
Consortium Specification 1

2

3

4

5

Interconnect Transport API (IT-API)

Issue 1.0

The Interconnect Software Consortium
in association with

6

7

8

9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25

26
27

28
29
30

31

32

33

34

35

36

37
38
39
40
41

42

Copyright © 2004, The Open Group

All rights reserved.

The copyright owner hereby grants permission for all or part of this publication to be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, provided that it remains unchanged and that this copyright statement is included in
all copies or substantial portions of the publication.
For any software code contained within this specification, permission is hereby granted, free of charge, to any
person obtaining a copy of this specification (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
above copyright notice and this permission notice being included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Permission is granted for implementers to use the names, labels, etc. contained within the specification. The
intent of publication of the specification is to encourage implementations of the specification.

This specification has not been verified for avoidance of possible third-party proprietary rights. In
implementing this specification, usual procedures to ensure the respect of possible third-party intellectual
property rights should be followed.

Consortium Specification

Interconnect Transport API (IT-API) Issue 1.0

ISBN: 1-931624-37-2

Document Number: C040

Published by The Open Group, February 2004.

Comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza, Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by electronic mail to:

ogspecs@opengroup.org43

Interconnect Transport API –Issue 1 ii

mailto:ogspecs@opengroup.org

Contents 44

45
46
47
48
49
50
51

52

53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

1 Introduction...1
1.1 Interface Adapters...1
1.2 Memory Management...2
1.3 Communication Endpoints ...2
1.4 Data Transfer Operations..3
1.5 Events ...3
1.6 Event Notification...4

2 Definitions...5

3 Global Behavior ..15
3.1 Non-Blocking APIs...15
3.2 Thread Safety..15
3.3 Signal Handlers...21
3.4 Fork Semantics ...21
3.5 Exec Semantics ...21
3.6 Exit Semantics ..21
3.7 Error Handling ..21
3.8 IT Handle Management ..22

4 API Manual Pages...23
it_address_handle_create()..26
it_address_handle_free() ...29
it_address_handle_modify()..30
it_address_handle_query() ..32
it_convert_net_addr()..34
it_ep_accept()..36
it_ep_connect()..39
it_ep_disconnect() ...44
it_ep_free()..47
it_ep_modify() ..49
it_ep_query()...51
it_ep_rc_create() ...53
it_ep_reset() ..57
it_ep_ud_create() ..58
it_evd_create() ..61
it_evd_dequeue()...72
it_evd_free()..74
it_evd_modify() ..76
it_evd_post_se() ..80
it_evd_query() ...82
it_evd_wait() ...85

Interconnect Transport API –Issue 1 iii

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

125
126
127
128
129
130

it_get_consumer_context()..89
it_get_handle_type() ...91
it_get_pathinfo()..92
it_handoff() ...95
it_hton64()...97
it_ia_create() ...98
it_ia_free()...100
it_ia_info_free() ..101
it_ia_query()..102
it_interface_list() ...103
it_listen_create()..106
it_listen_free() ...108
it_listen_query() ..109
it_lmr_create()...111
it_lmr_free() ..116
it_lmr_modify()...117
it_lmr_query() ...119
it_lmr_sync_rdma_read() ..121
it_lmr_sync_rdma_write()...123
it_make_rdma_addr()..125
it_post_rdma_read() ..126
it_post_rdma_write()...129
it_post_recv() ..133
it_post_recvfrom() ..136
it_post_send()..139
it_post_sendto()...142
it_pz_create() ..145
it_pz_free()..146
it_pz_query()...147
it_reject() ...149
it_rmr_bind() ...151
it_rmr_create() ..155
it_rmr_free()..156
it_rmr_query() ...157
it_rmr_unbind() ...159
it_set_consumer_context() ..162
it_ud_service_reply() ..163
it_ud_service_request() ...166
it_ud_service_request_handle_create()...169
it_ud_service_request_handle_free() ..172
it_ud_service_request_handle_query() ...173

5 Data Type Manual Pages ..176
it_aevd_notification_event_t...177
it_affiliated_event_t ..178
it_boolean_t...182
it_cm_msg_events...183
it_cm_req_events ..193

Interconnect Transport API –Issue 1 iv

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

149

150
151
152

153

154

155
156
157
158
159
160

161

162

163
164
165
166
167
168
169

it_conn_qual_t...196
it_context_t..198
it_dg_remote_ep_addr_t ...199
it_dto_cookie_t..201
it_dto_events ...202
it_dto_flags_t ..205
it_dto_status_t ...210
it_ep_attributes_t...217
it_ep_state_t ..222
it_event_t...232
it_handle_t...236
it_ia_info_t ..238
it_lmr_triplet_t ..244
it_net_addr_t ...245
it_path_t ..247
it_software_event_t ...250
it_status_t ..251
it_unaffiliated_event_t ..254

A. Implementer’s Guide...256

B. Header Files ..267
B.1 it_api.h ..267
B.2 it_api_os_specific.h ..300

Figures

Figure 1 : Three Way Passive RC Endpoint State Diagram..............227
Figure 2 : Three Way Active RC Endpoint State Diagram228
Figure 3 : Two Way Active RC Endpoint State Diagram229
Figure 4 : Two Way Passive RC Endpoint State Diagram................230
Figure 5 : Unreliable Datagram Endpoint State Diagram230

Tables

Table 1: Thread Safety Models ...16
Table 2: Thread-Safety Models Applied to IT-APIs21
Table 3: Connection Management Event Definitions186
Table 4: Event Management Event Fields...187
Table 5: reject_reason_code Descriptions ...188
Table 6: UD Service Resolution Reply Event Definitions188

Interconnect Transport API –Issue 1 v

170
171
172
173
174

175

Table 7: Service Resolution Reply Status ...188
Table 8: InfiniBand reject_reason_code Mapping189
Table 9: VIA reject_reason_code Mapping.......................................190
Table 10: ep_info Element Mapping ...190
Table 11: Communication Management Request Event Definitions 195

Interconnect Transport API –Issue 1 vi

Preface 176

177

178
179
180

181

182
183
184

185
186

187
188

189

190
191

192
193
194
195
196

The Interconnect Software Consortium

The purpose of the Interconnect Software Consortium is to develop and publish software
specifications, guidelines and compliance tests that enable the successful deployment of fast
interconnects such as those defined by the Infiniband specification.

The Open Group

The Open Group, a vendor and technology-neutral consortium, has a vision of Boundaryless
Information Flow achieved through global interoperability in a secure, reliable, and timely
manner. The Open Group mission is to drive the creation of Boundaryless Information Flow by:

Working with customers to capture, understand, and address current and emerging requirements,
establish policies, and share best practices

Working with suppliers, consortia, and standards bodies to develop consensus and facilitate
interoperability, to evolve and integrate open specifications and open source technologies

Offering a comprehensive set of services to enhance the operational efficiency of consortia

Developing and operating the industry's premier certification service and encouraging
procurement of certified products

The Open Group provides opportunities to exchange information and shape the future of IT. The
Open Group members include some of the largest and most influential organizations in the
world. The flexible structure of The Open Group membership allows for almost any
organization, no matter what their size, to join and have a voice in shaping the future of the IT
world.

197

198
199
200

More information is available at www.opengroup.org.

The Open Group has over 15 years' experience in developing and operating certification
programs and has extensive experience developing and facilitating industry adoption of test
suites used to validate conformance to an open standard or specification.

201

202
203
204

More information is available at www.opengroup.org/testing.

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on development of Technical and Product Standards and Guides, but which also
includes white papers, technical studies, branding and testing documentation, and business titles.
Full details and a catalog are available at www.opengroup.org/pubs. 205

206
207
208

As with all live documents, Technical Standards and Specifications require revision to align with
new developments and associated international standards. To distinguish between revised
specifications which are fully backwards-compatible and those which are not:

Interconnect Transport API –Issue 1 vii

http://www.opengroup.org/
http://www.opengroup.org/testing
http://www.opengroup.org/pubs

209
210
211

212
213
214

215

A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it
replaces the previous publication.

A new Issue indicates there is substantive change to the definitive information contained in the
previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Readers should note that updates – in the form of Corrigenda – may apply to any publication.
This information is published at www.opengroup.org/corrigenda. 216

217

218
219
220

221

222

223

224

225

226

227
228
229

This Document

This document is the Consortium Specification for the Interconnect Transport API. It has been
developed and approved by The Interconnect Software Consortium in association with The Open
Group.

Typographical Conventions

The following typographical conventions are used throughout this document:

Bold font is used in text for filenames, type names, and data structures

Italic strings are used for emphasis. Italics in text also denote variable names and functions.

Normal font is used for the names of constants and literals.

Syntax and code examples are shown in fixed width font.

Bold Italic is used for all terms defined in the Definitions section when they first appear in
Chapter 1. IT-API objects are capitalized throughout the document (e.g. Interface Adapter,
Endpoint, etc).

Interconnect Transport API –Issue 1 viii

http://www.opengroup.org/corrigenda

Trademarks 230

231
232

233

234

235
236
237

238

The Open Group® is a registered trademark of The Open Group in the United States and other
countries

 InfiniBand™ is a trademark of the InfiniBand™ Trade Association.

POSIX® is a registered Trademark of The IEEE.

The Open Group acknowledges that there may be other brand, company, and product names
used in this document that may be covered by trademark protection and advises the reader to
verify them independently.

Interconnect Transport API –Issue 1 ix

Acknowledgements 239

240
241

242

The Interconnect Software Consortium gratefully acknowledges the contribution of the
following people in the development of this document:

Caitlin Bestler
Edward Chang
Joe Cowan
Ellen Deleganes
David Ford
Rama Govindaraju
Jim Hamrick
Al Hartmann
Yaron Haviv
Carl Hensler
Jimmy Hill
Peter Hochschild
Nobutaka Imamura
Arkady Kanevsky
Ted Kim
John Kingman
Martin Kirk
Michael Krause
Mike Moretti
Neil Moses
Peter Ogilvie

Matthew Pearson
Todd Pisek
Sherman Pun
Ashok Raj
Kevin Reilly
Jim Roberts
Jay Rosser
Sridharan Sakthivelu
Heidi Scott
Steve Sistare
Rajeev Sivaram
Raja Srinivasan
Tom Talpey
Robert Teisberg
Anthony Topper
Richard Treumann
Tom Tucker
Andrew Twigger
Mark Wittle
Fred Worley
Hanhong Xue

Interconnect Transport API –Issue 1 x

Referenced Documents 243

244

245
246

247

The following documents are referenced in this document:

Infiniband Architecture Release 1.1 specification
Infiniband Trade Association

Interconnect Transport API –Issue 1 xi

 1

1 Introduction 248

249
250
251
252
253
254
255

256
257
258
259
260
261

262

263
264
265
266

The IT-API defines interfaces for direct interaction with RDMA-capable transports. The Phase
1 Specification covers VIA networks and the Reliable Connection and Unreliable Datagram
services of InfiniBand networks. The IT-API Phase 1 Specification documentation set includes
this introduction, a glossary, a global behaviors section, manual pages for 62 APIs and their
supporting data type definitions, an implementation guide section, and two sample header files.
The introduction and implementation guide and the sample header files are informative only; the
remaining sections are the normative sections of the specification.

This overview describes the general architecture presented by the IT-API, reviews the significant
data structures that implement the architecture, and introduces key terminology used throughout
the API man pages. It is not a complete description of all supporting interfaces provided by the
IT-API, nor does it include the level of descriptive detail provided by the man pages. It is an
introduction to how to use the API. A separate Implementation Guide discusses issues related to
implementing the API.

1.1 Interface Adapters

RDMA-capable transports are implemented in a number of ways, on various hardware
platforms, and within different transport layering architectures. A vendor who provides the
hardware and software components that make up an RDMA transport implementation, also
called the Implementation, will see to it that the named instances of RDMA-capable transports
available within a system can be listed using the IT-API interface it_interface_list. The
application program that uses the IT-API to access an RDMA-capable transport is called the
Consumer. The Consumer may use the information returned by

267
268

 it_interface_list to identify an
appropriate transport resource. The Consumer then uses the

269
it_ia_create call to create and

associate an IT Interface Adapter instance with the specified transport resource. The Interface
Adapter, also called an IA, is used to access the underlying RDMA transport.

270
271
272

When the Consumer creates an IA using the it_ia_create call, an it_ia_handle is returned. The 273
it_ia_handle is an opaque type reference Handle used by the Consumer to refer to a specific
instance of an Implementation created IT Object. The

274
it_ia_handle is used as a parameter to

subsequent IT-API calls involving the IA. All IT-API interfaces that create an IT Object return
an opaque type reference Handle that the Consumer can use in subsequent IT-API calls. It is the
Consumer's responsibility to track these Handles, and use them appropriately.

275
276
277
278

The it_ia_handle is used both to query IA attributes and to create additional IT Objects used for
communication on the Interface Adapter. The Consumer can call

279
 it_ia_query to retrieve

attributes and transport-specific parameters associated with the IA;
280

it_ia_info_free to release the
buffers allocated by

281
it_ia_query, and it_ia_free to release the it_ia_handle and all IT Objects

associated with it. Most IT Objects follow the basic pattern of support for a standard set of
create, query, modify, and free interfaces that are used to manage the object. Additional
interfaces make use of each object's specific capabilities.

282
283
284
285

Interconnect Transport API –Issue 1 1

 2

1.2 Memory Management 286

287
288
289

290
291

One of the key advantages of RDMA-capable transports is the ability for the transport
Implementation to directly access Consumer defined message buffers. The IT-API provides
interfaces to manage the Interface Adapter’s use of the Consumer's memory.

The Consumer creates a Local Memory Region, also called an LMR, which defines a region of
local memory to be used for message buffers. The Consumer defines the LMR and associates it
with an Interface Adapter using the it_lmr_create call. The it_lmr_create call returns an 292
it_lmr_handle that is used in subsequent IT-API calls to manage the IA's use of the LMR.
Remote access privileges for the LMR can be set when the LMR is created. Attributes of the
LMR can be queried and modified using the

293
294

it_lmr_query and it_lmr_modify calls, respectively.
The LMR is released using the

295
it_lmr_free call. 296

297
298
299

 A Protection Zone, also called a PZ, is used to control access to memory when messages are
transferred. Many IT-API objects are associated with a PZ when they are created. IT-API
objects involved in a Data Transfer Operation are required to have the same Protection Zone for
the operation to succeed. A Protection Zone is created using the it_pz_create call, which returns
an

300
it_pz_handle. Attributes of the PZ can be queried using the it_pz_query call. A PZ is released

using the
301

it_pz_free call. 302

303 The Consumer may create a Remote Memory Region, also called an RMR, using the
it_rmr_create call, which returns an it_rmr_handle. An RMR can be used in subsequent RDMA
Data Transfer Operations to describe a local data Destination buffer. RMR attributes can be
queried using the

304
305

it_rmr_query call, and can be released using the it_rmr_free call. 306

307

308
309
310
311

1.3 Communication Endpoints

In order to communicate using an Interface Adapter, the Consumer must create a communication
Endpoint, also called an EP. An Endpoint is used to issue requests on the IA. The Endpoint
also provides a target for establishing connected communications, and can be associated with an
address for use with datagram communications.

The Consumer creates an Endpoint by calling either it_ep_rc_create, for use with Reliable
Connection communications, or

312
it_ep_ud_create, for use with Unreliable Datagram

communications. The EP can be queried and modified using the
313

it_ep_query and it_ep_modify
calls, respectively. It can be released using the

314
it_ep_free call. 315

316 For Reliable Connection communications, a Consumer may issue a request to connect a local
Endpoint to a remote Endpoint using the it_ep_connect call. In order to receive a Connection
Request, a Consumer creates an IT Listen Handle object that is used to await Connection
Requests. The Listen Handle is created using the

317
318

it_listen_create call, which returns an 319
it_listen_handle. Attributes of the Listen Handle can be queried using the it_listen_query and
the Listen Handle can be released using the

320
it_listen_free call. 321

When a Connection Request is received it can be accepted or rejected using the it_ep_accept and 322
it_reject calls, respectively. An existing Connection can be terminated using the 323
it_ep_disconnect call. During the lifetime of a connected communication session, an EP 324

Interconnect Transport API –Issue 1 2

 3

proceeds through successive stages of Connection establishment via state transitions. These
states and transitions are described in

325
it_ep_state. 326

327
328

For Unreliable Datagram communications, an IT Address Handle object can be created for use
in defining and targeting specific remote Endpoints. An Address Handle is created using the
it_address_handle_create call, which returns an it_address_handle. Attributes of the Address
Handle can be queried and modified using the

329
it_address_handle_query and 330

it_address_handle_modify calls. The Address Handle can be released using the 331
it_address_handle_free call. 332

333
334

For Unreliable Datagram communications, the Consumer can create an IT Service Request
Handle that is used to store Destination address information. A Service Request Handle is
created using the it_ud_service_request_handle_create call, which returns an 335
it_ud_svc_req_handle. Attributes of the Service Request Handle can be queried using the 336
it_ud_service_request_handle_query and the Service Request Handle can be released using the 337
it_ud_service_request_handle_free call. A Service Request Handle is used in the 338
it_ud_service_request to provide addressing information for use in sending the reply message
sent by the

339
it_ud_service_reply call. 340

341

342
343
344

345

1.4 Data Transfer Operations

The Consumer can queue different kinds of Data Transfer Operations, also called DTOs, to an
Endpoint. DTOs include sending and receiving messages, issuing RDMA requests, and
associating and disassociating Remote Memory Regions with Local Memory Regions.

The Consumer can associate an RMR with a sub-region of memory within an LMR using the
it_rmr_bind call. The it_rmr_bind call returns an it_rmr_context identifier, which can be used in
subsequent RDMA transfer requests to define the message buffer to be used for the RDMA
operation. The

346
347

it_rmr_unbind call removes the binding currently associated with a RMR.
These calls provide request-specific access control for IA memory accesses, in addition to the
region-based access control offered by LMRs.

348
349
350

The Consumer may issue requests to send messages using either the it_post_send or 351
it_post_sendto interfaces, depending on whether the Endpoint used for communication is of the
Connected or Datagram type, respectively. The Consumer issues requests to receive messages
using either the

352
353

it_post_recv or it_post_recvfrom calls. RDMA operations are initiated using the 354
it_post_rdma_read and it_post_rdma_write calls. Completions of the posted operations are
reported to Consumers asynchronously via Events.

355
356

357

358
359
360
361
362
363
364

1.5 Events

IT-API calls normally return program control immediately to the issuing Consumer. The call
return value indicates either success or immediate failure through an error indication. For some
calls, a successful return value means that the request has been executed successfully, while for
other calls it indicates only that the request has been accepted by the Implementation for later
execution. The Consumer is notified of the completion of a request via an asynchronous event
mechanism. Each type of Event generated by the IT-API has an associated IT Event object that
contains information about the Event. Common IT Event types include DTO completion,

Interconnect Transport API –Issue 1 3

 4

Connection establishment-related Events, and transport error conditions. Event objects are
created by the Implementation and made available to the Consumer when an Event occurs. The
Implementation enqueues these Event objects on an Event Dispatcher, also called an EVD.

365
366
367

The Consumer creates an Event Dispatcher by calling the it_evd_create call, which returns an 368
it_evd_handle. Attributes of an EVD can be queried and modified using the it_evd_query and 369
it_evd_modify calls, respectively. An EVD is released using the it_evd_free call. The Consumer
may access a queued Event object using the

370
it_evd_dequeue call, or by using the it_evd_wait call

which provides a blocking interface for awaiting Events.
371
372

373
374
375
376
377
378

The IT-API supports two types of EVDs. A Simple EVD, also called an SEVD, enqueues only
Events of a single type. This simplifies the implementation of an SEVD and enhances its
performance characteristics. For many communication scenarios, this provides a Consumer with
the best performance option. An Aggregate EVD, also called an AEVD, can be used to collect
Events from a set of SEVDs. This allows the Consumer to create a single Notification
mechanism that will enqueue many different types of Events. In addition to these IT-API
Notification mechanisms, it_evd_create allows an Implementation-defined file descriptor to be
associated with each EVD. This allows the Consumer to use a File Descriptor-based
Notification mechanism provided by the Implementation (e.g. POSIX poll) to collect both non-
IT-API Events and IT-API Events from multiple IAs.

379
380
381
382

383
384
385
386
387
388
389
390

391
392
393

394

395
396
397

Most Events are associated with Endpoints. These Events correspond to DTO completions or
other communication Events related to the Endpoint. When an Endpoint is created, the
Consumer associates EVDs with it. These EVDs collect a specific type of Event. One EVD
enqueues Events associated with the completion of Consumer initiated DTO requests. This
includes RMR association and disassociation, messages sent, and RDMA requests completed. A
second EVD enqueues Events generated as a result of messages being received at the Endpoint.
For EPs using connected communications, a third EVD enqueues Events related to Connection
management. EVDs may be shared across multiple Endpoints.

Some Events are not associated with a particular Endpoint, but are associated with the specific
Interface Adapter. Consumers can receive Notification of these Events by creating a separate
EVD and specifying that it should enqueue this type of Event.

1.6 Event Notification

The IT-API provides the Consumer with control over a number of aspects of Event Notification.
IT-API interfaces used to initiate Data Transfer Operations include flags to support Event and
Event Notification Suppression, and to request remote-side Endpoint Notification of message
delivery. The details of these features are described in it_dto_flags. The it_evd_wait call
provides a blocking interface for waiting for the next Event to occur, along with a timeout value.
EVDs provide a thresholding attribute used to batch the delivery of Event Notification.

398
399
400

Interconnect Transport API –Issue 1 4

 5

2 Definitions 401

402

403
404
405

406

407

408

409

410

411

412

413
414
415

416

417

418

419
420
421

422

423
424
425

426

427

428

Address Handle

An object that contains the information necessary to transmit messages to a remote port over
Unreliable Datagram service. (It should be noted that an Address Handle is an IT Object, not a
Handle as defined later on in this section.)

AEVD

See Aggregation Event Dispatcher.

Affiliated Asynchronous Event

An Event associated with a specific Endpoint or EVD.

Affiliated Event

See Affiliated Asynchronous Event.

Aggregation Event Dispatcher (AEVD)

An IT Object that conceptually merges Event completion Notifications from one or more Simple
Event Dispatchers. This provides the Consumer with a single point to receive Notification of
Event completions across multiple Event Streams.

Bind

See RMR Bind.

Communication Management Message Events

The set of Event types related to the sequence of messages involved in RC Connection
establishment, normal disconnect, Connection error conditions, and Unreliable Datagram
Service Resolution Replies.

Communication Management Request Events

The set of Event types that result from messages received requesting RC Connection
establishment or Unreliable Datagram service. Normally these Events trigger state changes at
the receiving Endpoint.

Completion Event

The set of Event types that indicate that a previously posted operation has completed.

Completion Suppression

Interconnect Transport API –Issue 1 5

 6

An optional DTO behavior specifying that no Event is to be generated upon successful
completion of the operation.

429
430

431

432
433

434

435
436

437

438

439

440

441

442

443

444
445

446

447

448

449

450

451
452

453

454
455

456

457
458

Connection

An association between a pair of Endpoints such that data posted via Data Transfer Operations
of either Endpoint arrives at the other Endpoint of the Connection.

Connection Qualifier

A value that allows an incoming Connection Request or Unreliable Datagram Service Resolution
Request to be associated with an entity that can provide that service.

Connection Request

A message that requests RC Connection establishment.

Consumer

An application that utilizes the IT-API.

Context

A Consumer-supplied value that can be associated with an instance of an IT Object.

Data Transfer Operation (DTO)

A request submitted by the Consumer to the Implementation to move data between two
Endpoints.

Destination

The Endpoint where a message is received.

DTO

See Data Transfer Operation.

DTO Cookie

A Consumer-supplied identifier for a Data Transfer Operation, Bind, or Unbind operation that
allows the Consumer to uniquely identify the operation when it completes.

Endpoint (EP)

The object to which DTOs and RMR operations are posted. An Endpoint is associated with a
single Spigot.

Endpoint ID

An identifier for an Endpoint on a given Interface Adapter. This is used to help identify the
particular Endpoint where a datagram is to be delivered.

Interconnect Transport API –Issue 1 6

 7

Endpoint Key 459

460
461
462

463

464

465

466

467

468

469

470
471

A construct that some transports require to be associated with an outgoing datagram to allow the
Receiver to validate that the sender of the datagram has permission to access the Receiver’s
Endpoint.

Endpoint Protection Zone

The Protection Zone associated with an Endpoint.

EP

See Endpoint.

EVD

See Event Dispatcher.

Event

A structure or record that is delivered to the Consumer through an Event Dispatcher to provide
notice of some kind. Types of Events include DTO completions, Connection state changes,
asynchronous errors, and information passed through the it_evd_post_se interface that is
generated by the Consumer.

472
473

474

475
476
477

478

479
480
481
482
483
484

485

486

487

488

489

490

491

Event Dispatcher (EVD)

An IT Object that conceptually merges Event completion Notifications for the Consumer. The
IT-API defines two types of EVDs: a Simple Event Dispatcher, and an Aggregation Event
Dispatcher.

Event Stream

A source of Events for the Simple Event Dispatcher: DTO completions, Connection Requests,
Connection reject Notifications, Connection establishment completion Notifications, disconnect
Notifications, Connection errors, Connection Request timeouts, asynchronous errors, RMR Bind
and Unbind completion Notifications, and Consumer-generated Notifications. An Event Stream
is the conduit between IT-API objects that generate Events and Simple Event Dispatchers that
consume Events.

Handle

An opaque data type used to reference an object.

IA

See Interface Adapter.

IANA

See Internet Address Naming Authority.

IANA Port Number

Interconnect Transport API –Issue 1 7

 8

A specific port address as defined by IANA. 492

493

494

495

496

497

498

499

500
501

502

503
504

505

506
507

IB

See InfiniBand.

ICSC

See Interconnect Software Consortium.

IETF

See Internet Engineering Task Force.

Implementation

The collection of software and hardware that combine to provide the service exported by the IT-
API.

Implementer's Guide

A non-normative section of the IT-API documentation set that contains information provided to
assist implementers of the IT-API.

InfiniBand (IB)

One of the transports that the IT-API supports. The host interface portion of InfiniBand is
defined in "InfiniBand Architecture Specification Volume 1", available at
http://www.infinibandta.org. 508

509

510
511
512

513

514

515

InfiniBand Global Routing Header

A routing header that may be present in the first 40 bytes of a completed Unreliable Datagram
Receive operation. See the InfiniBand specification for a description of the format of this
routing header.

InfiniBand Native Transport

Transport services defined by InfiniBand Architecture.

Interconnect Software Consortium (ICSC)

Standards organization that includes the ITWG. The Interconnect Software Consortium is
affiliated with

516
The Open Group. 517

518 Interconnect Transport Working Group (ITWG)

The ICSC working group that created the IT-API. 519

520 Internet Engineering Task Force (IETF)

Internet Engineering Task Force. 521

Interconnect Transport API –Issue 1 8

http://www.infinibandta.org/
http://www.opengroup.org/icsc/
http://www.opengroup.org/
http://www.opengroup.org/icsc/native/
http://www.ietf.org/

 9

Internet Address Naming Authority (IANA) 522

523

524

525

526

IETF Network Address naming authority.

Interface

A host resident device that transfers data to and from the host memory to which it is attached.

Interface Adapter (IA)

An instance of an Interface that is created by the it_ia_create call. An Interface Adapter may
contain one or more Spigots.

527
528

529

530

531

532

533

534

535

536
537

538

539
540
541

542

543
544
545
546

547

548

549

550

551

IP

The IETF Internet Protocol.

IPv4

The IETF Internet Protocol version 4.

IPv6

The IETF Internet Protocol version 6.

IT-API

The data structures and routines that make up the Interconnect Transport Application
Programming Interface.

IT Handle

An opaque reference to an IT Object. An IT Handle is returned to the Consumer whenever an IT
Object is created for the Consumer's use. The IT Handle can be used to reference the IT Object
in subsequent calls into the IT-API.

IT Object

A software object created by the IT-API Implementation as a result of a Consumer call into the
IT-API, used to satisfy subsequent Consumer requests. When the IT Object is created, an
opaque reference to the object, called a Handle, is returned to the Consumer for use in
subsequent calls into the IT-API.

ITWG

See Interconnect Transport Working Group

LMR

See Local Memory Region.

LMR Triplet

Interconnect Transport API –Issue 1 9

 10

A type used to specify a section of a Local Memory Region. Each LMR Triplet specifies the
LMR Handle, the LMR virtual address, and a length.

552
553

554

555

Local Memory Region (LMR)

A virtually contiguous area of arbitrary size within a Consumer's address space that has been
registered using the it_lmr_create routine, enabling local access and optional remote access. 556

557

558

559

560
561

562

563

Network Address

An identifier that can be used to reach a particular Spigot attached to a network.

Notification

An asynchronous mechanism for providing the Consumer with information about the completion
of a previously posted operation.

Notification Event

An Event in an Event Stream whose arrival triggers the Notification of the Event to a waiting
Consumer via either a wakeup from it_evd_wait, or via a higher-level Notification mechanism. 564

565

566
567
568
569

570

Notification Suppression

A Consumer-specified option for Data Transfer Operations that informs the Implementation that
no Notification Event should be created if the DTO completes successfully. Notification
Suppression has no effect on operations that complete in error – in this case the completion will
generate an error Event.

Organization Unique Identifier (OUI)

An OUI is a 24-bit globally unique number assigned by the Institute of Electrical and Electronics 571
Engineers (IEEE). The IT-API uses an OUI to map IETF IANA Port Numbers into the IB
Service ID space for use within the IT-API.

572
573

574

575

576

577
578

579

580

OUI

See Organization Unique Identifier.

Outstanding Operation

An operation is "Outstanding" until the Event for the operation completes, or for an operation
whose completion has been suppressed, until an operation posted subsequent to it completes.

Path

The collection of links, switches, and routers a message traverses from a Source Spigot to a
Destination Spigot. This is represented in the IT-API by the it_path_t structure. 581

582

583

Port Number

See IANA Port Number.

Interconnect Transport API –Issue 1 10

http://www.ieee.org/
http://www.ieee.org/

 11

Private Data 584

585
586
587

588

589
590

591

592

593

594

595

596

597

Consumer data that is opaque to the Implementation and is passed between the local and remote
Consumers by the Implementation's Connection establishment and UD service resolution
routines.

Protection Zone (PZ)

A mechanism for associating Endpoints and registered LMR and RMR memory of an Interface
Adapter that defines protection for local and remote memory accesses by DTO operations.

PZ

See Protection Zone.

RC

See Reliable Connected.

RDMA

See Remote Direct Memory Access.

RDMA Read

The Data Transfer Operation (DTO) that is initiated by the it_post_rdma_read routine. 598

599 RDMA Write

The Data Transfer Operation (DTO) that is initiated by the it_post_rdma_write routine. 600

601 Receive

The Data Transfer Operation (DTO) that is initiated by the it_post_recv or it_post_recvfrom
routine.

602
603

604

605

606

607
608
609
610

611

612
613
614

Receive Queue

An internal queue associated with an Endpoint on which Receive DTOs are posted.

Reliable Connected (RC)

A Transport Service Type in which an Endpoint is associated with only one other Endpoint, such
that messages transmitted from one Endpoint are reliably delivered to the other Endpoint,
uncorrupted in the absence of errors and in the order defined by the Reliable Connection
ordering rules. As such, each Endpoint is said to be "connected" to the opposite Endpoint.

Reliable Connection

A Connection type such that data of posted DTOs of either Endpoint of the Connection reliably
arrives at the other Endpoint of the Connection uncorrupted in the absence of errors and in the
order defined by the Reliable Connection ordering rules.

Interconnect Transport API –Issue 1 11

 12

Remote Direct Memory Access (RDMA) 615

616
617

618

619

620

621
622
623
624

625

626

627

628
629

630

631
632

633

634

635

636

637

A method of accessing memory on a remote system without interrupting the processing of the
CPU(s) on that system.

Remote Memory Region (RMR)

A window that can be bound to a section of a Local Memory Region to enable remote accesses.

Request Queue

An internal queue of an Endpoint on which DTOs and RMR Binds and Unbinds are posted. The
Request Queue to which RMR Bind, RMR Unbind, Send, RDMA Read, and RDMA Write
operations are posted is commonly called the Send Queue. The Request Queue to which
Receive operations are posted is commonly called the Receive Queue.

RMR

See Remote Memory Region.

RMR Bind

An operation that associates an RMR with a section of an LMR and thereby enables remote
access to that section.

RMR Context

An opaque identifier generated by the Implementation to represent a contiguous memory region.
Used by remote Consumers in RDMA operations that target this region.

RMR Unbind

An operation that destroys the association of an RMR with a section of an LMR.

SE

See Software Event.

Send

The Data Transfer Operation (DTO) that is initiated by the it_post_send or it_post_sendto
routine.

638
639

640

641

642

643

644

Send Queue

An internal queue of an Endpoint on which Receive DTOs are posted.

Service Reply

See UD Service Reply.

Service Request

Interconnect Transport API –Issue 1 12

 13

See UD Service Request. 645

646

647
648

649

650

651

652
653

Service Type

A class of transport service defining basic attributes of the communication, e.g., connected or
unconnected, reliable or unreliable.

SEVD

See Simple Event Dispatcher.

Simple Event Dispatcher (SEVD)

An IT Object that conceptually merges Events from one or more Event Streams. These Events
can be dequeued by the Consumer directly. The Consumer is notified that Events are available
through the it_evd_wait interface, or through higher-level Notification mechanisms, such as the
Aggregation Event Dispatcher. The Simple Event Dispatcher is responsible for completion of
transport-specific fetching and handshaking for the Events it collects. Each Event is delivered to
the Consumer exactly once.

654
655
656
657

658

659
660

661

662
663
664

665

666

667

668
669
670

671

Software Event (SE)

An Event generated for a Simple Event Dispatcher by the Consumer, as opposed to those
generated by the Interface Adapter.

Solicited Wait

A modifier for Send DTOs submitted to an Endpoint of the Connection. It specifies that the
completion of matching Receive DTOs on the remote side of the Connection generate
Notification Receive DTO Completion Events.

Source

The Endpoint where a message originates.

Spigot

A host resident device that transfers data to and from the host memory to which it is attached. A
Spigot is associated with a single Interface. One or more Spigots may be associated with the
same Interface.

The Open Group

The Open Group standards organization. 672

673

674

675

676

Transport Service Type

See Service Type.

UD

See Unreliable Datagram.

Interconnect Transport API –Issue 1 13

http://www.opengroup.org/

 14

Unaffiliated Asynchronous Event 677

678
679

680

681

682

683
684
685

686

687

688

689

690

691

692

693
694

An Event that is not associated with a specific Endpoint or EVD, but is only associated with an
Interface Adapter.

Unbind

See RMR Unbind.

Unreliable Datagram (UD)

A Transport Service Type in which an Endpoint may transmit and Receive single-packet
messages to/from any other Endpoint that supports that Service Type. Ordering and delivery are
not guaranteed, and the Receiver may drop delivered packets.

UD Service Reply

A reply message sent via the Unreliable Datagram service in response to a UD Service Request.

UD Service Request

A request message sent via the Unreliable Datagram service requesting service resolution.

VIA

See Virtual Interface Architecture.

Virtual Interface Architecture (VIA)

One of the transports that the IT-API supports. VIA is defined by "The
Virtual Interface Architecture Specification", which is available at
http://developer.intel.com/design/servers/vi/the_spec/specification.htm. 695

Interconnect Transport API –Issue 1 14

http://developer.intel.com/design/servers/vi/the_spec/specification.htm

 15

3 Global Behavior 696

697
698
699

700

701
702
703
704
705
706
707

708
709

710

711
712
713
714
715
716
717
718

719
720

721

722

723

724
725
726

The IT-API Global Behavior section describes certain general aspects of the behavior of the IT-
API. Behavior described in this section is applicable to all IT-API interfaces except where noted
explicitly in individual manual pages.

3.1 Non-Blocking APIs

Nearly all IT-API routine invocations return program control to the issuing Consumer without
blocking the caller's execution indefinitely. The call may return success or failure, with call
success indicating that the request was completed successfully, or that the request has been
accepted for later execution. The Consumer is notified of the subsequent completion of a
request via an asynchronous Event mechanism. Each Event generated by the IT-API has an
associated IT Event object that contains information about the disposition and status of the
Event.

A few IT-API interfaces may block the caller's execution pending some Event or condition.
These exceptions are noted explicitly in the appropriate manual pages.

3.2 Thread Safety

The IT-API supports multi-threaded applications through a variety of different thread safety
models. The basic issue in thread-safety is to provide mutually exclusive access to a shared
resource being accessed by multiple threads executing in parallel. Within a multi-threaded
application, it is common to share data resources. A common solution to provide mutual
exclusion is to serialize potentially conflicting accesses into a well-ordered succession of
executions. For example, if two callers make a call at the same time the results of the two
executions are as if the two calls were serialized in arbitrary order. Normally ensuring mutual
exclusion introduces some performance reduction, and so is only desirable when needed.

To support multi-threaded applications, the IT-API defines three models of thread safety.
Briefly, these three models are described as:

- Strongly Thread-Safe.

- Efficiently Thread-Safe.

- Not Thread-Safe.

While none of the three models is completely thread-safe, each provides a different degree of
thread-safety. Each of the models is appropriate for a different Consumer programming model.
The thread safety models are described in more detail below.

Interconnect Transport API –Issue 1 15

 16

727
728
729
730
731
732

Implementations of the IT-API may support one or more thread safety models. Which model or
models a particular Implementation supports, and how that thread safety support is
communicated to the Consumer, is beyond the scope of the IT-API. One potential mechanism
would have the Implementation vendor associate a specific thread safety model with a particular
library Implementation of the IT-API. In this scheme, different libraries would support different
thread safety models. The IT-API defines the thread safety models described in Table 1.

Model Description

Strongly
Thread Safe

Nearly all routines are thread-safe. This model assumes that the Consumer
wants the Implementation to provide considerable thread-safety. This thread-
safety model may introduce some performance cost.

All IT-API routines are thread-safe except for object destruction routines. The
Consumer is required to ensure that an IT Object is not in use when a call is
made to free or destroy that Object.

Efficiently
Thread Safe

Some routines are thread-safe, and some are not thread-safe. This model
assumes that the Consumer primarily wants the Implementation to provide
high performance, and the Consumer is willing to take some responsibility for
providing thread-safety.

The Implementation provides thread-safety for routines that are not critical to
the performance of the I/O code paths, and for routines where thread-safety can
not be managed by the Consumer. This includes thread-safety for routines that
harvest and post Events.

Routines that are critical to the performance of the I/O code paths, and object
management routines for objects that are central to the function of the I/O code
paths are not thread-safe. The Consumer is required to ensure that I/O
operations are suspended when IT Object management routines are invoked on
objects associated with the I/O code path. In addition, object destruction
routines are not thread-safe. The Consumer is required to ensure that an IT
Object is not in use when a call is made to free or destroy that Object.

Not
Thread-Safe

No routines are thread-safe. This model assumes that the Consumer is single-
threaded, or that the Consumer is managing mutual exclusion access control to
IT Objects.

733

734
735
736

737
738
739
740

741
742

Table 1: Thread Safety Models

For the Strongly Thread-Safe and Efficiently Thread-Safe models, the IT-API defines thread
safety on a routine-by-routine basis, and applies thread safety to IT Objects according to specific
rules.

Thread-safety means that the routine 1) provides well-defined results without imposing any
restrictions on other IT-API routines called by other threads in the system, and 2) provides well-
defined results without regard to which other IT-API routines currently have threads of
execution within them.

Not thread-safe means that the results of the routine can possibly be NOT well-defined if another
in-progress not thread-safe routine is called with the same primary (i.e., first) call argument, and

Interconnect Transport API –Issue 1 16

 17

none of the calls is an object destructor routine. (For rmr_bind the lmr_handle, rmr_handle, and
ep_handle arguments must be treated as primary call arguments for thread-safety purposes. For

743
744

rmr_unbind the rmr_handle and ep_handle arguments, and the lmr_handle that is bound to the
rmr must be treated as primary call arguments for thread-safety purposes.)

745
746

747
748
749
750

751
752

753
754
755

756
757

758
759

760
761

762
763

764

765

This definition of thread-safe and not thread-safe routines allow simultaneous execution of not
thread-safe calls involving different instances of an IT Object (e.g., two different EPs) or
involving IT Objects that are related (e.g., an EVD and an EP), so long as the primary call
argument is not the same for the two routines.

For the Not Thread-Safe model, the Implementation does not provide thread-safety for any data
structures whatsoever.

The IT-API applies these thread safety models on a routine-by-routine basis. IT-API routines
can be classified into five groups according to their basic function. These groups determine their
thread-safety under each thread safety model:

- Non-performance critical routines. These routines create objects and manage and query
the state of objects that do interact with the I/O code paths.

- Event harvesting and posting routines. These routines retrieve Events from the
Implementation, and invoke software Events.

- Performance critical routines. These routines invoke Data Transfer Operations and RMR
Operations.

- Object management routines. These routines modify and query the state of objects that
interact with the I/O code paths.

- Object destructor routines. These routines free and/or destroy IT Objects.

The thread-safety of each IT-API routine is given in Table 2.

Interconnect Transport API –Issue 1 17

 18

766

Non-Performance
Critical Routines

Strongly
Thread-

Safe Model

Efficiently
Thread-Safe

Model

Not Thread-Safe
Model

it_address_handle_create

it_convert_net_addr

it_ep_rc_create

it_ep_ud_create

it_evd_create

it_get_handle_type

it_get_pathinfo

it_hton64, it_ntoh64

it_ia_create

it_ia_query

it_interface_list

it_listen_create

it_listen_query

it_lmr_create

it_make_rdma_addr

it_pz_create

it_pz_query

it_rmr_create

it_ud_service_request_handle_create

Thread-safe Not thread-safe

Event Harvesting and
Posting Routines

Strongly
Thread-

Safe Model

Efficiently
Thread-Safe

Model

Not Thread-Safe
Model

it_evd_dequeue
it_evd_post_se
it_evd_wait

Thread-safe Not thread-safe

Performance Critical
Routines

Strongly
Thread-

Safe Model

Efficiently
Thread-Safe

Model

Not Thread-Safe
Model

it_post_rdma_read

it_post_rdma_write

it_post_recv

it_post_recvfrom

Thread-
safe

Not thread-safe

Interconnect Transport API –Issue 1 18

 19

it_post_send

it_post_sendto

it_rmr_bind

it_rmr_unbind

it_ud_service_reply
it_ud_service_request

 767

Interconnect Transport API –Issue 1 19

 20

768

Object Management
Routines

Strongly
Thread-

Safe Model

Efficiently
Thread-Safe

Model

Not
Thread-

Safe Model
it_address_handle_modify

it_address_handle_query

it_ep_connect

it_ep_modify

it_ep_query

it_ep_reset

it_evd_modify

it_evd_query

it_get_consumer_context

it_lmr_modify

it_lmr_query

it_lmr_sync_rdma_read

it_lmr_sync_rdma_write

it_rmr_query

it_set_consumer_context

it_ud_service_request_handle_query

Thread-
safe

Not thread-safe

Object Destructor
Routines

Strongly
Thread-

Safe Model

Efficiently
Thread-Safe

Model

Not
Thread-

Safe Model
it_address_handle_free

it_ep_accept

it_ep_disconnect

it_ep_free

it_evd_free

it_handoff

it_ia_free

it_ia_info_free

it_listen_free

it_lmr_free

it_reject

Not thread-safe

Interconnect Transport API –Issue 1 20

 21

it_ud_service_request_handle_free

it_pz_free

it_rmr_free

769

770

771
772

773

774
775
776

777
778

779
780
781

782

783

784

785
786

787

788
789
790
791
792
793

Table 2: Thread-Safety Models Applied to IT-APIs

3.3 Signal Handlers

IT-API interfaces are not required to be safely executable from within a signal handler
invocation.

3.4 Fork Semantics

Use of the POSIX fork family of calls is supported within the IT-API with the following
semantics. After a fork call, the parent process' references to IT Objects are unchanged, and it
may continue to use the references as it had before the fork call.

The child process' IT Object references are invalid following the fork call (with one exception
for file descriptors discussed below).

The one exception to this behavior for the child is for file descriptors that were associated with
EVDs before the fork call occurred. The Implementation supports the child's use of the close
call to close the file descriptor.

3.5 Exec Semantics

The process' IT Object references are invalid following the POSIX exec family of calls.

3.6 Exit Semantics

Following an implicit or explicit call to the POSIX exit, all IT Objects associated with the
process are destroyed and all references to them are invalid.

3.7 Error Handling

Error Notification is provided to Consumers of the IT-API in two ways: as error return values to
interface calls, and as asynchronous Events containing error status information for the earlier
request. In general, interface calls return an error when a call argument is invalid or
incompatible with a condition relevant to the request. However, some errors of this type are
determined by the transport layer stack executing below the IT-API, and in this case the
Consumer is notified of call parameter-related errors through an asynchronous Event.

Interconnect Transport API –Issue 1 21

 22

3.8 IT Handle Management 794

795
796
797
798
799
800

IT-API interfaces that create an IT Object return an opaque type reference Handle that the
Consumer can use in subsequent IT-API calls. It is the Consumer's responsibility to track these
Handles, and use them appropriately. The Implementation will make its best effort to detect
improper use of Handles by the Consumer and will return an invalid Handle error whenever
possible. However, it may not always be possible for the Implementation to detect improper use
of a Handle, and improper use may result in data corruption or fatal errors for the Consumer.

Interconnect Transport API –Issue 1 22

 23

4 API Manual Pages 801

it_address_handle_create – create an Address Handle 802

it_address_handle_free – free an Address Handle 803

it_address_handle_modify – modify an Address Handle 804

it_address_handle_query – query an Address Handle 805

it_convert_net_addr – convert a Network Address from one format to another. 806

it_ep_accept – accept an incoming Connection establishment request or reply. 807

it_ep_connect – Initiate an Endpoint Connection establishment request. 808

it_ep_disconnect - disconnects an existing Endpoint–to-Endpoint Connection. 809

it_ep_free – destroys an RC or UD Endpoint 810

it_ep_modify – modify parameters of an existing Endpoint 811

it_ep_query – query an existing Endpoint 812

it_ep_rc_create – Create an Endpoint for Reliable Connection. 813

it_ep_reset – resets a Reliable Connected Endpoint into the initial state 814

it_ep_ud_create – Create an Endpoint for Unreliable Datagram. 815

it_evd_create – create Simple or Aggregate Event Dispatcher 816

it_evd_dequeue – Dequeue Events from Event Dispatcher 817

it_evd_free – destroys an Event Dispatcher 818

it_evd_modify – modify an existing Event Dispatcher 819

it_evd_post_se – Post Software Event on Simple Event Dispatcher 820

it_evd_query – query an existing Simple or Aggregate Event Dispatcher 821

it_evd_wait – Wait for Events on Event Dispatcher 822

it_get_consumer_context – get Consumer Context associated with an IT Object Handle 823

it_get_handle_type – return the Handle type value associated with an IT Object Handle 824

it_get_pathinfo – retrieve Paths used to communicate with a remote Network Address 825

Interconnect Transport API –Issue 1 23

 24

it_handoff - hands-off an incoming Connection Request to another Connection Qualifier. 826

it_hton64, it_ntoh64 – convert 64-bit integers between host and network byte order 827

it_ia_create – create an Interface Adapter 828

it_ia_free – destroy an Interface Adapter Handle 829

it_ia_info_free – free an it_ia_info_t structure that was returned by it_ia_query830

it_ia_query – retrieve attributes of given Interface Adapter and its Spigots 831

it_interface_list – retrieve information about the available Interface Adapters 832

it_listen_create – listen for an incoming Connection Request for a Connection Qualifier. 833

it_listen_free – destroys a listening point for a Connection Qualifier. 834

it_listen_query – query parameters associated with a listening point. 835

it_lmr_create – create a Local Memory Region and register with an Interface Adapter. 836

it_lmr_free – destroy a Local Memory Region 837

it_lmr_modify – modify selected attributes of a Local Memory Region 838

it_lmr_query – get attributes of a Local Memory Region 839

it_lmr_sync_rdma_read – make memory changes visible to an incoming RDMA Read op 840

it_lmr_sync_rdma_write – make effects of an incoming RDMA Write operation visible 841

it_make_rdma_addr – make a platform independent RDMA address 842

it_post_rdma_read – post an RDMA Read DTO to a Reliable Connected Endpoint 843

it_post_rdma_write – post an RDMA Write DTO to a connected Endpoint 844

it_post_recv – post a Receive DTO to a connected Endpoint 845

it_post_recvfrom – post a Receive DTO to a datagram Endpoint 846

it_post_send – post a Send DTO to a connected Endpoint 847

it_post_sendto – post a Send DTO to a datagram Endpoint 848

it_pz_create – create a new Protection Zone 849

it_pz_free – destroy a Protection Zone. 850

it_pz_query – get attributes of a Protection Zone 851

it_reject - reject an incoming Connection establishment request or reply. 852

Interconnect Transport API –Issue 1 24

 25

it_rmr_bind – post request to Bind a Remote Memory Region to a memory range 853

it_rmr_create – create a Remote Memory Region (RMR) 854

it_rmr_free – destroy a Remote Memory Region 855

it_rmr_query – get attributes of a Remote Memory Region 856

it_rmr_unbind – post operation to Unbind a Remote Memory Region from its memory range 857

it_set_consumer_context – associate a Consumer Context with an IT Object Handle 858

it_ud_service_reply – returns UD communication information 859

it_ud_service_request – request the recipient to return UD communication information. 860

it_ud_service_request_handle_create – creates a UD Service Request Handle. 861

it_ud_service_request_handle_free – free a previously created it_ud_svc_req_handle_t862

it_ud_service_request_handle_query – returns it_ud_svc_req_handle_t information. 863
864

Interconnect Transport API –Issue 1 25

 26

it_address_handle_create() 865

866
867

868
869
870
871
872
873
874
875
876
877
878
879
880

881

882
883
884

885

886
887

888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903

NAME
it_address_handle_create – create an Address Handle

SYNOPSIS
#include <it_api.h>

it_status_t it_address_handle_create(
 IN it_pz_handle_t pz_handle,
 IN const it_path_t *destination_path,
 IN it_ah_flags_t ah_flags,
 OUT it_addr_handle_t *addr_handle
);

typedef enum {
 IT_AH_PATH_COMPLETE = 0x1
} it_ah_flags_t;

DESCRIPTION

pz_handle Handle for the Protection Zone to be associated with the created
Address Handle. This implicitly identifies the Interface Adapter that
the Address Handle will be associated with.

destination_path The Path to use to create the Address Handle.

ah_flags The logical OR of the set of operation modifier flags specified
below.

addr_handle Returned datagram Address Handle.

it_address_handle_create creates an Address Handle, which is used when performing a Send
DTO on an Unreliable Datagram Endpoint.

The Protection Zone to associate with the newly created Address Handle is specified by
pz_handle. An Address Handle can only be used to post a Send DTO on an Unreliable
Datagram Endpoint that has a matching Protection Zone.

The Source and Destination address information necessary to create the Address Handle are
specified in the destination_path parameter. The Path can either be completely or incompletely
specified. A completely specified Path is one that contains all the necessary information to
create the Address Handle without the Implementation needing to consult a database of Path
records. An incompletely specified Path does not contain enough information to create the
Address Handle directly, but does contain enough information that the Implementation can
determine the rest of the information needed by consulting a database of Path records. The
Consumer should set the IT_AH_PATH_COMPLETE bit in ah_flags if the Path is completely
specified, or clear it if it is incompletely specified.

A completely specified Path that the Consumer can use to access a given remote network
Endpoint can be obtained using the it_get_pathinfo routine. A Path returned from 904
it_get_pathinfo can be used without modification by it_address_handle_create. If the Consumer 905

Interconnect Transport API –Issue 1 26

 27

906
907
908

wishes to have full control over the Path that datagrams sent using the created Address Handle
will take, they should furnish a completely specified Path.

An incompletely specified Path is obtained from the Completion Event for a Receive operation
on a datagram Endpoint. (See it_dto_events for details.) If an incompletely specified Path is
supplied to it_address_handle_create, the routine will automatically choose the unspecified
components of the Path required in order to reach the intended Destination.

909
910
911
912
913

The Consumer may also directly format the destination_path if they so desire. The
destination_path actually contains more information than is necessary to create an Address
Handle. The members of the it_path_t structure that are pertinent for creating an Address
Handle using a completely specified Path are listed in the table below. For each member,
whether the member is needed for an incompletely specified Path and the input modifier for the
Infiniband “Create Address Handle” verb that the member corresponds to are also identified.
For a detailed explanation of the semantics associated with each input modifier, see the “Create
Address Handle” section in chapter 11 of the Infiniband specification.

914
915
916
917
918
919

it_path_t member Needed for
incomplete Path?

IB Create Address Handle Input Modifier

ib.sl Yes Service level

ib.remote_port_lid Yes Destination LID

ib.flow_label No Flow label

ib.hop_limit No Hop limit

ib.traffic_class No Traffic class

ib.local_port_gid No Source GID index. (The Implementation uses the
local_port_gid to determine the appropriate Source
GID index.)

ib.remote_port_gid No Destination’s GID

ib.packet_rate No Maximum Static Rate

ib.local_port_lid No Source Path Bits. (The low order bits of the
supplied local_port_lid are used as the Source Path
Bits.)

ib.subnet_local No Send InfiniBand Global Routing Header flag

spigot_id No Physical Port

920
921
922
923

If the Consumer chooses to directly format the Path, it is possible that the Implementation will
decide that the resulting Path is one that the Consumer should not have access to. If so, a
permission violation error will be returned. The Implementation will generally not return such a
permission violation error if the Consumer instead uses a Path returned by it_get_pathinfo or
from the Completion Event for a Receive operation. (It is still possible that a permission
violation error could be returned if the network were reconfigured after the Path was returned
but before it_address_handle_create was furnished with that Path.)

924
925
926
927

Interconnect Transport API –Issue 1 27

 28

928
929
930

931
932

933

934

935
936

937
938

939

940
941
942

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_RESOURCES The requested operation failed due to insufficient
resources.

IT_ERR_INVALID_PZ The Protection Zone Handle (pz_handle) was invalid.

IT_ERR_INVALID_FLAGS The flags (ah_flags) value was invalid.

IT_ERR_NO_PERMISSION The Consumer did not have the proper permissions to
perform the requested operation.

IT_ERR_INVALID_SOURCE_PATH One of the components of the Source portion of the
supplied Path was invalid.

IT_ERR_INVALID_SPIGOT An invalid Spigot ID was specified.

IT_ERR_IA_CATASTROPHE The Interface Adapter has experienced a catastrophic
error and is in the disabled state. None of the output
parameters from this routine are valid. See
it_ia_info_t for a description of the disabled state. 943

944
945

946

ERRORS
None.

SEE ALSO
it_get_pathinfo(), it_path_t, it_address_handle_query(), it_address_handle_modify(), 947
it_address_handle_free()948

Interconnect Transport API –Issue 1 28

 29

it_address_handle_free() 949

950
951

952
953
954
955
956
957

958

959
960
961
962
963
964
965
966

967
968
969
970

971

972
973

NAME
it_address_handle_free – free an Address Handle

SYNOPSIS
#include <it_api.h>

it_status_t it_address_handle_free(
 IN it_addr_handle_t addr_handle
);

DESCRIPTION

addr_handle Address Handle to free.

it_address_handle_free removes an existing Address Handle and frees all associated underlying
resources. Once it_address_handle_free returns, addr_handle can no longer be used in DTO
operations. If an Address Handle is freed while there is still a Send DTO outstanding that
references the Address Handle, whether that Send completes successfully is implementation-
dependent. Consumers that wish to write code that is independent of the Implementation are
therefore advised to allow all outstanding Send operations that reference an Address Handle to
complete before freeing the Address Handle.

RETURN VALUE

A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_INVALID_AH The Address Handle (addr_handle) was invalid.

IT_ERR_IA_CATASTROPHE The Interface Adapter has experienced a catastrophic error
and is in the disabled state. None of the output parameters
from this routine are valid. See it_ia_info_t for a description
of the disabled state.

974
975

976
977

978

ERRORS
None.

SEE ALSO
it_address_handle_create(), it_address_handle_query(), it_address_handle_modify()979

Interconnect Transport API –Issue 1 29

 30

it_address_handle_modify() 980

981
982

983
984
985
986
987
988
989
990

991

992

993

994
995
996
997
998
999

1000
1001
1002
1003
1004

NAME
it_address_handle_modify – modify an Address Handle

SYNOPSIS
#include <it_api.h>

it_status_t it_address_handle_modify(
 IN it_addr_handle_t addr_handle,

IN it_addr_param_mask_t mask,
IN const it_addr_param_t *params

);

DESCRIPTION

addr_handle Address Handle to modify.

mask Logical OR of flags for desired parameters to be modified.

params Structure whose members contain the new parameter values.

it_address_handle_modify changes selected attributes of the Address Handle addr_handle. If
this routine returns success, all requested attributes are modified. If it does not return success,
none of the requested attributes are modified.

The Consumer should avoid calling this routine while a DTO that references this Address
Handle is in progress. If the Consumer fails to abide by this restriction, the Destination that the
DTO is sent to is undefined.

The attributes to be modified are specified by the flags in mask. New values for the attributes
are specified by the corresponding fields in the structure pointed to by params. Each field and
the corresponding flag name that must appear in mask to modify the given field are shown
below. (The flag name appears in a comment to the right of the field.) Note that attributes
represented by fields of it_addr_param_t that are not shown below can not be modified. 1005

1006
1007
1008
1009
1010
1011

typedef struct {
...
it_path_t path; /* IT_ADDR_PATH */
...

} it_addr_param_t;

1012 The table below defines the meaning of each member of the it_addr_param_t structure.

it_addr_param_t member Meaning
path The new Path to be associated with this Address Handle. The

Path will be associated with the Address Handle as a single unit.
If the Consumer only wishes to modify a portion of the Path
attributes, it can call it_address_handle_query to retrieve the
current Path, modify the Path attributes as desired, and then call
it_address_handle_modify with the resulting Path. See the
it_address_handle_create man page for details about which

Interconnect Transport API –Issue 1 30

 31

portions of the Path are relevant for Address Handles.

1013
1014
1015
1016

1017
1018
1019

1020

1021

1022
1023

1024
1025

1026
1027

1028

1029
1030

The Consumer may not be allowed to access the Path that the requested modification to the
Address Handle would imply. If that is the case, a permission violation error will be returned by
this routine.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_INVALID_AH The Address Handle (addr_handle) was invalid.

IT_ERR_INVALID_MASK The mask contained invalid flag values.

IT_ERR_NO_PERMISSION The Consumer did not have the proper permissions to perform
the requested operation.

IT_ERR_INVALID_SGID The Source Global ID (ib.local_port_gid) member of the
supplied Path was invalid

IT_ERR_INVALID_SLID The Source Local ID (ib.local_port_lid) member of the
supplied Path was invalid.

IT_ERR_INVALID_SPIGOT An invalid Spigot ID was specified.

IT_ERR_IA_CATASTROPHE The Interface Adapter has experienced a catastrophic error and
is in the disabled state. None of the output parameters from
this routine are valid. See it_ia_info_t for a description of the
disabled state.

1031
1032

1033
1034

1035

ERRORS
None.

SEE ALSO
it_address_handle_create(), it_address_handle_query(), it_address_handle_free() 1036

Interconnect Transport API –Issue 1 31

 32

it_address_handle_query() 1037

1038
1039

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060

1061

1062

1063

1064
1065
1066
1067
1068
1069

NAME
it_address_handle_query – query an Address Handle

SYNOPSIS
#include <it_api.h>

it_status_t it_address_handle_query(
 IN it_addr_handle_t addr_handle,

IN it_addr_param_mask_t mask,
OUT it_addr_param_t *params

);

typedef enum {
 IT_ADDR_PARAM_ALL = 0x0001,
 IT_ADDR_PARAM_IA = 0x0002,
 IT_ADDR_PARAM_PZ = 0x0004,
 IT_ADDR_PARAM_PATH = 0x0008
} it_addr_param_mask_t;

typedef struct {
it_ia_handle_t ia; /* IT_ADDR_PARAM_IA */
it_pz_handle_t pz; /* IT_ADDR_PARAM_PZ */
it_path_t path; /* IT_ADDR_PARAM_PATH */
} it_addr_param_t;

DESCRIPTION

addr_handle Address Handle to query.

mask Logical OR of flags for desired parameters.

params: Structure whose members are written with the desired parameters.

it_address_handle_query returns the desired attributes of the Address Handle addr_handle in
the structure pointed to by params. On return, each field of params is only valid if the
corresponding flag as shown above in the comment to the right of the field is set in the mask
argument. The mask value IT_ADDR_PARAM_ALL causes all fields to be returned.

The table below defines the meaning of each member of the it_addr_param_t structure.

it_addr_param_t member meaning
ia The Handle for the IA that this Address Handle is

associated with.

pz The Handle for the Protection Zone that this Address
Handle is associated with.

path The Path that is associated with this Address Handle. Not
all fields in the Path are relevant for an Address Handle; see
the it_address_handle_create man page for details.

Interconnect Transport API –Issue 1 32

 33

1070
1071
1072

1073

1074

1075
1076

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_INVALID_AH The Address Handle (addr_handle) was invalid.

IT_ERR_INVALID_MASK The mask contained invalid flag values.

IT_ERR_IA_CATASTROPHE The Interface Adapter has experienced a catastrophic error
and is in the disabled state. None of the output parameters
from this routine are valid. See it_ia_info_t for a
description of the disabled state.

1077
1078

1079
1080

1081

ERRORS
None.

SEE ALSO
it_address_handle_create(), it_address_handle_modify(), it_address_handle_free() 1082

Interconnect Transport API –Issue 1 33

 34

it_convert_net_addr() 1083

1084
1085

1086
1087
1088
1089
1090
1091
1092
1093

1094

1095

1096

1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112

1113
1114
1115
1116

1117
1118

1119

1120
1121

NAME
it_convert_net_addr – convert a Network Address from one format to another

SYNOPSIS
#include <it_api.h>

it_status_t it_convert_net_addr(

IN const it_net_addr_t *source_addr,
IN it_net_addr_type_t addr_type,
OUT it_net_addr_t *destination_addr

);

DESCRIPTION

source_addr The input Network Address that is to be converted.

addr_type The new type of address to convert the source_addr address to.

destination_addr The returned Network Address.

The it_convert_net_addr routine is used to convert one form of Network Address into another.
The type of Network Address desired is specified by addr_type, and upon successful return from
this routine destination_addr will contain an address of that type. If this routine does not return
success, the contents of destination_addr are undefined.

The Implementation might not support the requested Network Address conversion. If it does
not, an error will be returned.

The set of Network Addresses that are associated with a given Spigot is dynamic, and can
change over time. (For example, a link on a switch or router could become inoperative, thus
decreasing the set of Network Addresses by which a given Spigot can be reached.) There is
therefore no guarantee that given the same input parameters two different invocations of
it_convert_net_addr will return the same results. The Network Address returned by
it_convert_net_addr is chosen from amongst the Network Addresses that match the selection
criteria at the time of the call. In addition, since multiple Network Addresses of a given type can
be associated with the same Spigot, the Implementation may return a different Network Address
for two different invocations of it_convert_net_addr regardless of the state of the network.

RETURN VALUE

A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_INVALID_ADDRESS The Network Address specified in source_addr was
invalid.

IT_ERR_INVALID_NETADDR The format of the Network Address was not recognized.

IT_ERR_INVALID_CONVERSION The requested Network Address conversion was not
supported by the Implementation.

Interconnect Transport API –Issue 1 34

 35

IT_ERR_IA_CATASTROPHE The Interface Adapter has experienced a catastrophic
error and is in the disabled state. None of the output
parameters from this routine are valid. See

1122
1123

it_ia_info_t
for a description of the disabled state.

1124
1125

1126
1127

1128
1129
1130
1131
1132
1133
1134

1135

ERRORS
None.

APPLICATION USAGE
When a Consumer Receives an incoming Connection establishment attempt Event, the
source_addr_info field in that Event will contain the Network Address of the initiator of the
Connection establishment attempt. The type of Network Address contained within
source_addr_info is Implementation-specific, and therefore may not be one that the Consumer
wishes to deal with. The Consumer can use it_convert_net_addr to convert the Network
Address supplied in source_addr_info into a type more to its liking.

