitions Issue 4, Version 2 \Y

Vi

Contents

X/0pen CAE Specification (1994)

Preface

X/Open

X/0pen is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/0pen’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/0pen defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/0pen publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:
« CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

System Interface Definitions Issue 4, Version 2 Vil

Preface

« Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/0pen can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:
+ Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

- Technical Studies

X/0pen Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

« Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

- a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

viii X/Open CAE Specification (1994)

Preface

- a new lIssue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/0pen maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done either by email to the X/Open info-server or by checking the
Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information by email, send a message to info-server@xopen.co.uk with
the following in the Subject line:
request corrigenda; topic index
This will return the index of publications for which Corrigenda exist.
This Document

This specification is one of a set of X/Open CAE Specifications (see above) defining the X/Open
System Interface (XSI) Operating System requirements:

- System Interface Definitions, Issue 4, Version 2 (this document)
- Commands and Utilities, Issue 4, Version 2 (the XCU specification)
- System Interfaces and Headers, Issue 4, Version 2 (the XSH specification).

This document provides common definitions for the XCU specification and the XSH
specification, therefore readers should be familiar with this document before using the XCU
specification or the XSH specification. This specification is structured as follows;

- Chapter 1 is an introduction.

- Chapter 2 defines general terms used in this document, the XCU specification and the XSH
specification.

- Chapter 3 describes the notation used to specify file input and output formats in this
document and the XCU specification.

- Chapter 4 describes the Portable Character Set and the process of character set definition.

- Chapter 5 describes the syntax for defining internationalisation locales as well as the POSIX
locale provided on all systems.

- Chapter 6 describes the use of environment variables for internationalisation and other
purposes.

- Chapter 7 describes the syntax of pattern matching using regular expressions employed by
many utilities and the regcomp () group of functions.

- Chapter 8 describes files and devices found on all systems.

- Chapter 9 describes the asynchronous terminal interface for many of the XSH specification’s
functions and the XCU specification’s stty utility.

System Interface Definitions Issue 4, Version 2 iX

Preface

Chapter 10 describes the policies for command-line argument construction and parsing.

Comprehensive references are available in the index.

Typographical Conventions

The following typographical conventions are used throughout this document:

Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members.

Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— command operands, command option-arguments or variable names, for example,
substitutable argument prototypes

— environment variables, which are also shown in capitals
— utility names
— external variables, such as errno

— functions; these are shown as follows: name(); names without parentheses are C external
variables, C function family names, utility names, command operands or command
option-arguments.

Normal font is used for the names of constants and literals.
The notation <file.h> indicates a header file.

Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
#define construct.

The notation [EABCD] is used to identify an error value EABCD.

Syntax, code examples and user input in interactive examples are shown in fixed width
font. Brackets shown in this font, [] , are part of the syntax and do not indicate optional
items. In syntax the | symbol is used to separate alternatives, and ellipses (...) are used to
show that additional arguments are optional.

Bold fixed width font is used to identify brackets that surround optional items in syntax,
[1 ,and to identify system output in interactive examples.

Variables within syntax statements are shown in Jjtalic fixed width font
Ranges of values are indicated with parentheses or brackets as follows:

— (a,b) means the range of all values from a to b, including neither a nor b
— [a,b] means the range of all values from a to b, including aand b

— [a,b) means the range of all values from a to b, including a, but not b

— (a,b] means the range of all values from a to b, including b, but not a

Shading is used to identify extensions or warnings as detailed in Codes on page 2.

X/0pen CAE Specification (1994)

Preface

Note: A symbolic limit beginning with POSIX is treated differently, depending on context. In
a C-language header, the symbol {POSIXstring} (where string may contain underscores)
is represented by the C identifier _POSIXstring, with a leading underscore required to
prevent ISO C name space pollution. However, in this document, the leading

underscore is not used because this requirement does not exist for languages other than
C.

System Interface Definitions Issue 4, Version 2 Xi

Preface

Xii X/Open CAE Specification (1994)

Trade Marks

AT&TH

HPY

is a registered trade mark of AT&T in the U.S.A. and other countries.
is a registered trade mark of Hewlett-Packard.
OSF™ is a trade mark of The Open Software Foundation, Inc.

UNIXD is a registered trade mark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

/usr/groupD is a registered trade mark of UniForum, the International Network of UNIX
System Users.

X/0pen™ and the X"’ device are trade marks of X/Open Company Limited.

System Interface Definitions Issue 4, Version 2 Xiii

Xiv

Acknowledgements

X/0pen gratefully acknowledges:

AT&T for permission to reproduce portions of its copyrighted System V Interface Definition
(SVID) and material from the UNIX System V Release 2.0 documentation.

The Institution of Electrical and Electronics Engineers, Inc. for permission to reproduce
portions of its copyrighted IEEE Std 1003.2/D12, which have since become the corresponding
portions of IEEE Std 1003.2-1992 and ISO/IEC 9945-2;:1993, and also for permission to
reproduce portions of IEEE Std P1003.1g/D4.

The IEEE Computer Society’s Portable Applications Standards Committee (PASC), whose
Standards contributed to our work.

The UniForum (formerly Zusr/group) Technical Committee’s Internationalization
Subcommittee for work on internationalised regular expressions.

The ANSI X3J11 Committees.

Hewlett-Packard Company, International Business Machines Corporation, Novell Inc., The
Open Software Foundation, and Sun Microsystems, Inc., for their work in developing the
Single X/Open UNIX Extension and sponsoring it through the X/Open Direct Review (Fast-
track) process.

X/0pen CAE Specification (1994)

Referenced Documents

The following documents are referenced in this specification or in one of its companion
documents, X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2 or X/Open
CAE Specification, System Interfaces and Headers, Issue 4, Version 2.

AlX 3.2 Manual
AIlX Version 3.2 For RISC System/6000, Technical Reference: Base Operating System And
Extensions,1990,1992 (Part No. SC23-2382-00).

ANS X3.9-1978
(Reaffirmed 1989) Programming Language FORTRAN.

ANSIC
ANS X3.159-1989, Programming Language C.

ANSI/IEEE Std 754-1985
Standard for Binary Floating-Point Arithmetic.

ANSI/IEEE Std 854-1987
Standard for Radix-Independent Floating-Point Arithmetic.

Draft ANSI X3J11.1
IEEE Floating Point draft report of ANSI X3J11.1 (NCEG).

Ethernet
ISO 8802-3: 1990, Information Processing Systems — Local Area Networks — Part 3: Carrier
Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical
Layer Specifications.

FIPS 151-2
Proposed Federal Information Procurement Standards (FIPS) 151-2.
HP-UX Manual
Hewlett-Packard HP-UX Release 9.0 Reference Manual, Third Edition, August 1992.
I1SO 4217
ISO 4217:1987, Codes for the Representation of Currencies and Funds.
I1SO 6937
I1SO 6937: 1983, Information Processing — Coded Character Sets for Text Communication.
1SO 8601
ISO 8601:1988, Data Elements and Interchange Formats — Information Interchange —
Representation of Dates and Times.
ISO 8859-1

ISO 8859-1: 1987, Information Processing — 8-bit Single-byte Coded Graphic Character Sets
— Part 1: Latin Alphabet No. 1.

ISO/IEC 646
ISO/IEC 646: 1991, Information Processing — ISO 7-bit Coded Character Set for Information
Interchange.

ISO/IEC 1539
ISO/IEC 1539: 1991, Information Technology — Programming Languages — Fortran.

System Interface Definitions Issue 4, Version 2 XV

XVi

Referenced Documents

ISOC
ISO/IEC 9899: 1990, Programming Languages — C (which is technically identical to ANS
X3.159-1989, Programming Language C).

ISO POSIX-1
ISO/IEC 9945-1:1990, Information Technology — Portable Operating System Interface
(POSIX) — Part 1. System Application Program Interface (API) [C Language] (which is
identical to IEEE Std 1003.1-1990).

ISO POSIX-2
ISO/IEC 9945-2:1993, Information Technology — Portable Operating System Interface
(POSIX) — Part 2: Shell and Utilities (which is identical to IEEE Std 1003.2-1992).

MSE working draft
Working draft of ISO/IEC 9899:1990/Add3:draft, Addendum 3 — Multibyte Support
Extensions (MSE) as documented in the 1SO Working Paper SC22/WG14/N205 dated 31
March 1992.

OSF AES
Application Environment Specification (AES) Operating System Programming Interfaces
Volume, Revision A (ISBN: 0-13-043522-8).

OSF/1
OSF/1 Programmer’s Reference, Release 1.2 (ISBN: 0-13-020579-6).

POSIX.1
IEEE Std 1003.1-1988, Standard for Information Technology — Portable Operating System
Interface (POSIX) — Part 1: System Application Program Interface (API) [C Language].

Sun0OS 5.3
SunOS 5.3 STREAMS Programmer’s Guide (Part No. 801-5305-10).

SVID Issue 1
System V Interface Definition (Spring 1985 - Issue 1).

SVID Issue 2
System V Interface Definition (Spring 1986 - Issue 2).

SVID 3rd Edition
System Interface Definitions (1989 - 3rd Edition).

System V Release 2.0
— UNIX System V Release 2.0 Programmer’s Reference Manual (April 1984 - Issue 2).
— UNIX System V Release 2.0 Programming Guide (April 1984 - Issue 2).

System V Release 4.2
Operating System API Reference, UNIXO SVR4.2 (1992) (ISBN: 0-13-017658-3).

The following X/Open documents are referenced in this specification or in one of its companion
documents, X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2 or X/Open
CAE Specification, System Interfaces and Headers, Issue 4, Version 2.

Curses Interface
X/0pen Specification, February 1992, Supplementary Definitions, Issue 3
(ISBN: 1-872630-38-3, C213), Chapters 9 to 14 inclusive, Curses Interface; this specification
was formerly X/Open Portability Guide, Issue 3, Volume 3, January 1989, XSI
Supplementary Definitions (ISBN: 0-13-685850-3, XO/XPG/89/004).

X/0pen CAE Specification (1994)

Referenced Documents

Headers Interface
X/0pen Specification, February 1992, Supplementary Definitions, Issue 3
(ISBN: 1-872630-38-3, C213), Chapter 19, Cpio and Tar Headers; this specification was
formerly X/Open Portability Guide Issue 3, Volume 3, January 1989, XSI Supplementary
Definitions (ISBN: 0-13-685850-3, XO/XPG/89/004).

Internationalisation Guide, Version 2
X/0pen Guide, July 1993, Internationalisation Guide, Version 2 (ISBN: 1-859120-02-4, G304).

Issue 1
X/0pen Portability Guide, July 1985 (ISBN: 0-444-87839-4).

Issue 3
See XBD, Issue 3.

Issue 4
See XBD, Issue 4.

Issue 4, Version 2
See XBD, Issue 4, Version 2.

Migration Guide
X/0pen Guide, July 1992, XPG3-XPG4 Base Migration Guide (ISBN: 1-872630-49-9, G204).

Networking Services, Issue 4
X/0Open CAE Specification, August 1994, Networking Services, Issue 4
(ISBN: 1-85912-049-0, C438).

XBD, Issue 3
X/0pen Specification, Issue 3, 1988, 1989, February 1992, Supplementary Definitions, Issue
3 (ISBN: 1-87263-38-3, C213); this specification was formerly X/Open Portability Guide,
December 1988, Volume 3, (ISBN: 0-13-685850-3, XO/XPG/89/003).

XBD, Issue 4
X/0pen CAE Specification, July 1992, System Interface Definitions, Issue 4
(ISBN: 1-872630-46-4, C204).

XBD, Issue 4, Version 2
X/0pen CAE Specification, August 1994, System Interface Definitions, Issue 4, Version 2
(ISBN: 1-85912-036-9, C434). (This document.)

XCU, Issue 2
X/0pen Portability Guide, Volume 1, January 1987, XVS Commands and Utilities
(ISBN: 0-444-70174-5).

XCU, Issue 3
X/0pen Specification, 1988, 1989, February 1992, Commands and Utilities, Issue 3
(ISBN: 1-872630-36-7, C211); this specification was formerly X/Open Portability Guide,
Volume 1, January 1989 XSI Commands and Utilities (ISBN: 0-13-685835-X,
XO/XPG/89/002).

XCU, Issue 4
X/0pen CAE Specification, July 1992, Commands and Utilities, Issue 4 (ISBN:
1-872630-48-0, C203).

XCU, Issue 4, Version 2
X/0pen CAE Specification, August 1994, Commands and Utilities, Issue 4, Version 2 (ISBN:
1-85912-034-2, C436).

System Interface Definitions Issue 4, Version 2 Xvii

XViii

Referenced Documents

XNFS
X/0pen CAE Specification, October 1992, Protocols for X/Open Interworking: XNFS, Issue
4 (ISBN: 1-872630-66-9, C218).

XPG4
X/0pen Systems and Branded Products: XPG4, July 1992 (ISBN: 1-872630-52-9, X924).

XSH, Issue 2
X/0pen Portability Guide, Volume 2, January 1987, XVS System Calls and Libraries
(ISBN: 0-444-70175-3).

XSH, Issue 3
X/0pen Specification, February 1992, System Interfaces and Headers, Issue 3
(ISBN: 1-872630-37-5, C212); this specification was formerly X/Open Portability Guide,
Issue 3, Volume 2, January 1989, XSI System Interface and Headers (ISBN: 0-13-685843-0,
XO/XPG/89/003).

XSH, Issue 4
X/0pen CAE Specification, July 1992, System Interfaces and Headers, Issue 4
(ISBN: 1-872630-47-2, C202).

XSH, Issue 4, Version 2
X/0pen CAE Specification, August 1994, System Interfaces and Headers, Issue 4, Version 2
(ISBN: 1-85912-037-7, C435).

X/0pen CAE Specification (1994)

1.1

1.2

Chapter 1

Introduction

Overview

This document provides the common definitions for its companion volumes, the X/Open CAE
Specification, Commands and Utilities, Issue 4, Version 2 and X/Open CAE Specification,
System Interfaces and Headers, Issue 4, Version 2 (see Referenced Documents on page xv). It
defines general terms, concepts and interfaces used by both other volumes. Thus, this volume is
a prerequisite for understanding either of the other two.

Terminology
The following terms are used in this specification:

can
This describes a permissible optional feature or behaviour available to the user or application; all
systems support such features or behaviour as mandatory requirements.

implementation-dependent

The value or behaviour is not consistent across all implementations. The provider of an
implementation normally documents the requirements for correct program construction and
correct data in the use of that value or behaviour. When the value or behaviour in the
implementation is designed to be variable or customisable on each instantiation of the system,
the provider of the implementation normally documents the nature and permissible ranges of
this variation. Applications that are intended to be portable must not rely on implementation-
dependent values or behaviour.

may

With respect to implementations, the feature or behaviour is optional. Applications should not
rely on the existence of the feature. To avoid ambiguity, the reverse sense of may is expressed as
need not, instead of may not.

must
This describes a requirement on the application or user.

obsolescent

Certain features are obsolescent, which means that they may be considered for withdrawal in
future revisions of this document. They are retained in this version because of their widespread
use. Their use in new applications is discouraged.

should
With respect to implementations, the feature is recommended, but it is not mandatory.
Applications should not rely on the existence of the feature.

With respect to users or applications, the word means recommended programming practice that
is necessary for maximum portability.

System Interface Definitions Issue 4, Version 2 1

Terminology Introduction

1.3

El

EX

undefined

A value or behaviour is undefined if this document imposes no portability requirements on
applications for erroneous program constructs or erroneous data. Implementations may specify
the result of using that value or causing that behaviour, but such specifications are not
guaranteed to be consistent across all implementations. An application using such behaviour is
not fully portable to all systems.

unspecified

A value or behaviour is unspecified if this document imposes no portability requirements on
applications for correct program construct or correct data. Implementations may specify the
result of using that value or causing that behaviour, but such specifications are not guaranteed
to be consistent across all implementations. An application requiring a specific behaviour,
rather than tolerating any behaviour when using that functionality, is not fully portable to all
systems.

will
This means that the behaviour described is a requirement on the implementation and
applications can rely on its existence.

Portability

Some of the utilities in X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2
and functions in X/Open CAE Specification, System Interfaces and Headers, Issue 4, Version 2
describe functionality that might not be fully portable to systems based on the ISO/IEC 9945-
2:1993 standard or the ISO POSIX-1 standard. Where enhanced or reduced functionality is
specified, the text is shaded and a code in the margin identifies the nature of the extension or
warning (see Codes). For maximum portability, an application should avoid such functionality.

Unless the primary task of a utility is to produce textual material on its standard output,
application developers should not rely on the format or content of any such material that may be
produced. Where the primary task is to provide such material, but the output format is
incompletely specified, the description is marked. Application developers are warned not to
expect that the output of such an interface on one system will be any guide to its behaviour on
another system.

Codes

The codes and their meanings are as follows:

Enhanced internationalisation.
This identifies the interfaces in the Enhanced Internationalisation Feature Group in X/Open
CAE Specification, System Interfaces and Headers, Issue 4, Version 2.

Extension.

The functionality described is an extension to the standards referenced above. Application
writers may confidently make use of an extension as it will be supported on all XSI-conformant
systems. These extensions are designed not to conflict with the published standards.

If an entire SYNOPSIS section is shaded and marked with one ex, all the functionality described
in that entry is an extension.

X/0pen CAE Specification (1994)

Introduction Portability

FIPS

JC

oB

OF

Some behaviour which is allowed to be optional in the formal standards is mandated on XSI-
conformant systems. Such behaviours (for example, those dependent on the availability of job
control) may not be individually marked as extensions, but the mandatory nature of the feature
is marked as an extension where the option is described, typically in the header file where the
corresponding symbolic constant is defined.

FIPS Extension.

The Federal Information Processing Standards (FIPS) are a series of U.S. government
procurement standards managed and maintained on behalf of the U.S. Department of
Commerce by the National Institute of Standards and Technology (NIST). Where extensions
have been made in order to align with the FIPS requirements, they have the special mark shown
here, and appear in the index under FIPS alignment (as well as under EX).

The following extensions are required by FIPS 151-2:
« The implementation will support { POSIX_ CHOWN_RESTRICTED}.
« The limit {NGROUPS_MAX} will be greater than or equal to 8.

- The implementation will support the setting of the group ID of a file (when it is created) to
that of the parent directory.

« The implementation will support { POSIX_SAVED_IDS}.

« The implementation will support { POSIX VDISABLE}.

« The implementation will support { POSIX JOB_CONTROL}.
« The implementation will support { POSIX_NO_TRUNC}.

« The read() call returns the number of bytes read when interrupted by a signal and will not
return -1.

« The write() call returns the number of bytes written when interrupted by a signal and will
not return -1.

« In the environment for the login shell, the environment variables LOGNAME and HOME will
be defined and have the properties described in Chapter 5 of this document.

« The value of {CHILD_MAX} will be greater than or equal to 25.
« The value of {OPEN_MAX} will be greater than or equal to 20.