SEE ALSO
it_listen_create(), it_net_addr_t1136

Interconnect Transport API –Issue 1 35

 36

it_ep_accept() 1137

1138
1139

1140
1141
1142
1143
1144
1145

NAME
it_ep_accept - accept an incoming Connection Request or Connection Reply

SYNOPSIS
#include <it_api.h>

it_status_t it_ep_accept(

IN it_ep_handle_t ep_handle,
IN it_cn_est_identifier_t cn_est_id,

1146
1147
1148
1149
1150

1151

1152
1153

1154
1155
1156
1157

IN const unsigned char *private_data,
IN size_t private_data_length

);

typedef uint64_t it_cn_est_identifier_t;

DESCRIPTION

ep_handle Local Endpoint to be bound to the Connection Request being
accepted.

cn_est_id Connection Establishment Identifier associated with the Connection
Request being accepted. The cn_est_id is obtained from the data
delivered in the Connection Request Event
(IT_CM_REQ_CONN_REQUEST_EVENT). See the
(it_cm_req_events) manual page for details. 1158

1159
1160
1161
1162
1163
1164

1165
1166
1167
1168
1169
1170
1171
1172
1173

private_data Opaque Private Data provided by the IT_CM_MSG_CONN_
PEER_REJECT_EVENT Event delivered to the Remote Consumer
that will be sent to the Remote Endpoint. If the Interface Adapter
does not support Private Data, private_data_length must be zero.
The delivery of Private Data to the Remote Endpoint is unreliable.

private_data_length Length of private_data. This field must be 0 if the IA does not
support Private Data.

it_ep_accept accepts an incoming Connection Request Event (IT_CM_REQ_CONN_
REQUEST_EVENT) or Connection accept arrival Event (IT_CM_MSG_CONN_ACCEPT_
ARRIVAL_EVENT). Calling it_ep_accept is the last Local Consumer step in establishing an
Endpoint-to-Endpoint Connection for a three-way Connection Establishment. The Consumer is
notified of an established Connection by an IT_CM_MSG_CONN_ESTABLISHED_EVENT
Event being delivered on the connect EVD of the Endpoint. The Event is generated on both the
active and passive side of the Connection establishment. See the Communication Management
Message Event (it_cm_msg_events) manual page for details. 1174

1175
1176
1177

If the initial it_ep_connect specified two-way Connection Establishment then it_ep_accept is
called only on the Passive side of the Endpoint-to-Endpoint Connection.

Interconnect Transport API –Issue 1 36

 37

1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188

If the initial it_ep_connect specified three-way Connection Establishment then it_ep_accept is
called on both the Active and the Passive sides of the Endpoint-to-Endpoint Connection. An
IT_CM_MSG_CONN_ACCEPT_ARRIVAL_EVENT Event will be delivered to the Active-
side Consumer after the Passive side calls it_ep_accept.

On the Passive side, the Endpoint will transition into the IT_EP_STATE_
PASSIVE_CONNECTION_PENDING state when the Consumer calls it_ep_accept. The
Passive side successfully calling it_ep_accept will cause the Active Endpoint to eventually
transition into the IT_EP_STATE_ACTIVE2_CONNECTION_PENDING state .

it_ep_accept destroys the Connection Establishment Identifier, cn_est_id. After it_ep_accept
returns, cn_est_id is no longer valid and cannot be used.

The Connection Establishment process can not be successfully completed unless the attributes of
the Local and Remote Endpoints are compatible; see it_cm_msg_events for details. The
Consumer can call

1189
it_ep_modify to make the Local Endpoint attributes compatible before calling 1190

it_ep_accept. 1191

1192
1193
1194
1195

1196
1197
1198

1199
1200
1201

1202

1203

RETURN VALUE

A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_PDATA_NOT_SUPPORTED Private Data was supplied by the Consumer but
this Interface Adapter does not support Private
Data.

IT_ERR_INVALID_PDATA_LENGTH The Interface Adapter supports Private Data, but
the length specified exceeded the Interface
Adapter’s capabilities.

IT_ERR_INVALID_EP The Endpoint Handle (ep_handle) was invalid.

IT_ERR_INVALID_EP_STATE The Endpoint was not in the proper state for the
attempted operation. See it_ep_state_t manual
page.

1204
1205

1206
1207

1208
1209

1210
1211
1212
1213
1214
1215
1216

IT_ERR_INVALID_EP_TYPE The attempted operation was invalid for the
Service Type of the Endpoint.

IT_ERR_INVALID_CN_EST_ID The Connection Establishment Identifier
(cn_est_id) was invalid.

IT_ERR_INVALID_EP_ATTR The Local and Remote Endpoint attributes
conflicted. Either the max_message_size, the
number of rdma_read_inflight_incoming or the
number of rdma_read_inflight_outgoing
conflicted between the two Endpoints. This error
will not be reported on the Passive-side accept of
a three-way Connection Establishment.

Interconnect Transport API –Issue 1 37

 38

IT_ERR_EP_TIMEWAIT The Endpoint provided to it_ep_accept was in the
TimeWait condition, therefore the Connection
could not be established. See

1217
1218

it_ep_rc_create for
details of the TimeWait condition.

1219
1220

1221
1222
1223

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is
in the disabled state. None of the output
parameters from this routine are valid. See
it_ia_info_t for a description of the disabled state. 1224

1225
1226

1227
1228
1229
1230

ERRORS
None.

APPLICATION USAGE
1. The Consumer should be aware that the delivery of Private Data to the Remote Endpoint

may be unreliable and should be used accordingly. For some transports the Passive
side’s it_ep_accept Private Data is delivered reliably.

1231
1232
1233
1234
1235
1236
1237
1238

2. Calls to routines such as it_ep_accept, it_reject and it_ep_disconnect that pertain to the
same Endpoint or Connection Establishment Identifier should be serialized by the
Consumer. Failure to abide by this restriction may result in a segmentation violation or
other error.

3. If it_ep_accept returns the IT_ERR_EP_TIMEWAIT error, the Consumer can recover
either by retrying the Connection Establishment after the TimeWait interval has elapsed,
or by retrying the Connection Establishment using a different Endpoint that is not under
a TimeWait condition.

1239
1240
1241

1242

4. The Consumer should post at least one Receive buffer using the it_post_recv routine
before calling it_ep_accept. Failure to do so can prevent a Connection from being
established under certain circumstances on some transports.

SEE ALSO
it_ep_connect(), it_reject(), it_ep_disconnect(), it_handoff(), it_ep_state_t, it_cm_req_events, 1243
it_cm_msg_events1244

1245

Interconnect Transport API –Issue 1 38

 39

it_ep_connect() 1246

1247
1248

1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296

NAME
it_ep_connect – initiate an Endpoint Connection establishment request

SYNOPSIS
#include <it_api.h>

it_status_t it_ep_connect(

IN it_ep_handle_t ep_handle,
IN const it_path_t* path,
IN const it_conn_attributes_t* conn_attr,
IN const it_conn_qual_t* connect_qual,
IN it_cn_est_flags_t cn_est_flags,
IN const unsigned char* private_data,
IN size_t private_data_length

);

/* Transport-specific connection attributes for InfiniBand */
typedef struct {

 /* Remote CM Response Timeout, as defined in the REQ
 message for the IB CM protocol */
 uint8_t remote_cm_timeout : 5;

 /* Local CM Response Timeout, as defined in the REQ
 message for the IB CM protocol */
 uint8_t local_cm_timeout : 5;

 /* Retry Count, as defined in the REQ message for the
 IB CM protocol */
 uint8_t retry_count : 3;

 /* RNR Retry Count, as defined in the REQ message for
 the IB CM protocol */
 uint8_t rnr_retry_count : 3;

 /* Max CM retries, as defined in the REQ message for
 the IB CM protocol */
 uint8_t max_cm_retries : 4;

 /* Local ACK Timeout, as defined in the REQ message
 for the IB CM protocol */
 uint8_t local_ack_timeout : 5;

} it_ib_conn_attributes_t;

/* Transport-specific connection attributes for VIA */
typedef struct {

 /* VIA currently has no transport-specific connection
 attributes */

Interconnect Transport API –Issue 1 39

 40

1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313

1314

1315

1316

1317
1318

1319

} it_via_conn_attributes_t;

/* Transport-specific connection attributes. This union is
 discriminated by the transport type being used to form the
 connection. This can be determined by examining
 the transport_type member in the it_ia_info_t that is
 associated with the IA that contains ep_handle. */

typedef union {
 it_ib_conn_attributes_t ib;
 it_via_conn_attributes_t via;
} it_conn_attributes_t;

typedef enum {
IT_CONNECT_FLAG_TWO_WAY = 0x0001,
IT_CONNECT_FLAG_THREE_WAY = 0x0002
} it_cn_est_flags_t;

DESCRIPTION

ep_handle Handle for an instance of the local Endpoint.

path Path for Connection establishment request.

conn_attr The transport-specific attributes for the Connection establishment
attempt.

connect_qual: The Connection Qualifier that the Consumer is initiating a
Connection establishment request to. See it_conn_qual_t for more
information on Connection Qualifiers.

1320
1321

1322

1323

cn_est_flags Flags for the Connection establishment request.

Features Name Bit value Description
Two-way
Connection
establishment

IT_CONNECT_FLAG_TWO_WAY 0x0001 The Connection is
established once the passive
side of the Connection
establishment calls
it_ep_accept.

Three-way
Connection
establishment

IT_CONNECT_FLAG_THREE_WAY

0x0002 The Connection is
established once the active
side of the Connection
establishment calls
it_ep_accept.

1324

1325
1326
1327

private_data Opaque Private Data to be sent in the IT_CM_MSG_CONN_PEER_
REJECT_EVENT Event delivered to the Remote Consumer. If the
IA does not support Private Data, private_data_length must be zero.

Interconnect Transport API –Issue 1 40

 41

1328
1329

1330
1331

1332
1333

The delivery of Private Data to the Remote Endpoint is unreliable.

private_data_length Length of private_data. This field must be 0 if the IA does not
support Private Data.

The it_ep_connect routine initiates a Connection establishment request for an existing local
Endpoint using an it_path_t. The path can be found by using the it_get_pathinfo function. This
request generates a connect establishment request (IT_CM_REQ_CONN_REQUEST_EVENT)
Event on the passive side based on the Path provided. Once the Connection establishment
request has been initiated the active side Endpoint transitions into the
IT_EP_STATE_ACTIVE1_CONNECTION_PENDING state.

1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351

Consumers that wish to write implementation-independent code should pass a NULL value for
the conn_attr parameter. If the Consumer passes a NULL value for this parameter, the
Implementation will choose implementation-dependent default values for the transport-specific
Connection attributes that maximize the probability of the Connection being successfully
established and maintained. If the Consumer wishes to have control over the transport-specific
Connection attributes, they can pass a non-NULL value for the conn_attr parameter. If the
Consumer passes a non-NULL value for this parameter and the Implementation determines that
some portion of the transport-specific Connection attributes are invalid, it will return an error
from this routine. What constitutes invalid transport-specific Connection attributes is
implementation-dependent. The Implementation will not return an error indicating some portion
of the transport-specific Connection attributes are invalid if the Consumer passes a NULL value
for the conn_attr parameter.

The passive side Consumer can either choose to either accept or reject the Connection Request.
If the passive side chooses to reject the Connection by calling it_reject then an
IT_CM_MSG_CONN_PEER_REJECT_EVENT Event is generated on the active side and the
active side Endpoint transitions into the IT_EP_STATE_NONOPERATIONAL state. If it
chooses to accept the Connection by calling

1352
1353
1354

it_ep_accept then the behavior is dependent on the
type Connection setup specified by the cn_est_flags.

1355
1356
1357
1358

For three-way Connection establishments, an IT_CM_MSG_CONN_ACCEPT_ARRIVAL_
EVENT Event is generated on the active side if the passive side Consumer accepts the
Connection establishment request by calling it_ep_accept . The active Consumer can choose to
either accept or reject the Connection by calling

1359
it_ep_accept or it_reject respectively. For a

two-way Connection establishment, an IT_CM_MSG_CONN_ESTABLISHED_EVENT Event
is generated on the active side after the passive side Consumer accepts the Connection and the
Endpoint transitions into the (IT_EP_STATE_CONNECTED) connected state. See the

1360
1361
1362
1363

it_ep_state_t manual page for a complete description on the Endpoint state diagram for both the
three-way and two-way Connection establishment.

1364
1365
1366
1367
1368
1369
1370
1371

Whenever an Endpoint transitions to the connected (IT_EP_STATE_CONNECTED) state the
Consumer will Receive an IT_CM_MSG_CONN_ESTABLISHED_EVENT Event on the
simple Event Dispatcher to which the Communication Management Message Event Stream is
routed after the Endpoint transitions into the IT_EP_STATE_CONNECTED state. This Event is
generated on both the active and passive side of the Connection establishment after the Endpoint
state transition takes place.

Interconnect Transport API –Issue 1 41

 42

For a complete definition of Endpoint state and a more complete description of the state
transitions see the

1372
it_ep_state_t manual page. If for any reason an Endpoint Connection fails to

be established the Endpoint will transition into the IT_EP_STATE_NONOPERATIONAL state
and any Receive DTO operations that were successfully posted to the Endpoint will be
completed with an IT_DTO_ERR_FLUSHED status.

1373
1374
1375
1376

1377
1378
1379

1380
1381
1382
1383

1384
1385

1386

1387

1388
1389

EXTENDED DESCRIPTION
An Endpoint can only be connected to a different Endpoint. An Endpoint can not be connected
to itself.

RETURN VALUE

A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_NO_PERMISSION The Consumer did not have the proper
permissions to perform the requested operation.

IT_ERR_RESOURCES The operation failed due to resource limitations.

IT_ERR_INVALID_CONN_QUAL The Connection Qualifier is invalid.

IT_ERR_PDATA_NOT_SUPPORTED Private Data was supplied by the Consumer but
this IA does not support Private Data. See
it_ia_query for the IA’s capabilities to support
Private Data.

1390
1391

1392
1393

IT_ERR_INVALID_PDATA_LENGTH The IA supports Private Data, but the length
specified exceeds the IA’s capabilities.

1394
1395

IT_ERR_INVALID_SOURCE_PATH The Source Path specified in the it_path_t was
invalid.

1396

1397

1398
1399

1400
1401

1402

1403
1404
1405
1406

1407
1408

IT_ERR_INVALID_SPIGOT The Spigot specified in the it_path_t was invalid.

IT_ERR_INVALID_EP The ep_handle was invalid.

IT_ERR_INVALID_EP_STATE The Endpoint is not in the proper state to be
connected.

IT_ERR_INVALID_EP_TYPE The Endpoint Service Type does not support this
operation.

IT_ERR_INVALID_CN_EST_FLAGS The Connection establishment flags are invalid.

IT_ERR_INVALID_RTIMEOUT The conn_attr.ib.remote_cm_timeout value was
invalid. The criteria for determining what
constitutes an invalid value are implementation-
dependent.

IT_ERR_INVALID_LTIMEOUT The conn_attr.ib.local_cm_timeout value was
invalid. The criteria for determining what

Interconnect Transport API –Issue 1 42

 43

1409
1410

1411
1412
1413

1414
1415
1416
1417

1418
1419
1420
1421

1422
1423
1424
1425

1426
1427
1428

constitutes an invalid value are implementation-
dependent.

IT_ERR_INVALID_RETRY The conn_attr.ib.retry_count value was invalid.
The criteria for determining what constitutes an
invalid value are implementation-dependent.

IT_ERR_INVALID_RNR_RETRY The conn_attr.ib.rnr_retry_count value was
invalid. The criteria for determining what
constitutes an invalid value are implementation-
dependent.

IT_ERR_INVALID_CM_RETRY The conn_attr.ib.max_cm_retries value was
invalid. The criteria for determining what
constitutes an invalid value are implementation-
dependent.

IT_ERR_INVALID_ATIMEOUT The conn_attr.ib.local_ack_timeout value was
invalid. The criteria for determining what
constitutes an invalid value are implementation-
dependent.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is
in the disabled state. None of the output
parameters from this routine are valid. See
it_ia_info_t for a description of the disabled state. 1429

1430
1431

1432

ERRORS
None.

APPLICATION USAGE
It is possible that between the time the Consumer calls it_get_pathinfo to retrieve a valid Path
and the time the Consumer passes that Path as the path parameter to this routine, the set of
available Paths through the network for forming the Connection may change, rendering some
portion of the given path invalid. If IT_ERR_INVALID_SOURCE_PATH or IT_ERR_
INVALID_SPIGOT is returned from this routine and the path the Consumer provided is one that
was returned from

1433
1434
1435
1436
1437

it_get_pathinfo and was not subsequently modified by the Consumer, the
Consumer can attempt to recover from the error by calling

1438
it_get_pathinfo again to retrieve an

up-to-date Path to form the Connection and retrying the call to it_ep_connect with the new Path.
1439
1440

1441 SEE ALSO
it_ep_accept(), it_reject(), it_ep_disconnect(), it_handoff(), it_ep_state_t, it_ia_query(), 1442
it_conn_qual_t 1443

Interconnect Transport API –Issue 1 43

 44

it_ep_disconnect() 1444

1445
1446

1447
1448
1449
1450
1451
1452
1453
1454

1455

1456

1457
1458
1459
1460

1461
1462
1463
1464
1465
1466
1467

NAME
it_ep_disconnect - disconnect an existing Endpoint-to-Endpoint Connection

SYNOPSIS
#include <it_api.h>

it_status_t it_ep_disconnect (

IN it_ep_handle_t ep_handle,
IN const unsigned char * private_data,
IN size_t private_data_length

);

DESCRIPTION

ep_handle Endpoint to be disconnected.

 private_data Opaque Private Data to be delivered in the
IT_CM_MSG_CONN_DISCONNECT_EVENT Event at the
Remote Endpoint. If the IA does not support Private Data,
private_length must be zero.

private_data_length: Length of private_data. This field must be 0 if the IA does not
support Private Data.

it_ep_disconnect either breaks the existing Endpoint-to-Endpoint Connection or terminates
Endpoint-to-Endpoint Connection in the process of being established identified by the
ep_handle. An IT_CM_MSG_CONN_DISCONNECT_EVENT Event will be generated on both
the Local and Remote sides of the Connection. The generation of the Event on the remote Event
is not guaranteed. The Endpoints will transition into the IT_EP_STATE_NONOPERATIONAL
state. See the it_ep_reset manual page for how to restore an Endpoint back into the
IT_EP_STATE_UNCONNECTED state. it_ep_disconnect is ungraceful in the sense that the
remote Endpoints transitions directly into the IT_EP_STATE_NONOPERATIONAL state
without the Consumer’s intervention.

1468
1469
1470
1471
1472
1473
1474
1475
1476

it_ep_disconnect may be successfully called in all states except IT_EP_STATE_
UNCONNECTED state.

Once the Endpoint is in the IT_EP_STATE_NONOPERATIONAL state any pending Data
Transfer Operations or Bind or Unbind operations on the Endpoint will be flushed and will
generate Completion Events with a Status of IT_DTO_ERR_FLUSHED.

1477
1478
1479

1480
1481
1482
1483

See the it_ep_state_t manual page for a complete description of the Endpoint state behavior and
transitions.

The delivery of Private Data to the Remote Endpoint is unreliable.

RETURN VALUE

A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

Interconnect Transport API –Issue 1 44

 45

1484

1485
1486

1487

1488
1489

1490
1491

IT_ERR_INVALID_EP_STATE The Endpoint was not in the proper state for the
attempted operation.

IT_ERR_INVALID_EP The Endpoint Handle (ep_handle) was invalid.

IT_ERR_INVALID_EP_TYPE The attempted operation was invalid for the Service
Type of the Endpoint.

IT_ERR_PDATA_NOT_SUPPORTED Private Data was supplied by the Consumer but this
Interface Adapter does not support Private Data. See
it_ia_query for the IA’s capabilities to support
Private Data.

1492
1493

1494

1495
1496
1497

1498
1499

IT_ERR_INVALID_PDATA_LENGTH The Interface Adapter supports Private Data, but the
length specified exceeded the Interface Adapter’s
capabilities.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in
the disabled state. None of the output parameters
from this routine are valid. See it_ia_info_t for a
description of the disabled state.

1500
1501

1502
1503

1504
1505
1506
1507

ERRORS
See above.

APPLICATION USAGE
The Consumer should be aware that the delivery of Private Data to the Remote Endpoint is
unreliable and should be used accordingly.

The Consumer is responsible for coordinating the use of functions that free a Connection
Establishment Identifier (cn_est_id) such as it_ep_accept, it_reject, it_ep_disconnect and 1508
it_handoff. The behavior of functions that are passed as invalid Connection Establishment
Identifier is indeterminate.

1509
1510
1511
1512
1513
1514
1515
1516

The Consumer should be aware that successfully returning from this routine does not guarantee
that any interaction whatsoever will take place with the Remote Endpoint. If the Local
Consumer wishes to ensure that the Remote Consumer takes some action, an explicit message
should be sent to initiate that action before calling it_ep_disconnect.

With the three-way handshake Connection establishment method, there is also a potential race
condition between the Implementation generating the IT_CM_MSG_CONN_
ACCEPT_ARRIVAL_EVENT Event and the Consumer calling it_ep_free. The Consumer
should not use the cn_est_id if the IT_CM_MSG_CONN_ACCEPT_ARRIVAL_
EVENT Event arrives after

1517
1518

it_ep_free. was called, regardless of whether the call returned yet,
and regardless of whether the Event was dequeued before or after the call was made. If the
Consumer does use the cn_est_id then the Implementation generate an
IT_ERR_INVALID_CN_EST_ID error, or it may generate a segmentation fault or other error.

1519
1520
1521
1522

Interconnect Transport API –Issue 1 45

 46

1523 SEE ALSO
it_ep_accept(), it_reject(), it_ep_connect(), it_ep_state_t, it_cm_msg_events, it_ep_reset(), 1524
it_ia_query()1525

1526

Interconnect Transport API –Issue 1 46

 47

it_ep_free() 1527

1528
1529

1530
1531
1532
1533
1534
1535

1536

1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554

1555
1556

1557

1558
1559

NAME
it_ep_free – destroy an RC or UD Endpoint

SYNOPSIS
#include <it_api.h>

it_status_t it_ep_free(

IN it_ep_handle_t ep_handle
);

DESCRIPTION

ep_handle Endpoint.

it_ep_free destroys an Endpoint.

The Endpoint can be destroyed in any state. The freeing of an Endpoint also terminates the
generation of Events to any of the EVDs associated with the Endpoint.

Use of the Handle ep_handle of the destroyed Endpoint in any subsequent operation fails.

Freeing an Endpoint potentially means Events might be lost on the recv_sevd_handle or
request_sevd_handle SEVDs associated with the Endpoint. There is also potential to lose Events
on the connect_sevd_handle SEVD associated with the Endpoint. The Consumer should first
drain these EVDs before calling it_ep_free.

Freeing an Endpoint in the IT_EP_STATE_CONNECTED state while DTOs are in progress
causes incoming DTOs to be ignored. The outstanding DTOs and RMRs may be flushed to the
request_sevd_handle and recv_sevd_handle. All entries on the Endpoint request_sevd_handle,
recv_sevd_handle, and connect_sevd_handle may or may not be on the EVDs after the Endpoint
is destroyed.

Freeing an Endpoint in the IT_EP_STATE_ACTIVE1_CONNECTION_PENDING,
IT_EP_STATE_ACTIVE2_CONNECTION_PENDING, or IT_EP_STATE_PASSIVE_
CONNECTION_PENDING state may cause a Connection establishment timeout or non-peer
reject to be sent to the remote side.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described below.

IT_ERR_INVALID_EP The Endpoint Handle (ep_handle) was invalid.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in the
disabled state. None of the output parameters from this
routine are valid. See it_ia_info_t for a description of the
disabled state.

1560
1561

1562
1563

ERRORS
None.

Interconnect Transport API –Issue 1 47

 48

1564
1565
1566
1567
1568

APPLICATION USAGE
Since the Implementation may not immediately free underlying resources, the user must not rely
upon being immediately able to reallocate an Endpoint that has been freed.

If the Consumer wants to ensure that all Completion Events are dequeued prior to calling
it_ep_free, the following method will work for both Request and Receive Queues:

1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581

The Consumer should call it_ep_disconnect first. Then post a DTO or RMR operation set up as
a "marker" that is flushed by the Implementation to recv_evd_handle or request_evd_handle.
The DTO or RMR is made a "marker" operation by setting the IT_COMPLETION_FLAG on
the operation. Now, when the Consumer dequeues the completion of the "marker" from the
EVD, it is guaranteed that all previously posted DTO and RMR completions (including those
posted with IT_COMPLETION_FLAG cleared) for the Endpoint were dequeued from that EVD
for the Request or Receive Queue of the Endpoint to which the “marker” had been posted.

For connect_evd_handle, Consumer should dequeue the disconnect or broken Connection Event
for this Endpoint.

After all of the previous steps, it is safe to destroy or reset the Endpoint without losing any
completions or Connection Events.

With the three-way handshake Connection establishment method, there is also a potential race
condition between the Implementation generating the IT_CM_MSG_CONN_ACCEPT_
ARRIVAL_EVENT Event and the Consumer calling it_ep_disconnect. The Consumer should
not use the cn_est_id if the IT_CM_MSG_CONN_ACCEPT_ARRIVAL_EVENT Event arrives
after

1582
1583

it_ep_disconnect was called, regardless of whether the call returned yet, and regardless of
whether the Event was dequeued before or after the call was made. If the Consumer does use the
cn_est_id then the Implementation generate an IT_ERR_INVALID_CN_EST_ID error, or it
may generate a segmentation fault or other error.

1584
1585
1586
1587

1588 SEE ALSO
it_ep_rc_create(), it_ep_ud_create(), it_ep_modify(), it_ep_query(), it_ep_reset(),
it_ep_disconnect

1589
(), it_ia_info_t, it_ep_state_t, it_dto_flags_t, it_post_send(), it_post_sendto(), 1590

it_post_recv(), it_post_recvfrom(), it_post_rdma_read(), it_post_rdma_write()1591

Interconnect Transport API –Issue 1 48

 49

it_ep_modify() 1592

1593
1594

1595
1596
1597
1598
1599
1600
1601
1602

1603

1604

1605

1606
1607
1608
1609
1610

NAME
it_ep_modify – modify attributes of an existing Endpoint

SYNOPSIS
#include <it_api.h>

it_status_t it_ep_modify(

IN it_ep_handle_t ep_handle,
IN it_ep_param_mask_t mask,
IN const it_ep_attributes_t *ep_attr

);

DESCRIPTION

ep_handle Endpoint.

mask Logical OR of flags for desired attributes to be modified.

ep_attr Pointer to Consumer-allocated structure that contains new
Consumer-requested Endpoint attributes.

it_ep_modify changes selected attributes of the Endpoint ep_handle.

Attributes to be modified are specified by flags in mask. New values for the attributes are
specified by the corresponding fields in the structure pointed to by ep_attr. See
it_ep_attributes_t for the definition of the structure. 1611

1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623

Flag values for the mask parameter are shown below. Note that attributes represented by fields
of ep_attr for which no flag value is shown below can not be modified. The requested attribute
changes only affect the local Endpoint and have no effect on attributes of any remote Endpoint.

Flag values for attributes that may be potentially modified:

IT_EP_PARAM_MAX_PAYLOAD

IT_EP_PARAM_MAX_REQ_DTO

IT_EP_PARAM_MAX_RECV_DTO

IT_EP_PARAM_RDMA_RD_ENABLE

IT_EP_PARAM_RDMA_WR_ENABLE

IT_EP_PARAM_MAX_IRD

IT_EP_PARAM_MAX_ORD

IT_EP_PARAM_EP_KEY

1624
1625
1626
1627

See it_ep_attributes_t for the definition of valid states in which each of the above attributes may
be modified.

Values for mask must be created as the logical OR of the Endpoint attributes flag values (above)
that Consumer desires to change. it_ep_modify must succeed in modifying all the requested

Interconnect Transport API –Issue 1 49

 50

1628
1629

1630
1631
1632
1633

1634

1635

1636

attributes atomically; if the attempt to modify any of the requested attributes generates an error,
none of the other attributes supplied to the call will be applied.

RETURN VALUE

A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described below:

IT_ERR_INVALID_EP The Endpoint Handle (ep_handle) was invalid.

IT_ERR_INVALID_MASK The mask contained invalid flag values.

IT_ERR_INVALID_EP_STATE The Endpoint was not in the proper state for the
attempted operation. See it_ep_attributes_t. 1637

1638
1639

1640
1641
1642

1643
1644

1645
1646

1647
1648
1649

1650
1651
1652

1653
1654
1655

1656
1657

IT_ERR_INVALID_EP_TYPE The attempted operation was invalid for the Service
Type of the Endpoint.

IT_ERR_PAYLOAD_SIZE The requested max_dto_payload_size exceeds the
maximum payload size supported by the underlying
transport.

IT_ERR_RESOURCE_REQ_DTO The underlying transport could not allocate the
requested max_req_dtos resources at this time.

IT_ERR_RESOURCE_RECV_DTO The underlying transport could not allocate the
requested max_recv_dtos resources at this time.

IT_ERR_RESOURCE_IRD The underlying transport could not allocate the
requested rdma_read_inflight_incoming resources at
this time.

IT_ERR_RESOURCE_ORD The underlying transport could not allocate the
requested rdma_read_inflight_outgoing resources at
this time.

IT_ERR_INVALID_EP_KEY Invalid Endpoint Key value. The Consumer doesn't
have local permissions to use the specified Endpoint
Key.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in
the disabled state. None of the output parameters
from this routine are valid. See it_ia_info_t for a
description of the disabled state.

1658
1659

1660
1661

1662

ERRORS
None.

SEE ALSO
it_ep_attributes_t, it_ep_rc_create(), it_ep_ud_create(), it_ep_query() ,it_ep_free(), it_ia_info_t1663

Interconnect Transport API –Issue 1 50

 51

it_ep_query() 1664

1665
1666

1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689

1690

1691

1692

1693
1694
1695
1696
1697
1698

NAME
it_ep_query – query an existing Endpoint

SYNOPSIS
#include <it_api.h>

it_status_t it_ep_query(

IN it_ep_handle_t ep_handle,
IN it_ep_param_mask_t mask,
OUT ep_param_t *params

);

typedef struct {
it_ia_handle_t ia; /* IT_EP_PARAM_IA */
size_t spigot_id; /* IT_EP_PARAM_SPIGOT */
it_ep_state_t ep_state; /* IT_EP_PARAM_STATE */
it_transport_service_type_t
 service_type; /* IT_EP_PARAM_SERV_TYPE */
it_path_t dst_path; /* IT_EP_PARAM_PATH */
it_pz_handle_t pz; /* IT_EP_PARAM_PZ */
it_evd_handle_t request_sevd; /* IT_EP_PARAM_REQ_SEVD */
it_evd_handle_t recv_sevd; /* IT_EP_PARAM_RECV_SEVD */
it_evd_handle_t connect_sevd; /* IT_EP_PARAM_CONN_SEVD */
it_ep_attributes_t attr; /* see it_ep_attributes_t

 for mask flags for attr */
} it_ep_param_t;

DESCRIPTION

ep_handle Endpoint.

mask Logical OR of flags for desired parameters and attributes.

params Pointer to Consumer-allocated structure whose members are
written with the desired Endpoint parameters and attributes.

it_ep_query returns the desired parameters and attributes of the Endpoint ep_handle in the
structure pointed to by params. On return, each field of params is only valid if the corresponding
flag as shown below each it_ep_param_t member is set in the mask argument. The mask value
IT_EP_PARAM_ALL causes all fields to be returned. The it_ep_param_mask_t enum is defined
in it_ep_attributes_t.1699

1700

1701

1702
1703
1704

1705

The definition of each field follows:

ia Handle for the Interface Adapter specified to create the EP.

spigot_id Spigot Identifier. For RC Endpoint valid only if not in
IT_EP_STATE_UNCONNECTED state otherwise, value is
undefined.

ep_state State of the Endpoint.

Interconnect Transport API –Issue 1 51

 52

1706

1707
1708
1709
1710
1711
1712

1713

1714
1715
1716

1717
1718
1719

1720
1721
1722

1723

service_type Endpoint Service Type.

dst_path For RC it is invalid and contents are undefined if the Endpoint is in
the IT_EP_STATE_UNCONNECTED state. Otherwise, on the
active side of a Connection, it is the Path that was specified at
Connection Request time; on the passive side of a Connection, it is
the Path used by the Implementation to reach the requesting remote
Endpoint. Invalid for UD Endpoint.

pz Handle for the Protection Zone specified while creating the EP.

request_sevd Handle for the IT_DTO_EVENT_STREAM Simple Event
Dispatcher for DTO request Completion Events of the created
Endpoint.

recv_sevd Handle for the IT_DTO_EVENT_STREAM Simple Event
Dispatcher for DTO Receive Completion Events of the created
Endpoint.

connect_sevd Handle for the IT_CM_MSG_EVENT_STREAM Simple Event
Dispatcher for Connection Events of the created Endpoint. Invalid
for UD Endpoint.

attr Attributes of Endpoint – definitions and mask values found in
it_ep_attributes_t. Consumer ORs the appropriate mask values for
each attribute field desired into the mask parameter to it_ep_query.

1724
1725

1726
1727

1728

1729

1730
1731

1732
1733

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described below.

IT_ERR_INVALID_EP The Endpoint Handle (ep_handle) was invalid.

IT_ERR_INVALID_MASK The mask contained invalid flag values.

IT_ERR_INVALID_EP_TYPE The attempted operation was invalid for the Service
Type of the Endpoint.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in
the disabled state. None of the output parameters
from this routine are valid. See it_ia_info_t for a
description of the disabled state.

1734
1735

1736
1737

1738

ERRORS
None.

SEE ALSO
it_ep_attributes_t, it_ep_rc_create(), it_ep_ud_create(), it_ep_modify(), it_ep_free(), 1739
it_ia_info_t1740

Interconnect Transport API –Issue 1 52

 53

it_ep_rc_create() 1741

1742
1743

1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760

1761

1762
1763

1764
1765
1766

1767
1768
1769

1770
1771

1772
1773

1774
1775

1776
1777
1778
1779
1780

NAME
it_ep_rc_create – create an Endpoint for Reliable Connection

SYNOPSIS
#include <it_api.h>

it_status_t it_ep_rc_create (
 IN it_pz_handle_t pz_handle,
 IN it_evd_handle_t request_sevd_handle,
 IN it_evd_handle_t recv_sevd_handle,
 IN it_evd_handle_t connect_sevd_handle,
 IN it_ep_rc_creation_flags_t flags,
 IN const it_ep_attributes_t *ep_attr,
 OUT it_ep_handle_t *ep_handle
);

typedef enum {
 IT_EP_NO_FLAG = 0x00,
 IT_EP_REUSEADDR = 0x01
} it_ep_rc_creation_flags_t;

DESCRIPTION

pz_handle Handle for the Protection Zone of the created Endpoint. Implicitly
identifies the Interface Adapter to be used.

request_sevd_handle Handle for the IT_DTO_EVENT_STREAM Simple Event
Dispatcher for DTO request Completion Events of the created
Endpoint.

recv_sevd_handle Handle for the IT_DTO_EVENT_STREAM Simple Event
Dispatcher for DTO Receive Completion Events of the created
Endpoint.

connect_sevd_handle Handle for the IT_CM_MSG_EVENT_STREAM Simple Event
Dispatcher for Connection Events of the created Endpoint.

flags Flags allowing Consumer optionally to control behavior of the
Implementation on Endpoint creation. Default is IT_EP_NO_FLAG.

ep_attr Pointer to a structure that contains Consumer-requested Endpoint
Attributes.

ep_handle Handle for the created Endpoint.

it_ep_rc_create creates, on the Interface Adapter implicitly identified by pz_handle, a
Connection Endpoint that is provided to the Consumer as ep_handle. The value of ep_handle is
only defined if the return value of it_ep_rc_create is IT_SUCCESS.

The Connection Endpoint is created in the IT_EP_STATE_UNCONNECTED state. See
it_ep_state_t for details. 1781

Interconnect Transport API –Issue 1 53

 54

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792

The created Endpoint is not associated with an IA Spigot. An Endpoint is associated with a
Spigot as part of Connection setup.

The Protection Zone pz_handle allows Consumers to control what local memory the Endpoint
can access for DTOs and what memory remote RDMA operations can access through the newly
created Endpoint. Only memory referred to by LMRs and RMRs that match the Endpoint
Protection Zone can be accessed through the Endpoint.

recv_sevd_handle and request_sevd_handle are Event Dispatcher instances where the Consumer
collects completion Notifications of DTOs and RMR operations. Completions of Receive DTOs
are reported in recv_sevd_handle Event Dispatcher, and completions of Send, RDMA Read,
RDMA Write DTOs, RMR Bind and RMR Unbind are reported in request_sevd_handle. It is
permissible for recv_sevd_handle and request_sevd_handle to reference the same EVD. DTO
and RMR operation Completion Events are defined in it_dto_events. 1793

1794 The Consumer should not specify an SEVD in recv_sevd_handle or request_sevd_handle that is
in overflowed state for use in the Endpoint creation call (see it_evd_create for more details on
overflow). If Consumer attempts to do so the operation will fail with
IT_ERR_INVALID_RECV_EVD_STATE or IT_ERR_INVALID_REQ_EVD_STATE.

1795
1796
1797
1798
1799

All Connection Events for the Endpoint are reported to the Consumer through the SEVD
specified in connect_sevd_handle. For a complete list of Endpoint Connection Events, see
it_cm_msg_events. 1800

1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819

The flags parameter allows the Consumer to control the behavior of the Implementation on
Endpoint creation. Use of the flags value IT_EP_REUSEADDR allows the Consumer to specify
that they allow the Implementation to return an Endpoint on creation that is possibly in the
TimeWait state. Normally, the Implementation will only return Endpoints that are not in the
TimeWait state.

The TimeWait state exists for the purpose of preventing packets that were transmitted over one
Connection from being inadvertently received in another subsequently established Connection.
The TimeWait state is not a state of the Endpoint per se, but rather a state associated with a
Connection the Endpoint had previously established. A Connection enters the TimeWait state
when a disconnect is performed, and exits the TimeWait state after a TimeWait interval has
elapsed. The duration of the TimeWait interval is transport-dependent, and for some transports
it is also dependent upon network configuration parameters as well. This interval can be on the
order of a minute or two in length.

An Endpoint that is “in the TimeWait state” still has at least one Connection that it had
previously established for which the TimeWait interval has not elapsed. (It is possible for an
Endpoint to be in the TimeWait state with respect to multiple Connections it had previously
established.) If an Endpoint attempts to establish a Connection that will use the same pair of
Spigots that were involved in a previous Connection involving the Endpoint, and if that previous
Connection is currently in the TimeWait state, the Connection establishment attempt may fail
with an IT_ERR_EP_TIMEWAIT error; see it_ep_accept. This error will never be returned
unless the Consumer specifies IT_EP_REUSEADDR in flags for the it_ep_rc_create routine.

1820
1821
1822
1823
1824
1825

The ep_attr parameter specifies the Consumer-requested attributes of the created Endpoint. The
Implementation is required to satisfy all requested attributes or fail the operation. Hence, the
Implementation must allocate all necessary resources to satisfy Consumer-requested attributes.
The Implementation is allowed to allocate more resources than Consumer requested in ep_attr.

Interconnect Transport API –Issue 1 54

 55

The Consumer can find the actual allocated resources by using it_ep_query. For detailed
Endpoint attributes see man page for

1826
it_ep_attributes. 1827

1828
1829

1830
1831

1832
1833
1834

1835
1836
1837

1838
1839

1840
1841

1842
1843
1844

1845
1846
1847

1848

1849
1850

1851
1852
1853

1854
1855
1856

1857
1858
1859

1860
1861
1862

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described below:

IT_ERR_INVALID_PZ The Protection Zone Handle (pz_handle) was
invalid.

IT_ERR_INVALID_REQ_EVD The Simple Event Dispatcher Handle for Data
Transfer Operation request completions
(request_sevd_handle) was invalid.

IT_ERR_INVALID_RECV_EVD The Simple Event Dispatcher Handle for Data
Transfer Operation Receive completions
(recv_sevd_handle) was invalid.

IT_ERR_INVALID_CONN_EVD The Connection Simple Event Dispatcher
Handle was invalid.

IT_ERR_INVALID_EVD_TYPE The Event Stream Type for the Event
Dispatcher was invalid.

IT_ERR_INVALID_REQ_EVD_STATE The Simple Event Dispatcher for Data
Transfer Operation request completions was
in an unusable state.

IT_ERR_INVALID_RECV_EVD_STATE The Simple Event Dispatcher for Data
Transfer Operation Receive completions was
in an unusable state.

IT_ERR_INVALID_FLAGS The flags value was invalid.

IT_ERR_RESOURCES The requested operation failed due to
insufficient resources.

IT_ERR_PAYLOAD_SIZE The requested max_dto_payload_size exceeds
the maximum payload size supported by the
underlying transport.

IT_ERR_RESOURCE_REQ_DTO The underlying transport could not allocate
the requested max_req_dtos resources at this
time.

IT_ERR_RESOURCE_RECV_DTO The underlying transport could not allocate
the requested max_recv_dtos resources at this
time.

IT_ERR_RESOURCE_SSEG The underlying transport could not allocate
the requested max_send_segments resources
at this time.

Interconnect Transport API –Issue 1 55

 56

1863
1864
1865

1866
1867
1868

1869
1870
1871

1872
1873
1874

1875
1876
1877

1878
1879
1880

IT_ERR_RESOURCE_RSEG The underlying transport could not allocate
the requested max_recv_segments resources
at this time.

IT_ERR_RESOURCE_RRSEG The underlying transport could not allocate
the requested max_rdma_read_segments
resources at this time.

IT_ERR_RESOURCE_RWSEG The underlying transport could not allocate
the requested max_rdma_write_segments
resources at this time.

IT_ERR_RESOURCE_IRD The underlying transport could not allocate
the requested rdma_read_inflight_incoming
resources at this time.

IT_ERR_RESOURCE_ORD The underlying transport could not allocate
the requested rdma_read_inflight_outgoing
resources at this time.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error
and is in the disabled state. None of the
output parameters from this routine are valid.
See it_ia_info for a description of the disabled
state.

1881
1882

1883
1884

1885
1886

ERRORS
None.

APPLICATION USAGE
Use of IT_EP_REUSEADDR requires the Consumer to handle a potential
IT_ERR_EP_TIMEWAIT error from it_ep_accept if the Endpoint and an incoming Connection
Request are in the TimeWait state with respect to each other.

1887
1888
1889
1890

Sometimes the required attribute values for an Endpoint depend on parameters in an incoming
Connection Request and are not known at Endpoint creation time. The Consumer should specify
these attributes at a later time using it_ep_modify, for example, before accepting an incoming
Connection Request.

1891
1892
1893
1894

1895

Specifying an overflowed SEVD in connect_sevd_handle is recoverable but may result in
connect Events being lost.

SEE ALSO
it_ep_attributes_t, it_ep_ud_create(), it_ep_query(), it_ep_modify(), it_ep_free(), it_ep_accept(), 1896
it_cm_msg_events(), it_dto_events(), it_ia_info_t1897

Interconnect Transport API –Issue 1 56

 57

it_ep_reset() 1898

1899
1900

1901
1902
1903
1904
1905
1906

1907

1908
1909
1910
1911
1912
1913
1914
1915
1916

NAME
it_ep_reset – reset a Reliable Connected Endpoint to the initial state

SYNOPSIS
#include <it_api.h>

it_status_t it_ep_reset(

IN it_ep_handle_t ep_handle
);

DESCRIPTION

ep_handle Reliable Connected Endpoint.

it_ep_reset resets a Reliable Connected Endpoint into the IT_EP_STATE_UNCONNECTED
state it had at original creation while maintaining the other attributes of the Endpoint in their
current settings. it_ep_reset may only be applied to Reliable Connected Endpoints in the
IT_EP_STATE_NONOPERATIONAL state. An Endpoint in the IT_EP_STATE_
NONOPERATIONAL due to overflow of a DTO completion EVD can not be reset.

Upon return of this operation any Completions for the Endpoint not yet harvested by Consumer
may be dropped or not delivered to the EVD(s) associated with the Request or Receive Queue
for the Endpoint. This operation is only needed if Consumers would like to reuse the Endpoint.
Otherwise they can just free the Endpoint using it_ep_free. 1917

1918
1919

1920

1921
1922

1923
1924

1925
1926
1927

1928
1929

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described below:

IT_ERR_INVALID_EP The Endpoint Handle (ep_handle) was invalid

IT_ERR_INVALID_EP_STATE The Endpoint was not in the proper state for the
attempted operation.

IT_ERR_INVALID_EP_TYPE The attempted operation was invalid for the Service
Type of the Endpoint.

IT_ERR_CANNOT_RESET The Endpoint could not be reset due to an overflow
of one of its Data Transfer Operation Event Stream
Event Dispatchers.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in
the disabled state. None of the output parameters
from this routine are valid. See it_ia_info_t for a
description of the disabled state.

1930
1931

1932
1933

1934

ERRORS
None.

SEE ALSO
it_ep_rc_create(), it_ep_disconnect(), it_ep_free(), it_ia_info_t1935

Interconnect Transport API –Issue 1 57

 58

it_ep_ud_create() 1936

1937
1938

1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950

1951

1952
1953

1954
1955
1956

1957
1958
1959

1960
1961

1962

1963

1964
1965
1966
1967
1968

NAME
ep_ud_create – create an Endpoint for Unreliable Datagram

SYNOPSIS
#include <it_api.h>

it_status_t it_ep_ud_create (
 IN it_pz_handle_t pz_handle,
 IN it_evd_handle_t request_sevd_handle,
 IN it_evd_handle_t recv_sevd_handle,
 IN const it_ep_attributes_t *ep_attr,
 IN size_t spigot_id,
 OUT it_ep_handle_t *ep_handle

);

DESCRIPTION

pz_handle Handle for the Protection Zone of the created Endpoint. Implicitly
identifies the Interface Adapter.

request_sevd_handle: Handle for the IT_DTO_EVENT_STREAM Simple Event
Dispatcher for DTO request Completion Events of the created
Endpoint.

recv_sevd_handle: Handle for the IT_DTO_EVENT_STREAM Simple Event
Dispatcher for DTO Receive Completion Events of the created
Endpoint.

ep_attr Pointer to a structure that contains Consumer-requested Endpoint
Attributes.

spigot_id Interface Adapter Spigot identifier to use when creating Endpoint.

ep_handle Handle for the created Endpoint.

it_ep_ud_create creates, on the requested spigot_id of the Interface Adapter implicitly identified
by pz_handle, an Unreliable Datagram Endpoint that is provided to the Consumer as ep_handle.
The value of ep_handle is only defined if the return value is IT_SUCCESS.

The Unreliable Datagram Endpoint is created in the IT_EP_STATE_OPERATIONAL state. See
it_ep_state_t for details. 1969

1970
1971
1972
1973
1974
1975

Protection Zone pz_handle allows Consumers to control what local memory the Endpoint can
access for DTOs. Only memory referred to by LMRs that match the Endpoint Protection Zone
can be accessed by the Endpoint.

recv_sevd_handle and request_sevd_handle are Event Dispatcher instances where the Consumer
collects completion Notifications of DTOs. Completions of Receive DTOs are reported in the
recv_sevd_handle Event Dispatcher, and completions of Send DTOs are reported in

Interconnect Transport API –Issue 1 58

 59

request_sevd_handle. It is permissible for recv_sevd_handle and request_sevd_handle to
reference the same EVD. DTO Completion Events are defined in

1976
it_dto_events. 1977

1978 The Consumer should not specify an SEVD in recv_sevd_handle or request_sevd_handle that is
in overflowed state for use in the Endpoint creation call (see it_evd_create for more details on
overflow). If Consumer attempts to do so the operation will fail with
IT_ERR_INVALID_RECV_EVD_STATE or IT_ERR_INVALID_REQ_EVD_STATE.

1979
1980
1981
1982
1983
1984
1985

The ep_attr parameter specifies the Consumer-requested attributes of the created Endpoint. The
Implementation is required to satisfy all requested attributes or fail the operation. Hence, the
Implementation must allocate all necessary resources to satisfy Consumer-requested attributes.
The Implementation is allowed to allocate more resources than Consumer requested in ep_attr.
Consumer can find the actual allocated resources by using it_ep_query. For detailed Endpoint
attributes see man page for

1986
it_ep_attributes_t. 1987

1988
1989

1990
1991

1992
1993
1994

1995
1996
1997

1998
1999

2000
2001
2002

2003
2004
2005

2006

2007
2008

2009
2010
2011

2012
2013

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described below:

IT_ERR_INVALID_PZ The Protection Zone Handle (pz_handle) was
invalid.

IT_ERR_INVALID_REQ_EVD The Simple Event Dispatcher Handle for Data
Transfer Operation request completions
(request_sevd_handle) was invalid.

IT_ERR_INVALID_RECV_EVD The Simple Event Dispatcher Handle for Data
Transfer Operation Receive completions
(recv_sevd_handle) was invalid.

IT_ERR_INVALID_EVD_TYPE - The Event Stream Type for the Event
Dispatcher was invalid.

IT_ERR_INVALID_REQ_EVD_STATE The Simple Event Dispatcher for Data Transfer
Operation request completions was in an
unusable state.

IT_ERR_INVALID_RECV_EVD_STATE The Simple Event Dispatcher for Data Transfer
Operation Receive completions was in an
unusable state.

IT_ERR_INVALID_SPIGOT An invalid Spigot ID was specified.

IT_ERR_RESOURCES The requested operation failed due to
insufficient resources.

IT_ERR_PAYLOAD_SIZE The requested max_dto_payload_size exceeds
the maximum payload size supported by the
underlying transport.

IT_ERR_RESOURCE_REQ_DTO The underlying transport could not allocate the
requested max_req_dtos resources at this time.

Interconnect Transport API –Issue 1 59

 60

2014
2015

2016
2017
2018

2019
2020
2021

2022
2023
2024

2025
2026
2027

IT_ERR_RESOURCE_RECV_DTO The underlying transport could not allocate the
requested max_recv_dtos resources at this time.

IT_ERR_RESOURCE_SSEG The underlying transport could not allocate the
requested max_send_segments resources at this
time.

IT_ERR_RESOURCE_RSEG The underlying transport could not allocate the
requested max_recv_segments resources at this
time.

IT_ERR_INVALID_EP_KEY Invalid Endpoint Key value. The Consumer
doesn't have local permissions to use the
specified Endpoint Key.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and
is in the disabled state. None of the output
parameters from this routine are valid. See
it_ia_info_t for a description of the disabled
state.

2028
2029

2030
2031

2032

ERRORS
None.

SEE ALSO
it_ep_attributes_t, it_ep_rc_create(), it_ep_query(), it_ep_modify(), it_ep_free(), it_ep_state_t, 2033
it_dto_events, it_ia_info_t2034

Interconnect Transport API –Issue 1 60

 61

it_evd_create() 2035

2036
2037

2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061

2062

2063
2064

2065

2066

2067
2068

2069
2070
2071

2072
2073
2074
2075
2076

NAME
it_evd_create – create Simple or Aggregate Event Dispatcher

SYNOPSIS
#include <it_api.h>

it_status_t evd_create (

IN it_ia_handle_t ia_handle,
IN it_event_type_t event_number,
IN it_evd_flags_t evd_flag,
IN size_t sevd_queue_size,
IN size_t sevd_threshold,
IN it_evd_handle_t aevd_handle,
OUT it_evd_handle_t *evd_handle,
OUT int *fd

);

#define IT_THRESHOLD_DISABLE 0

typedef enum {
IT_EVD_DEQUEUE_NOTIFICATIONS = 0x01,
IT_EVD_CREATE_FD = 0x02,
IT_EVD_OVERFLOW_DEFAULT = 0x04,
IT_EVD_OVERFLOW_NOTIFY = 0x08,
IT_EVD_OVERFLOW_AUTO_RESET = 0x10
} it_evd_flags_t;

DESCRIPTION

ia_handle Handle for the Interface Adapter to which created Event Dispatcher
belongs.

event_number Identifier for Event Stream type that can be enqueued to the EVD.

evd_flag Logical OR of flag values for creation operation.

sevd_queue_size Minimum size of the Simple EVD Event queue. This parameter is
ignored for Aggregate EVD.

sevd_threshold Number of Events on the Simple EVD queue required for
Notification of the associated AEVD or fd and for SEVD waiters
unblocking. This parameter is ignored for Aggregate EVD.

aevd_handle Optional Handle to associate an Aggregate EVD with the Simple
EVD. This parameter must be IT_NULL_HANDLE when
IT_EVD_CREATE_FD evd_flag is set. This parameter must also be
IT_NULL_HANDLE when using it_evd_create to create an
Aggregate EVD.

Interconnect Transport API –Issue 1 61

 62

2077

2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090

evd_handle Handle for the created Event Dispatcher.

fd Pointer to optional file descriptor corresponding to Event
Dispatcher. Only valid if return value is IT_SUCCESS and
IT_EVD_CREATE_FD evd_flag was set.

it_evd_create creates an instance of an Event Dispatcher (EVD) that is provided to the
Consumer as evd_handle. Two different types of EVDs are supported by the Implementation:
Simple EVDs (SEVD) and Aggregate EVDs (AEVD). An SEVD is an EVD for a single Event
Stream. An AEVD is an aggregation of SEVDs and thus can potentially return Events for more
than one Event Stream type. it_evd_create can also optionally return a file descriptor (fd)
associated with an EVD.

The values of evd_handle and fd are only defined if the return value is IT_SUCCESS.

The scope of an EVD is a single Interface Adapter identified by ia_handle.

event_number identifies the type of Event Stream that the created EVD will handle. Multiple
Event Streams of the same Event Stream type (such as DTO Completion Event Streams) can
feed the EVD. Event Stream types are defined in it_event_t. 2091

2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102

To create an Aggregate EVD, the event_number must be set to IT_AEVD_
NOTIFICATION_EVENT_STREAM; a Simple EVD (SEVD) is created otherwise. To create a
Simple EVD the event_number can be any one of IT_DTO_EVENT_STREAM,
IT_CM_REQ_EVENT_STREAM, IT_CM_MSG_EVENT_STREAM, IT_ASYNC_AFF_
EVENT_STREAM, IT_ASYNC_UNAFF_EVENT_STREAM, or IT_SOFTWARE_EVENT_
STREAM.

A Simple EVD may feed only one Aggregate EVD. An Aggregate EVD may be fed by many
Simple EVDs. The Consumer may create multiple AEVDs and SEVDs with the following two
exceptions:

Only one IT_ASYNC_AFF_EVENT_STREAM Simple EVD may be created per Interface
Adapter instance. Subsequent calls to it_evd_create for the IT_ASYNC_AFF_EVENT_
STREAM Event Stream, without intervening calls to it_evd_free the EVD, will fail with the
error return IT_ERR_ASYNC_AFF_EVD_EXISTS.

2103
2104
2105
2106

Only one IT_ASYNC_UNAFF_EVENT_STREAM Simple EVD may be created per Interface
Adapter instance. Subsequent calls to it_evd_create for the IT_ASYNC_UNAFF_
EVENT_STREAM Event Stream, without intervening calls to it_evd_free the EVD, will fail
with the error return IT_ERR_ASYNC_UNAFF_EVD_EXISTS.

2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117

For all Event Stream types except IT_SOFTWARE_EVENT_STREAM, IT_ASYNC_
AFF_EVENT_STREAM, and IT_ASYNC_UNAFF_EVENT_STREAM, upon creation there is
no Event Stream of event_number feeding Events to the created EVD. For an Aggregate EVD
this means that there are no Simple EVDs associated with evd_handle. No Events are fed to
evd_handle until evd_handle is associated with an object that feeds Events to it. For Aggregate
EVD this means that no Events are fed to evd_handle until evd_handle is associated with a
Simple EVD. For Simple EVD this means that no Events are fed to evd_handle until evd_handle
is associated with an Endpoint, Listen Handle, or UD Service Request Handle depending on the
stream type.

Interconnect Transport API –Issue 1 62

 63

2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131

For IT_ASYNC_AFF_EVENT_STREAM Event Stream type, the Simple EVD receives the
Async Affilated Events for the ia_handle. For IT_ASYNC_UNAFF_EVENT_STREAM Event
Stream type, the Simple EVD receives the Async Unaffiliated Events for the ia_handle.

Multiple Event Streams of the same Event Stream type can be associated with the same EVD,
with exception of IT_ASYNC_AFF_EVENT_STREAM, IT_ASYNC_UNAFF_EVENT_
STREAM and IT_SOFTWARE_EVENT_STREAM Event Stream types. For IT_AEVD_
NOTIFICATION_EVENT_STREAM Event Stream type multiple SEVDs can be associated
with the same AEVD. For IT_DTO_EVENT_STREAM multiple EPs can be associated with the
same SEVD. For IT_CM_REQ_EVENT_STREAM multiple Listens can be associated with the
same SEVD. For IT_CM_MSG_EVENT_STREAM multiple RC EPs and/or UD Service
Requests can be associated with the same SEVD. For IT_ASYNC_AFF_EVENT_STREAM,
IT_ASYNC_UNAFF_EVENT_STREAM, and IT_SOFTWARE_EVENT_STREAM Event
Stream types, only a single Event Stream feeds each EVD, respectively, and the corresponding
Event Stream is created upon EVD creation. For IT_SOFTWARE_EVENT_STREAM, the
Events are generated explicitly by the Consumer calling it_evd_post_se. 2132

2133
2134
2135
2136
2137

When the Implementation attempts to enqueue more Events on an SEVD than the queue size of
the SEVD will permit, the SEVD is said to overflow. An AEVD can not overflow.

Once a SEVD overflows, subsequent Events from the Event Stream will be dropped. For all
Event Streams, with the exception of the IT_DTO_EVENT_STREAM, Events will no longer be
dropped once the Consumer makes more space available in the SEVD’s Event queue. The
Consumer can make room in a SEVD either by dequeueing an Event, or by using it_evd_modify
to increase the queue size of the SEVD. For the IT_DTO_EVENT_STREAM, however, Events
will continue to be dropped; the overflow can not be corrected.

2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162

The behavior of a SEVD after an overflow depends upon the Event Stream associated with the
SEVD, and upon whether the default overflow behavior has been configured for the SEVD. The
man page associated with each Event Stream type provides details of the default overflow
behavior. The Consumer specifies they desire default overflow behavior by setting the
IT_EVD_OVERFLOW_DEFAULT evd_flag value.

If default overflow behavior is not configured (IT_EVD_OVERFLOW_DEFAULT is cleared in
evd_flag), then the Consumer can control two possible parameters: Whether the overflow
occurrence causes generation (IT_EVD_OVERFLOW_NOTIFY flag value) of an overflow
Event on the Affiliated or Unaffiliated SEVD, and, if configured, how the generation of the
overflow Event is controlled (IT_EVD_OVERFLOW_AUTO_RESET flag value). Each
subsequent SEVD Event that arrives after overflow of the SEVD initially occurs can potentially
generate an overflow Event.

The Consumer can request that an overflow Event be generated when an overflow occurs by
setting IT_EVD_OVERFLOW_NOTIFY in evd_flag. For SEVDs associated with any Event
Streams other than the IT_ASYNC_AFF_EVENT_STREAM or the IT_ASYNC_UNAFF_
EVENT_STREAM, an IT_ASYNC_AFF_SEVD_ENQUEUE_FAILURE Event is enqueued on
the affiliated asynchronous error Event Stream of ia_handle. For a SEVD associated with the
IT_ASYNC_AFF_EVENT_STREAM, an IT_ASYNC_UNAFF_SEVD_ENQUEUE_FAILURE
Event is enqueued on the unaffiliated asynchronous error Event Stream of ia_handle. The Event
identifies the SEVD that overflowed. Overflow of the IT_ASYNC_UNAFF_EVENT_
STREAM is never detected and no indication of such overflow is ever generated; however, no
adverse consequences occur other than the dropping of some Unaffiliated Events.

Interconnect Transport API –Issue 1 63

 64

If a SEVD overflow has occurred, the evd_overflowed member of the it_evd_param_t structure
(as returned by the

2163
it_evd_query routine) will have an IT_TRUE value until the condition is

corrected or manually changed. When the Consumer creates a SEVD to hold Events of an Event
Stream and has enabled generation of overflow Events on the SEVD
(IT_EVD_OVERFLOW_NOTIFY flag value), the Consumer must chose one of two modes for
generation of overflow Events using the IT_EVD_OVERFLOW_AUTO_RESET flag:
automatic, or Consumer-controlled. In automatic mode, overflow Events may again be
enqueued on the Affiliated or Unaffiliated SEVD as soon as the Consumer makes more space
available in the EVD’s Event queue. In Consumer-controlled generation, overflow Events are
only again generated after the Consumer calls

2164
2165
2166
2167
2168
2169
2170
2171

it_evd_modify to clear the evd_overflowed field.
See

2172
 it_evd_modify for more details. 2173

2174 Note that even if overflow generation is disabled, the Consumer may still clear evd_overflowed
using it_evd_modify if they so choose. A subsequent overflow will again set the evd_overflowed
member of the

2175
it_evd_param_t structure. 2176

2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192

For a newly created SEVD, the evd_overflowed member of the it_evd_param_t structure is not
set.

The evd_flag value of IT_EVD_DEQUEUE_NOTIFICATIONS applies only to AEVDs.

When the IT_EVD_DEQUEUE_NOTIFICATIONS bit is set in evd_flag, then wait and dequeue
operations on the AEVD will dequeue IT_AEVD_NOTIFICATION_EVENT_STREAM
Events; such Events provide the SEVD Handle of the underlying SEVD that caused the
Notification. To retrieve the underlying Event, the Consumer must call it_evd_dequeue on the
SEVD Handle provided in the IT_AEVD_NOTIFICATION_EVENT_STREAM Event from the
AEVD.

When the IT_EVD_DEQUEUE_NOTIFICATIONS bit is cleared in evd_flag, then calling
it_evd_wait on the AEVD directly returns the first Event from a notifying underlying SEVD
(such as IT_DTO_EVENT_STREAM Events, etc.). The dequeue operation on the AEVD
directly returns the first Event from an underlying SEVD. These Events will be of whatever
Event Stream types that feed each of these associated SEVDs. The associated SEVD can be
determined from the evd_handle found in every Event.

If an underlying SEVD of an AEVD has been disabled then the SEVD will no longer generate
Notification Events for the AEVD until the SEVD is enabled (see it_evd_modify). Previously
generated SEVD Notifications for the AEVD are unaffected by the enabling and disabling of
SEVD.

2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203

For a Simple EVD that does not have an associated AEVD, the Consumer can wait on and
dequeue from the SEVD.

If the SEVD has an associated AEVD with the IT_EVD_DEQUEUE_NOTIFICATIONS
evd_flag cleared, then it is an error for the Consumer to wait on or dequeue from the SEVD.
Attempting to wait on or dequeue from the SEVD will return IT_ERR_INVALID_EVD_
STATE.

If the SEVD has an associated AEVD with the IT_EVD_DEQUEUE_NOTIFICATIONS
evd_flag set, then the Consumer can always dequeue from the SEVD, and the Consumer can
wait on the SEVD but only if they disable the SEVD first (see it_evd_modify). Attempting to
wait on the SEVD when disallowed will return IT_ERR_INVALID_EVD_STATE.

2204
2205

Interconnect Transport API –Issue 1 64

 65

The evd_flag bit value of IT_EVD_CREATE_FD set indicates that the Consumer requests
creation of a File Descriptor associated with the EVD (either SEVD or AEVD). If the EVD has
an associated fd, then the Consumer can wait on the EVD if they disable the EVD first (see

2206
2207
2208

it_evd_modify). Attempting to wait on the EVD when disallowed will return
IT_ERR_INVALID_EVD_STATE. If the EVD has an associated fd, then Consumer can
dequeue from the feeding EVD.

2209
2210
2211
2212
2213

Values for evd_flag are constructed by a bitwise-inclusive OR of flags from the following list,
defined in <it_api.h>.

Flag Value Description
IT_EVD_DEQUEUE_NOTIFICATIONS Only applicable to AEVD. When set, wait and

dequeue on the AEVD shall dequeue IT_AEVD_
NOTIFICATION_EVENT_STREAM Events from
the created AEVD. Otherwise, wait and dequeue on
the AEVD will dequeue the underlying Events (of
potentially various Event Stream types) from the
SEVDs that feed the AEVD.

IT_EVD_CREATE_FD Implementation will allocate and return a file
descriptor usable as a Notification object for this
EVD. It is an error to set this flag as well as specify
an AEVD for SEVD.

IT_EVD_OVERFLOW_DEFAULT Only applicable to an SEVD. When set, the
overflow behavior for the SEVD will be the default
behavior for the event_number as specified in the
man page for the Event Stream. When clear, the
behavior is determined by how the
IT_EVD_OVERFLOW_
NOTIFY and IT_EVD_OVERFLOW_AUTO_
RESET flags are set. It is an error to set this flag as
well as IT_EVD_OVERFLOW_NOTIFY and/or
IT_EVD_OVERFLOW_AUTO_RESET.

IT_EVD_OVERFLOW_NOTIFY Only applicable to an SEVD. When clear, EVD
overflow is ignored. When set, causes an
IT_ASYNC_AFF_SEVD_ENQUEUE_FAILURE
Event to be generated if the EVD overflows if
event_number is anything other than IT_ASYNC_
AFF_EVENT_STREAM or IT_ASYNC_UNAFF_
EVENT_STREAM. Causes an IT_ASYNC_
UNAFF_SEVD_ENQUEUE_FAILURE Event to
be generated if the EVD overflows and
event_number is IT_ASYNC_AFF_EVENT_
STREAM. It is invalid to set this flag if
event_number is IT_ASYNC_UNAFF_EVENT_
STREAM. It is invalid to set both this flag and
IT_EVD_OVERFLOW_DEFAULT.

Interconnect Transport API –Issue 1 65

 66

IT_EVD_OVERFLOW_AUTO_RESET Only applicable to an SEVD. When set, this flag
specifies that the Implementation will automatically
reset overflow Event generation (i.e. when
Consumer make space available, further Events that
again overflow EVD will cause another overflow
Event to attempt to be queued to the Affiliated or
Unaffiliated SEVD); when clear, this flag specifies
that Consumer must manually reset the
evd_overflowed state of the EVD (see
it_evd_modify) and Implementation shall not reset
EVD overflow Event generation on its own. It is
invalid to set both this flag and
IT_EVD_OVERFLOW_DEFAULT. If
IT_EVD_OVERFLOW_NOTIFY is not set, it is an
error to set this flag. Since a DTO overflow can not
be corrected, it is an error to set this flag for the
DTO Event Stream.

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226

sevd_queue_size is only applicable for a Simple EVD. It defines the size of the Event queue that
the Consumer requested. The Implementation is required to provide a queue size of at least
sevd_queue_size, but is free to provide a larger queue size. The Consumer can determine the
actual queue size by querying the created Simple Event Dispatcher. This parameter is ignored
for Aggregate EVD.

The sevd_threshold is only applicable to an SEVD and allows the Consumer to request an
accumulation of up to sevd_threshold number of enqueued “non-Notification Events” for the
Simple EVD queue prior to waking up the Consumer or notifying fd or aevd_handle. A “non-
Notification Event” is one of the following: An Event with dto_status of IT_DTO_SUCCESS
corresponding to a non-Recv DTO that was posted with the IT_NOTIFY_FLAG bit cleared. An
Event with dto_status of IT_DTO_SUCCESS corresponding to a Recv DTO that was posted
with the IT_NOTIFY_FLAG bit cleared and with the IT_SOLICITED_WAIT bit cleared in the
corresponding remote Send. See it_dto_flags_t for more details. Only DTO Event Streams
support non-notification Events; on all other Event Streams, every Event is a Notification Event
(thus thresholds have no function on non-DTO Event Streams). Arrival of a “Notification Event”
before sevd_threshold number of non-notification Events have arrived will cause wakeup or
Notification.

2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240

A “Notification Event” is one of the following:

An Event corresponding to a DTO that was posted with the IT_NOTIFY_FLAG bit set.

An Event with a dto_status that is not IT_DTO_SUCCESS.

An Event corresponding to a Recv DTO with the IT_SOLICITED_WAIT bit set in the
corresponding remote Send.

Any Event of Event Stream other than IT_DTO_ EVENT_STREAM.

An SEVD is in the “notification criteria” when one of the following is true: There is a
Notification Event queued on the SEVD. The number of Events on SEVD is larger or equal to
the sevd_threshold.

Interconnect Transport API –Issue 1 66

 67

For SEVD the sevd_threshold must be set to either the value IT_THRESHOLD_DISABLE or to
a value greater than or equal to one. Setting sevd_threshold to IT_THRESHOLD_DISABLE
will cause

2241
2242

it_evd_wait to return only for Notification Events (specifically not for a threshold
number of Events). For AEVD the sevd_threshold is ignored.

2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260

An aevd_handle specified on creation of Simple EVD allows a Consumer to consolidate
Notifications from multiple Simple Event Dispatchers (from the same Interface Adapter) to a
single higher-level Aggregate Event Dispatcher. For SEVD the aevd_handle value of
IT_NULL_HANDLE means that no AEVD is associated with nor fed by the created SEVD. For
Aggregate EVD creation this parameter must be IT_NULL_HANDLE; otherwise it_evd_create
will return IT_ERR_AEVD_NOT_ALLOWED.

Alternatively, if the IT_EVD_CREATE_FD evd_flag bit value is set, then the Implementation
will return a new unique file descriptor associated with the EVD. The file descriptor is placed
into the contents of the fd pointer. The fd may be used in select() or poll() system calls and will
be identified as ready to read when a Notification occurs on the underlying EVD. It is up to a
Consumer then to go and dequeue Events from the EVD which is one-to-one associated with the
particular fd. It is the Consumer’s responsibility to keep track of the one-to-one association of fd
and EVD.

For Simple EVD the use of a value other than IT_NULL_HANDLE for aevd_handle is mutually
exclusive with use of the IT_EVD_CREATE_FD evd_flag; specifying both an aevd_handle not
equal to IT_NULL_HANDLE and the IT_EVD_CREATE_FD evd_flag in a call to
it_evd_create will fail and return value of IT_ERR_MISMATCH_FD. 2261

2262
2263
2264
2265
2266
2267

IT-API supports the following configurations: Simple EVD, Simple EVD with associated fd,
Simple EVD feeding Aggregate EVD, and Simple EVD feeding Aggregate EVD that is
associated with fd.

The Aggregate EVD specified by aevd_handle or the fd will be notified by the Implementation
when a Notification Event arrives or sevd_threshold value is reached when EVD is enabled.

When a SEVD feeds an AEVD or fd, control of the capability of the feeding EVD to notify the
fed AEVD or fd is done by enabling or disabling the feeding SEVD (see it_evd_modify). 2268

2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284

By default the created EVD is enabled. An enabled SEVD will cause aevd_handle or fd (if
applicable) to be notified when an Event arrival causes Notification criteria to be reached on that
SEVD. An enabled AEVD will cause fd (if applicable) to be notified when an Event arrival
causes Notification criteria to be reached. Notification is done on aevd_handle by generating an
IT_AEVD_NOTIFICATION_EVENT for the AEVD if the IT_EVD_DEQUEUE_
NOTIFICATIONS evd_flag bit set on AEVD creation. When Notification is necessary for an
AEVD with the IT_EVD_DEQUEUE_NOTIFICATIONS evd_flag bit cleared, no IT_AEVD_
NOTIFICATION_EVENT will be enqueued; rather, the AEVD Consumer will be unblocked
with the underlying SEVD Event delivered to it. Notification is done on the fd by marking it as
ready to read.

Consumers can not wait on an enabled SEVD that feeds an AEVD or fd.

A disabled feeding EVD will not generate Notification to the fed AEVD or fd. Consumers can
wait on a disabled SEVD, unless it is associated with an AEVD with the IT_EVD_
DEQUEUE_NOTIFICATIONS evd_flag bit cleared.

An SEVD preserves the order of Events within each individual Event Stream as provided by the
underlying Transport. No order is defined between Events of different Event Streams, even

Interconnect Transport API –Issue 1 67

 68

2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310

when they are of the same Event Stream type. For IT_DTO_EVENT_STREAM Event Stream
type, the order of the Event completions is defined for each DTO and RMR post operation on the
Endpoint. No order is defined between Events of Event Streams coming from different SEVDs
for an AEVD with IT_EVD_DEQUEUE_NOTIFICATIONS evd_flag bit cleared. The order of
Events of IT_AEVD_NOTIFICATION_EVENT Event Stream is Implementation dependent.

If the IT_EVD_DEQUEUE_NOTIFICATIONS bit is cleared in evd_flag on AEVD creation, the
Consumer, when blocked in it_evd_wait and an SEVD Notification occurs, is unblocked and
dequeues an lower-level Event from the same SEVD that caused Notification.

Multiple SEVDs can feed the same AEVD. An SEVD generates a Notification for AEVD when
an SEVD arriving Event causes SEVD to reach Notification criteria if SEVD is enabled.

SEVD and AEVD can support multiple waiters. For SEVD the sevd_threshold value must be 1
for multiple waiters to be supported.

An SEVD waiter will block when SEVD queue is empty. An AEVD waiter will block when all
associated SEVDs are empty. An SEVD waiter may block when SEVD is not in the Notification
criteria. An AEVD waiter may block when all associated SEVDs are not in the Notification
criteria. An SEVD waiter will return if there is a Notification Event on the queue or if the
number of Events on the SEVD is equal or larger then threshold. An AEVD waiter will return if
there is a Notification Event on any of the associated SEVDs or any of the associated SEVDs
has number of Events larger or equal to its sevd_threshold.

If arriving Event causes SEVD to reach Notification criteria then SEVD waiter will be
unblocked if one exists and the SEVD is disabled and not associated with AEVD with
IT_EVD_DEQUEUE_NOTIFICATIONS evd_flag bit cleared. As many waiters as there are
Events available on SEVD may be unblocked. If an arriving Notification Event causes SEVD to
reach Notification criteria and the SEVD is enabled then Notification will be generated for the
associated AEVD or fd. As many Notifications can be generated as there are Events available on
all SEVDs associated with the AEVD.

2311
2312
2313
2314
2315
2316
2317
2318
2319

2320
2321

2322
2323

2324
2325

2326

it_evd_dequeue from SEVD will return an Event, if one exists, from SEVD queue regardless if
there are waiters except when the SEVD is associated with AEVD with IT_EVD_
DEQUEUE_NOTIFICATIONS evd_flag bit cleared. In the latter case dequeue from the SEVD
is not allowed. For AEVD with IT_EVD_DEQUEUE_NOTIFICATIONS evd_flag bit cleared,
dequeue from the AEVD will return an Event, if one exists, from any of its associated SEVDs.
For AEVD with IT_EVD_DEQUEUE_NOTIFICATIONS evd_flag bit set, dequeue from the
AEVD will return an IT_AEVD_NOTIFICATION_EVENT if any of the associated enabled
SEVDs is in Notification criteria or may return an IT_AEVD_NOTIFICATION_
EVENT if any of the associated enabled SEVD simply has an Event.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described below.

IT_ERR_INVALID_IA The Interface Adapter Handle (ia_handle) was
invalid.

IT_ERR_INVALID_EVD_TYPE The Event Stream Type for the Event Dispatcher
was invalid.

IT_ERR_INVALID_FLAGS The flags value was invalid.

Interconnect Transport API –Issue 1 68

 69

2327
2328

2329
2330

2331
2332

2333
2334

2335
2336

2337
2338
2339
2340

2341
2342

2343
2344

2345
2346
2347

IT_ERR_RESOURCE_QUEUE_SIZE The underlying transport could not allocate the
requested sevd_queue_size resources at this time.

IT_ERR_INVALID_THRESHOLD An invalid value for the Simple Event Dispatcher
threshold was specified.

IT_ERR_INVALID_AEVD The Aggregation Event Dispatcher Handle
(aevd_handle) was invalid.

IT_ERR_RESOURCES The requested operation failed due to insufficient
resources.

IT_ERR_MISMATCH_FD An illegal request was made for both the File
Descriptor and the Aggregation Event Dispatcher.

IT_ERR_AEVD_NOT_ALLOWED The aevd_handle was non-NULL and the
event_number was
IT_AEVD_NOTIFICATION_EVENT_STREAM
.

IT_ERR_ASYNC_AFF_EVD_EXISTS The Asynchronous Affiliated Event Dispatcher
already exists.

IT_ERR_ASYNC_UNAFF_EVD_EXISTS The Asynchronous Unaffiliated Event Dispatcher
already exists.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is
in the disabled state. None of the output
parameters from this routine are valid. See
it_ia_info_t for a description of the disabled state. 2348

2349
2350

2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363

ERRORS
None.

APPLICATION USAGE
Consumers may use SEVDs with a pure polling model. Consumers create SEVDs and dequeue
from them directly. The Consumer threads never wait on the SEVDs and just dequeue Events
when they are ready to process them.

Alternatively, Consumers may create SEVDs and wait on and dequeue from them directly. This
also potentially requires many waiting threads, one per SEVD.

For the “non-thread-safe” Implementation the Consumer cannot have multiple threads calling on
the same EVD Handle simultaneously. When multiple threads retrieve Events concurrently
from the same SEVD, each Event will be retrieved exactly once but it is unpredictable which
thread will retrieve any particular Event.

The use of an AEVD can reduce the number of distinct waiting threads required for an
application. EVDs must be enabled to generate Notifications for the AEVD.

Interconnect Transport API –Issue 1 69

 70

2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386

Consumers can wait on an AEVD that had been created with the
IT_EVD_DEQUEUE_NOTIFICATIONS evd_flag bit set and all feeding SEVDs enabled.
When wait returns, a returned IT_AEVD_NOTIFICATION_EVENT_STREAM Event identifies
the SEVD that caused the unblocking. Consumer can then dequeue Events directly from that
SEVD or any other SEVD that feeds the AEVD. Thus, the Consumer can choose to service the
SEVDs feeding the AEVD in any order they wish.

Consumers can wait on an AEVD that had been created with the
IT_EVD_DEQUEUE_NOTIFICATIONS evd_flag bit cleared and all feeding SEVDs enabled.
When wait returns, it provides the first Event from an SEVD that is in Notification status.
Consumer can then dequeue Events only from the AEVD. This dequeueing will provide Events
from all SEVDs that feed the AEVD.

The order of returned Events from the AEVD is implementation-dependent. If Events are
retrieved from a given AEVD strictly by a single thread, the order of each Event from its
underlying SEVDs is maintained, but the order in which SEVDs are selected by the AEVD is
implementation-dependent. If Events are retrieved from a given AEVD by more than one thread,
no order guarantees are made.

The use of a file descriptor can also reduce the number of distinct waiting threads. File
descriptors also can be used to wait for Notification Events across multiple Interface Adapters or
Events not generated by this API. EVDs must be enabled to generate Notifications for the file
descriptor.

Consumers can select or poll on multiple fds that are associated with EVDs. The return for the
select or poll call identifies the notifying fd. It is the Consumer’s responsibility to keep track of
which EVD is associated with each fd. Consumer can dequeue Events from the EVD one-to-one
associated with that fd using it_evd_dequeue. 2387

2388
2389
2390
2391
2392
2393
2394
2395
2396

Typically, if the Consumer chooses to use an AEVD, they are then prohibited from waiting on
the underlying SEVDs (see DESCRIPTION section above for exceptions) and also may be
prohibited from dequeueing from the underlying SEVDs (again see DESCRIPTION section
above for details). If the Consumer chooses to use an fd, then they are prohibited from waiting
on the underlying AEVD(s) or SEVD(s).

Overflow may occur and may not be reported to Consumer via Events if there is no Simple EVD
for IT_ASYNC_AFF_EVENT_STREAM or for IT_ASYNC_UNAFF_EVENT_STREAM.
Additionally, an IA can enter catastrophic state and not notify Consumer about it if there is no
Simple EVD for IT_ASYNC_UNAFF_EVENT_STREAM or if it has overflowed. For the effect
of catastrophic error see it_unaffiliated_event_t and it_ia_create. 2397

2398
2399
2400
2401
2402
2403
2404
2405
2406
2407

When an IA supports Spigot online or offline Events the number of Events that can be generated
for the Unaffiliated Asynchronous Event Stream is potentially unbounded, but the queuing
capacity of an EVD is finite. This can potentially lead to Events that are generated for the
Unaffiliated Asynchronous Event Stream being silently discarded by the
Implementation. Events that are generated for the Affiliated (or Unaffiliated) Asynchronous
Event Stream will be silently discarded by the Implementation until such time as an EVD is
created to hold the Affiliated (or Unaffiliated) asynchronous Event Stream. If the Consumer
needs to know with certainty the state of an entity that can generate an Unaffiliated
Asynchronous Event (e.g. a Spigot), it should query for that state itself rather than relying upon
getting a state change Notification via the Unaffiliated Asynchronous Event Stream.

Interconnect Transport API –Issue 1 70

 71

2408
2409
2410
2411
2412

2413
2414
2415
2416

2417

IT_ASYNC_AFF_EVENT_STREAM and IT_ASYNC_UNAFF_EVENT_STREAM SEVDs
store Events that notify users of errors and other conditions that affect IA operation. These
Events are usually unpredictable, which can make determining an appropriate size for these
queues a challenge. Users should consider the size and type of the fabric, their resource usage
and their message patterns when setting the sevd_queue_size parameter for these EVDs.

FUTURE DIRECTIONS
IT-API support for a callback routine being invoked when an Event is enqueued on an SEVD
may be added in the future.

Aggregate EVD support for multiple IAs may be added in the future.

SEE ALSO
it_evd_post_se(), it_ep_rc_create(), it_ep_ud_create(), it_listen_create(), 2418
it_ud_service_request_handle_create(), it_evd_query(), it_evd_modify(), it_evd_wait(), 2419
it_evd_dequeue(), it_evd_free(), it_event_t, it_dto_flags_t, it_unaffiliated_event_t, 2420
it_ia_create(), it_ia_info_t2421

Interconnect Transport API –Issue 1 71

 72

it_evd_dequeue() 2422

2423
2424

2425
2426
2427
2428
2429
2430
2431

2432

2433

2434
2435
2436
2437

NAME
it_evd_dequeue – dequeue for Events from Event Dispatcher

SYNOPSIS
#include <it_api.h>

 it_status_t it_evd_dequeue(

IN it_evd_handle_t evd_handle,
OUT it_event_t *event

);

DESCRIPTION

evd_handle: Handle for simple or aggregate Event Dispatcher.

event: Pointer to the Consumer-allocated structure that the Implementation
fills with the Event information.

it_evd_dequeue removes the first Event from the Event Dispatcher Event queue and fills the
Consumer-allocated event structure with Event information. For the Event information and event
structure see it_event_t. The Consumer should allocate an Event structure big enough to hold
any Event that the Event Dispatcher can deliver.

2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460

it_evd_dequeue returns the first Event from an EVD, if one exists, regardless of whether EVD
has waiters.

The return value for event is defined only if it_evd_dequeue returns IT_SUCCESS.

For AEVD with IT_EVD_DEQUEUE_NOTIFICATIONS evd_flag bit clear, the operation
dequeues the first Event from one of its associated SEVDs.

For AEVD with IT_EVD_DEQUEUE_NOTIFICATIONS evd_flag bit set, the operation returns
a Notification Event of the IT_AEVD_NOTIFICATION_EVENT Event Stream which identifies
an evd_handle from one of its associated SEVDs.The order in which the associated SEVD's
AEVD Notification Events are delivered is implementation-dependent.

For a Simple EVD that does not have an associated AEVD, the Consumer can dequeue from the
SEVD.

If the SEVD has an associated AEVD with the IT_EVD_DEQUEUE_NOTIFICATIONS
evd_flag cleared, then it is an error for the Consumer to dequeue from the SEVD.

If the SEVD has an associated AEVD with the IT_EVD_DEQUEUE_NOTIFICATIONS
evd_flag set, then the Consumer may dequeue from the SEVD at will.

Attempting to dequeue from the SEVD when disallowed will return IT_ERR_
INVALID_EVD_STATE.

The Consumer can always dequeue from AEVD regardless of the IT_EVD_
DEQUEUE_NOTIFICATIONS evd_flag value or associated fd. If the EVD is empty, then
it_evd_dequeue will return IT_ERR_QUEUE_EMPTY.

Interconnect Transport API –Issue 1 72

 73

2461
2462
2463
2464
2465
2466
2467

2468
2469

2470
2471

2472
2473

2474
2475

2476
2477

For IT_DTO_EVENT_STREAM Events when a Completion Event is returned for a given Send,
RDMA Read, RDMA Write, RMR Bind or RMR Unbind operation that was posted to an
Endpoint, the Implementation guarantees that all Send, RDMA Read, RDMA Write, RMR Bind
and RMR Unbind operations that were posted to the Endpoint prior to the one whose
Completion Event was returned have also completed regardless of their dto_flag value for
IT_COMPLETION_FLAG.

The SEVD sevd_threshold value has no effect on this operation.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described below.

IT_ERR_QUEUE_EMPTY There were no entries on the Event Dispatcher
queue.

IT_ERR_INVALID_EVD The Event Dispatcher Handle (evd_handle) was
invalid.

IT_ERR_INVALID_EVD_STATE The attempted operation was invalid for the current
state of the Event Dispatcher.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in
the disabled state. None of the output parameters
from this routine are valid. See it_ia_info_t for a
description of the disabled state.

2478
2479

2480
2481

2482
2483
2484
2485
2486
2487
2488
2489
2490
2491

2492

ERRORS
None.

APPLICATION USAGE
For an AEVD with IT_EVD_DEQUEUE_NOTIFICATIONS set, receipt of an
IT_AEVD_NOTIFICATION_EVENT Event indicates that the SEVD (identified by evd_handle
in the Event) reached Notification status or has Events available. By the time the Consumer calls
it_evd_dequeue on the returned SEVD it may be empty or may not be in the Notification Criteria
any longer if there are multiple dequeuers from the SEVD.

For the “non-thread-safe” Implementation Consumer cannot have multiple threads
calling dequeue on the same EVD Handle simultaneously.
When multiple threads retrieve Events concurrently from the same SEVD, each Event will be
retrieved exactly once but it is unpredictable which thread will retrieve any particular Event.

SEE ALSO
it_evd_create(), it_evd_wait(), it_event_t. 2493

Interconnect Transport API –Issue 1 73

 74

it_evd_free() 2494

2495
2496

2497
2498
2499
2500
2501
2502

2503

2504

2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516

NAME
it_evd_free – destroy an Event Dispatcher

SYNOPSIS
#include <it_api.h>

it_status_t it_evd_free(

IN it_evd_handle_t evd_handle
);

DESCRIPTION

evd_handle Handle to Simple or Aggregate Event Dispatcher.

it_evd_free Destroys an Event Dispatcher.

On successful completion, all Events on the queue of the specified Event Dispatcher are lost.

it_evd_free will return IT_ERR_EVD_BUSY if the EVD is still associated with an active Event
Stream feeding it for all Event Streams except IT_ASYNC_AFF_EVENT_STREAM, IT_
ASYNC_UNAFF_EVENT_STREAM, and IT_SOFTWARE_EVENT_STREAM. it_evd_free
may be called at any time for IT_ASYNC_AFF_EVENT_STREAM, IT_ASYNC_
UNAFF_EVENT_STREAM, and IT_SOFTWARE_EVENT_STREAM Event Streams but
Events may be lost.

An AEVD with IT_EVD_DEQUEUE_NOTIFICATIONS set may be dissociated from its
SEVDs through use of it_evd_modify on each SEVD or through use of it_evd_free on each
SEVD. An AEVD with IT_EVD_DEQUEUE_NOTIFICATIONS evd_flag bit clear may be
dissociated from SEVDs through use of it_evd_free on each SEVD. DTO SEVDs may be
disassociated from their DTO Event Streams through use of it_ep_free on each associated
Endpoint. Communication Management Request SEVDs may be disassociated from their Event
Streams through use of

2517
2518

it_listen_free on each associated listen Handle. Communication
Management Message SEVDs may be disassociated from their Event Streams through use of

2519
2520

it_ep_free on each associated Endpoint. 2521
2522
2523

2524
2525
2526

2527

2528
2529

2530
2531

Use of the Handle evd_handle in any subsequent operation fails.

This operation is applicable to both AEVD and SEVD Handles.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described below.

IT_ERR_INVALID_EVD The Event Dispatcher Handle (evd_handle) was invalid.

IT_ERR_EVD_BUSY The Event Dispatcher was still associated with active
Event Streams.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in the
disabled state. None of the output parameters from this

Interconnect Transport API –Issue 1 74

 75

2532
2533

2534
2535

2536

routine are valid. See it_ia_info_t for a description of the
disabled state.

ERRORS
None.

SEE ALSO
it_evd_create(), it_evd_modify(), it_evd_query(), it_ep_free(), it_listen_free(). 2537

Interconnect Transport API –Issue 1 75

 76

it_evd_modify() 2538

2539
2540

2541
2542
2543
2544
2545
2546
2547
2548

2549
2550
2551
2552
2553
2554
2555
2556
2557

NAME
it_evd_modify – modify an existing Event Dispatcher

SYNOPSIS
#include <it_api.h>

it_status_t it_evd_modify(

IN it_evd_handle_t evd_handle,
IN it_evd_param_mask_t mask,
IN const it_evd_param_t *params

);

DESCRIPTION
evd_handle Simple or Aggregate Event Dispatcher.

mask Logical OR of flags for requested EVD parameters.

params Pointer to Consumer-allocated structure that contains new
Consumer-requested Event Dispatcher parameters.

it_evd_modify changes the desired parameters of the Simple or Aggregate Event Dispatcher
evd_handle. Parameters to be modified are specified by flags in mask. New values for the
parameters are specified by the corresponding fields in the structure pointed to by params. Fields
and their flag values are shown below. Note that parameters represented by fields of
it_evd_param_t that are not shown below can not be modified. See it_evd_query for definition
of it_evd_param_t and it_evd_param_mask_t.

2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570

2571
2572
2573

2574
2575
2576
2577

2578
2579

typedef struct {
 ...
 size_t sevd_queue_size; /* IT_EVD_PARAM_QUEUE_SIZE*/
 size_t sevd_threshold; /* IT_EVD_PARAM_THRESHOLD */
 it_evd_handle_t aevd; /* IT_EVD_PARAM_AEVD_HANDLE*/
 ...
 it_boolean_t evd_enabled; /* IT_EVD_PARAM_ENABLED */
 it_boolean_t evd_overflowed; /* IT_EVD_PARAM_OVERFLOWED */
} it_evd_param_t;

The definition of each field follows:

sevd_queue_size Minimum size of the Simple EVD Event queue. Attempting to modify
this field for an AEVD will return an IT_ERR_INVALID_MASK
error code.

sevd_threshold For Simple EVD only. Number of Events on a single Event Dispatcher
queue required for Notification of the associated AEVD or FD and for
SEVD waiters unblocking. Attempting to modify this field for an
AEVD will return an IT_ERR_INVALID_MASK error code.

aevd For Simple EVD only. The Handle for the new associated Aggregate
EVD. Attempting to modify this field for an AEVD will return an

Interconnect Transport API –Issue 1 76

 77

2580
2581

IT_ERR_INVALID_MASK error code if the above criteria are not
met.

2582
2583
2584
2585
2586

evd_enabled Consumer may set this it_boolean_t to the value IT_TRUE to indicate
that an EVD should notify an associated AEVD or fd when
Notification criteria are reached. Clearing evd_enabled (making it
equal to IT_FALSE) will disable this capability. May be done at any
time.

evd_overflowed Consumer may clear this it_boolean_t (make it equal IT_FALSE) to
reset an overflow condition on the EVD. See

2587
it_evd_create for more

details.
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600

AEVD can only be changed for the SEVD that is disabled, and IT_EVD_
DEQUEUE_NOTIFICATIONS is set in the evd_flag for the current aevd (i.e. for the AEVD),
and there is no fd associated with the SEVD (i.e., for the SEVD). Otherwise,
IT_ERR_INVALID_EVD_STATE is returned.

The new AEVD may have IT_EVD_DEQUEUE_NOTIFICATIONS set or cleared.

If the new AEVD has IT_EVD_DEQUEUE_NOTIFICATIONS cleared, the Consumer can not
subsequently disassociate the SEVD from the new AEVD.

The Consumer may disassociate an SEVD from an AEVD by specifying the value of
IT_NULL_HANDLE for aevd only if the SEVD is disabled and the AEVD has IT_EVD_
DEQUEUE_NOTIFICATIONS set. Otherwise, IT_ERR_INVALID_EVD_STATE is returned.

Consumer can not use it_evd_modify to request fd to be associated with SEVD; instead, the
Consumer can only do so at it_evd_create time. 2601

2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620

To disassociate the fd, the Consumer can simply close the fd. This clears the bit for IT_EVD_
CREAT_FD in evd_flag for the SEVD or AEVD.

If sevd_queue_size is requested to be changed for SEVD then the Implementation is required to
provide a queue size of at least sevd_queue_size, but is free to provide a larger queue size (or
provide dynamic queue enlargement when needed). The Consumer can determine the actual
queue size by querying the modified Simple Event Dispatcher.

Attempting to modify sevd_queue_size to be less than sevd_threshold returns
IT_ERR_INVALID_QUEUE_SIZE. Attempting to modify sevd_threshold to be greater than
sevd_queue_size returns IT_ERR_INVALID_THRESHOLD. In both error cases, the operation
will not change the respective parameter from its current value.

If the number of entries on the Event queue is greater than the requested sevd_queue_size, the
operation will return IT_ERR_INVALID_QUEUE_SIZE and not change the Event queue size.

The Consumer can enable the SEVD (set evd_enabled) so that the SEVD will generate
Notifications for the current or future associated AEVD or fd, if either of them exists. Enabling
an SEVD prohibits the Consumer from waiting on the SEVD if it has an associated AEVD or fd.
If SEVD is in Notification criteria then SEVD generates the Notification for an associated
existing AEVD or fd.

The Consumer can enable AEVD so that the AEVD will generate Notification for an associated
fd. Enabling the AEVD disallows the Consumer from waiting on the AEVD if it has an

Interconnect Transport API –Issue 1 77

 78

2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635

2636
2637

2638
2639

2640

2641
2642

2643
2644

2645
2646
2647

2648
2649

2650
2651

2652
2653

2654
2655

associated fd. For an AEVD with IT_EVD_DEQUEUE_NOTIFICATIONS evd_flag cleared,
Consumer can still dequeue Events from the AEVD.

Enabling the enabled EVD has no effect.

The Consumer can disable the SEVD (clear evd_enabled) so that the SEVD will not generate
Notifications for an associated AEVD or fd, if either of them exists. If an associated AEVD has
the IT_EVD_DEQUEUE_NOTIFICATIONS evd_flag cleared the AEVD can dequeue Events
from the SEVD. The Consumer can not wait on or dequeue from the SEVD which is associated
with the AEVD has the IT_EVD_DEQUEUE_NOTIFICATIONS evd_flag cleared even when
SEVD is disabled. The Consumer can wait on or dequeue from the SEVD which is associated
with the AEVD has the IT_EVD_DEQUEUE_NOTIFICATIONS evd_flag set when SEVD is
disabled.

The Consumer can disable AEVD so that the AEVD will not generate Notification for an
associated fd. Disabling the AEVD allows the Consumer to wait on the AEVD.

Disabling the disabled EVD has no effect.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described below.

IT_ERR_INVALID_EVD The Event Dispatcher Handle (evd_handle) was
invalid.

IT_ERR_INVALID_MASK The mask contained invalid flag values.

IT_ERR_INVALID_EVD_STATE The attempted operation was invalid for the current
state of the Event Dispatcher.

IT_ERR_RESOURCE_QUEUE_SIZE The underlying transport could not allocate the
requested sevd_queue_size resources at this time.

IT_ERR_INVALID_QUEUE_SIZE The requested Simple Event Dispatcher queue size
(sevd_queue_size) was less than the outstanding
Events on the Event queue.

IT_ERR_INVALID_THRESHOLD An invalid value for the Simple Event Dispatcher
threshold was specified.

IT_ERR_INVALID_AEVD The Aggregation Event Dispatcher Handle (aevd)
was invalid.

IT_ERR_RESOURCES The requested operation failed due to insufficient
resources.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in
the disabled state. None of the output parameters
from this routine are valid. See it_ia_info_t for a
description of the disabled state.

2656
2657

Interconnect Transport API –Issue 1 78

 79

2658
2659

2660

ERRORS
None.

SEE ALSO
it_evd_create(), it_evd_query(), it_evd_free()2661

Interconnect Transport API –Issue 1 79

 80

it_evd_post_se() 2662

2663
2664

2665
2666
2667
2668
2669
2670
2671

2672

2673
2674

2675
2676
2677
2678
2679
2680
2681
2682
2683
2684

2685
2686

2687

2688
2689

2690
2691
2692

2693
2694

NAME
it_evd_post_se – post software Event on Simple Event Dispatcher

SYNOPSIS
#include <it_api.h>

 it_status_t it_evd_post_se(

IN it_evd_handle_t evd_handle,
IN const void *event

);

DESCRIPTION

evd_handle Simple Event Dispatcher of IT_SOFTWARE_EVENT_STREAM
Event Stream type.

event Pointer to the Consumer-created Software Event.

it_evd_post_se posts a software Event to the IT_SOFTWARE_EVENT_STREAM simple Event
Dispatcher Event queue. This causes an Event to arrive on the Event Dispatcher Software Event
Stream. The event pointer is opaque to the Implementation and release of the memory referenced
by the event pointer in a software Event is the Consumer's responsibility.

If the Event queue is full, the operation is completed unsuccessfully and returns
IT_ERR_EVD_QUEUE_FULL. The event is not queued. Since the Event queue for software
Events can never overflow, the Affiliated Asynchronous Event Dispatcher is not affected.

it_evd_post_se can only be used to post software Events within the same process since
evd_handle has the scope of a single IA.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described below.

IT_ERR_EVD_QUEUE_FULL The Simple Event Dispatcher queue was full.

IT_ERR_INVALID_EVD The Event Dispatcher Handle (evd_handle) was
invalid.

IT_ERR_INVALID_SOFT_EVD The Simple Event Dispatcher Handle (evd_handle)
was not an IT_SOFTWARE_EVENT_STREAM
Event Dispatcher.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in
the disabled state. None of the output parameters
from this routine are valid. See it_ia_info_t for a
description of the disabled state.

2695
2696

2697
2698

ERRORS
None.

Interconnect Transport API –Issue 1 80

 81

2699
2700
2701
2702

2703

APPLICATION USAGE
Consumer can use this operation to unblock an AEVD waiter as well as passing specific
instruction for the unblocked waiter. The SEVD for the Software Event should be associated
with the AEVD. A software Event is Notification Event and will unblock the waiter.

SEE ALSO
it_evd_create(), it_software_event_t, it_evd_wait()2704

Interconnect Transport API –Issue 1 81

 82

it_evd_query() 2705

2706
2707

2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742

2743

2744

2745

2746
2747
2748
2749

NAME
it_evd_query – query an existing Simple or Aggregate Event Dispatcher

SYNOPSIS
#include <it_api.h>

it_status_t it_evd_query(

IN it_evd_handle_t evd_handle,
IN it_evd_param_mask_t mask,
OUT it_evd_param_t *params

);

typedef enum {
 IT_EVD_PARAM_ALL = 0x000001,
 IT_EVD_PARAM_IA = 0x000002,
 IT_EVD_PARAM_EVENT_NUMBER = 0x000004,
 IT_EVD_PARAM_FLAG = 0x000008,
 IT_EVD_PARAM_QUEUE_SIZE = 0x000010,
 IT_EVD_PARAM_THRESHOLD = 0x000020,
 IT_EVD_PARAM_AEVD_HANDLE = 0x000040,
 IT_EVD_PARAM_FD = 0x000080,
 IT_EVD_PARAM_BOUND = 0x000100,
 IT_EVD_PARAM_ENABLED = 0x000200,
 IT_EVD_PARAM_OVERFLOWED = 0x000400
} it_evd_param_mask_t;

typedef struct {
 it_ia_handle_t ia; /* IT_EVD_PARAM_IA */
 it_event_type_t event_number; /* IT_EVD_PARAM_EVENT_NUMBER*/
 it_evd_flags_t evd_flag; /* IT_EVD_PARAM_FLAG */
 size_t sevd_queue_size; /* IT_EVD_PARAM_QUEUE_SIZE */
 size_t sevd_threshold; /* IT_EVD_PARAM_THRESHOLD */
 it_evd_handle_t aevd; /* IT_EVD_PARAM_AEVD_HANDLE*/
 int fd; /* IT_EVD_PARAM_FD */
 it_boolean_t evd_bound; /* IT_EVD_PARAM_BOUND */
 it_boolean_t evd_enabled; /* IT_EVD_PARAM_ENABLED */
 it_boolean_t evd_overflowed; /* IT_EVD_PARAM_OVERFLOWED */
} it_evd_param_t;

DESCRIPTION

evd_handle Event Dispatcher.

mask Logical OR of flags for requested EVD parameters.

params Pointer to Consumer-allocated structure that the Implementation fills
with Consumer-requested Event Dispatcher parameters.

it_evd_query returns the desired parameters of the Simple or Aggregate Event Dispatcher
evd_handle in the structure pointed to by params. On return, each field of params is only valid if

Interconnect Transport API –Issue 1 82

 83

2750
2751
2752

2753

2754

the corresponding flag as shown below each field is set in the mask argument. The mask value
IT_EVD_PARAM_ALL causes all fields to be returned.

The definition of each field follows:

ia Handle for the Interface Adapter.

event_number Identifier for Event Stream type that can be enqueued to the EVD.

2755
2756

2757

2758
2759

2760
2761

2762

2763
2764
2765

2766
2767
2768
2769

evd_flag Flags for Event Dispatcher. See it_evd_create for definitions and use
of evd_flag.

sevd_queue_size Minimum size of the SEVD Event queue or zero for an AEVD.

sevd_threshold The number of non-notification Events on the Simple Event
Dispatcher queue for Notification, unblocking.

aevd Handle for Aggregate EVD associated with SEVD or
IT_NULL_HANDLE if none.

fd File descriptor corresponding to Event Dispatcher or ‘-1’ if none.

evd_bound When it has the value IT_TRUE indicates that the EVD is tied to an
Event Stream so Events can be queued on EVD. For an AEVD,
indicates that SEVDs are tied to the AEVD.

evd_enabled When it has the value IT_TRUE indicates: for an SEVD that it has
been configured to notify an associated AEVD or fd when
Notification criteria is reached; for an AEVD that it has been
configured to notify an associated fd when it is notified by one of its
associated SEVDs. See it_evd_modify. 2770

2771 evd_overflowed When it has the value IT_TRUE indicates that the EVD has
overflowed. See it_evd_create for more details. 2772

2773
2774
2775

2776
2777

2778

2779
2780

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described below.

IT_ERR_INVALID_EVD The Event Dispatcher Handle (evd_handle) was
invalid.

IT_ERR_INVALID_MASK The mask contained invalid flag values.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in
the disabled state. None of the output parameters
from this routine are valid. See it_ia_info_t for a
description of the disabled state.

2781
2782

2783
2784

ERRORS
None.

Interconnect Transport API –Issue 1 83

 84

2785 SEE ALSO
it_evd_create(), it_evd_modify(), it_evd_free(), it_ia_info_t2786

Interconnect Transport API –Issue 1 84

 85

it_evd_wait() 2787

2788
2789

2790
2791
2792
2793
2794
2795
2796
2797
2798

2799

2800

2801
2802

2803
2804

2805
2806
2807
2808

NAME
it_evd_wait – wait for Events on Event Dispatcher

SYNOPSIS
#include <it_api.h>

 it_status_t it_evd_wait(

IN it_evd_handle_t evd_handle,
IN uint64_t timeout,
OUT it_event_t *event,
OUT size_t *nmore

);

DESCRIPTION

evd_handle Handle for Simple or Aggregate Event Dispatcher.

timeout The duration of time, in microseconds, that Consumer is willing to
wait for an Event.

event Pointer to the Consumer-allocated structure that the Implementation
fills with the Event information.

nmore The snapshot of the number of Events queued on the EVD at the
time of it_evd_wait return. Only applicable for SEVD.

it_evd_wait removes the first Event from the Event Dispatcher Event queue and fills the
Consumer-allocated event structure with Event information. For the Event information and event
structure see it_event_t. The Consumer should allocate an Event structure big enough to hold
any Event that the Event Dispatcher can deliver.

2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824

The return value for event is defined only if it_evd_wait returns IT_SUCCESS.

The Consumer can wait on an EVD that is not associated with any higher level object (AEVD or
fd).

Consumer should not wait on an SEVD that has an associated AEVD with the
IT_EVD_DEQUEUE_NOTIFICATIONS evd_flag bit clear. An attempt by Consumer to wait on
evd_handle for that type of SEVD will result in routine failure with the return value of
IT_ERR_INVALID_EVD_STATE.

Consumer should not wait on an EVD that is associated with and enabled for Notification to
higher level objects. An attempt by Consumer to wait on evd_handle that is associated with and
enabled for Notification to a higher level object will result in routine failure with the return value
of IT_ERR_INVALID_EVD_STATE. However, the Consumer can wait on the EVD associated
with the higher level object if the EVD is disabled for Notification (except if the object is an
AEVD with the IT_EVD_DEQUEUE_NOTIFICATIONS evd_flag bit clear, as stated above).

An Implementation can support one or more simultaneous waiters on the same EVD (for thread
safety models see Section 3.2) if sevd_threshold value of evd_handle (see it_evd_create) is
greater than one then only a single waiter is supported. An attempt for more than one waiter to

2825
2826

Interconnect Transport API –Issue 1 85

 86

2827
2828
2829
2830
2831

wait on the EVD will result in an immediate error with IT_ERR_WAITER_LIMIT return value.
If sevd_threshold value of evd_handle is 1, then one or more simultaneous waiters can supported
for the SEVD.

A waiter can be blocked. An SEVD waiter will block when SEVD queue is empty. An AEVD
waiter will block when all associated SEVDs are empty. An SEVD waiter may block when the
SEVD has not reached the Notification criteria (see it_evd_create for the definition of the
Notification criteria). An AEVD waiter may block when all associated SEVDs have not reached
their Notification criteria.

2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870

An SEVD waiter will return immediately if there is a Notification Event (see it_evd_create for
the definition of the Notification Event) on the queue or if the number of Events on the SEVD is
equal or larger than sevd_threshold. An AEVD waiter with the IT_EVD_DEQUEUE_
NOTIFICATIONS evd_flag bit cleared will return immediately if there is a Notification Event
on any of the associated SEVDs or any of the associated SEVDs has number of Events larger
than or equal to its sevd_threshold. An AEVD waiter with the IT_EVD_DEQUEUE_
NOTIFICATIONS evd_flag bit set will return immediately if there is an IT_AEVD_
NOTIFICATION_EVENT available.

If arriving Event causes SEVD to reach Notification criteria then SEVD waiter will be
unblocked if one exists and if the SEVD is disabled and not associated with AEVD with the
IT_EVD_DEQUEUE_NOTIFICATIONS evd_flag bit cleared. As many waiters as there are
Events available on the SEVD can be unblocked. If arriving Event causes the SEVD to reach
Notification criteria and the SEVD is enabled for Notification to higher level objects then
Notification will be generated for the associated AEVD or fd. If the associated AEVD has a
waiter then the waiter will be unblocked. As many Notifications can be generated as there are
Events available on all SEVDs of the AEVD. As many waiters as there are Notifications can be
unblocked. Which waiters will be woken and in what order they will be woken is
implementation-dependent.

The timeout allows the Consumer to restrict the amount of time it will be blocked waiting for an
Event arrival. The value of IT_TIMEOUT_INFINITE indicates that Consumer will wait
indefinitely for an Event arrival. Consumers should use caution in using this value because wait
may never return if Notification is not generated. Consumers can use signal to unblock the
waiter in this case.

For IT_DTO_EVENT_STREAM Events, when a Completion Event is returned for a given
Send, RDMA Read, RDMA Write, RMR Bind or RMR Unbind operation that was posted to an
Endpoint, the Implementation guarantees that all Send, RDMA Read, RDMA Write, RMR Bind
and RMR Unbind operations that were posted to the Endpoint prior to the one whose
Completion Event was returned have also completed regardless of their dto_flag value for
IT_COMPLETION_FLAG.

For an SEVD, if the return value is neither IT_SUCCESS nor IT_ERR_TIMEOUT_EXPIRED,
then the returned values of nmore and Event are undefined. If the return value is
IT_ERR_TIMEOUT_EXPIRED, then the return value of event is undefined, but the return value
of nmore is defined. If the return value is IT_SUCCESS, then the return values of both nmore
and event are defined.

For an AEVD nmore is undefined for all returns. If the return value is not IT_SUCCESS, then
returned value event is undefined.

Interconnect Transport API –Issue 1 86

 87

2871
2872

2873
2874

2875
2876

2877
2878

2879
2880

2881

2882
2883

2884

2885
2886

The routine returns with return value IT_ERR_INTERRUPT when the waiter is unblocked by an
OS signal.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described below.

IT_ERR_WAITER_LIMIT No more waiters are permitted for the Event
Dispatcher.

IT_ERR_INVALID_EVD The Event Dispatcher Handle (evd_handle) was
invalid.

IT_ERR_INVALID_EVD_STATE The attempted operation was invalid for the current
state of the Event Dispatcher.

IT_ERR_ABORT The Event Dispatcher has been destroyed.

IT_ERR_INTERRUPT The Event Dispatcher waiter was unblocked by a
signal.

IT_ERR_TIMEOUT_EXPIRED The operation timed out.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in
the disabled state. None of the output parameters
from this routine are valid. See it_ia_info_t for a
description of the disabled state.

2887
2888

2889
2890

2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908

ERRORS
None.

APPLICATION USAGE
The Consumer should allocate an Event structure big enough to hold any Event that the Event
Dispatcher can deliver. The Implementation is not able to check that the event that Consumer
provides is sufficient to hold a returned Event. As a result a segmentation fault or memory
corruption may occur if the Implementation over-runs the user-specified memory.

For an AEVD with IT_EVD_DEQUEUE_NOTIFICATIONS set, any IT_AEVD_
NOTIFICATION_EVENT Event only indicates that the SEVD (identified by evd_handle in the
Event) reached Notification criteria. The order in which the associated SEVD's AEVD
Notification Events are delivered is implementation-dependent. No restriction is imposed by the
Implementation on dequeueing Events from the underlying SEVD. If other Consumer threads
are independently dequeueing Events from the SEVD, the thread receiving the
IT_AEVD_NOTIFICATION_EVENT may find the SEVD to be empty when it dequeues from
the SEVD.

For an AEVD with IT_EVD_DEQUEUE_NOTIFICATIONS set, receipt of an IT_AEVD_
NOTIFICATION_EVENT Event indicates that the SEVD (identified by evd_handle in the
Event) reached Notification status. If the Consumer fails to dequeue Events from the SEVD
sufficient to remove it from Notification status, then an additional
IT_AEVD_NOTIFICATION_EVENT Event for the SEVD will appear at the AEVD when the
Consumer next calls it_evd_wait or it_evd_dequeue. 2909

Interconnect Transport API –Issue 1 87

 88

For an AEVD with IT_EVD_DEQUEUE_NOTIFICATIONS set, receipt of an IT_AEVD_
NOTIFICATION_EVENT Event indicates that the SEVD (identified by evd_handle in the
Event) reached Notification status. By the time the Consumer calls

2910
2911

it_evd_dequeue on the
returned SEVD it may be empty or may not be in the Notification Criteria any longer if there are
multiple dequeuers from the SEVD.

2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930

2931

The Consumer must be prepared to handle return from it_evd_wait with fewer than the expected
number of Events or without any Notification Events on an EVD. This can occur for the
following reasons:

The underlying Implementation does not support thresholding.

The underlying Implementation does not support IT_NOTIFY_FLAG.

For sevd_threshold value of one, if an Event is on the SEVD then it_evd_wait will return
immediately with IT_SUCCESS for the SEVD or the AEVD fed by the SEVD.

For the “non-thread-safe” Implementation Consumer should not have multiple threads calling on
the same EVD Handle simultaneously. Consumer should choose an Implementation that
supports multithreaded applications if they want to have multiple waiters. Consumer should set
the sevd_threshold to one for an SEVD if they want to use multiple waiters on the SEVD.

When multiple threads retrieve Events concurrently from the same SEVD, each Event will be
retrieved exactly once but it is unpredictable which thread will retrieve any particular Event.

The Consumer is advised not to destroy an EVD that it is currently waiting on. If the Consumer
does so, the it_evd_wait routine may return IT_ERR_ABORT, or a segmentation violation may
take place. Which behavior occurs is implementation-dependent.

SEE ALSO
it_evd_create(), it_event_t, it_post_send(), it_post_sendto(), it_post_rdma_read(),
it_post_rdma_write

2932
(), it_rmr_bind(), it_rmr_unbind(), it_dto_events, it_dto_flags_t2933

Interconnect Transport API –Issue 1 88

 89

it_get_consumer_context() 2934

2935
2936

2937
2938
2939
2940
2941
2942
2943

2944

2945
2946

2947
2948
2949

NAME
it_get_consumer_context – return the Consumer Context associated with an IT Object Handle

SYNOPSIS
#include <it_api.h>

it_status_t it_get_consumer_context(
 IN it_handle_t handle,
 OUT it_context_t *context
);

DESCRIPTION

handle Handle of the IT-API object associated with the Consumer Context
to be retrieved.

context The address of the location where the retrieved Consumer Context is
returned.

it_get_consumer_context retrieves the Consumer Context associated with the specified handle.
If the Consumer Context was never set (by a call to it_set_consumer_context), then the value of
the returned Consumer Context is 0.

2950
2951
2952
2953

2954
2955

2956

2957

2958
2959

The handle must be one of the IT-API Handle types, cast as an it_handle_t. See it_handle_t for
a description of the valid Handle types.

RETURN VALUE
A successful call returns SUCCESS. Otherwise, an error code is returned as described below.

IT_ERR_INVALID_HANDLE The handle was invalid.

IT_ERR_NO_CONTEXT The handle does not have an associated Context.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in the
disabled state. None of the output parameters from this
routine are valid. See it_ia_info_t for a description of the
disabled state.

2960
2961

2962
2963

2964
2965

ERRORS
None.

EXAMPLES
The following code example demonstrates the use of a cast in the call to
it_get_consumer_context. The lmr object is cast to the generic it_handle_t type for the call. 2966

2967
2968
2969
2970

it_lmr_handle_t lmr;
it_context_t cxt;
it_get_consumer_context((it_handle_t) lmr, &cxt);

Interconnect Transport API –Issue 1 89

 90

2971 SEE ALSO
it_set_consumer_context(), it_context_t, it_handle_t2972

Interconnect Transport API –Issue 1 90

 91

it_get_handle_type() 2973

2974
2975

2976
2977
2978
2979
2980
2981
2982

2983

2984

2985
2986

NAME
it_get_handle_type – return the Handle type value associated with an IT Object Handle

SYNOPSIS
#include <it_api.h>

it_status_t it_get_handle_type(
 IN it_handle_t handle,
 OUT it_handle_type_enum_t *type_of_handle
);

DESCRIPTION

handle Handle of an IT-API object.

type_of_handle Type of the Handle of handle.

The it_get_handle_type interface allows the Consumer to retrieve the type of an IT Object using
its Handle. See it_handle_t for a description of the Handle types and associated enumeration
values returned.

2987
2988

2989
2990
2991

2992

2993
2994

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_INVALID_HANDLE The handle was invalid.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in the
disabled state. None of the output parameters from this
routine are valid. See it_ia_info_t for a description of the
disabled state.

2995
2996

2997
2998

2999

ERRORS
None.

SEE ALSO
it_handle_t3000

Interconnect Transport API –Issue 1 91

 92

it_get_pathinfo() 3001

3002
3003
3004

3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015

3016

3017
3018

3019
3020

3021

3022
3023
3024
3025
3026
3027

3028
3029
3030
3031
3032

3033
3034
3035
3036
3037
3038
3039
3040

NAME
it_get_pathinfo – retrieve a set of Paths that can be used to communicate with a given remote

Network Address

SYNOPSIS
#include <it_api.h>

it_status_t it_get_pathinfo(

IN it_ia_handle_t ia_handle,
IN size_t spigot_id,
IN const it_net_addr_t *net_addr,
IN OUT size_t *num_paths,
OUT size_t *total_paths,
OUT it_path_t *paths

);

DESCRIPTION

ia_handle The Handle for the IA that the caller wishes to use for
communicating with the remote Network Address .

spigot_id The Spigot on the IA that the caller wishes to use for communicating
with the remote Network Address.

net_addr The remote Network Address to communicate with.

num_paths On input, points to the count of the maximum number of Paths that
the Consumer wishes to have returned. On output, points to the
count of the total number of Paths that were actually returned, which
is guaranteed to be less than or equal to the number that the
Consumer requested. This is only valid on output if the call returns
IT_SUCCESS.

total_paths The total number of Paths that were available to access the remote
Network Address. This may be greater than the number of Paths
returned via num_paths if there were more Paths available than the
maximum the Consumer wished to have returned. This is only valid
if the call returns IT_SUCCESS.

paths An array allocated by the Consumer that holds the returned Path(s).
This only contains valid information if the call returns
IT_SUCCESS.

it_get_pathinfo is used to retrieve a set of Paths that can be used to reach the specified remote
Network Address. The local component of the Path is given by the combination of ia_handle
(which identifies the local IA to use), and spigot_id (which identifies the Spigot to be used on
that IA). The set of Paths that can be used is returned in paths.

How the Consumer chooses which IA and Spigot to use for the local component of the Path is
outside the scope of the API. The API does, however, provide the it_interface_list routine to 3041

Interconnect Transport API –Issue 1 92

 93

enumerate all Interfaces that could be used to find a possible Path. The Consumer can use the
names returned as input to the

3042
it_ia_create routine, which will return an IA Handle that can

subsequently be fed to
3043

it_ia_query to determine what the valid Spigot identifiers are for that IA. 3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069

Several different Network Address formats are supported: see the man page for it_net_addr_t
for details. The mechanism by which the Consumer determines the remote Network Address to
target is outside the scope of the API. If the underlying transport is one that supports IP
Network Addresses, existing APIs (such as gethostbyname) for translating host names into IP
addresses can be used to convert a hostname into an IP address.

The Consumer is responsible for allocating the storage necessary to hold the returned set of
paths. Since the Consumer may not know how many Paths are available, it passes the number of
Paths for which it has allocated storage in the num_paths parameter on input. This routine will
return no more than that number of Paths to the Consumer. If more Paths are available than the
Consumer has allocated space for, an arbitrary subset of the available Paths will be provided to
the Consumer. A Consumer that does not wish to deal with Path selection can therefore avoid
doing so by always specifying a value of one for the total number of Paths it wishes to have
returned.

The set of Paths that are available to reach a given remote Network Address is dynamic, and can
change over time. (For example, a link on a switch or router could become inoperative, thus
decreasing the set of available Paths.) There is therefore no guarantee that given the same input
parameters two different invocations of it_get_pathinfo will return the same results. The
information returned by it_get_pathinfo is a snapshot of the Paths available at the time of the
call. In addition, if the Consumer asks for fewer Paths than are available, the API may return a
different set of Paths for two different invocations of it_get_pathinfo regardless of the state of
the network.

It is possible that no Paths are available to reach the given remote Network Address. In that
case, it_get_pathinfo will return IT_SUCCESS, but the total number of Paths available pointed
to by num_paths will be zero.

Once the Consumer has chosen one of the set of Paths returned, it can furnish that Path as input
to the it_ep_connect routine. Consumers that wish to construct their own Path can also do so by
populating the

3070
it_path_t data structure themselves, although this is inherently a transport-

dependent programming practice. See the man page for
3071

it_path_t for details on the internal
structure of a Path.

3072
3073

3074
3075
3076
3077
3078

3079

3080
3081

3082
3083

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_INVALID_IA The Interface Adapter Handle (ia_handle) was
invalid.

IT_ERR_INVALID_SPIGOT An invalid Spigot ID was specified.

IT_ERR_INVALID_NETADDR The format of the Network Address was not
recognized.

IT_ERR_IA_CATASTROPHE The Interface Adapter has experienced a catastrophic
error and is in the disabled state. None of the output

Interconnect Transport API –Issue 1 93

 94

parameters from this routine are valid. See 3084
it_ia_info_t for a description of the disabled state. 3085

3086
3087

3088

ERRORS
None.

SEE ALSO
it_interface_list(), it_ia_create(), it_ia_query(), it_ep_connect(), it_listen_create()3089

Interconnect Transport API –Issue 1 94

 95

it_handoff() 3090

3091
3092
3093

3094
3095
3096
3097
3098
3099
3100
3101
3102
3103

3104

3105
3106

3107
3108

3109
3110
3111
3112
3113
3114
3115
3116

3117
3118

3119
3120

3121

3122

3123
3124

NAME
it_handoff - forward an incoming Connection Request to another Spigot and Connection

Qualifier

SYNOPSIS
#include <it_api.h>

it_status_t it_handoff(

IN const it_conn_qual_t * conn_qual,
IN size_t spigot_id,
IN it_cn_est_identifier_t cn_est_id

);

typedef uint64_t it_cn_est_identifier_t;

DESCRIPTION

conn_qual The Connection Qualifier to which the Connection Request should
be forwarded.

spigot_id Interface Adapter Spigot to which the Connection Request should be
forwarded.

cn_est_id Connection Establishment Identifier associated with the Connection
Request to be forwarded.

it_handoff forwards a Connection Request to the specified Spigot and Connection Qualifier of
the IA on which the Connection Request originally arrived. The forwarded Connection Request
generates an IT_CM_REQ_CONN_REQUEST_EVENT Event at the Listen Point to which the
request was forwarded. Forwarded Connection Request Events look identical to the original
Events, therefore the Consumer can not distinguish them. The Connection Establishment
Identifier, cn_est_id, is destroyed by this function.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described below:

ERR_INVALID_CN_EST_ID The Connection Establishment Identifier (cn_est_id)
was invalid.

IT_ERR_INVALID_CONN_QUAL The Connection Qualifier (conn_qual) was invalid.

IT_ERR_INVALID_SPIGOT An invalid Spigot ID was specified.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in
the disabled state. None of the output parameters
from this routine are valid. See it_ia_info_t for a
description of the disabled state.

3125
3126

3127
3128

ERRORS
None.

Interconnect Transport API –Issue 1 95

 96

3129 APPLICATION USAGE
3130
3131
3132

3133

Calls to it_reject, it_ep_accept, and it_handoff that pertain to the same Endpoint should be
serialized by the Consumer. Failure to abide by this restriction may result in a segmentation
violation or other error.

SEE ALSO
it_ep_connect(), it_reject(), it_ep_accept(), it_cm_req_events3134

Interconnect Transport API –Issue 1 96

 97

it_hton64() 3135

3136
3137

3138
3139
3140
3141
3142
3143
3144
3145
3146
3147

3148

3149

3150
3151
3152
3153
3154
3155
3156

3157
3158

3159
3160

3161
3162
3163
3164
3165
3166
3167
3168
3169

3170
3171

NAME
it_hton64, it_ntoh64 – convert 64-bit integers between host and network byte order

SYNOPSIS
#include <it_api.h>

uint64_t it_hton64(
 uint64_t hostint
);

uint64_t it_ntoh64(
 uint64_t netint
);

DESCRIPTION

hostint 64-bit integer stored in host byte order.

netint 64-bit integer stored in network byte order.

The it_hton64 routine converts its input argument hostint from host byte order to network byte
order and returns the result.

it_ntoh64 converts its input argument netint from network byte order to host byte order and
returns the result.

On some platforms, host byte order and network byte order are identical and these functions
simply return their input argument.

RETURN VALUE
Both functions always succeed and return their converted input argument.

ERRORS
None.

APPLICATION USAGE
The individual bytes of integer variables are stored in memory in an order that is platform
dependent, which is known as host byte order. To facilitate the exchange of integer variables
between platforms having different host byte orders, a platform independent byte order known as
network byte order has been defined. To portably send an integer to a network peer, the
Consumer should convert it from host to network byte order and send the network byte order
value. The receiving peer then converts from network byte order to its own host byte order.

Note that an integer must be stored in host byte order to be used correctly in normal arithmetic
operations.

SEE ALSO
htonl(), ntohl()

Interconnect Transport API –Issue 1 97

 98

it_ia_create() 3172

3173
3174

3175
3176
3177
3178
3179
3180
3181
3182
3183

3184

3185

3186
3187

3188
3189

3190
3191
3192
3193
3194

NAME
it_ia_create – create an Interface Adapter

SYNOPSIS
#include <it_api.h>

it_status_t it_ia_create(
 IN const char *name,
 IN uint32_t major_version,
 IN uint32_t minor_version,

OUT it_ia_handle_t *ia_handle
);

DESCRIPTION

name The name of the Interface for which to create an Interface Adapter.

major_version The IT-API major version that the Consumer will use in subsequent
calls to the IA.

minor_version The IT-API minor version that the Consumer will use in subsequent
calls to the IA.

ia_handle Upon successful return, points to an Interface Adapter Handle for
the created Interface Adapter.

it_ia_create is used to create an Interface Adapter. The Consumer identifies the Interface
Adapter to be created by its Interface name, major and minor version numbers for the most
recent version of the IT-API supported. The Consumer may select these parameters from the list
returned by the it_interface_list call. 3195

3196
3197
3198
3199
3200
3201
3202
3203
3204

The major version number associated with the first release of the IT-API is 1, and the minor
version number associated with the first release of the IT-API is 0. When a new version of the
IT-API is released, a unique combination of major and minor version numbers is associated with
it. If the new release is source code compatible with the previous release the major version
number of the new release will be the same as that of the previous release, and the minor version
number will be incremented by one. If the new release is not source code compatible with the
previous release the major version number of the new release will be incremented by one, and
the minor number will be zero.

The latest version of the IT-API that an Implementation supports is returned from the
it_interface_list call. For the major_version returned from that call, the Implementation shall
support all minor versions less than or equal to the minor_version returned from that call. The
Implementation is not required to support major versions of the IT-API previous to the one
returned from

3205
3206
3207

it_interface_list. If the Implementation does not support conversing with the IA
using the requested previous major version of the IT-API, an error will be returned from
it_ia_create.

3208
3209
3210

Interconnect Transport API –Issue 1 98

 99

3211
3212
3213

3214
3215
3216

3217
3218

3219

3220
3221

3222
3223

3224
3225

3226

If successful, this routine returns an Interface Adapter Handle. The returned Interface Adapter
Handle may be passed to other IT-API routines that create and manage Interface Adapter objects
such as Event Dispatchers and Local Memory Regions.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_RESOURCES The requested operation failed due to
insufficient resources.

IT_ERR_INVALID_NAME The specified name was invalid.

IT_ERR_INVALID_MAJOR_VERSION The requested IT-API major version number
was not supported for this Interface Adapter.

IT_ERR_INVALID_MINOR_VERSION The requested IT-API minor version number
was not supported for this Interface Adapter.

ERRORS
None.

SEE ALSO
it_interface_list(), it_ia_query(), it_ia_free()3227

Interconnect Transport API –Issue 1 99

 100

it_ia_free() 3228

3229
3230

3231
3232
3233
3234
3235
3236

3237
3238
3239
3240
3241
3242
3243

NAME
it_ia_free – free Interface Adapter Handle

SYNOPSIS
#include <it_api.h>

it_status_t it_ia_free(
 IN it_ia_handle_t ia_handle
);

DESCRIPTION
ia_handle Identifies the Interface Adapter Handle to be freed.

it_ia_free is used to free an Interface Adapter Handle.

All IT Objects associated with the specified Interface Adapter Handle are freed before this
routine returns. The documented semantics associated with freeing the various IT Objects are
observed when these objects are freed by the call to it_ia_free. Further use by the Consumer of
Handles for those freed IT Objects after this routine returns successfully may have unpredictable
effects. All it_ia_info_t structures that were returned to the Consumer by it_ia_query that have
not already been freed by the Consumer (via

3244
it_ia_info_free) are freed. Examining an 3245

it_ia_info_t that was associated with ia_handle after this routine returns may have unpredictable
effects.

3246
3247
3248
3249
3250
3251
3252

All pending operations associated with the specified ia_handle will be terminated before this
routine returns. Posted Data Transfer Operations that are currently in progress will be
terminated before this routine returns. The completion status of such DTOs is indeterminate; if
the Consumer wishes to know the completion status of the DTOs they have issued they should
dequeue the relevant Completion Events before freeing the IA. All callers blocked in
it_evd_wait calls associated with the specified ia_handle will be unblocked. 3253

3254
3255

3256
3257
3258

3259

3260
3261

3262

All Connections and pending Connection Requests associated with the specified ia_handle are
terminated before this routine returns.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_INVALID_IA The Interface Adapter Handle (ia_handle) was invalid.

ERRORS
None.

SEE ALSO
it_ia_create(), it_ia_query() 3263

Interconnect Transport API –Issue 1 100

 101

it_ia_info_free() 3264

3265 NAME
it_ia_info_free – free an it_ia_info_t structure that was returned by it_ia_query3266

3267
3268
3269
3270
3271
3272

3273

SYNOPSIS
#include <it_api.h>

void it_ia_info_free(

IN it_ia_info_t *ia_info
);

DESCRIPTION

ia_info Points to an it_ia_info_t data structure that was previously returned
from a call to

3274
it_ia_query. 3275

3276 it_ia_info_free is used to free the memory for the data structure allocated and returned by the
it_ia_query routine. The Consumer should use this routine rather than the free routine to
deallocate the data structure pointed to by ia_info; unpredictable behavior can result if free is
used. Since this routine deallocates the input data structure, the Consumer should not attempt to
access it after successfully returning from this routine.

3277
3278
3279
3280
3281
3282
3283
3284
3285

This routine does not free any of the resources that are associated with the it_ia_info_t data
structure; it only frees the data structure itself. In particular, calling this routine does not cause
the EVD Handle associated with the EVD that contains the Affiliated Asynchronous Event
Stream (if present) or the EVD Handle associated with the EVD that contains the Unaffiliated
Asynchronous Event Stream (if present) to be freed.

When an IA is freed (by calling it_ia_free), any it_ia_info_t structures that were returned by 3286
it_ia_query for that IA will also be freed. The Consumer can call it_ia_info_free to free an 3287
it_ia_info_t structure before the IA is freed. After the IA has been freed, calling it_ia_info_free
to free an

3288
it_ia_info_t associated with that IA will have undefined results, and may result in

memory corruption.
3289
3290

3291
3292
3293

3294
3295

3296

RETURN VALUE

None.

ERRORS
None.

SEE ALSO
it_ia_info_t(), it_ia_query()3297

Interconnect Transport API –Issue 1 101

 102

it_ia_query() 3298

3299
3300

3301
3302
3303
3304
3305
3306
3307

3308

3309

NAME
it_ia_query – retrieve attributes of given Interface Adapter and its Spigots

SYNOPSIS
#include <it_api.h>

it_status_t it_ia_query(

IN it_ia_handle_t ia_handle,
OUT it_ia_info_t ** ia_info

);

DESCRIPTION

ia_handle Identifies the Interface Adapter to be queried.

ia_info Points to a pointer to an it_ia_info_t structure upon successful
return. The

3310
it_ia_info_t structure contains the attributes of the

Interface Adapter and the identity of its Spigots.
3311
3312
3313 it_ia_query is used to retrieve the attributes of an Interface Adapter and its associated Spigots.