- The implementation will support the functionality associated with the symbols CS7, CS8,
CSTOPB, PARODD and PARENB defined in <termios.h>.

Job Control Extension.

Job control is an optional feature in the operating system described by the ISO POSIX-1
standard, but it is supported by all XSl-conformant systems. When interfaces rely on this
extension, they have the special mark shown here and appear in the index under JC (in addition
to being under EX).

Obsolescent.
Some of the interfaces describe functionality that is obsolescent. Although these are fully
portable to all current XSI-conformant systems they may be withdrawn in future issues.

Output format incompletely specified.

The format of the output produced by the utility is not fully specified. It is therefore not possible
to post-process this output in a consistent fashion. Typical problems include unknown length of
strings and unspecified field delimiters.

System Interface Definitions Issue 4, Version 2 3

Portability Introduction

OH

OH

opP

Pl

UN

UX

WP

Optional header.
In the SYNOPSIS section of some interfaces in X/Open CAE Specification, System Interfaces
and Headers, Issue 4, Version 2 an included header is marked as in the following example:

#include <sys/types.h>
#include <grp.h>
struct group *getgrnam(const char *name);

This indicates that the marked header is not required on XSl-conformant systems. This is an
extension to certain formal standards where the full synopsis is required.

Dependent on optional service in XSI.
Typical implementations depend on an optional service and the functionality affected need not
be present if the optional service is not supported.

The behaviour cannot be guaranteed to be consistent.

It is not possible to guarantee that the interface behaves in the same way on all XSl-conformant
systems. This is the case if it provides functionality that is system-defined or system-specific.
Options that are used to select alternative forms of system-specific behaviour are not marked, as
it is clear from their descriptions that their use is inherently non-portable.

Possibly unsupportable feature.

It need not be possible to implement the required functionality (as defined) on all XSI-
conformant systems and the functionality need not be present. This may, for example, be the
case where the XSI-conformant system is hosted and the underlying system provides the service
in an alternative way.

X/0pen UNIX Extension
The material relates to interfaces included to provide portability for applications originally
written to be compiled on UNIX and UNIX-based operating systems. Therefore, the features
described may not be present on systems that conform to XPG4 or to earlier XPG releases. The
relevant reference manual pages may provide additional or more specific portability warnings
about use of the material.

If an entire SYNOPSIS section is shaded and marked with one ux, all the functionality described
in that entry is an extension.

The material on pages labelled X/OPEN UNIX and the material flagged with the ux margin
legend is available only in cases where the _XOPEN_UNIX version test macro is defined.

World-wide portability extension.
These interfaces form part of the set of World-wide Portability (WP) interfaces that provide
additional support for the internationalisation of applications.

If an entire SYNOPSIS section is marked with we, this means that all the functionality described
in that entry is part of this internationalisation support.

These WP interfaces extend this document to provide support for multiple byte codesets and
thus potentially all national languages not previously supportable within, for example, 8-bit
codesets. The WP interfaces are aligned with the working draft of
ISO/IEC 9899: 1990/Add.3:draft, Addendum 3 - Multibyte Support Extensions (MSE) as
documented in the ISO Working Paper SC22/WG14/N205 dated 31 March 1992.

The Internationalisation Guide contains specific information on the internationalisation of
applications.

X/0pen CAE Specification (1994)

Introduction Portability

Withdrawal of Interfaces

Any interface (an entire utility, function or merely a feature) marked with one of the warning
codes o, P Or UN is subject to being withdrawn in a future issue. In these cases, the interface may
be taken immediately to the WITHDRAWN state, without the usual TO BE WITHDRAWN step
in an intermediate issue. For maximum portability, an application should avoid such
functionality.

System Interface Definitions Issue 4, Version 2 5

Introduction

X/0pen CAE Specification (1994)

UX

Chapter 2

Glossary

absolute pathname
See pathname resolution on page 23.

access mode
A particular form of access permitted to a file.

additional file access control mechanism
See file access permissions on page 15.

address space
The memory locations that can be referenced by a process.

affirmative response

An input string that matches one of the responses acceptable to the LC_MESSAGES category
keyword yesexpr, matching an extended regular expression in the current locale; see Section
5.3.6 on page 76.

alert

To cause the user’s terminal to give some audible or visual indication that an error or some other
event has occurred. When the standard output is directed to a terminal device, the method for
alerting the terminal user is unspecified. When the standard output is not directed to a terminal
device, the alert is accomplished by writing the alert character to standard output (unless the
utility description indicates that the use of standard output produces undefined results in this
case).

alert character

A character that in the output stream should cause a terminal to alert its user via a visual or
audible notification. The alert character is the character designated by "\a’ in the C language. It
is unspecified whether this character is the exact sequence transmitted to an output device by
the system to accomplish the alert function.

alias name
A word consisting solely of underscores, digits and alphabetics from the portable character set
(see Section 4.1 on page 39) and any of the following characters:

% , @
Implementations may allow other characters within alias names as an extension.

alternate file access control mechanism
See file access permissions on page 15.

alternate signal stack

Memory associated with a process, established upon request by the implementation for a
process, separate from the process signal stack, in which signal handlers responding to signals
sent to that process may be executed.

angle brackets

The characters < (left-angle-bracket) and > (right-angle-bracket). When used in the phrase
“enclosed in angle brackets’’, the symbol < immediately precedes the object to be enclosed, and
> immediately follows it. When describing these characters in the portable character set, the
names <less-than-sign> and <greater-than-sign> are used.

System Interface Definitions Issue 4, Version 2 7

Glossary

appropriate privileges

An implementation-dependent means of associating privileges with a process with regard to the
function calls and function call options defined in the XSH specification, and the commands in
the XCU specification, that need special privileges. There may be zero or more such means.

argument

In the shell, a parameter passed to a utility as the equivalent of a single string in the argv array
created by one of the exec functions. See Section 10.1 on page 129 and the XCU specification,
Command Search and Execution in Section 2.9.1. An argument is one of the options, option-
arguments or operands following the command name.

In the C language, an expression in a function call expression or a sequence of preprocessing
tokens in a function-like macro invocation.

assignment
See variable assignment on page 31.

asterisk
The character *.

background job
See background process group (or background job).

background process
A process that is a member of a background process group.

background process group (or background job)
Any process group, other than a foreground process group, that is a member of a session that
has established a connection with a controlling terminal.

backquote
The character °, also known as a grave accent.

backslash
The character \, also known as a reverse solidus.

backspace character

A character that, in the output stream, should cause printing (or displaying) to occur one column
position previous to the position about to be printed. If the position about to be printed is at the
beginning of the current line, the behaviour is unspecified. The backspace is the character
designated by "\b’ in the C language. It is unspecified whether this character is the exact
sequence transmitted to an output device by the system to accomplish the backspace function.
The backspace character defined here is not necessarily the ERASE special character defined in
Section 9.1.9 on page 119.

base character

One of the set of characters defined in the Latin alphabet. In Western European languages other
than English, these characters are commonly used with diacritical marks (accents, cedilla, and so
forth) to extend the range of characters in an alphabet.

basename
The final, or only, filename in a pathname.

basic regular expression
A pattern constructed according to the rules defined in Section 7.3 on page 100.

blank character
One of the characters that belong to the blank character class as defined via the LC_CTYPE
category in the current locale. In the POSIX locale, a blank character is either a tab or a space

X/0pen CAE Specification (1994)

Glossary

UX

character.

blank line
A line consisting solely of zero or more blank characters terminated by a newline character. See
also empty line on page 14.

block-mode terminal
A terminal device operating in a mode incapable of the character-at-a-time input and output
operations described by some of the standard utilities. See Section 8.2 on page 114.

block special file

A file that refers to a device. A block special file is normally distinguished from a character
special file by providing access to the device in a manner such that the hardware characteristics
of the device are not visible.

braces

The characters { (left brace) and } (right brace), also known as curly braces. When used in the
phrase “‘enclosed in (curly) braces’ the symbol { immediately precedes the object to be enclosed,
and } immediately follows it. When describing these characters in the portable character set, the
names <left-brace> and <right-brace> are used.

brackets

The characters [(left-bracket) and] (right-bracket), also known as square brackets. When used in
the phrase “‘enclosed in (square) brackets”” the symbol [immediately precedes the object to be
enclosed, and] immediately follows it. When describing these characters in the portable
character set, the names <left-square-bracket> and <right-square-bracket> are used.

break value
The address at which dynamic memory allocation starts.

built-in utility (or built-in)

A utility implemented within a shell. The utilities referred to as special built-ins have special
qualities, described in the XCU specification, Section 2.14, Special Built-in Utilities. Unless
qualified, the term built-in includes the special built-in utilities. The utilities referred to as regular
built-ins are those named in the XCU specification, Command Search and Execution in Section
2.9.1. There is no requirement that these utilities be actually built into the shell on the
implementation, but they do have special command-search qualities.

byte

An individually addressable unit of data storage that is equal to or larger than an octet, used to
store a character or a portion of a character; see character on page 10. A byte is composed of a
contiguous sequence of bits, the number of which is implementation-dependent. The least
significant bit is called the low-order bit; the most significant is called the high-order bit. Note that
this definition of byte deviates intentionally from the usage of byte in some international
standards, where it is used as a synonym for octet (always eight bits). On a system based on the
ISO/IEC 9945-2: 1993 standard, a byte may be larger than eight bits so that it can be an integral
portion of larger data objects that are not evenly divisible by eight bits (such as a 36-bit word
that contains four 9-bit bytes).

carriage-return character
A character that in the output stream indicates that printing should start at the beginning of the
same physical line in which the carriage-return character occurred. The carriage-return is the
character designated by '\r’ in the C language. It is unspecified whether this character is the
exact sequence transmitted to an output device by the system to accomplish the movement to
the beginning of the line.

System Interface Definitions Issue 4, Version 2 9

10

Glossary

character

A sequence of one or more bytes representing a single graphic symbol or control code. This term
corresponds to the I1SO C standard term multibyte character (multi-byte character), where a
single-byte character is a special case of a multi-byte character. Unlike the usage in the ISO C
standard, character here has no necessary relationship with storage space, and byte is used when
storage space is discussed.

See Section 4.1 on page 39 for a further explanation of the graphical representations of
characters, or glyphs, as opposed to character encodings.

character array
An array of type char.

character class

A named set of characters sharing an attribute associated with the name of the class. The classes
and the characters that they contain are dependent on the value of the LC_CTYPE category in
the current locale; see Section 5.3.1 on page 48.

character set
A finite set of different characters used for the representation, organisation or control of data.

character special file
A file that refers to a device. One specific type of character special file is a terminal device file,
whose access is defined in Chapter 9 on page 115.

character string
A contiguous sequence of characters terminated by and including the first null byte.

child process
See process on page 25.

circumflex
The character ".

clock tick
An interval of time; an implementation-dependent number of these occur each second.

coded character set
A set of unambiguous rules that establishes a character set and the one-to-one relationship
between each character of the set and its bit representation.

codeset

The result of applying rules that map a numeric code value to each element of a character set.
An element of a character set may be related to more than one numeric code value but the
reverse is not true. However, for state-dependent encodings the relationship between numeric
code values to elements of a character set may be further controlled by state information; see
Section 4.2 on page 40. The character set may contain fewer elements than the total number of
possible numeric code values; that is, some code values may be unassigned.

collating element

The smallest entity used to determine the logical ordering of character or wide-character strings.
See collation sequence on page 11. A collating element consists of either a single character, or
two or more characters collating as a single entity. The value of the LC_COLLATE category in
the current locale determines the current set of collating elements.

collation

The logical ordering of character or wide-character strings according to defined precedence
rules. These rules identify a collation sequence between the collating elements, and such
additional rules that can be used to order strings consisting of multiple collating elements.

X/0pen CAE Specification (1994)

Glossary

collation sequence

The relative order of collating elements as determined by the setting of the LC_COLLATE
category in the current locale. The character order, as defined for the LC_COLLATE category in
the current locale, defines the relative order of all collating elements, such that each element
occupies a unique position in the order. This is the order used in ranges of characters and
collating elements in regular expressions and pattern matching. In addition, the definition of the
collating weights of characters and collating elements uses collating elements to represent their
respective positions within the collation sequence.

Multi-level sorting is accomplished by assigning elements one or more collation weights, up to
the limit {COLL_WEIGHTS_MAX]}; see <limits.h>. On each level, elements may be given the
same weight (at the primary level, called an equivalence class; see equivalence class on page 14)
or be omitted from the sequence. Strings that collate equal using the first assigned weight
(primary ordering) are then compared using the next assigned weight (secondary ordering), and
so on.

column position
A unit of horizontal measure related to characters in a line.

It is assumed that each character in a character set has an intrinsic column width independent of
any output device. Each printable character in the portable character set has a column width of
one. The standard utilities, when used as described in this document set, assume that all
characters have integral column widths. The column width of a character is not necessarily
related to the internal representation of the character (numbers of bits or bytes).

The column position of a character in a line is defined as one plus the sum of the column widths
of the preceding characters in the line. Column positions are numbered starting from 1.

command
A directive to the shell to perform a particular task; see the XCU specification, Section 2.9, Shell
Commands.

command language interpreter

An interface that interprets sequences of text input as commands. It may operate on an input
stream or it may interactively prompt and read commands from a terminal. It is possible for
applications to invoke utilities through a number of interfaces, which are collectively considered
to act as command interpreters. The most obvious of these are the sh utility and the system()
function, although popen() and the various forms of exec may also be considered to behave as
interpreters.

composite graphic symbol
A graphic symbol consisting of a combination of two or more other graphic symbols in a single
character position, such as a diacritical mark and a basic letter.

control character
A character, other than a graphic character, that affects the recording, processing, transmission
or interpretation of text.

System Interface Definitions Issue 4, Version 2 11

EX

UX

UX

12

Glossary

control operator
In the shell, a token that performs a control function. It is one of the following symbols:

&) newline
&& ; |
(, 11

The end-of-input indicator used internally by the shell is also considered a control operator. See
the XCU specification, Section 2.3, Token Recognition.

On some systems, the symbol ((is a control operator; its use produces unspecified results.
Applications that wish to have nested subshells, such as:

((echo Hello);(echo World))

must separate the ((characters into two tokens by including white space between them. Some
systems may treat these as invalid arithmetic expressions instead of subshells.

The ((and)) symbols are control operators in the KornShell, used for an alternative syntax of an
arithmetic expression command. A portable application cannot use ((as a single token (with the
exception of the $((form for shell arithmetic).

controlling process

The session leader that established the connection to the controlling terminal. If the terminal
ceases to be a controlling terminal for this session, the session leader ceases to be the controlling
process.

controlling terminal

A terminal that is associated with a session. Each session may have at most one controlling
terminal associated with it, and a controlling terminal is associated with exactly one session.
Certain input sequences from the controlling terminal (see Chapter 9 on page 115) cause signals
to be sent to all processes in the process group associated with the controlling terminal.

conversion descriptor
A per-process unique value used to identify an open codeset conversion.

core file
A file of unspecified format that may be generated when a process terminates abnormally.

current working directory
See working directory (or current working directory) on page 32.

cursor position
The line and column position on the screen denoted by the terminal’s cursor.

data segment
Memory associated with a process, that may be used to contain dynamically allocated data.

device
A computer peripheral or an object that appears to the application as such.

device ID
A non-negative integer used to identify a device.

directory
A file that contains directory entries. No two directory entries in the same directory have the
same name.

X/0pen CAE Specification (1994)

Glossary

UX

directory entry (or link)
An object that associates a filename with a file. Several directory entries can associate names
with the same file.

directory stream
A sequence of all the directory entries in a particular directory. An open directory stream may
be implemented using a file descriptor.

display
To output to the user’s terminal. If the output is not directed to a terminal, the results are
undefined.

The XCU specification assigns precise requirements for the terms display and write. Some
historical systems have chosen to implement certain utilities without using the traditional UNIX
system file descriptor model. For example, the vi editor might employ direct screen memory
updates on a personal computer, rather than a write() system call. An instance of user
prompting might appear in a dialogue box, rather than with standard error. When the XCU
specification uses the term display, the method of outputting to the terminal is unspecified; many
historical implementations use termcap or terminfo, but this is not a requirement. The term write
is used when the XCU specification mandates that a file descriptor be used and that the output
can be redirected. However, it is assumed that when the writing is directly to the terminal (it
has not been redirected elsewhere), there is no practical way for a user or test suite to determine
whether a file descriptor is being used or not. Therefore, the use of a file descriptor is mandated
only for the redirection case and the implementation is free to use any method when the output
is not redirected. The verb write is used almost exclusively, with the very few exceptions of
those utilities where output redirection need not be supported: tabs, talk, tput and vi.

dollar sign
The character $.

dot

The filename consisting of a single dot character (.). See pathname resolution on page 23. In the
context of shell special built-in utilities, see dot in the XCU specification, Section 2.14, Special
Built-in Utilities.

dot-dot
The filename consisting solely of two dot characters (..). See pathname resolution on page 23.

double-quote
The character ", also known as quotation-mark.

downshifting
The conversion of an upper-case character to its lower-case representation.

driver

A module that controls data transferred to and received from peripheral devices. Drivers are
traditionally written to be a part of the system implementation, although they are frequently
written separately from the writing of the implementation. A driver may contain processor-
specific code, and therefore be non-portable.

effective group ID

An attribute of a process that is used in determining various permissions, including file access
permissions, described in file access permissions on page 15. See group ID on page 18. This
value is subject to change during the process lifetime, as described in the exec family of functions
and setgid().

System Interface Definitions Issue 4, Version 2 13

WP

14

Glossary

effective user ID

An attribute of a process that is used in determining various permissions, including file access
permissions. See user ID on page 31. This value is subject to change during the process lifetime,
as described in exec and setuid().

eight-bit transparency

The ability of a software component to process 8-bit characters without modifying or utilising
any part of the character in a way that is inconsistent with the rules of the current coded
character set.

empty directory
A directory that contains, at most, directory entries for dot and dot-dot.

empty line
A line consisting of only a newline character. See also blank line on page 9.

empty string (or null string)
A string whose first byte is a null byte.

empty wide-character string
A wide-character string whose first element is a null wide-character code.

epoch
The time zero hours, zero minutes, zero seconds, on January 1, 1970 Coordinated Universal
Time. See seconds since the epoch on page 27.

equivalence class
A set of collating elements with the same primary collation weight.

Elements in an equivalence class are typically elements that naturally group together, such as all
accented letters based on the same base letter.