See the man page it_ia_info_t for details of the attributes structure. 3314
This routine allocates the storage necessary to hold the returned it_ia_info_t structure. The
Consumer should free the allocated storage using the

3315
it_ia_info_free routine; if the Consumer

fails to do so, the Implementation will free the storage when
3316

it_ia_free is called for ia_handle. 3317
3318
3319

3320
3321
3322

3323
3324

3325
3326

3327
3328
3329

If the query is unsuccessful, the return value will indicate failure, no it_ia_info_t structure will
be allocated, and ia_info will point to a NULL pointer.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_INVALID_IA The Interface Adapter Handle (ia_handle) was
invalid.

IT_ERR_RESOURCES The requested operation failed due to insufficient
resources.

IT_ERR_IA_CATASTROPHE The Interface Adapter has experienced a catastrophic
error and is in the disabled state. None of the output
parameters from this routine are valid. See
it_ia_info_t for a description of the disabled state. 3330

3331
3332

3333

ERRORS
None.

SEE ALSO
it_ia_create(), it_ia_free(), it_ia_info_t, it_ia_info_free() 3334

Interconnect Transport API –Issue 1 102

 103

it_interface_list() 3335

3336
3337

3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366

3367

3368
3369

3370
3371
3372
3373
3374
3375

3376
3377
3378
3379

NAME
it_interface_list – retrieve information about the available Interfaces

SYNOPSIS
#include <it_api.h>

void it_interface_list(
 OUT it_interface_t *interfaces,
 IN OUT size_t *num_interfaces,
 IN OUT size_t *total_interfaces
);

typedef struct {

 /* Most recent major version number of the IT-API supported by the
 Interface */
 uint32_t major_version;

 /* Most recent minor version number of the IT-API supported by the
 Interface */
 uint32_t minor_version;

 /* The transport that the Interface uses, as defined in
 it_ia_info_t. */
 it_transport_type_t transport_type;

/* The name of the Interface, suitable for input to it_ia_create.
 The name is a string of maximum length IT_INTERFACE_NAME_SIZE,

 including the terminating NULL character. */
 char name[IT_INTERFACE_NAME_SIZE];

} it_interface_t;

DESCRIPTION

interfaces An array allocated by the Consumer that contains the information
returned for the Interface(s).

num_interface On input, points to the count of the maximum number of Interfaces
for which the Consumer wishes to have information returned. On
output, points to the count of the number of Interfaces for which
information was actually returned, which is guaranteed to be less
than or equal to the number that the Consumer requested.

total_interfaces Upon return, points to the number of Interfaces potentially available
for Consumer use. A Consumer may specify NULL for this
parameter if it does not wish to know how many Interfaces are
potentially available.

Interconnect Transport API –Issue 1 103

 104

it_interface_list is used to retrieve information about the set of available Interfaces. The
Consumer may select an Interface from the returned set, and furnish the name and version
number for that Interface as input to the

3380
3381

it_ia_create call. 3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400

3401
3402

3403
3404

3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425

The Consumer is responsible for allocating the storage necessary to hold the information for the
returned set of Interfaces. Since the local Consumer may not know how many Interfaces are
available, it passes the number of Interfaces for which it has allocated storage in the
num_interfaces parameter on input. This routine will return information for no more than that
number of Interfaces to the Consumer. If more Interfaces are available than the Consumer has
allocated space for, information will be provided to the Consumer for only num_interfaces such
Interfaces; which Interfaces information will be returned for is arbitrary in this case. Upon
return, the value pointed to by total_interfaces is the total number of available Interfaces.

The set of Interfaces available to the Consumer is dynamic, and can change over time. (For
example, an Interface can become inoperative, thus decreasing the set of available Interfaces.)
There is therefore no guarantee that given the same input parameters two different invocations of
it_interface_list will return the same results. The information returned by it_interface_list is a
snapshot of the Interfaces available at the time of the call. In addition, if the Consumer asks for
fewer Interfaces than are available, the API may return information for a different set of
Interfaces for two different invocations of it_interface_list regardless of the state of the
Interfaces.

It is possible that no Interfaces are available. In that case the total number of Interfaces available
pointed to by num_interfaces will be zero.

RETURN VALUE
None.

ERRORS
None.

EXAMPLES
The following example illustrates how the Consumer can check after it has created the IA to
ensure that the information it retrieved from the it_interface_list call is still valid.
it_interface_t interface;
size_t num_interfaces;
it_ia_handle_t ia;
it_ia_info_t *infop;

num_interfaces = 1;
it_interface_list(&interface, &num_interfaces, NULL);
if (num_interfaces != 1) {

/* Failed to find any IAs; */

}

if (it_ia_create(interface.name, interface.major_version,
interface.minor_version, &ia) != IT_SUCCESS) {

/* The IA wasn’t found. Assuming sufficient resources were available,
 this can happen if the Interface that was retrieved by the

Interconnect Transport API –Issue 1 104

 105

3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450

3451
3452

 it_interface_list call isn’t available anymore. */

}

if (it_ia_query(ia, &infop) != IT_SUCCESS) {

/* This can happen if the Implementation didn’t have sufficient
resources to return the information for the IA */

}

if ((infop->transport_type != interface.transport_type) {

/* This can happen if the Interface that was retrieved by the
 it_interface_list call isn’t available anymore. (A different
 Interface with the same name as was retrieved by it_interface_list
 is available as it turns out. The most likely reason this happened
 is that a new Interface was added to the system between the time
 it_interface_list was called and the time that it_ia_create was
 called.) */

}

/* Validation of the information returned by it_interface_list is
 complete. */

APPLICATION USAGE
The Interface Adapter associated with a given name can change between the time that the
it_interface_list routine is called and the time that it_ia_create is called to actually create the IA.
For that reason, the Consumer should check after it has created the IA to ensure that the
information it retrieved from the it_interface_list call is still valid.

3453
3454
3455

3456 SEE ALSO
it_ia_create(), it_ia_info_t3457

3458

Interconnect Transport API –Issue 1 105

 106

it_listen_create() 3459

3460
3461
3462

3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478

3479

3480

3481

3482
3483
3484
3485

3486
3487

3488
3489

3490
3491
3492
3493
3494

NAME
it_listen_create - create a Listen Point for incoming Connection Requests to a

Connection Qualifier

SYNOPSIS
#include <it_api.h>

 it_status_t it_listen_create(

IN it_ia_handle_t ia_handle,
IN size_t spigot_id,
IN it_evd_handle_t connect_evd,
IN it_listen_flags_t flags,
IN OUT it_conn_qual_t *conn_qual,
OUT it_listen_handle_t *listen_handle

);

typedef enum {

IT_LISTEN_NO_FLAG = 0x0000,
IT_LISTEN_CONN_QUAL_INPUT = 0x0001

} it_listen_flags_t;

DESCRIPTION

ia_handle: Interface Adapter Handle.

spigot_id Interface Adapter Spigot identifier.

connect_evd The Handle of the Simple Event Dispatcher where Connection
Request Events for this Listen Point will be posted. The Event
Stream Type of the Simple Event Dispatcher must be
IT_CM_REQ_EVENT_STREAM.

flags Specifies whether the Connection Qualifer is an input or output
parameter.

conn_qual The Connection Qualifier for which the Consumer wants to listen for
Connection Requests.

listen_handle Upon successful return points to a Handle to the created Listen
Point.

it_listen_create establishes a Listen Point for incoming Connection Requests for a particular
Connection Qualifier on the Spigot identified. Incoming Connection Request Events will be
posted to the Simple Event Dispatcher specified until the Listen Point is destroyed. The
listen_handle returned can be passed to it_listen_free when the Listen Point is no longer needed. 3495

3496
3497
3498

When the IT_LISTEN_CONN_QUAL_INPUT bit is set in flags, conn_qual is an input
parameter. When this bit is clear, conn_qual is an output parameter and an available Connection
Qualifier is returned through that parameter.

Interconnect Transport API –Issue 1 106

 107

3499
3500
3501
3502
3503

3504
3505

3506

3507

3508
3509

3510
3511

3512
3513

3514
3515

3516

3517

3518
3519

3520
3521

A backlog for the incoming Connection Request Events is provided by the size of the Simple
Event Dispatcher that the Events are directed to. If a Connection Request arrives while the
Simple Event Dispatcher is full it is discarded and the Active side of the Connection
establishment attempt will receive an IT_CM_MSG_CONN_NONPEER_REJECT_EVENT
Event, with IT_CN_REJ_TIMEOUT as the reject reason code.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described below:

IT_ERR_INVALID_CONN_QUAL The Connection Qualifier (conn_qual) was invalid.

IT_ERR_CONN_QUAL_BUSY The Connection Qualifier was already in use.

IT_ERR_NO_PERMISSION The Consumer did not have the proper permissions
to perform the requested operation.

IT_ERR_RESOURCES The requested operation failed due to insufficient
resources.

IT_ERR_INVALID_CONN_EVD The Connection Simple Event Dispatcher Handle
was invalid.

IT_ERR_INVALID_IA The Interface Adapter Handle (ia_handle) was
invalid.

IT_ERR_INVALID_SPIGOT An invalid Spigot ID was specified.

IT_ERR_INVALID_FLAGS The flags value was invalid.

IT_ERR_INVALID_EVD_TYPE The Event Stream Type for the Event Dispatcher
was invalid.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in
the disabled state. None of the output parameters
from this routine are valid. See it_ia_info_t for a
description of the disabled state.

3522
3523

3524
3525

3526

ERRORS
None.

SEE ALSO
it_listen_free(), it_listen_query(), it_cm_msg_events3527

Interconnect Transport API –Issue 1 107

 108

it_listen_free() 3528

3529
3530

3531
3532
3533
3534
3535
3536

3537

3538
3539
3540
3541

NAME
it_listen_free - free a Listen Point.

SYNOPSIS
#include <it_api.h>

 it_status_t it_listen_free(
 IN it_listen_handle_t listen_handle
);

DESCRIPTION

listen_handle Identifies the Listen Point to be destroyed.

Frees a Listen Point associated with a Connection Qualifier. Upon return no more Connection
Requests will be posted for the associated Connection Qualifier. Previously posted un-reaped
Connection Requests, if any, will remain valid on the connect_evd and therefore can be used as
input to either it_ep_accept or it_reject. 3542

3543
3544

3545

3546
3547

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described below.

IT_ERR_INVALID_LISTEN The Listen Handle (listen_handle) was invalid.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in the
disabled state. None of the output parameters from this
routine are valid. See it_ia_info_t for a description of
the disabled state.

3548
3549

3550
3551

3552

ERRORS
None.

SEE ALSO
it_listen_create(), it_listen_query()3553

Interconnect Transport API –Issue 1 108

 109

it_listen_query() 3554

3555
3556

3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579

3580

3581

3582

3583
3584
3585
3586
3587
3588

3589

3590

3591
3592

3593

NAME
it_listen_query - query parameters associated with a Listen Point

SYNOPSIS
#include <it_api.h>

 it_status_t it_listen_query(

IN it_listen_handle_t listen_handle,
IN it_listen_param_mask_t mask,
OUT it_listen_param_t *params

);

typedef enum {
 IT_LISTEN_PARAM_ALL = 0x0001,
 IT_LISTEN_PARAM_IA_HANDLE = 0x0002,
 IT_LISTEN_PARAM_SPIGOT_ID = 0x0004,
 IT_LISTEN_PARAM_CONNECT_EVD = 0x0008,
 IT_LISTEN_PARAM_CONN_QUAL = 0x0010
} it_listen_param_mask_t;

typedef struct {

it_ia_handle_t ia_handle; /* IT_LISTEN_PARAM_IA_HANDLE */
size_t spigot_id; /* IT_LISTEN_PARAM_SPIGOT_ID */
it_evd_handle_t connect_evd; /* IT_LISTEN_PARAM_CONNECT_EVD*/
it_conn_qual_t connect_qual; /* IT_LISTEN_PARAM_CONN_QUAL */

} it_listen_param_t;

DESCRIPTION

listen_handle Handle associated with the Listen Point being queried.

mask Bitwise OR of flags for desired parameters.

params Pointer to Consumer-allocated structure whose members are written
with the desired Listen Point parameters and attributes.

it_listen_query queries the parameters associated with a Listen Point. On return, each field of
params is only valid if the corresponding flag as shown in the Synopsis is set in the mask
argument. The mask value IT_LISTEN_PARAM_ALL causes all fields to be returned.

The definition of each field of params follows

ia_handle: Interface Adapter Handle.

spigot_id Interface Adapter Spigot identifier.

connect_evd The Handle of the Simple Event Dispatcher where incoming
Connection Request Events for this Listen Point are posted.

connect_qual The Connection Qualifier associated with the Listen Point.

Interconnect Transport API –Issue 1 109

 110

3594
3595

3596

3597

3598
3599

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described below.

IT_ERR_INVALID_LISTEN The Listen Handle (listen_handle) was invalid.

IT_ERR_INVALID_MASK The mask contained invalid flag values.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in the
disabled state. None of the output parameters from this
routine are valid. See it_ia_info_t for a description of
the disabled state.

3600
3601

3602
3603

3604

ERRORS
None.

SEE ALSO
it_listen_free(), it_listen_create()3605

Interconnect Transport API –Issue 1 110

 111

it_lmr_create() 3606

3607
3608

3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645

3646

3647

3648

3649

3650

NAME
it_lmr_create – create a Local Memory Region (LMR) and register with an Interface Adapter

SYNOPSIS
#include <it_api.h>

it_status_t it_lmr_create(
 IN it_pz_handle_t pz_handle,
 IN void *addr,
 IN it_length_t length,
 IN it_mem_priv_t privs,
 IN it_lmr_flag_t flags,
 IN uint32_t shared_id,
 OUT it_lmr_handle_t *lmr_handle,
 IN OUT it_rmr_context_t *rmr_context
);

typedef uint32_t it_rmr_context_t;

#ifdef IT_32BIT
 typedef uint32_t it_length_t; /* a 32-bit platform */
#else
 typedef uint64_t it_length_t; /* a 64-bit platform */
#endif

typedef enum {
 IT_PRIV_NONE = 0x0001,
 IT_PRIV_READ_ONLY = 0x0002,
 IT_PRIV_REMOTE_READ = 0x0004,
 IT_PRIV_REMOTE_WRITE = 0x0008,
 IT_PRIV_REMOTE = 0x0010,
 IT_PRIV_ALL = 0x0020,
 IT_PRIV_DEFAULT = 0x0040
} it_mem_priv_t;

typedef enum {
 IT_LMR_FLAG_NONE = 0x0001,
 IT_LMR_FLAG_SHARED = 0x0002,
 IT_LMR_FLAG_NONCOHERENT = 0x0004
} it_lmr_flag_t;

DESCRIPTION

pz_handle Protection Zone in which to create memory region.

addr Virtual address for start of memory region.

length Length of memory region in bytes.

privs Logical OR of access privilege flags for region.

Interconnect Transport API –Issue 1 111

 112

3651

3652
3653

3654

3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669

flags Logical OR of modifier flags.

shared_id Optional identifier for sharing Interface Adapter translation
resources.

lmr_handle Returned Handle for created memory region.

rmr_context Optionally returned Context allowing remote access to this memory.

The it_lmr_create routine allows an Interface Adapter to access a contiguous Local Memory
Region in a process' virtual address space; memory that is to be the Source or Destination of a
DTO must first be registered using this call. The region starts at virtual address addr and
extends for length bytes, and this address range must already be valid in the process's virtual
address space. The Interface Adapter is implicitly identified by the pz_handle argument.
Registering a memory range that does not correspond to physically backed memory, such as the
non-cacheable I/O address space, may work on some Implementations but not others.
Applications that rely on this behavior will not be portable. The range can refer to memory that
is exclusive to the calling process, or is being shared with other processes. Some Interface
Adapters may require a memory region to be locked in physical memory. Such locking, if
required, will be performed by the it_lmr_create implementation and is not the Consumer's
responsibility.

The type of access granted is specified by the privs argument as the logical OR of one or more of
the following flags. Unless otherwise noted, all combinations are allowed.

IT_PRIV_READ_ONLY Specifies that only read accesses will be allowed to the
region. If this flag is omitted, read and write access will be
allowed. Note that this flag does not by itself enable remote
access; one or more of the remote access flags must also be
specified for that purpose.

IT_PRIV_REMOTE_READ Grants remote read access to the IA, enabling the LMR to be
used as an RMR, as a Source buffer for remote RDMA Read
DTOs.

IT_PRIV_REMOTE_WRITE Grants remote write access to the IA, enabling the LMR to
be used as an RMR, as a Destination buffer for remote
RDMA Write DTOs.

IT_PRIV_REMOTE Grant remote read and write access to the IA.

IT_PRIV_ALL Grant all types of access to the IA.

3670
3671
3672
3673
3674
3675
3676
3677
3678

The special value IT_PRIV_DEFAULT or 0 may be used to grant default access, which includes
local read and write access. The value IT_PRIV_NONE is invalid here. It is invalid to request
remote write access in combination with IT_PRIV_READ_ONLY. It is not possible to grant
access privileges to which a process is not already entitled. If the calling process does not have
read or write access privileges to the memory region, then any attempt to grant those privileges
to the Interface Adapter will cause it_lmr_create to fail.

The flags argument is a logical OR of zero or more of the following options. The value
IT_LMR_FLAG_NONE or 0 may be used to specify no options.

Interconnect Transport API –Issue 1 112

 113

3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699

IT_LMR_FLAG_SHARED
This flag may be used to conserve finite Interface Adapter translation resources by sharing
resources between multiple LMRs. The LMRs may have been created in the caller's process or in
a different process. If set, then the Implementation will re-use resources from a matching LMR,
which is defined as an existing LMR that was created using the same value of the shared_id
argument, refers to the same physical memory pages as the new LMR, and has the same
coherency mode. If any of these conditions are not met, the LMRs do not match. If a matching
LMR is not found, then a new LMR is created and shared_id is associated with it. The value of
shared_id is only an efficiency aid for the matching process and need not be unique. For
example, if unrelated callers supply the same value for shared_id, matches for an LMR will still
be found if they exist, with no false matches, but the search may take longer on some
Implementations. If IT_LMR_FLAG_SHARED is not specified, then shared_id is ignored.

IT_LMR_FLAG_NONCOHERENT
Controls whether an LMR is created in coherent or non-coherent mode. Coherent mode is the
default and is supported by all Implementations. Non-coherent mode is not supported by all
Implementations, and IT_LMR_FLAG_NONCOHERENT is silently ignored on such
Implementations.

Set IT_LMR_FLAG_NONCOHERENT to create an LMR in non-coherent mode. Non-coherent
mode may yield higher throughput for large DTOs, but may also increase latency for small
DTOs. The downside of requesting non-coherent mode is that the Consumer must synchronize
between local and remote access to the memory region using the it_lmr_sync_rdma_write and 3700
it_lmr_sync_rdma_read calls. 3701

3702
3703
3704
3705
3706
3707

The coherency mode of an LMR is inherited by any RMR that is bound to it.

An RMR Context allowing remote access to the memory region will be created if the privs
argument includes either IT_PRIV_REMOTE_READ or IT_PRIV_REMOTE_WRITE. The
Context will be returned in the location pointed to by rmr_context if the input value of
rmr_context is not NULL. The returned rmr_context is only valid if privs includes remote
privileges and the call returns successfully; otherwise it is undefined. The RMR Context may
also be retrieved using it_lmr_query. The rmr_context is returned in network byte order, and
may be passed by value to any remote process that wishes to use the Context in DTOs that target
the corresponding LMR. Modifying or destroying the LMR may revoke remote access using this
RMR Context.

3708
3709
3710
3711
3712
3713
3714
3715
3716

The newly created LMR Handle is returned in the lmr_handle argument. A process may create
multiple LMRs, and the address ranges of different LMRs may overlap. The Implementation
may round the requested addr down and/or round the requested length up, and thus allow the
Interface Adapter to access memory slightly outside the specified boundaries, but never beyond
the IA pages that include the requested starting and ending addresses. The actual boundaries
may be queried using it_lmr_query. Note that if the privs argument enables remote access, then
remote Consumers may also access memory slightly outside the requested boundaries. If this is
undesirable, the Consumer should not enable remote access in this routine, but should instead
create an RMR using

3717
3718
3719

it_rmr_bind, which guarantees byte level registration granularity. 3720
3721
3722
3723
3724

After a memory range has been registered with the IA using it_lmr_create, the Consumer should
not call routines outside of the IT-API that would invalidate any part of the memory referred to
by the LMR or revoke access privileges that were granted to IA at registration time. Disallowed
operations include but are not limited to unmapping part of the range using munmap, revoking

Interconnect Transport API –Issue 1 113

 114

3725
3726
3727
3728
3729

3730
3731
3732

3733
3734

3735
3736

3737

3738

3739
3740

3741
3742

3743
3744

3745
3746

privileges using mprotect, unlocking memory using munlock, truncating a file for file-backed
regions, etc. Violation of this rule may result in DTO failures, data corruption in the Consumer's
LMR, and/or program termination. These effects may extend to other Consumer processes if the
LMR is in shared memory. However, the Implementation must prevent any adverse effect on
unrelated processes that do not use this memory object.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_INVALID_PZ The Protection Zone Handle (pz_handle) was
invalid.

IT_ERR_INVALID_PRIVS The requested memory privileges (privs) contained
an invalid flag.

IT_ERR_INVALID_FLAGS The flags value was invalid.

IT_ERR_FAULT Part or all of the supplied address range was invalid.

IT_ERR_ACCESS The Consumer was not allowed to have the
requested memory privileges.

IT_ERR_RESOURCES The requested operation failed due to insufficient
resources.

IT_ERR_RESOURCE_LMR_LENGTH The underlying transport could not allocate an LMR
of the requested length at this time.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in
the disabled state. None of the output parameters
from this routine are valid. See it_ia_info_t for a
description of the disabled state.

3747
3748

3749
3750

3751
3752

ERRORS
None.

APPLICATION USAGE
Memory that is to be the Source or Destination of a DTO must first be registered using
it_lmr_create. The Consumer typically copies the returned lmr_handle to an it_lmr_triplet_t
structure that is used in DTO calls such as

3753
it_post_send. 3754

3755
3756

If the LMR is created with flags that enable remote access, then the Consumer typically passes
the returned RMR Context to a remote peer using a DTO. The remote peer uses the RMR
Context in RDMA calls such as it_post_rdma_write that access memory within the range of the
LMR.

3757
3758
3759 Consumers can enable remote access more selectively over any portion of an LMR by creating

an RMR and binding the RMR to the desired region of the LMR using it_rmr_bind. This
operation returns an RMR Context.

3760
3761

Interconnect Transport API –Issue 1 114

 115

3762 SEE ALSO
it_lmr_free(), it_lmr_query(), it_lmr_modify(), it_lmr_sync_rdma_read(),
it_lmr_sync_rdma_write

3763
()3764

Interconnect Transport API –Issue 1 115

 116

it_lmr_free() 3765

3766
3767

3768
3769
3770
3771
3772
3773

3774

3775
3776
3777
3778
3779
3780

NAME
it_lmr_free – destroy a Local Memory Region

SYNOPSIS
#include <it_api.h>

it_status_t it_lmr_free(

IN it_lmr_handle_t lmr_handle
);

DESCRIPTION

lmr_handle Handle of Local Memory Region to be destroyed.

The it_lmr_free routine destroys the Local Memory Region lmr_handle. On return, the Handle
lmr_handle may no longer be used. A Local Memory Region may not be destroyed if it has an
RMR bound to it; an attempt to do so will fail and the LMR will not be affected. it_lmr_free
does not invalidate the memory range represented by lmr_handle, and the caller may continue to
reference memory in this range for non-transport operations. If the memory range was locked in
physical memory as a side effect of the corresponding it_lmr_create call, then it will be
unlocked immediately if no portion of the range overlaps with the range of other non-freed
LMRs. Otherwise, the unlock operation may be deferred until the overlapping LMRs are
themselves freed. Note that these may include LMRs created by other Consumers if the range is
in shared memory.

3781
3782
3783
3784
3785
3786
3787
3788

3789
3790
3791

3792
3793

3794
3795

3796
3797

LMRs with memory ranges that overlap the range of lmr_handle are not affected by its
destruction. Outstanding DTO's, Bind, and Unbind operations that use an LMR that has been
destroyed may or may not complete successfully.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_INVALID_LMR The Local Memory Region Handle (lmr_handle)
was invalid.

IT_ERR_LMR_BUSY The Local Memory Region was still referenced by a
Remote Memory Region.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in
the disabled state. None of the output parameters
from this routine are valid. See it_ia_info_t for a
description of the disabled state.

3798
3799

3800
3801

3802

ERRORS
None.

SEE ALSO
it_lmr_create(), it_lmr_query(), it_lmr_modify() 3803

Interconnect Transport API –Issue 1 116

 117

 it_lmr_modify() 3804

3805
3806

3807
3808
3809
3810
3811
3812
3813
3814

3815

3816

3817

3818
3819
3820
3821

NAME
it_lmr_modify – modify selected attributes of a Local Memory Region

SYNOPSIS
#include <it_api.h>

it_status_t it_lmr_modify(

IN it_lmr_handle_t lmr_handle,
IN it_lmr_param_mask_t mask,
IN const it_lmr_param_t *params

);

DESCRIPTION

lmr_handle Local Memory Region.

mask Logical OR of flags for specified parameters.

params Structure whose members contain the new parameter values.

The it_lmr_modify routine changes selected attributes of the Local Memory Region lmr_handle.
Attributes to be modified are specified by flags in mask. New values for the attributes are
specified by the corresponding fields in the structure pointed to by params. Fields and their
corresponding flag values are shown in it_lmr_param_t. Note that attributes represented by
fields of

3822
it_lmr_param_t that are not shown below can not be modified. The definition of each

field follows:
3823
3824

3825 pz The new Protection Zone Handle for the LMR.

3826
3827
3828
3829

privs The new memory access privileges for the LMR. See it_lmr_create
for flag definitions and restrictions.

On successful return, the previous RMR Context (if any) is invalidated. If remote access
privileges are specified in privs, then a new RMR Context is created and associated with the
LMR. The new RMR Context may be retrieved using it_lmr_query. 3830

3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841

A Local Memory Region may not be modified if it is still referenced by bound Remote Memory
Regions; an attempt to do so will fail with an error return, and the LMR will not be modified or
affected.

The Consumer should not modify an LMR whose LMR Handle or RMR Context is used in
outstanding DTO's, Bind, or Unbind operations. The Consumer must dequeue the Completion
Events for all such operations prior to modifying the LMR. If this rule is not followed, the
Outstanding Operations may fail and complete with an error status.

If the modify operation fails because the caller was not allowed to have the requested memory
privileges, or fails due to insufficient resources, then the old RMR Context (if any) is
invalidated. The lmr_handle is also invalidated and may no longer be used in any calls. Any
resources that were associated with the LMR are freed in this case.

Interconnect Transport API –Issue 1 117

 118

3842
3843
3844

3845
3846

3847

3848

3849
3850

3851
3852

3853
3854

3855

3856
3857

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_INVALID_LMR The Local Memory Region Handle (lmr_handle) was
invalid.

IT_ERR_INVALID_PZ The Protection Zone Handle (pz_handle) was invalid.

IT_ERR_INVALID_MASK The mask contained invalid flag values.

IT_ERR_INVALID_PRIVS The requested memory privileges (privs) contained an
invalid flag.

IT_ERR_ACCESS The Consumer was not allowed to have the requested
memory privileges.

IT_ERR_LMR_BUSY The Local Memory Region was still referenced by a Remote
Memory Region.

IT_ERR_RESOURCES The requested operation failed due to insufficient resources.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in the
disabled state. None of the output parameters from this
routine are valid. See it_ia_info_t for a description of the
disabled state.

3858
3859

3860
3861

3862
3863

ERRORS
None.

APPLICATION USAGE
Although it_lmr_modify can be used to change the remote access privileges for an LMR, this is
a much more expensive operation than binding an RMR to an LMR using it_rmr_bind. 3864

3865 SEE ALSO
it_lmr_create(), it_lmr_free(), it_lmr_query(), it_lmr_param_t, it_lmr_param_mask_t3866

Interconnect Transport API –Issue 1 118

 119

it_lmr_query() 3867

3868
3869

3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904

3905

3906

3907

3908
3909
3910
3911
3912

NAME
it_lmr_query – get attributes of a Local Memory Region

SYNOPSIS
#include <it_api.h>

it_status_t it_lmr_query(

IN it_lmr_handle_t lmr_handle,
IN it_lmr_param_mask_t mask,
OUT it_lmr_param_t *params

);

typedef enum {
 IT_LMR_PARAM_ALL = 0x000001,
 IT_LMR_PARAM_IA = 0x000002,
 IT_LMR_PARAM_PZ = 0x000004,
 IT_LMR_PARAM_ADDR = 0x000008,
 IT_LMR_PARAM_LENGTH = 0x000010,
 IT_LMR_PARAM_MEM_PRIV = 0x000020,
 IT_LMR_PARAM_FLAG = 0x000040,
 IT_LMR_PARAM_SHARED_ID = 0x000080,
 IT_LMR_PARAM_RMR_CONTEXT = 0x000100,
 IT_LMR_PARAM_ACTUAL_ADDR = 0x000200,
 IT_LMR_PARAM_ACTUAL_LENGTH = 0x000400
} it_lmr_param_mask_t;

typedef struct {
 it_ia_handle_t ia; /* IT_LMR_PARAM_IA */
 it_pz_handle_t pz; /* IT_LMR_PARAM_PZ */
 void *addr; /* IT_LMR_PARAM_ADDR */
 it_length_t length; /* IT_LMR_PARAM_LENGTH */
 it_mem_priv_t privs; /* IT_LMR_PARAM_MEM_PRIV */
 it_lmr_flag_t flags; /* IT_LMR_PARAM_FLAG */
 uint32_t shared_id; /* IT_LMR_PARAM_SHARED_ID*/
 it_rmr_context_t rmr_context; /* IT_LMR_PARAM_RMR_CONTEXT */
 void *actual_addr; /* IT_LMR_PARAM_ACTUAL_ADDR */
 it_length_t actual_length; /*IT_LMR_PARAM_ACTUAL_LENGTH*/
} it_lmr_param_t;

DESCRIPTION

lmr_handle Local Memory Region.

mask Logical OR of flags for desired parameters.

params Structure whose members are written with the desired parameters.

The it_lmr_query routine returns the desired attributes of the Local Memory Region lmr_handle
in the structure pointed to by params. On return, each field of params is only valid if the
corresponding flag as shown in the Synopsis is set in the mask argument. The mask value
IT_LMR_PARAM_ALL causes all fields to be returned.

Interconnect Transport API –Issue 1 119

 120

3913

3914

3915

3916

3917

3918

3919

3920
3921

3922
3923

3924
3925

3926
3927

3928
3929
3930

3931
3932

3933

3934
3935

The definition of each field of params follows:

ia The Interface Adapter Handle specified to create the LMR.

pz The Protection Zone Handle specified to create the LMR.

addr The requested starting address of the LMR.

length The requested length in bytes of the LMR.

privs The memory access privileges specified to create the LMR.

flags The flags specified to create the LMR.

shared_id The shared_id specified to create the LMR, if flags included
IT_LMR_FLAG_SHARED. Otherwise, undefined.

rmr_context The RMR Context associated with the LMR, or undefined if privs
does not include remote access. Returned in network byte order.

actual_addr The actual starting address for which bounds checking is done for
data transfers.

actual_length The actual length for which bounds checking is done for data
transfers.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_INVALID_LMR The Local Memory Region Handle (lmr_handle) was
invalid.

IT_ERR_INVALID_MASK The mask contained invalid flag values.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in the
disabled state. None of the output parameters from this
routine are valid. See it_ia_info_t for a description of the
disabled state.

3936
3937

3938
3939

3940

ERRORS
None.

SEE ALSO
it_lmr_create(), it_lmr_modify(), it_lmr_free()3941

Interconnect Transport API –Issue 1 120

 121

it_lmr_sync_rdma_read() 3942

3943
3944

3945
3946
3947
3948
3949
3950
3951

3952

3953

3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969

3970
3971
3972
3973
3974
3975

3976
3977
3978
3979

3980
3981

NAME
it_lmr_sync_rdma_read – make memory changes visible to an incoming RDMA Read operation

SYNOPSIS
#include <it_api.h>

it_status_t it_lmr_sync_rdma_read(

IN const it_lmr_triplet_t *local_segments,
IN size_t num_segments

);

DESCRIPTION

local_segments Array of buffer segments.

num_segments Number of segments in the array.

The it_lmr_sync_rdma_read routine is needed if and only if an LMR was created in non-
coherent mode using IT_LMR_FLAG_NONCOHERENT.

If a Local Memory Region is created in non-coherent mode, then the Consumer must call
it_lmr_sync_rdma_read after modifying data in a memory range in this region that will be the
target of an incoming RDMA Read operation. it_lmr_sync_rdma_read must be called after the
Consumer has modified the memory range but before the RDMA Read operation starts, and the
memory range that will be accessed by the RDMA Read must be supplied by the caller in the
local_segments array. After this call returns, the RDMA Read operation may safely see the
modified contents of the memory range. It is permissible to batch synchronizations for multiple
RDMA Read operations in a single call, by passing a local_segments array that includes all
modified memory ranges. The local_segments entries need not contain the same LMR, and need
not be in the same Protection Zone.

If an RDMA Read operation on an LMR created in non-coherent mode attempts to read from a
memory range that is not properly synchronized using it_lmr_sync_rdma_read, the returned
contents are undefined.

RETURN VALUE
This call is a no-op and always returns successfully if the Implementation does not support non-
coherent mode, or if none of the LMRs in local_segments were created using the
IT_LMR_FLAG_NONCOHERENT flag.

A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_RANGE The address range for a local segment fell outside the
boundaries of the corresponding Local Memory Region and
the Local Memory Region was created in non-coherent
mode.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in the
disabled state. None of the output parameters from this

Interconnect Transport API –Issue 1 121

 122

3982
3983
3984

3985
3986

3987
3988
3989
3990
3991
3992

3993

routine are valid. See it_ia_info_t for a description of the
disabled state.

ERRORS
None.

APPLICATION USAGE
Determining when an RDMA Read will start and what memory range it will read is the
Consumer's responsibility. One possibility is to have the Consumer that is modifying memory to
call it_lmr_sync_rdma_read and then post a Send DTO message that identifies the range in the
body of the Send. The Consumer wishing to do the RDMA Read can receive this message and
thus know when it is safe to initiate the RDMA Read operation.

SEE ALSO
it_lmr_create(), it_lmr_sync_rdma_write(), it_lmr_triplet_t3994

Interconnect Transport API –Issue 1 122

 123

it_lmr_sync_rdma_write() 3995

3996
3997
3998

3999
4000
4001
4002
4003
4004
4005

4006

4007

4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028

4029
4030
4031
4032
4033
4034

NAME
it_lmr_sync_rdma_write – make effects of an incoming RDMA Write operation visible to

Consumer

SYNOPSIS
#include <it_api.h>

it_status_t it_lmr_sync_rdma_write(

IN const it_lmr_triplet_t *local_segments,
IN size_t num_segments

);

DESCRIPTION

local_segments Array of buffer segments.

num_segments Number of segments in the array.

The it_lmr_sync_rdma_write routine is needed if and only if an LMR was created in non-
coherent mode using IT_LMR_FLAG_NONCOHERENT.

If a Local Memory Region is created in non-coherent mode, then the Consumer must call
it_lmr_sync_rdma_write before reading data from a memory range in this region that was the
target of an incoming RDMA Write operation. it_lmr_sync_rdma_write must be called after the
RDMA Write operation completes, and the memory range that was modified by the RDMA
Write must be supplied by the caller in the local_segments array. After this call returns, the
Consumer may safely see the modified contents of the memory range. It is permissible to batch
synchronizations of multiple RDMA Write operations in a single call, by passing a
local_segments array that includes all modified memory ranges. The local_segments entries
need not contain the same LMR, and need not be in the same Protection Zone.

The Consumer must also use it_lmr_sync_rdma_write when performing local writes to a
memory range that was or will be the target of incoming RDMA Writes. After performing the
local write, the Consumer must call it_lmr_sync_rdma_write before the RDMA Write is
initiated. Conversely, after an RDMA Write completes, the Consumer must call
it_lmr_sync_rdma_write before performing a local write to the same range.

If the Consumer attempts to read from a memory range in an LMR that was created in non-
coherent mode, without properly synchronizing using it_lmr_sync_rdma_write, the returned
contents are undefined. If the Consumer attempts to write to a memory range without properly
synchronizing, the contents of the memory range become undefined.

RETURN VALUE
This call is a no-op and always returns successfully if the Implementation does not support non-
coherent mode, or if none of the LMRs in local_segments were created using the
IT_LMR_FLAG_NONCOHERENT flag.

A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

Interconnect Transport API –Issue 1 123

 124

4035
4036
4037
4038

4039
4040

IT_ERR_RANGE The address range for a local segment fell outside the
boundaries of the corresponding Local Memory Region and
the Local Memory Region was created in non-coherent
mode.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in the
disabled state. None of the output parameters from this
routine are valid. See it_ia_info_t for a description of the
disabled state.

4041
4042

4043
4044

4045
4046
4047
4048
4049
4050

4051

ERRORS
None.

APPLICATION USAGE
Determining when an RDMA Write completes and determining which memory range was
modified is the Consumer's responsibility. One possibility is for the RDMA Write initiator to
post a Send DTO message after each RDMA Write that identifies the range in the body of the
Send. The Consumer at the target of the RDMA Write can receive the message and thus know
when and how to call it_lmr_sync_rdma_write.

SEE ALSO
it_lmr_create(), it_lmr_sync_rdma_read(), it_lmr_triplet_t4052

Interconnect Transport API –Issue 1 124

 125

it_make_rdma_addr() 4053

4054
4055

4056
4057
4058
4059
4060
4061
4062
4063

4064

4065
4066
4067
4068
4069
4070

4071
4072

4073
4074

4075
4076
4077
4078

NAME
it_make_rdma_addr – make a platform independent RDMA address

SYNOPSIS
#include <it_api.h>

typedef uint64_t it_rdma_addr_t;

it_rdma_addr_t it_make_rdma_addr(

void *addr
);

DESCRIPTION

addr Local address.

The it_make_rdma_addr routine takes a local address addr that may be the target of a remote
operation, and returns a 64-bit platform independent representation of that address in network
byte order called an RDMA address. A network peer may use this RDMA address in RDMA
Read and Write operations. it_make_rdma_addr performs no validity checking on addr, so addr
is not required to lie within a currently registered LMR when it_make_rdma_addr is called.

RETURN VALUE
This function always succeeds and returns a 64-bit RDMA address.

ERRORS
None.

APPLICATION USAGE
The returned RDMA address must be communicated to a network peer in order to be used in
RDMA operations. The Consumer is responsible for performing this communication.

Because the RDMA address is in network byte order, a Consumer wishing to perform address
arithmetic must first convert it to host byte order, which may be done using the it_ntoh64
function. Derived addresses must be converted back to network byte order using

4079
it_hton64

before being used in RDMA operations.
4080
4081

4082 SEE ALSO
it_post_rdma_write(), it_ntoh64, it_hton644083

Interconnect Transport API –Issue 1 125

 126

it_post_rdma_read() 4084

4085
4086

4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098

4099

4100

NAME
it_post_rdma_read – post an RDMA Read DTO to a Reliable Connected Endpoint

SYNOPSIS
#include <it_api.h>

it_status_t it_post_rdma_read (

IN it_ep_handle_t ep_handle,
IN const it_lmr_triplet_t *local_segments,
IN size_t num_segments,
IN it_dto_cookie_t cookie,
IN it_dto_flags_t dto_flags,
IN it_rdma_addr_t rdma_addr,
IN it_rmr_context_t rmr_context

);

DESCRIPTION

ep_handle Handle for the Endpoint – the local side of the Connection.

4101
4102
4103

local_segments Vector of it_lmr_triplet_t data structures that specifies the local
buffer where data should be deposited. Can be NULL for a zero-
sized message.

4104
4105

4106
4107

4108

4109

4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121

num_segments Number of it_lmr_triplet_t data structures in local_segments. Can be
zero for a zero-sized message.

cookie Consumer-provided cookie that is returned to the Consumer in the
Completion Event corresponding to the RDMA Read.

dto_flags Flags for posted RDMA Read.

rdma_addr The starting address of the remote buffer to read from.

rmr_context The RMR Context for the remote buffer to read from.

it_post_rdma_read requests a transfer of the data from a remote buffer into the local buffer
specified by num_segments and local_segments over the reliable Connection of the ep_handle
Endpoint. The size of the data transferred is specified by the sum of sizes of the local_segments.
A zero-sized message may be transferred over the Connection. The it_post_rdma_read is only
applicable to reliable Connections.

num_segments specifies the number of segments in the local_segments vector.

The Implementation allows the buffer segments described by the local_segments to overlap but
the resulting content of the local buffer is undefined.

Once a successful Completion Event has been generated for the RDMA Read, the order of the
bytes in the local buffer specified by num_segments and local_segments corresponds to the order
defined by the remote buffer unless there is local overlap. If there is local overlap, the byte order

Interconnect Transport API –Issue 1 126

 127

4122
4123
4124
4125
4126
4127
4128
4129
4130

in the local buffer is undefined. Prior to the Completion Event being generated, the content of
the local buffer is implementation-dependent.

A Consumer shall not modify the local buffer specified by num_segments and local_segments
until the DTO is completed. When a Consumer does not adhere to this rule, the behavior of the
Implementation and the underlying transport is not defined. A Consumer does get back
ownership of the num_segments and local_segments arguments (but not the local buffer
identified by them) when it_post_rdma_read returns and is free to use the num_segments and
local_segments arguments for other calls, or to modify them, or to destroy them.

The completion of the posted RDMA Read is reported asynchronously to the Consumer
according to the rules defined in it_dto_flags_t. Any generated DTO Completion Event
manifests on the EVD associated with the Endpoint. See

4131
it_ep_rc_create, it_dto_status_t and 4132

it_dto_events. A completion status other than IT_DTO_SUCCESS will break the Connection. If
the reported status of the completion DTO Event corresponding to the posted RDMA Read is not
IT_DTO_SUCCESS, the content of the local buffer is not defined.

4133
4134
4135
4136
4137
4138

The dto_flags value is used as specified in it_dto_flags_t.

The cookie allows the Consumer to associate an identifier with each DTO. This identifier is
completely under Consumer control and is opaque to the Implementation. The cookie is returned
to the Consumer in the Completion Event for the posted RDMA Read. See it_dto_cookie_t. 4139

4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160

The Implementation ensures that an LMR Triplet supports byte alignment for Data Transfer
Operations.

Data corruption (at local and/or at remote) and data loss will be reported to the Consumer in the
DTO Completion Event. These conditions will cause the Connection to be broken. Once the
Connection is broken, all outstanding and in-progress operations on the Connection will
complete with a failure reported in their corresponding DTO Completion Events.

The Implementation ensures that the RDMA Read in no way corresponds to any Send or Recv
Data Transfer Operations over the same Connection.

The Implementation ensures that all RDMA Read operations start and complete in the order
posted.

Send and RDMA DTOs following an RDMA Read DTO may start during execution of the
RDMA Read DTO and complete before the RDMA Read completes. To ensure
deterministically that subsequent Sends and RDMA DTOs following an RDMA Read DTO
do start after the RDMA Read completes, specify the IT_BARRIER_FENCE_FLAG on the
DTOs following the RDMA Read.

The Implementation ensures that all data for a given RDMA Read operation is transferred from
the remote buffers and into the local buffers before a RDMA Read completion is generated with
the status of IT_DTO_SUCCESS.

Posting to an Endpoint that is not in the IT_EP_STATE_CONNECTED or IT_EP_STATE_
NONOPERATIONAL state will return the IT_ERR_INVALID_EP_STATE error.

Any posting to an Endpoint that is in the IT_EP_STATE_NONOPERATIONAL state will be
flushed with completion status (it_dto_status_t) set to IT_DTO_ERR_FLUSHED. 4161

4162
4163

IT_SUCCESS returned from the it_post_rdma_read call means that the RDMA Read operation
was successfully posted to the transport layer in use.

Interconnect Transport API –Issue 1 127

 128

4164
4165

4166
4167

4168
4169

4170
4171

4172
4173

4174
4175

4176
4177
4178

4179
4180
4181

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described below.

IT_ERR_TOO_MANY_POSTS The operation failed due to an overflow of a
work queue.

IT_ERR_INVALID_EP The Endpoint Handle (ep_handle) was
invalid.

IT_ERR_INVALID_EP_STATE The Endpoint was not in the proper state for
the attempted operation.

IT_ERR_INVALID_EP_TYPE The attempted operation was invalid for the
Service Type of the Endpoint.

IT_ERR_INVALID_DTO_FLAGS The Data Transfer Operation flags
(dto_flags) value was invalid.

IT_ERR_INVALID_NUM_SEGMENTS The requested number of segments
(num_segments) was larger than the
Endpoint supports.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error
and is in the disabled state. None of the
output parameters from this routine are
valid. See it_ia_info_t for a description of
the disabled state

4182
4183

4184
4185

4186
4187
4188
4189
4190
4191

ERRORS
None.

APPLICATION USAGE
This function is used after a Connection has been established to transfer data from a Consumer-
specified remote buffer to a Consumer-specified local buffer.

The Consumer should use unique identifiers for cookie if they desire to identify each DTO. If
the Consumer does not require a unique DTO identifier, the value of zero or NULL can be used.

For best RDMA Read operation performance, the Consumer should align each buffer segment of
local_segments to the dto_alignment_hint in the IA attributes obtained via it_ia_query. 4192

4193 SEE ALSO
it_post_send(), it_post_sendto(), it_post_recv(), it_post_recvfrom(), it_post_rdma_write(), 4194
it_rmr_bind(), it_rmr_unbind(), it_dto_status_t, it_dto_events, it_dto_flags_t, it_ep_rc_create(), 4195
it_lmr_triplet_t, it_ia_query(), it_dto_cookie_t, it_ia_info_t4196

Interconnect Transport API –Issue 1 128

 129

it_post_rdma_write() 4197

4198
4199

4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211

4212

4213

NAME
it_post_rdma_write – post an RDMA Write DTO to a connected Endpoint

SYNOPSIS
#include <it_api.h>

it_status_t it_post_rdma_write (
 IN it_ep_handle_t ep_handle,
 IN const it_lmr_triplet_t *local_segments,
 IN size_t num_segments,
 IN it_dto_cookie_t cookie,

IN it_dto_flags_t dto_flags
 IN it_rdma_addr_t rdma_addr,
 IN it_rmr_context_t rmr_context
);

DESCRIPTION

ep_handle Handle for the Endpoint – the local side of the Connection.

4214
4215
4216

local_segments Vector of it_lmr_triplet_t data structures that specifies the local
buffer that contains data to be transferred. Can be NULL for a zero-
sized message.

4217
4218

4219
4220

4221

4222

4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236

num_segment Number of it_lmr_triplet_t data structures in local_segments. Can be
zero for a zero-sized message.

cookie Consumer-provided cookie that is returned to the Consumer in the
Completion Event corresponding to the RDMA Write.

dto_flags Flags for posted RDMA Write.

rdma_addr The starting address of the remote buffer to write to.

rmr_context The RMR Context for the remote buffer to write to.

it_post_rdma_write requests a transfer of all the data from local_segments into a remote buffer
on the other side of the Connection. The Connection is implemented on a reliable transport. A
zero-sized message may be transferred over the Connection.

num_segments specifies the number of segments in the local_segments vector. The Completion
Event for the it_post_rdma_write call indicates to the Consumer that the local buffer is under
Consumer control again. It does not guarantee that the contents of the local buffer have been
successfully delivered into the memory of the remote Consumer. However, once the contents of
the local buffer reach the remote Consumer memory, the order of the bytes in the remote
memory corresponds to the order defined by the local_segments. Prior to the Completion Event
being generated, the content of the remote buffer is implementation-dependent.

A Consumer should not modify the local buffer specified by num_segments and local_segments
until the DTO is completed. When a Consumer does not adhere to this rule, the behavior of the
Implementation and the underlying transport is not defined. A Consumer does get back

Interconnect Transport API –Issue 1 129

 130

4237
4238
4239
4240

ownership of the num_segments and local_segments arguments (but not the local buffer
identified by them) when it_post_rdma_write returns and is free to use the num_segments and
local_segments arguments for other calls, to modify them, or to destroy them.

The completion of the posted RDMA Write is reported asynchronously to the Consumer
according to the rules defined in it_dto_flags_t. Any generated DTO Completion Event
manifests on the EVD associated with the Endpoint. See

4241
it_ep_rc_create, it_dto_status_t and 4242

it_dto_events. A completion status other than IT_DTO_SUCCESS will break the Connection. If
the reported status of the completion DTO Event corresponding to the posted RDMA Write
DTO is not IT_DTO_SUCCESS, then the contents of the remote buffer are not defined.

4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273

The dto_flags value is used as specified in it_dto_flags_t.

The cookie allows the Consumer to associate an identifier with each DTO. This identifier is
completely under Consumer control and is opaque to the Implementation. The cookie is returned
to the Consumer in the Completion Event for the posted RDMA Write.

The buffer segments described by local_segments can overlap.

The Implementation ensures that an LMR Triplet supports byte alignment for Data Transfer
Operations.

Data corruption (at local and/or at remote) and data loss will be reported to the Consumer in the
DTO Completion Event. These conditions will cause the Connection to be broken. Once the
Connection is broken, all outstanding and in-progress operations on the Connection will
complete with an error status.

The Implementation ensures that the RDMA Write in no way corresponds to any Receive Data
Transfer Operations over the same Connection.

The Implementation ensures that all RDMA Write operations start and complete in the order
posted.

If the RDMA Write operation exceeds the bounds of the remote buffer, the completion status
will be IT_DTO_ERR_REMOTE_ACCESS.

The Implementation ensures that each RDMA Write Data Transfer Operation posted on a
Connection prior to a Send Data Transfer Operation posted to the same Connection has its
complete data payload delivered to the remote memory prior to the completion of the Receive
Data Transfer Operation at the remote side matching that Send.

Send and RDMA DTOs following an RDMA Read DTO may start during execution of the
RDMA Read DTO and complete before the RDMA Read completes. To ensure that Sends and
RDMA DTOs following an RDMA Read DTO do start after the RDMA Read completes,
specify the IT_BARRIER_FENCE_FLAG on the DTOs following the RDMA Read.

Posting to an Endpoint that is not in the IT_EP_STATE_CONNECTED or IT_EP_STATE_
NONOPERATIONAL state will return the IT_ERR_INVALID_EP_STATE error.

Any posting to an Endpoint that is in the IT_EP_STATE_NONOPERATIONAL state will be
flushed with completion status (it_dto_status_t) set to IT_DTO_ERR_FLUSHED. 4274

4275
4276

IT_SUCCESS returned from the it_post_rdma_write call means that the RDMA Write operation
was successfully posted to the transport layer in use.

Interconnect Transport API –Issue 1 130

 131

4277 EXTENDED DESCRIPTION
4278
4279

4280
4281

4282
4283

4284
4285

4286
4287

4288
4289

4290
4291

4292
4293
4294

4295
4296
4297

See it_lmr_sync_rdma_write for a discussion of ramifications of RDMA Write use on non-
coherent systems.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described below.

IT_ERR_TOO_MANY_POSTS The operation failed due to an overflow of a
work queue.

IT_ERR_INVALID_EP The Endpoint Handle (ep_handle) was
invalid.

IT_ERR_INVALID_EP_STATE The Endpoint was not in the proper state for
the attempted operation.

IT_ERR_INVALID_EP_TYPE The attempted operation was invalid for the
Service Type of the Endpoint.

IT_ERR_INVALID_DTO_FLAGS The Data Transfer Operation flags
(dto_flags) value was invalid.

IT_ERR_INVALID_NUM_SEGMENTS The requested number of segments
(num_segments) was larger than the
Endpoint supports.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error
and is in the disabled state. None of the
output parameters from this routine are
valid. See it_ia_info_t for a description of
the disabled state.

4298
4299

4300
4301

4302
4303
4304
4305
4306
4307

ERRORS
None.

APPLICATION USAGE
This function is used after Connection has been established to transfer data from Consumer
specified local buffer to a remote buffer on the other side of the Connection.

The Consumer should use unique identifiers for cookie if they desire to identify each DTO. If
the Consumer does not require a unique DTO identifier, the value of zero or NULL can be used.

For best RDMA Write operation performance, the Consumer should align each buffer segment
of local_segments to the dto_alignment_hint in the IA attributes obtained via it_ia_query. 4308

4309
4310
4311
4312
4313

There are a variety of ways to guarantee the delivery of a local buffer via RDMA Write into the
memory of the remote Consumer. One way would be for the Consumer to send a message over
the Connection after the RDMA Write had completed, and then wait for the remote peer to reply
to that message. By requiring the remote Consumer to reap the Receive Completion for the Send
from the local Consumer, the payload of the RDMA Write is delivered into the remote memory.

Interconnect Transport API –Issue 1 131

 132

4314 SEE ALSO
it_post_send(), it_post_sendto(), it_post_recv(), it_post_recvfrom(), it_post_rdma_read(), 4315
it_rmr_bind(),it_rmr_unbind(), it_dto_status_t, it_dto_events, it_dto_flags_t, it_ep_rc_create(), 4316
it_lmr_triplet_t, it_ia_query(), it_dto_cookie_t, it_ia_info_t4317

Interconnect Transport API –Issue 1 132

 133

it_post_recv() 4318

4319
4320

4321
4322
4323
4324
4325
4326
4327
4328
4329
4330

4331

4332

NAME
it_post_recv – post a Receive DTO to a connected Endpoint

SYNOPSIS
#include <it_api.h>

it_status_t it_post_recv(
 IN it_ep_handle_t ep_handle,
 IN const it_lmr_triplet_t *local_segments,
 IN size_t num_segments,
 IN it_dto_cookie_t cookie,
 IN it_dto_flags_t dto_flags
);

DESCRIPTION

ep_handle Handle for the Endpoint – the local side of the Connection.

4333
4334
4335

local_segments Vector of it_lmr_triplet_t data structures that specifies the local
buffer to contain the data to be received. Can be NULL for a zero-
sized message.

4336
4337

4338
4339

4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357

num_segments Number of it_lmr_triplet_t data structures in local_segments. Can be
zero for a zero-sized message.

cookie Consumer-provided cookie that is returned to the Consumer in the
Completion Event corresponding to the Receive.

dto_flags Flags for posted Receive.

it_post_recv supplies the local Receive buffer specified by local_segments and num_segments to
the ep_handle Endpoint. A single incoming message from a single corresponding Send over the
Connection is deposited into the local Receive buffer. Zero-sized messages are supported and
will consume a posted Receive.

num_segments specifies the number of segments in the local_segments vector.

The Implementation allows the buffer segments described by the local_segments vector to
overlap but the resulting Receive behavior is undefined.

Once a successful Completion Event has been generated for the Receive, the order of the bytes
in the local buffer specified by local_segments and num_segments corresponds to the order
defined by the local_segments of the corresponding Send operation unless there is overlap
among the segments of the local Receive buffer. If there is such an overlap, the content of the
local Receive buffer after the Completion Event has been generated is undefined. Prior to the
Completion Event being generated, the content of the local buffer is implementation-dependent.

A Consumer shall not modify the local buffer specified by num_segments and local_segments
until the DTO is completed. When a Consumer does not adhere to this rule, the behavior of the
Implementation and the underlying transport is not defined. A Consumer does get back
ownership of the num_segments and local_segments arguments (but not the local buffer

Interconnect Transport API –Issue 1 133

 134

4358
4359
4360

identified by them) when it_post_recv returns and is free to use the num_segments and
local_segments arguments for other calls, to modify them, or to destroy them.

The completion of the posted Receive is reported asynchronously to the Consumer according to
the rules defined in it_dto_flags_t. Exactly one Receive DTO Completion Event is always
generated and manifests on the EVD associated with the Endpoint. See

4361
it_ep_rc_create, 4362

it_dto_status_t and it_dto_events. A completion status other than IT_DTO_SUCCESS will break
the Connection. If the reported dto_status of the Completion DTO Event corresponding to the
posted Receive DTO is not IT_DTO_SUCCESS, the content of the local buffer is not defined.

4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391

The dto_flags value is used as specified in it_dto_flags_t.

The cookie allows the Consumer to associate an identifier with each DTO. This identifier is
completely under Consumer control and is opaque to the Implementation. The cookie is returned
to the Consumer in the Completion Event for the posted Receive.

The Implementation ensures that an LMR Triplet supports byte alignment for Data Transfer
Operations.

Data corruption (at local and/or at remote) and data loss will be reported to the Consumer in the
DTO Completion Event. These conditions will cause the Connection to be broken. Once the
Connection is broken, all outstanding and in-progress operations on the Connection will
complete with an error status.

The Implementation ensures that each Receive corresponds to one and only one remote Send and
in no way corresponds to any RDMA Read or RDMA Write Data Transfer Operations over the
same Connection.

The Implementation ensures that a RDMA Write DTO from the remote connected Endpoint
preceding a Send from the remote connected Endpoint has fully delivered its payload prior to the
completion of the Receive corresponding to the Send.

The Implementation ensures that all Receives start and complete in the order posted.

Receive Data Transfer Operations on a Connection are completed in the order of posting of their
corresponding Sends at the remote Endpoint. Since Sends start and complete in order, the Recvs
complete in order.

There is no order relationship between completions of Receive Data Transfer Operations and all
other Data Transfer Operations (including RMR operations) on the same Connection.

The Implementation ensures that all data from a given Send operation is transferred from the
remote buffers and into the local buffers before a Receive completion is generated with
IT_DTO_SUCCESS.

Any posting to an Endpoint that is in the IT_EP_STATE_NONOPERATIONAL state will be
flushed with completion status (it_dto_status_t) set to IT_DTO_ERR_FLUSHED. 4392

4393
4394

4395
4396

4397
4398

IT_SUCCESS returned from the it_post_recv call means that the Receive operation was
successfully posted to the transport layer for use.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described below.

IT_ERR_TOO_MANY_POSTS The operation failed due to an overflow of a work
queue.

Interconnect Transport API –Issue 1 134

 135

4399

4400
4401

4402
4403

4404
4405
4406

4407
4408
4409

IT_ERR_INVALID_EP The Endpoint Handle (ep_handle) was invalid.

IT_ERR_INVALID_EP_TYPE The attempted operation was invalid for the
Service Type of the Endpoint.

IT_ERR_INVALID_DTO_FLAGS The Data Transfer Operation flags (dto_flags)
value was invalid.

IT_ERR_INVALID_NUM_SEGMENTS The requested number of segments
(num_segments) was larger than the Endpoint
supports.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is
in the disabled state. None of the output
parameters from this routine are valid. See
it_ia_info_t for a description of the disabled state. 4410

4411
4412

4413
4414
4415
4416
4417
4418
4419

ERRORS
None.

APPLICATION USAGE
This function is used after a Connection has been established to transfer data into a Consumer-
specified local buffer from a buffer specified by the corresponding Send operation on the other
side of the Connection.

The Consumer should use unique identifiers for cookie if they desire to identify each DTO. If the
Consumer does not require a unique DTO identifier, the value of zero or NULL can be used.

For best Receive operation performance, the Consumer should align each buffer segment of
local_segments to the dto_alignment_hint in the IA attributes obtained via it_ia_query. 4420

4421 SEE ALSO
it_post_send(), it_post_sendto(), it_post_recvfrom(), it_post_rdma_read(), it_post_rdma_write(), 4422
it_rmr_bind(), it_rmr_unbind(), it_dto_status_t, it_dto_events, it_dto_flags_t, it_ep_rc_create(), 4423
it_lmr_triplet_t, it_ia_query(), it_dto_cookie_t, it_ia_info_t4424

Interconnect Transport API –Issue 1 135

 136

it_post_recvfrom() 4425

4426
4427

4428
4429
4430
4431
4432
4433
4434
4435
4436
4437

4438

4439

NAME
it_post_recvfrom – post a Receive DTO to a datagram Endpoint

SYNOPSIS
#include <it_api.h>

it_status_t it_post_recvfrom(
 IN it_ep_handle_t ep_handle,
 IN const it_lmr_triplet_t *local_segments,
 IN size_t num_segments,
 IN it_dto_cookie_t cookie,
 IN it_dto_flags_t dto_flags
);

DESCRIPTION

ep_handle Handle for the local datagram Endpoint.

4440
4441
4442

local_segments Vector of it_lmr_triplet_t data structures that specifies the local
buffer that will contain the received data. Local buffer must be at
least 40 bytes.

4443
4444

4445
4446

4447
4448
4449
4450
4451
4452
4453

num_segments Number of it_lmr_triplet_t data structures in local_segments. Must
be at least one.

cookie Consumer-provided cookie that is returned to the Consumer in the
Completion Event corresponding to the Receive.

dto_flags Flags for posted Receive.

it_post_recvfrom supplies the local Receive buffer specified by local_segments and
num_segments to the ep_handle datagram Endpoint. A single incoming message from a single
corresponding Send from a remote datagram Endpoint is deposited into the local Receive buffer.

The first 40 bytes of the Consumer’s local buffer are reserved for Implementation use. For a
zero-sized message, the minimum size for the local buffer in local_segments is 40 bytes. To
accommodate a larger message, the Consumer should provide a local buffer in local_segments at
least 40 bytes bigger than their expected incoming message size. See it_dto_events for more
details.

4454
4455
4456
4457
4458
4459
4460
4461
4462
4463

num_segments specifies the number of segments in the local_segments vector.

The Implementation allows the buffer segments described by the local_segments vector to
overlap but the resulting Receive behavior is undefined.

Once a successful Completion Event has been generated for the Receive, the order of the bytes
in the local buffer specified by local_segments and num_segments corresponds to the order
defined by the local_segments of the corresponding Send operation unless there is overlap
among the segents of the local Receive buffer. If there is such an overlap, the content of the local
buffer after the Completion Event has been generated is undefined. Prior to the Completion

Interconnect Transport API –Issue 1 136

 137

4464
4465
4466
4467
4468
4469
4470
4471
4472

Event being generated, the content of the local buffer is implementation-dependent. A successful
Completion Event indicates that the data has been delivered uncorrupted into the local buffer.

A Consumer should not modify the local buffer specified by num_segments and local_segments
until the DTO is completed. When a Consumer does not adhere to this rule, the behavior of the
Implementation and the underlying transport is not defined. A Consumer does get back
ownership of the num_segments and local_segments arguments (but not the local buffer
identified by them) when it_post_recvfrom returns and is free to use the num_segments and
local_segments arguments for other calls, to modify them, or to destroy them.

The completion of the posted Receive is reported asynchronously to the Consumer according to
the rules defined in it_dto_flags_t. Exactly one Receive DTO Completion Event is always
generated and manifests on the EVD associated with the Endpoint Receive Queue. See

4473
4474

it_ep_ud_create, it_dto_status_t and it_dto_events. If the reported dto_status of the Completion
DTO Event corresponding to the posted Receive DTO is not IT_DTO_SUCCESS, the content of
the local buffer is not defined.

4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494

The dto_flags value is used as specified in it_dto_flags_t.

The cookie allows the Consumer to associate an identifier with each DTO. This identifier is
completely under Consumer control and is opaque to the Implementation. The cookie is returned
to the Consumer in the Completion Event for the posted Receive.

If the size of an incoming message is larger than the size of the local buffer or larger than the
MTU of the local Spigot, the reported status of the posted Receive DTO in the corresponding
Completion DTO Event is IT_DTO_ERR_LOCAL_LENGTH.

The Implementation ensures that an LMR Triplet supports byte alignment for Data Transfer
Operations.

The Implementation ensures that each Receive corresponds to one and only one remote Send.

There is no relationship guaranteed on the order of Receive completions and the order of the
posting of the corresponding Sends at remote datagram Endpoints.

The Implementation ensures that all Receives start and complete in the order posted.

The Implementation ensures that all data from a given Send operation is transferred from the
remote buffer and into the local buffer before a Receive completion is generated with
IT_DTO_SUCCESS.

Any posting to an Endpoint that is in the IT_EP_STATE_NONOPERATIONAL state will be
flushed with completion status (it_dto_status_t) set to IT_DTO_ERR_FLUSHED. 4495

4496
4497

4498
4499

4500
4501

4502
4503

IT_SUCCESS returned from the it_post_recvfrom call means that the Receive operation was
successfully posted to the transport layer for use.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described below.

IT_ERR_TOO_MANY_POSTS The operation failed due to an overflow of a
work queue.

IT_ERR_INVALID_EP The Endpoint Handle (ep_handle) was
invalid.

Interconnect Transport API –Issue 1 137

 138

4504
4505

4506
4507

4508
4509
4510

4511
4512
4513

IT_ERR_INVALID_EP_TYPE The attempted operation was invalid for the
Service Type of the Endpoint.

IT_ERR_INVALID_DTO_FLAGS The Data Transfer Operation flags (dto_flags)
value was invalid.

IT_ERR_INVALID_NUM_SEGMENTS The requested number of segments
(num_segments) was larger than the Endpoint
supports.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error
and is in the disabled state. None of the
output parameters from this routine are valid.
See it_ia_info_t for a description of the
disabled state.

4514
4515

4516
4517

4518
4519
4520
4521
4522
4523

ERRORS
None.

APPLICATION USAGE
This function is used to transfer data into a Consumer-specified local buffer from a buffer
specified by the corresponding Send operation at the remote Endpoint.

The Consumer should use unique identifiers for cookie if they desire to identify each DTO. If the
Consumer does not require a unique DTO identifier, the value of zero or NULL can be used.

For best Receive operation performance, the Consumer should align each buffer segment of
local_segments to the dto_alignment_hint in the IA attributes obtained via it_ia_query. 4524

4525 SEE ALSO
it_post_send(), it_post_sendto(), it_post_recv(), it_post_rdma_read(), it_post_rdma_write(), 4526
it_rmr_bind(), it_rmr_unbind(), it_dto_status_t, it_dto_events, it_dto_flags_t, it_ep_ud_create(), 4527
it_lmr_triplet_t, it_ia_query(), it_dto_cookie_t, it_ia_info_t4528

Interconnect Transport API –Issue 1 138

 139

it_post_send() 4529

4530
4531

4532
4533
4534
4535
4536
4537
4538
4539
4540
4541

4542

4543

NAME
it_post_send – post a Send DTO to a connected Endpoint

SYNOPSIS
#include <it_api.h>

it_status_t it_post_send(
 IN it_ep_handle_t ep_handle,
 IN const it_lmr_triplet_t *local_segments,

IN size_t num_segments,
 IN it_dto_cookie_t cookie,
 IN it_dto_flags_t dto_flags
);

DESCRIPTION

ep_handle Handle for the Endpoint – the local side of the Connection.

4544
4545
4546

local_segments Vector of it_lmr_triplet_t data structures that specifies the local
buffer that contains data to be transferred. Can be NULL for a zero-
sized message.

4547
4548

4549
4550

4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564

num_segments Number of it_lmr_triplet_t data structures in local_segments. Can be
zero for a zero-sized message.

cookie Consumer-provided cookie that is returned to the Consumer in the
Completion Event corresponding to the Send.

dto_flags Flags for posted Send.

it_post_send requests a transfer of all the data from local_segments into a remote buffer
specified by a single corresponding Receive on the other side of the Connection. The Connection
is implemented on a reliable transport. A zero-sized message may be transferred over the
Connection and will consume a buffer specified by the corresponding Receive.

num_segments specifies the number of segments in the local_segments vector.

The Completion Event for the it_post_send call indicates to the Consumer that the local buffer is
under Consumer control again. It does not guarantee that the contents of the local buffer have
been successfully received by the remote Consumer. The contents of the local buffer are only
guaranteed to have reached the remote Consumer's memory when the remote Consumer reaps a
successful completion for the Receive operation that matches the Send initiated by the
it_post_send call.

Once the local buffer has reached the remote Consumer memory, the order of the bytes in the
remote buffer specified by the Receive operation at the remote Endpoint corresponds to the order
defined by the Send side local_segments subject to overlap constraints. See it_post_recv for
details on overlap constraints. Prior to the Completion Event being generated, the contents of the
receiver’s local_segments are implementation-dependent.

4565
4566
4567

Interconnect Transport API –Issue 1 139

 140

4568
4569
4570
4571
4572
4573
4574
4575

A Consumer should not modify the local buffer specified by num_segments and local_segments
until the DTO is completed. When a Consumer does not adhere to this rule, the content of the
local buffer at the receiving side is undefined after the matching Receive operation completes. A
Consumer does get back the ownership of the num_segments and local_segments arguments (but
not the local buffer identified by them) when it_post_send returns and is free to use the
num_segments and local_segments arguments for other calls, to modify them, or to destroy
them.

The completion of the posted Send is reported asynchronously to the Consumer according to the
rules defined in it_dto_flags_t. Any generated DTO Completion Event manifests on the EVD
associated with the Endpoint. See

4576
it_ep_rc_create, it_dto_status_t and it_dto_events. A

completion status other than IT_DTO_SUCCESS will break the Connection.
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610

The dto_flags value is used as specified in it_dto_flags_t.

The cookie allows the Consumer to associate an identifier with each DTO. This identifier is
completely under Consumer control and is opaque to the Implementation. The cookie is returned
to the Consumer in the Completion Event for the posted Send.

The Implementation ensures that an LMR Triplet supports byte alignment for Data Transfer
Operations.

The Implementation allows the buffer segments described by the local_segments to overlap.

Data corruption (at local and/or at remote) and data loss will be reported to the Consumer in the
DTO Completion Event. These conditions will cause the Connection to be broken. Once the
Connection is broken, all outstanding and in-progress operations on the Connection will
complete with an error status.

The Implementation ensures that each Send corresponds to one and only one remote Receive and
in no way corresponds to any locally or remotely posted RDMA Read or RDMA Write Data
Transfer Operations over the same Connection. If no Receive resources are ever posted at the
remote end, then a Send will eventually abort with a completion error and the Connection will be
broken. In order to avoid this scenario the remote Consumer should post Receive resources prior
to the local Consumer posting the Send.

The Implementation ensures that a RDMA Write DTO preceding the Send has fully delivered its
payload prior to the completion of the remote Receive corresponding to the Send.

The Implementation ensures that all Sends start and complete in the order posted.

The Implementation ensures that all data from the given Send operation is transferred from the
local buffer and to the remote buffer before a Send completion is generated with the status of
IT_DTO_SUCCESS. If the corresponding remote Receive buffer is not sufficient in size for the
Send data buffer then the operation will complete with an error status. In order to avoid this
scenario the remote Consumer should post a buffer large enough for the incoming Send data.

Send and RDMA DTOs following an RDMA Read DTO may start during execution of the
RDMA Read DTO and complete before the RDMA Read completes. To ensure
deterministically that subsequent Sends and RDMA DTOs following an RDMA Read DTO
do start after the RDMA Read completes, specify the IT_BARRIER_FENCE_FLAG on the
DTOs following the RDMA Read.

Posting to an Endpoint that is not in the IT_EP_STATE_CONNECTED or IT_EP_STATE_
NONOPERATIONAL state will return the IT_ERR_INVALID_EP_STATE error.

Interconnect Transport API –Issue 1 140

 141

Any posting to an Endpoint that is in the IT_EP_STATE_NONOPERATIONAL state will be
flushed with completion status (

4611
it_dto_status_t) set to IT_DTO_ERR_FLUSHED. 4612

4613
4614

4615
4616

4617
4618

4619
4620

4621
4622

4623
4624

4625
4626

4627
4628
4629

4630
4631
4632

IT_SUCCESS returned from the it_post_send call means that the Send operation was
successfully posted to the transport layer.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described below.

IT_ERR_TOO_MANY_POSTS The operation failed due to an overflow of a
work queue.

IT_ERR_INVALID_EP The Endpoint Handle (ep_handle) was
invalid.

IT_ERR_INVALID_EP_STATE The Endpoint was not in the proper state for
the attempted operation.

IT_ERR_INVALID_EP_TYPE The attempted operation was invalid for the
Service Type of the Endpoint.

IT_ERR_INVALID_DTO_FLAGS The Data Transfer Operation flags (dto_flags)
value was invalid.

IT_ERR_INVALID_NUM_SEGMENTS The requested number of segments
(num_segments) was larger than the Endpoint
supports.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error
and is in the disabled state. None of the
output parameters from this routine are valid.
See it_ia_info_t for a description of the
disabled state.

4633
4634

4635
4636

4637
4638
4639
4640
4641
4642
4643

ERRORS
None.

APPLICATION USAGE
This function is used after a Connection has been established to transfer data from a Consumer-
specified local buffer to a buffer specified by the corresponding Receive operation on the other
side of the Connection.

The Consumer should use unique identifiers for cookie if they desire to identify each DTO. If the
Consumer does not require a unique DTO identifier, the value of zero or NULL can be used.

For best Send operation performance, the Consumer should align each buffer segment of
local_segments to the dto_alignment_hint in the IA attributes obtained via it_ia_query. 4644

4645 SEE ALSO
it_post_sendto(), it_post_recv(), it_post_recvfrom(), it_post_rdma_read(), it_post_rdma_write(), 4646
it_rmr_bind(), it_rmr_unbind(), it_dto_status_t, it_dto_events, it_dto_flags_t, it_ep_rc_create(), 4647
it_lmr_triplet_t, it_ia_query(), it_dto_cookie_t, it_ia_info_t4648

Interconnect Transport API –Issue 1 141

 142

it_post_sendto() 4649

4650
4651

4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662

4663

4664

NAME
it_post_sendto – post a Send DTO to a datagram Endpoint

SYNOPSIS
#include <it_api.h>

it_status_t it_post_sendto(
 IN it_ep_handle_t ep_handle,
 IN const it_lmr_triplet_t *local_segments,
 IN size_t num_segments,
 IN it_dto_cookie_t cookie,
 IN it_dto_flags_t dto_flags,
 IN const it_dg_remote_ep_addr_t *remote_ep_addr
);

DESCRIPTION

ep_handle Handle for the local datagram Endpoint.

4665
4666

local_segments Vector of it_lmr_triplet_t that specifies the local buffer that contains
data to be transferred. Can be NULL for a zero-sized message.

4667
4668

4669
4670

4671

4672
4673
4674
4675
4676
4677
4678
4679

num_segments Number of it_lmr_triplet_t data structures in local_segments. Can be
zero for a zero-sized message.

cookie Consumer-provided cookie that is returned to the Consumer in the
Completion Event corresponding to the Send.

dto_flags Flags for posted Send.

remote_ep_addr Remote datagram Endpoint address.

it_post_sendto requests a transfer of all the data from local_segments via the local datagram
ep_handle into a remote buffer specified by a single corresponding Receive at the remote
datagram Endpoint as specified by remote_ep_addr. No guarantee of delivery is provided.

num_segments specifies the number of segments in the local_segments vector.

Once a successful Completion Event has been generated at the receiver, the order of the bytes in
the remote buffer specified by the Receive operation at the remote Endpoint corresponds to the
order defined by the Send side local_segments subject to overlap constraints. See
it_post_recvfrom for details on overlap constraints. Prior to the Completion Event being
generated, the contents of the receiver’s local_segments are implementation-dependent.

4680
4681
4682
4683
4684
4685
4686
4687

A Consumer should not modify the local buffer specified by num_segments and local_segments
until the DTO is completed. When a Consumer does not adhere to this rule, the behavior of the
Implementation and the underlying transport is not defined. A Consumer does get back the
ownership of the num_segments and local_segments arguments (but not the local buffer
identified by them) when it_post_sendto returns and is free to use the num_segments and
local_segments arguments for other calls, to modify them, or to destroy them.

Interconnect Transport API –Issue 1 142

 143

The completion of the posted Send is reported asynchronously to the Consumer according to the
rules defined in

4688
it_dto_flags_t. Any generated DTO Completion Event manifests on the EVD

associated with the Endpoint. See
4689

it_ep_ud_create, it_dto_status_t, and it_dto_events. 4690
4691
4692
4693
4694
4695

The dto_flags value is used as specified in it_dto_flags_t.

The cookie allows the Consumer to associate an identifier with each DTO. This identifier is
completely under Consumer control and is opaque to the Implementation. The cookie is returned
to the Consumer in the Completion Event for the posted Send.

remote_ep_addr specifies the Destination for the it_post_sendto operation. See
it_dg_remote_ep_addr_t for details on the format of this data structure. 4696

4697
4698
4699
4700
4701
4702
4703
4704
4705

The Implementation ensures that an LMR Triplet supports byte alignment for Data Transfer
Operations.

The Implementation allows the buffer segments described by local_segments to overlap.

The Implementation ensures that all Sends start and complete in the order posted.

The Implementation makes no delivery order guarantees for Unreliable Datagrams.

There is no delivery order or completion order between Receive Data Transfer Operations on
different Destinations that correspond to the Sends posted in order to the same Unreliable
Datagram Endpoint.

Any posting to an Endpoint that is in the IT_EP_STATE_NONOPERATIONAL state will be
flushed with completion status (it_dto_status_t) set to IT_DTO_ERR_FLUSHED. 4706

4707
4708
4709
4710

4711
4712

4713
4714

4715

4716
4717

4718
4719

4720
4721
4722

4723
4724
4725

IT_SUCCESS returned from the it_post_sendto call means that the Send operation was
successfully posted to the transport layer.

When it_post_sendto completes with IT_SUCCESS or IT_DTO_ERR_LOCAL_EP there is no
guarantee that the DTO has reached the remote Endpoint.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described below.

IT_ERR_TOO_MANY_POSTS The operation failed due to an overflow of a
work queue.

IT_ERR_INVALID_EP The Endpoint Handle (ep_handle) was invalid.

IT_ERR_INVALID_EP_TYPE The attempted operation was invalid for the
Service Type of the Endpoint.

IT_ERR_INVALID_DTO_FLAGS The Data Transfer Operation flags (dto_flags)
value was invalid.

IT_ERR_INVALID_NUM_SEGMENTS The requested number of segments
(num_segments) was larger than the Endpoint
supports.

IT_ERR_INVALID_AH The Address Handle within remote_ep_addr
was invalid or the does not match the spigot_id
of the Endpoint.

Interconnect Transport API –Issue 1 143

 144

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and
is in the disabled state. None of the output
parameters from this routine are valid. See

4726
4727
4728

it_ia_info_t for a description of the disabled
state.

4729
4730

4731
4732

4733
4734
4735
4736
4737
4738

ERRORS
None.

APPLICATION USAGE
This function is used to transfer data from a Consumer-specified local buffer to a buffer
specified by the corresponding Receive operation at a remote datagram Endpoint.

The Consumer should use unique identifiers for cookie if they desire to identify each DTO. If the
Consumer does not require a unique DTO identifier, the value of zero or NULL can be used.

For best Send operation performance, the Consumer should align each buffer segment of
local_segments to the dto_alignment_hint in the IA attributes obtained via it_ia_query. 4739

4740
4741
4742
4743
4744
4745
4746
4747

4748

An Address Handle corresponds to a specific Spigot on an IA. Attempting to it_post_sendto on
an Endpoint using an Address Handle that does not correspond to the Spigot associated with the
Endpoint must be avoided by the Consumer. If the Consumer persists in this practice, they must
write error handling code to deal with three possible error cases: One - the it_post_sendto call
will return the IT_ERR_INVALID_AH error immediately. Or two - the DTO will complete in
error with the it_dto_status set to IT_DTO_ERR_LOCAL_EP. Or three - there will be no
indication of error. The three possible cases represent the allowable implementations of the
underlying technology.

SEE ALSO
it_post_send(), it_post_recv(), it_post_recvfrom(), it_post_rdma_read(), it_post_rdma_write(), 4749
it_rmr_bind(), it_rmr_unbind(), it_dto_status_t, it_dto_events, it_dg_remote_ep_addr_t, 4750
it_dto_flags_t, it_ep_ud_create(), it_lmr_triplet_t, it_ia_query(), it_dto_cookie_t, it_ia_info_t4751

Interconnect Transport API –Issue 1 144

 145

it_pz_create() 4752

4753
4754

4755
4756
4757
4758
4759
4760
4761

4762

4763

4764
4765
4766
4767

4768
4769

4770

4771

4772
4773

NAME
it_pz_create – create a new Protection Zone

SYNOPSIS
#include <it_api.h>

it_status_t it_pz_create(
 IN it_ia_handle_t ia_handle,
 OUT it_pz_handle_t *pz_handle
);

DESCRIPTION

ia_handle Interface Adapter on which the Protection Zone will be created.

pz_handle Handle of new Protection Zone

The it_pz_create routine creates a new Protection Zone that may be used to create Local
Memory Regions, Remote Memory Regions, transport Endpoints, or Address Handles on the
Interface Adapter identified by ia_handle. The Protection Zone is returned in pz_handle.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, returns an error code as described below.

IT_ERR_RESOURCES The requested operation failed due to insufficient resources.

IT_ERR_INVALID_IA The Interface Adapter Handle (ia_handle) was invalid.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in the
disabled state. None of the output parameters from this
routine are valid. See it_ia_info_t for a description of the
disabled state.

4774
4775

4776
4777

4778
4779
4780
4781
4782
4783
4784
4785
4786

4787

ERRORS
None.

APPLICTION USAGE
An LMR, RMR, Endpoint or Address Handle can not be created without supplying a Protection
Zone. An LMR, RMR, or Address Handle may only be used in concert with an Endpoint having
the same Protection Zone. In DTO, Bind, and Unbind operations, the Protection Zone of the
local Endpoint and the LMR must match, or the operation will fail. In RDMA operations, the
Protection Zone of the RMR associated with the RMR Context must match that of the remote
Endpoint. In datagram DTO operations, the Protection Zone of the local Address Handle
identifying the Destination must match that of the local Endpoint. In Bind and Unbind
operations, the Protection Zone of the LMR and RMR must match.

SEE ALSO
it_pz_free(), it_pz_query()4788

Interconnect Transport API –Issue 1 145

 146

it_pz_free() 4789

4790
4791

4792
4793
4794
4795
4796
4797

4798

4799
4800
4801
4802
4803

4804
4805

4806

4807

4808
4809

NAME
it_pz_free – destroy a Protection Zone

SYNOPSIS
#include <it_api.h>

it_status_t it_pz_free(
 IN it_pz_handle_t pz_handle
);

DESCRIPTION

pz_handle Handle of Protection Zone to be destroyed.

The it_pz_free routine destroys the Protection Zone pz_handle. On successful return, the
pz_handle may no longer be used. An attempt to free a Protection Zone that is still referenced by
undestroyed Endpoints, Local Memory Regions, Remote Memory Regions, or Address Handles
will fail with IT_ERR_PZ_BUSY, and the Protection Zone will be unaffected.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, returns an error code as described below.

IT_ERR_INVALID_PZ The Protection Zone Handle (pz_handle) was invalid.

IT_ERR_PZ_BUSY The Protection Zone was still in use.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in the
disabled state. None of the output parameters from this
routine are valid. See it_ia_info_t for a description of the
disabled state.

4810
4811

4812
4813

4814

ERRORS
None.

SEE ALSO
it_pz_create(), it_pz_query()4815

Interconnect Transport API –Issue 1 146

 147

it_pz_query() 4816

4817
4818

4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835

4836

4837

4838

4839
4840
4841
4842
4843
4844

4845
4846

4847
4848

4849

4850

4851
4852

NAME
it_pz_query – get attributes of a Protection Zone

SYNOPSIS
#include <it_api.h>

it_status_t it_pz_query(
 IN it_pz_handle_t pz_handle,
 IN it_pz_param_mask_t mask,
 OUT it_pz_param_t *params
);

typedef enum {
 IT_PZ_PARAM_ALL = 0x01,
 IT_PZ_PARAM_IA = 0x02
} it_pz_param_mask_t;

typedef struct {
 it_ia_handle_t ia; /* IT_PZ_PARAM_IA */
} it_pz_param_t;

DESCRIPTION

pz_handle Protection Zone.

mask Logical OR of flags for desired parameters.

params Structure whose members are written with the desired parameters.

The it_pz_query routine returns the desired parameters of the Protection Zone pz_handle in the
structure pointed to by params. On return, each field of params is only valid if the
corresponding flag as shown in the Synopsis is set in the mask argument. The mask value
IT_PZ_PARAM_ALL causes all fields to be returned.

The definition of each field of params follows:

ia The Interface Adapter Handle specified to create the Protection
Zone.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, returns an error code as described below.

IT_ERR_INVALID_PZ The Protection Zone Handle (pz_handle) was invalid.

IT_ERR_INVALID_MASK The mask contained invalid flag values.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in the
disabled state. None of the output parameters from this
routine are valid. See it_ia_info_t for a description of the
disabled state.

4853
4854

Interconnect Transport API –Issue 1 147

 148

4855
4856

4857

ERRORS
None.

SEE ALSO
it_pz_create(), it_pz_free()4858

Interconnect Transport API –Issue 1 148

 149

it_reject() 4859

4860
4861

4862
4863
4864
4865
4866
4867
4868
4869
4870
4871

4872

4873
4874

NAME
it_reject - reject an incoming Connection Request or Connection Reply

SYNOPSIS
#include <it_api.h>

it_status_t it_reject(

IN it_cn_est_identifier_t cn_est_id,
IN const unsigned char *private_data,
IN size_t private_data_length

);

typedef uint64_t it_cn_est_identifier_t;

DESCRIPTION

cn_est_id Connection Establishment Identifier associated with the Connection
Request to be rejected. Calling it_reject destroys the identifier. See
it_ep_accept for a definition of this data type. 4875

4876
4877
4878
4879

4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891

private_data Opaque Private Data to be sent in the IT_CM_MSG_CONN_PEER_
REJECT_EVENT Event delivered to the Remote Consumer. If the
IA does not support Private Data, private_data_length must be zero.
The delivery of Private Data to the Remote Endpoint is unreliable.

private_data_length Length of private_data. This field must be 0 if the IA does not
support Private Data.

it_reject rejects an incoming Connection Request or Connection Reply. The Remote Endpoint
will receive an IT_CM_MSG_CONN_PEER_REJECT_EVENT Event on its IT_CM_MSG_
EVENT_STREAM Simple Event Dispatcher, and that Endpoint will transition into the
IT_EP_STATE_NONOPERATIONAL state.

For two-way Connection establishment, it_reject can only be called on the Passive side in
response to the IT_CM_REQ_CONN_REQUEST_EVENT Event.

For three-way Connection establishment, it_reject can be called on the Passive side in response
to the IT_CM_REQ_CONN_REQUEST_EVENT, or on the Active side in response to the
IT_CM_MSG_CONN_ACCEPT_ARRIVAL_EVENT. If it_reject is called on the active side,
the local Endpoint associated with the Connection establishment transitions to the IT_EP_
STATE_NONOPERATIONAL state. See the it_ep_state_t manual page for a description of
this Endpoint state.

4892
4893
4894
4895
4896
4897

4898
4899

Once the Endpoint is in the IT_EP_STATE_NONOPERATIONAL state any pending Data
Transfer Operations or Bind or Unbind operations on the Endpoint will be flushed and will
generate Completion Events with a Status of IT_DTO_ERR_FLUSHED.

The Connection Establishment Identifier, cn_est_id, is freed by it_reject.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described below.

Interconnect Transport API –Issue 1 149

 150

4900
4901

4902
4903

IT_ERR_INVALID_CN_EST_ID The Connection Establishment Identifier
(cn_est_id) was invalid.

IT_ERR_PDATA_NOT_SUPPORTED Private Data was supplied by the Consumer but
this Interface Adapter does not support Private
Data. See it_ia_query for the IAs capabilities to
support Private Data.

4904
4905

4906
4907
4908

4909
4910
4911

IT_ERR_INVALID_PDATA_LENGTH The Interface Adapter supports Private Data, but
the length specified exceeded the Interface
Adapter’s capabilities.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is
in the disabled state. None of the output
parameters from this routine are valid. See
it_ia_info_t for a description of the disabled state. 4912

4913
4914

4915
4916

ERRORS
None.

APPLICATION USAGE
1. The Consumer is responsible for coordinating the use of functions that free a Connection

Establishment Identifier (cn_est_id) such as it_ep_accept, it_reject, it_ep_disconnect and 4917
it_handoff. The behavior of functions that are passed in an invalid Connection
Establishment Identifier is indeterminate.

4918
4919
4920
4921

4922

2. The Consumer should be aware that the delivery of Private Data to the Remote Endpoint
is unreliable.

SEE ALSO
it_ep_accept (), it_ep_connect(), it_cm_req_events, it_cm_msg_events, it_ep_state_t, 4923
it_handoff(), it_ia_query()4924

Interconnect Transport API –Issue 1 150

 151

it_rmr_bind() 4925

4926
4927

4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941

4942

4943

4944

4945

4946

4947
4948

4949

4950
4951

4952

4953
4954
4955
4956
4957
4958
4959

NAME
it_rmr_bind – post operation to Bind a Remote Memory Region to a memory range

SYNOPSIS
#include <it_api.h>

it_status_t it_rmr_bind(

IN it_rmr_handle_t rmr_handle,
IN it_lmr_handle_t lmr_handle,
IN void *addr,
IN it_length_t length,
IN it_mem_priv_t privs,
IN it_ep_handle_t ep_handle,
IN it_dto_cookie_t cookie,
IN it_dto_flags_t dto_flags,
OUT it_rmr_context_t *rmr_context

);

DESCRIPTION

rmr_handle Handle of RMR that will be bound.

lmr_handle LMR to which RMR will be bound.

addr Starting address of region to be bound.

length Length in bytes of region to be bound. Must not be 0.

privs Logical OR of requested remote access privilege flags for bound
region.

ep_handle Endpoint on which to post the Bind operation.

cookie Consumer-provided cookie that is returned to the Consumer in the
Completion Event corresponding to the RMR Bind operation.

dto_flags Logical OR of options for operation handling.

rmr_context Returned Context allowing remote access to the bound region.

The it_rmr_bind routine posts to Endpoint ep_handle an operation to Bind the Remote Memory
Region rmr_handle to the segment of an LMR specified by the lmr_handle, addr, and length
arguments. It returns a new rmr_context value in network byte order that can be transferred by
the local Consumer to a remote Consumer to be used for an RDMA operation. The ep_handle
should be a Reliable Connected Endpoint; if it is not, an immediate error will be returned. The
Protection Zones of the lmr_handle, rmr_handle, and ep_handle must match; if they do not, a
completion error will be generated with completion status (it_dto_status_t) set to
IT_DTO_ERR_LOCAL_PROTECTION. Like DTOs, the Bind operation completes
asynchronously, and its completion is reported to the Consumer through a Completion Event
based on the specified dto_flags value. The Consumer defined cookie argument is opaque to the

4960
4961
4962
4963

Interconnect Transport API –Issue 1 151

 152

Implementation and is returned in the Completion Event. A Bind operation will only complete
successfully if it is posted to an Endpoint in the IT_EP_STATE_CONNECTED state. Any
posting to an Endpoint that is in the IT_EP_STATE_NONOPERATIONAL state will be flushed
with completion status set to IT_DTO_ERR_FLUSHED. A Bind operation may be submitted for
an RMR that has never been bound, is currently bound, or has been unbound using

4964
4965
4966
4967
4968

it_rmr_unbind. 4969
4970
4971
4972
4973
4974

4975

4976

4977
4978

4979
4980
4981
4982
4983
4984
4985
4986
4987
4988

The starting virtual address and length of the region to be bound is specified by addr and length,
respectively. Remote access to the region is enforced with byte level granularity, unlike an
LMR. The specified address range must fall within the LMR given by lmr_handle.

The type of remote access to be allowed is specified by the privs argument as a logical OR of
zero or more of the following values:

IT_PRIV_REMOTE_READ Enable access for RDMA Read operations.

IT_PRIV_REMOTE_WRITE Enable access for RDMA Write operations.

IT_PRIV_REMOTE Enable access for both remote RDMA Read and RDMA
Write.

IT_PRIV_ALL Equivalent to IT_PRIV_REMOTE.

Pass 0 or the value IT_PRIV_NONE to disallow remote access to the RMR. The flags
IT_PRIV_READ_ONLY and IT_PRIV_DEFAULT are invalid in this Context. It is invalid to
request remote write access if the memory access flags for lmr_handle include
IT_PRIV_READ_ONLY.

Request handling is specified by the dto_flags argument and is the logical OR of zero or more of
the following flags:

 IT_COMPLETION_FLAG
 IT_NOTIFY_FLAG
 IT_BARRIER_FENCE_FLAG

4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003

For the definition of these flags, see it_dto_flags_t. In addition, it_rmr_bind automatically fences
all DTO, Bind, and Unbind operations subsequently submitted on the Endpoint ep_handle such
that none of these operations starts until the currently posted Bind operation completes.

The value of rmr_context is immediately available when it_rmr_bind returns, but it may not be
used by a remote host for an RDMA operation until the Bind Completion Event occurs.
Violation of this rule may result in an error and a broken Connection for the reliable Connection
Endpoint on which the RDMA operation is posted. See Application Usage for more details.

After a successful Bind Completion Event, any previous binding for the RMR is invalidated.
Any RDMA operation that uses the previous RMR Context will fail with a protection violation;
beware that this may include operations that are outstanding when it_rmr_bind is called.
Completions for such operations should be dequeued prior to calling it_rmr_bind.

The new binding remains valid until the next Bind or Unbind operation completes successfully,
or until the RMR is destroyed. A Bind operation will never be partially successful over a subset
of the requested memory range; it either succeeds completely or fails without invalidating any
portion of the previous binding.

Interconnect Transport API –Issue 1 152

 153

5004
5005
5006
5007
5008

If it_rmr_bind returns successfully, but the Bind Completion Event status indicates failure, then
the previous binding and RMR Context remains valid. If ep_handle is part of a Reliable
Connection, then the Connection is broken, the Endpoint transitions into the
IT_EP_STATE_NONOPERATIONAL state, and an IT_CM_MSG_CONN_BROKEN_EVENT
Event is delivered to the Connect EVD of ep_handle.

5009
5010

5011
5012
5013
5014

5015
5016

5017
5018

5019
5020

5021
5022

5023
5024

5025
5026

5027
5028

5029
5030

5031
5032

5033
5034

5035

5036
5037

The Bind Completion Event is defined by it_dto_cmpl_event_t. The Event Stream type is
IT_RMR_BIND_CMPL_EVENT.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below, and the previous binding for the RMR remains valid. It is possible for it_rmr_bind to
return success but for the Completion Event to indicate failure.

IT_ERR_INVALID_PRIVS The requested memory privileges (privs) contained an
invalid flag.

IT_ERR_INVALID_DTO_FLAGS The Data Transfer Operation flags (dto_flags) value
was invalid.

IT_ERR_RESOURCES The requested operation failed due to insufficient
resources.

IT_ERR_ADDRESS The address (addr) fell outside the boundaries
specified by the Local Memory Region.

IT_ERR_INVALID_LENGTH The value of length fell outside the boundaries of the
Local Memory Region or the value of length was 0.

IT_ERR_INVALID_LMR The Local Memory Region Handle (lmr_handle) was
invalid.

IT_ERR_INVALID_RMR The Remote Memory Region Handle (rmr_handle)
was invalid.

IT_ERR_TOO_MANY_POSTS The operation failed due to an overflow of a work
queue.

IT_ERR_INVALID_EP_STATE The Endpoint was not in the proper state for the
attempted operation.

IT_ERR_INVALID_EP_TYPE The attempted operation was invalid for the Service
Type of the Endpoint.

IT_ERR_INVALID_EP The Endpoint Handle (ep_handle) was invalid.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in
the disabled state. None of the output parameters from
this routine are valid. See it_ia_info_t for a
description of the disabled state.

5038
5039

Interconnect Transport API –Issue 1 153

 154

5040
5041

5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062

5063
5064
5065

ERRORS
None.

APPLICATION USAGE
The it_rmr_bind operation is lightweight compared to creating an RMR or an LMR. An
application concerned with efficiency would typically create one or more RMRs at initialization
time that could be bound multiple times to enable remote access to different peers as needed.

The Consumer should use unique identifiers for cookie if they desire to identify each DTO. If the
Consumer does not require a unique DTO identifier, the value of zero or NULL can be used.

The local Consumer has several options for ensuring that the remote Consumer does not use
rmr_ context before the Bind Completion Event occurs. One is to wait for the Completion Event
on the Send EVD of the specified Endpoint ep_handle before sending the rmr_context to a peer.
Another option is to send the rmr_context to a peer by posting a DTO to the same Endpoint
ep_handle that was used to Bind the RMR. The barrier-fencing behavior of it_rmr_bind ensures
that the DTO does not start until the Bind Completion Event has occurred. If the Bind fails with
a completion error, the Connection will be broken and the DTO flushed, so the rmr_context will
not be sent.

For reasons already described, the Bind Completion Event marks an important change in the
status of an RMR that some Consumers may need to monitor. It is inadvisable for such
Consumers to suppress this Completion Event by omitting IT_COMPLETION_FLAG, although
the completion status of the Bind operation may be inferred by other means. For example,
successful completion of a subsequently posted operation of any type indicates that the Bind
operation has completed successfully. If the Bind operation fails, a Bind Completion Event is
generated regardless.

FUTURE DIRECTIONS
Currently the Consumer is allowed to call it_rmr_bind on an RMR that is already in the bound
state. A future version of the IT-API may require the Consumer on some transports to first
Unbind a bound RMR using it_rmr_unbind before performing a Bind operation. 5066

5067 SEE ALSO
it_lmr_create(), it_rmr_unbind(), it_rmr_create(), it_dto_flags_t, it_dto_events5068

Interconnect Transport API –Issue 1 154

 155

it_rmr_create() 5069

5070
5071

5072
5073
5074
5075
5076
5077
5078

5079

5080
5081

5082
5083
5084
5085

NAME
it_rmr_create – create a Remote Memory Region (RMR)

SYNOPSIS
#include <it_api.h>

it_status_t it_rmr_create(
 IN it_pz_handle_t pz_handle,
 OUT it_rmr_handle_t *rmr_handle
);

DESCRIPTION

pz_handle Protection Zone in which the Remote Memory Region will be
created.

rmr_handle Handle of new Remote Memory Region.

The it_rmr_create routine creates a Remote Memory Region that may be used as the target for
Data Transfer Operations over the Interface Adapter that is implicitly identified by the
pz_handle argument. The returned RMR must be bound to a Local Memory Region using
it_rmr_bind before it can be used as a target, however. 5086

5087
5088
5089

5090

5091
5092

5093
5094

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_INVALID_PZ The Protection Zone Handle (pz_handle) was invalid.

IT_ERR_RESOURCES The requested operation failed due to insufficient
resources.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in the
disabled state. None of the output parameters from this
routine are valid. See it_ia_info_t for a description of the
disabled state.

5095
5096

5097
5098

5099
5100

ERRORS
None.

APPLICATION USAGE
Creating an RMR is a relatively expensive operation. Once created, however, an RMR may be
bound repeatedly to different LMR address ranges using the more efficient it_rmr_bind call, as
long as the Protection Zone of the RMR matches that of the LMR. Binding an RMR is much
more efficient than granting and changing remote access privileges using

5101
5102

it_lmr_create and 5103
it_lmr_modify. 5104

5105 SEE ALSO
it_rmr_bind(), it_rmr_free(), it_rmr_query()5106

Interconnect Transport API –Issue 1 155

 156

it_rmr_free() 5107

5108
5109

5110
5111
5112
5113
5114
5115

5116

5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130

5131
5132
5133

5134
5135

5136
5137

NAME
it_rmr_free – destroy a Remote Memory Region

SYNOPSIS
#include <it_api.h>

it_status_t it_rmr_free(
 IN it_rmr_handle_t rmr_handle
);

DESCRIPTION

rmr_handle Handle of Remote Memory Region to be destroyed.

The it_rmr_free routine destroys the Remote Memory Region rmr_handle. If the RMR is
currently bound to an LMR, then the RMR binding is also destroyed. On return, the rmr_handle
may no longer be used, and the associated RMR Context may no longer be used. RMRs with
memory ranges that overlap the range of rmr_handle are not affected by its destruction.

Outstanding remote DTOs that use the RMR Context of this RMR may either complete
successfully or fail with an access violation error. Note also that the number of possible RMR
Context values is finite, and the Implementation will eventually reuse previously freed values in
a new binding. If a DTO using an RMR Context is posted after that Context is freed, it is
theoretically possible for the Context to be reused before the DTO completes, and for the DTO
to complete under the new binding for the Context, resulting in data corruption. To avoid this,
the Consumer should not free an RMR which may be the target of outstanding DTOs. This may
require coordination between local and remote Consumers, and such coordination is the
Consumer's responsibility.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_INVALID_RMR The Remote Memory Region Handle (rmr_handle) was
invalid.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in the
disabled state. None of the output parameters from this
routine are valid. See it_ia_info_t for a description of the
disabled state.

5138
5139

5140
5141

5142

ERRORS
None.

SEE ALSO
it_rmr_create(), it_rmr_query()5143

Interconnect Transport API –Issue 1 156

 157

it_rmr_query() 5144

5145
5146

5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178

5179

5180

5181

5182
5183
5184
5185
5186
5187

NAME
it_rmr_query – get attributes of a Remote Memory Region

SYNOPSIS
#include <it_api.h>

it_status_t it_rmr_query(
 IN it_rmr_handle_t rmr_handle,
 IN it_rmr_param_mask_t mask,
 OUT it_rmr_param_t *params
);

typedef enum {
 IT_RMR_PARAM_ALL = 0x000001,
 IT_RMR_PARAM_IA = 0x000002,
 IT_RMR_PARAM_PZ = 0x000004,
 IT_RMR_PARAM_BOUND = 0x000008,
 IT_RMR_PARAM_LMR = 0x000010,
 IT_RMR_PARAM_ADDR = 0x000020,
 IT_RMR_PARAM_LENGTH = 0x000040,
 IT_RMR_PARAM_MEM_PRIV = 0x000080,
 IT_RMR_PARAM_RMR_CONTEXT = 0x000100
} it_rmr_param_mask_t;

typedef struct {
 it_ia_handle_t ia; /* IT_RMR_PARAM_IA */
 it_pz_handle_t pz; /* IT_RMR_PARAM_PZ */
 it_boolean_t bound; /* IT_RMR_PARAM_BOUND */
 it_lmr_handle_t lmr; /* IT_RMR_PARAM_LMR */
 void * addr; /* IT_RMR_PARAM_ADDR */
 it_length_t length; /* IT_RMR_PARAM_LENGTH */
 it_mem_priv_t privs; /* IT_RMR_PARAM_MEM_PRIV */
 it_rmr_context_t rmr_context;
 /* IT_RMR_PARAM_RMR_CONTEXT */
} it_rmr_param_t;

DESCRIPTION

rmr_handle Remote Memory Region

mask logical OR of flags for desired parameters

params structure whose members are written with the desired parameters

The it_rmr_query routine returns the desired attributes of the Remote Memory Region
rmr_handle in the structure pointed to by params. The mask argument specifies which fields of
params are returned, and the values returned in other fields are undefined. See the Synopsis for
the correspondence between mask values and fields. The mask value IT_RMR_PARAM_ALL
causes all fields to be returned.

Interconnect Transport API –Issue 1 157

 158

The definition of each field of params follows, some of which depend on whether the RMR is
currently bound to an LMR as a result of using

5188
 it_rmr_bind: 5189

5190

5191

5192

5193
5194

5195
5196

5197
5198

5199
5200

5201
5202
5203
5204
5205
5206

5207
5208
5209

5210
5211

5212

5213
5214

ia The Interface Adapter Handle specified to create the RMR.

pz The Protection Zone Handle specified to create the RMR.

bound IT_TRUE if the RMR is currently bound, IT_FALSE otherwise.

lmr The Local Memory Region to which the RMR is currently bound, or
undefined if RMR is not bound.

addr The currently bound starting address of the RMR, or undefined if not
bound.

length The currently bound length in bytes of the RMR, or undefined if not
bound.

privs The currently bound memory access privileges of the RMR, or
undefined if not bound.

rmr_context The currently bound RMR Context associated with the RMR, or
undefined if not bound. Returned in network byte order.

If the Consumer calls it_rmr_query after posting a Bind or Unbind operation, and before
dequeueing the Completion Event of such an operation, then the returned bound, lmr, addr,
length, privs, and rmr_context fields may represent the RMR state as it was prior to posting, or a
new RMR state. The Consumer should not rely on the value of these fields during this time.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_INVALID_RMR The Remote Memory Region Handle (rmr_handle) was
invalid.

IT_ERR_INVALID_MASK The mask contained invalid flag values.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in the
disabled state. None of the output parameters from this
routine are valid. See it_ia_info_t for a description of the
disabled state.

5215
5216

5217
5218

5219

ERRORS
None.

SEE ALSO
it_rmr_create(), it_rmr_free(), it_rmr_bind(), it_rmr_context_t5220

Interconnect Transport API –Issue 1 158

 159

it_rmr_unbind() 5221

5222
5223

5224
5225
5226
5227
5228
5229
5230
5231
5232

5233

5234

5235

5236
5237

5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254

NAME
it_rmr_unbind – post operation to Unbind a Remote Memory Region from its memory range

SYNOPSIS
#include <it_api.h>

it_status_t it_rmr_unbind(

IN it_rmr_handle_t rmr_handle,
IN it_ep_handle_t ep_handle,
IN it_dto_cookie_t cookie,
IN it_dto_flags_t dto_flags

);

DESCRIPTION

rmr_handle Handle of RMR that will be unbound.

ep_handle Endpoint on which to post the operation.

cookie Consumer-provided cookie that is returned to the Consumer in the
Completion Event corresponding to the operation.

dto_flags Logical OR of options for operation handling.

The it_rmr_unbind routine posts to Endpoint ep_handle an Unbind operation to Unbind the
Remote Memory Region rmr_handle. The ep_handle should be a Reliable Connected Endpoint;
if it is not, an immediate error will be returned. The Protection Zones of the rmr_handle and
ep_handle must match; if they do not, a completion error will be generated with completion
status (it_dto_status_t) set to IT_DTO_ERR_LOCAL_PROTECTION. The operation
completes asynchronously, and its completion is reported to the Consumer through a Completion
Event based on the specified dto_flags value. The Consumer defined cookie argument is opaque
to the Implementation and is returned in the Completion Event. An Unbind operation will only
complete successfully if it is posted to an Endpoint in the IT_EP_STATE_CONNECTED state.
Any posting to an Endpoint that is in the IT_EP_STATE_NONOPERATIONAL state will be
flushed with completion status set to IT_DTO_ERR_FLUSHED.

Request handling is specified by the dto_flags argument as the logical OR of zero or more of the
following flags:

 IT_COMPLETION_FLAG
 IT_NOTIFY_FLAG
 IT_BARRIER_FENCE_FLAG

5255
5256
5257
5258
5259
5260
5261

For the definition of these flags, see it_dto_flags_t. In addition, it_rmr_unbind automatically
fences all DTO, Bind, and Unbind operations subsequently submitted on the Endpoint ep_handle
such that none of these operations starts until the currently posted Unbind operation completes.

After a successful Unbind Completion Event, any previous binding for the RMR is invalidated,
and the RMR Context for the RMR is no longer defined. Any RDMA operation that uses the
previous RMR Context will fail with a protection violation; beware that this may include
operations that are outstanding when it_rmr_unbind is called. The Consumer must ensure that

Interconnect Transport API –Issue 1 159

 160

5262
5263
5264
5265
5266
5267
5268
5269
5270

such operations have completed prior to calling it_rmr_unbind if successful completions are
desired. An Unbind operation will never be partially successful over a subset of the requested
memory range; it either succeeds completely or fails without invalidating any portion of the
previous binding.

If it_rmr_unbind returns successfully but the Completion Event status indicates failure, then the
previous binding and RMR Context remains valid. If ep_handle is part of a Reliable
Connection, then the Connection is broken, the Endpoint transitions into the
IT_EP_STATE_NONOPERATIONAL state, and an IT_CM_MSG_CONN_BROKEN_EVENT
Event is delivered to the Connect EVD of ep_handle.

5271
5272

5273
5274
5275
5276

5277
5278

5279
5280

5281
5282

5283
5284

5285
5286

5287

5288
5289

The Unbind operation generates an it_dto_compl_event_t Completion Event. The Event Stream
type is IT_RMR_BIND_CMPL_EVENT.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below, and the previous binding for the RMR remains valid. It is possible for it_rmr_unbind to
return success but for the Completion Event to indicate failure.

IT_ERR_INVALID_DTO_FLAGS The Data Transfer Operation flags (dto_flags) value was
invalid.

IT_ERR_INVALID_RMR The Remote Memory Region Handle (rmr_handle) was
invalid.

IT_ERR_TOO_MANY_POSTS The operation failed due to an overflow of a work
queue.

IT_ERR_INVALID_EP_STATE The Endpoint was not in the proper state for the
attempted operation.

IT_ERR_INVALID_EP_TYPE The attempted operation was invalid for the Service
Type of the Endpoint.

IT_ERR_INVALID_EP The Endpoint Handle (ep_handle) was invalid.

IT_ERR_IA_CATASTROPHE The IA has experienced a catastrophic error and is in the
disabled state. None of the output parameters from this
routine are valid. See it_ia_info_t for a description of
the disabled state.

5290
5291

5292
5293

5294
5295
5296
5297
5298
5299
5300
5301

ERRORS
None.

APPLICATION USAGE
it_rmr_unbind may be used to revoke remote Consumer access to an RMR that was previously
granted. In addition, the Consumer must Unbind all RMRs that refer to an LMR in order to
destroy or modify the LMR. Note that the RMR is not considered unbound until a successful
Completion Event is generated; thus, the Consumer should dequeue the Completion Event
before calling it_lmr_free. A difficulty can arise if the Endpoint that the Consumer was using to
Bind the RMR has become disconnected, because an Unbind operation can only be posted to a
connected Endpoint. One solution is for the Consumer to create a special pair of Endpoints to be

Interconnect Transport API –Issue 1 160

 161

used in this situation that are connected in loopback mode to each other, created using the same
Protection Zone as the RMR. Another solution is to destroy the RMR by calling

5302
5303
5304
5305
5306
5307
5308
5309
5310

5311

 it_rmr_free.

For reasons already described, the Unbind Completion Event marks an important change in the
status of an RMR that some Consumers may need to monitor. It is inadvisable for such
Consumers to suppress this Completion Event by omitting IT_COMPLETION_FLAG, although
the completion status of the Unbind operation may be inferred by other means. For example,
completion of a subsequently posted operation of any type indicates that the Unbind operation
has completed successfully. If the Unbind operation fails, a Completion Event is generated
regardless.

SEE ALSO
it_rmr_create(), it_rmr_bind(), it_dto_flags_t5312

Interconnect Transport API –Issue 1 161

 162

it_set_consumer_context() 5313

5314
5315

5316
5317
5318
5319
5320
5321
5322

5323

5324
5325

5326
5327

NAME
it_set_consumer_context – associate a Consumer Context with an IT Object Handle

SYNOPSIS
#include <it_api.h>

it_status_t it_set_consumer_context(

IN it_handle_t handle,
IN it_context_t context

);

DESCRIPTION

handle Handle for the IT-API object to be associated with the Consumer
Context.

context The Consumer Context to be associated with the object Handle.

it_set_consumer_context associates a Consumer Context with the specified handle. See
it_handle_t for a description of the valid Handle types. 5328

5329
5330
5331
5332
5333

5334
5335
5336

5337

5338
5339

Only a single Consumer Context is provided for any IT Object Handle. If there is a previous
Consumer Context associated with the specified Handle, the new Context replaces the old one.
The value of Context is opaque to the Implementation. The Consumer can disassociate the
existing Context by providing a NULL value for the Context. The Implementation makes no
attempt to synchronize access to the Context.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_INVALID_HANDLE The handle was invalid

IT_ERR_IA_CATASTROPHE The IA has experiences a catastrophic error and is in the
disabled state. None of the output parameters from this
routine are valid. See it_ia_info_t for a description of the
disabled state.

5340
5341

5342
5343

5344
5345

ERRORS
None.

EXAMPLES
The following code example demonstrates the use of a cast in the call to
it_set_consumer_context. The lmr object is cast to the generic it_handle_t type for the call. 5346

5347
5348
5349

5350

it_lmr_handle_t lmr;
it_context_t cxt = 1234;
it_set_consumer_context((it_handle_t) lmr, cxt);

SEE ALSO
it_get_consumer_context(), it_context_t, it_handle_t5351

Interconnect Transport API –Issue 1 162

 163

it_ud_service_reply() 5352

5353
5354
5355
5356

5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368

5369

5370
5371
5372
5373

5374
5375
5376

5377
5378

5379
5380
5381
5382

5383
5384
5385
5386

NAME
it_ud_service_reply – return the information necessary to communicate via Unreliable

Datagram (UD) messages with the entity specified by the Connection
Qualifier in the UD Service Request Event

SYNOPSIS
#include <it_api.h>

it_status_t it_ud_service_reply (

IN it_ud_svc_req_identifier_t ud_svc_req_id,
IN it_ud_svc_req_status_t status,
IN it_remote_ep_info_t ep_info,
IN const unsigned char *private_data,
IN size_t private_data_length

);

typedef uint64_t it_ud_svc_req_identifier_t;

DESCRIPTION

ud_svc_req_id Unique identifier from the
IT_CM_REQ_UD_SERVICE_REQUEST_EVENT Event generated
from the UD Service Request that is being responded to with this
invocation of it_ud_service_reply.

status Status to return in the
IT_CM_MSG_UD_SERVICE_REPLY_EVENT data indicating the
outcome of the UD Service Request.

ep_info End-point information to be used by the UD Service Requester to
communicate with this UD Service.

private_data Opaque Private Data provided by the Consumer which will be sent
as part of the it_ud_service_reply. If the IA does not support Private
Data, private_data_length must be 0. The delivery of Private Data to
the Remote Endpoint is unreliable.

private_data_length Length of the private_data provided by the Consumer. If the IA does
not support Private Data, this field must be 0.

The it_ud_service_reply routine will be called by the Consumer to respond to an
IT_CM_REQ_UD_SERVICE_REQUEST_EVENT Event. The IT_CM_REQ_UD_SERVICE_
REQUEST_EVENT Event data (it_ud_svc_request_event_t) contains a unique Service Request
Handle, the Connection Qualifier of interest, Source address information and optional Private
Data. The recipient of the IT_CM_REQ_UD_SERVICE_REQUEST_EVENT Event needs to
respond to the request by calling it_ud_service_reply.

5387
5388
5389
5390
5391
5392
5393

The ud_svc_req_id is a unique identifier allowing this response to be correlated to the request
being responded to. The ud_svc_req_id should be copied from the IT_CM_REQ_UD_
SERVICE_REQUEST_EVENT Event data, ud_svc_req_id field. Once it_ud_service_reply has

Interconnect Transport API –Issue 1 163

 164

5394
5395

been successfully invoked, the supplied ud_svc_req_id is no longer valid. The resources
associated with the ud_svc_req_id are released and the ud_svc_req_id can not be reused.

5396
5397
5398
5399
5400

Valid status codes for the status field are defined in it_ud_svc_req_status_t. A valid status code
must be provided. IT_UD_REQ_REDIRECTED can not be supplied as input for this parameter,
even though it may appear in the Event given to the requester. The Implementation is
responsible for redirection, not the Consumer.

The ep_info is only used by this routine if the status field is set to IT_UD_SVC_EP_
INFO_VALID. See it_ud_svc_req_status_t for details. 5401
The IA can be queried via it_ia_query to determine if it supports the transfer of Private Data.
This is indicated by the private_data_support field of the

5402
it_ia_info_t structure. If Private Data is

not supported, private_data_length must be 0. The maximum length of private_data can be
determined by examining the ud_rep_private_data_len member of the

5403
5404

it_ia_info_t structure. 5405

5406
5407
5408
5409
5410
5411
5412

EXTENDED DESCRIPTION
it_ud_service_reply is called by the Consumer in response to receiving an
IT_CM_REQ_UD_SERVICE_REQUEST_EVENT Event. The Consumer chooses how to
respond to the Service Request and makes that choice known via the value of status passed into
the it_ud_service_reply call. The value of status determines whether the Implementation uses the
ep_info input parameter. The table below describes the meaning of each status value, and
whether the Implementation uses the ep_info input parameter when that status value is present.

status value Implication of the status value
IT_UD_SVC_EP_INFO_VALID The supplied ep_info (it_remote_ep_info_t) is

valid and can be used by the recipient of the
it_ud_service_reply to communicate with this
service via UD messages. The Consumer must
supply an it_remote_ep_info_t structure containing
a valid ud_ep_id and ud_ep_key.

IT_UD_SVC_ID_NOT_SUPPORTED The service described by the conn_qual
(it_conn_qual_t) in the it_ud_svc_request_event_t
is not supported by this service. The
Implementation does not use the ep_info
parameter.

IT_UD_SVC_REQ_REJECTED Rejects the request for UD Service information.
The Implementation does not use the ep_info
parameter.

IT_UD_NO_EP_AVAILABLE The Consumer responding via it_ud_service_reply
does not have any Endpoints available for UD
communication. The Implementation does not use
the ep_info parameter.

IT_UD_REQ_REDIRECTED The Consumer can not set this status. This status
can only be set by the Implementation.

In order for the Implementation to be able to correctly correlate this it_ud_service_reply call
with the request Event being responded to, the Consumer must supply the ud_svc_req_id from
the

5413
5414

it_ud_svc_request_event_t as the ud_svc_req_id passed into the it_ud_service_reply call. 5415

Interconnect Transport API –Issue 1 164

 165

It is possible to receive duplicate UD Service Requests as a result of the active side retrying an 5416
it_ud_service_request operation. It is the Consumer’s responsibility to detect and handle
duplicate requests. Requests are uniquely identified by a combination of the ud_svc_req_id and
the source_addr from the

5417
5418

it_ud_svc_request_event_t data. This combination can be used to
detect duplicate UD Service Requests.

5419
5420

5421
5422
5423

5424
5425

5426
5427
5428

5429
5430

5431
5432

5433
5434
5435

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_PDATA_NOT_SUPPORTED Private Data was supplied by the Consumer, but this
Interface Adapter does not support Private Data.

IT_ERR_INVALID_PDATA_LENGTH The Interface Adapter supports Private Data, but the
length specified exceeded the Interface Adapter’s
capabilities.

IT_ERR_INVALID_UD_SVC_REQ_ID The Unreliable Datagram Service Request ID
(ud_svc_req_id) was invalid.

IT_ERR_INVALID_UD_STATUS The Unreliable Datagram Service Request status
was invalid.

IT_ERR_IA_CATASTROPHE The Interface Adapter has experienced a
catastrophic error and is in the disabled state. None
of the output parameters from this routine are valid.
See it_ia_info_t for a description of the disabled
state.

5436
5437

5438
5439

5440

ERRORS
None.

SEE ALSO
it_ia_query(), it_ud_service_request(), it_ep_attributes_t, it_cm_msg_events, 5441
it_cm_req_events5442

Interconnect Transport API –Issue 1 165

 166

it_ud_service_request() 5443

5444
5445
5446
5447

5448
5449
5450
5451
5452
5453

5454

5455

NAME
it_ud_service_request – request that the recipient of this message return the information

necessary to communicate via Unreliable Datagram (UD) messages to
the entity specified by the UD Service Handle

SYNOPSIS
#include <it_api.h>

it_status_t it_ud_service_request (

IN it_ud_svc_req_handle_t ud_svc_handle
);

DESCRIPTION

ud_svc_handle UD Service Request Handle created by a call to
it_ud_service_request_handle_create. This Handle uniquely
identifies this UD Service Request operation. The UD Service
Request Handle is associated with a specific UD Service described
during the creation of the UD Service Request Handle.

5456
5457
5458
5459
5460
5461
5462
5463
5464
5465

The it_ud_service_request routine is called by a Consumer to request a remote entity specified
by the UD Service Handle to return information necessary to communicate via Unreliable
Datagram messages.

The ud_svc_handle provides the Consumer with a means of correlating this
it_ud_service_request with the IT_CM_MSG_UD_SERVICE_REPLY_EVENT Event that the
Consumer will receive when the remote Endpoint responds to this UD Service Request. See
it_cm_msg_events. 5466

5467
5468
5469
5470
5471
5472

Due to the nature of Unreliable Datagrams, even though an invocation of it_ud_service_request
returns success, the target of the UD Service Request may not receive it. Therefore, the
Consumer may have to call it_ud_service_request multiple times with the same ud_svc_handle
before the recipient actually receives the request and is able to reply to it. In addition, if the
Consumer issues multiple requests with the same ud_svc_handle, the Consumer may receive
multiple replies. It is up to the Consumer to detect and handle duplicate replies.

The ud_svc_req_id (it_ud_svc_req_identifier_t) associated with a given ud_svc_handle does not
change. Therefore, all retries using a given ud_svc_handle will result in the same ud_svc_req_id
being presented to the recipient of the IT_CM_REQ_UD_SERVICE_REQUEST_EVENT Event
in the Event data (

5473
5474
5475

it_ud_svc_request_event_t). 5476
5477 Upon a successful invocation and transmission of the it_ud_service_request, once the recipient

of the request replies via it_ud_service_reply, the Consumer will receive an
IT_CM_MSG_UD_SERVICE_REPLY_EVENT Event. The IT_CM_MSG_UD_SERVICE_
REPLY_EVENT Event data (

5478
5479

it_ud_svc_reply_event_t) contains the results of the Service
Request query. The status field of the

5480
it_ud_svc_reply_event_t structure in the

IT_CM_MSG_UD_SERVICE_REPLY_EVENT indicates the state of the information in the
5481
5482

it_ud_svc_reply_event_t structure. See it_cm_msg_events. 5483

Interconnect Transport API –Issue 1 166

 167

5484
5485
5486

EXTENDED DESCRIPTION
The ud_service_request call requests information from the remote UD Service. Once that remote
UD Service responds, an IT_CM_MSG_UD_SERVICE_REPLY Event will be generated. The
data associated with the Event, it_ud_svc_reply_event_t, contains information the Consumer
needs in order to perform Data Transfer Operations with the remote UD Service. The status
(

5487
5488

it_ud_svc_req_status_t) field of the it_ud_svc_reply_event_t indicates the validity of other
fields in the structure. The status field should be checked by the Consumer prior to making any
assumptions about the data in the rest of the structure. The table below summarizes the status
values and the implications on the data in the

5489
5490
5491

it_ud_svc_reply_event_t structure: 5492

status value implication for it_ud_svc_reply_event_t data
IT_UD_SVC_EP_INFO_VALID The ep_info (it_remote_ep_info_t) is valid. The

ud_ep_id and ud_ep_key from the
it_remote_ep_info_t structure, combined with
the it_path_t from the ud_svc_handle provides
the Consumer with the necessary information to
perform Data Transfer Operations with the
remote UD Service. All fields except
destination_path contain valid data.

IT_UD_SVC_ID_NOT_SUPPORTED The Service described by the
connection_qualifier (it_conn_qual_t) in the
ud_svc_handle is not supported on the Spigot to
which the it_ud_service_request was sent. All
fields except ep_info and destination_path
contain valid data.

IT_UD_SVC_REQ_REJECTED The recipient of the it_ud_service_request
rejected the UD Service Request operation. All
fields except ep_info and destination_path
contain valid data.

IT_UD_NO_EP_AVAILABLE The recipient of the it_ud_service_request does
support the UD Service requested, but is out of
Endpoint resources. That is, the remote node
does not have any Endpoints that can be used to
perform Data Transfer Operations with the UD
Consumer. All fields except ep_info and
destination_path contain valid data.

IT_UD_REQ_REDIRECTED The Implementation on the receiving side of the
it_ud_service_request has requested that the
Consumer redirect the Service Request
operation to a new Destination. The
destination_path (it_path_t) contains valid data.
The destination_path should be used to create a
new ud_svc_handle to be used in another call to
it_ud_service_request. All fields except ep_info,
private_data, and private_data_length contain
valid data.

Interconnect Transport API –Issue 1 167

 168

5493
5494
5495

5496
5497

5498
5499

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_INVALID_UD_SVC The Unreliable Datagram Service Handle (ud_svc_handle)
was invalid.

IT_ERR_IA_CATASTROPHE The Interface Adapter has experienced a catastrophic error
and is in the disabled state. None of the output parameters
from this routine are valid. See it_ia_info_t for a description
of the disabled state.

5500
5501

5502
5503

5504

ERRORS
None.

SEE ALSO
it_ud_service_request_handle_create(), it_ud_service_reply(), it_cm_msg_events, it_path_t, 5505
it_ep_attributes_t5506

5507

Interconnect Transport API –Issue 1 168

 169

it_ud_service_request_handle_create() 5508

5509
5510
5511

5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522

5523

5524
5525

5526
5527
5528
5529

NAME
it_ud_service_request_handle_create – create an Unreliable Datagram (UD) Service Request

Handle

SYNOPSIS
#include <it_api.h>

it_status_t it_ud_service_request_handle_create (

IN const it_conn_qual_t *conn_qual,
IN it_evd_handle_t reply_evd,
IN const it_path_t *destination_path,
IN const unsigned char *private_data,
IN size_t private_data_length,
OUT it_ud_svc_req_handle_t *ud_svc_handle

);

DESCRIPTION

conn_qual The Connection Qualifier describing the UD Service for which the
Consumer is requesting information.

reply_evd The Simple EVD on which the
IT_CM_MSG_UD_SERVICE_REPLY_EVENT Event will be
received. reply_evd must be of the
IT_CM_MSG_EVENT_STREAM Event Stream Type. See
it_cm_msg_events. 5530

5531 destination_path destination_path specifies a Path to the Destination of the
it_ud_service_request operation. 5532

5533 private_data Opaque Private Data provided by the Consumer which will be sent
as part of the it_ud_service_request. If the IA does not support
Private Data, private_data_length must be 0. The delivery of Private
Data to the Remote Endpoint is unreliable.

5534
5535
5536

5537
5538

5539

private_data_length: Length of the private_data provided by the Consumer. If the IA does
not support Private Data, this field must be 0.

ud_svc_handle UD Service Request Handle created by this call. This Handle will be
used in a call to it_ud_service_request. 5540

5541 The it_ud_service_request_handle_create routine is called by the Consumer to create an
Unreliable Datagram Service Request Handle to be used in a call to it_ud_service_request. 5542

5543
5544

The destination_path can be obtained by calling it_get_pathinfo. The spigot_id in the it_path_t
will be the Spigot Identifier used for this UD Service Request.

The IA can be queried via it_ia_query to determine if it supports the transfer of Private Data.
This is indicated by the private_data_support field of the

5545
it_ia_info_t structure. If Private Data is 5546

Interconnect Transport API –Issue 1 169

 170

not supported, private_data_length must be 0. The maximum length of private_data can be
determined by examining the ud_req_private_data_len member of the

5547
it_ia_info_t structure. 5548

5549 The returned ud_svc_handle is used to identify the UD Service Request. It provides the
Consumer with a means of correlating this it_ud_service_request with the
IT_CM_MSG_UD_SERVICE_REPLY_EVENT Event that the Consumer will receive when the
remote Endpoint responds to this UD Service Request.

5550
5551
5552

The ud_svc_req_id (it_ud_svc_req_identifer_t) associated with a given ud_svc_handle does not
change. Therefore, all retries using a given ud_svc_handle will result in the same ud_svc_req_id
being presented to the recipient of the IT_CM_REQ_UD_SERVICE_REQUEST_EVENT Event
in the Event data (

5553
5554
5555

it_ud_svc_request_event_t). 5556

5557 EXTENDED DESCRIPTION
5558
5559

The members of the it_path_t structure that are pertinent for creating a UD Service Request
Handle are listed in the table below.

it_path_t member Description
spigot_id Spigot Identifier

ib.partition_key Partition Key

ib.local_port_lid Source LID

ib.remote_port_lid Destination LID

ib.sl Service level

5560
5561
5562

5563
5564

5565
5566

5567
5568

5569
5570
5571

5572

5573
5574

5575
5576

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_INVALID_CONN_EVD The Connection Simple Event Dispatcher Handle
was invalid.

IT_ERR_INVALID_EVD_TYPE The Event Stream Type for the Event Dispatcher
was invalid.

IT_ERR_PDATA_NOT_SUPPORTED Private Data was supplied by the Consumer, but this
Interface Adapter does not support Private Data.

IT_ERR_INVALID_PDATA_LENGTH The Interface Adapter supports Private Data, but the
length specified exceeded the Interface Adapter’s
capabilities.

IT_ERR_INVALID_CONN_QUAL The Connection Qualifier (conn_qual) was invalid.

IT_ERR_INVALID_SOURCE_PATH One of the components of the Source portion of the
supplied Path was invalid.

IT_ERR_INVALID_SPIGOT An invalid Spigot ID was specified (spigot_id
member of the destination_path).

Interconnect Transport API –Issue 1 170

 171

5577
5578

5579
5580
5581

IT_ERR_RESOURCES The requested operation failed due to insufficient
resources.

IT_ERR_IA_CATASTROPHE The Interface Adapter has experienced a
catastrophic error and is in the disabled state. None
of the output parameters from this routine are valid.
See it_ia_info_t for a description of the disabled
state.

5582
5583

5584
5585

5586

ERRORS
None.

APPLICATION USAGE
The resulting ud_svc_handle (it_ud_service_request_handle_t) produced by this call will be
used in calls to

5587
it_ud_service_request to obtain information describing how to communicate with

the remote UD Service described by the conn_qual (
5588

it_conn_qual_t). 5589
The it_ud_service_request call requests information from the remote UD Service. Once that
remote UD Service responds, an IT_CM_MSG_UD_SERVICE_REPLY Event will be
generated. The data associated with the Event,

5590
5591

it_ud_svc_reply_event_t, contains an 5592
it_remote_ep_info_t structure and other information. The ud_ep_id and ud_ep_key from the 5593
it_remote_ep_info_t, combined with the information from the destination_path (it_path_t)
provides the Consumer the necessary information to perform Data Transfer Operations with the
remote UD Service.

5594
5595
5596
5597
5598

Note that the spigot_id of the Endpoint that will be used for Data Transfer Operations with the
UD Service being requested must match the spigot_id in the destination_path.

5599

5600

See it_ud_service_request and it_ud_service_reply for more information.