The collation order of elements within an equivalence class is determined by the weights
assigned on any subsequent levels after the primary weight.

era
An alternative method for counting and displaying years. See Section 5.3.5 on page 69.

executable file

A regular file acceptable as a new process image file by the equivalent of the exec family of
functions, and thus usable as one form of a utility. The standard utilities described as compilers
can produce executable files, but other unspecified methods of producing executable files may
also be provided. The internal format of an executable file is unspecified, but a conforming
application cannot assume an executable file is a text file.

execute
To perform the actions described in the XCU specification, Command Search and Execution in
Section 2.9.1. See also invoke on page 18.

expand
In the shell, when not qualified, the act of applying all the expansions described in the XCU
specification, Section 2.6, Word Expansions.

extended regular expression
A pattern constructed according to the rules defined in Section 7.4 on page 105.

extended security controls

The access control (see file access permissions on page 15) and privilege (see appropriate
privileges on page 8) mechanisms have been defined to allow implementation-dependent
extended security controls. These permit an implementation to provide security mechanisms to

X/0pen CAE Specification (1994)

Glossary

support different security policies from those described in this document set. These mechanisms
do not alter or override the defined semantics of any of the functions or utilities in this document
set.

feature test macro
A macro used to determine whether a particular set of features will be included from a header.
See the XSH specification, Section 2.2, The Compilation Environment.

field

In the shell, a unit of text that is the result of parameter expansion (see the XCU specification,
Section 2.6.2, Parameter Expansion), arithmetic expansion (see the XCU specification, Section
2.6.4, Arithmetic Expansion), command substitution (see the XCU specification, Section 2.6.3,
Command Substitution), or field splitting (see the XCU specification, Section 2.6.5, Field
Splitting). During command processing (see the XCU specification, Section 2.9.1, Simple
Commands), the resulting fields are used as the command name and its arguments.

FIFO special file (or FIFO)
A type of file with the property that data written to such a file is read on a first-in-first-out basis.
Other characteristics of FIFOs are described in open(), read(), write() and Iseek().

file

An object that can be written to, or read from, or both. A file has certain attributes, including
access permissions and type. File types include regular file, character special file, block special
file, FIFO special file and directory. Other types of files may be supported by the
implementation.

file access permissions

The standard file access control mechanism uses the file permission bits, as described below.
These bits are set at the time of file creation by functions such as open(), creat(), mkdir() and
mkfifo() and are changed by chmod(). These bits are read by stat() or fstat().

Implementations may provide additional or alternate file access control mechanisms, or both. An
additional access control mechanism will only further restrict the access permissions defined by
the file permission bits. An alternate file access control mechanism will:

- specify file permission bits for the file owner class, file group class, and file other class of that
file, corresponding to the access permissions, to be returned by stat() or fstat()

- be enabled only by explicit user action, on a per-file basis by the file owner or a user with the
appropriate privilege

- be disabled for a file after the file permission bits are changed for that file with chmod(). The
disabling of the alternate mechanism need not disable any additional mechanisms supported
by an implementation.

Whenever a process requests file access permission for read, write or execute/search, if no
additional mechanism denies access, access is determined as follows:

- If a process has the appropriate privilege:
— If read, write or directory search permission is requested, access is granted.

— If execute permission is requested, access is granted if execute permission is granted to at
least one user by the file permission bits or by an alternate access control mechanism;
otherwise, access is denied.

« Otherwise:

— The file permission bits of a file contain read, write and execute/search permissions for
the file owner class, file group class and file other class.

System Interface Definitions Issue 4, Version 2 15

EX

16

Glossary

— Access is granted if an alternate access control mechanism is not enabled and the
requested access permission bit is set for the class (file owner class, file group class, or file
other class) to which the process belongs, or if an alternate access control mechanism is
enabled and it allows the requested access; otherwise, access is denied.

file description
See open file description on page 21.

file descriptor

A per-process unique, non-negative integer used to identify an open file for the purpose of file
access. The value of a file descriptor is from zero to {OPEN_MAX}. A process can have no more
than {OPEN_MAX} file descriptors open simultaneously. File descriptors may also be used to
implement message catalogue descriptors and directory streams. See open file description on
page 21 and {OPEN_MAX} in <limits.h>.

file group class

The property of a file indicating access permissions for a process related to the group
identification of a process. A process is in the file group class of a file if the process is not in the
file owner class and if the effective group ID or one of the supplementary group IDs of the
process matches the group ID associated with the file. Other members of the class may be
implementation-dependent.

file hierarchy

Files in the system are organised in a hierarchical structure in which all of the non-terminal
nodes are directories and all of the terminal nodes are any other type of file. Because multiple
directory entries may refer to the same file, the hierarchy is properly described as a directed graph.

file mode
An object containing the file mode bits and file type of a file, as described in <sys/stat.h>.

file mode bits
A file’s file permission bits, set-user-ID-on-execution bit (S_ISUID) and set-group-ID-on-
execution bit (S_ISGID); see <sys/stat.h>.

filename

A name consisting of 1 to {NAME_MAX} bytes used to name a file. The characters composing
the name may be selected from the set of all character values excluding the slash character and
the null byte. The filenames dot and dot-dot have special meaning; see pathname resolution on
page 23. A filename is sometimes referred to as a pathname component.

Filenames should be constructed from the portable filename character set because the use of
other characters can be confusing or ambiguous in certain contexts. (For instance, the use of a
colon (}) in a pathname could cause ambiguity if that pathname were included in a PATH
definition.)

file offset

The byte position in the file where the next 1/0 operation begins. Each open file description
associated with a regular file, block special file or directory has a file offset. A character special
file that does not refer to a terminal device may have a file offset. There is no file offset specified
for a pipe or FIFO.

file other class

The property of a file indicating access permissions for a process related to the user and group
identification of a process. A process is in the file other class of a file if the process is not in the
file owner class or file group class.

X/0pen CAE Specification (1994)

Glossary

file owner class

The property of a file indicating access permissions for a process related to the user identification
of a process. A process is in the file owner class of a file if the effective user ID of the process
matches the user ID of the file.

file permission bits

Information about a file that is used, along with other information, to determine if a process has
read, write or execute/search permission to a file. The bits are divided into three parts: owner,
group and other. Each part is used with the corresponding file class of processes. These bits are
contained in the file mode, as described in <sys/stat.h>. The detailed usage of the file permission
bits in access decisions is described in file access permissions on page 15.

file serial number
A per-file-system unique identifier for a file.

file system
A collection of files and certain of their attributes. It provides a name space for file serial
numbers referring to those files.

file times update

Each file has three associated time values that are updated when file data has been accessed, file
data has been modified, or file status has been changed, respectively. These values are returned
in the file characteristics structure, as described in <sys/stat.h>.

For each function or utility in this document set that reads or writes file data or changes the file
status, the appropriate time-related fields are noted as ‘‘marked for update’. At an update point
in time, any marked fields are set to the current time and the update marks cleared. Two such
update points are when the file is no longer open by any process and when stat() or fstat() is
performed on the file. Additional update points are unspecified. Marks for update, and updates
themselves, are not done for files on read-only file systems.

file type
See file on page 15.

filter

A command whose operation consists of reading data from standard input or a list of input files
and writing data to standard output. Typically, its function is to perform some transformation
on the data stream.

foreground job
See foreground process group (or foreground job).

foreground process
A process that is a member of a foreground process group.

foreground process group (or foreground job)

A process group whose member processes have certain privileges, denied to processes in
background process groups, when accessing their controlling terminal. Each session that has
established a connection with a controlling terminal has exactly one process group of the session
as the foreground process group of that controlling terminal. See Chapter 9.

foreground process group 1D
The process group ID of the foreground process group.

form-feed character

A character that in the output stream indicates that printing should start on the next page of an
output device. The form-feed is the character designated by "\f’ in the C language. If the form-
feed is not the first character of an output line, the result is unspecified. It is unspecified whether

System Interface Definitions Issue 4, Version 2 17

FIPS

UX

18

Glossary

this character is the exact sequence transmitted to an output device by the system to accomplish
the movement to the next page.

graphic character
A character, other than a control character, that has a visual representation when handwritten,
printed or displayed.

group database
A system database of implementation-dependent format that contains at least the following
information for each group ID:

« Group Name
« Numerical Group ID
- List of users allowed in the group.
The list of users allowed in the group is used by the newgrp utility.

group ID

A non-negative integer that is used to identify a group of system users. Each system user is a
member of at least one group. When the identity of a group is associated with a process, a group
ID value is referred to as a real group ID, an effective group 1D, one of the supplementary group
IDs or a saved set-group-ID.

group name
A string that is used to identify a group, as described in group database. To be portable across
XSl-conformant systems, the value must be composed of characters from the portable filename
character set. The hyphen should not be used as the first character of a portable group name.

hard limit
A system resource limitation that may be reset to a lesser or greater limit by a privileged process.
A non-privileged process is restricted to only lowering its hard limit.

hard link

The relationship between two directory entries that represent the same file; see directory entry
(or link) on page 13. This term is contrasted against symbolic link; see symbolic link on page
29.

home directory
The current directory associated with a user at the time of login.

incomplete line
A sequence of one or more non-newline characters at the end of the file.

Inf
A value representing infinity that can be stored in a floating type. Not all systems support the
Inf value.

interactive shell
A processing mode of the shell that is suitable for direct user interaction.

internationalisation
The provision within a computer program of the capability of making itself adaptable to the
requirements of different native languages, local customs and coded character sets.

invoke

To perform the actions described in the XCU specification, Command Search and Execution in
Section 2.9.1, except that searching for shell functions and special built-in utilities is suppressed.
See also execute on page 14.

X/0pen CAE Specification (1994)

Glossary

ISO/IEC 646:1983

ISO 7-bit coded character set for information interchange. The reference version of the standard
contains 95 graphic characters, which are identical to the graphic characters defined in the ASCII
coded character set.

1SO 6937:1983

ISO 7-bit or 8-bit coded character set for text communication using public communication
networks, private communication networks, or interchange media such as magnetic tapes and
discs.

1SO 8859-1: 1987

ISO 8-bit single-byte coded character set Part 1, Latin Alphabet No 1. This standard character set
comprises 191 graphic characters covering the requirements of most of Western Europe.

job

A set of processes, comprising a shell pipeline, and any processes descended from it, that are all
in the same process group. See the definition of pipeline in the XCU specification, Section 2.9.2,
Pipelines.

job control

A facility that allows users selectively to stop (suspend) the execution of processes and continue
(resume) their execution at a later point. The user typically employs this facility via the
interactive interface jointly supplied by the terminal 170 driver and a command interpreter.

job control job ID
A handle that is used to refer to a job. The job control job ID can be any of the forms shown in

the following table;

Job Control Job ID Meaning
%% Current job
%+ Current job
%— Previous job
%n Job number n
%string Job whose command begins with string
%7?string Job whose command contains string

Table 2-1 Job Control Job ID Formats
line
A sequence of zero or more non-newline characters plus a terminating newline character.
link
See directory entry (or link) on page 13.

link count
The number of directory entries that refer to a particular file.

local customs
The conventions of a geographical area or territory for such things as date, time and currency

formats.

locale
The definition of the subset of a user’s environment that depends on language and cultural

conventions; see Chapter 5 on page 45.

System Interface Definitions Issue 4, Version 2 19

UX

EX

EX

UX

20

Glossary

localisation
The process of establishing information within a computer system specific to the operation of
particular native languages, local customs and coded character sets.

login
The unspecified activity by which a user gains access to the system. Each login is associated
with exactly one login name.

login name
A user name that is associated with a login.

marked message

A STREAMSs message on which a certain flag is set. Marking a message gives the application
protocol-specific information. An application can use ioctl() to determine whether a given
message is marked.

message catalogue
A file or storage area containing program messages, command prompts and responses to
prompts for a particular native language, territory and codeset.

message catalogue descriptor
A per-process unique value used to identify an open message catalogue. A message catalogue
descriptor may be implemented using a file descriptor.

mode
A collection of attributes that specifies a file’s type and its access permissions. See file access
permissions on page 15.

mount point
Either the system root directory or a directory for which the st dev field of structure stat (see
<sys/stat.h>) differs from that of its parent directory.

multi-character collating element

A sequence of two or more characters that collate as an entity. For example, in some coded
character sets, an accented character is represented by a non-spacing accent, followed by the
letter. Other examples are the Spanish elements ch and Il.

name
In the shell, a word consisting solely of underscores, digits and alphabetics from the portable
character set (see Section 4.1 on page 39). The first character of a name must not be a digit.

There are no explicit limits in this document set on the sizes of names, words (see word on page
32) lines, or other objects. However, other implicit limits do apply: shell script lines produced
by many of the standard utilities cannot exceed {LINE_MAX} and the sum of exported variables
comes under the {ARG_MAX} limit. Historical shells dynamically allocate memory for names
and words and parse incoming lines a byte at a time. Lines cannot have an arbitrary
{LINE_MAX} limit because of historical practice such as makefiles, where make removes the
newline characters associated with the commands for a target and presents the shell with one
very long line. The text on INPUT FILES in the XCU specification, Section 1.6, Utility
Description Defaults does allow a shell to run out of memory, but it cannot have arbitrary
programming limits.

named STREAM

A STREAMS-based file descriptor that is attached to a name in the file-system namespace. All
subsequent operations on the named STREAM act on the STREAM that was associated with the
file descriptor until the name is disassociated from the STREAM.

X/0pen CAE Specification (1994)

Glossary

WP

NaN (not a number)
A value that can be stored in a floating type but that is not a valid floating point number. Not all
systems support the NaN value.

native language
A computer user's spoken or written language, such as American English, British English,
Danish, Dutch, French, German, Italian, Japanese, Norwegian or Swedish.

negative response

An input string that matches one of the responses acceptable to the LC_MESSAGES category
keyword noexpr, matching an extended regular expression in the current locale. See Section
5.3.6 on page 76.

newline character

A character that in the output stream indicates that printing should start at the beginning of the
next line. The newline is the character designated by "\n’ in the C language. It is unspecified
whether this character is the exact sequence transmitted to an output device by the system to
accomplish the movement to the next line.

non-spacing characters

A character, such as a character representing a diacritical mark in the 1SO 6937: 1983 standard
coded character set, which is used in combination with other characters to form composite
graphic symbols.

NUL
A character with all bits set to zero.

null byte
A byte with all bits set to zero.

null pointer

The value that is obtained by converting the number 0 into a pointer; for example, (void *) 0.
The C language guarantees that this value will not match that of any legitimate pointer, so it is
used by many functions that return pointers to indicate an error.

null string
See empty string (or null string) on page 14.

null wide-character code
A wide-character code with all bits set to zero.

number sign
The character #, also known as hash sign.

object file

A regular file containing the output of a compiler, formatted as input to a linkage editor for
linking with other object files into an executable form. The methods of linking are unspecified
and may involve the dynamic linking of objects at run time. The internal format of an object file
is unspecified, but a conforming application cannot assume an object file is a text file.

open file
A file that is currently associated with a file descriptor.

open file description

A record of how a process or group of processes are accessing a file. Each file descriptor refers to
exactly one open file description, but an open file description can be referred to by more than
one file descriptor. A file offset, file status and file access modes are attributes of an open file
description.

System Interface Definitions Issue 4, Version 2 21

UX

22

Glossary

operand

An argument to a command that is generally used as an object supplying information to a utility
necessary to complete its processing. Operands generally follow the options in a command line.
See Section 10.1 on page 129.

operator
In the shell, either a control operator or a redirection operator.

option
An argument to a command that is generally used to specify changes in the utility’s default
behaviour; see Section 10.1 on page 129.

option-argument

A parameter that follows certain options. In some cases an option-argument is included within
the same argument string as the option; in most cases it is the next argument. See Section 10.1
on page 129.

orphaned process group
A process group in which the parent of every member is either itself a member of the group or is
not a member of the group’s session.

page size
The size, in bytes, of the system unit of memory allocation, protection and mapping. On systems
that have segment- rather than page-based memory architectures, the term ‘“‘page’” means a
segment.

parameter

In the shell, an entity that stores values. There are three types of parameters: variables (named
parameters), positional parameters and special parameters. Parameter expansion is
accomplished by introducing a parameter with the $ character. See the XCU specification,
Section 2.5, Parameters and Variables.

In the C language, an object declared as part of a function declaration or definition that acquires
a value on entry to the function, or an identifier following the macro name in a function-like
macro definition.

parent directory
When discussing a given directory, the directory that both contains a directory entry for the
given directory and is represented by the pathname dot-dot in the given directory.

When discussing other types of files, a directory containing a directory entry for the file under
discussion.

This concept does not apply to dot and dot-dot.

parent process
See process on page 25.

parent process ID

An attribute of a new process identifying the parent of the process. The parent process ID of a
process is the process ID of its creator, for the lifetime of the creator. After the creator’s lifetime
has ended, the parent process ID is the process ID of an implementation-dependent system
process.

pathname

A character string that is used to identify a file. A pathname consists of, at most, {PATH_MAX}
bytes, including the terminating null byte. It has an optional beginning slash, followed by zero
or more filenames separated by slashes. If the pathname refers to a directory, it may also have
one or more trailing slashes. Multiple successive slashes are considered to be the same as one

X/0pen CAE Specification (1994)

Glossary

slash. A pathname that begins with two successive slashes may be interpreted in an
implementation-dependent manner, although more than two leading slashes are treated as a
single slash. The interpretation of the pathname is described in pathname resolution.

pathname component
See filename on page 16.

pathname resolution
Pathname resolution is performed for a process to resolve a pathname to a particular file in a file
hierarchy. There may be multiple pathnames that resolve to the same file.

Each filename in the pathname is located in the directory specified by its predecessor (for
example, in the pathname fragment a/b, file b is located in directory a). Pathname resolution
fails if this cannot be accomplished. If the pathname begins with a slash, the predecessor of the
first filename in the pathname is taken to be the root directory of the process (such pathnames
are referred to as absolute pathnames). If the pathname does not begin with a slash, the
predecessor of the first filename of the pathname is taken to be the current working directory of
the process (such pathnames are referred to as relative pathnames).

The interpretation of a pathname component is dependent on the values of {(NAME_MAX} and

FIPS { POSIX_NO_TRUNC} associated with the path prefix of that component. If any pathname
component is longer than {NAME_MAX}, because { POSIX_NO_TRUNC} is in effect on all XSI-
conformant systems for the path prefix of that component (see pathconf()), the implementation
will consider this an error condition.

) If a symbolic link (see symbolic link on page 29) is encountered during pathname resolution,
then pathname resolution is complete if all of the following are true:

« This is the last component of the pathname.
« The pathname has no trailing slash.

- The function is required to act on the symbolic link itself, or certain arguments direct that the
function act on the symbolic link itself.

In all other cases, the system prefixes the remaining pathname, if any, with the contents of the
symbolic link. The function may fail, setting errno to [ENAMETOOLONG], if the combined
length exceeds {PATH_MAX}. Otherwise, the resolved pathname is the resolution of the
pathname just created. The result is either an absolute pathname that is resolved from the root
directory of the process or a relative pathname that is resolved from the directory containing the
symbolic link.

The special filename dot refers to the directory specified by its predecessor. The special filename
dot-dot refers to the parent directory of its predecessor directory. As a special case, in the root
directory, dot-dot may refer to the root directory itself.

A pathname consisting of a single slash resolves to the root directory of the process. A null
pathname is invalid.

path prefix
A pathname, with an optional ending slash, that refers to a directory.

pattern

A sequence of characters used either with regular expression notation (see Chapter 7 on page 97)
or for pathname expansion (see the XCU specification, Section 2.6.6, Pathname Expansion), as a
means of selecting various character strings or pathnames, respectively.

The syntaxes of the two patterns are similar, but not identical; this document set always
indicates the type of pattern being referred to in the immediate context of the use of the term.

System Interface Definitions Issue 4, Version 2 23

UX

24

Glossary

period
The character (.). The term period is contrasted against dot, which is used to describe a specific
directory entry.

permissions
See file access permissions on page 15.

pipe

An object accessed by one of the pair of file descriptors created by the pipe() function. Once
created, the file descriptors can be used to manipulate it, and it behaves identically to a FIFO
special file when accessed in this way. It has no name in the file hierarchy.

positional parameter
In the shell, a parameter denoted by a single digit or one or more digits in curly braces. See the
XCU specification, Section 2.5.1, Positional Parameters.

portable character set
The collection of characters that are required to be present in all locales supported by XSI-
conformant systems:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz
0123456789 !#%"&*()_+-={}1[1

St T2, V@ %

Also included are the alert, backspace, tab, newline, vertical-tab, form-feed, carriage-return and
space characters and the null character, NUL.

This term is contrasted against the smaller portable filename character set. See Table 4-1 on
page 39.

portable filename character set

The set of characters from which portable filenames are constructed. For a filename to be
portable across implementations conforming to this document set and the ISO POSIX-1
standard, it must consist only of the following characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz
0123456789 ._ -

The last three characters are the period, underscore and hyphen characters, respectively. The
hyphen must not be used as the first character of a portable filename. Upper- and lower-case
letters retain their unique identities between conforming implementations. In the case of a
portable pathname, the slash character may also be used.

printable character
One of the characters included in the print character classification of the LC_CTYPE category in
the current locale; see Section 5.3.1 on page 48.

printable file

A text file consisting only of the characters included in the print and space character
classifications of the LC_CTYPE category and the backspace character, all in the current locale;
see Section 5.3.1 on page 48.

priority band

The queueing order applied to normal priority STREAMS messages. High priority STREAMS
messages are not grouped by priority bands. The only differentiation made by the STREAMS
mechanism is between zero and non-zero bands, but specific protocol modules may differentiate
between priority bands.

X/0pen CAE Specification (1994)

Glossary

UX

UX

UX

privilege
See appropriate privileges on page 8.

process
An address space and single thread of control that executes within that address space, and its
required system resources. A process is created by another process issuing the fork() function.
The process that issues fork () is known as the parent process, and the new process created by the
fork () is known as the child process.

process group
A collection of processes that permits the signalling of related processes. Each process in the
system is a member of a process group that is identified by a process group ID. A newly created
process joins the process group of its creator.

process group ID

The unique identifier representing a process group during its lifetime. A process group ID is a
positive integer. A process group ID will not be reused by the system until the process group
lifetime ends.

process group leader
A process whose process ID is the same as its process group ID.

process group lifetime

A period of time that begins when a process group is created and ends when the last remaining
process in the group leaves the group, due either to the end of the last process’ lifetime or to the
last remaining process calling the setsid() or setpgid() functions.

process ID

The unique identifier representing a process. A process ID is a positive integer. A process 1D
will not be reused by the system until the process lifetime ends. In addition, if there exists a
process group whose process group ID is equal to that process ID, the process ID will not be
reused by the system until the process group lifetime ends. A process that is not a system
process will not have a process ID of 1.

process lifetime

The period of time that begins when a process is created and ends when its process ID is
returned to the system. After a process is created with a fork() function, it is considered active.
Its thread of control and address space exist until it terminates. It then enters an inactive state
where certain resources may be returned to the system, although some resources, such as the
process ID, are still in use. When another process executes a wait(), wait3(), waitid () or waitpid ()
function for an inactive process, the remaining resources are returned to the system. The last
resource to be returned to the system is the process ID. At this time, the lifetime of the process
ends.

process virtual time
The measurement of time in units elapsed by the system clock while a process is executing.

program
A prepared sequence of instructions to the system to accomplish a defined task. The term
program in this document set encompasses applications written in the XSI Shell Command
Language, complex utility input languages (for example, awk, lex, sed, and so forth), and high-
level languages.

pseudo-terminal

A pseudo-terminal provides the process with an interface that is identical to the terminal
subsystem. A pseudo-terminal is composed of 2 devices, the master device and a slave device.
The slave device provides processes with an interface that is identical to the terminal interface,

System Interface Definitions Issue 4, Version 2 25

UX

26

Glossary

although there need not be hardware behind that interface. Anything written on the master
device is presented to the slave as an input and anything written on the slave device is presented
as an input on the master side.

This specification does not require nor preclude a STREAMS-based implementation of pseudo-
terminals.

radix character
The character that separates the integer part of a number from the fractional part.

read-only file system
A file system that has implementation-dependent characteristics restricting modifications.

real group ID

The attribute of a process that, at the time of process creation, identifies the group of the user
who created the process. See group ID on page 18. This value is subject to change during the
process lifetime, as described in setgid ().

real time
Time measured as total units elapsed by the system clock without regard to which process is
executing.

real user ID

The attribute of a process that, at the time of process creation, identifies the user who created the
process. See user ID on page 31. This value is subject to change during the process lifetime, as
described in setuid ().

redirection
In the shell, a method of associating files with the input or output of commands. See the XCU
specification, Section 2.7, Redirection.

redirection operator
In the shell, a token that performs a redirection function. It is one of the following symbols:

< > >| << >> <& >& << - <>

refresh
To ensure that the information on the user’s terminal screen is up-to-date.

regular expression
A pattern constructed according to the rules defined in Chapter 7 on page 97.

regular file
A file that is a randomly accessible sequence of bytes, with no further structure imposed by the
system.

relative pathname
See pathname resolution on page 23.

root directory
A directory, associated with a process, that is used in pathname resolution for pathnames that
begin with a slash.

saved set-group-1D
An attribute of a process that allows some flexibility in the assignment of the effective group ID
attribute, as described in the exec family of functions and setgid().

saved set-user-1D
An attribute of a process that allows some flexibility in the assignment of the effective user ID
attribute, as described in exec and setuid().

X/0pen CAE Specification (1994)

Glossary

screen
A rectangular region of columns and lines on a terminal display. A screen may be a portion of a
physical display device or may occupy the entire physical area of the display device.

scroll
To move the representation of data vertically or horizontally relative to the terminal screen.
There are two types of scrolling:

1. The cursor moves with the data.
2. The cursor remains stationary while the data moves.

seconds since the epoch

A value to be interpreted as the number of seconds between a specified time and the epoch. A
Coordinated Universal Time name (specified in terms of seconds (tm_sec), minutes (tm_min),
hours (tm_hour), days since January 1 of the year (tm_yday), and calendar year minus 1900
(tm_year)) is related to a time represented as seconds since the Epoch, according to the
expression below.

If the year < 1970 or the value is negative, the relationship is undefined. If the year = 1970 and
the value is non-negative, the value is related to a Coordinated Universal Time name according
to the expression:

tm_sec + tm_minB0 + tm_hour(B 600 + tm_yday[86 400 +
(tm_year—70)[B1 536 000 + ((tm_year—69)/4)(86 400

session

A collection of process groups established for job control purposes. Each process group is a
member of a session. A process is considered to be a member of the session of which its process
group is a member. A newly created process joins the session of its creator. A process can alter
its session membership; see setsid(). There can be multiple process groups in the same session.

session leader
A process that has created a session; see setsid().

session lifetime
The period between when a session is created and the end of the lifetime of all the process
groups that remain as members of the session.

shell
A program that interprets sequences of text input as commands. It may operate on an input
stream or it may interactively prompt and read commands from a terminal.

shell, the
The XSI Shell Command Language Interpreter (see sh), a specific instance of a shell.

shell script

A file containing shell commands. If the file is made executable, it can be executed by specifying
its name as a simple command (see the XCU specification, Section 2.9.1, Simple Commands).
Execution of a shell script causes a shell to execute the commands within the script.
Alternatively, a shell can be requested to execute the commands in a shell script by specifying
the name of the shell script as the operand to the sh utility.

signal

A mechanism by which a process may be notified of, or affected by, an event occurring in the
system. Examples of such events include hardware exceptions and specific actions by processes.
The term signal is also used to refer to the event itself.

System Interface Definitions Issue 4, Version 2 27

UX

UX

UX

28

Glossary

signal stack
Memory established for each process, in which signal handlers catching signals sent to that
process are executed.

single-quote
The character ’, also known as apostrophe.

slash
The character /, also known as solidus.

socket
A communications endpoint associated with a file descriptor that provides communications
services using a specified communications protocol. See the Networking specification.

soft limit
A resource limitation established for each process that the process may set to any value less than
or equal to the hard limit.

source code
When dealing with the XSI Shell Command Language, input to the command language
interpreter. The term shell script is synonymous with this meaning.

When dealing with the C language, input to a C compiler conforming to the ISO C standard.

When dealing with another XSl-compliant language, input to a compiler conforming to that
language standard.

Source code also refers to the input statements prepared for the following standard utilities:
awk, bc, ed, lex, localedef, make, sed and yacc.

Source code can also refer to a collection of sources meeting any or all of these meanings.

special parameter
In the shell, a parameter named by a single character from the following list;

* @ # 2 ! - $ 0
See the XCU specification, Section 2.5.2, Special Parameters.

space character

The character defined in the portable character set as <space>. The space character is a member
of the space character class of the current locale, but represents the single character, and not all
of the possible members of the class. (See white space on page 32.)

standard error
An output stream usually intended to be used for diagnostic messages.

standard input
An input stream usually intended to be used for primary data input.

standard output
An output stream usually intended to be used for primary data output.

standard utilities
The utilities described in the XCU specification.

stream

Appearing in lower case, a stream is a file access object that allows access to an ordered
sequence of characters, as described by the ISO C standard. Such objects can be created by the
fdopen(), fopen() or popen() functions, and are associated with a file descriptor. A stream
provides the additional services of user-selectable buffering and formatted input and output.

X/0pen CAE Specification (1994)

Glossary

UX

UX

UX

UX

UX

UX

See the XSH specification, Section 2.4, Standard 1/O Streams.

STREAM

Appearing in upper case, STREAM refers to a full duplex connection between a process and an
open device or pseudo-device. It optionally includes one or more intermediate processing
modaules that are interposed between the process end of the STREAM and the device driver (or
pseudo-device driver) end of the STREAM. See the XSH specification, Section 2.5, STREAMS.

STREAM end
The STREAM end is the driver end of the STREAM and is also known as the downstream end of
the STREAM.

STREAM head
The STREAM head is the beginning of the STREAM and is at the boundary between the system
and the application process. This is also known as the upstream end of the STREAM.

STREAMS multiplexor

A driver with multiple STREAMS connected to it. Multiplexing with STREAMS connected
above is referred to as N-to-1, or upper multiplexing. Multiplexing with STREAMS connected
below is referred to as 1-to-N or lower multiplexing.

string
A contiguous sequence of bytes terminated by and including the first null byte.

subshell

A shell execution environment, distinguished from the main or current shell execution
environment by the attributes described in the XCU specification, Section 2.12, Shell Execution
Environment.

supplementary group ID

An attribute of a process used in determining file access permissions. A process has up to
{NGROUPS_MAX} supplementary group IDs in addition to the effective group ID. The
supplementary group IDs of a process are set to the supplementary group IDs of the parent
process when the process is created. Whether a process’ effective group ID is included in or
omitted from its list of supplementary group IDs is unspecified.

suspended job

A job that has received a SIGSTOP, SIGTSTP, SIGTTIN or SIGTTOU signal that caused the
process group to stop. A suspended job is a background job, but a background job is not
necessarily a suspended job.

symbolic link
A type of file that contains a pathname. The pathname is interpolated into a pathname being
resolved, during pathname resolution, to create a new pathname when it is encountered.

system
An implementation of the XSI.

system console
An optional file that receives messages sent by fmtmsg() when the MM_CONSOLE flag is set.

system process
An implementation-dependent object, other than a process executing an application, that has a
process ID.

system scheduling priority

A number used as advice to the system to alter process scheduling priorities. Raising the value
should give a process additional preference when scheduling a process to run. Lowering the
value should reduce the preference and make a process less likely to run. Typically, a process

System Interface Definitions Issue 4, Version 2 29

UX

30

Glossary

with higher system scheduling priority will run to completion more quickly than an equivalent
process with lower system scheduling priority. A scheduling priority of zero specifies the
default policy of the system.

This definition is not intended to suggest that all processes in a system have priorities that are
comparable. Scheduling policy extensions such as adding real-time priorities make the notion of
a single underlying priority for all scheduling policies problematic. Some systems may
implement the features related to nice to affect all processes on the system, others to affect just
the general time-sharing activities implied by this document set, and others may have no effect
at all. Because of the use of “implementation-dependent’ in nice and renice, a wide range of
implementation strategies is possible.

tab character

A character that in the output stream indicates that printing or displaying should start at the
next horizontal tabulation position on the current line. The tab is the character designated by
\t’ in the C language. If the current position is at or past the last defined horizontal tabulation
position, the behaviour is unspecified. It is unspecified whether this character is the exact
sequence transmitted to an output device by the system to accomplish the tabulation.

terminal (or terminal device)
A character special file that obeys the specifications of the general terminal interface as described
in Chapter 9 on page 115.

text column

A roughly rectangular block of characters capable of being laid out side-by-side next to other
text columns on an output page or terminal screen. The widths of text columns are measured in
column positions.

text file

A file that contains characters organised into one or more lines. The lines must not contain NUL
characters and none can exceed {LINE_MAX} bytes in length, including the newline character.
Although the XSI does not distinguish between text files and binary files (see the I1ISOC
standard), many utilities only produce predictable or meaningful output when operating on text
files. The standard utilities that have such restrictions always specify text files in their STDIN or
INPUT FILES sections.

The term text file does not prevent the inclusion of control or other non-printable characters
(other than NUL). Therefore, standard utilities that list text files as inputs or outputs are either
able to process the special characters gracefully or they explicitly describe their limitations
within their individual sections. The only difference between text and binary files is that text
files have lines of less than {LINE_MAX} bytes, with no NUL characters, each terminated by a
newline character. The definition allows a file with a single newline character, but not a totally
empty file, to be called a text file. If a file ends with an incomplete line it is not strictly a text file
by this definition. The newline character referred to in this document set is not some generic line
separator, but a single character; files created on systems where they use multiple characters for
ends of lines are not portable to all XSI-conformant systems without some translation process.

tilde
The character (1

timer
A mechanism that can notify a process when the time as measured by a particular clock has
reached or passed a specified value, or when a specified amount of time has passed.

token
A sequence of characters that the shell considers as a single unit when reading input, according
to the rules in the XCU specification, Section 2.3, Token Recognition. A token is either an

X/0pen CAE Specification (1994)

Glossary

FIPS

operator or a word.

upshifting
The conversion of a lower-case character to its upper-case representation.

user database
A system database of implementation-dependent format that contains at least the following
information for each user ID:

« User name

» Numerical user ID

« Initial numerical group ID
- Initial working directory

- Initial user program.

The initial numerical group ID is used by the newgrp utility. Any other circumstances under
which the initial values are operative are implementation-dependent.

If the initial user program field is null, an implementation-dependent program is used.

If the initial working directory field is null, the interpretation of that field is implementation-
dependent.

user 1D

A non-negative integer that is used to identify a system user. When the identity of a user is
associated with a process, a user ID value is referred to as a real user ID, an effective user IDor a
saved set-user-ID.

user name
A string that is used to identify a user, as described in user database. To be portable across XSI-
conformant systems, the value must be composed of characters from the portable filename
character set. The hyphen should not be used as the first character of a portable user name.

utility

A program that can be called by name from a shell to perform a specific task, or related set of
tasks. This program is either an executable file, such as might be produced by a compiler or
linker system from computer source code, or a file of shell source code, directly interpreted by
the shell. The program may have been produced by the user, provided by the system
implementor, or acquired from an independent distributor. The term utility does not apply to
the special built-in utilities provided as part of the XSI Shell Command Language; see the XCU
specification, Section 2.14, Special Built-in Utilities. The system may implement certain
utilities as shell functions (see the XCU specification, Section 2.9.5, Function Definition
Command) or built-in utilities, but only an application that is aware of the command search
order described in the XCU specification, Command Search and Execution in Section 2.9.1 or of
performance characteristics can discern differences between the behaviour of such a function or
built-in utility and that of a true executable file.

variable
In the shell, a named parameter. See the XCU specification, Section 2.5, Parameters and
Variables.

variable assignment
In the shell, a word consisting of the following parts:

varname =value

System Interface Definitions Issue 4, Version 2 31

WP

WP

WP

32

Glossary

When used in a context where assignment is defined to occur (see the XCU specification, Section
2.9.1, Simple Commands) and at no other time, the value (representing a word or field) will be
assigned as the value of the variable denoted by varname. The varname and value parts meet the
requirements for a name and a word, respectively, except that they are delimited by the
embedded unquoted equals-sign in addition to the delimiting described in the XCU
specification, Section 2.3, Token Recognition. In all cases, the variable will be created if it did
not already exist. If value is not specified, the variable will be given a null value.

An alternative form of variable assignment:
symbol =value

(where symbol is a valid word delimited by an equals-sign, but not a valid name) produces
unspecified results. This form is used by the KornShell name[expression]=value syntax.

vertical-tab character

A character that in the output stream indicates that printing should start at the next vertical
tabulation position. The vertical-tab is the character designated by "\Vv’ in the C language. If the
current position is at or past the last defined vertical tabulation position, the behaviour is
unspecified. It is unspecified whether this character is the exact sequence transmitted to an
output device by the system to accomplish the tabulation.

white space
A sequence of one or more characters that belong to the space character class as defined via the
LC_CTYPE category in the current locale.

In the POSIX locale, white space consists of one or more blank characters (space and tab
characters), newline characters, carriage-return characters, form-feed characters and vertical-tab
characters.

wide-character code (C language)
An integer value corresponding to a single graphic symbol or control code. See Section 4.3 on
page 41.

wide-character string
A contiguous sequence of wide-character codes terminated by and including the first null wide-
character code.

word

In the shell, a token other than an operator. In some cases a word is also a portion of a word
token: in the various forms of parameter expansion (see the XCU specification, Section 2.6.2,
Parameter Expansion), such as ${name-word}, and variable assignment, such as name=word, the
word is the portion of the token depicted by word. The concept of a word is no longer applicable
following word expansions only fields remain; see the XCU specification, Section 2.6, Word
Expansions.

working directory (or current working directory)
A directory, associated with a process, that is used in pathname resolution for pathnames that
do not begin with a slash.

world-wide portability interface
Functions for handling characters in a codeset-independent manner.

write

To output characters to a file, such as standard output or standard error. Unless otherwise
stated, standard output is the default output destination for all uses of the term write. See the
distinction between display and write in display on page 13.