SEE ALSO
it_ud_service_request_handle_free(), it_ud_request_handle_query(), it_ia_query(), 5601
it_ud_service_request(), it_get_pathinfo(), it_path_t, it_cm_msg_events, it_ep_attributes_t5602

Interconnect Transport API –Issue 1 171

 172

it_ud_service_request_handle_free() 5603

5604
5605

5606
5607
5608
5609
5610
5611

5612

5613

NAME
it_ud_service_request_handle_free – free a previously created it_ud_svc_req_handle_t

SYNOPSIS
#include <it_api.h>

it_status_t it_ud_service_request_handle_free (

IN it_ud_svc_req_handle_t ud_svc_handle
);

DESCRIPTION

ud_svc_handle Unreliable Datagram (UD) Service Request Handle previously
created by a call to it_ud_service_request_handle_create. 5614

5615
5616
5617
5618
5619
5620
5621
5622
5623

5624
5625
5626

5627
5628

5629
5630

it_ud_service_request_handle_free removes an existing UD Service Request Handle and frees
all associated underlying resources. Once it_ud_service_request_handle_free returns,
ud_svc_handle can no longer be used in UD Service Request operations. In addition, once
it_ud_service_request_handle_free returns, any replies to outstanding UD Service Request
operations associated with this ud_svc_handle will be silently dropped.

Any IT_CM_MSG_UD_SERVICE_REPLY_EVENT Events associated with this request that
have been enqueued on the Event Dispatcher (EVD) will not be removed. It is the Consumer’s
responsibility to dequeue and dispose of them.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_INVALID_UD_SVC The Unreliable Datagram Service Handle (ud_svc_handle)
was invalid.

IT_ERR_IA_CATASTROPHE The Interface Adapter has experienced a catastrophic error
and is in the disabled state. None of the output parameters
from this routine are valid. See it_ia_info_t for a
description of the disabled state.

5631
5632

5633
5634

5635

ERRORS
None.

SEE ALSO
it_ud_service_request_handle_create(), it_ud_service_request_handle_query(), 5636
it_cm_msg_events5637

Interconnect Transport API –Issue 1 172

 173

it_ud_service_request_handle_query() 5638

5639
5640

NAME
it_ud_service_request_handle_query – return information about a specified

it_ud_svc_req_handle_t5641

5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677

5678

5679

SYNOPSIS
#include <it_api.h>

it_status_t it_ud_service_request_handle_query (

IN it_ud_svc_req_handle_t ud_svc_handle,
IN it_ud_svc_req_param_mask_t mask,
OUT it_ud_svc_req_param_t *ud_svc_handle_info

);

typedef enum {
 IT_UD_PARAM_ALL = 0x00000001,
 IT_UD_PARAM_IA_HANDLE = 0x00000002,
 IT_UD_PARAM_REQ_ID = 0x00000004,
 IT_UD_PARAM_REPLY_EVD = 0x00000008,
 IT_UD_PARAM_CONN_QUAL = 0x00000010,
 IT_UD_PARAM_DEST_PATH = 0x00000020,
 IT_UD_PARAM_PRIV_DATA = 0x00000040,
 IT_UD_PARAM_PRIV_DATA_LENGTH = 0x00000080
} it_ud_svc_req_param_mask_t;

/*
 * The it_ud_svc_req_param_mask_t value in the comment above
 * each attribute in the it_ud_svc_req_param_t structure below
 * is the mask value used to select that attribute in a call
 * to it_ud_service_request_handle_query.
 */
typedef struct {
 it_ia_handle_t ia; /* IT_UD_PARAM_IA_HANDLE */
 uint32_t request_id; /* IT_UD_PARAM_REQ_ID */
 it_evd_handle_t reply_evd; /* IT_UD_PARAM_REPLY_EVD */
 it_conn_qual_t conn_qual; /* IT_UD_PARAM_CONN_QUAL */
 it_path_t destination_path; /* IT_UD_PARAM_DEST_PATH */
 unsigned char private_data[IT_MAX_PRIV_DATA];
 /* IT_UD_PARAM_PRIV_DATA */
 size_t private_data_length; /* IT_UD_PARAM_PRIV_DATA_LEN */
} it_ud_svc_req_param_t;

DESCRIPTION

ud_svc_handle Unreliable Datagram (UD) Service Request Handle previously
created by a call to it_ud_service_request_handle_create. 5680

5681
5682

5683
5684

mask Logical OR of flags for the requested UD Service Request Handle
parameters.

ud_svc_handle_info Data structure containing information about the UD Service Request
Handle, ud_svc_handle.

Interconnect Transport API –Issue 1 173

 174

5685
5686
5687
5688
5689
5690
5691
5692

5693
5694

it_ud_service_request_handle_query collects the desired information about the ud_svc_handle
passed in and returns that information in the it_ud_svc_req_param_t structure provided in
ud_svc_handle_info. On return, each field of ud_svc_handle_info is only valid if the
corresponding flag is set in the mask argument. The flag values for the mask appear in the
comments above each of the fields in the it_ud_svc_req_param_t structure. The mask value
IT_UD_PARAM_ALL causes all fields to be returned.

The definition of each field in the it_ud_svc_req_param_t structure is as follows:

ia Handle for the Interface Adapter associated with this UD Service
Request.

5695

5696

request_id Unique identifier associated with the it_ud_svc_req_handle_t.

reply_evd The Simple EVD for reply Events associated with the
it_ud_svc_req_handle_t. 5697

5698 conn_qual Connection Qualifier describing the UD Service associated with
the it_ud_svc_req_handle_t. 5699

destination_path Path to the Destination of the it_ud_service_request operation
associated with the

5700
it_ud_svc_req_handle_t. 5701

5702
5703

5704

5705
5706
5707

5708
5709

5710

5711

5712

5713
5714

private_data Opaque Private Data provided by the Consumer if the IA supports
Private Data.

private_data_length Length of the Private Data supplied by the Consumer.

RETURN VALUE
A successful call returns IT_SUCCESS. Otherwise, an error code is returned as described
below.

IT_ERR_INVALID_UD_SVC The Unreliable Datagram Service Handle (ud_svc_handle)
was invalid.

IT_ERR_INVALID_MASK The mask contained invalid flag values.

IT_ERR_IA_CATASTROPHE The Interface Adapter has experienced a catastrophic error
and is in the disabled state. None of the output parameters
from this routine are valid. See it_ia_info_t for a description
of the disabled state.

5715
5716

5717
5718

ERRORS
None.

Interconnect Transport API –Issue 1 174

 175

5719 SEE ALSO
it_ud_service_request_handle_create(), it_ud_service_request_handle_free(), 5720
it_ud_service_request()5721

5722
5723

Interconnect Transport API –Issue 1 175

 176

5 Data Type Manual Pages 5724

it_aevd_notification_event_t – Aggregate Event Dispatcher Notification Event type 5725

it_affiliated_event_t – Affiliated Asynchronous Event type 5726

it_boolean_t – the Boolean type used by the IT-API 5727

it_cm_msg_events – Communication Management Message Events 5728

it_cm_req_events – Communication Management Request Events 5729

it_conn_qual_t – encapsulates all supported Connection Qualifier types 5730

it_context_t – structure describing a Consumer Context 5731

it_dg_remote_ep_addr_t – DatagramTransport Endpoint address 5732

it_dto_cookie_t – DTO Cookie type 5733

it_dto_events – Completion Event types 5734

it_dto_flags_t – flags for Send, Receive, RDMA Read & Write, RMR Bind & Unbind 5735

it_dto_status_t – definition of DTO and RMR completion asynchronous status 5736

it_ep_attributes_t – Endpoint attributes 5737

it_ep_state_t – RC and UD Endpoint state type definition. 5738

it_event_t – definition of Event data structures 5739

it_handle_t – enumeration and type definitions for IT Handles 5740

it_ia_info_t – encapsulates all Interface Adapter attributes and Spigot information 5741

it_lmr_triplet_t – structure describing a DTO buffer in a Local Memory Region 5742

it_net_addr_t – encapsulates all supported Network Address types 5743

it_path_t – describes the Path between a pair of Spigots 5744

it_software_event_t – Software Event type 5745

it_unaffiliated_event_t – Unaffiliated Asynchronous Event type 5746

Interconnect Transport API –Issue 1 176

 177

it_aevd_notification_event_t 5747

5748
5749

5750
5751
5752
5753
5754
5755
5756
5757

5758

5759
5760

5761
5762

5763
5764
5765
5766

NAME
it_aevd_notification_event_t – Aggregate Event Dispatcher Notification Event type

SYNOPSIS
#include <it_api.h>

typedef struct {

it_event_type_t event_number;
it_evd_handle_t aevd;
it_evd_handle_t sevd;

} it_aevd_notification_event_t;

DESCRIPTION

event_number Identifier of the Event type. Valid values:
 IT_AEVD_NOTIFICATION_EVENT

aevd Handle for the Aggregate Event Dispatcher (AEVD) where the
Event was queued.

sevd Handle to the Simple Event Dispatcher (SEVD) that experienced a
Notification Event.

An IT_AEVD_NOTIFICATION_EVENT_STREAM Event is generated when a Notification
has occurred on an SEVD associated with an AEVD with the
IT_EVD_DEQUEUE_NOTIFICATIONS evd_flag set (see it_evd_create). 5767

5768
5769
5770

5771
5772
5773

5774
5775

5776

The AEVD Notification Event passes the Handle for the associated SEVD on which a
Notification Event has occurred.

The AEVD Notification Event only applies to AEVDs. AEVDs do not overflow.

RETURN VALUE

None.

ERRORS
None.

SEE ALSO
it_event_t, it_evd_create(), it_evd_wait()5777

Interconnect Transport API –Issue 1 177

 178

it_affiliated_event_t 5778

5779
5780

5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792

5793

5794
5795
5796
5797
5798
5799
5800
5801

5802

5803
5804
5805

5806
5807
5808
5809
5810
5811
5812

NAME
it_affiliated_event_t – Affiliated Asynchronous Event type

SYNOPSIS
#include <it_api.h>

typedef struct {
 it_event_type_t event_number;
 it_evd_handle_t evd;

 union {
 it_evd_handle_t sevd;
 it_ep_handle_t ep;
 } u;
} it_affiliated_event_t;

DESCRIPTION

event_number Identifier of the Event type. Valid values:
IT_ASYNC_AFF_SEVD_ENQUEUE_FAILURE,
IT_ASYNC_AFF_EP_FAILURE,
IT_ASYNC_AFF_EP_BAD_TRANSPORT_OPCODE,
IT_ASYNC_AFF_EP_REQ_DROPPED,
IT_ASYNC_AFF_EP_RDMAW_ACCESS_VIOLATION,
IT_ASYNC_AFF_EP_RDMAW_CORRUPT_DATA,
IT_ASYNC_AFF_EP_RDMAR_ACCESS_VIOLATION

evd Handle for the Event Dispatcher where the Event was queued.

sevd The Handle for the SEVD that the Implementation failed to enqueue an
Event for. Valid only for the
IT_ASYNC_AFF_SEVD_ENQUEUE_FAILURE Event type.

ep The Handle for the Endpoint that experienced the Event. Valid for all
asynchronous errors affiliated with Endpoint other than
IT_ASYNC_AFF_SEVD_ENQUEUE_FAILURE.

IT_ASYNC_AFF_EVENT_STREAM Events are generated when an Affiliated Asynchronous
Event occurs. There are several types of Affiliated Asynchronous Events, and each type is
identified by event_number.

The Consumer asks for Affiliated Asynchronous Events to be delivered when it used
it_evd_create to create an EVD associated with the Affiliated Asynchronous Event Stream. 5813
The following table maps the Affiliated Asynchronous Error values in the it_event_type_t
enumeration to a transport independent description.

5814
5815

Interconnect Transport API –Issue 1 178

 179

5816

it_event_type_t value Generic Event Description
IT_ASYNC_AFF_SEVD_ENQUEUE_FAILURE The Implementation was unable to

enqueue an entry into the SEVD.
Applies to all SEVD Event Streams
except for IT_ASYNC_AFF_
EVENT_STREAM and IT_
ASYNC_UNAFF_EVENT_STREA
M.

IT_ASYNC_AFF_EP_FAILURE The local Endpoint experienced a
failure when attempting to enqueue
on an EVD in the it_evd_overflowed
state or on an EVD in an error state.

IT_ASYNC_AFF_EP_BAD_TRANSPORT_OPCODE The local Endpoint detected an
invalid transport opcode in an
incoming request it was processing.

IT_ASYNC_AFF_EP_LOCAL_ACCESS_VIOLATIO
N

The local Endpoint detected an
access violation while processing an
incoming request. Note that not all
incoming requests that cause an
access violation will cause an
Affiliated Asynchronous Event to be
generated.

IT_ASYNC_AFF_EP_REQ_DROPPED The local Endpoint could not process
an incoming Send operation because
the Receive Queue was empty.

IT_ASYNC_AFF_EP_RDMAW_ACCESS_VIOLATI
ON

The remote Endpoint connected to
the local Endpoint that is furnished
via this Event detected an access
violation while processing an RDMA
Write operation.

IT_ASYNC_AFF_EP_RDMAW_CORRUPT_DATA The remote Endpoint connected to
the local Endpoint that is furnished
via this Event detected corruption in
the incoming data.

IT_ASYNC_AFF_EP_RDMAR_ACCESS_VIOLATIO
N

The remote Endpoint connected to
the local Endpoint that is furnished
via this Event detected an access
violation while processing an RDMA
Read operation.

5817
5818

All Events on an IT_ASYNC_AFF_EVENT_STREAM SEVD cause Notification. See
it_evd_create for details of Notification. 5819

Interconnect Transport API –Issue 1 179

 180

Default overflow behavior of an IT_ASYNC_AFF_EVENT_STREAM SEVD is overflow
Notification enabled with automatic rearming. This default behavior of the SEVD is equivalent
to IT_EVD_OVERFLOW_DEFAULT cleared and IT_EVD_OVERFLOW_NOTIFY set and
IT_EVD_OVERFLOW_AUTO_RESET set. See

5820
5821
5822

it_evd_create for details of overflow detection.
Note that overflow of an IT_ASYNC_AFF_EVENT_STREAM SEVD generates an
IT_ASYNC_UNAFF_SEVD_ENQUEUE_FAILURE Event on the Unaffiliated Asynchronous
Event SEVD of the IA.

5823
5824
5825
5826

5827
5828

EXTENDED DESCRIPTION
For the Infiniband transport, the following table maps the Affiliated Asynchronous Error values
in the it_event_type_t enumeration to their corresponding “Affiliated Asynchronous Errors” as
specified in Volume 1, Chapter 11 of the Infiniband specification.

5829
5830
5831

it_event_type_t value IB “Affiliated
Asynchronous Error” name

IT_ASYNC_AFF_SEVD_ENQUEUE_FAILURE CQ Error

IT_ASYNC_AFF_EP_FAILURE Local Work Queue
Catastrophic Error

IT_ASYNC_AFF_EP_BAD_TRANSPORT_OPCODE Invalid Request Local Work
Queue Error

IT_ASYNC_AFF_EP_LOCAL_ACCESS_VIOLATION Local Access Violation Work
Queue Error

IT_ASYNC_AFF_EP_REQ_DROPPED (Not applicable to the IB
transport.)

IT_ASYNC_AFF_EP_RDMAW_ACCESS_VIOLATION (Not applicable to the IB
transport.)

IT_ASYNC_AFF_EP_RDMAW_CORRUPT_DATA (Not applicable to the IB
transport.)

IT_ASYNC_AFF_EP_RDMAR_ACCESS_VIOLATION (Not applicable to the IB
transport.)

5832
5833

For the VIA transport, the following table maps the Affiliated Asynchronous Error values in the
it_event_type_t enumeration to their corresponding descriptions in the “VipErrorCallback” man
page in the Appendix of the VIA specification.

5834
5835
5836

it_event_type_t value VIA “VipErrorCallback” name
IT_ASYNC_AFF_SEVD_ENQUEUE_FAILURE (Not applicable to the VIA

transport.)

IT_ASYNC_AFF_EP_FAILURE Completion Protection Error

IT_ASYNC_AFF_EP_BAD_TRANSPORT_OPCODE RDMA Write Packet Abort

Interconnect Transport API –Issue 1 180

 181

IT_ASYNC_AFF_EP_LOCAL_ACCESS_VIOLATION (Not applicable to the VIA
transport.)

IT_ASYNC_AFF_EP_REQ_DROPPED Receive Queue Empty

IT_ASYNC_AFF_EP_RDMAW_ACCESS_VIOLATION RDMA Write Protection Error

IT_ASYNC_AFF_EP_RDMAW_CORRUPT_DATA RDMA Write Data Error

IT_ASYNC_AFF_EP_RDMAR_ACCESS_VIOLATION RDMA Read Protection Error

5837

5838
5839

5840
5841

5842

RETURN VALUE
None.

ERRORS
None.

SEE ALSO
it_event_t, it_evd_wait(), it_evd_create()5843

Interconnect Transport API –Issue 1 181

 182

it_boolean_t 5844

5845
5846

5847
5848
5849
5850
5851
5852
5853

5854
5855
5856

5857
5858

5859
5860

5861

NAME
it_boolean_t – the Boolean type used by the API

SYNOPSIS
#include <it_api.h>

typedef enum {

IT_FALSE = 0,
IT_TRUE = 1

} it_boolean_t;

DESCRIPTION
The it_boolean_t type is used in several data structures in the API to describe a value that can
exist in one of two different states: true (IT_TRUE), or false (IT_FALSE).

RETURN VALUE
None.

ERRORS
None.

SEE ALSO
it_cm_msg_events, it_cm_req_events, it_ep_attributes_t, it_evd_create(), it_evd_modify(), 5862
it_evd_query(), it_ia_info_t, it_rmr_query() 5863

Interconnect Transport API –Issue 1 182

 183

it_cm_msg_events 5864

5865
5866
5867
5868

5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913

NAME
Communication Management Message Events – definitions for communication management
Events other than Connection Requests and definition of Unreliable Datagram service resolution
reply Event

SYNOPSIS
#include <it_api.h>

#define IT_MAX_PRIV_DATA 256

typedef enum {
 IT_CN_REJ_OTHER = 0,
IT_CN_REJ_TIMEOUT = 1,
 IT_CN_REJ_BAD_PATH = 2,
 IT_CN_REJ_STALE_CONN = 3,
 IT_CN_REJ_BAD_ORD = 4,
 IT_CN_REJ_RESOURCES = 5
 } it_conn_reject_code_t;

typedef struct {

it_event_type_t event_number;
it_evd_handle_t evd;
it_cn_est_identifier_t cn_est_id;
it_ep_handle_t ep;
uint32_t rdma_read_inflight_incoming;
uint32_t rdma_read_inflight_outgoing;
it_path_t dst_path;
it_conn_reject_code_t reject_reason_code;
unsigned char private_data[IT_MAX_PRIV_DATA];
it_boolean_t private_data_present;

} it_connection_event_t;

typedef enum {
 IT_UD_SVC_EP_INFO_VALID = 0,
 IT_UD_SVC_ID_NOT_SUPPORTED = 1,
 IT_UD_SVC_REQ_REJECTED = 2,
 IT_UD_NO_EP_AVAILABLE = 3,
 IT_UD_REQ_REDIRECTED = 4
} it_ud_svc_req_status_t;

typedef struct {

it_event_type_t event_number;
it_evd_handle_t evd;
it_ud_svc_req_handle_t ud_svc;
it_ud_svc_req_status_t status;
it_remote_ep_info_t ep_info;
it_path_t dst_path;
unsigned char private_data[IT_MAX_PRIV_DATA];
it_boolean_t private_data_present;

} it_ud_svc_reply_event_t;

Interconnect Transport API –Issue 1 183

 184

5914
5915
5916
5917

DESCRIPTION
The Communication Management Message Event Stream, IT_CM_MSG_EVENT_STREAM,
generates Events for all of the possible state transitions following a Connection Request as well
as for Unreliable Datagram Service Resolution replies. These Events are all the Communication
Management Events except those invoked by incoming requests (see it_cm_req_events for
those).

5918
5919
5920
5921
5922

Only one Event will be generated when a Connection is destroyed for any reason, either the
IT_CM_MSG_CONN_DISCONNECT_EVENT or the IT_CM_MSG_CONN_BROKEN_
EVENT, but not both. Consumer should be ready to handle either of these Events being
generated even when the local or remote Consumer called it_ep_disconnect. 5923

5924
5925
5926
5927

5928
5929
5930
5931
5932
5933
5934

5935
5936

5937

5938

5939
5940

The Connection Events are represented by the it_connection_event_t structure and the
Unreliable Datagram Service Resolution replies are represented by the it_ud_svc_reply_event_ t
structure.

The it_connection_event_ t structure has the following members:

event_number Identifier of the Event type. Valid values:
IT_CM_MSG_CONN_ACCEPT_ARRIVAL_EVENT,
IT_CM_MSG_CONN_ESTABLISHED_EVENT,
IT_CM_MSG_CONN_PEER_REJECT_EVENT,
IT_CM_MSG_CONN_NONPEER_REJECT_EVENT,
IT_CM_MSG_CONN_DISCONNECT_EVENT,
IT_CM_MSG_CONN_BROKEN_EVENT

evd Handle for the Event Dispatcher where the Event was
queued.

cn_est_id Identifier for the Connection establishment Event.

ep Endpoint Handle associated with Connection in progress.

rdma_read_inflight_incoming Maximum number of incoming simultaneous RDMA Read
operations supported. Only valid if the
it_ia_info.ird_support value is IT_TRUE and as described
under Application Usage below.

5941
5942

5943 rdma_read_inflight_outgoing Maximum number of outgoing simultaneous RDMA Read
operations supported. Only valid if the it_ia_info.ord_
support

5944
 value is IT_TRUE and as described under

Application Usage below.
5945
5946

5947
5948
5949
5950

5951

5952

dst_path Path to Destination node supporting Service. Valid only if
remote has rejected the proposed Path (reject_reason_code
is IT_CN_REJ_BAD_PATH). Consumer should use
dst_path if they wish to retry Connection attempt.

reject_reason_code Reason for rejection of Connection attempt.

private_data Private Data buffer.

Interconnect Transport API –Issue 1 184

 185

5953
5954
5955

5956
5957

5958
5959

5960

5961

5962
5963

private_data_present When it has the value IT_TRUE then Private Data is present
in the private_data buffer above.

The it_ud_svc_reply_event_ t structure has the following members:

event_number Identifier of the Event type. Valid values:
IT_CM_MSG_UD_SERVICE_REPLY_EVENT

evd Handle for the Event Dispatcher where the Event was
queued.

ud_svc Handle for the corresponding Service Request.

status Completion status for Service Request.

ep_info Resolution of Connection Qualifier for the UD service to a
specific remote Endpoint. Only valid if status is
IT_UD_SVC_EP_INFO_VALID. See it_ep_attributes_t
for the definition of the it_remote_ep_info_t structure.

5964
5965

5966
5967
5968

5969

5970
5971

5972
5973

dst_path Path to Destination node supporting Service. Valid only if
remote has redirected (status is
IT_UD_REQ_REDIRECTED). Path returned is complete.

private_data Private Data buffer.

private_data_present When it has the value IT_TRUE then Private Data is present
in the private_data buffer above.

EXTENDED DESCRIPTION
Connection Events are described in Error! Reference source not found.:

Event type Description Notes
IT_CM_MSG_CONN_ACCEPT_ARRIVAL_EVENT

The passive side of a
three-way Connection
establishment has
issued an it_ep_accept
for the specified
Connection
establishment request
identifier.

Only applies to three-way
Connection establishment.
Second phase of three. The
Endpoint is in IT_EP_
STATE_ACTIVE2_
CONNECTION_PENDING
state.

IT_CM_MSG_CONN_ESTABLISHED_EVENT The Connection
identified has been
established and Data
Transfer Operations can
be performed. This
Event is generated on
both the passive and
active sides of a
Connection.

Applies to both two-way and
three-way Connection
establishment. Second phase on
two-way, third phase on three-
way. The Endpoint is in
CONNECTED state.

Interconnect Transport API –Issue 1 185

 186

Event type Description Notes
IT_CM_MSG_CONN_DISCONNECT_EVENT The Connection

identified has been
disconnected, either by
the local or remote side,
through a call to
it_ep_disconnect. No
more Data Transfer
Operations posted on
the Endpoint will
complete successfully.

Applies to both two-way and
three-way Connection
establishment.

The Endpoint is in IT_EP_
STATE_NONOPERATIONAL
state. All posted DTOs and
RMRs are flushed.

IT_CM_MSG_CONN_PEER_REJECT_EVENT The remote side of a
Connection
establishment request
has issued it_reject for
the specified
Connection
establishment request.

Applies to both two-way and
three-way Connection
establishment.

The Endpoint is in IT_EP_
STATE_NONOPERATIONAL
state. All preposted DTOs and
RMRs are flushed.

IT_CM_MSG_CONN_NONPEER_REJECT_EVENT

This Event includes all
other reasons for the
remote side not
establishing a
Connection that are not
related to the remote
Consumer issuing
it_reject. Such reasons
include overflow of the
remote EVD for
Connection Events,
timeouts of the
Connection attempt, and
the passive side
rejecting the proposed
Path for the Connection
attempt.

Applies to both two-way and
three-way Connection
establishment.

The Endpoint is in IT_EP_
STATE_NONOPERATIONAL
state. All preposted DTOs and
RMRs are flushed.

IT_CM_MSG_CONN_BROKEN_EVENT The Connection
identified has been
disconnected by the
Implementation. Causes
include transport errors.

Applies to both two-way and
three-way Connection
establishment.

The Endpoint is in IT_EP_
STATE_NONOPERATIONAL
state. All posted DTOs and
RMRs are flushed.

5974
5975

5976
5977

Table 3: Connection Management Event Definitions

Error! Reference source not found. identifies which fields are valid in each of the Connection
management message Events. For any Event, event_number and evd are always valid.

Interconnect Transport API –Issue 1 186

 187

Event type Valid fields
IT_CM_MSG_CONN_ACCEPT_ARRIVAL_EVENT

cn_est_id, ep, private_data, private_data_
present.cn_est_id may not be valid if Consumer
called it_ep_disconnect of the associated
Endpoint at any time before the cn_est_id is
used.

The following are valid only on active side
when three-way Connection establishment is
used: rdma_read_inflight_incoming,
rdma_read_inflight_outgoing.

IT_CM_MSG_CONN_ESTABLISHED_EVENT ep, private_data, private_data_present
IT_CM_MSG_CONN_DISCONNECT_EVENT ep, private_data, private_data_present
IT_CM_MSG_CONN_PEER_REJECT_EVENT ep, private_data, private_data_present
IT_CM_MSG_CONN_NONPEER_REJECT_EVENT ep, reject_reason_code

If the reject_reason_code is IT_CN_REJ_
BAD_PATH, then dst_path is also valid.

IT_CM_MSG_CONN_BROKEN_EVENT ep

5978
5979

5980
5981

Table 4: Event Management Event Fields

Error! Reference source not found. describes the meaning of the various reject_reason_code
values that can be present in an IT_CM_MSG_CONN_NONPEER_REJECT_EVENT.

reject_reason_code value Description
IT_CN_REJ_OTHER The Connection establishment attempt was rejected for some

reason other than those listed below.

IT_CN_REJ_TIMEOUT

The Connection could not be established within the timeout
period defined by the timeout member of the it_path_t that was
input to it_ep_connect. This reject_reason_code is only
returned when the local timeout period has elapsed; a timeout
that occurs at the remote peer does not cause this status to be
returned.

IT_CN_REJ_BAD_PATH The passive side replied to the request to establish a
Connection by rejecting the proposed Path. If the Consumer
wishes to retry the Connection establishment attempt, the
dst_path member of the Event structure contains the suggested
Path to use.

Interconnect Transport API –Issue 1 187

 188

reject_reason_code value Description
IT_CN_REJ_STALE_CONN The remote peer detected a stale Connection using the local

Endpoint that the Consumer furnished as part of the
Connection establishment attempt, and has initiated the
cleanup process for that stale Connection. If the Consumer
wishes to retry the Connection establishment attempt with the
remote peer, they should either use a different Endpoint when
they retry, or wait for the stale Connection cleanup process to
complete before doing the retry. (The duration of the stale
Connection cleanup process is implementation-dependent.)

IT_CN_REJ_BAD_ORD When this Event is received on the passive side of a
Connection establishment attempt, it means that the active side
was unwilling to accept the rdma_read_inflight_incoming
limit in the passive-side Endpoint.

IT_CN_REJ_RESOURCES The remote peer was unable to allocate resources necessary to
establish the Connection.

5982
5983

5984

Table 5: reject_reason_code Descriptions

The UD Service Resolution Reply Event is described in Error! Reference source not found.:

Event type Description
IT_CM_MSG_UD_SERVICE_REPLY_EVENT

The passive side of a UD service has
responded to the request for Connection
Qualifier resolution.

5985
5986

5987
5988

Table 6: UD Service Resolution Reply Event Definitions

UD service resolution replies return status in the Event data structure as described in Error!
Reference source not found.:

Status Description
IT_UD_SVC_EP_INFO_VALID Reply is valid. ep_info resolves the remote Endpoint

associated with Connection Qualifier

IT_UD_SVC_ID_NOT_SUPPORTED Service is not supported by remote

IT_UD_SVC_REQ_REJECTED Request is rejected by remote

IT_UD_NO_EP_AVAILABLE Remote is out of resources

IT_UD_REQ_REDIRECTED Remote redirected the request

Table 7: Service Resolution Reply Status

5989
5990

Interconnect Transport API –Issue 1 188

 189

All Events on an IT_CM_MSG_EVENT_STREAM SEVD cause Notification. See 5991
it_evd_create for details of Notification. 5992

5993
5994
5995

Default overflow behavior of an IT_CM_MSG_EVENT_STREAM SEVD is automatic
rearming. This default behavior of the SEVD is equivalent to IT_EVD_OVERFLOW_
DEFAULT cleared and IT_EVD_OVERFLOW_NOTIFY set and IT_EVD_OVERFLOW_
AUTO_RESET set. See it_evd_create for details of overflow detection. 5996

5997
5998
5999
6000
6001

EXTENDED DESCRIPTION
For the Infiniband transport, Error! Reference source not found. maps the values in the
reject_reason_code field to their corresponding “Rejection Reason Code” for the REJ message
as specified in Volume 1, Chapter 12 of the Infiniband specification. Rejection Reason Codes
that are not listed in this table should never be received by a Consumer that is using this API.

reject_reason_code value Infiniband Rejection Reason Code Number
IT_CN_REJ_OTHER 4-9, 29-31

IT_CN_REJ_TIMEOUT

None. This code is generated based upon failure to
establish the Connection within a given amount of
time, not upon receiving a REJ message.

IT_CN_REJ_BAD_PATH 12-17, 24-26, 32

IT_CN_REJ_STALE_CONN 10

IT_CN_REJ_BAD_ORD 27

IT_CN_REJ_RESOURCES 1, 3

6002
6003

6004
6005
6006
6007
6008

Table 8: InfiniBand reject_reason_code Mapping

For the VIA transport, Error! Reference source not found. maps the values in the
reject_reason_code field to their corresponding return values from the man pages for
“VipConnectRequest” and “VipConnectAccept” in the Appendix of the VIA specification.
Return values that are not listed in the table below are manifest to Consumers of the IT-API
through a mechanism other than a IT_CM_MSG_CONN_NONPEER_REJECT_EVENT.

reject_reason_code value VIA Return Code
IT_CN_REJ_OTHER VipConnectAccept –

VIP_INVALID_RELIABILITY_LEVEL,
VIP_INVALID_QOS, VIP_TIMEOUT,
VIP_ERROR_RESOURCE

VipConnectRequest – VIP_NO_MATCH

IT_CN_REJ_TIMEOUT

VipConnectAccept – VIP_NOT_REACHABLE

VipConnectRequest – VIP_TIMEOUT,
VIP_NOT_REACHABLE

Interconnect Transport API –Issue 1 189

 190

reject_reason_code value VIA Return Code
IT_CN_REJ_BAD_PATH None. This code is not applicable to the VIA transport.

IT_CN_REJ_STALE_CONN None. This code is not applicable to the VIA transport.

IT_CN_REJ_BAD_ORD None. This code is not applicable to the VIA transport.

IT_CN_REJ_RESOURCES VipConnectRequest – VIP_ERROR_RESOURCE

6009
6010

6011
6012
6013

Table 9: VIA reject_reason_code Mapping

For the Infiniband transport, Error! Reference source not found. maps the ep_info field
elements in the UD Service Resolution Event data type to InfiniBand concepts as specified in
Volume 1 of the Infiniband specification.

ep_info element IB concept
it_ud_ep_id_t Queue Pair Number (QPN)

it_ud_ep_key_t Queue Key

6014
6015

6016
6017

6018
6019

6020

Table 10: ep_info Element Mapping

RETURN VALUE
None.

ERRORS
None.

APPLICATION USAGE
The Consumer should use the it_event_t structure if it is desired to wait for both communication
management Events (it_connection_event_t) and Unreliable Datagram service resolution reply
Events (it_ud_svc_reply_event_t) via the same EVD. The

6021
6022

it_event_t structure is of sufficient size
to hold either Event type.

6023
6024
6025
6026
6027

When using three-way Connection establishment, the Consumer may receive an
IT_CM_MSG_CONN_ACCEPT_ARRIVAL_EVENT containing rdma_read_inflight_incoming
and rdma_read_inflight_outgoing values that differ from those of the Endpoint in use. The
Consumer should use it_ep_modify to adjust the values associated with the Endpoint to agree
with those from this Event before issuing the

6028
it_ep_accept call to complete the Connection

establishment.
6029
6030
6031
6032

With the three-way handshake Connection establishment method, there is also a potential race
condition between the Implementation generating the IT_CM_MSG_CONN_ACCEPT_
ARRIVAL_EVENT Event and the Consumer calling it_ep_disconnect or it_ep_free. The
Consumer should not use the cn_est_id if the IT_CM_MSG_CONN_ACCEPT_
ARRIVAL_EVENT Event arrives after

6033
6034

it_ep_disconnect or it_ep_free was called, regardless of
whether the call returned yet, and regardless of the Event was dequeued before or after the call

6035
6036

Interconnect Transport API –Issue 1 190

 191

6037
6038
6039
6040

was made. If the Consumer does use the cn_est_id then the Implementation generate an
IT_ERR_INVALID_CN_EST_ID error, or it may generate a segmentation fault, or other error.

Neither the Active nor the Passive side Consumer should rely upon the
IT_CM_MSG_CONN_ESTABLISHED_EVENT Event containing any Private Data, even if
Private Data is input to the final it_ep_accept call that causes the Connection to be established.
The side that makes the final call to

6041
it_ep_accept will never see any Private Data in the

IT_CM_MSG_CONN_ESTABLISHED_EVENT Event, and because of races and unreliability
inherent to the Connection establishment process of many of the transports that the IT-API
supports Private Data can sometimes be dropped on the other side as well.

6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054

See the it_ep_disconnect man page for details on the guarantee of delivery of Private Data when
disconnecting Connections.

The Consumer is advised to structure their ULP so that the Active side sends the first message
after a Connection has been established. This is good practice because under some
circumstances the completion of the first Receive operation is what causes the
IT_CM_MSG_CONN_ESTABLISHED_EVENT Event to be generated on the Passive side.
Depending upon the Passive side to send the first message after a Connection has been
established can potentially result in the Connection establishment process timing out rather than
completing successfully.

6055
6056
6057
6058
6059

Consult the Application Usage section of it_cm_req_events for the discussion of use of Private
Data.

When the Consumer receives an IT_CM_MSG_UD_SERVICE_REPLY_EVENT where the
status is IT_UD_REQ_REDIRECTED, the Consumer can retry the attempt to retrieve UD
service information. In order to do so the Consumer should free up its old UD Service Request
Handle (by calling it_ud_service_request_handle_free), and create a new UD Service Request
Handle by passing the dst_path returned in the IT_CM_MSG_UD_SERVICE_REPLY_EVENT
to

6060
6061

it_ud_service_request_handle_create to create a new Handle. 6062

6063
6064
6065
6066
6067
6068
6069
6070
6071
6072

FUTURE DIRECTIONS
When an Endpoint gets connected, the Endpoint moves to the IT_EP_STATE_CONNECTED
state and an IT_CM_MSG_CONN_ESTABLISHED_EVENT Event is generated on the
Connection Event Stream for that Endpoint. An Active-side Endpoint can get connected without
any DTO needing to be processed by either of the Endpoints in the Connection. A Passive-side
Endpoint can also usually (but not always) get connected without any DTO needing to be
processed. (A Passive-side Endpoint can always get connected if a Receive DTO posted to the
Passive-side Endpoint completes.) A future version of the API may not allow a Passive-side
Endpoint to get connected unless a Receive DTO posted to the Passive-side Endpoint first
completes.

Currently when it_reject is called by the remote side during a Connection establishment attempt
an IT_CM_MSG_CONN_PEER_REJECT_EVENT Event is generated on the local side to let
the local Consumer know that the attempt was rejected. A future version of the API may on
some transports generate an IT_CM_MSG_CONN_NONPEER_REJECT_EVENT Event
instead of an IT_CM_MSG_CONN_PEER_REJECT_EVENT in this circumstance.

6073
6074
6075
6076
6077

Interconnect Transport API –Issue 1 191

 192

6078 SEE ALSO
it_event_t, it_evd_create(), it_evd_wait(), it_ep_modify(), it_listen_create(), it_ep_accept(), 6079
it_ep_disconnect(), it_reject(), it_address_handle_create(), 6080
it_ud_service_request_handle_free(), it_path_t, it_ia_info_t, it_ep_attributes_t6081

Interconnect Transport API –Issue 1 192

 193

it_cm_req_events 6082

6083
6084
6085

6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112

6113
6114
6115
6116
6117
6118
6119
6120

6121
6122

6123
6124

6125

NAME
Communication Management Request Events – definitions for Connection Request and
Unreliable Datagram service resolution request communication management Events

SYNOPSIS
#include <it_api.h>

typedef struct {
 it_event_type_t event_number;
 it_evd_handle_t evd;
 it_cn_est_identifier_t cn_est_id;
 it_conn_qual_t conn_qual;
 it_net_addr_t source_addr;
 size_t spigot_id;
 uint32_t max_message_size;
 uint32_t rdma_read_inflight_incoming;
 uint32_t rdma_read_inflight_outgoing;
 unsigned char private_data[IT_MAX_PRIV_DATA];
 it_boolean_t private_data_present;
} it_conn_request_event_t;

typedef struct {

it_event_type_t event_number;
it_evd_handle_t evd;
it_ud_svc_req_identifier_t ud_svc_req_id;

 it_conn_qual_t conn_qual;
 it_net_addr_t source_addr;

size_t spigot_id;
 unsigned char private_data[IT_MAX_PRIV_DATA];
 it_boolean_t private_data_present;
} it_ud_svc_request_event_t;

DESCRIPTION
The Communication Management Request Event Stream, IT_CM_REQ_EVENT_STREAM,
generates Events when an incoming Connection Request Event or incoming Unreliable
Datagram service resolution request occurs.

Incoming Connection Request Events are represented by the it_conn_request_event_t structure
and incoming Unreliable Datagram Service Resolution requests are represented by the
it_ud_svc_request_event_t structure.

The it_conn_req_event_t structure has the following members:

event_number Identifier of the Event type. Valid values:
IT_CM_REQ_CONN_REQUEST_EVENT

evd Handle for the Event Dispatcher where the Event was
queued.

cn_est_id Identifier for the Connection establishment Event.

Interconnect Transport API –Issue 1 193

 194

6126

6127

6128

6129
6130

conn_qual Connection Qualifier on which request was received.

source_addr Source address of requestor.

spigot_id Local Spigot on which request was received.

max_message_size Largest message supported on Connection by the requesting
remote EP. Only valid if
it_ia_info.max_message_size_support is IT_TRUE. 6131

6132
6133

rdma_read_inflight_incoming Maximum number of incoming simultaneous RDMA Read
operations of requesting remote EP supported. Only valid if
it_ia_info.ird_support is IT_TRUE. 6134

6135
6136

rdma_read_inflight_outgoing Maximum number of outgoing simultaneous RDMA Read
operations of requesting remote EP supported. Only valid if
it_ia_info.ord_support is IT_TRUE. 6137

6138

6139
6140
6141

6142
6143

6144
6145

6146

private_data Private Data buffer.

private_data_present When it has the value IT_TRUE then Private Data is present
in the private_data buffer above.

The it_ud_svc_request_event_t structure has the following members:

event_number Identifier of the Event type. Valid values:
IT_CM_REQ_UD_SERVICE_REQUEST_EVENT

evd Handle for the Event Dispatcher where the Event was
queued.

ud_svc_req_id Identifier for the Service Request. Must be passed into the
it_ud_service_reply call used to respond. 6147

6148

6149

6150

6151

6152
6153

6154

conn_qual: Connection Qualifier on which request was received.

source_addr Source address of requestor.

spigot_id Local Spigot on which request was received.

private_data Private Data buffer.

private_data_present: When it has the value IT_TRUE then Private Data is present
in the private_data buffer above.

Event type Description
IT_CM_REQ_CONN_REQUEST_EVENT An incoming request for Connection

establishment. This Connection Request is
identified by the Connection establishment
request identifier (cn_est_id) in the Event.

Interconnect Transport API –Issue 1 194

 195

Event type Description
IT_CM_REQ_UD_SERVICE_REQUEST_EVENT An incoming request for Unreliable

Datagram service resolution. This request is
identified by the ud_svc_req_id in the
Event.

6155
6156

Table 11: Communication Management Request Event Definitions

6157
6158
6159
6160
6161

All Events on an IT_CM_REQ_EVENT_STREAM SEVD cause Notification. See it_evd_create
for details of Notification.

Default overflow behavior of an IT_CM_REQ_EVENT_STREAM SEVD is overflow
Notification disabled. This default behavior of the SEVD is equivalent to IT_EVD_
OVERFLOW_DEFAULT cleared and IT_EVD_OVERFLOW_NOTIFY cleared. See
it_evd_create for details of overflow detection. 6162

6163
6164

6165
6166

6167

RETURN VALUE
None.

ERRORS
None.

APPLICATION USAGE
The Consumer should use the it_event_t structure if it is desired to wait for both Connection
Request Events (it_conn_request_event_t) and Unreliable Datagram service resolution request
Events (it_ud_svc_request_event_t) via the same EVD. The

6168
6169

it_event_t structure is of sufficient
size to hold either Event type.

6170
6171

The Consumer must it_evd_create an IT_CM_REQ_EVENT_STREAM Simple EVD and pass
the new EVD and a Connection Qualifier to

6172
it_listen_create in order to receive

IT_CM_REQ_EVENT_STREAM Events via the
6173

it_evd_wait or it_evd_dequeue calls. 6174
6175
6176
6177
6178
6179
6180

6181

The private_data_present field indicates whether Private Data is present in the private_data
buffer. It is the Consumer's responsibility to convey the size of the data contained in the Private
Data buffer using their own ULP. Each communication management Event type may have a
different maximum Private Data buffer size. The Consumer can determine the maximum
possible sizes for the Private Data buffers corresponding to each of the Event types from the
it_ia_info_t structure (for instance, connect_private_data_len).

SEE ALSO
it_event_t, it_evd_create(), it_evd_wait(), it_evd_dequeue(), it_ep_modify(), it_listen_create(), 6182
it_ep_accept(), it_ep_disconnect(), it_reject(), it_ud_service_reply(), it_ia_info_t6183

Interconnect Transport API –Issue 1 195

 196

it_conn_qual_t 6184

6185
6186

6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234

NAME
it_conn_qual_t – encapsulates all supported Connection Qualifier types

SYNOPSIS
#include <it_api.h>

/* Enumerates all the possible Connection Qualifier types supported by
 the API. */
typedef enum {

 /* IANA (TCP/UDP) Port Number */
 IT_IANA_PORT = 0x1,

 /* InfiniBand Service ID, as described in section 12.7.3 of
 Volume 1 of the InfiniBand specification. */
 IT_IB_SERVICEID = 0x2,

 /* VIA Connection Discriminator */
 IT_VIA_DISCRIMINATOR = 0x4

} it_conn_qual_type_t;

/* Defines the Connection Qualifier format for a VIA “connection
 discriminator”. The API imposes a fixed upper bound on the
 discriminator size. */

#define IT_MAX_VIA_DISC_LEN 64

typedef struct {

 /* The total number of bytes in the array below */
 /* that are significant */
 uint16_t len;

 /* VIA connection discriminator, which is an array of bytes */
 unsigned char discriminator[IT_MAX_VIA_DISC_LEN];

} it_via_discriminator_t;

/* This defines the Connection Qualifier for InfiniBand, which is the
 64-bit Service ID */
typedef uint64_t it_ib_serviceid_t;

/* This describes a Connection Qualifier suitable for input to
 several routines in the API. */
typedef struct {

 /* The discriminator for the union below. */
 it_conn_qual_type_t type;

 union {

Interconnect Transport API –Issue 1 196

 197

6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247

6248
6249
6250

 /* IANA Port Number, in network byte order */
 uint16_t port;

 /* InfiniBand Service ID, in network byte order */
 it_ib_serviceid_t serviceid;

 /* VIA connection discriminator. */
 it_via_discriminator_t discriminator;

 } conn_qual;

} it_conn_qual_t;

DESCRIPTION
The it_conn_qual_t type is used by several routines in the API to encapsulate a Connection
Qualifier. A Connection Qualifier is used by a Consumer on the Active side of the Connection
establishment process in the it_ep_connect routine to target the remote Consumer that should be
responding to the Connection establishment attempt. It is used on the Passive side of the
Connection establishment process in the

6251
6252

it_listen_create routine to steer incoming Connection
Requests to an appropriate EVD for further processing.

6253
6254
6255
6256
6257

Each Spigot on an IA can support one or more types of Connection Qualifier. All Spigots will
support the IANA Port Number type of Connection Qualifier, regardless of which transport the
IA that houses the Spigot is using. Which types of Connection Qualifier a Spigot supports can
be determined using the it_ia_query routine. 6258

6259
6260
6261
6262
6263
6264

6265
6266

6267
6268

6269

In order to aid Consumers in writing portable applications that span platforms with different
native byte orders, all Connection Qualifiers that are supported by the API with the exception of
the VIA “connection discriminator” are required to be input to the API in network byte order,
and will be output from the API in network byte order. (The VIA “connection discriminator” is
defined to be an array of bytes, and hence is not affected by which native byte order a platform
uses.)

RETURN VALUE
None.

ERRORS
None.

SEE ALSO
it_ep_connect(), it_listen_create(), it_ia_query()6270

6271

Interconnect Transport API –Issue 1 197

 198

it_context_t 6272

6273
6274

6275
6276
6277
6278
6279
6280
6281

6282
6283
6284

6285

6286

6287
6288

6289
6290

6291

NAME
it_context_t – structure describing a Consumer Context

SYNOPSIS
#include <it_api.h>

typedef union {

void * ptr;
uint64_t index;

} it_context_t;

DESCRIPTION
The it_context_t union describes storage definitions for the Consumer Context associated with
an IT Object Handle.

ptr storage space for an address pointer.

index storage space for an unsigned 64-bit integer.

RETURN VALUE
None.

ERRORS
None.

SEE ALSO
it_get_consumer_context(), it_set_consumer_context()6292

Interconnect Transport API –Issue 1 198

 199

it_dg_remote_ep_addr_t 6293

6294
6295

6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316

6317
6318
6319
6320
6321
6322
6323
6324
6325
6326

6327

NAME
it_dg_remote_ep_addr_t - Datagram Transport Endpoint address

SYNOPSIS
#include <it_api.h>

typedef struct
{

it_addr_handle_t addr;
it_remote_ep_info_t ep_info;

} it_ib_ud_addr_t;

typedef enum
{

IT_DG_TYPE_IB_UD
} it_dg_type_t;

typedef struct
{
it_dg_type_t type; /* IT_DG_TYPE_IB_UD */

union {
it_ib_ud_addr_t ud;

} addr;
} it_dg_remote_ep_addr_t;

DESCRIPTION
For datagram transports, the Endpoint address is specified in DTO operations using the
it_dg_remote_ep_addr_t data structure. The structure is intended to allow support of more than
one datagram transport type.

The datagram transport type is specified as type in the it_dg_remote_ep_addr_t structure. In this
revision of the API, only the InfiniBand Unreliable Datagram transport, IT_DG_TYPE_IB_UD,
is supported.

For InfiniBand Unreliable Datagram, the transport specific Endpoint address is contained in the
it_ib_ud_addr_t sub-structure of the it_dg_remote_ep_addr_t. The components of the
InfiniBand Unreliable Datagram Endpoint address are:

addr An Address Handle created by the Consumer using
it_address_handle_create. 6328

ep_info An Endpoint Info structure (see it_ep_attributes_t) containing the Endpoint
ID, ud_ep_id, and the Endpoint Key, ud_ep_key. The Consumer may make
use of

6329
6330

it_ud_service_request to obtain ud_ep_id and ud_ep_key or may
obtain them by their own means.

6331
6332

6333
6334
6335

EXTENDED DESCRIPTION
For InfiniBand Unreliable Datagram, the Endpoint ID is equivalent to an InfiniBand QP number
and the Endpoint Key is equivalent to an InfiniBand Q_key.

Interconnect Transport API –Issue 1 199

 200

6336
6337

6338
6339

6340
6341
6342

6343

RETURN VALUE
None.

ERRORS
None.

FUTURE DIRECTIONS
Support for Reliable Datagram Service Type may be provided in a future revision of this API.

SEE ALSO
it_post_sendto(), it_post_recvfrom(), it_address_handle_create(), it_ud_service_request(), 6344
it_ep_attributes_t6345

6346

Interconnect Transport API –Issue 1 200

 201

it_dto_cookie_t 6347

6348
6349

6350
6351
6352
6353

6354
6355
6356

NAME
it_dto_cookie_t – definition of implementation-opaque Consumer cookie

SYNOPSIS
#include <it_api.h>

typedef uint64_t it_dto_cookie_t;

DESCRIPTION
it_dto_cookie_t is an object that can be provided by the Consumer on every DTO or RMR
operation and is returned to the Consumer in the corresponding DTO Completion Event (see
it_dto_events) if a DTO Completion Event is generated (see it_dto_flags_t). The it_dto_cookie_t
object is opaque to the Implementation and is returned unchanged to the Consumer in the DTO
Completion Event corresponding to the posted DTO or RMR.

6357
6358
6359

6360
6361

6362
6363

6364

RETURN VALUE
None.

ERRORS
None.

SEE ALSO
it_dto_events, it_dto_flags_t, it_post_send(), it_post_sendto(), it_post_recv(), 6365
it_post_recvfrom(), it_post_rdma_read(), it_post_rdma_write(), it_rmr_bind(), it_rmr_unbind()6366

Interconnect Transport API –Issue 1 201

 202

it_dto_events 6367

6368
6369

6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396

6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408

NAME
DTO and RMR Bind/Unbind Completion Event types

SYNOPSIS
#include <it_api.h>

typedef enum {
 IB_UD_IB_GRH_PRESENT = 0x01
} it_dto_ud_flags_t;

typedef struct {
 it_event_type_t event_number;
 it_evd_handle_t evd;
 it_ep_handle_t ep;
 it_dto_cookie_t cookie;
 it_dto_status_t dto_status;
 uint32_t transferred_length;
} it_dto_cmpl_event_t;

typedef struct {
 it_event_type_t event_number;
 it_evd_handle_t evd;
 it_ep_handle_t ep;
 it_dto_cookie_t cookie;
 it_dto_status_t dto_status;
 uint32_t transferred_length;
 it_dto_ud_flags_t flags;
 it_ud_ep_id_t ud_ep_id;
 it_path_t src_path;
} it_all_dto_cmpl_event_t;

DESCRIPTION
The DTO Completion Event Stream, IT_DTO_EVENT_STREAM, generates Events for all Data
Transfer Operations completions as well as RMR Bind and Unbind completions.

Unreliable Datagram Receive Completion Events provide additional data beyond that of the
other DTO Completion Events. The additional data is large enough to warrant defining a much
smaller Event structure for all other DTO operations usable by Consumers interested in
conserving the memory footprint of their application.

With the exception of UD Receive completions, all DTO completions, including RMR Binds
and Unbinds, can be represented by the it_dto_cmpl_event_t structure.

UD Receive completions require use of the it_all_dto_cmpl_event_t structure. Consumers
wishing to receive UD Receive and Send Completion Events on one Simple EVD or wishing to
handle all possible DTO completions with one Simple EVD must use the
it_all_dto_cmpl_event_t structure or the encompassing it_event_t structure (see it_event_t).
Failure to use the it_all_dto_cmpl_event_t structure or

6409
it_event_t structure for UD Receive

Completion Events can result in program termination.
6410
6411
6412 The it_dto_cmpl_event_t structure has the following members:

Interconnect Transport API –Issue 1 202

 203

6413
6414
6415
6416
6417
6418

6419

6420

6421

event_number Identifier of the Event type. Valid values:
IT_DTO_SEND_CMPL_EVENT,
IT_DTO_RC_RECV_CMPL_EVENT,
IT_DTO_RDMA_WRITE_CMPL_EVENT,
IT_DTO_RDMA_READ_CMPL_EVENT,
IT_RMR_BIND_CMPL_EVENT

evd Handle for the Event Dispatcher where the Event was queued.

ep Handle for the Endpoint on which the DTO was posted.

cookie Cookie that the Consumer associated with the DTO at the post time.
See it_dto_cookie_t for details. 6422

6423

6424

dto_status Status of completed DTO.

transferred_length Length of transferred message.

6425
6426
6427
6428
6429
6430

6431

6432

6433
6434

See it_dto_status_t for values and definition of dto_status.

The transferred_length field indicates the amount of data transferred in Receive operations. The
content of this field is undefined for Send, RDMA Read, RDMA Write, RMR Bind, and RMR
Unbind operations. This field is also only valid if dto_status is IT_DTO_SUCCESS, otherwise
the contents are undefined.

The it_all_dto_cmpl_event_t structure has the following additional members:

flags: Flags indicating additional service specific information.

ud_ep_id Remote Endpoint ID from incoming datagram.

src_path Partial Source Path information from incoming datagram.

The IT_DTO_UD_RECV_CMPL_EVENT event_number is an additional valid value only for
the it_all_dto_cmpl_event_t structure or it_event_t structure. 6435

6436
6437
6438
6439
6440
6441
6442

The flags parameter indicates whether or not the InfiniBand Global Routing Header (GRH) is
present in the first 40 bytes of the message payload. If GRH is present, the IT_UD_IB_
GRH_PRESENT bit will be set in flags. If the GRH is not present (IT_UD_IB_GRH_PRESENT
bit cleared in flags), the first 40 bytes of the payload are undefined.

For an IT_DTO_UD_RECV_CMPL_EVENT, the transferred_length field includes the length of
the transferred message plus 40 bytes regardless of the IT_UD_IB_GRH_PRESENT bit value.

The remote Endpoint ID, ud_ep_id, is derived from the incoming datagram. See
it_ep_attributes_t for more details. 6443

6444
6445
6446

Partial Source address information is returned in datagram Completion Event in the src_path
structure element. See Application Usage, below.

The src_path can hold more information than is returned in the Completion Event. The members
of the it_path_t structure that are pertinent to a datagram Completion Event are listed in the table
below. For each member, the corresponding Infiniband Datagram addressing information that
the member corresponds to is also identified. For a detailed explanation of the semantics

6447
6448
6449

Interconnect Transport API –Issue 1 203

 204

6450
6451

associated with the Datagram addressing information, see Chapter 11.4.2.1 Poll For Completion
in the Infiniband Architecture Release 1.1 specification.

it_path_t member Unreliable Datagram Completion Addressing Information
ib.sl Service level

ib.remote_port_lid Source LID

6452
6453

IT_DTO_EVENT_STREAM Events may or may not cause Notification depending on the use of
DTO flags (see it_dto_flags_t). See it_evd_create for details of Notification. 6454

6455
6456
6457

Default overflow behavior of an IT_DTO_EVENT_STREAM SEVD is overflow Notification
enabled. The behavior of the SEVD is equivalent to IT_EVD_OVERFLOW_DEFAULT cleared
and IT_EVD_OVERFLOW_NOTIFY set. Once an IT_DTO_EVENT_STREAM SEVD
overflows, it can not be rearmed. See it_evd_create for details of overflow detection. 6458

6459
6460

Overflow of an IT_DTO_EVENT_STREAM SEVD is catastrophic for the associated Endpoint
or Endpoints. Each Endpoint is transitioned to the IT_EP_STATE_NONOPERATIONAL state
as defined in it_ep_state_t. The Endpoints are unrecoverable; it_ep_free must be called for all
Endpoints sharing the same SEVD on which the overflow occurred.

6461
6462

6463
6464

6465
6466

6467
6468
6469

RETURN VALUE
None.

ERRORS
None.

APPLICATION USAGE
Within an IT_DTO_UD_RECV_CMPL_EVENT Event, the src_path member returned contains
insufficient information to identify the remote Endpoint. To resolve the remote Endpoint Path,
the user should pass src_path returned in this Event to it_address_handle_create with the
IT_AH_PATH_COMPLETE bit cleared.

6470
it_address_handle_create will complete the resolution

of the Path.
6471
6472

6473 SEE ALSO
it_post_send(), it_post_sendto(), it_post_recv(), it_post_recvfrom(), it_post_rdma_read(), 6474
it_post_rdma_write(), it_dto_status_t, it_dto_flags_t, it_event_t, it_evd_create(), it_evd_wait(), 6475
it_address_handle_create(), it_ep_state_t, it_ep_free(), it_ep_reset(), it_path_t, it_dto_cookie_t6476

6477

Interconnect Transport API –Issue 1 204

 205

it_dto_flags_t 6478

6479
6480
6481

6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500

6501

6502
6503

6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519

NAME
it_dto_flags_t – DTO flags for Send, Receive, RDMA Read, RDMA Write, RMR Bind and
RMR Unbind operations

SYNOPSIS
#include <it_api.h>

typedef enum
{

/* If flag set, completion generates a local event */
 IT_COMPLETION_FLAG = 0x01,

/* If flag set, completion cause local Notification */
 IT_NOTIFY_FLAG = 0x02,

/* If flag set, receipt of DTO at remote will cause Notification at
remote */
 IT_SOLICITED_WAIT_FLAG = 0x04,

/* If flag set, DTO processing will not start if
 previously posted RDMA Reads are not complete. */
 IT_BARRIER_FENCE_FLAG = 0x08,

} it_dto_flags_t;

DESCRIPTION

it_dto_flags Flags for posted DTOs: Send, Receive, RDMA Read, RDMA Write, RMR
Bind and RMR Unbind.

Values for it_dto_flags are constructed by a bitwise-inclusive OR of flags from the following
discussion.

Any combination of the following may be used subject to Restrictions as noted:

IT_COMPLETION_FLAG

If set, generate a Completion Event for this DTO, else do not generate a Completion Event
unless there is an error. If there is an error, the Completion Event will be generated with
Notification regardless of IT_NOTIFY_FLAG value.

If not set, then the completion of a subsequent DTO on the same work queue of the same
Endpoint with this flag set or with error completion will indicate the successful
completion of prior DTO(s) with this flag cleared.

Restrictions

IT_COMPLETION_FLAG may be set or cleared only for Send, RDMA Write, RDMA Read,
RMR Bind and RMR Unbind operations on a Reliable Connection Service Type, and may be
set or cleared only for Send operation on an Unreliable Datagram Service Type.

Interconnect Transport API –Issue 1 205

 206

6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553

6554
6555
6556
6557

IT_COMPLETION_FLAG must be set for all Receive DTO operations on all Service Types
(Reliable Connection and Unreliable Datagram). Posting a Receive DTO operation with
IT_COMPLETION_FLAG cleared is an error.

IT_NOTIFY_FLAG

If set, generate Notification of completion of the DTO/RMR.

Restrictions

IT_ NOTIFY_FLAG may be set or cleared on all DTO and RMR operations on a Reliable
Connected Service Type, and may be set or cleared on Send and Receive operations on an
Unreliable Datagram Service Type. It is an error to set IT_NOTIFY_FLAG if
IT_COMPLETION_FLAG is clear.

A completion will be generated with the Notification for a Receive DTO if the matching
received Send DTO had been posted at the remote with the IT_SOLICITED_WAIT_FLAG
set regardless of the IT_NOTIFY_FLAG of the posted Receive DTO.

IT_SOLICITED_WAIT_FLAG

If set, the Send DTO operation will request completion Notification for the matching Receive
on the other side of the Connection or, for Unreliable Datagram, for the matching Receive at
the remote datagram Endpoint.

Restrictions

IT_SOLICITED_WAIT_FLAG is supported only for Send operations for all Service Types. It
is an error to specify IT_SOLICTED_WAIT_FLAG on other operations.

If set, requests Notification of completion of the matching remote Receive DTO regardless of
the value of the IT_NOTIFY_FLAG on the Receive DTO.

IT_BARRIER_FENCE_FLAG

If set, then the DTO/RMR operation will not be started until all previously posted RDMA
Read requests to the Endpoint have been completed.

Restrictions

If the service does not support RDMA Read, it is an error to set this flag. Specifically, it is an
error to set IT_BARRIER_FENCE_FLAG on a DTO on UD service.

IT_BARRIER_FENCE_FLAG must be cleared for all Receive DTO operations on any
Service Types. Posting a Receive DTO operation with IT_BARRIER_FENCE_FLAG set is an
error.

EXTENDED DESCRIPTION
The following table lists all DTO and RMR operations and details the legal it_dto_flags values
on each.

Interconnect Transport API –Issue 1 206

 207

DTO or RMR
operation

Legal it_dto_flags combinations

it_post_send All possible combinations subject to the constraint that
IT_NOTIFY_FLAG may only be set if IT_COMPLETION_FLAG is
also set. All flags cleared is a legal value.

it_post_sendto IT_BARRIER_FENCE_FLAG may not be used. All other possible
combinations of the remaining flags are legal subject to the constraint
that IT_NOTIFY_FLAG may only be set if IT_COMPLETION_FLAG
is also set. All flags cleared is a legal value.

it_post_recv IT_COMPLETION_FLAG must be specified. IT_BARRIER_FENCE_
FLAG may not be used. IT_SOLICITED_WAIT_FLAG may not be
used. All other possible combinations of the remaining flags are legal.

it_post_recvfrom IT_COMPLETION_FLAG must be specified. IT_BARRIER_FENCE_
FLAG may not be used. IT_SOLICITED_WAIT_FLAG may not be
used. All other possible combinations of the remaining flags are legal.

it_post_rdma_read IT_SOLICITED_WAIT_FLAG may not be used. All other possible
combinations subject to the constraint that IT_NOTIFY_FLAG may
only be set if IT_COMPLETION_FLAG is also set. All flags cleared is a
legal value.

it_post_rdma_write IT_SOLICITED_WAIT_FLAG may not be used. All other possible
combinations subject to the constraint that IT_NOTIFY_FLAG may
only be set if IT_COMPLETION_FLAG is also set. All flags cleared is a
legal value.

it_rmr_bind IT_SOLICITED_WAIT_FLAG may not be used. All other possible
combinations subject to the constraint that IT_NOTIFY_FLAG may
only be set if IT_COMPLETION_FLAG is also set. All flags cleared is a
legal value.

it_rmr_unbind IT_SOLICITED_WAIT_FLAG may not be used. All other possible
combinations subject to the constraint that IT_NOTIFY_FLAG may
only be set if IT_COMPLETION_FLAG is also set. All flags cleared is a
legal value.

6558
6559
6560

The following table lists the DTOs on each Service Type on which each flag value is supported.

it_dto_flags_t Value Supported DTO on RC Supported DTO on UD
IT_COMPLETION_FLAG Send, RDMA Read, RDMA

Write, RMR Bind, RMR
Unbind

Recvfrom

IT_NOTIFY_FLAG Send, Recv, RDMA Read,
RDMA Write, RMR Bind,
RMR Unbind

Sendto, Recvfrom

Interconnect Transport API –Issue 1 207

 208

IT_SOLICITED_WAIT_FLA
G

Send Sendto

IT_BARRIER_FENCE_FLAG Send, RDMA Read, RDMA
Write, RMR Bind, RMR
Unbind

N/A

6561
6562
6563
6564
6565
6566
6567
6568

As stated in the DESCRIPTION section, IT_COMPLETION_FLAG must be set on Recv and
Recvfrom DTOs.

As stated in the DESCRIPTION section, IT_BARRIER_FENCE_FLAG must be cleared on Recv
DTO for RC and must be cleared on Sendto DTO as well as cleared on Recvfrom DTO for UD.

For the Infiniband transport, the following table maps the values in the it_dto_flags_t
enumeration to their corresponding concepts as specified in Volume 1 of the Infiniband
specification.

it_dto_flags_t Value IB Concept
IT_COMPLETION_FLAG May be implemented using Unsignalled Completions

concept

IT_NOTIFY_FLAG None but can be supported by Implementation.

IT_SOLICITED_WAIT_FLAG Solicited Event

IT_BARRIER_FENCE_FLAG Fence Indicator

6569
6570
6571
6572

For the VIA transport, the following table maps the values in the it_dto_flags_t enumeration to
their corresponding concepts as documented in the VIA specification.

it_dto_flags_t Value VIA Concept
IT_COMPLETION_FLAG May be implemented by associating completion

queues with work queues

IT_NOTIFY_FLAG VipSendNotify, VipRecvNotify, VipCQNotify

IT_SOLICITED_WAIT_FLAG Not applicable

IT_BARRIER_FENCE_FLAG Queue Fence Bit

6573
6574

6575
6576

6577

RETURN VALUE
None.