X/0pen CAE Specification (1994)

Glossary

zombie process
An inactive process that will be deleted at some later time when its parent process executes
wait() or waitpid ().

[n, m] and [n, m)

Notations denoting mathematical ranges. The square brackets [and] include the limit; the
parentheses (and) exclude the limit; that is, if x is in [0, 1], it can be from 0 to 1 inclusive, but if x
isin [0, 1), it can be from 0 up to but not including 1.

10

The algebraic sign provides additional information about any variable that has the value zero.
Although all precisions have distinct representations for +0, -0, +Inf and —Inf, the signs are
significant in some circumstances, such as division by zero, and not in others.

CHANGE HISTORY

Issue 4
Numerous changes and additions are made for alignment with the 1SO C standard and the
ISO POSIX-1 standard.

Issue 4, Version 2
The following terms are added to support the adoption of additional traditional UNIX
interfaces: alternate signal stack, break value, data segment, driver, hard limit, host byte order,
named STREAM, network byte order, network host database, network net database, network
protocol database, network service database, pad, parent window, priority band, process virtual
time, pseudo-terminal, real time, signal stack, socket, soft limit, STREAM (second definition),
STREAM end, STREAM head, STREAMS multiplexor, symbolic link, system console and timer.

System Interface Definitions Issue 4, Version 2 33

34

Glossary

X/0pen CAE Specification (1994)

Chapter 3

File Format Notation

The STDIN, STDOUT, STDERR, INPUT FILES and OUTPUT FILES sections of the utility
descriptions use a syntax to describe the data organisation within the files, when that
organisation is not otherwise obvious. The syntax is similar to that used by the XSH
specification printf() function, as described in this chapter. When used in STDIN or INPUT
FILES sections of the utility descriptions, this syntax describes the format that could have been
used to write the text to be read, not a format that could be used by the scanf() function to read
the input file.

The description of an individual record is as follows:
"< format >", [<argl > <arg2>..., < argn>]
The format is a character string that contains three types of objects defined below:

characters
Characters that are not escape sequences or conversion specifications, as described below, are
copied to the output.

escape sequences
Represent non-graphic characters.

conversion specifications
Specifies the output format of each argument. (See below.)

The following characters have the following special meaning in the format string:

(An empty character position.) One or more blank characters.
A Exactly one space character.

The notation for spaces allows some flexibility for application output. Note that an empty
character position in format represents one or more blank characters on the output (not white
space, which can include newline characters). Therefore, another utility that reads that output as
its input must be prepared to parse the data using scanf(), awk, and so forth. The a character is
used when exactly one space character is output.

The following table lists escape sequences and associated actions on display devices capable of
the action.

System Interface Definitions Issue 4, Version 2 35

36

File Format Notation

Escape Represents Terminal Action
Sequence| Character

\\ backslash None.

\a alert Attempts to alert the user through audible or visible notification.

\b backspace Moves the printing position to one column before the current
position, unless the current position is the start of a line.

\f form-feed Moves the printing position to the initial printing position of the
next logical page.

\n newline Moves the printing position to the start of the next line.

\r carriage-return | Moves the printing position to the start of the current line.

\t tab Moves the printing position to the next tab position on the
current line. If there are no more tab positions left on the line,
the behaviour is undefined.

\v vertical-tab Moves the printing position to the start of the next vertical tab
position. If there are no more vertical tab positions left on the
page, the behaviour is undefined.

Table 3-1 Escape Sequences and Associated Actions

Each conversion specification is introduced by the percent-sign character (%). After the
character %, the following appear in sequence:

flags

field width

precision

Zero or more flags, in any order, that modify the meaning of the conversion
specification.

An optional string of decimal digits to specify a minimum field width. For an
output field, if the converted value has fewer bytes than the field width, it is
padded on the left (or right, if the left-adjustment flag (=), described below, has
been given to the field width).

Gives the minimum number of digits to appear for the d, o, i, u, X or X conversions
(the field is padded with leading zeros), the number of digits to appear after the
radix character for the e and f conversions, the maximum number of significant
digits for the g conversion; or the maximum number of bytes to be written from a
string in s conversion. The precision takes the form of a period (.) followed by a
decimal digit string; a null digit string is treated as zero.

conversion characters

A conversion character (see below) that indicates the type of conversion to be
applied.

The flag characters and their meanings are:

+

<space>

The result of the conversion is left-justified within the field.
The result of a signed conversion always begins with a sign (+ or -).

If the first character of a signed conversion is not a sign, a space character is
prefixed to the result. This means that if the space character and + flags both
appear, the space character flag is ignored.

X/0pen CAE Specification (1994)

File Format Notation

The value is to be converted to an alternative form. For c, d, i, u and s conversions,
the behaviour is undefined. For o conversion, it increases the precision to force the
first digit of the result to be a zero. For x or X conversion, a non-zero result has 0x
or OX prefixed to it, respectively. For e, E, f, g and G conversions, the result always
contains a radix character, even if no digits follow the radix character. For g and G
conversions, trailing zeros are not removed from the result as they usually are.

For d, i, o, u, x, X, e, E, f, g and G conversions, leading zeros (following any
indication of sign or base) are used to pad to the field width; no space padding is
performed. If the 0 and - flags both appear, the 0 flag is ignored. For d, i, 0, u, X
and X conversions, if a precision is specified, the 0 flag is ignored. For other
conversions, the behaviour is undefined.

Each conversion character results in fetching zero or more arguments. The results are undefined
if there are insufficient arguments for the format. If the format is exhausted while arguments
remain, the excess arguments are ignored.

The conversion characters and their meanings are:

d,i,o,u,x,X

eE

The integer argument is written as signed decimal (d or i), unsigned octal (0),
unsigned decimal (u), or unsigned hexadecimal notation (x and X). The d and i
specifiers convert to signed decimal in the style [-]dddd. The x conversion uses the
numbers and letters 0123456789abcdef and the X conversion uses the numbers and
letters 0123456789ABCDEF. The precision component of the argument specifies the
minimum number of digits to appear. If the value being converted can be
represented in fewer digits than the specified minimum, it is expanded with
leading zeros. The default precision is 1. The result of converting a zero value
with a precision of 0 is no characters. If both the field width and precision are
omitted, the implementation may precede, follow or precede and follow numeric
arguments of types d, i and u with blank characters; arguments of type o (octal)
may be preceded with leading zeros.

The treatment of integers and spaces is different from the printf() function in that
they can be surrounded with blank characters. This was done so that, given a
format such as:

"%d\n" , <foo >
the implementation could use a printf() call such as:
printf("%6d\n", foo);

and still conform. This notation is thus somewhat like scanf() in addition to
printf().

The floating point number argument is written in decimal notation in the style
[-]ddd.ddd, where the number of digits after the radix character (shown here as a
decimal point) is equal to the precision specification. The LC_NUMERIC locale
category determines the radix character to use in this format. If the precision is
omitted from the argument, six digits are written after the radix character; if the
precision is explicitly 0, no radix character appears.

The floating point number argument is written in the style [-]d.dddetdd (the
symbol + indicates either a plus or minus sign), where there is one digit before the
radix character (shown here as a decimal point) and the number of digits after it is
equal to the precision. The LC_NUMERIC locale category determines the radix
character to use in this format. When the precision is missing, six digits are written
after the radix character; if the precision is 0, no radix character appears. The E

System Interface Definitions Issue 4, Version 2 37

38

File Format Notation

conversion character produces a number with E instead of e introducing the
exponent. The exponent always contains at least two digits. However, if the value
to be written requires an exponent greater than two digits, additional exponent
digits are written as necessary.

0,G The floating point number argument is written in style f or e (or in style E in the
case of a G conversion character), with the precision specifying the number of
significant digits. The style used depends on the value converted: style g is used
only if the exponent resulting from the conversion is less than —4 or greater than or
equal to the precision. Trailing zeros are removed from the result. A radix
character appears only if it is followed by a digit.

c The integer argument is converted to an unsigned char and the resulting byte is
written.
S The argument is taken to be a string and bytes from the string are written until the

end of the string or the number of bytes indicated by the precision specification of
the argument is reached. If the precision is omitted from the argument, it is taken
to be infinite, so all bytes up to the end of the string are written.

% Write a % character; no argument is converted.

In no case does a non-existent or insufficient field width cause truncation of a field; if the result of
a conversion is wider than the field width, the field is simply expanded to contain the conversion
result. The term field width should not be confused with the term precision used in the
description of %s.

One difference from the C function printf() is that the | and h conversion characters are not used.
As expressed by the XCU specification, there is no differentiation between decimal values for
type int, type long or type short. The specifications %d or %i should be interpreted as an
arbitrary length sequence of digits. Also, no distinction is made between single precision and
double precision numbers (float or double in C). These are simply referred to as floating point
numbers.

Many of the output descriptions in the XCU specification use the term line, such as:
"%s" , <input line >

Since the definition of line includes the trailing newline character already, there is no need to
include a \n in the format; a double newline character would otherwise result.

Examples

To represent the output of a program that prints a date and time in the form Sunday, July 3,
10:02, where <weekday> and <month> are strings:

"%s, A%n%d,A%d:%.2d\n" |, <weekday >, <month >, <day >, <hour >, <min >
To show Ttwritten to 5 decimal places:

"pi A=A%.5A\n" | <value of 1>
To show an input file format consisting of five colon-separated fields:

"9%08:9%08:%8:%s:%s\n" |, <argl >, <arg2 >,<arg3 >, <arg4 >, <arg5 >

X/0pen CAE Specification (1994)

4.1

Chapter 4

Character Set

Portable Character Set

Conforming implementations support one or more coded character sets. Each supported locale

includes the portable character set specified in the following table.

Symbolic Name Glyph Symbolic Name Glyph Symbolic Name Glyph
<circumflex> "
<NUL> <colon> <circumflex-accent> "
<alert> <semicolon> ; <underscore> _
<backspace> <less-than-sign> < <underline>
<tab> <equals-sign> = <low-line> _
<newline> <greater-than-sign> > <grave-accent> ‘
<vertical-tab> <question-mark> ? <a> a
<form-feed> <commercial-at> @ b
<carriage-return> <A> A <c> c
<space> B <d> d
<exclamation-mark> ! <C> C <e> e
<quotation-mark> " <D> D <f> f
<number-sign> # <BE> E <g> g
<dollar-sign> $ <F> F <h> h
<percent-sign> % <G> G <i> [
<ampersand> & <H> H <> j
<apostrophe> ' <I> I <k> k
<left-parenthesis> (<J> J <I> I
<right-parenthesis>) <K> K <m> m
<asterisk> * <L> L <n> n
<plus-sign> + <M> M <o> 0
<comma> , <N> N <p> p
<hyphen> - <O> (@] <q> q
<hyphen-minus> - <P> P <r> r
<period> <Q> Q <s> S
<full-stop> . <R> R <t> t
<slash> / <S> S <u> u
<solidus> / <T> T <v> v
<zero> 0 <U> U <w> w
<one> 1 <V> \% <> X
<two> 2 <W> W <y> y
<three> 3 <X> X <z> z
<four> 4 <Y> Y <left-brace> {
<five> 5 <Z> 4 <left-curly-bracket> {
<six> 6 <left-square-bracket> [<vertical-line> |
<seven> 7 <backslash> \ <right-brace> }
<eight> 8 <reverse-solidus> \ <right-curly-bracket> }
<nine> 9 <right-square-bracket>] <tilde> O

Table 4-1 Portable Character Set

System Interface Definitions Issue 4, Version 2

39

Portable Character Set Character Set

4.2

40

Table 4-1 on page 39 defines the characters in the portable character set and the corresponding
symbolic character names used to identify each character in a character set description file. The
table contains more than one symbolic character name for characters whose traditional name
differs from the chosen name.

This document set places only the following requirements on the encoded values of the
characters in the portable character set:

. If the encoded values associated with each member of the portable character set are not
invariant across all locales supported by the implementation, the results achieved by an
application accessing those locales are unspecified.

- The encoded values associated with the digits 0 to 9 will be such that the value of each
character after 0 will be one greater than the value of the previous character.

- A null character, NUL, which has all bits set to zero, will be in the set of characters.

- The encoded values associated with the members of the portable character set are each
represented in a single byte. Moreover, if the value is stored in an object of C-language type
char, it is guaranteed to be positive (except the NUL, which is always zero).

Character Encoding

The POSIX locale contains the characters in Table 4-1 on page 39, which have the properties
listed in Section 5.3.1 on page 48. Implementations may also add other characters. In other
locales, the presence, meaning and representation of any additional characters is locale-specific.

In locales other than the POSIX locale, a character may have a state-dependent encoding. There
are two types of these encodings:

- A single-shift encoding (where each character not in the initial shift state is preceded by a
shift code) can be defined if each shift-code and character sequence is considered a multi-byte
character. This is done using the concatenated-constant format in a character set description
file, as described in Section 4.4 on page 41. If the implementation supports a character
encoding of this type, all of the standard utilities in the XCU specification will support it.
Use of a single-shift encoding with any of the functions in the XSH specification that do not
specifically mention the effects of state-dependent encoding is implementation-dependent.

« A locking-shift encoding (where the state of the character is determined by a shift code that
may affect more than the single character following it) cannot be defined with the current
character set description file format. Use of a locking-shift encoding with any of the standard
utilities in the XCU specification or with any of the functions in the XSH specification that do
not specifically mention the effects of state-dependent encoding is implementation-
dependent.

While in the initial shift state, all characters in the portable character set retain their usual
interpretation and do not alter the shift state. The interpretation for subsequent bytes in the
sequence is a function of the current shift state. A byte with all bits zero is interpreted as the null
character independent of shift state. Thus a byte with all bits zero must never occur in the
second or subsequent bytes of a character.

The maximum allowable number of bytes in a character in the current locale is indicated by
MB_CUR_MAX, defined in the XSH specification <stdlib.h>, and by the <mb_cur_max> value
in a character set description file; see Section 4.4 on page 41. The implementation’s maximum
number of bytes in a character is defined by the C-language macro {MB_LEN_MAX]}.

X/0pen CAE Specification (1994)

Character Set C Language Wide-character Codes

4.3

4.4

C Language Wide-character Codes

In the shell, the standard utilities are written so that the encodings of characters are described by
the locale’s LC_CTYPE definition (see Section 5.3.1 on page 48) and there is no differentiation
between characters consisting of single octets (8-bit bytes), larger bytes, or multiple bytes.
However, in the C language, a differentiation is made. To ease the handling of variable length
characters, the C language has introduced the concept of wide character codes.

All wide-character codes in a given process consist of an equal number of bits. This is in contrast
to characters, which can consist of a variable number of bytes. The byte or byte sequence that
represents a character can also be represented as a wide-character code. Wide-character codes
thus provide a uniform size for manipulating text data. A wide-character code having all bits
zero is the null wide-character code (see null wide-character code on page 21), and terminates
wide-character strings (see Section 4.3). The wide-character value for each member of the
Portable Character Set will equal its value when used as the lone character in an integer
character constant. Wide character codes for other characters are locale- and implementation-
dependent. State shift bytes do not have a wide-character code representation.

Character Set Description File

Implementations provide a character set description file for at least one coded character set
supported by the implementation. These files are referred to elsewhere in this document set as
charmap files. It is implementation-dependent whether or not users or applications can provide
additional character set description files.

This document set does not require that multiple character sets or codesets be supported.
Although multiple charmap files are supported, it is the responsibility of the implementation to
provide the file or files; if only one is provided, only that one will be accessible using the localedef
utility’s —f option (although in the case of just one file on the system, —f is not useful).

Each character set description file defines characteristics for the coded character set and the
encoding for the characters specified in Table 4-1 on page 39 and may define encoding for
additional characters supported by the implementation. Other information about the coded
character set may also be in the file. Coded character set character values are defined using
symbolic character names followed by character encoding values.

The character set description file provides:

- The capability to describe character set attributes (such as collation order or character
classes) independent of character set encoding, and using only the characters in the portable
character set. This makes it possible to create generic localedef source files for all codesets that
share the portable character set (such as the I1SO 8859 family or IBM Extended ASCII).

- Standardised symbolic names for all characters in the portable character set, making it
possible to refer to any such character regardless of encoding.

The charmap file was introduced to resolve problems with the portability of, especially, localedef
sources. This document set assumes that the portable character set is constant across all locales,
but does not prohibit implementations from supporting two incompatible codings, such as both
ASCII and EBCDIC. Such dual-support implementations should have all charmaps and localedef
sources encoded using one portable character set, in effect cross-compiling for the other
environment. Naturally, charmaps (and localedef sources) are only portable without
transformation between systems using the same encodings for the portable character set. They
can, however, be transformed between two sets using only a subset of the actual characters (the
portable set). However, the particular coded character set used for an application or an

System Interface Definitions Issue 4, Version 2 41

Character Set Description File Character Set

EX

42

implementation does not necessarily imply different characteristics or collation; on the contrary,
these attributes should in many cases be identical, regardless of codeset. The charmap provides
the capability to define a common locale definition for multiple codesets (the same localedef
source can be used for codesets with different extended characters; the ability in the charmap to
define empty names allows for characters missing in certain codesets).

Each symbolic name specified in Table 4-1 on page 39 is included in the file and is mapped to a
unique encoding value (except for those symbolic names that are shown with identical glyphs).
If the control characters commonly associated with the symbolic names in the following table
are supported by the implementation, the symbolic names and their corresponding encoding
values are included in the file. Some of the encodings associated with the symbolic names in this
table may be the same as characters in the portable character set table.

<ACK> <DC2> <ENQ> <FS> <IS4> <SOH>
<BEL> <DC3> <EOT> <GS> <LF> <STX>
<BS> <DC4> <ESC> <HT> <NAK> <SUB>
<CAN> <ETB> <IS1> <RS> <SYN>
<CR> <DLE> <ETX> <IS2> <SI> <US>
<DC1> <FF> <IS3> <SO> <VT>

Table 4-2 Control Character Set

The following declarations can precede the character definitions. Each must consist of the
symbol shown in the following list, starting in column 1, including the surrounding brackets,
followed by one or more blank characters, followed by the value to be assigned to the symbol.

<code_set_name> The name of the coded character set for which the character set
description file is defined. The characters of the name must be taken from
the set of characters with visible glyphs defined in Table 4-1 on page 39.

<mb_cur_max> The maximum number of bytes in a multi-byte character. This defaults to
1.
<mb_cur_min> An unsigned positive integer value that defines the minimum number of

bytes in a character for the encoded character set. On XSI-conformant
systems, <mb_cur_min> is always 1.

<escape_char> The escape character used to indicate that the characters following will be
interpreted in a special way, as defined later in this section. This defaults
to backslash (\), which is the character glyph used in all the following
text and examples, unless otherwise noted.

<comment_char> The character that when placed in column 1 of a charmap line, is used to
indicate that the line is to be ignored. The default character is the number
sign (#).

X/0pen CAE Specification (1994)

Character Set Character Set Description File

The character set mapping definitions will be all the lines immediately following an identifier
line containing the string CHARMAP starting in column 1, and preceding a trailer line
containing the string END CHARMAP starting in column 1. Empty lines and lines containing a
<comment_char> in the first column will be ignored. Each non-comment line of the character
set mapping definition (that is, between the CHARMAP and END CHARMAP lines of the file)
must be in either of two forms:

"%s %s %s\n" , <symbolic-name >, <encoding >, <comments >
or:

"%s...%s %s %s\n" |, <symbolic-name >, <symbolic-name >,<encoding >,
<comments >

In the first format, the line in the character set mapping definition defines a single symbolic
name and a corresponding encoding. A symbolic name is one or more characters from the set
shown with visible glyphs in Table 4-1 on page 39, enclosed between angle brackets. A character
following an escape character is interpreted as itself; for example, the sequence <\\\>>
represents the symbolic hame \> enclosed between angle brackets.

In the second format, the line in the character set mapping definition defines a range of one or
more symbolic names. In this form, the symbolic names must consist of zero or more non-
numeric characters from the set shown with visible glyphs in Table 4-1 on page 39, followed by
an integer formed by one or more decimal digits. The characters preceding the integer must be
identical in the two symbolic names, and the integer formed by the digits in the second symbolic
name must be equal to or greater than the integer formed by the digits in the first name. This is
interpreted as a series of symbolic names formed from the common part and each of the integers
between the first and the second integer, inclusive. As an example, <j0101>...<j0104> is
interpreted as the symbolic names <j0101>, <j0102>, <j0103> and <j0104>, in that order.

A character set mapping definition line must exist for all symbolic names specified in Table 4-1
on page 39, and must define the coded character value that corresponds to the character glyph
indicated in the table, or the coded character value that corresponds with the control character
symbolic name. If the control characters commonly associated with the symbolic names in Table
4-2 on page 42 are supported by the implementation, the symbolic name and the corresponding
encoding value must be included in the file. Additional unique symbolic names may be
included. A coded character value can be represented by more than one symbolic name.

The encoding part is expressed as one (for single-byte character values) or more concatenated
decimal, octal or hexadecimal constants in the following formats:

"%cd%d", <escape char >,<decimal byte value >
"%Cx%X" , <escape char >,<hexadecimal byte value >
"%C%0", <escape char >,<octal byte value >

Decimal constants must be represented by two or three decimal digits, preceded by the escape
character and the lower-case letter d; for example, \d05, \d97 or \d143. Hexadecimal constants
must be represented by two hexadecimal digits, preceded by the escape character and the
lower-case letter x; for example, \x05, \x61 or \x8f. Octal constants must be represented by two
or three octal digits, preceded by the escape character; for example, \05, \141 or \217. In a
portable charmap file, each constant must represent an 8-bit byte. Implementations supporting
other byte sizes may allow constants to represent values larger than those that can be
represented in 8-bit bytes, and to allow additional digits in constants. When constants are
concatenated for multi-byte character values, they must be of the same type, and interpreted in
byte order from first to last with the least significant byte of the multi-byte character specified by
the last constant. The manner in which these constants are represented in the character stored in

System Interface Definitions Issue 4, Version 2 43

Character Set Description File Character Set

44

the system is implementation-dependent. (This big endian notation was chosen for reasons of
portability. There is no requirement that the internal representation in the computer memory be
in this same order.) Omitting bytes from a multi-byte character definition produces undefined
results.

In lines defining ranges of symbolic names, the encoded value is the value for the first symbolic
name in the range (the symbolic name preceding the ellipsis). Subsequent symbolic names
defined by the range will have encoding values in increasing order. For example, the line:

<j0101>...<j0104> \d129\d254

will be interpreted as:

<j0101> \d129\d254
<j0102> \d129\d255
<j0103> \d130\d0
<j0104> \d130\d1

Note that this line will be interpreted as the example even on systems with bytes larger than 8
bits.

The comment is optional.

For the interpretation of the dollar sign and the number sign, see dollar sign on page 13 and
number sign on page 21.

X/0pen CAE Specification (1994)

5.1

EX

Chapter 5

Locale

General

A locale is the definition of the subset of a user's environment that depends on language and
cultural conventions. It is made up from one or more categories. Each category is identified by
its name and controls specific aspects of the behaviour of components of the system. Category
names correspond to the following environment variable names;

LC CTYPE Character classification and case conversion.
LC_COLLATE Collation order.
LC_TIME Date and time formats.

LC_NUMERIC Numeric, non-monetary formatting.
LC_MONETARY Monetary formatting.
LC_MESSAGES Formats of informative and diagnostic messages and interactive responses.

The standard utilities in the XCU specification base their behaviour on the current locale, as
defined in the ENVIRONMENT VARIABLES section for each utility. The behaviour of some of
the C-language functions defined in the XSH specification will also be modified based on the
current locale, as defined by the last call to setlocale().

Locales other than those supplied by the implementation can be created by the application via
the localedef utility, if it is provided; see the XCU specification. This capability is supported on
all X/Open systems where the {POSIX2_LOCALEDEF} or {XOPEN_XCU_VERSION} options are
supported; see the XSH specification <unistd.h>. Even if localedef is not provided, all
implementations conforming to the XSH specification provide one or more locales that behave
as described in this chapter. The input to the utility is described in Section 5.3 on page 46. The
value that is used to specify a locale when using environment variables will be the string
specified as the name operand to the localedef utility when the locale was created. The strings "C"
and "POSIX" are reserved as identifiers for the POSIX locale (see Section 5.2 on page 46). When
the value of a locale environment variable begins with a slash (/), it is interpreted as the
pathname of the locale definition; the type of file (regular, directory, and so forth) used to store
the locale definition is implementation-dependent. If the value does not begin with a slash, the
mechanism used to locate the locale is implementation-dependent.

If different character sets are used by the locale categories, the results achieved by an application
utilising these categories are undefined. Likewise, if different codesets are used for the data
being processed by interfaces whose behaviour is dependent on the current locale, or the codeset
is different from the codeset assumed when the locale was created, the result is also undefined.

Applications can select the desired locale by invoking the setlocale() function (or equivalent)
with the appropriate value. If the function is invoked with an empty string, such as:

setlocale(LC_ALL, ™);

the value of the corresponding environment variable is used. If the environment variable is
unset or is set to the empty string, the implementation sets the appropriate environment as
defined in Chapter 6 on page 89.

System Interface Definitions Issue 4, Version 2 45

POSIX Locale Locale

5.2

5.3

46

POSIX Locale

All systems provide a POSIX locale, also known as the C locale. The behaviour of standard
utilities and functions in the POSIX locale is as if the locale was defined via the localedef utility
with input data from the POSIX locale tables in Section 5.3.

The tables in Section 5.3 describe the characteristics and behaviour of the POSIX locale for data
consisting entirely of characters from the portable character set and the control character set. For
other characters, the behaviour is unspecified. For C-language programs, the POSIX locale is the
default locale when the setlocale () function is not called.

The POSIX locale can be specified by assigning to the appropriate environment variables the
values "C" or "POSIX".

All implementations define a locale as the default locale, to be invoked when no environment
variables are set, or set to the empty string. This default locale can be the POSIX locale or any
other, implementation-dependent locale. Some implementations may provide facilities for local
installation administrators to set the default locale, customising it for each location. This
document set does not require such a facility.

Locale Definition

Locales can be described with the file format presented in this section. The file format is that
accepted by the localedef utility. For the purposes of this section, the file is referred to as the locale
definition file, but no locales are affected by this file unless it is processed by localedef or some
similar mechanism. Any requirements in this section imposed upon the utility apply to localedef
or to any other similar utility used to install locale information using the locale definition file
format described here.

The locale definition file must contain one or more locale category source definitions, and must
not contain more than one definition for the same locale category. If the file contains source
definitions for more than one category, implementation-dependent categories, if present, must
appear after the categories defined by Section 5.1 on page 45. A category source definition must
contain either the definition of a category or a copy directive. For a description of the copy
directive, see localedef. In the event that some of the information for a locale category, as
specified in this document, is missing from the locale source definition, the behaviour of that
category, if it is referenced, is unspecified.

A category source definition consists of a category header, a category body and a category
trailer. A category header consists of the character string naming of the category, beginning with
the characters LC_. The category trailer consists of the string END, followed by one or more
blank characters and the string used in the corresponding category header.

The category body consists of one or more lines of text. Each line contains an identifier,
optionally followed by one or more operands. ldentifiers are either keywords, identifying a
particular locale element, or collating elements. In addition to the keywords defined in this
document, the source can contain implementation-dependent keywords. Each keyword within
a locale must have a unique name (that is, two categories cannot have a commonly-named
keyword); no keyword can start with the characters LC_. ldentifiers must be separated from the
operands by one or more blank characters.

X/0pen CAE Specification (1994)

Locale Locale Definition

Operands must be characters, collating elements or strings of characters. Strings must be
enclosed in double-quotes. Literal double-quotes within strings must be preceded by the <escape
character>, described below. When a keyword is followed by more than one operand, the
operands must be separated by semicolons; blank characters are allowed both before and after a
semicolon.

The first category header in the file can be preceded by a line modifying the comment character.
It has the following format, starting in column 1:

"comment_char %c\n" ,<comment character >

The comment character defaults to the number sign (#). Blank lines and lines containing the
<comment character> in the first position are ignored.

The first category header in the file can be preceded by a line modifying the escape character to
be used in the file. It has the following format, starting in column 1:

"escape_char %c\n" |, <escape character >

The escape character defaults to backslash, which is the character used in all examples shown in
this document.

A line can be continued by placing an escape character as the last character on the line; this
continuation character will be discarded from the input. Although the implementation need not
accept any one portion of a continued line with a length exceeding {LINE_MAX]} bytes, it places
no limits on the accumulated length of the continued line. Comment lines cannot be continued
on a subsequent line using an escaped newline character.

Individual characters, characters in strings, and collating elements must be represented using
symbolic names, as defined below. In addition, characters can be represented using the
characters themselves or as octal, hexadecimal or decimal constants. When non-symbolic
notation is used, the resultant locale definitions will in many cases not be portable between
systems. The left angle bracket (<) is a reserved symbol, denoting the start of a symbolic name;
when used to represent itself it must be preceded by the escape character. The following rules
apply to character representation:

1. A character can be represented via a symbolic name, enclosed within angle brackets < and
>, The symbolic name, including the angle brackets, must exactly match a symbolic name
defined in the charmap file specified via the localedef —f option, and will be replaced by a
character value determined from the value associated with the symbolic name in the
charmap file. The use of a symbolic name not found in the charmap file constitutes an
error, unless the category is LC_CTYPE or LC_COLLATE, in which case it constitutes a
warning condition (see localedef for a description of action resulting from errors and
warnings). The specification of a symbolic name in a collating—element or
collating—symbol section that duplicates a symbolic name in the charmap file (if present)
is an error. Use of the escape character or a right angle bracket within a symbolic name is
invalid unless the character is preceded by the escape character.

Example:

<c>;<c -cedilla> "<M><a><y>"

System Interface Definitions Issue 4, Version 2 47

Locale Definition Locale

53.1

48

2. A character can be represented by the character itself, in which case the value of the
character is implementation-dependent. Within a string, the double-quote character, the
escape character and the right angle bracket character must be escaped (preceded by the
escape character) to be interpreted as the character itself. Outside strings, the characters

, ; < > escape_char
must be escaped to be interpreted as the character itself.
Example:

c B "May"

3. A character can be represented as an octal constant. An octal constant is specified as the
escape character followed by two or more octal digits. Each constant represents a byte
value. Multi-byte values can be represented by concatenated constants specified in byte
order with the last constant specifying the least significant byte of the character.

Example:
\143,\347;\143\150 "\115\141\171"

4. A character can be represented as a hexadecimal constant. A hexadecimal constant is
specified as the escape character followed by an x followed by two or more hexadecimal
digits. Each constant represents a byte value. Multi-byte values can be represented by
concatenated constants specified in byte order with the last constant specifying the least
significant byte of the character.

Example:
\x63;\xe7;\x63\x68 "\x4d\x61\x79"

5. A character can be represented as a decimal constant. A decimal constant is specified as
the escape character followed by a d followed by two or more decimal digits. Each
constant represents a byte value. Multi-byte values can be represented by concatenated
constants specified in byte order with the last constant specifying the least significant byte
of the character.

Example:
\d99;\d231;\d99\d104 "\d77\d97\d121"

Implementations may accept single-digit octal, decimal or hexadecimal constants following the
escape character. Only characters existing in the character set for which the locale definition is
created can be specified, whether using symbolic names, the characters themselves, or octal,
decimal or hexadecimal constants. If a charmap file is present, only characters defined in the
charmap can be specified using octal, decimal or hexadecimal constants. Symbolic names not
present in the charmap file can be specified and will be ignored, as specified under item 1 above.

LC_CTYPE

The LC_CTYPE category defines character classification, case conversion and other character
attributes. In addition, a series of characters can be represented by three adjacent periods
representing an ellipsis symbol (...). The ellipsis specification is interpreted as meaning that all
values between the values preceding and following it represent valid characters. The ellipsis
specification is valid only within a single encoded character set; that is, within a group of
characters of the same size. An ellipsis is interpreted as including in the list all characters with
an encoded value higher than the encoded value of the character preceding the ellipsis and
lower than the encoded value of the character following the ellipsis.

X/0pen CAE Specification (1994)

Locale

Locale Definition

Example:
\x30;. . .;\x39;
includes in the character class all characters with encoded values between the endpoints.

The following keywords are recognised. In the descriptions, the term “‘automatically included”
means that it is not an error either to include or omit any of the referenced characters; the
implementation will provide them if missing (even if the entire keyword is missing) and accept
them silently if present. When the implementation automatically includes a missing character, it
will have an encoded value dependent on the charmap file in effect (see the description of the
localedef —f option); otherwise, it will have a value derived from an implementation-dependent
character mapping.

The character classes digit, xdigit, lower, upper and space have a set of automatically included
characters. These only need to be specified if the character values (that is, encoding) differ from
the implementation default values. It is not possible to define a locale without these
automatically included characters unless some implementation extension is used to prevent
their inclusion. Such a definition would not be a proper superset of the C or POSIX locale and
thus, it might not be possible for applications conforming to the XSl to work properly.

upper Define characters to be classified as upper-case letters.
In the POSIX locale, the 26 upper-case letters are included:
ABCDEFGHIJKLMNOPQRSTUVWXYZ

In a locale definition file, no character specified for the keywords cntrl, digit,
punct or space can be specified. The upper-case letters A to Z, as defined in
Section 4.4 on page 41 (the portable character set), are automatically included
in this class.

lower Define characters to be classified as lower-case letters.
In the POSIX locale, the 26 lower-case letters are included:
abcdefghijklmnopgrstuvwxyz

In a locale definition file, no character specified for the keywords cntrl, digit,
punct or space can be specified. The lower-case letters a to z of the portable
character set are automatically included in this class.

alpha Define characters to be classified as letters.
In the POSIX locale, all characters in the classes upper and lower are included.

In a locale definition file, no character specified for the keywords cntrl, digit,
punct or space can be specified. Characters classified as either upper or lower
are automatically included in this class.

digit Define the characters to be classified as numeric digits.
In the POSIX locale, only:
0123456789
are included.

In a locale definition file, only the digits 0, 1, 2, 3, 4,5, 6, 7, 8 and 9 can be
specified, and in contiguous ascending sequence by numerical value. The
digits 0 to 9 of the portable character set are automatically included in this
class.

System Interface Definitions Issue 4, Version 2 49

Locale Definition

50

space

cntrl

punct

graph

print

xdigit

Locale

The definition of character class digit requires that only ten characters the
ones defining digits can be specified; alternative digits (for example, Hindi or
Kanji) cannot be specified here. However, the encoding may vary if an
implementation supports more than one encoding.

Define characters to be classified as white-space characters.

In the POSIX locale, at a minimum, the characters space, form-feed, newline,
carriage-return, tab and vertical-tab are included.

In a locale definition file, no character specified for the keywords upper,
lower, alpha, digit, graph or xdigit can be specified. The characters space,
form-feed, newline, carriage-return, tab and vertical-tab of the portable
character set, and any characters included in the class blank are automatically
included in this class.

Define characters to be classified as control characters.
In the POSIX locale, no characters in classes alpha or print are included.

In a locale definition file, no character specified for the keywords upper,
lower, alpha, digit, punct, graph, print or xdigit can be specified.

Define characters to be classified as punctuation characters.

In the POSIX locale, neither the space character nor any characters in classes
alpha, digit or cntrl are included.

In a locale definition file, no character specified for the keywords upper,
lower, alpha, digit, cntrl, xdigit or as the space character can be specified.

Define characters to be classified as printable characters, not including the
space character.

In the POSIX locale, all characters in classes alpha, digit and punct are
included; no characters in class cntrl are included.

In a locale definition file, characters specified for the keywords upper, lower,
alpha, digit, xdigit and punct are automatically included in this class. No
character specified for the keyword cntrl can be specified.

Define characters to be classified as printable characters, including the space
character.

In the POSIX locale, all characters in class graph are included; no characters in
class cntrl are included.

In a locale definition file, characters specified for the keywords upper, lower,
alpha, digit, xdigit, punct and the space character are automatically included
in this class. No character specified for the keyword cntrl can be specified.

Define the characters to be classified as hexadecimal digits.
In the POSIX locale, only:

0123456789 ABCDEFabcdef
are included.

In a locale definition file, only the characters defined for the class digit can be
specified, in contiguous ascending sequence by numerical value, followed by
one or more sets of six characters representing the hexadecimal digits 10 to 15

X/0pen CAE Specification (1994)

Locale

EX

blank

charclass

charclass-name

toupper

tolower

Locale Definition

inclusive, with each set in ascending order (for example A, B, C, D, E, F, a, b, c,
d, e, f). The digits 0 to 9, the upper-case letters A to F and the lower-case
letters a to f of the portable character set are automatically included in this
class.

The definition of character class xdigit requires that the characters included in
character class digit be included here also.

Define characters to be classified as blank characters.
In the POSIX locale, only the space and tab characters are included.

In a locale definition file, the characters space and tab are automatically
included in this class.

Define one or more locale-specific character class names as strings separated
by semicolons. Each named character class can then be defined subsequently
in the LC_CTYPE definition. A character class name consists of at least one
and at most {CHARCLASS NAME_MAX} bytes of alphanumeric characters
from the portable filename character set. The first character of a character
class name cannot be a digit. The name cannot match any of the LC_CTYPE
keywords defined in this document.

Define characters to be classified as belonging to the named locale-specific
character class. In the POSIX locale, the locale-specific named character
classes need not exist.

If a class name is defined by a charclass keyword, but no characters are
subsequently assigned to it, this is not an error; it represents a class without
any characters belonging to it.