ERRORS
None.

APPLICATION USAGE
See Application Usage in it_ep_state_t for discussion of flushing DTO completions when the
DTOs have IT_COMPLETION_FLAG cleared.

6578
6579

Interconnect Transport API –Issue 1 208

 209

6580
6581
6582
6583

6584

When posting Send DTOs with Completion Suppression (IT_COMPLETION_FLAG cleared) to
an Endpoint, the Consumer is advised to enqueue at least one DTO with
IT_COMPLETION_FLAG set in every max_request_dtos number of postings to the Endpoint,
in order to preserve the capability to recover from failures.

SEE ALSO
it_post_send(), it_post_sendto(), it_post_recv(), it_post_recvfrom(), it_post_rdma_read(), 6585
it_post_rdma_write(), it_rmr_bind(), it_rmr_unbind(), it_dto_status_t, it_dto_events, 6586
it_ep_state_t6587

6588

Interconnect Transport API –Issue 1 209

 210

it_dto_status_t 6589

6590
6591

6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608

6609
6610
6611
6612

NAME
it_dto_status_t – definition of DTO and RMR completion status

SYNOPSIS
#include <it_api.h>

typedef enum {

IT_DTO_SUCCESS = 0,
IT_DTO_ERR_LOCAL_LENGTH = 1,
IT_DTO_ERR_LOCAL_EP = 2,
IT_DTO_ERR_LOCAL_PROTECTION = 3,
IT_DTO_ERR_FLUSHED = 4,
IT_RMR_OPERATION_FAILED = 5,
IT_DTO_ERR_BAD_RESPONSE = 6,
IT_DTO_ERR_REMOTE_ACCESS = 7,
IT_DTO_ERR_REMOTE_RESPONDER = 8,
IT_DTO_ERR_TRANSPORT = 9,
IT_DTO_ERR_RECEIVER_NOT_READY = 10,
IT_DTO_ERR_PARTIAL_PACKET = 11

} it_dto_status_t;

DESCRIPTION
Any successfully initiated Data Transfer Operation (i.e. Send, Receive, RDMA Read, or RDMA
Write) or RMR operation (i.e. RMR Bind or RMR Unbind) can return its completion status
asynchronously via an Event enqueued on an SEVD. For some DTOs, the Consumer can
control whether an Event is generated via the IT_COMPLETION_FLAG (see it_dto_flags_t). If
an Event is generated, the completion status is contained in the it_dto_status_t.

6613
6614
6615
6616
6617
6618

If the completion status is anything other than IT_DTO_SUCCESS for a Reliable Connected
Endpoint, the Connection will be broken.

The table below enumerates all of the allowed values for it_dto_status_t. For each value, a
description of what the value means and the applicable operations on RC and on UD is shown.

Interconnect Transport API –Issue 1 210

 211

it_dto_ status_t Value Description Applica
ble
RC

Operati
ons

Applicable
UD

Operations

IT_DTO_SUCCESS The DTO completed
successfully.

Send

Recv

RDMA
Read

RDMA
Write

RMR
Bind

RMR
Unbind

Sendto

Recvfrom

IT_DTO_ERR_LOCAL_LENGTH The length of the
incoming DTO was larger
than
max_dto_payload_size
for the Endpoint

Recv Recvfrom

IT_DTO_ERR_LOCAL_LENGTH The length of the
outgoing DTO was larger
than
max_dto_payload_size
for the Endpoint.

Send

RDMA
Read

RDMA
Write

Sendto

IT_DTO_ERR_LOCAL_LENGTH The total length of the
buffers associated with a
Receive DTO was too
small to hold all the
incoming data from a
Send DTO

Recv Recvfrom

IT_DTO_ERR_LOCAL_EP An internal local
Endpoint consistency
error was detected while
processing a DTO.

Send

Recv

RDMA
Read

RDMA
Write

RMR
Bind

RMR
Unbind

Sendto

Recvfrom

Interconnect Transport API –Issue 1 211

 212

it_dto_ status_t Value Description Applica
ble
RC

Operati
ons

Applicable
UD

Operations

IT_DTO_ERR_LOCAL_PROTECTION One of the segments in
the DTO caused a
protection violation when
the DTO was processed.
Possible causes for this
error include the LMR in
the segment wasn’t valid,
the range specified by the
addr and length in the
segment was outside the
bounds of the LMR, the
Protection Zone
associated with the LMR
didn’t match the
Protection Zone of the
Endpoint that the DTO
was posted to, or an
attempt was made to
access the LMR in a way
that conflicted with its
access permissions.

Send

Recv

RDMA
Read

RDMA
Write

Sendto

Recvfrom

IT_DTO_ERR_FLUSHED The Endpoint entered the
IT_EP_STATE_NONOP
ERATIONAL state before
processing of the DTO
could begin.

Send

Recv

RDMA
Read

RDMA
Write

RMR
Bind

RMR
Unbind

Sendto

Recvfrom

Interconnect Transport API –Issue 1 212

 213

it_dto_ status_t Value Description Applica
ble
RC

Operati
ons

Applicable
UD

Operations

IT_ RMR_OPERATION_FAILED An RMR operation failed
due to a protection
violation. Possible causes
for this error include
LMR specified in the
it_rmr_bind (or
it_rmr_unbind) call was
invalid, the range
specified by the address
and length in the call was
outside the bounds of the
LMR, the Protection
Zones associated with the
LMR, RMR and Endpoint
to which the RMR
operation was posted
didn’t match, or an
attempt was made to grant
access through the RMR
that conflicted with the
access allowed by either
the LMR or the Endpoint.

RMR
Bind

RMR
Unbind

N/A

IT_DTO_ERR_BAD_RESPONSE The DTO operation that
was posted to the Request
Queue was responded to
with an unexpected
transport opcode

Send

RDMA
Read

RDMA
Write

N/A

Interconnect Transport API –Issue 1 213

 214

it_dto_ status_t Value Description Applica
ble
RC

Operati
ons

Applicable
UD

Operations

IT_DTO_ERR_REMOTE_ACCESS A protection violation
was detected at the remote
end when processing an
RDMA DTO operation.
Possible causes include a
Protection Zone mismatch
between the RMR and the
Endpoint that is
responding to the RDMA
DTO operation, an
attempt being made to do
an RDMA Read or Write
using an RMR that
doesn’t have those
permissions enabled, or
an attempt being made to
do an RDMA Read or
Write when the
responding Endpoint
doesn’t have those
permissions enabled.

RDMA
Read

RDMA
Write

N/A

IT_DTO_ERR_REMOTE_RESPONDER A DTO operation could
not be completed at the
remote end. Possible
causes for this error
include the remote
Endpoint experiencing a
condition causing an
IT_DTO_ERR_LOCAL_
EP error to be returned.

Send

RDMA
Read

RDMA
Write

N/A

IT_DTO_ERR_TRANSPORT The underlying transport
could not successfully
transfer the data for the
DTO operation. Possible
causes for this error
include the remote IA not
responding, the DTO data
was corrupted in the
process of transmission,
or the network fabric
being used by the IA is
broken.

Send

Receive

RDMA
Read

RDMA
Write

N/A

Interconnect Transport API –Issue 1 214

 215

it_dto_ status_t Value Description Applica
ble
RC

Operati
ons

Applicable
UD

Operations

IT_DTO_ERR_RECEIVER_NOT_READY The DTO operation could
not be processed because
the responding side
repeatedly indicated that
it had no resources to do
so.

Send

RDMA
Read

RDMA
Write

N/A

IT_DTO_ERR_PARTIAL_PACKET The data delivered by the
Receive DTO was
truncated. The contents
of the receiver’s buffer
are unspecified.

Receive N/A

6619
6620
6621
6622

EXTENDED DESCRIPTION
For the Infiniband transport, the following table maps the values in the it_dto_status_t
enumeration to their corresponding “Completion Return Status” values as specified in Volume 1,
Chapter 11 of the Infiniband specification.

it_dto_status_t Value IB “Completion Return Status” Name
IT_DTO_SUCCESS Success

IT_DTO_ERR_LOCAL_LENGTH Local Length Error

IT_DTO_ERR_LOCAL_EP Local QP Operation Error

IT_DTO_ERR_LOCAL_PROTECTION Local Protection Error

IT_DTO_ERR_FLUSHED Work Request Flushed Error

IT_ RMR_OPERATION_FAILED Memory Window Bind Error

IT_DTO_ERR_BAD_RESPONSE Bad Response Error

IT_DTO_ERR_REMOTE_ACCESS Remote Access Error

IT_DTO_ERR_REMOTE_RESPONDER Remote Operation Error
IT_DTO_ERR_TRANSPORT Transport Retry Counter Exceeded
IT_DTO_ERR_RECEIVER_NOT_READY RNR Retry Counter Exceeded
IT_DTO_ERR_PARTIAL_PACKET (Not applicable to the IB transport.)

6623
6624
6625
6626

For the VIA transport, the following table maps the values in the it_dto_status_t enumeration to
their corresponding bits in the Descriptor Control Segment “Status” field, as documented in the
Appendix of the VIA specification.

it_dto_status_t Value VIA “Status Bit” Name
IT_DTO_SUCCESS Done

Interconnect Transport API –Issue 1 215

 216

it_dto_status_t Value VIA “Status Bit” Name
IT_DTO_ERR_LOCAL_LENGTH Local Length Error

IT_DTO_ERR_LOCAL_EP Local Format Error

IT_DTO_ERR_LOCAL_PROTECTION Local Protection Error

IT_DTO_ERR_FLUSHED Descriptor Flushed

IT_ RMR_OPERATION_FAILED (There is no operation corresponding to RMR
Bind or RMR Unbind in VIA, but this error
can still be returned from an IA that is
utilizing the VIA transport. The
Implementation synthesizes the RMR
operation for VIA.)

IT_DTO_ERR_BAD_RESPONSE (Not applicable to the VIA transport.)

IT_DTO_ERR_REMOTE_ACCESS RDMA Protection Error

IT_DTO_ERR_REMOTE_RESPONDER (Not applicable to the VIA transport.)

IT_DTO_ERR_TRANSPORT Transport Error

IT_DTO_ERR_RECEIVER_NOT_READY (Not applicable to the VIA transport.)

IT_DTO_ERR_PARTIAL_PACKET Partial Packet Error

6627
6628

6629
6630

6631

RETURN VALUE
None.

ERRORS
None.

SEE ALSO
it_post_send(), it_post_sendto(), it_post_recv(), it_post_recvfrom(), it_post_rdma_read(), 6632
it_post_rdma_write(), it_rmr_bind(), it_rmr_unbind()6633

Interconnect Transport API –Issue 1 216

 217

it_ep_attributes_t 6634

6635
6636

6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671

NAME
it_ep_attributes – Endpoint attributes

SYNOPSIS
#include <it_api.h>

typedef uint32_t it_ud_ep_id_t;
typedef uint32_t it_ud_ep_key_t;

typedef enum {

IT_EP_PARAM_ALL = 0x00000001,
IT_EP_PARAM_IA = 0x00000002,
IT_EP_PARAM_SPIGOT = 0x00000004,
IT_EP_PARAM_STATE = 0x00000008,
IT_EP_PARAM_SERV_TYPE = 0x00000010,
IT_EP_PARAM_PATH = 0x00000020,
IT_EP_PARAM_PZ = 0x00000040,
IT_EP_PARAM_REQ_SEVD = 0x00000080,
IT_EP_PARAM_RECV_SEVD = 0x00000100,
IT_EP_PARAM_CONN_SEVD = 0x00000200,
IT_EP_PARAM_RDMA_RD_ENABLE = 0x00000400,
IT_EP_PARAM_RDMA_WR_ENABLE = 0x00000800,
IT_EP_PARAM_MAX_RDMA_READ_SEG = 0x00001000,
IT_EP_PARAM_MAX_RDMA_WRITE_SEG = 0x00002000,
IT_EP_PARAM_MAX_IRD = 0x00004000,
IT_EP_PARAM_MAX_ORD = 0x00008000,
IT_EP_PARAM_EP_ID = 0x00010000,
IT_EP_PARAM_EP_KEY = 0x00020000,
IT_EP_PARAM_MAX_PAYLOAD = 0x00040000,
IT_EP_PARAM_MAX_REQ_DTO = 0x00080000,
IT_EP_PARAM_MAX_RECV_DTO = 0x00100000,
IT_EP_PARAM_MAX_SEND_SEG = 0x00200000,
IT_EP_PARAM_MAX_RECV_SEG = 0x00400000

} it_ep_param_mask_t;

/*
 * the it_ep_param_mask_t value in the comment beside or
 * following each attribute is the mask value used to select

6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684

 * the attribute in the it_ep_query and it_ep_modify calls
 */
typedef struct {
 it_boolean_t rdma_read_enable;
 /* IT_EP_PARAM_RDMA_RD_ENABLE */
 it_boolean_t rdma_write_enable;
 /* IT_EP_PARAM_RDMA_WR_ENABLE */
 size_t max_rdma_read_segments;
 /* IT_EP_PARAM_MAX_RDMA_READ_SEG */
 size_t max_rdma_write_segments;
 /* IT_EP_PARAM_MAX_RDMA_WRITE_SEG */
 uint32_t rdma_read_inflight_incoming;
 /* IT_EP_PARAM_MAX_IRD */

Interconnect Transport API –Issue 1 217

 218

6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712

6713

6714
6715

 uint32_t rdma_read_inflight_outgoing;
 /* IT_EP_PARAM_MAX_ORD */
} it_rc_only_attributes_t;

typedef struct {
 it_ud_ep_id_t ud_ep_id; /* IT_EP_PARAM_EP_ID */
 it_ud_ep_key_t ud_ep_key; /* IT_EP_PARAM_EP_KEY */
} it_remote_ep_info_t;

typedef struct {
 it_remote_ep_info_t ep_info;

} it_ud_only_attributes_t;

typedef union {
 it_rc_only_attributes_t rc;
 it_ud_only_attributes_t ud;
} it_service_attributes_t;

typedef struct {
 size_t max_dto_payload_size; /* IT_EP_PARAM_MAX_PAYLOAD */
 size_t max_request_dtos; /* IT_EP_PARAM_MAX_REQ_DTO */
 size_t max_recv_dtos; /* IT_EP_PARAM_MAX_RECV_DTO */
 size_t max_send_segments; /* IT_EP_PARAM_MAX_SEND_SEG */
 size_t max_recv_segments; /* IT_EP_PARAM_MAX_RECV_SEG */

 it_service_attributes_t srv;
} it_ep_attributes_t;

DESCRIPTION

it_ep_attributes List of Endpoint attributes. The it_service_attributes_t union
elements are discriminated by service_type found in the
it_ep_param_t structure in the it_ep_query man page. Mask values
for query and modify of Endpoint attributes appear as comments to
each attribute.

6716
6717
6718

Attribute Description Service
Type

Modifiable?

max_dto_payload_size Maximum message transfer
size for the Endpoint. It
specifies the maximum amount
of payload data that Consumer
will transfer in a single DTO
Send or Receive message in
either direction on the
Endpoint.

For RC only, it also specifies
the maximum payload data
size for RDMA Reads and
Writes posted on the Endpoint.

UD and
RC

For RC, only when Endpoint is
in the IT_EP_STATE_
NONOPERATIONAL or in
the IT_EP_STATE_
UNCONNECTED states. For
UD, only on creation.

Interconnect Transport API –Issue 1 218

 219

Attribute Description Service
Type

Modifiable?

max_request_dtos Maximum number of
outstanding Send, Sendto,
RDMA Read, RDMA Write
DTOs, RMR Bind and RMR
Unbind operations combined
that a Consumer can submit to
the Endpoint. If the Consumer
attempts to post more than this
number of request DTOs
simultaneously, an error will
be returned from the
it_post_send,
it_post_rdma_read, etc.,
routines.

UD and
RC

Subject to the setting of the
resizable_work_queue field in
the it_ia_info_t for this IA.

max_recv_dtos Maximum number of
outstanding Recv or Recvfrom
DTOs that a Consumer can
submit to the Endpoint. If the
Consumer attempts to post
more than this number of
Receive DTOs simultaneously,
an error will be returned from
the it_post_recv or
it_post_recvfrom routines.

UD and
RC

Subject to the setting of the
resizable_work_queue field in
the it_ia_info_t for this IA.

max_send_segments Maximum number of data
segments for a local buffer that
the Consumer specifies for a
posted Send or Sendto DTO
for the Endpoint.

UD and
RC

Only on creation.

max_recv_segments Maximum number of data
segments for a local buffer that
the Consumer specifies for a
posted Recv or Recvfrom
DTO for the Endpoint.

UD and
RC

Only on creation.

ud_ep_id Local Endpoint ID for this
Endpoint.

UD only Never – this is a READ-
ONLY attribute.

ud_ep_key Local Endpoint key for this
Endpoint.

UD only In any state.

rdma_read_enable Flag allowing Consumer to
enable or disable incoming
RDMA Read operations on
this Endpoint.

RC only In any state.

rdma_write_enable Flag allowing Consumer to
enable or disable incoming
RDMA Write operations on
this Endpoint.

RC only In any state.

Interconnect Transport API –Issue 1 219

 220

Attribute Description Service
Type

Modifiable?

max_rdma_read_segme
nts

Maximum number of data
segments for a local buffer that
the Consumer specifies for a
posted RDMA Read DTO for
the Endpoint.

RC only Only on creation.

max_rdma_write_segm
ents

Maximum number of data
segments for a local buffer that
the Consumer specifies for a
posted RDMA Write DTO for
the Endpoint.

RC only Only on creation.

rdma_read_inflight_inc
oming

Maximum number of
incoming RDMA Reads from
the remote side of the
connected Endpoint that can
be outstanding simultaneously.

RC only When Endpoint is in the
IT_EP_STATE_
UNCONNECTED or IT_EP_
STATE_ACTIVE2_
CONNECTION_PENDING
state.

rdma_read_inflight_out
going

Maximum number of outgoing
RDMA Reads of the
connected Endpoint that can
be outstanding simultaneously.

RC only When Endpoint is in the
IT_EP_STATE_
UNCONNECTED or IT_EP_
STATE_ACTIVE2_
CONNECTION_PENDING
state.

ep_state The current state of the
Endpoint.

UD and
RC

Never – this is a READ-
ONLY attribute.

6719
6720

Since the Implementation is at liberty to allocate more resources than requested by the
Consumer, the Consumer is advised to use it_ep_query to determine the Implementation-
assigned values. All guarantees and warnings are with respect to the Implementation-assigned
values.

6721
6722
6723
6724
6725
6726
6727

6728
6729

6730
6731

6732
6733

Exceeding max_request_dtos or max_recv_dtos using the post DTO and post RMR operations
will result in the post operation returning an error or completing in error.

Posting more RDMA Read operations than specified in rdma_read_inflight_outgoing is not an
error and will have no adverse effects.

RETURN VALUE
None.

ERRORS
None.

FUTURE DIRECTIONS
Some new Service Types may be added in the future.

Interconnect Transport API –Issue 1 220

 221

6734 SEE ALSO
it_ep_rc_create(), it_ep_ud_create(), it_ep_query(), it_ep_modify(), it_ia_info_t6735

Interconnect Transport API –Issue 1 221

 222

it_ep_state_t 6736

6737
6738

6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762

6763
6764
6765
6766
6767
6768
6769
6770

 6771

NAME
it_ep_state_t – RC and UD Endpoint state type definition

SYNOPSIS
#include <it_api.h>

typedef enum
{

IT_EP_STATE_UNCONNECTED = 0,
IT_EP_STATE_ACTIVE1_CONNECTION_PENDING = 1,
IT_EP_STATE_ACTIVE2_CONNECTION_PENDING = 2,
IT_EP_STATE_PASSIVE_CONNECTION_PENDING = 3,
IT_EP_STATE_CONNECTED = 4,
IT_EP_STATE_NONOPERATIONAL = 5

} it_ep_state_rc_t;

typedef enum
{

IT_EP_STATE_UD_NONOPERATIONAL = 0,
IT_EP_STATE_UD_OPERATIONAL = 1

} it_ep_state_ud_t;

typedef union
{

it_ep_state_rc_t rc;
it_ep_state_ud_t ud;

} it_ep_state_t;

DESCRIPTION
The following table identifies and describes the RC Endpoint states. For each state, the table lists
the API routines that can be legally applied to an RC Endpoint in that state.

Whenever an Endpoint transitions its state, at most one Event is generated for that transition.
The Endpoints state transitions before the Communication Management Message Event is
enqueued. This guarantees that the Consumer can only dequeue Events after the state transition
has occurred. Subsequent state transitions and their related Events will occur regardless of
whether the Consumer is dequeueing the Events.

Reliable Connection Endpoint states Description of state Allowed calls

IT_EP_STATE_UNCONNECTED The Endpoint is not
Connected to another nor is
there a pending Connection
Establishment related to the
Endpoint. The Endpoint is
available to be used in a
Connection Establishment.
When an Endpoint is first
created by calling

it_ep_accept,
it_ep_connect,
it_ep_free,
it_ep_modify,
it_ep_query,
it_get_consumer_context,
it_get_handle_type,
it_post_recv,
it_set_consumer_context

Interconnect Transport API –Issue 1 222

 223

it_ep_rc_create it is in this
state.

IT_EP_STATE_ACTIVE1_CONNECTION_PENDING The Active side Endpoint
has initiated a Connection
Establishment.

it_ep_free,
it_ep_modify,
it_ep_query,
it_get_consumer_context,
it_get_handle_type,
it_post_recv,
it_set_consumer_context,
it_ep_disconnect

IT_EP_STATE_ACTIVE2_CONNECTION_PENDING The Active side Endpoint
has initiated a Connection
Establishment and has
received an
IT_CM_MSG_CONN_A
CCEPT_ARRIVAL_EV
ENT Event because the
Passive side has accepted the
Connection Request. This
state is only used in three-
way Connection
establishments.

it_ep_accept,
it_ep_free,
it_ep_modify,
it_ep_query,
it_get_consumer_context,
it_get_handle_type,
it_post_recv,
it_reject,
it_set_consumer_context,
it_ep_disconnect

IT_EP_STATE_PASSIVE_CONNECTION_PENDING The Passive side Consumer
has called it_ep_accept in
response to the
IT_CM_REQ_CONN_REQ
UEST_EVENT Event.

it_ep_free,
it_ep_modify,
it_ep_query,
it_get_consumer_context,
it_get_handle_type,
it_post_recv,
it_set_consumer_context,
it_ep_disconnect

IT_EP_STATE_CONNECTED The Endpoint is Connected
and is ready for all types of
Data Transfer and Bind
Operations.

it_ep_disconnect,
it_ep_free,
it_ep_modify,
it_ep_query,
it_get_consumer_context,
it_get_handle_type,
it_post_rdma_read,
it_post_rdma_write,
it_post_recv,
it_post_send,
it_rmr_bind,
it_rmr_unbind,
it_set_consumer_context

IT_EP_STATE_NONOPERATIONAL The Endpoint is in the
process of disconnecting.
Any pending Data Transfer
Operations on the Endpoint
will be flushed. Any well-
formed operation

it_ep_disconnect,
it_ep_free,
it_ep_modify,
it_ep_query,
it_ep_reset,
it_get_consumer_context,

Interconnect Transport API –Issue 1 223

 224

subsequently posted in this
state will complete with
Flushed or error Status.

it_get_handle_type,
it_post_rdma_read,
it_post_rdma_write,
it_post_recv,
it_post_send,
it_rmr_bind,
it_rmr_unbind,
it_set_consumer_context

 6772
 6773

6774

 6775

The following table identifies the RC Endpoint state transitions.

State Event Transition to
it_ep_connect called IT_EP_STATE_ACTIVE1_CONNECTION_

PENDING
IT_EP_STATE_UNCONNECTED

it_ep_accept called IT_EP_STATE_PASSIVE_CONNECTION_
PENDING

Completion of two-way
Connection
Establishment

IT_EP_STATE_CONNECTED

IT_CM_MSG_CONN_
ACCEPT_ARRIVAL_
EVENT enqueued

IT_EP_STATE_ACTIVE2_CONNECTION_
PENDING

Local or Remote error,
or it_reject called on
Remote side

IT_EP_STATE_NONOPERATIONAL

IT_EP_STATE_ACTIVE1_
CONNECTION_PENDING

it_ep_disconnect called IT_EP_STATE_NONOPERATIONAL

Completion of three-
way Connection
Establishment

IT_EP_STATE_CONNECTED

Local or Remote error IT_EP_STATE_NONOPERATIONAL

IT_EP_STATE_ACTIVE2_
CONNECTION_PENDING

it_ep_disconnect called IT_EP_STATE_NONOPERATIONAL

Completion of two-way
Connection
Establishment

IT_EP_STATE_CONNECTED

Local or Remote error,
or it_reject called on
Active side

IT_EP_STATE_NONOPERATIONAL

IT_EP_STATE_PASSIVE_
CONNECTION_PENDING

it_ep_disconnect called IT_EP_STATE_NONOPERATIONAL

IT_EP_STATE_CONNECTED Local Error, or
it_ep_disconnect
called, or Remote error
or Remote disconnect

IT_EP_STATE_NONOPERATIONAL

IT_EP_STATE_
NONOPERATIONAL

it_ep_reset called IT_EP_STATE_UNCONNECTED

 6776

Interconnect Transport API –Issue 1 224

 225

The following table identifies and describes the UD Endpoint states. For each state, the table 6777
lists the API routines that can be legally applied to a UD Endpoint in that state. 6778
 6779

Unreliable Datagram Endpoint states Description of state Allowed calls
IT_EP_STATE_UD_NONOPERATIONAL Any pending Data

Transfer Operations on the
Endpoint will be flushed.
Any well-formed
operation subsequently
posted in this state will
complete with a Flushed
status.

it_ep_free,
it_ep_modify,
it_ep_query,
it_get_consumer_context,
it_get_handle_type,
it_post_recvfrom,
it_post_sendto,
it_set_consumer_context,
it_ep_reset

IT_EP_STATE_UD_OPERATIONAL Data Transfer Operations
can be posted to the
Endpoint. When an
Endpoint is first created
by calling it_ep_ud_create
it is in this state.

it_ep_free,
it_ep_modify,
it_ep_query,
it_get_consumer_context,
it_get_handle_type,
it_post_recvfrom,
it_post_sendto,
it_set_consumer_context,
it_ep_reset

 6780
An Endpoint in any state can be destroyed by calling it_ep_free. However, calling it_ep_free 6781
may result in pending Completion Events for the Endpoint being silently discarded by the 6782
Implementation. Once a Reliable Connected Endpoint is referenced by either it_ep_connect or 6783
it_ep_accept if for any reason the Connection is not established the Endpoint will transition into 6784
the IT_EP_STATE_NONOPERATIONAL state from any state. If a Connection is established 6785
and then the Connection is broken for any reason, the Endpoint will transition into the 6786
IT_EP_STATE_NONOPERATIONAL state. 6787
IT_EP_STATE_UNCONNECTED 6788
When Endpoints are created they are in the IT_EP_STATE_UNCONNECTED state. Only 6789
Receive Data Transfer Operations can be posted to an unconnected Endpoint. An Endpoint must 6790
be in this state to be used in either an it_ep_connect or an it_ep_accept call. 6791
IT_EP_STATE_ACTIVE1_CONNECTION_PENDING 6792
Once an Active side Endpoint is referenced by a Connection Establishment it transitions into the 6793
IT_EP_STATE_ACTIVE1_CONNECTION_PENDING state. Receive Data Transfer 6794
Operations may be posted in this state. 6795
In the case of two-way Connection Establishment, the IT_EP_STATE_ACTIVE1_ 6796
CONNECTION_PENDING state is transient, and the Endpoint will transition to the 6797
IT_EP_STATE_CONNECTED state once the Passive side accepts the Connection. If the 6798
Passive side rejects the Connection, the Active side will receive an 6799
IT_CM_MSG_CONN_PEER_REJECT_EVENT Event and the Endpoint will transition into the 6800
IT_EP_STATE_NONOPERATIONAL state. 6801
In the case of three-way Connection Establishment, the Active side Endpoint will transition to 6802
IT_EP_STATE_ACTIVE2_CONNECTION_PENDING when an IT_CM_MSG_CONN_ 6803
ACCEPT_ARRIVAL_EVENT Event is enqueued for the Active side Consumer. If the Active 6804

Interconnect Transport API –Issue 1 225

 226

Consumer calls it_reject after processing the IT_CM_MSG_CONN_ACCEPT_ 6805
ARRIVAL_EVENT Event, the Endpoint will transition into the IT_EP_STATE_ 6806
NONOPERATIONAL state. If the Passive side rejects the Connection, the Active side will 6807
receive an IT_CM_MSG_CONN_PEER_REJECT_EVENT Event and the Endpoint will 6808
transition into the IT_EP_STATE_NONOPERATIONAL state. 6809
IT_EP_STATE_ACTIVE2_CONNECTION_PENDING 6810
In the case of three-way Connection Establishment, the Endpoint will transition to the 6811
IT_EP_STATE_CONNECTED state when the Active side Consumer successfully calls 6812
it_ep_accept, or the Endpoint will transition to the IT_EP_STATE_NONOPERATIONAL state 6813
if the Active side Consumer successfully calls it_reject. 6814
In the case of two-way Connection Establishment, this state is transient, and the Endpoint will 6815
transition to the IT_EP_STATE_CONNECTED state when the Connection is successfully 6816
established. 6817
IT_EP_STATE_PASSIVE_CONNECTION_PENDING 6818
The Passive side Endpoint transitions into this state when the Consumer calls it_ep_accept for 6819
three-way Connection Establishment. In this state only Receive Data Transfer Operations can be 6820
posted. From this state the Endpoint will transition into the IT_EP_STATE_CONNECTED state 6821
when Connection Establishment completes successfully. 6822
IT_EP_STATE_CONNECTED 6823
This state is entered when Connection Establishment completes. Upon transition to this state, the 6824
Implementation delivers an IT_CM_MSG_CONN_ESTABLISHED_EVENT Event. All types 6825
of Data Transfer and Bind Operations can be posted and will be processed in this state. 6826
If either the Local or Remote Consumer disconnects, the Endpoint will transition into the 6827
IT_EP_STATE_NONOPERATIONAL state, and the Implementation will deliver an 6828
IT_CM_MSG_CONN_DISCONNECT_EVENT Event. 6829
Local or Remote errors (e.g. protection violations) also cause the Endpoint to transition to the 6830
IT_EP_STATE_NONOPERATIONAL state, and the Implementation will deliver an 6831
IT_CM_MSG_CONN_BROKEN_EVENT Event. 6832
The transition out of the IT_EP_STATE_CONNECTED state is surfaced by either the 6833
IT_CM_CONN_DISCONNECT_EVENT Event or the IT_CM_MSG_CONN_BROKEN_ 6834
EVENT Event, but never both. 6835
IT_EP_STATE_NONOPERATIONAL 6836
In this state no requests will be processed by the Endpoint and any well-formed requests posted 6837
will generate Completions with a failing Completion Status. The Endpoint will remain in this 6838
state until it_ep_reset is used to put the Endpoint back into the 6839
IT_EP_STATE_UNCONNECTED state. 6840
IT_EP_STATE_UD_OPERATIONAL 6841
In this state requests will be processed by the Endpoint. 6842
IT_EP_STATE_UD_NONOPERATIONAL 6843

Interconnect Transport API –Issue 1 226

Interconnect Transport API –Issue 1 227

227

In this state no requests will be processed by the Endpoint and any well-formed requests posted 6844
will generate Completions with a failing Completion Status. Once an Unreliable Datagram 6845
Endpoint enters this state it can only be destroyed with it_ep_free. 6846

EXTENDED DESCRIPTION 6847
 6848

 6849
Figure 1 : Three Way Passive RC Endpoint State Diagram 6850

UNCONNECTED

PASSIVE

NON
OPERATIONAL

CONNECTED

Interconnect Transport API –Issue 1 228

228

 6851
Figure 2 : Three Way Active RC Endpoint State Diagram 6852

UNCONNECTED

ACTIVE1

ACTIVE2

NON
OPERATIONAL

CONNECTED

Interconnect Transport API –Issue 1 229

229

 6853
Figure 3 : Two Way Active RC Endpoint State Diagram 6854

UNCONNECTED

ACTIVE1

NON
OPERATIONAL

CONNECTED

Interconnect Transport API –Issue 1 230

230

 6855
Figure 4 : Two Way Passive RC Endpoint State Diagram 6856

 6857
Figure 5 : Unreliable Datagram Endpoint State Diagram 6858

UNCONNECTED

NON
OPERATIONAL

CONNECTED

UD_OPERATIONAL

UD_NONOPERATIONAL

 231

RETURN VALUE 6859
None. 6860

ERRORS 6861
None. 6862

APPLICATION USAGE 6863
1. If the Consumer cares about the Completion Status of posted Data Transfer or Bind 6864

Operations after an Endpoint transitions into the IT_EP_STATE_NONOPERATIONAL 6865
state then the Consumer can Post Send and Receive DTOs to the Endpoint to serve as 6866
markers in the Endpoint associated EVD. The API guarantees that any posting in 6867
IT_EP_STATE_NONOPERATIONAL state will be immediately flushed to the EVDs. The 6868
Consumer can reap Completions from the associated EVDs until Completions for the marker 6869
DTOs are returned. This way the Consumer can be guaranteed that all Completions 6870
associated with the Endpoint have been reaped. 6871

2. The Consumer is responsible for coordinating the use of functions that free a Connection 6872
Establishment Identifier (cn_est_id) such as it_ep_accept, it_reject, it_ep_disconnect and 6873
it_handoff. The behavior of functions that are passed as invalid Connection Establishment 6874
Identifier is indeterminate. 6875

3. The Consumer should be aware that the delivery of Private Data to the Remote Endpoint 6876
specified in calls to it_ep_accept, it_reject and it_ep_disconnect is unreliable and should be 6877
used accordingly. 6878

SEE ALSO 6879
it_ep_accept(), it_reject(), it_ep_disconnect(), it_handoff(), it_ep_reset()6880

Interconnect Transport API –Issue 1 231

 232

it_event_t 6881

NAME 6882
it_event – definition of Event data structures 6883

SYNOPSIS 6884
#include <it_api.h> 6885
 6886
#define IT_EVENT_STREAM_MASK 0xff000 6887
#define IT_TIMEOUT_INFINITE ((uint64_t)(-1)) 6888
 6889
typedef enum 6890
{ 6891
 /* DTO Completion Event Stream */ 6892
 IT_DTO_EVENT_STREAM = 0x00000, 6893
 IT_DTO_SEND_CMPL_EVENT = 0x00001, 6894
 IT_DTO_RC_RECV_CMPL_EVENT = 0x00002, 6895
 IT_DTO_UD_RECV_CMPL_EVENT = 0x00003, 6896
 IT_DTO_RDMA_WRITE_CMPL_EVENT = 0x00004, 6897
 IT_DTO_RDMA_READ_CMPL_EVENT = 0x00005, 6898
 IT_RMR_BIND_CMPL_EVENT = 0x00006, 6899
 6900
 /* 6901
 * Communication Management Request Event Stream 6902
 */ 6903
 IT_CM_REQ_EVENT_STREAM = 0x01000, 6904
 IT_CM_REQ_CONN_REQUEST_EVENT = 0x01001, 6905
 IT_CM_REQ_UD_SERVICE_REQUEST_EVENT = 0x01002, 6906
 6907
 /* 6908
 * Communication Management Message Event Stream 6909
 */ 6910
 IT_CM_MSG_EVENT_STREAM = 0x02000, 6911
 IT_CM_MSG_CONN_ACCEPT_ARRIVAL_EVENT = 0x02001, 6912
 IT_CM_MSG_CONN_ESTABLISHED_EVENT = 0x02002, 6913
 IT_CM_MSG_CONN_DISCONNECT_EVENT = 0x02003, 6914
 IT_CM_MSG_CONN_PEER_REJECT_EVENT = 0x02004, 6915
 IT_CM_MSG_CONN_NONPEER_REJECT_EVENT = 0x02005, 6916
 IT_CM_MSG_CONN_BROKEN_EVENT = 0x02006, 6917
 IT_CM_MSG_UD_SERVICE_REPLY_EVENT = 0x02007, 6918
 6919
 /* Asynchronous Affiliated Event Stream */ 6920
 IT_ASYNC_AFF_EVENT_STREAM = 0x04000, 6921
 IT_ASYNC_AFF_SEVD_ENQUEUE_FAILURE = 0x04001, 6922
 IT_ASYNC_AFF_EP_FAILURE = 0x04002, 6923
 IT_ASYNC_AFF_EP_BAD_TRANSPORT_OPCODE = 0x04003, 6924
 IT_ASYNC_AFF_EP_LOCAL_ACCESS_VIOLATION = 0x04004, 6925
 IT_ASYNC_AFF_EP_REQ_DROPPED = 0x04005, 6926
 IT_ASYNC_AFF_EP_RDMAW_ACCESS_VIOLATION = 0x04006, 6927
 IT_ASYNC_AFF_EP_RDMAW_CORRUPT_DATA = 0x04007, 6928
 IT_ASYNC_AFF_EP_RDMAR_ACCESS_VIOLATION = 0x04008, 6929
 6930
 /* Asynchronous Non-Affiliated Event Stream */ 6931

Interconnect Transport API –Issue 1 232

 233

 IT_ASYNC_UNAFF_EVENT_STREAM = 0x08000, 6932
 IT_ASYNC_UNAFF_IA_CATASTROPHIC_ERROR = 0x08001, 6933
 IT_ASYNC_UNAFF_SPIGOT_ONLINE = 0x08002, 6934
 IT_ASYNC_UNAFF_SPIGOT_OFFLINE = 0x08003, 6935
 IT_ASYNC_UNAFF_SEVD_ENQUEUE_FAILURE = 0x08004, 6936
 6937
 /* Software Event Stream */ 6938
 IT_SOFTWARE_EVENT_STREAM = 0x10000, 6939
 IT_SOFTWARE_EVENT = 0x10001, 6940
 6941
 /* AEVD Notification Event Stream */ 6942
 IT_AEVD_NOTIFICATION_EVENT_STREAM = 0x20000, 6943
 IT_AEVD_NOTIFICATION_EVENT = 0x20001 6944
} it_event_type_t; 6945
 6946
typedef struct { 6947
 it_event_type_t event_number; 6948
 it_evd_handle_t evd; 6949
} it_any_event_t; 6950
 6951
typedef union 6952
{ 6953
 /* 6954
 * The following two union elements are 6955
 * available for programming convenience. 6956
 * 6957
 * The event_number may be used to determine the 6958
 * it_event_type_t of any Event. it_any_event_t 6959
 * allows the EVD to be determined as well. 6960
 */ 6961
 it_event_type_t event_number; 6962
 it_any_event_t any; 6963
 6964
 /* 6965
 * The remaining union elements correspond to 6966
 * the various it_event_type_t types. 6967
 */ 6968
 6969
 /* 6970
 * The following two Event structures 6971
 * support the IT_DTO_EVENT_STREAM Event Stream. 6972
 * 6973
 * it_dto_cmpl_event_t supports 6974
 * only the following events: 6975
 * IT_DTO_SEND_CMPL_EVENT 6976
 * IT_DTO_RC_RECV_CMPL_EVENT 6977
 * IT_DTO_RDMA_WRITE_CMPL_EVENT 6978
 * IT_DTO_RDMA_READ_CMPL_EVENT 6979
 * IT_RMR_BIND_CMPL_EVENT 6980
 * 6981
 * it_all_dto_cmpl_event_t supports all 6982
 * possible DTO and RMR events: 6983
 * IT_DTO_SEND_CMPL_EVENT 6984
 * IT_DTO_RC_RECV_CMPL_EVENT 6985

Interconnect Transport API –Issue 1 233

 234

 * IT_DTO_UD_RECV_CMPL_EVENT 6986
 * IT_DTO_RDMA_WRITE_CMPL_EVENT 6987
 * IT_DTO_RDMA_READ_CMPL_EVENT 6988
 * IT_RMR_BIND_CMPL_EVENT 6989
 */ 6990
 it_dto_cmpl_event_t dto_cmpl; 6991
 it_all_dto_cmpl_event_t all_dto_cmpl; 6992
 6993
 /* 6994
 * The following two Event structures 6995
 * support the IT_CM_REQ_EVENT_STREAM Event 6996
 * stream: 6997
 * 6998
 * it_conn_request_event_t supports: 6999
 * IT_CM_REQ_CONN_REQUEST_EVENT 7000
 * 7001
 * it_ud_svc_request_event_t supports: 7002
 * IT_CM_REQ_UD_SERVICE_REQUEST_EVENT 7003
 */ 7004
 it_conn_request_event_t conn_req; 7005
 it_ud_svc_request_event_t ud_svc_request; 7006
 7007
 /* 7008
 * The following two Event structures 7009
 * support the IT_CM_MSG_EVENT_STREAM Event 7010
 * stream: 7011
 * 7012
 * it_connection_event_t supports: 7013
 * IT_CM_MSG_CONN_ACCEPT_ARRIVAL_EVENT 7014
 * IT_CM_MSG_CONN_ESTABLISHED_EVENT 7015
 * IT_CM_MSG_CONN_PEER_REJECT_EVENT 7016
 * IT_CM_MSG_CONN_NONPEER_REJECT_EVENT 7017
 * IT_CM_MSG_CONN_DISCONNECT_EVENT 7018
 * IT_CM_MSG_CONN_BROKEN_EVENT 7019
 * 7020
 * it_ud_svc_reply_event_t supports: 7021
 * IT_CM_MSG_UD_SERVICE_REPLY_EVENT 7022
 */ 7023
 it_connection_event_t conn; 7024
 it_ud_svc_reply_event_t ud_svc_reply; 7025
 7026
 /* 7027
 * it_affiliated_event_t supports 7028
 * the following Event Stream: 7029
 * IT_ASYNC_AFF_EVENT_STREAM 7030
 */ 7031
 it_affiliated_event_t aff_async; 7032
 7033
 /* 7034
 * it_unaffiliated_event_t supports 7035
 * the following Event Stream: 7036
 * IT_ASYNC_UNAFF_EVENT_STREAM 7037
 */ 7038
 it_unaffiliated_event_t unaff_async; 7039

Interconnect Transport API –Issue 1 234

 235

 7040
 /* 7041
 * it_software_event_t supports 7042
 * the following Event Stream: 7043
 * IT_SOFTWARE_EVENT_STREAM 7044
 */ 7045
 it_software_event_t sw; 7046
 7047
 /* 7048
 * it_aevd_notification_event_t supports 7049
 * the following Event Stream: 7050
 * IT_AEVD_NOTIFICATION_EVENT_STREAM 7051
 */ 7052
 it_aevd_notification_event_t aevd_notify; 7053
} it_event_t; 7054

DESCRIPTION 7055
The it_event_t defines the format for Events for IT-APIs. Each Event consists of a Handle to the 7056
EVD where the Event has been queued, and Event type identifier with the Event type specific 7057
Event data. 7058
Events for a Simple EVD can be fed from only a single Event Stream type. 7059
Multiple Event numbers that can be on the same Event Stream type form an Event group. The 7060
Event data formats for all Event types of the same Event Stream type are defined in one or more 7061
separate man page(s) specific to each Event group. 7062

RETURN VALUE 7063
None. 7064

ERRORS 7065
None. 7066

APPLICATION USAGE 7067
The Consumer allocates an it_event_t object and passes it into the it_evd_wait or it_evd_dequeue 7068
calls in order to retrieve Events. The it_event_t object is a union of all possible Event Stream 7069
data types, thus it is the size of the largest possible Event type. 7070
If the Consumer wishes to conserve memory and use only the minimally-sized Event data 7071
structures found in the it_event_t union, they are free to. Use of it_event_t structures that are too 7072
small for an Event Stream may cause program termination. 7073
The Consumer may use the IT_EVENT_STREAM_MASK to convert from an it_event_type_t 7074
event_number to Event Stream by masking off the lower bits of the Event number. 7075

SEE ALSO 7076
it_aevd_notification_event_t, it_affiliated_event_t, it_cm_msg_events, it_cm_req_events, 7077
it_dto_events, it_software_event_t, it_unaffiliated_event_t, it_evd_wait(), it_evd_dequeue(), 7078
it_evd_create()7079

Interconnect Transport API –Issue 1 235

 236

it_handle_t 7080

NAME 7081
it_handle_t – enumeration and type definitions for IT Handles 7082

SYNOPSIS 7083
#include <it_api.h> 7084
 7085
typedef enum { 7086

7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109

7110
The it_handle_type_enum_t associates an enumerated value with each type of Handle used in the 7111
API Implementation. The enumeration is used to describe the type of a Handle returned by 7112
it_get_handle_type

 IT_HANDLE_TYPE_ADDR,
 IT_HANDLE_TYPE_EP,
 IT_HANDLE_TYPE_EVD,
 IT_HANDLE_TYPE_IA,
 IT_HANDLE_TYPE_LISTEN,
 IT_HANDLE_TYPE_LMR,
 IT_HANDLE_TYPE_PZ,
 IT_HANDLE_TYPE_RMR,
 IT_HANDLE_TYPE_UD_SVC_REQ
} it_handle_type_enum_t;

typedef void *it_handle_t;
#define IT_NULL_HANDLE ((it_handle_t) NULL)

typedef struct it_addr_handle_s *it_addr_handle_t;
typedef struct it_ep_handle_s *it_ep_handle_t;
typedef struct it_evd_handle_s *it_evd_handle_t;
typedef struct it_ia_handle_s *it_ia_handle_t;
typedef struct it_listen_handle_s *it_listen_handle_t;
typedef struct it_lmr_handle_s *it_lmr_handle_t;
typedef struct it_pz_handle_s *it_pz_handle_t;
typedef struct it_rmr_handle_s *it_rmr_handle_t;
typedef struct it_ud_svc_req_handle_s *it_ud_svc_req_handle_t;

DESCRIPTION

. 7113
7114
7115

The table below defines the relationship of IT-API Handle types and the associated
it_handle_type_enum_t value.

it_handle type Returned it_handle_type_enum value
it_addr_handle_t IT_HANDLE_TYPE_ADDR

it_ep_handle_t IT_HANDLE_TYPE_EP

it_evd_handle_t IT_HANDLE_TYPE_EVD

it_ia_handle_t IT_HANDLE_TYPE_IA

it_listen_handle_t IT_HANDLE_TYPE_LISTEN

it_lmr_handle_t IT_HANDLE_TYPE_LMR

Interconnect Transport API –Issue 1 236

 237

it_pz_handle_t IT_HANDLE_TYPE_PZ

it_rmr_handle_t IT_HANDLE_TYPE_RMR

it_ud_svc_req_handle_t IT_HANDLE_TYPE_UD_SVC_REQ

RETURN VALUE 7116
7117

7118
7119

SEE ALSO 7120
it_get_handle_type

None.

ERRORS
None.

() 7121
7122

Interconnect Transport API –Issue 1 237

 238

it_ia_info_t 7123

7124
7125

7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173

NAME
it_ia_info_t – encapsulates all Interface Adapter attributes and Spigot information

SYNOPSIS
#include <it_api.h>

/* Enumerates all the transport types supported by the API. */
typedef enum {

 /* InfiniBand Native Transport */
 IT_IB_TRANSPORT = 1,

 /* VIA host Interface using IP transport, supporting
 only the Reliable Delivery reliability level */
 IT_VIA_IP_TRANSPORT = 2,

 /* VIA host Interface, using Fibre Channel transport, supporting
 only the Reliable Delivery reliability level*/
 IT_VIA_FC_TRANSPORT = 3,

 /* Vendor-proprietary Transport */
 IT_VENDOR_TRANSPORT = 1000

} it_transport_type_t;

/* Transport Service Type definitions. */
typedef enum {

 /* Reliable Connected Transport Service Type */
 IT_RC_SERVICE = 0x1,

 /* Unreliable Datagram Transport Service Type */
 IT_UD_SERVICE = 0x2,

} it_transport_service_type_t;

/* The following structure describes an Interface Adapter Spigot */
typedef struct {

 /* Spigot identifier */
 size_t spigot_id;

 /* Maximum sized Send operation for the RC service
 on this Spigot. */
 size_t max_rc_send_len;

 /* Maximum sized RDMA Read/Write operation for the RC service on
 this Spigot. */
 size_t max_rc_rdma_len;

Interconnect Transport API –Issue 1 238

 239

7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227

 /* Maximum sized Send operation for the UD service
 on this Spigot. */
 size_t max_ud_send_len;

 /* Indicates whether the Spigot is online or offline.
 An IT_TRUE value means online. */
 it_boolean_t spigot_online;

 /* A mask indicating which Connection Qualifier types this
 IA supports for input to it_ep_connect and
 it_ud_service_request_handle_create. The bits in the mask are
 an inclusive OR of the values for Connection Qualifier types
 that this IA supports. */
 it_conn_qual_type_t active_side_conn_qual;

 /* A mask indicating which Connection Qualifier types this to
 it_listen_create. The bits in the mask are an inclusive OR of
 the values for Connection Qualifier types that this IA
 supports. */
 it_conn_qual_type_t passive_side_conn_qual;

 /* The number of Network Addresses associated with Spigot */
 size_t num_net_addr;

 /* Pointer to array of Network Address addresses. */
 it_net_addr_t* net_addr;

} it_spigot_info_t;

/* The following structure is used to identify the vendor associated
 with an IA that uses the IB transport*/
typedef struct {

 /* The NodeInfo:VendorID as described in chapter 14 of the
 IB spec. */
 uint32_t vendor : 24;

 /* The NodeInfo:DeviceID as described in chapter 14 of the
 IB spec. */
 uint16_t device;

 /* The NodeInfo:Revision as described in chapter 14 of the
 IB spec. */
 uint32_t revision;
} it_vendor_ib_t;

/* The following structure is used to identify the vendor associated
 with an IA that uses a VIA transport*/
typedef struct {
 /* The “Name” member of the VIP_NIC_ATTRIBUTES structure, as
 described in the VIA spec. */
 char name[64];

Interconnect Transport API –Issue 1 239

 240

7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281

 /* The “HardwareVersion” member of the VIP_NIC_ATTRIBUTES structure,
 as described in the VIA spec. */
 unsigned long hardware;

 /* The “ProviderVersion” member of the VIP_NIC_ATTRIBUTES structure,
 as described in the VIA spec. */
 unsigned long provider;
} it_vendor_via_t;

/* The following structure is returned by the it_ia_query function */
typedef struct {

 /* Interface Adapter name, as specified in it_ia_create */
 char* ia_name;

 /* The major version number of the latest version of the IT-API that
 this IA supports. */
 uint32_t api_major_version;

 /* The minor version number of the latest version of the IT-API that
 this IA supports. */
 uint32_t api_minor_version;

 /* The major version number for the software being used to control
 this IA. The IT-API imposes no structure whatsoever on this
 number; its meaning is completely IA-dependent. */
 uint32_t sw_major_version;

 /* The minor version number for the software being used to control
 this IA. The IT-API imposes no structure whatsoever on this
 number; its meaning is completely IA-dependent. */
 uint32_t sw_minor_version;

 /* The vendor associated with the IA. This information is useful
 if the Consumer wishes to do device-specific programming. This
 union is discriminated by transport_type. No vendor
 identification is provided for transports not listed below. */
 union {

 /* Used if transport_type is IT_IB_TRANSPORT */
 it_vendor_ib_t ib;

 /* Used if transport_type is IT_VIA_IP_TRANSPORT or
IT_VIA_FC_TRANSPORT */
 it_vendor_via_t via;

 } vendor;

 /* The Interface Adapter and platform provide a data alignment hint
 to the Consumer to help the Consumer align their data transfer
 buffers in a way that is optimal for the performance of the IA.
 For example, if the best throughput is obtained by aligning
 buffers to 128-byte boundaries, dto_alignment_hint will have the

Interconnect Transport API –Issue 1 240

 241

7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335

 value 128. The Consumer may choose to ignore the alignment hint
 without any adverse functional impact. (There may be an adverse
 performance impact.) */
 uint32_t dto_alignment_hint;

 /* The transport type (e.g. InfiniBand) supported by Interface
 Adapter. An Interface Adapter supports precisely one transport
 type. */
 it_transport_type_t transport_type;

 /* The Transport Service Types supported by this IA. This is
 constructed by doing an inclusive OR of the Transport Service
 Type values.*/
 it_transport_service_type_t supported_service_types;

 /* Indicates whether work queues are resizable */
 it_boolean_t resizable_work_queue;

 /* Indicates whether the underlying transport used by this IA uses a
 three-way handshake for doing Connection establishment. Note
 that if the underlying transport supports a three-way handshake
 the Consumer can choose whether to use two handshakes or three
 when establishing the Connection. If the underlying transport
 supports a two-way handshake for establishing a Connection, the
 Consumer can only use two handshakes when establishing the
 Connection. */
 it_boolean_t three_way_handshake_support;

 /* Indicates whether Private Data is supported on Connection
 establishment or UD service resolution operations. */
 it_boolean_t private_data_support;

 /* Indicates whether the max_message_size field in the
 IT_CM_REQ_CONN_REQUEST_EVENT is valid for this IA. */
 it_boolean_t max_message_size_support;

 /* Indicates whether the rdma_read_inflight_incoming field in the
 IT_CM_REQ_CONN_REQUEST_EVENT is valid for this IA. */
 it_boolean_t ird_support;

 /* Indicates whether the rdma_read_inflight_outgoing field in the
 IT_CM_REQ_CONN_REQUEST_EVENT is valid for this IA. */
 it_boolean_t ord_support;

 /* Indicates whether the IA generates IT_ASYNC_UNAFF_SPIGOT_ONLINE
 Events. See it_unaffiliated_event_t for details. */
 it_boolean_t spigot_online_support;

 /* Indicates whether the IA generates IT_ASYNC_UNAFF_SPIGOT_OFFLINE
 Events. See it_unaffiliated_event_t for details. */
 it_boolean_t spigot_offline_support;

 /* The maximum number of bytes of Private Data supported for the
 it_ep_connect routine. This will be less than or equal to

Interconnect Transport API –Issue 1 241

 242

 IT_MAX_PRIV_DATA. */ 7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383

DESCRIPTION 7384
The it_ia_info_t structure is returned by the it_ia_query

 size_t connect_private_data_len;

 /* The maximum number of bytes of Private Data supported for the
 it_ep_accept routine. This will be less than or equal to
 IT_MAX_PRIV_DATA. */
 size_t accept_private_data_len;

 /* The maximum number of bytes of Private Data supported for the
 it_reject routine. This will be less than or equal to
 IT_MAX_PRIV_DATA. */
 size_t reject_private_data_len;

 /* The maximum number of bytes of Private Data supported for the
 it_ep_disconnect routine. This will be less than or equal to
 IT_MAX_PRIV_DATA. */
 size_t disconnect_private_data_len;

 /* The maximum number of bytes of Private Data supported for the
 it_ud_service_request_handle_create routine. This will be
less than or
 equal to IT_MAX_PRIV_DATA. */
 size_t ud_req_private_data_len;

 /* The maximum number of bytes of Private Data supported for the
 it_ud_service_reply routine. This will be less than or equal to
 IT_MAX_PRIV_DATA. */
 size_t ud_rep_private_data_len;

 /* Specifies the number of Spigots associated with this Interface
 Adapter */
 size_t num_spigots;

 /* An array of Spigot information data structures. The array
 contains num_spigots elements. */
 it_spigot_info_t* spigot_info;

 /* The Handle for the EVD that contains the affiliated async Event
 Stream. If no EVD contains the Affiliated Async Event Stream,
 this member will have the distinguished value IT_NULL_HANDLE */
 it_evd_handle_t affiliated_err_evd;

 /* The Handle for the EVD that contains the Unaffiliated Async Event
 Stream. If no EVD contains the Unaffiliated Async Event Stream,
 this member will have the distinguished value IT_NULL_HANDLE */
 it_evd_handle_t unaffiliated_err_evd;

} it_ia_info_t;

 routine. 7385
The it_ia_info_t structure specifies the capabilities and attributes of an Interface Adapter. It also 7386
identifies the Interface Adapter’s Spigots and their Network Addresses. 7387

Interconnect Transport API –Issue 1 242

 243

Spigot identifiers are required inputs to the it_get_pathinfo and it_ listen_create routines. Spigot 7388
Network Addresses may be used in the advertisement of local-Consumer-provided services to 7389
remote Consumers. 7390
The IA can be in one of two states: enabled or disabled. An IA will be in the enabled state 7391
when it is created (via it_ia_create). Normally an IA will remain in the enabled state, but if it 7392
encounters a catastrophic error it will move into the disabled state. The Implementation 7393
guarantees that no unreported data corruption has occurred as a result of the IA entering the 7394
disabled state. If the Consumer calls any API routine other than it_ia_free while the IA is in the 7395
disabled state, neither the IA nor any of the Implementation data structures associated with it 7396
will be modified in any way. Instead, the routine will return the error code 7397
IT_ERR_IA_CATASTROPHE, and none of the output parameters from the routine will be 7398
valid. Once an IA has entered the disabled state the only recovery action that the Consumer can 7399
perform is to free the IA. 7400

7401
7402

7403
7404

7405
7406

SEE ALSO 7407

RETURN VALUE
None.

ERRORS
None.

FUTURE DIRECTIONS
Quality of Service control for VIA and other transports may be added in the future.

it_ia_query(), it_get_pathinfo(), it_listen_create()7408

Interconnect Transport API –Issue 1 243

 244

it_lmr_triplet_t 7409

7410
7411

7412
7413
7414
7415
7416
7417
7418
7419

7420
7421
7422

7423

7424

7425

7426
7427

7428
7429

APPLICATION USAGE 7430
The LMR Triplet is an input parameter to all of the DTO operations, such as it_post_send

NAME
it_lmr_triplet_t – structure describing a DTO buffer in a Local Memory Region

SYNOPSIS
#include <it_api.h>

typedef struct {

it_lmr_handle_t lmr;
void *addr;
it_length_t length;

} it_lmr_triplet_t;

DESCRIPTION
The it_lmr_triplet_t structure describes a local Source or Destination buffer segment for Data
Transfer Operations. Its members are defined as follows:

lmr Handle of LMR in which the local buffer resides.

addr Starting address of the local buffer segment.

length Length in bytes of the local buffer segment.

RETURN VALUE
None.

ERRORS
None.

. 7431

SEE ALSO 7432
it_post_send(), it_post_sendto(), it_post_recv(), it_post_recvfrom(), it_post_rdma_write(), 7433
it_post_rdma_read(). 7434

Interconnect Transport API –Issue 1 244

 245

it_net_addr_t 7435

7436
7437

7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485

NAME
it_net_addr_t – encapsulates all supported Network Address types

SYNOPSIS
#include <it_api.h>

/* Enumerates all the possible Network Address types supported
 by the API. */
typedef enum {

 /* IPv4 address */
 IT_IPV4 = 0x1,

 /* IPv6 address */
 IT_IPV6 = 0x2,

 /* InfiniBand GID */
 IT_IB_GID = 0x3,

 /* VIA Network Address */
 IT_VIA_HOSTADDR = 0x4

} it_net_addr_type_t;

/* Defines the Network Address format for a VIA “host address”.
 The API has a fixed upper bound on the maximum sized VIA
 address it will support*/

#define IT_MAX_VIA_ADDR_LEN 64

typedef struct {

 /* The number of bytes in the array below that are
 significant */
 uint16_t len;

 /* VIA host address, which is an array of bytes */
 unsigned char hostaddr[IT_MAX_VIA_ADDR_LEN];

} it_via_net_addr_t;

/* This defines the Network Address format for the InfiniBand
 GID, which is just an IPv6 address. */
typedef struct in6_addr it_ib_gid_t;

/* This describes a Network Address suitable for input to several
 routines in the API. */
typedef struct {

 /* The discriminator for the union below. */
 it_net_addr_type_t addr_type;

Interconnect Transport API –Issue 1 245

 246

 7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503

DESCRIPTION 7504
The it_net_addr_t type is used by several routines in the API to encapsulate a Network Address 7505
associated with a Spigot on an IA. The it_net_addr_t is the name for a Spigot when it is being 7506
accessed remotely. (When it is being accessed locally, it is named by a Spigot identifier, not by 7507
an it_net_addr_t.) Each Spigot on an IA has at least one it_net_addr_t associated with it. A 7508
Spigot can have more than one Network Address associated with it, and these Network 7509
Addresses can be of different types. (For example, an InfiniBand HCA might have both an IPv4 7510
address and an InfiniBand GID associated with one of its Spigots.) The set of Network 7511
Addresses that can be used to refer to a Spigot on an IA can be determined using the it_ia_query

 union {

 /* IPv4 address, in network byte order */
 struct in_addr ipv4;

 /* IPv6 address, in network byte order */
 struct in6_addr ipv6;

 /* InfiniBand GID, in network byte order */
 it_ib_gid_t gid;

 /* VIA Network Address. */
 it_via_net_addr_t via;

 } addr;

} it_net_addr_t;

 7512
routine. 7513

7514
7515
7516
7517
7518

7519
7520

ERRORS 7521
7522

SEE ALSO 7523

In order to aid Consumers in writing portable applications that span platforms with different
native byte orders, all Network Addresses that are supported by the API with the exception of
the VIA “host address” are required to be input to the API in network byte order, and will be
output from the API in network byte order. (The VIA “host address” is defined to be an array of
bytes, and hence is not affected by which native byte order a platform uses.)

RETURN VALUE
None.

None.

it_get_pathinfo(), it_ia_query()7524

Interconnect Transport API –Issue 1 246

 247

it_path_t 7525

7526
7527

7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547

 7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568

 Handle. */ 7569
7570
7571
7572
7573
7574

 uint8_t packet_rate : 6; 7575

NAME
it_path_t – describes the Path between a pair of Spigots

SYNOPSIS
#include <it_api.h>

/* This is the remote component of the Path information for the
 InfiniBand transport */
typedef struct {

 /* Partition Key, as defined in the REQ message for the IB
 CM protocol */
 uint16_t partition_key;

 /* Path Packet Payload MTU, as defined in the REQ message
 for the IB CM protocol */
 uint8_t path_mtu : 4;

 /* PacketLifeTime, as defined in the PathRecord in IB
 specification. This field is useful for Consumers that
 wish to use timeout values other than the default ones
 for doing Connection establishment. */
 uint8_t packet_lifetime : 6;

 /* Local Port LID, as defined in the REQ message for the IB
 CM protocol. The low order bits of this value also
 constitute the “Source Path Bits” that are used to
 create an Address Handle. */
 uint16_t local_port_lid;

 /* Remote Port LID, as defined in the REQ message for the
 IB CM protocol. This is also the “Destination LID” used
 to create an Address Handle. */
 uint16_t remote_port_lid;

 /* Local Port GID in network byte order, as defined in the
 REQ message for the IB CM protocol. This is also used to
 determine the appropriate “Source GID Index” to be used
 when creating an Address Handle. */
 it_ib_gid_t local_port_gid;

 /* Remote Port GID in network byte order, as defined in the
 REQ message for the IB CM protocol. This is also the
 “Destination GID or MGID” used to create an Address

 it_ib_gid_t remote_port_gid;

 /* Packet Rate, as defined in the REQ message for the IB CM
 protocol. This is also the “Maximum Static Rate” to be
 used when creating an Address Handle. */

Interconnect Transport API –Issue 1 247

 248

 7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586

 7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629

 /* SL, as defined in the REQ message for the IB CM
 protocol. This is also the “Service Level” to be used
 when creating an Address Handle. */
 uint8_t sl : 4;

 /* Subnet Local, as defined in the REQ message for the IB
 CM protocol. When creating an Address Handle, setting
 this bit causes a GRH to be included as part of any
 Unreliable Datagram sent using the Address Handle. */
 uint8_t subnet_local : 1;

 /* Flow Label, as defined in the REQ message for the IB CM
 protocol. This is also the “Flow Label” to be used when
 creating an Address Handle. This is only valid if
 subnet_local is clear. */
 uint32_t flow_label : 20;

 /* Traffic Class, as defined in the REQ message for the IB
 CM protocol. This is also the “Traffic Class” to be
 used when creating an Address Handle. This is only
 valid if subnet_local is clear. */
 uint8_t traffic_class;

 /* Hop Limit, as defined in the REQ message for the IB CM
 protocol. This is also the “Hop Limit” to be used when
 creating an Address Handle. This is only valid if
 subnet_local is clear. */
 uint8_t hop_limit;

} it_ib_net_endpoint_t;

/* This is the remote component of the Path information for the
 VIA transport */
typedef it_via_net_addr_t it_via_net_endpoint_t;

/* This is the Path data structure used by several routines in
 the API */
typedef struct {

 /* Identifier for the Spigot to be used on the local IA
 Note that this data structure is always used in a
 Context where the IA associated with the Spigot can be
 deduced. */
 size_t spigot_id;

 /* The transport-independent timeout parameter for how long
 to wait, in microseconds, before timing out a Connection
 establishment attempt using this Path. The timeout
 period for establishing a Connection
 can only be specified on the Active side; the timeout
 period can not be changed on the Passive side. */
 uint64_t timeout;

Interconnect Transport API –Issue 1 248

 249

 /* The remote component of the Path */ 7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641

7642
The it_path_t type is used by several routines in the API to encapsulate a Path between two 7643
Spigots. The it_path_t contains a local Spigot identifier, a remote Spigot address, and a 7644
specification of all information that determines the properties of the Path that messages will take 7645
between the two Spigots. The local Spigot to be used is identified in a transport-independent 7646
manner, but the remote Spigot and the Path to that Spigot are specified in a transport-dependent 7647
manner. 7648
The it_path_t structure also contains a timeout member. This timeout member defines how long 7649
the local Consumer is willing to wait for a response to its attempt to establish a Connection when 7650
the it_path_t is used with the it_ep_connect

 union {

 /* For use with InfiniBand */
 it_ib_net_endpoint_t ib;

 /* For use with VIA */
 it_via_net_endpoint_t via;

 } remote;

} it_path_t;

DESCRIPTION

 routine. If the Consumer retrieves the Path using the 7651
it_get_pathinfo routine, the Implementation will provide a timeout that should be sufficiently 7652
long to establish a Connection under most circumstances, and so the Consumer should have no 7653
need to modify this value. If the Consumer chooses to provide their own value for the timeout 7654
member, the Consumer should take care to choose a value that is compatible with any 7655
underlying transport-specific timeout values governing Connection establishment that may be 7656
present in the transport-specific portion of the it_path_t. Choosing a value of timeout that is 7657
incompatible with the transport-specific timeout values governing Connection establishment will 7658
result in an error being returned from the it_ep_connect routine. 7659
All data contained within the it_path_t data structure appears in host byte order unless otherwise 7660
noted in the comments associated with the members of the data structure. The contents of the 7661
path_t returned from the it_get_pathinfo routine are only valid on the node on which the routine 7662
was invoked. 7663

7664
7665

7666
7667

SEE ALSO 7668

RETURN VALUE
None.