The charclass-name can be used as the property argument to the wectype()
function, in regular expression and shell pattern-matching bracket
expressions, and by the tr command.

Define the mapping of lower-case letters to upper-case letters.

In the POSIX locale, at a minimum, the 26 lower-case characters:
abcdefghijklmnopgrstuvwxyz

are mapped to the corresponding 26 upper-case characters:
ABCDEFGHIJKLMNOPQRSTUVWXYZ

In a locale definition file, the operand consists of character pairs, separated by
semicolons. The characters in each character pair are separated by a comma
and the pair enclosed by parentheses. The first character in each pair is the
lower-case letter, the second the corresponding upper-case letter. Only
characters specified for the keywords lower and upper can be specified. The
lower-case letters a to z, and their corresponding upper-case letters A to Z, of
the portable character set are automatically included in this mapping, but only
when the toupper keyword is omitted from the locale definition.

Define the mapping of upper-case letters to lower-case letters.
In the POSIX locale, at a minimum, the 26 upper-case characters:
ABCDEFGHIJKLMNOPQRSTUVWXYZ

are mapped to the corresponding 26 lower-case characters:

System Interface Definitions Issue 4, Version 2 51

Locale Definition

52

copy

Locale

abcdefghijklmnopgrstuvwxyz

In a locale definition file, the operand consists of character pairs, separated by
semicolons. The characters in each character pair are separated by a comma
and the pair enclosed by parentheses. The first character in each pair is the
upper-case letter, the second the corresponding lower-case letter. Only
characters specified for the keywords lower and upper can be specified. If the
tolower keyword is omitted from the locale definition, the mapping will be
the reverse mapping of the one specified for toupper.

Specify the name of an existing locale to be used as the definition of this
category. If this keyword is specified, no other keyword can be specified.

The following table shows the character class combinations allowed.

Notes:

In Can Also Belong To
Class | upper lower alpha digit space cntrl punct graph print xdigit blank
upper - A X X X X A A - X
lower - A X X X X A A - X
alpha - - X X X X A A - X
digit X X X X X X A A A X
space X X X X - * * * X -
cntrl X X X X - X X X X -
punct X X X X - X A A X -
graph - - - - - X - A - -
print - - - - - X - - - -
xdigit - - - - X X X A A X
blank X X X X A - * * * X
Table 5-1 Valid Character Class Combinations
1. Explanation of codes:

A Automatically included; see text.

- Permitted.

X Mutually exclusive.

* See note 2.

2. The space character, which is part of the space and blank classes, cannot belong

to punct or graph, but automatically belongs to the print class. Other space or
blank characters can be classified as any of punct, graph or print.

X/0pen CAE Specification (1994)

Locale Locale Definition

The character classifications for the POSIX locale follow; the code listing depicting the localedef
input, the table representing the same information, sorted by character.

LC_CTYPE

The following is the POSIX locale LC_CTYPE.

"alpha" is by default "upper" and "lower"

"alnum" is by definition "alpha" and "digit"

"print" is by default "alnum", "punct" and the <space> character
"graph" is by default "alnum" and "punct"

H OHHHFHHI

upper <A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;\
<N>;<0>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>

#

lower <a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<I>;<m>;\
<N>;<0>;<P>;<0>;<r>;<S>; <> <U>;<V>; KW <X <y > <Z>

#

digit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;\
<seven>;<eight>;<nine>

#

space <tab>;<newline>;<vertical-tab>;<form-feed>;\
<carriage-return>;<space>

#

cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;\
<form-feed>;<carriage-return>;\
<NUL>;<SOH>;<STX>;<ETX>;<EOT>;<ENQ>;<ACK>;<SO>;\
<SI>;<DLE>;<DC1>;<DC2>;<DC3>;<DC4>;<NAK>;<SYN>;\
<ETB>;<CAN>;;<SUB>;<ESC>;<IS4>;<IS3>;<IS2>;\
<IS1>;

#

punct <exclamation-mark>;<quotation-mark>;<number-sign>;\
<dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>;\
<left-parenthesis>;<right-parenthesis>;<asterisk>;\
<plus-sign>;<comma>;<hyphen>;<period>;<slash>;\
<colon>;<semicolon>;<less-than-sign>;<equals-sign>;\
<greater-than-sign>;<question-mark>;<commercial-at>;\
<left-square-bracket>;<backslash>;<right-square-bracket>;\
<circumflex>;<underscore>;<grave-accent>;<left-curly-bracket>;\
<vertical-line>;<right-curly-bracket>;<tilde>

#

xdigit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;<seven>;\
<eight>;<nine>;<A>;;<C>;<D>;<E>;<F>;<a>;;<c>;<d>;<e>;<f>

#

blank <space>;<tab>

#

toupper (<a>,<A>);(,);(<c>,<C>);(<d>,<D>);(<e>,<E>);\
(<f>,<F>);(<g>,<G>);(<h>,<H>); (<i>,<1>);(<j>,<J>);)\
(<k>,<K>);(<I>,<L>);(<m>,<M>);(<n>,<N>);(<0>,<0>);\
(<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);)\
(<u>,<U>);(<v>,<V>); (<w>, <W>); (<x>,<X>); (<y>, <Y >); (<2>,<Z>)

#

tolower (<A>,<a>);(,);(<C>,<c>);(<D>,<d>);(<E>,<e>);)\
(<F>,<f>);(<G>,<g>);(<H>,<h>);(<I>,<i>);(<JI>,<>))\

System Interface Definitions Issue 4, Version 2 53

Locale Definition

END LC_

54

(<K>,<k>);(<L>,<I>);(<M>,<m>);(<N>,<n>);(<0>,<0>);\
(<P>,<p>);(<Q>,<0>);(<R>,<r>);(<S>,<8>);(<T>,<t>))\

(SU>,<u>);(<V>,<v>) (SW>,<w>) (<X>,<x>); (<Y >,<y>);(<Z>,<2>)

CTYPE

Symbolic Name

Other
Case

Character Classes

<NUL>
<SOH>

<STX>

<ETX>

<EOT>

<ENQ>
<ACK>

<alert>
<backspace>
<tab>
<newline>
<vertical-tab>
<form-feed>
<carriage-return>
<SO>

<S>

<DLE>

<DC1>

<DC2>

<DC3>

<DC4>
<NAK>
<SYN>

<ETB>

<CAN>

<SUB>

<ESC>

<IS4>

<IS3>

<|S2>

<IS1>

<space>
<exclamation-mark>
<quotation-mark>
<number-sign>
<dollar-sign>
<percent-sign>
<ampersand>
<apostrophe>
<left-parenthesis>

entrl

entrl

entrl

entrl

entrl

entrl

entrl

entrl

entrl

cntrl, space, blank
cntrl, space

cntrl, space

cntrl, space

cntrl, space

entrl

entrl

entrl

entrl

entrl

entrl

entrl

entrl

entrl

entrl

entrl

entrl

entrl

entrl

entrl

entrl

entrl

entrl

space, print, blank
punct, print, graph
punct, print, graph
punct, print, graph
punct, print, graph
punct, print, graph
punct, print, graph
punct, print, graph
punct, print, graph

Locale

X/0pen CAE Specification (1994)

Locale

Locale Definition

Symbolic Name Other Character Classes

Case
<right-parenthesis> punct, print, graph
<asterisk> punct, print, graph
<plus-sign> punct, print, graph
<comma> punct, print, graph
<hyphen> punct, print, graph
<period> punct, print, graph
<slash> punct, print, graph
<zero> digit, xdigit, print, graph
<one> digit, xdigit, print, graph
<two> digit, xdigit, print, graph
<three> digit, xdigit, print, graph
<four> digit, xdigit, print, graph
<five> digit, xdigit, print, graph
<six> digit, xdigit, print, graph
<seven> digit, xdigit, print, graph
<eight> digit, xdigit, print, graph
<nine> digit, xdigit, print, graph
<colon> punct, print, graph
<semicolon> punct, print, graph
<less-than-sign> punct, print, graph
<equals-sign> punct, print, graph
<greater-than-sign> punct, print, graph
<question-mark> punct, print, graph
<commercial-at> punct, print, graph
<A> <a> upper, xdigit, alpha, print, graph
 upper, xdigit, alpha, print, graph
<C> <c> upper, xdigit, alpha, print, graph
<D> <d> upper, xdigit, alpha, print, graph
<E> <e> upper, xdigit, alpha, print, graph
<F> <f> upper, xdigit, alpha, print, graph
<G> <g> upper, alpha, print, graph
<H> <h> upper, alpha, print, graph
<> <i> upper, alpha, print, graph
<J> <j> upper, alpha, print, graph
<K> <k> upper, alpha, print, graph
<L> <|> upper, alpha, print, graph
<M> <m> | upper,alpha, print, graph
<N> <n> upper, alpha, print, graph
<O> <0> upper, alpha, print, graph
<P> <p> upper, alpha, print, graph
<Q> <g> upper, alpha, print, graph
<R> <r> upper, alpha, print, graph
<S> <s> upper, alpha, print, graph
<T> <t> upper, alpha, print, graph
<U> <u> upper, alpha, print, graph
<V> <v> upper, alpha, print, graph

System Interface Definitions Issue 4, Version 2

55

Locale Definition

56

Symbolic Name Other Character Classes
Case
<W> <w> upper, alpha, print, graph
<X> <xX> upper, alpha, print, graph
<Y> <y> upper, alpha, print, graph
<Z> <z> upper, alpha, print, graph
<left-square-bracket> punct, print, graph
<backslash> punct, print, graph
<right-square-bracket> punct, print, graph
<circumflex> punct, print, graph
<underscore> punct, print, graph
<grave-accent> punct, print, graph
<a> <A> lower, xdigit, alpha, print, graph
 lower, xdigit, alpha, print, graph
<c> <C> lower, xdigit, alpha, print, graph
<d> <D> lower, xdigit, alpha, print, graph
<e> <E> lower, xdigit, alpha, print, graph
<f> <F> lower, xdigit, alpha, print, graph
<g> <G> lower, alpha, print, graph
<h> <H> lower, alpha, print, graph
<i> <I> lower, alpha, print, graph
<j> <J> lower, alpha, print, graph
<k> <K> lower, alpha, print, graph
<I> <L> lower, alpha, print, graph
<m> <M> lower, alpha, print, graph
<n> <N> lower, alpha, print, graph
<0> <O> lower, alpha, print, graph
<p> <p> lower, alpha, print, graph
<g> <Q> | lower, alpha, print, graph
<r> <R> lower, alpha, print, graph
<s> <S> lower, alpha, print, graph
<t> <T> lower, alpha, print, graph
<u> <U> lower, alpha, print, graph
<v> <V> lower, alpha, print, graph
<W> <W> lower, alpha, print, graph
<> <X> lower, alpha, print, graph
<y> <Y> lower, alpha, print, graph
<7> <Z> lower, alpha, print, graph

<left-curly-bracket>
<vertical-line>
<right-curly-bracket>
<tilde>

punct, print, graph
punct, print, graph
punct, print, graph
punct, print, graph
entrl

Locale

X/0pen CAE Specification (1994)

Locale

5.3.2

Locale Definition

LC_COLLATE

The LC_COLLATE category provides a collation sequence definition for numerous utilities in
the XCU specification (sort, unig, and so forth), regular expression matching (see Chapter 7 on
page 97) and the strcoll (), strxfrm(), wescoll () and wesxfrm() functions in the XSH specification.

A collation sequence definition defines the relative order between collating elements (characters
and multi-character collating elements) in the locale. This order is expressed in terms of
collation values; that is, by assigning each element one or more collation values (also known as
collation weights). This does not imply that implementations assign such values, but that
ordering of strings using the resultant collation definition in the locale will behave as if such
assignment is done and used in the collation process. At least the following capabilities are
provided:

1. Multi-character collating elements. Specification of multi-character collating elements
(that is, sequences of two or more characters to be collated as an entity).

2. User-defined ordering of collating elements. Each collating element is assigned a
collation value defining its order in the character (or basic) collation sequence. This
ordering is used by regular expressions and pattern matching and, unless collation weights
are explicitly specified, also as the collation weight to be used in sorting.

3. Multiple weights and equivalence classes. Collating elements can be assigned one or
more (up to the limit {COLL_WEIGHTS_MAX}) collating weights for use in sorting. The
first weight is hereafter referred to as the primary weight.

4. One-to-Many mapping. A single character is mapped into a string of collating elements.

5. Equivalence class definition. Two or more collating elements have the same collation
value (primary weight).

6. Ordering by weights. When two strings are compared to determine their relative order,
the two strings are first broken up into a series of collating elements; the elements in each
successive pair of elements are then compared according to the relative primary weights
for the elements. If equal, and more than one weight has been assigned, then the pairs of
collating elements are recompared according to the relative subsequent weights, until
either a pair of collating elements compare unequal or the weights are exhausted.

The following keywords are recognised in a collation sequence definition. They are described in
detail in the following sections.

collating-element Define a collating-element symbol representing a multi-character
collating element. This keyword is optional.

collating-symbol Define a collating symbol for use in collation order statements. This
keyword is optional.

order_start Define collation rules. This statement is followed by one or more
collation order statements, assigning character collation values and
collation weights to collating elements.

order_end Specify the end of the collation-order statements.

copy Specify the name of an existing locale to be used as the definition of this
category. If this keyword is specified, no other keyword can be specified.

System Interface Definitions Issue 4, Version 2 57

Locale Definition Locale

58

The collating-element Keyword

In addition to the collating elements in the character set, the collating—element keyword is used
to define multi-character collating elements. The syntax is:

"collating-element %s from \"%s\"\n" , <collating-symbol > <string >

The <collating-symbol> operand is a symbolic name, enclosed between angle brackets (< and >),
and must not duplicate any symbolic name in the current charmap file (if any), or any other
symbolic name defined in this collation definition. The string operand is a string of two or more
characters that collates as an entity. A <collating-element> defined via this keyword is only
recognised with the LC_COLLATE category.

Example:

collating-element <ch> from "<c><h>"
collating-element <e-acute> from "<acute><e>"
collating-element <IlI> from "II"

The collating-symbol Keyword

This keyword will be used to define symbols for use in collation sequence statements; that is,
between the order_start and the order_end keywords. The syntax is:

"collating-symbol %s\n" , <collating-symbol >

The <collating-symbol> is a symbolic name, enclosed between angle brackets (< and >), and must
not duplicate any symbolic name in the current charmap file (if any), or any other symbolic
name defined in this collation definition. A <collating-symbol> defined via this keyword is only
recognised with the LC_COLLATE category.

Example:

collating-symbol <UPPER_CASE>
collating-symbol <HIGH>

The collating—symbol keyword defines a symbolic name that can be associated with a relative
position in the character order sequence. While such a symbolic name does not represent any
collating element, it can be used as a weight.

The order_start Keyword

The order_start keyword must precede collation order entries and also defines the number of
weights for this collation sequence definition and other collation rules.

The syntax of the order_start keyword is:
"order_start %s;%s; ...;%s\n" | <sort-rules > <sort-rules >

The operands to the order_start keyword are optional. If present, the operands define rules to be
applied when strings are compared. The number of operands define how many weights each
element is assigned; if no operands are present, one forward operand is assumed. If present, the
first operand defines rules to be applied when comparing strings using the first (primary)
weight; the second when comparing strings using the second weight, and so on. Operands are
separated by semicolons (;). Each operand consists of one or more collation directives, separated
by commas (,). If the number of operands exceeds the {COLL_WEIGHTS_MAX} limit, the utility
will issue a warning message. The following directives will be supported:

forward Specifies that comparison operations for the weight level proceed from start of
string towards the end of string.

X/0pen CAE Specification (1994)

Locale Locale Definition

backward Specifies that comparison operations for the weight level proceed from end of
string towards the beginning of string.

position Specifies that comparison operations for the weight level will consider the relative
position of elements in the strings not subject to IGNORE. The string containing
an element not subject to IGNORE after the fewest collating elements subject to
IGNORE from the start of the compare will collate first. If both strings contain a
character not subject to IGNORE in the same relative position, the collating values
assigned to the elements will determine the ordering. In case of equality,
subsequent characters not subject to IGNORE are considered in the same manner.

The directives forward and backward are mutually exclusive.
Example:

order_start forward;backward
If no operands are specified, a single forward operand is assumed.

The character (and collating element) order is defined by the order in which characters and
elements are specified between the order_start and order_end keywords. This character order is
used in range expressions in regular expressions (see Chapter 7). Weights assigned to the
characters and elements define the collation sequence; in the absence of weights, the character
order is also the collation sequence.

The position keyword provides the capability to consider, in a compare, the relative position of
characters not subject to IGNORE. As an example, consider the two strings “‘o-ring’’ and ““or-
ing”. Assuming the hyphen is subject to IGNORE on the first pass, the two strings will compare
equal, and the position of the hyphen is immaterial. On second pass, all characters except the
hyphen are subject to IGNORE, and in the normal case the two strings would again compare
equal. By taking position into account, the first collates before the second.

Collation Order

The order_start keyword is followed by collating identifier entries. The syntax for the collating
element entries is:

"%s %s;%s; ...;%s\n" , <collating-identifier > <weight >, <weight >,...

Each collating-identifier consists of either a character (in any of the forms defined in Section 5.3 on
page 46), a <collating-element>, a <collating-symbol>, an ellipsis or the special symbol
UNDEFINED. The order in which collating elements are specified determines the character
order sequence, such that each collating element compares less than the elements following it.
The NUL character compares lower than any other character.

A <collating-element> is used to specify multi-character collating elements, and indicates that the
character sequence specified via the <collating-element> is to be collated as a unit and in the
relative order specified by its place.

A <collating-symbol> is used to define a position in the relative order for use in weights. No
weights are specified with a <collating-symbol>.

The ellipsis symbol specifies that a sequence of characters will collate according to their encoded
character values. It is interpreted as indicating that all characters with a coded character set
value higher than the value of the character in the preceding line, and lower than the coded
character set value for the character in the following line, in the current coded character set, will
be placed in the character collation order between the previous and the following character in
ascending order according to their coded character set values. An initial ellipsis is interpreted as
if the preceding line specified the NUL character, and a trailing ellipsis as if the following line

System Interface Definitions Issue 4, Version 2 59

Locale Definition Locale

60

specified the highest coded character set value in the current coded character set. An ellipsis is
treated as invalid if the preceding or following lines do not specify characters in the current
coded character set. The use of the ellipsis symbol ties the definition to a specific coded
character set and may preclude the definition from being portable between implementations.

The symbol UNDEFINED is interpreted as including all coded character set values not specified
explicitly or via the ellipsis symbol. Such characters are inserted in the character collation order
at the point indicated by the symbol, and in ascending order according to their coded character
set values. If no UNDEFINED symbol is specified, and the current coded character set contains
characters not specified in this section, the utility will issue a warning message and place such
characters at the end of the character collation order.

The optional operands for each collation-element are used to define the primary, secondary, or
subsequent weights for the collating element. The first operand specifies the relative primary
weight, the second the relative secondary weight, and so on. Two or more collation-elements
can be assigned the same weight; they belong to the same equivalence class if they have the same
primary weight. Collation behaves as if, for each weight level, elements subject to IGNORE are
removed, unless the position collation directive is specified for the corresponding level with the
order_start keyword. Then each successive pair of elements is compared according to the
relative weights for the elements. If the two strings compare equal, the process is repeated for
the next weight level, up to the limit {COLL_WEIGHTS_MAX}.

Weights are expressed as characters (in any of the forms specified in Section 5.3 on page 46),
<collating-symbol>s, <collating-element>s, an ellipsis, or the special symbol IGNORE. A single
character, a <collating-symbol> or a <collating-element> represent the relative position in the
character collating sequence of the character or symbol, rather than the character or characters
themselves. Thus, rather than assigning absolute values to weights, a particular weight is
expressed using the relative order value assigned to a collating element based on its order in the
character collation sequence.

One-to-many mapping is indicated by specifying two or more concatenated characters or
symbolic names. For example, if the character <eszet> is given the string "<s><s>" as a weight,
comparisons are performed as if all occurrences of the character <eszet> are replaced by <s><s>
(assuming that <s> has the collating weight <s>). If it is necessary to define <eszet> and <s><s>
as an equivalence class, then a collating element must be defined for the string ss.

All characters specified via an ellipsis will by default be assigned unique weights, equal to the
relative order of characters. Characters specified via an explicit or implicit UNDEFINED special
symbol will by default be assigned the same primary weight (that is, belong to the same
equivalence class). An ellipsis symbol as a weight is interpreted to mean that each character in
the sequence has unique weights, equal to the relative order of their character in the character
collation sequence. The use of the ellipsis as a weight is treated as an error if the collating
element is neither an ellipsis nor the special symbol UNDEFINED.

The special keyword IGNORE as a weight indicates that when strings are compared using the
weights at the level where IGNORE is specified, the collating element is ignored; that is, as if the
string did not contain the collating element. In regular expressions and pattern matching, all
characters that are subject to IGNORE in their primary weight form an equivalence class.

An empty operand is interpreted as the collating element itself.

X/0pen CAE Specification (1994)

Locale Locale Definition

For example, the order statement:
<a> <a>;<a>
is equal to:

<a>

An ellipsis can be used as an operand if the collating element was an ellipsis, and is interpreted
as the value of each character defined by the ellipsis.

The collation order as defined in this section defines the interpretation of bracket expressions in
regular expressions (see Section 7.3.5 on page 101).

Example:
order_start forward;backward
UNDEFINED IGNORE;IGNORE
<LOW>
<space> <LOW>;<space>
v <LOW>;...
<a> <a>;<a>
<a-acute> <a>;<a-acute>
<a-grave> <a>;<a-grave>
<A> <a> <A>
<A-acute> <a>;<A-acute>
<A-grave> <a>;<A-grave>
<ch> <ch>:<ch>
<Ch> <ch>;<Ch>
<s> <S>:<S>
<eszet> '<s><s>""<eszet><eszet>"
order_end

This example is interpreted as follows:

1. The UNDEFINED means that all characters not specified in this definition (explicitly or via

the ellipsis) are ignored for collation purposes; for regular expression purposes they are
ordered first.

2. All characters between <space> and <a> have the same primary equivalence class and
individual secondary weights based on their ordinal encoded values.

3. All characters based on the upper- or lower-case character a belong to the same primary
equivalence class.

4. The multi-character collating element <ch> is represented by the collating symbol <ch>

and belongs to the same primary equivalence class as the multi-character collating element
<Ch>.

The order_end Keyword

The collating order entries must be terminated with an order_end keyword.

System Interface Definitions Issue 4, Version 2 61

Locale Definition

62

Locale

The collation sequence definition of the POSIX locale follows; the code listing depicts the

localedef input.
LC_COLLATE

This is the POSIX locale definition for the LC_COLLATE category.

The order is the same as in the ASCIl codeset.

order_start forward
<NUL>

<SOH>

<STX>

<ETX>

<EOT>

<ENQ>

<ACK>

<alert>
<backspace>
<tab>

<newline>
<vertical-tab>
<form-feed>
<carriage-return>
<SO>

<SI|>

<DLE>

<DC1>

<DC2>

<DC3>

<DC4>

<NAK>

<SYN>

<ETB>

<CAN>

<SUB>

<ESC>

<IS4>

<IS3>

<IS2>

<IS1>

<space>
<exclamation-mark>
<qguotation-mark>
<number-sign>
<dollar-sign>
<percent-sign>
<ampersand>
<apostrophe>
<left-parenthesis>
<right-parenthesis>
<asterisk>
<plus-sign>
<comma>
<hyphen>

X/0pen CAE Specification (1994)

Locale Locale Definition

<period>
<slash>

<zero>

<one>

<two>

<three>

<four>

<five>

<six>

<seven>

<eight>

<nine>

<colon>
<semicolon>
<less-than-sign>
<equals-sign>
<greater-than-sign>
<question-mark>
<commercial-at>
<A>

<C>

<D>

<E>

<F>

<G>

<H>

<|>

<J>

<K>

<L>

<M>

<N>

<0O>

<P>

<Q>

<R>

<S>

<T>

<U>

<V>

<W>

<X>

<Y>

<Z>
<left-square-bracket>
<backslash>
<right-square-bracket>
<circumflex>
<underscore>
<grave-accent>
<a>

System Interface Definitions Issue 4, Version 2 63

Locale Definition Locale

5.3.3

EX

EX

64

<c>

<d>

<e>

<f>

<g>

<h>

<i>

<j>

<k>

<I>

<m>

<n>

<0>

<p>

<g>

<r>

<s>

<t>

<u>

<v>

<W>

<>

<y>

<z>
<left-curly-bracket>
<vertical-line>
<right-curly-bracket>
<tilde>

order_end

#

END LC_COLLATE

LC_MONETARY

The LC_MONETARY category defines the rules and symbols that are used to format monetary
numeric information. This information is available through the localeconv () functionand is used
by the strfmon () function.

Some of the information is also available in an alternative form via the nl_langinfo() function
(see CRNCYSTR in <langinfo.h>).

The following items are defined in this category of the locale. The item names are the keywords
recognised by the localedef utility when defining a locale. They are also similar to the member
names of the Iconv structure defined in <locale.h>; see the XSH specification for the exact
symbols in the header. The localeconv () function returns {CHAR_MAX} for unspecified integer
items and the empty string (") for unspecified or size zero string items.

In a locale definition file, the operands are strings, formatted as indicated by the grammar in
Section 5.4 on page 78. For some keywords, the strings can contain only integers. Keywords
that are not provided, string values set to the empty string ("), or integer keywords set to -1, are
used to indicate that the value is not available in the locale.

X/0pen CAE Specification (1994)

Locale Locale Definition

int_curr_symbol The international currency symbol. The operand is a four-character
string, with the first three characters containing the alphabetic
international currency symbol in accordance with those specified in the
ISO 4217:1987 standard. The fourth character is the character used to
separate the international currency symbol from the monetary quantity.

currency_symbol The string used as the local currency symbol.

mon_decimal_point The operand is a string containing the symbol that is used as the decimal
delimiter (radix character) in monetary formatted quantities. In contexts
where standards (such as the ISOC standard) Ilimit the
mon_decimal_point to a single byte, the result of specifying a multi-byte
operand is unspecified.

mon_thousands_sep The operand is a string containing the symbol that is used as a separator
for groups of digits to the left of the decimal delimiter in formatted
monetary quantities. In contexts where standards limit the
mon_thousands_sep to a single byte, the result of specifying a multi-byte
operand is unspecified.

mon_grouping Define the size of each group of digits in formatted monetary quantities.
The operand is a sequence of integers separated by semicolons. Each
integer specifies the number of digits in each group, with the initial
integer defining the size of the group immediately preceding the decimal
delimiter, and the following integers defining the preceding groups. If
the last integer is not —1, then the size of the previous group (if any) will
be repeatedly used for the remainder of the digits. If the last integer is -1,
then no further grouping will be performed.

The following is an example of the interpretation of the mon_grouping
keyword. Assuming that the value to be formatted is 123456789 and the
mon_thousands_sep is ’, then the following table shows the result. The
third column shows the equivalent string in the ISO C standard that
would be used by the localeconv() function to accommodate this

grouping.
mon_grouping Formatted Value I1SO C String
3;-1 123456°789 "\3\177"
3 123'456°789 "\3"
3;2-1 1234'56°789 "\3\2\177"
3;2 12'34’56'789 "\3\2"
-1 123456789 \177"

In these examples, the octal value of {CHAR_MAX} is 177.

positive_sign A string used to indicate a non-negative-valued formatted monetary
quantity.

negative_sign A string used to indicate a negative-valued formatted monetary quantity.

int_frac_digits An integer representing the number of fractional digits (those to the right

of the decimal delimiter) to be written in a formatted monetary quantity
using int_curr_symbol.

System Interface Definitions Issue 4, Version 2 65

Locale Definition

66

frac_digits

p_cs_precedes

p_sep_by space

n_cs_precedes

n_sep_by space

p_sign_posn

n_sign_posn

copy

Locale

An integer representing the number of fractional digits (those to the right
of the decimal delimiter) to be written in a formatted monetary quantity
using currency_symbol.

An integer set to 1 if the currency_symbol or int_curr_symbol precedes
the value for a monetary quantity with a non-negative value, and set to 0
if the symbol succeeds the value.

An integer set to 0 if no space separates the currency symbol or
int_curr_symbol from the value for a monetary quantity with a non-
negative value, set to 1 if a space separates the symbol from the value,
and set to 2 if a space separates the symbol and the sign string, if adjacent.

An integer set to 1 if the currency_symbol or int_curr_symbol precedes
the value for a monetary quantity with a negative value, and set to 0 if the
symbol succeeds the value.

An integer set to 0 if no space separates the currency symbol or
int_curr_symbol from the value for a monetary quantity with a negative
value, set to 1 if a space separates the symbol from the value, and set to 2
if a space separates the symbol and the sign string, if adjacent.

An integer set to a value indicating the positioning of the positive_sign
for a monetary quantity with a non-negative value. The following integer
values are recognised for both p_sign_posn and n_sign_posn:

0 Parentheses enclose the quantity and the currency _symbol or
int_curr_symbol.

1 The sign string precedes the quantity and the currency_symbol or
int_curr_symbol.

2 The sign string succeeds the quantity and the currency symbol or
int_curr_symbol.

3 Thesign string precedes the currency_symbol or int_curr_symbol.
4 The sign string succeeds the currency_symbol or int_curr_symbol.

An integer set to a value indicating the positioning of the negative_sign
for a negative formatted monetary quantity.

Note: This is a localedef utility keyword, unavailable through
localeconv ().

Specify the name of an existing locale to be used as the definition of this
category. If this keyword is specified, no other keyword can be specified.

X/0pen CAE Specification (1994)

Locale Locale Definition

The following table shows the result of various combinations:

p_sep_by space
2 1 0

p_cs_precedes=1 p_sign_posn=0 ($1.25) ($ 1.25) ($1.25)
p_sign_posn=1 + $1.25 +$ 1.25 +$1.25
p_sign_posn=2 $1.25 + $ 1.25+ $1.25+
p_sign_posn=3 + $1.25 +$ 1.25 +$1.25
p_sign_posn=4 $ +1.25 $+ 1.25 $+1.25

p_cs precedes=0 p_sign posn=0 (1.25 $) (1.25 $) (1.259)
p_sign_posn=1 +125 $ +1.25 $ +1.25%
p_sign_posn=2 1.25% + 1.25 $+ 1.25%+
p_sign_posn=3 125+ $ 125 +$ 1.25+$%
p_sign_posn=4 1.25% + 1.25 $+ 1.25%+

The monetary formatting definitions for the POSIX locale follow; the code listing depicting the
EX localedef input, the table representing the same information with the addition of localeconv () and
nl_langinfo () formats. All values are unspecified in the POSIX locale.

LC_MONETARY

This is the POSIX locale definition for
the LC_MONETARY category.

#

int_curr_symbol

currency_symbol

mon_decimal_point

mon_thousands_sep

mon_grouping -1
positive_sign
negative_sign
int_frac_digits -1
p_cs_precedes -1
p_sep_by space -1
n_cs_precedes -1
n_sep_by space -1
p_sign_posn -1
n_sign_posn -1
#

END LC_MONETARY

System Interface Definitions Issue 4, Version 2 67

Locale Definition

EX

534

EX

68

Locale
ltem POSIX locale langinfo localeconv () localedef
Value Constant Value Value
currency_symbol n/a CRNCYSTR
frac_digits n/a - CHAR_MAX -1
int_curr_symbol n/a -
int_frac_digits n/a - CHAR_MAX -1
mon_decimal_point n/a -
mon_thousands_sep n/a -
mon_grouping n/a -
positive_sign n/a -
negative_sign n/a -
p_cs_precedes n/a CRNCYSTR | CHAR_MAX -1
n_cs_precedes n/a CRNCYSTR | CHAR_MAX -1
p_sep_by space n/a - CHAR_MAX -1
n_sep_by space n/a - CHAR_MAX -1
p_sign_posn n/a - CHAR_MAX -1
n_sign_posn n/a - CHAR_MAX -1

In the preceding table, the langinfo Constant column represents an X/Open extension. The
entry n/a indicates that the value is not available in the POSIX locale.

LC_NUMERIC

The LC_NUMERIC category defines the rules and symbols that will be used to format non-
monetary numeric information. This information is available through the localeconv () function.
Some of the information is also available in an alternative form via the nl_langinfo () function.

The following items are defined in this category of the locale. The item names are the keywords
recognised by the localedef utility when defining a locale. They are also similar to the member
names of the Iconv structure defined in <locale.h>; see the XSH specification for the exact
symbols in the header. The localeconv () function returns {CHAR_MAX} for unspecified integer
items and the empty string (") for unspecified or size zero string items.

In a locale definition file, the operands are strings, formatted as indicated by the grammar in
Section 5.4 on page 78. For some keywords, the strings only can contain integers. Keywords
that are not provided, string values set to the empty string ("), or integer keywords set to -1,
will be used to indicate that the value is not available in the locale. The following keywords are
recognised:

decimal_point The operand is a string containing the symbol that is used as the decimal
delimiter (radix character) in numeric, hon-monetary formatted quantities.
This keyword cannot be omitted and cannot be set to the empty string. In
contexts where standards limit the decimal_point to a single byte, the result

of specifying a multi-byte operand is unspecified.

thousands_sep The operand is a string containing the symbol that is used as a separator for
groups of digits to the left of the decimal delimiter in numeric, non-monetary
formatted monetary quantities. In contexts where standards limit the
thousands_sep to a single byte, the result of specifying a multi-byte operand

is unspecified.

Define the size of each group of digits in formatted non-monetary quantities.
The operand is a sequence of integers separated by semicolons. Each integer
specifies the number of digits in each group, with the initial integer defining
the size of the group immediately preceding the decimal delimiter, and the

grouping

X/0pen CAE Specification (1994)

Locale

EX

EX

5.3.5

EX

Locale Definition

following integers defining the preceding groups. If the last integer is not -1,
then the size of the previous group (if any) will be repeatedly used for the
remainder of the digits. If the last integer is —1, then no further grouping will
be performed.

copy Note: This is a localedef utility keyword, unavailable through localeconv ().

Specify the name of an existing locale to be used as the definition of this
category. If this keyword is specified, no other keyword can be specified.

The non-monetary numeric formatting definitions for the POSIX locale follow; the code listing
depicting the localedef input, the table representing the same information with the addition of
localeconv () valuesand nl_langinfo () constants.

LC_NUMERIC
This is the POSIX locale definition for
the LC_NUMERIC category.

#

decimal_point "<period>"

thousands_sep

grouping -1

#

END LC_NUMERIC

ltem POSIX locale langinfo localeconv() | localedef
Value Constant Value Value

decimal_point RADIXCHAR .
thousands_sep n/a THOUSEP
grouping n/a - -1

In the preceding table, the langinfo Constant column represents an X/Open extension. The
entry n/a indicates that the value is not available in the POSIX locale.

LC_TIME

The LC_TIME category defines the interpretation of the field descriptors supported by the date
utility and affects the behaviour of the strftime(), wecsftime(), strptime() and nl_langinfo()
functions. Because the interfaces for C-language access and locale definition differ significantly,
they are described separately.

LC_TIME Locale Definition
For locale definition, the following mandatory keywords are recognised:

abday Define the abbreviated weekday names, corresponding to the %a field
descriptor (conversion specification in the strftime(), wesftime() and strptime()
functions). The operand consists of seven semicolon-separated strings, each
surrounded by double-quotes. The first string is the abbreviated name of the
day corresponding to Sunday, the second the abbreviated name of the day
corresponding to Monday, and so on.

System Interface Definitions Issue 4, Version 2 69

Locale Definition

EX

70

day

abmon

mon

dt fmt

d fmt

t fmt

am_pm

t fmt_ ampm

era

Locale

Define the full weekday names, corresponding to the %A field descriptor. The
operand consists of seven semicolon-separated strings, each surrounded by
double-quotes. The first string is the full name of the day corresponding to
Sunday, the second the full name of the day corresponding to Monday, and so
on.

Define the abbreviated month names, corresponding to the %b field
descriptor. The operand consists of twelve semicolon-separated strings, each
surrounded by double-quotes. The first string is the abbreviated name of the
first month of the year (January), the second the abbreviated name of the
second month, and so on.

Define the full month names, corresponding to the %B field descriptor. The
operand consists of twelve semicolon-separated strings, each surrounded by
double-quotes. The first string is the full name of the first month of the year
(January), the second the full name of the second month, and so on.

Define the appropriate date and time representation, corresponding to the %c
field descriptor. The operand consists of a string, and can contain any
combination of characters and field descriptors. In addition, the string can
contain escape sequences defined in the table in Table 3-1 on page 36 (\\, \a,
\b, \f, \n, \r, \t, \v).

Define the appropriate date representation, corresponding to the %x field
descriptor. The operand consists of a string, and can contain any combination
of characters and field descriptors. In addition, the string can contain escape
sequences defined in the table in Table 3-1 on page 36.

Define the appropriate time representation, corresponding to the %X field
descriptor. The operand consists of a string, and can contain any combination
of characters and field descriptors. In addition, the string can contain escape
sequences defined in the table in Table 3-1 on page 36.

Define the appropriate representation of the ante meridiem and post meridiem
strings, corresponding to the %p field descriptor. The operand consists of two
strings, separated by a semicolon, each surrounded by double-quotes. The
first string represents the ante meridiem designation, the last string the post
meridiem designation.

Define the appropriate time representation in the 12-hour clock format with
am_pm, corresponding to the %r field descriptor. The operand consists of a
string and can contain any combination of characters and field descriptors. If
the string is empty, the 12-hour format is not supported in the locale.

Define ho