ERRORS
None.

it_get_pathinfo(), it_ep_connect(), it_address_handle_create(), 7669
it_ud_service_request_handle_create()7670

Interconnect Transport API –Issue 1 249

 250

it_software_event_t 7671

7672
7673

7674
7675
7676
7677
7678
7679
7680
7681

7682

7683
7684

evd Handle for the Event Dispatcher where the Event was queued. 7685

data The pointer that the Consumer furnished to the it_evd_post_se

NAME
it_software_event_t – Software Event type

SYNOPSIS
#include <it_api.h>

typedef struct {
 it_event_type_t event_number;
 it_evd_handle_t evd;
 void *data;
} it_software_event_t;

DESCRIPTION

event_number Identifier of the Event type. Valid values:
IT_SOFTWARE_EVENT

 7686
routine. 7687

An IT_SOFTWARE_EVENT_STREAM Event is generated when the Consumer calls the 7688
it_evd_post_se routine to post a Software Event. 7689
The IT_SOFTWARE_EVENT_STREAM Event Stream supports Events with the event_number 7690
IT_SOFTWARE_EVENT (see it_event_t). 7691
The Software Event type just passes back the same pointer that the Consumer furnished to the 7692
it_evd_post_se routine. 7693
All Events on an IT_SOFTWARE_EVENT_STREAM SEVD cause Notification. See 7694
it_evd_create for details of Notification. 7695
The Software Event type EVD does not overflow. Instead, it_evd_post_se will generate an 7696
immediate error if the Consumer attempts to queue a software Event on a full Software Event 7697
EVD. 7698

7699
7700

7701
7702

SEE ALSO 7703

RETURN VALUE
None.

ERRORS
None.

it_evd_post_se(), it_evd_create(), it_evd_wait(), it_event_t7704

Interconnect Transport API –Issue 1 250

 251

it_status_t 7705

7706
7707

7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750

 IT_ERR_INVALID_LMR, 7751
7752
7753
7754
7755

NAME
it_status_t – definition of IT-API call return status

SYNOPSIS
#include <it_api.h>

typedef enum {
 IT_SUCCESS = 0,
 IT_ERR_ABORT,
 IT_ERR_ACCESS,
 IT_ERR_ADDRESS,
 IT_ERR_AEVD_NOT_ALLOWED,
 IT_ERR_ASYNC_AFF_EVD_EXISTS,
 IT_ERR_ASYNC_UNAFF_EVD_EXISTS,
 IT_ERR_CANNOT_RESET,
 IT_ERR_CONN_QUAL_BUSY,
 IT_ERR_EP_TIMEWAIT,
 IT_ERR_EVD_BUSY,
 IT_ERR_EVD_QUEUE_FULL,
 IT_ERR_FAULT,
 IT_ERR_IA_CATASTROPHE,
 IT_ERR_INTERRUPT,
 IT_ERR_INVALID_ADDRESS,
 IT_ERR_INVALID_AEVD,
 IT_ERR_INVALID_AH,
 IT_ERR_INVALID_ATIMEOUT,
 IT_ERR_INVALID_CM_RETRY,
 IT_ERR_INVALID_CN_EST_FLAGS,
 IT_ERR_INVALID_CN_EST_ID,
 IT_ERR_INVALID_CONN_EVD,
 IT_ERR_INVALID_CONN_QUAL,
 IT_ERR_INVALID_CONVERSION,
 IT_ERR_INVALID_DTO_FLAGS,
 IT_ERR_INVALID_EP,
 IT_ERR_INVALID_EP_ATTR,
 IT_ERR_INVALID_EP_KEY,
 IT_ERR_INVALID_EP_STATE,
 IT_ERR_INVALID_EP_TYPE,
 IT_ERR_INVALID_EVD,
 IT_ERR_INVALID_EVD_STATE,
 IT_ERR_INVALID_EVD_TYPE,
 IT_ERR_INVALID_FLAGS,
 IT_ERR_INVALID_HANDLE,
 IT_ERR_INVALID_IA,
 IT_ERR_INVALID_LENGTH,
 IT_ERR_INVALID_LISTEN,

 IT_ERR_INVALID_LTIMEOUT,
 IT_ERR_INVALID_MAJOR_VERSION,
 IT_ERR_INVALID_MASK,
 IT_ERR_INVALID_MINOR_VERSION,

Interconnect Transport API –Issue 1 251

 252

7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803

7804
7805
7806
7807
7808

 IT_ERR_INVALID_NAME,
 IT_ERR_INVALID_NETADDR,
 IT_ERR_INVALID_NUM_SEGMENTS,
 IT_ERR_INVALID_PDATA_LENGTH,
 IT_ERR_INVALID_PRIVS,
 IT_ERR_INVALID_PZ,
 IT_ERR_INVALID_QUEUE_SIZE,
 IT_ERR_INVALID_RECV_EVD,
 IT_ERR_INVALID_RECV_EVD_STATE,
 IT_ERR_INVALID_REQ_EVD,
 IT_ERR_INVALID_REQ_EVD_STATE,
 IT_ERR_INVALID_RETRY,
 IT_ERR_INVALID_RMR,
 IT_ERR_INVALID_RNR_RETRY,
 IT_ERR_INVALID_RTIMEOUT,
 IT_ERR_INVALID_SGID,
 IT_ERR_INVALID_SLID,
 IT_ERR_INVALID_SOFT_EVD,
 IT_ERR_INVALID_SOURCE_PATH,
 IT_ERR_INVALID_SPIGOT,
 IT_ERR_INVALID_THRESHOLD,
 IT_ERR_INVALID_UD_STATUS,
 IT_ERR_INVALID_UD_SVC,
 IT_ERR_INVALID_UD_SVC_REQ_ID,
 IT_ERR_LMR_BUSY,
 IT_ERR_MISMATCH_FD,
 IT_ERR_NO_CONTEXT,
 IT_ERR_NO_PERMISSION,
 IT_ERR_PAYLOAD_SIZE,
 IT_ERR_PDATA_NOT_SUPPORTED,
 IT_ERR_PZ_BUSY,
 IT_ERR_QUEUE_EMPTY,
 IT_ERR_RANGE,
 IT_ERR_RESOURCES,
 IT_ERR_RESOURCE_IRD,
 IT_ERR_RESOURCE_LMR_LENGTH,
 IT_ERR_RESOURCE_ORD,
 IT_ERR_RESOURCE_QUEUE_SIZE,
 IT_ERR_RESOURCE_RECV_DTO,
 IT_ERR_RESOURCE_REQ_DTO,
 IT_ERR_RESOURCE_RRSEG,
 IT_ERR_RESOURCE_RSEG,
 IT_ERR_RESOURCE_RWSEG,
 IT_ERR_RESOURCE_SSEG,
 IT_ERR_TIMEOUT_EXPIRED,
 IT_ERR_TOO_MANY_POSTS,
 IT_ERR_WAITER_LIMIT
} it_status_t;

DESCRIPTION
Most IT-API function calls return it_status_t on function completion. IT_SUCCESS indicates
that an IT-API operation was invoked successfully; otherwise the return code indicates the
reason for failure. See each individual man page for the meaning of a return code in the Context
of the function.

Interconnect Transport API –Issue 1 252

 253

7809
7810
7811
7812
7813

7814
7815

7816
7817

SEE ALSO 7818

Some API function calls are used to initiate asynchronous operations. For those function calls, a
return value of IT_SUCCESS indicates only that the operation was successfully initiated; it does
not indicate that it was successfully completed. To determine if an asynchronous operation was
successfully completed, the Completion Event for the asynchronous operation should be
examined.

RETURN VALUE
None.

ERRORS
None.

it_address_handle_create(), it_address_handle_free(), it_address_handle_modify(), 7819
it_address_handle_query(), it_convert_net_addr(), it_ep_accept(), it_ep_connect(), 7820
it_ep_disconnect(), it_ep_free(), it_ep_modify(), it_ep_query(), it_ep_rc_create(), it_ep_reset(), 7821
it_ep_ud_create(), it_evd_create(), it_evd_dequeue(), it_evd_free(), it_evd_modify(), 7822
it_evd_post_se(), it_evd_query(), it_evd_wait(), it_get_consumer_context(), 7823
it_get_handle_type(), it_get_pathinfo(), it_handoff(), it_ia_create(), it_ia_free(), it_ia_query(), 7824
it_listen_create(), it_listen_free(), it_listen_query(), it_lmr_create(), it_lmr_free(), 7825
it_lmr_modify(), it_lmr_query(), it_lmr_sync_rdma_read(), it_lmr_sync_rdma_write(), 7826
it_post_rdma_read(), it_post_rdma_write(), it_post_recv(), it_post_recvfrom(), it_post_send(), 7827
it_post_sendto(), it_pz_create(), it_pz_free(), it_pz_query(), it_reject(), it_rmr_bind(), 7828
it_rmr_create(), it_rmr_free(), it_rmr_query(), it_rmr_unbind(), it_set_consumer_context(), 7829
it_ud_service_reply(), it_ud_service_request(), it_ud_service_request_handle_create(), 7830
it_ud_service_request_handle_free(), it_ud_service_request_handle_query(), it_dto_events7831

Interconnect Transport API –Issue 1 253

 254

it_unaffiliated_event_t 7832

7833
7834

7835
7836
7837
7838
7839
7840
7841
7842
7843
7844

7845

7846
7847
7848
7849

7850

7851

spigot_id The identifier for the Spigot that changed state on the IA. Valid only 7852
for the IT_ASYNC_UNAFF_SPIGOT_ONLINE and 7853
IT_ASYNC_UNAFF_SPIGOT_OFFLINE Events. 7854

IT_ASYNC_UNAFF_EVENT_STREAM Events are generated when an Unaffiliated 7855
Asynchronous Event occurs. There are several types of Unaffiliated Asynchronous Events, and 7856
each type is identified by event_number. The Consumer asks for Unaffiliated Asynchronous 7857
Events to be delivered when it creates an EVD for the Unaffiliated Asynchronous Event Stream 7858
using the it_evd_create

NAME
it_unaffiliated_event_t – Unaffiliated Asynchronous Event type

SYNOPSIS
#include <it_api.h>

typedef struct {
 it_event_type_t event_number;
 it_evd_handle_t evd;
 it_ia_handle_t ia;

 size_t spigot_id;
} it_unaffiliated_event_t;

DESCRIPTION

event_number Identifier of the Event type. Valid values:
 IT_ASYNC_UNAFF_SPIGOT_ONLINE,
 IT_ASYNC_UNAFF_SPIGOT_OFFLINE,
 IT_ASYNC_UNAFF_SEVD_ENQUEUE_FAILURE

evd Handle for the Event Dispatcher where the Event was queued.

ia The Handle for the IA that experienced the Unaffiliated Event.

 call. 7859
The following table maps the values in the Unaffiliated Asynchronous Events it_event_type_t 7860
enumeration to a transport independent description. 7861

it_event_type_t value Generic Event Description
IT_ASYNC_UNAFF_SPIGOT_ONLINE A Spigot on the IA that was

previously offline is now online. The
Implementation will only generate
this Event if the it_ia_info.spigot_
online_event_support value is
IT_TRUE.

IT_ASYNC_UNAFF_SPIGOT_OFFLINE A Spigot on the IA that was
previously online is now offline. The
Implementation will only generate
this Event if the it_ia_info.spigot_
offline_event_support value is

Interconnect Transport API –Issue 1 254

 255

IT_TRUE.

IT_ASYNC_UNAFF_SEVD_ENQUEUE_FAILURE The API Implementation was unable
to enqueue an entry into an Affiliated
Asynchronous Event SEVD.

EXTENDED DESCRIPTION 7862
For the Infiniband transport, the following table maps the values in the Unaffiliated 7863
Asynchronous Errors it_event_type_t enumeration to their corresponding “Unaffiliated 7864
Asynchronous Events” and “Unaffiliated Asynchronous Errors” as specified in Volume 1, 7865
Chapter 11 of the Infiniband specification. 7866

it_event_type_t value IB “Unaffiliated Asynchronous
Event/Error” name

IT_ASYNC_UNAFF_SPIGOT_ONLINE Port Active

IT_ASYNC_UNAFF_SPIGOT_OFFLINE Port Error

For the VIA transport, the following table maps the values in the Unaffiliated Asynchronous 7867
Errors it_event_type_t enumeration to their corresponding descriptions in the 7868
“VipErrorCallback” man page in the Appendix of the VIA specification. 7869

it_event_type_t value VIA “VipErrorCallback” name(s)
IT_ASYNC_UNAFF_SPIGOT_ONLINE (Not applicable to the VIA transport.)

IT_ASYNC_UNAFF_SPIGOT_OFFLINE (Not applicable to the VIA transport.)

 7870
All Events on an IT_ ASYNC_UNAFF_EVENT_STREAM SEVD cause Notification. See 7871
it_evd_create for details of Notification. 7872

7873
7874
7875
7876
7877
7878
7879

7880
7881

7882
7883

SEE ALSO 7884
it_ia_create

Overflow of an IT_ASYNC_UNAFF_EVENT_STREAM SEVD is not visible to the Consumer;
all subsequent IT_ASYNC_UNAFF_EVENT_STREAM Events are silently dropped until the
Consumer dequeues at least one Event from the EVD that contains the
IT_ASYNC_UNAFF_EVENT_STREAM.

When a Consumer has created more than one IA corresponding to an underlying physical
adapter (say in different processes), then every Unaffiliated Event is replicated to every IA
instance.

RETURN VALUE
None.

ERRORS
None.

(), it_event_t, it_evd_create(), it_evd_wait() 7885

Interconnect Transport API –Issue 1 255

 256

A. Implementer’s Guide 7886

7887
7888
7889
7890
7891

7892
7893
7894
7895
7896

The Infiniband Create Address Handle verb doesn’t take a Source LID as input, it takes the Source Path Bits 7897
instead and uses them in conjunction with the Base LID to create the appropriate SLID to use. The 7898
Implementation therefore needs to the Query HCA verb to retrieve the LMC associated with the port 7899
identified by spigot_id to determine how many of the low order bits in the input ib.local_port_lid need to be 7900
extracted as the Source Path Bits. 7901
When running over the InfiniBand transport, if the Consumer provides a Path to it_address_handle_create

The IT-API Standard does not prohibit any implementation from providing functionality beyond
that specified in the standard. However, we urge that implementions and authors of code using
IT-API avoid the "it_" prefix for any function name or data structure name not defined by the
standard. This is to preserve the option for future enhancement of IT-API without concern that a
new IT-API name will conflict with a name used in an existing Implementation or application.

it_address_handle_create
The Infiniband Create Address Handle verb doesn’t take a Source GID as input; it takes a Source GID index.
The Implementation therefore needs to use the Query HCA verb to get access to the GID table associated
with the port identified by spigot_id, and match the input ib.local_port_gid field to an entry in the GID table
to determine the appropriate Source GID index to use.

 7902
that contains a P_Key that is not in the HCA's P_Key table, the Implementation shall return 7903
IT_ERR_INVALID_SOURCE_PATH. 7904

7905
7906
7907
7908
7909
7910

7911
7912
7913
7914
7915

In general, all transport-specific Connection Management rejection Events not explicitly defined in this API 7916
should be implemented as IT_CM_MSG_CONN_NONPEER_REJECT_EVENT with IT_CN_REJ_OTHER 7917
reject reason code Events. 7918
When running over the InfiniBand transport, Implementations have the option to "chew up" a REJ that is 7919
returned with reject reason code 1 ("No QP available"), 3 ("No resources available"), or 4 (Timeout) rather 7920
than immediately posting an Event with status IT_CN_REJ_RESOURCES (for REJ codes 1 and 3) or 7921

it_affiliated_event_t
Asynchronous Events should be copied from hardware resources into per-process software queues. The effect
of overflow of the software queue should be isolated to the owning process. When overflow of the Affiliated
Event EVD occurs, hardware resources should still be dequeued and discarded.

IT_ASYNC_AFF_SEVD_ENQUEUE_FAILURE should be generated for overflow on all Simple EVDs
with the exception of the Affiliated and Unaffiliated Event EVDs.

it_cm_msg_events
IT_CM_MSG_CONN_BROKEN_EVENT Events should be synthesized by the Implementation from
asynchronous Events, etc., generated by the underlying transport. The Consumer has the option of ignoring
asynchronous Events (by not creating an EVD for the Affiliated or Unaffiliated Asynchronous Event
Streams) but still needs warning of state changes affecting their Endpoints.

Interconnect Transport API –Issue 1 256

 257

IT_CN_REJ_OTHER (for REJ code 4). The Implementation may wait until the timeout specified by the 7922
Consumer in the it_path_t structure input to it_ep_connect expires and then enqueue a non-peer reject Event 7923
with an IT_CN_REJ_TIMEOUT status. Alternatively, within the specified timeout period the 7924
Implementation may retry the Connection establishment attempt on the Consumer's behalf. If a Connection 7925
could not be established within the Consumer-specified timeout period, the Implementation should enqueue a 7926
non-peer reject Event with an IT_CN_REJ_TIMEOUT status after the timeout period has expired. 7927
When running on the IB transport, there are two different things that can signal the Implementation that it 7928
should generate the IT_CM_MSG_CONN_ESTABLISHED_EVENT on the Passive side: receiving an RTU 7929
message, or receiving a "Communication Established" Affiliated Asynchronous Event from the HCA. (Due 7930
to inherent races in the IB Connection establishment process, it is also possible that both of these conditions 7931
could be present.) If the Implementation receives an RTU message while the Endpoint is in the 7932
IT_EP_STATE_PASSIVE_CONNECTION_PENDING state and within the timeout period advertised to the 7933
Passive side in the REQ message, it should generate an IT_CM_MSG_CONN_ESTABLISHED_EVENT 7934
Event and use the Private Data from the RTU as part of that Event. If the Implementation receives the 7935
"Communication Established" Affiliated Asynchronous Event without receiving an RTU, the Implementation 7936
should generate the IT_CM_MSG_CONN_ESTABLISHED_EVENT Event with a Private Data size of zero, 7937
and when/if the RTU for the Connection subsequently arrives the Implementation should ignore it. 7938
There is a potential race condition in the three-way handshake Connection establishment method between the 7939
Implementation generating the IT_CM_MSG_CONN_ACCEPT_ARRIVAL_EVENT Event and the 7940
Consumer calling it_ep_disconnect (or it_ep_free). 7941
The conditions for the race arise when a Consumer has called it_ep_connect, but before the Connection is 7942
successfully established, the Consumer calls it_ep_disconnect or it_ep_free on the Endpoint. Within the time 7943
frame of this single Connection attempt, the Implementation must order Events as follows. 7944
It is acceptable for the Implementation to generate and queue the IT_CM_MSG_CONN_ 7945
ACCEPT_ARRIVAL_EVENT Event to the SEVD prior to the IT_CM_MSG_CONN_DISCONNECT_ 7946
EVENT Event. But, when the IT_CM_MSG_CONN_DISCONNECT_EVENT Event is generated, the 7947
Implementation must invalidate the cn_est_id found in the IT_CM_MSG_CONN_ACCEPT_ 7948
ARRIVAL_EVENT Event. Likewise, if the Consumer calls it_ep_free, the Implementation must also 7949
invalidate the cn_est_id. (Note that it is possible that the cn_est_id may have already been invalidated by a 7950
Consumer call to it_ep_accept, it_reject or it_handoff.) 7951

7952
7953
7954
7955
7956

7957
7958
7959
7960
7961
7962
7963

On the other hand, if the Implementation has generated an IT_CM_MSG_CONN_DISCONNECT_EVENT
Event, and subsequently the Implementation receives indication that the Connection Request has been
accepted by the remote side, the Implementation shall not generate an IT_CM_MSG_CONN_ACCEPT_
ARRIVAL_EVENT Event. In this situation, the Implementation is still responsible for generating any
necessary transport-specific response to the arrived acceptance message.

it_conn_qual_t

When the IANA Port Number Connection Qualifier type is used with the VIA transport, the IANA Port
Number is mapped into a 2-byte VIA connection discriminator, with byte 0 of the connection discriminator
containing the upper 8 bits of the 16-bit IANA Port Number, and byte 1 containing the lower 8 bits of the 16-
bit IANA Port Number.

When the IANA Port Number Connection Qualifier type is used with the InfiniBand transport, the IANA Port
Number is mapped into the 64-bit Service ID as follows:

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

Interconnect Transport API –Issue 1 257

 258

0x10 0x000CE1 0x0 0x0 IANA Port Number

it_dto_flags_t 7964
7965
7966
7967
7968

7969
7970
7971
7972
7973
7974
7975

7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994

An attempt to change max_request_dtos or max_recv_dtos for an Endpoint of an Interface Adapter whose 7995
it_ia_info resizable_work_queue is Clear must not be successful and IT_ERR_INVALID_EP_STATE is the 7996
return value for this case. 7997
When running over the InfiniBand transport, the Implementation must set Signaling type to Selectable in 7998
order to support it_dto_flags

The Implementation should attempt to support the use of IT_NOTIFY_FLAG on Receive DTOs. Where the
underlying transport does not support Receive DTO Notification Suppression it may be necessary for the
Implementation to generate Receive Notifications regardless of the setting of the IT_NOTIFY_FLAG on the
Receive DTOs.

it_ep_accept
In all case where a communication manager message changes the state of an Endpoint the Implementation
must first transition the Endpoint state before generating the Event. This closes a race condition where the
Consumer may see the Event and call a function expecting the Endpoint to be in the state that the Event
results in. For example, when the Consumer reaps the IT_CM_MSG_CONN_ACCEPT_ARRIVAL_EVENT
the Endpoint should be in the IT_EP_STATE_ACTIVE2_CONNECTION_PENDING state and ready to be
accepted.

it_ep_attributes_t
The Implementation must allocate resources needed for the support of the Consumer-requested attribute. In
general, the Implementation can allocate more resources than requested by Consumer (a few exceptions are
noted in the next paragraph). Some of these resources may actually be allocated at Connection establishment
time for RC, but Connection establishment can not fail because resources requested by Consumer at Endpoint
creation time are not available. Connection establishment may fail when remote Endpoint of the Connection
does not have enough resources to match local Endpoint ones. For example, if the local Endpoint’s attributes
have an rdma_read_inflight_incoming that is less than the remote Endpoint’s rdma_read_inflight_outgoing,
the Connection establishment attempt will fail.

The attributes that the Implementation must allocate in exactly the quantity that the Consumer specified are:

it_rc_only_attributes_t.rdma_read_inflight_outgoing

it_ep_attributes_t.max_dto_payload_size

The reason rdma_read_inflight_outgoing is listed above is that for InfiniBand you can't establish a
Connection unless the ORD value for one side of the Connection is less than or equal to the IRD value for
other side.

The reason max_dto_payload_size is listed above is that for VIA you can't establish a Connection unless the
passive side and the active side Endpoints have matching values for this attribute.

Whether the max_dto_payload_size limit is actually enforced for data transfers is IA-specific. (it might not be
transport-specific; but it is not clear if all VIA Implementations do this checking.)

. 7999

Interconnect Transport API –Issue 1 258

 259

it_ep_connect 8000
When running over the InfiniBand transport, if the Consumer provides a Path to it_ep_connect that contains a 8001
P_Key that is not in the HCA's P_Key table, the Implementation shall return IT_ERR_INVALID_ 8002
SOURCE_PATH. 8003

8004
8005
8006
8007
8008
8009

it_ep_free 8010
The it_ep_free

it_ep_disconnect
If the EP is already in non-operation state, no messages or Events should be generated. In this case, the
transport level Disconnect Request should have been sent when the EP transitioned into the non-operational
state.

When running over the InfiniBand transport, the Implementation should send CM DREQ (Disconnect
Request).

 is equivalent to the destruction of the underlying transport Endpoint. Except as noted below 8011
for the cn_est_id, the Implementation is at liberty to retain resources until such a time as it is capable of 8012
freeing them. For IB this means that Completion Events may be left on the CQ after QP destruction, and CM 8013
generated Events may be left on connect EVD. 8014
This call must destroy the cn_est_id associated with the Endpoint if it has not been destroyed before. If the 8015
cn_est_id was destroyed it should not cause any problem for the Implementation. The it_ep_free call when 8016
the Endpoint is in IT_EP_STATE_ACTIVE1_CONNECTION_PENDING may be racing with the 8017
Implementation generating IT_CM_MSG_CONN_ACCEPT_ARRIVAL_EVENT that creates cn_est_id. 8018

8019
8020
8021

8022
8023
8024

it_ep_reset 8025
This operation must hide any internal Implementation waiting for timeout expiration that Endpoint may be in 8026
due to it_ep_disconnect call during Connection set up. 8027

8028
In all case where a communication manager message changes the state of an Endpoint the Implementation 8029
must first transition the Endpoint state before generating the Event. This closes a race condition where the 8030
Consumer may see the Event and call a function expecting the Endpoint to be in the state that the Event 8031
results in. For example, when the Consumer reaps the IT_CM_MSG_CONN_ACCEPT_ARRIVAL_EVENT 8032
the Endpoint should be in the IT_EP_STATE_ACTIVE2_CONNECTION_PENDING state and ready to be 8033
accepted. 8034
The Connection establishment identifier (conn_est_id) object should not be destroyed by the Implementation 8035
when Endpoint transition state occurs due to a communication manager message or error. They should only 8036
be destroyed by explicit Consumer initiated functions such as it_ep_accept

When a remote Endpoint involved in Connection establishment is destroyed, locally the
IT_CM_MSG_CONN_NONPEER_REJECT_EVENT shall be generated with either IT_CN_REJ_OTHER,
or IT_CN_REJ_TIMEOUT reject_code reason.

it_ep_rc_create
The Implementation should ignore the it_ep_rc_creation_flag_t parameter on transports where the timewait
state is not applicable.

it_ep_state_t

, it_reject and it_ep_disconnect. 8037

Interconnect Transport API –Issue 1 259

 260

it_evd_create 8038
An IT-API Implementation should meet the following rules for EVD behavior. 8039
Definitions: 8040

8041
8042
8043
8044
8045
8046
8047
8048

The above are called arriving notification events. 8049
The Events of type a, b, d and e are also called plain notification events and retain their notification 8050
status1 on the SEVD queue. 8051

8052
8053
8054
8055
8056
8057
8058

b. for AEVD - when any one of the associated SEVDs satisfies 4a. 8059
Rules:

1. An arriving (queued on SEVD) Event is a notification event if any one of the following is true:

a. is an Event for a DTO with IT_NOTIFY_FLAG set when posted.

b. is an Event for a Recv DTO where matching Send DTO was originally posted with
IT_SOLICITED_WAIT_FLAG set (regardless of IT_NOTIFY_FLAG on Recv DTO).

c. is the Nth Event to arrive where threshold is set to N.

d. is an Event for a DTO completing in error regardless of IT_NOTIFY_FLAG and
IT_COMPLETION_FLAG.

e. is a non-DTO Completion Event

2. An arriving Event is a non-notification event if none of the above 1a. to 1e. criteria are met. These are
called both arriving non-notification events and plain non-notification events.

3. IT_THRESHOLD_DISABLED stands for no threshold or threshold == infinity.

4. The desired semantic for IT-API is: it_evd_wait returns only:

a. for SEVD - when there is a Notification Event of 1a,1b,1d, or 1e type (above) or when there
are a number of Events on the SEVD equal to or more than the threshold on the SEVD
queue.

 8060
1. it_evd_wait will block2 when: 8061

8062
b. for AEVD - all associated SEVDs are empty. 8063

2. it_evd_wait

a. for SEVD - queue is empty.

 may block if there are no notification events and number of Events is below the 8064
threshold: 8065

8066
b. for AEVD - on all associated SEVD queues. 8067

3. it_evd_wait

a. for SEVD - on the SEVD queue.

 will return if there is a notification event3 or the number of Events is greater than or equal 8068

1 InfiniBand does not retain the notion of notification status for types a, b, and d after arrival. Hence, Implementations
that do not rely on this notion, and only rely on *arriving notification events* must be permitted. Events of type *e*
have its own Event Stream types and its own SEVDs. Hence, Implementation can retain the *notification status* for
them based on SEVD Event Stream type.
2 This is really an Implementation issue. Semantically, Consumer does not care if it is blocked or not.

Interconnect Transport API –Issue 1 260

 261

to the threshold: 8069
8070

b. for AEVD - on any associated SEVDs. 8071
4. If threshold > 1, evd_wait should block4 if less than threshold number of Events and no notification 8072

events are5 8073
8074

b. for AEVD - on all SEVD queues of AEVD. 8075
5. Each arriving notification event must unblock at least one waiter6, but should unblock only one 8076

waiter. 8077
6. An arriving notification event can unblock as many waiters as there are Events available. 8078
7. it_evd_dequeue

a. for SEVD - on the SEVD queue.

a. for SEVD - on the SEVD queue.

 will return an Event if one exists regardless of waiters from 8079
8080

b. for AEVD with IT_EVD_DEQUEUE_NOTIFICATIONS set – the AEVD queue of 8081
IT_AEVD_NOTIFICATION_EVENTS. 8082

c. for AEVD with IT_EVD_DEQUEUE_NOTIFICATIONS cleared - any of its SEVDs7. 8083
Heuristic for wakeup of multiple waiters:

a. for SEVD - the SEVD queue.

 8084
Rules 5 and 6 in the EVD Rules (above) require that multiple waiters be awakened on every Notification 8085
Event because of the possibility of Notification coalescing. 8086
The following heuristic is recommended: In the Notification Handler, check the queue length8, and wake up 8087
that many waiters and no more. This limits the number of threads that wake up, and reduces the number that 8088
wake up and find no Event because some other threads(s) has consumed them. 8089

8090
8091
8092
8093

The handler algorithm should be something like:
evd_handler() {
 for (;;) {
 nToUnblock = min(nmore(),nwaiters());

3 This semantic mandates that events retain their notification status on the EVD (a “sticky notification” semantic).
However, the event that passes a threshold number of events should not be considered to be a notification event – only
the number of events on the SEVD(s) should be considered at the time it_evd_wait is called (if any SEVD has threshold
number of events on it, then it_evd_wait must return).
4 This terminology allows an Implementation that can support thresholds as well as other notification events in hardware
to do so while not mandating that those Implementations that cannot use suboptimal schemes.
5 with sevd_threshold = IT_THRESHOLD_DISABLED (= infinity), it_evd_wait will block if no notification event are
on EVD. If a notification event is on the EVD, it_evd_wait will return each event until the notification event is dequeued
- from then on, it_evd_wait *may* block.
6 Events that arrive when there are no blocked evd_wait *should* retain their *notification status*. Events that had
IT_SOLICITED_WAIT_FLAG or IT_NOTIFY_FLAG set when originally posted or completions with errors that arrive
at a time when no waiters are waiting will cause it_evd_wait to return when later called on the EVD. Implementation
can be *over-eager* and return an it_evd_wait without checking the *notification status* of events on EVD
7 If there is an event on any of the feeding SEVDs, it_evd_dequeue must return it regardless of the notification status of
the SEVD and even if the SEVD is disabled.
8 The queue length function is not Verbs compliant, but will be commonly available.

Interconnect Transport API –Issue 1 261

 262

 for (n = 0; n != nToUnblock; ++n) 8094
8095
8096
8097
8098
8099

} 8100
 8101
Additional issues:

 unblockWaiter();
 if (nwaiters() == 0) break;
 rearmHandler();
 if (nmore() == 0) break;
 }

 8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116

For IT_EVD_DEQUEUE_NOTIFICATION set, the Implementation should eventually select every feeding 8117
SEVD that has reached Notification status when generating the next AEVD Notification Event. 8118
For IT_EVD_DEQUEUE_NOTIFICATION cleared, the Implementation of it_evd_wait

An AEVD does not have a queue as such. Potentially, an AEVD can be implemented using a bit array with
an entry for each feeding SEVD. An SEVD bit "set" for an AEVD with IT_EVD_DEQUEUE_
NOTIFICATIONS set means that the SEVD Handle can be returned in an IT_AEVD_NOTIFICATION_
EVENT Event from the AEVD wait or dequeue. The SEVD bit "set" for an AEVD with
IT_EVD_DEQUEUE_NOTIFICATIONS cleared means that the actual underlying SEVD Event can be
returned from the AEVD wait or dequeue.

Ideally, the SEVD bit it cleared as soon as the SEVD is not in the Notification criteria. But it can be cleared
as soon as the SEVD becomes empty or, instead, only when both it becomes empty and there is direct (waiter
on SEVD) or indirect waiter (AEVD waiter or FD) on SEVD.

If SEVD is enabled, then an arriving SEVD Event that causes SEVD to reach Notification criteria or maintain
Notification criteria of the SEVD will set the SEVD bit for the AEVD.

It is recommended that the Implementation employ a "starvation-free" algorithm in returning Events via an
AEVD from underlying SEVDs. That is, the Implementation should ensure forward progress on all SEVDs
feeding an AEVD.

 should eventually 8119
select the first Event from every feeding SEVD that has reached Notification status. 8120
When the requested stream type is IT_ASYNC_AFF_EVENT_STREAM or IT_ASYNC_UNAFF_EVENT_ 8121
STREAM, the Implementation creates the requested EVD, and fills in the appropriate evd field in the 8122
associated it_ia_info_t structure for that IA. 8123

8124
8125
8126

it_evd_dequeue 8127
The Implementation should abide by the EVD rules defined in the it_evd_create

The Implementation shall not provide to the Consumer Un-affiliated and Affiliated Events that happened
before Consumer created SEVDs for Unaffiliated and Affiliated Event Stream. The Implementation can
provide Events that happened during SEVD creation time.

 section of this Implementers 8128
Guide. 8129

8130
8131
8132
8133

All synchronization issues between multiple waiters and/or dequeue-ers from the same Event Dispatcher
simultaneously are left to Implementation.

Implementation is not required to check that the Event structure that Consumer provides is sufficient to hold a
returned Event.

Interconnect Transport API –Issue 1 262

 263

it_evd_post_se 8134
8135
8136

it_evd_wait 8137
The Implementation should abide by the EVD rules defined in the it_evd_create

All the synchronization issues between multiple Consumer Contexts trying to post software Events to an
Event Dispatcher instance simultaneously are left to the Implementation.

 section of this Implementers 8138
Guide. 8139

8140
8141
8142
8143

8144
8145
8146

it_handle_t 8147
The definition of all object Handles is Implementation specific, but that all object Handles can be typecast to 8148
it_handle_t

All synchronization issues between multiple waiters and/or dequeue-ers from the same Event Dispatcher
simultaneously are left to Implementation.

Implementation is not required to check that the event structure that Consumer provides is sufficient to hold a
returned Event.

it_event_t
Each Event Stream has a designated contiguous range of Event numbers with common most-significant bits
(as masked by IT_EVENT_STREAM_MASK) representing the Event Stream.

 and vice versa. 8149

8150
8151
8152

8153
8154
8155
8156

8157
8158
8159

it_ia_info_t 8160
The 1000+ number range in the it_transport_type_t is intended to facilitate the short-term prototyping efforts 8161
of vendors who are developing new transports that work with the IT-API. A vendor that wishes to productize 8162
their prototyping effort should contact the ICSC in order to be assigned a permanent transport number in the 8163
< 1000 range. The Implementation is not responsible for ensuring that two different vendors utilizing the 8164
1000+ range of transport numbers do not collide. 8165
For the IB transport, when it_ep_disconnect

it_handoff
Once the IA is open, and until all processes close it, the ia_name and Spigot identifier need to reference the
same objects for all processes that are referencing the IA.

it_ia_create
The Implementation shall not provide to the Consumer Un-affiliated and Affiliated Events that happened
before Consumer created SEVDs for Unaffiliated and Affiliated Event Stream. The Implementation can
provide Events that happened during SEVD creation time.

it_ia_free
The Implementation should free the IT Objects in the reverse order of their construction in order to guarantee
that all underlying transport resources will be successfully freed.

 is called there are two possible underlying CM messages that the 8166
Private Data could travel with: DREQ, or REJ. The value of disconnect_private_data_len for IB should be 8167
the lesser of the maximum Private Data supported in a DREQ message and the maximum Private Data 8168
supported in a REJ message. 8169

Interconnect Transport API –Issue 1 263

 264

it_lmr_create 8170
8171
8172
8173

it_lmr_create 8174
it_lmr_create

If the EVD where the CM Request Events stream (IT_CM_REQ_EVENT_STREAM) is routed on the
passive side is full, then the Active side shall receive an IT_CM_MSG_CONN_NONPEER_REJECT_
EVENT Event with a reason code of IT_CN_REJ_TIMEOUT.

 can be implemented on the InfiniBand transport by using the Register Memory Region Verb. 8175
To allow subsequent calls to it_rmr_bind using this LMR, the Implementation must include the Enable 8176
Memory Window Binding input modifier, and also the Enable Local Write Access modifier. The latter is 8177
necessary because the subsequent it_rmr_bind call may request remote write access, and the InfiniBand 8178
Architecture specifies that local access is a pre-requisite for remote access. Note that the Register Memory 8179
Region Verb implicitly enables local access; so on InfiniBand transport the Consumer's setting of the 8180
IT_PRIV_LOCAL_READ flag in the privs argument is effectively ignored. 8181
The IT_LMR_FLAG_SHARED option can be implemented using the InfiniBand Register Memory Region 8182
and Register Shared Memory Region Verbs. The Implementation should search for a matching LMR. If a 8183
match is found, call the Register Shared Memory Region Verb; if not, call the Register Memory Region Verb. 8184
The Implementation should protect against race conditions between multiple Consumers and avoid calling 8185
Register Memory Region multiple times for the same memory region. 8186
See the advice under it_rmr_bind for comments concerning rmr_context and byte order. 8187

8188
8189
8190
8191
8192

it_lmr_query 8193
it_lmr_query

it_lmr_free
Beware that determining when it is permissible to unlock physical memory is tricky. The Implementation
must handle multiple LMRs with overlapping ranges, LMRs on different IAs with overlapping ranges, and
LMRs created in overlapping regions of shared memory by different Consumers. In addition, any of these
LMRs may have been created with the IT_LMR_FLAG_SHARED flag set.

 can be implemented on the InfiniBand transport by using the Query Memory Region Verb. The 8194
actual_addr and actual_length fields in params should be derived from the Actual Remote Protection Bounds 8195
returned by the Verb, because the Consumer will be most concerned with the degree of exposure of the 8196
region to remote Consumers. In addition, the Actual Remote Protection Bounds will be contained within the 8197
Actual Local Protection Bounds, because the remote bounds are rounded to 4K byte boundaries, and local 8198
bounds are rounded to page boundaries. This means the Consumer may safely use the returned actual_addr 8199
and actual_length as both local and remote bounds. 8200

8201
8202
8203
8204
8205
8206

it_lmr_sync_rdma_read
it_lmr_sync_rdma_write
There is no defined error code for the case where some portion of the local_segments array lies outside the
Consumer's valid address space. It is expected that the Implementation will signal the application with the
appropriate platform-dependent signal in this case, as would happen for any dereference of an invalid pointer.

Interconnect Transport API –Issue 1 264

 265

it_rmr_bind 8207
The rmr_context returned by it_rmr_bind is defined to be returned in network byte order, e.g. in big endian 8208
format. The intent is that no further reordering of the bytes of the rmr_context will be performed by either 8209
the local or remote Consumer, or the local or remote Implementation. When the remote Consumer passes the 8210
rmr_context to a call such as it_post_rdma_write, the Implementation of it_post_rdma_write will put the first 8211
byte of rmr_context on the network wire first, the second byte of rmr_context second, and so on. Thus, the 8212
Implementation of it_rmr_bind should return the rmr_context in the byte order that the IA expects to see on 8213
the wire, so that the IA may correctly interpret the incoming rmr_context. 8214

it_rmr_query 8215
In order to return correct values for the bound, lmr, addr, length, and privs attributes of params, the 8216
Implementation must track the completion status of Bind and Unbind operations, and the parameters 8217
associated with those operations. To do so, the Implementation can replace the Consumer's cookie passed to 8218
it_rmr_bind or it_rmr_unbind with an Implementation cookie that points to a structure. This structure stores 8219
the original Consumer cookie and all relevant parameters to the Bind or Unbind operation. In 8220
it_evd_dequeue, the Implementation would peek at the operation type of the dequeued Completion Event. If 8221
the type is a Bind operation (note that InfiniBand does not distinguish this from an Unbind operation), and the 8222
completion status is successful, then extract the Implementation cookie, and restore the Consumer's cookie. 8223
Read the structure, and copy the parameters to storage associated with the RMR object. The next 8224
it_rmr_query call can obtain its parameters from this storage. 8225

8226
8227

it_post_rdma_read 8228
The Implementation should avoid resource allocation as part of it_post_rdma_read

The rmr_context attribute could be handled similarly, or the Query Memory Region Verb could be used for
InfiniBand transport.

 to ensure that this 8229
operation is non-blocking and thread safe. This operation can not fail due to insufficient resources. All 8230
resource allocation required must be done at Endpoint creation time to ensure that all necessary resources are 8231
available at post time. 8232

8233
8234

it_post_rdma_write 8235
The Implementation should avoid resource allocation as part of it_post_rdma_write to ensure that this 8236
operation is non-blocking and thread safe. This operation can not fail due to insufficient resources. All 8237
resource allocation required must be done at Endpoint creation time to ensure that all necessary resources are 8238
available at post time. 8239

8240
8241

it_post_recv 8242
The Implementation should avoid resource allocation as part of it_post_recv to ensure that this operation is 8243
non-blocking and thread safe. This operation can not fail due to insufficient resources. All resource allocation 8244
required must be done at Endpoint creation time to ensure that all necessary resources are available at post 8245
time. 8246

The Implementation should support zero-copy data transfers and kernel bypass for the RDMA Read
operation.

The Implementation should support zero-copy data transfers and kernel bypass for the RDMA Write
operation.

Interconnect Transport API –Issue 1 265

 266

The Implementation should support zero-copy data transfers and kernel bypass for the Receive operation. 8247

it_post_recvfrom 8248
The Implementation should avoid resource allocation as part of it_post_recvfrom to ensure that this operation 8249
is non-blocking and thread safe. This operation can not fail due to insufficient resources. All resource 8250
allocation required must be done at Endpoint creation time to ensure that all necessary resources are available 8251
at post time. 8252

8253
8254

it_post_send 8255
The Implementation should avoid resource allocation as part of it_post_send to ensure that this operation is 8256
non-blocking and thread safe. This operation can not fail due to insufficient resources. All resource allocation 8257
required must be done at Endpoint creation time to ensure that all necessary resources are available at post 8258
time. 8259

8260

it_post_sendto 8261
The Implementation should avoid resource allocation as part of it_post_sendto to ensure that this operation is 8262
non-blocking and thread safe. This operation can not fail due to insufficient resources. All resource allocation 8263
required must be done at Endpoint creation time to ensure that all necessary resources are available at post 8264
time. 8265

8266
8267
8268

it_ud_service_request_handle_create 8269
The Implementation only needs to validate the components of the it_path_t structure that refer to local 8270
entities, specifically spigot_id, local_port_lid, and local_port_gid. 8271
When running over the InfiniBand transport, if the Consumer provides a Path to 8272
it_ud_service_request_handle_create

The Implementation should support zero-copy data transfers and kernel bypass for the ReceiveFrom
operation.

The Implementation should support zero-copy data transfers and kernel bypass for the Send operation.

For details on handling IT_ERR_INVALID_AH under InfiniBand see compliance statement o10-2.1.1
(IBTA 1.1 vol 1).

The Implementation should support zero-copy data transfers and kernel bypass for the SendTo operation.

 that contains a P_Key that is not in the HCA's P_Key table, the 8273
Implementation shall return IT_ERR_INVALID_SOURCE_PATH. 8274

8275
8276
8277
8278
8279
8280
8281

it_unaffiliated_event_t
Asynchronous Events should be copied from hardware resources into per-process software queues. The effect
of overflow of the software queue should be isolated to the owning process. When overflow of the Affiliated
Event EVD occurs, hardware resources should still be dequeued and discarded.

In the case of Unaffiliated Events, the underlying Implementation should copy every Event into each process-
specific queue.

Interconnect Transport API –Issue 1 266

 267

B. Header Files 8282

8283

8284
8285
8286
8287
8288
8289
8290
8291

 IT_ERR_ABORT, 8292
8293
8294

 IT_ERR_AEVD_NOT_ALLOWED, 8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327

B.1 it_api.h

#include "it_api_os_specific.h"

#define IN
#define OUT

typedef enum {
 IT_SUCCESS = 0,

 IT_ERR_ACCESS,
 IT_ERR_ADDRESS,

 IT_ERR_ASYNC_AFF_EVD_EXISTS,
 IT_ERR_ASYNC_UNAFF_EVD_EXISTS,
 IT_ERR_CANNOT_RESET,
 IT_ERR_CONN_QUAL_BUSY,
 IT_ERR_EP_TIMEWAIT,
 IT_ERR_EVD_BUSY,
 IT_ERR_EVD_QUEUE_FULL,
 IT_ERR_FAULT,
 IT_ERR_IA_CATASTROPHE,
 IT_ERR_INTERRUPT,
 IT_ERR_INVALID_ADDRESS,
 IT_ERR_INVALID_AEVD,
 IT_ERR_INVALID_AH,
 IT_ERR_INVALID_ATIMEOUT,
 IT_ERR_INVALID_CM_RETRY,
 IT_ERR_INVALID_CN_EST_FLAGS,
 IT_ERR_INVALID_CN_EST_ID,
 IT_ERR_INVALID_CONN_EVD,
 IT_ERR_INVALID_CONN_QUAL,
 IT_ERR_INVALID_CONVERSION,
 IT_ERR_INVALID_DTO_FLAGS,
 IT_ERR_INVALID_EP,
 IT_ERR_INVALID_EP_ATTR,
 IT_ERR_INVALID_EP_KEY,
 IT_ERR_INVALID_EP_STATE,
 IT_ERR_INVALID_EP_TYPE,
 IT_ERR_INVALID_EVD,
 IT_ERR_INVALID_EVD_STATE,
 IT_ERR_INVALID_EVD_TYPE,
 IT_ERR_INVALID_FLAGS,
 IT_ERR_INVALID_HANDLE,
 IT_ERR_INVALID_IA,

Interconnect Transport API –Issue 1 267

 268

8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381

 IT_ERR_INVALID_LENGTH,
 IT_ERR_INVALID_LISTEN,
 IT_ERR_INVALID_LMR,
 IT_ERR_INVALID_LTIMEOUT,
 IT_ERR_INVALID_MAJOR_VERSION,
 IT_ERR_INVALID_MASK,
 IT_ERR_INVALID_MINOR_VERSION,
 IT_ERR_INVALID_NAME,
 IT_ERR_INVALID_NETADDR,
 IT_ERR_INVALID_NUM_SEGMENTS,
 IT_ERR_INVALID_PDATA_LENGTH,
 IT_ERR_INVALID_PRIVS,
 IT_ERR_INVALID_PZ,
 IT_ERR_INVALID_QUEUE_SIZE,
 IT_ERR_INVALID_RECV_EVD,
 IT_ERR_INVALID_RECV_EVD_STATE,
 IT_ERR_INVALID_REQ_EVD,
 IT_ERR_INVALID_REQ_EVD_STATE,
 IT_ERR_INVALID_RETRY,
 IT_ERR_INVALID_RMR,
 IT_ERR_INVALID_RNR_RETRY,
 IT_ERR_INVALID_RTIMEOUT,
 IT_ERR_INVALID_SGID,
 IT_ERR_INVALID_SLID,
 IT_ERR_INVALID_SOFT_EVD,
 IT_ERR_INVALID_SOURCE_PATH,
 IT_ERR_INVALID_SPIGOT,
 IT_ERR_INVALID_THRESHOLD,
 IT_ERR_INVALID_UD_STATUS,
 IT_ERR_INVALID_UD_SVC,
 IT_ERR_INVALID_UD_SVC_REQ_ID,
 IT_ERR_LMR_BUSY,
 IT_ERR_MISMATCH_FD,
 IT_ERR_NO_CONTEXT,
 IT_ERR_NO_PERMISSION,
 IT_ERR_PAYLOAD_SIZE,
 IT_ERR_PDATA_NOT_SUPPORTED,
 IT_ERR_PZ_BUSY,
 IT_ERR_QUEUE_EMPTY,
 IT_ERR_RANGE,
 IT_ERR_RESOURCES,
 IT_ERR_RESOURCE_IRD,
 IT_ERR_RESOURCE_LMR_LENGTH,
 IT_ERR_RESOURCE_ORD,
 IT_ERR_RESOURCE_QUEUE_SIZE,
 IT_ERR_RESOURCE_RECV_DTO,
 IT_ERR_RESOURCE_REQ_DTO,
 IT_ERR_RESOURCE_RRSEG,
 IT_ERR_RESOURCE_RSEG,
 IT_ERR_RESOURCE_RWSEG,
 IT_ERR_RESOURCE_SSEG,
 IT_ERR_TIMEOUT_EXPIRED,
 IT_ERR_TOO_MANY_POSTS,
 IT_ERR_WAITER_LIMIT

Interconnect Transport API –Issue 1 268

 269

8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435

} it_status_t;

typedef uint32_t it_rmr_context_t;

#ifdef IT_32BIT

 typedef uint32_t it_length_t; /* a 32-bit platform */

#else

 typedef uint64_t it_length_t; /* a 64-bit platform */

#endif

typedef enum {
 IT_PRIV_NONE = 0x0001,
 IT_PRIV_READ_ONLY = 0x0002,
 IT_PRIV_REMOTE_READ = 0x0004,
 IT_PRIV_REMOTE_WRITE = 0x0008,
 IT_PRIV_REMOTE = 0x0010,
 IT_PRIV_ALL = 0x0020,
 IT_PRIV_DEFAULT = 0x0040
} it_mem_priv_t;

typedef enum {
 IT_LMR_FLAG_NONE = 0x0001,
 IT_LMR_FLAG_SHARED = 0x0002,
 IT_LMR_FLAG_NONCOHERENT = 0x0004
} it_lmr_flag_t;

typedef uint64_t it_ud_svc_req_identifier_t;

typedef uint64_t it_cn_est_identifier_t;

/* it_boolean_t.txt */

typedef enum {
 IT_FALSE = 0,
 IT_TRUE = 1
} it_boolean_t;

/* it_handle_t.txt */

typedef enum {
 IT_HANDLE_TYPE_ADDR,
 IT_HANDLE_TYPE_EP,
 IT_HANDLE_TYPE_EVD,
 IT_HANDLE_TYPE_IA,
 IT_HANDLE_TYPE_LISTEN,
 IT_HANDLE_TYPE_LMR,
 IT_HANDLE_TYPE_PZ,
 IT_HANDLE_TYPE_RMR,
 IT_HANDLE_TYPE_UD_SVC_REQ

Interconnect Transport API –Issue 1 269

 270

8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489

} it_handle_type_enum_t;

typedef void * it_handle_t;
#define IT_NULL_HANDLE ((it_handle_t) NULL)

typedef struct it_addr_handle_s * it_addr_handle_t;
typedef struct it_ep_handle_s * it_ep_handle_t;
typedef struct it_evd_handle_s * it_evd_handle_t;
typedef struct it_ia_handle_s * it_ia_handle_t;
typedef struct it_listen_handle_s * it_listen_handle_t;
typedef struct it_lmr_handle_s * it_lmr_handle_t;
typedef struct it_pz_handle_s * it_pz_handle_t;
typedef struct it_rmr_handle_s * it_rmr_handle_t;
typedef struct it_ud_svc_req_handle_s * it_ud_svc_req_handle_t;

/* it_conn_qual_t.txt */

/* Enumerates all the possible Connection Qualifier types
 supported by the API. */
typedef enum {

 /* IANA (TCP/UDP) Port Number */
 IT_IANA_PORT = 0x1,

 /* InfiniBand Service ID, as described in section 12.7.3 of
 Volume 1 of the InfiniBand specification. */
 IT_IB_SERVICEID = 0x2,

 /* VIA Connection Discriminator */
 IT_VIA_DISCRIMINATOR = 0x4

} it_conn_qual_type_t;

/* Defines the Connection Qualifier format for a VIA
 "connection discriminator".
 The API imposes a fixed upper bound on the discriminator size. */

#define IT_MAX_VIA_DISC_LEN 64

typedef struct {

 /* The total number of bytes in the array below */
 /* that are significant */
 uint16_t len;

 /* VIA connection discriminator, which is an array of bytes */
 unsigned char discriminator[IT_MAX_VIA_DISC_LEN];

} it_via_discriminator_t;

/* This defines the Connection Qualifier for InfiniBand,
 which is the 64-bit Service ID */
typedef uint64_t it_ib_serviceid_t;

Interconnect Transport API –Issue 1 270

 271

 8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516

 void * ptr; 8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543

/* This describes a Connection Qualifier suitable for input to
 several routines in the API. */
typedef struct {

 /* The discriminator for the union below. */
 it_conn_qual_type_t type;

 union {

 /* IANA Port Number, in network byte order */
 uint16_t port;

 /* InfiniBand Service ID, in network byte order */
 it_ib_serviceid_t serviceid;

 /* VIA connection discriminator. */
 it_via_discriminator_t discriminator;

 } conn_qual;

} it_conn_qual_t;

/* it_context_t.txt */

typedef union {

 uint64_t index;
} it_context_t;

/* it_dto_cookie_t.txt */

typedef uint64_t it_dto_cookie_t;

/* it_dto_status_t.txt */

typedef enum {
 IT_DTO_SUCCESS = 0,
 IT_DTO_ERR_LOCAL_LENGTH = 1,
 IT_DTO_ERR_LOCAL_EP = 2,
 IT_DTO_ERR_LOCAL_PROTECTION = 3,
 IT_DTO_ERR_FLUSHED = 4,
 IT_RMR_OPERATION_FAILED = 5,
 IT_DTO_ERR_BAD_RESPONSE = 6,
 IT_DTO_ERR_REMOTE_ACCESS = 7,
 IT_DTO_ERR_REMOTE_RESPONDER = 8,
 IT_DTO_ERR_TRANSPORT = 9,
 IT_DTO_ERR_RECEIVER_NOT_READY = 10,
 IT_DTO_ERR_PARTIAL_PACKET = 11
} it_dto_status_t;

/* it_dto_flags_t.txt */

Interconnect Transport API –Issue 1 271

 272

8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597

typedef enum
{
 /* If flag set, completion generates a local Event */
 IT_COMPLETION_FLAG = 0x01,

 /* If flag set, completion cause local Notification */
 IT_NOTIFY_FLAG = 0x02,

 /* If flag set, receipt of DTO at remote will cause
 Notification at remote */
 IT_SOLICITED_WAIT_FLAG = 0x04,

 /* If flag set, DTO processing will not start if
 previously posted RDMA Reads are not complete. */
 IT_BARRIER_FENCE_FLAG = 0x08,
} it_dto_flags_t;

/* it_net_addr_t.txt */

/* Enumerates all the possible Network Address types supported
 by the API. */
typedef enum {

 /* IPv4 address */
 IT_IPV4 = 0x1,

 /* IPv6 address */
 IT_IPV6 = 0x2,

 /* InfiniBand GID */
 IT_IB_GID = 0x3,

 /* VIA Network Address */
 IT_VIA_HOSTADDR = 0x4

} it_net_addr_type_t;

/* Defines the Network Address format for a VIA "host address".
 The API has a fixed upper bound on the maximum sized VIA
 address it will support */

#define IT_MAX_VIA_ADDR_LEN 64

typedef struct {

 /* The number of bytes in the array below that are significant */
 uint16_t len;

 /* VIA host address, which is an array of bytes */
 unsigned char hostaddr[IT_MAX_VIA_ADDR_LEN];

} it_via_net_addr_t;

Interconnect Transport API –Issue 1 272

 273

8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651

/* This defines the Network Address format for the InfiniBand
 GID, which is just an IPv6 address. */
typedef struct in6_addr it_ib_gid_t;

/* This describes a Network Address suitable for input to several
 routines in the API. */
typedef struct {

 /* The discriminator for the union below. */
 it_net_addr_type_t addr_type;

 union {

 /* IPv4 address, in network byte order */
 struct in_addr ipv4;

 /* IPv6 address, in network byte order */
 struct in6_addr ipv6;

 /* InfiniBand GID, in network byte order */
 it_ib_gid_t gid;

 /* VIA Network Address. */
 it_via_net_addr_t via;

 } addr;

} it_net_addr_t;

/* it_ia_info_t.txt */

/* Enumerates all the transport types supported by the API. */
typedef enum {

 /* InfiniBand Native Transport */
 IT_IB_TRANSPORT = 1,

 /* VIA host Interface using IP transport, supporting
 only the Reliable Delivery reliability level */
 IT_VIA_IP_TRANSPORT = 2,

 /* VIA host Interface, using Fibre Channel transport, supporting
 only the Reliable Delivery reliability level*/
 IT_VIA_FC_TRANSPORT = 3,

 /* Vendor-proprietary Transport */
 IT_VENDOR_TRANSPORT = 1000

} it_transport_type_t;

/* Transport Service Type definitions. */
typedef enum {

Interconnect Transport API –Issue 1 273

 274

8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705

 /* Reliable Connected Transport Service Type */
 IT_RC_SERVICE = 0x1,

 /* Unreliable Datagram Transport Service Type */
 IT_UD_SERVICE = 0x2,

} it_transport_service_type_t;

/* The following structure describes an Interface Adapter Spigot */
typedef struct {

 /* Spigot identifier */
 size_t spigot_id;

 /* Maximum sized Send operation for the RC service on
 this Spigot. */
 size_t max_rc_send_len;

 /* Maximum sized RDMA Read/Write operation for the RC service on
 this Spigot. */
 size_t max_rc_rdma_len;

 /* Maximum sized Send operation for the UD service on
 this Spigot. */
 size_t max_ud_send_len;

 /* Indicates whether the Spigot is online or offline. A IT_TRUE
 value means online. */
 it_boolean_t spigot_online;

 /* A mask indicating which Connection Qualifier types
 this IA supports for input to it_ep_connect and
 it_ud_service_request_handle_create. The bits in the
 mask are an inclusive OR of the values for Connection
 Qualifier types that this IA supports. */
 it_conn_qual_type_t active_side_conn_qual;

 /* A mask indicating which Connection Qualifier types this to
 it_listen_create. The bits in the mask are an inclusive OR
 of the values for Connection Qualifier types that this IA
 supports. */
 it_conn_qual_type_t passive_side_conn_qual;

 /* The number of Network Addresses associated with Spigot */
 size_t num_net_addr;

 /* Pointer to array of Network Address addresses. */
 it_net_addr_t* net_addr;

} it_spigot_info_t;

Interconnect Transport API –Issue 1 274

 275

8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759

/* The following structure is used to identify the vendor associated
 with an IA that uses the IB transport*/
typedef struct {

 /* The NodeInfo:VendorID as described in chapter 14
 of the IB spec. */
 uint32_t vendor : 24;

 /* The NodeInfo:DeviceID as described in chapter 14
 of the IB spec. */
 uint16_t device;

 /* The NodeInfo:Revision as described in chapter 14
 of the IB spec. */
 uint32_t revision;
} it_vendor_ib_t;

/* The following structure is used to identify the vendor
 associated with an IA that uses a VIA transport*/
typedef struct {
 /* The "Name" member of the VIP_NIC_ATTRIBUTES structure,
 as described in the VIA spec. */
 char name[64];

 /* The "HardwareVersion" member of the VIP_NIC_ATTRIBUTES
 structure, as described in the VIA spec. */
 unsigned long hardware;

 /* The "ProviderVersion" member of the VIP_NIC_ATTRIBUTES
 structure, as described in the VIA spec. */
 unsigned long provider;
} it_vendor_via_t;

/* The following structure is returned by the it_ia_query function */
typedef struct {

 /* Interface Adapter name, as specified in it_ia_create */
 char* ia_name;

 /* The major version number of the latest version of the
 IT-API that this IA supports. */
 uint32_t api_major_version;

 /* The minor version number of the latest version of the
 IT-API that this IA supports. */
 uint32_t api_minor_version;

 /* The major version number for the software being used to
 control this IA. The IT-API imposes no structure whatsoever
 on this number; its meaning is completely IA-dependent. */
 uint32_t sw_major_version;

 /* The minor version number for the software being used to
 control this IA. The IT-API imposes no structure whatsoever

Interconnect Transport API –Issue 1 275

 276

8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813

 on this number; its meaning is completely IA-dependent. */
 uint32_t sw_minor_version;

 /* The vendor associated with the IA. This information is useful
 if the Consumer wishes to do device-specific programming. This
 union is discriminated by transport_type. No vendor
 identification is provided for transports not listed below. */
 union {

 /* Used if transport_type is IT_IB_TRANSPORT */
 it_vendor_ib_t ib;

 /* Used if transport_type is IT_VIA_IP_TRANSPORT or
 IT_VIA_FC_TRANSPORT */
 it_vendor_via_t via;

 } vendor;

 /* The Interface Adapter and platform provide a data alignment hint
 to the Consumer to Help the Consumer align their data transfer
 buffers in a way the is optimal for the performance of the IA.
 For example, if the best throughput is obtained by aligning
 buffers to 128-byte boundaries, dto_alignment_hint will have the
 value 128. The Consumer may choose to ignore the alignment hint
 without any adverse functional impact. (There may be an adverse
 performance impact.) */
 uint32_t dto_alignment_hint;

 /* The transport type (e.g. InfiniBand) supported by Interface
 Adapter. An Interface Adapter supports precisely one transport
 type. */
 it_transport_type_t transport_type;

 /* The Transport Service Types supported by this IA. This is
 constructed by doing an inclusive OR of the Transport Service
 Type values.*/
 it_transport_service_type_t supported_service_types;

 /* Indicates whether work queues are resizable */
 it_boolean_t resizable_work_queue;

 /* Indicates whether the underlying transport used by this IA uses
 a three-way handshake for doing Connection establishment. Note
 that if the underlying transport supports a three-way handshake
 the Consumer can choose whether to use two handshakes or three
 when establishing the Connection. If the underlying transport
 supports a two-way handshake for establishing a Connection, the
 Consumer can only use two handshakes when establishing the
 Connection. */
 it_boolean_t three_way_handshake_support;

 /* Indicates whether Private Data is supported on Connection
 establishment or UD service resolution operations. */
 it_boolean_t private_data_support;

Interconnect Transport API –Issue 1 276

 277

8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867

 /* Indicates whether the max_message_size field in the
 IT_CM_REQ_CONN_REQUEST_EVENT is valid for this IA. */
 it_boolean_t max_message_size_support;

 /* Indicates whether the rdma_read_inflight_incoming field
 in the IT_CM_REQ_CONN_REQUEST_EVENT is valid for this IA. */
 it_boolean_t ird_support;

 /* Indicates whether the rdma_read_inflight_outgoing field
 in the IT_CM_REQ_CONN_REQUEST_EVENT is valid for this IA. */
 it_boolean_t ord_support;

 /* Indicates whether the IA generates IT_ASYNC_UNAFF_SPIGOT_ONLINE
 Events. See it_unaffiliated_event_t for details. */
 it_boolean_t spigot_online_support;

 /* Indicates whether the IA generates IT_ASYNC_UNAFF_SPIGOT_OFFLINE
 Events. See it_unaffiliated_event_t for details. */
 it_boolean_t spigot_offline_support;

 /* The maximum number of bytes of Private Data supported for the
 it_ep_connect routine. This will be less than or equal to
 IT_MAX_PRIV_DATA. */
 size_t connect_private_data_len;

 /* The maximum number of bytes of Private Data supported for the
 it_ep_accept routine. This will be less than or equal to
 IT_MAX_PRIV_DATA. */
 size_t accept_private_data_len;

 /* The maximum number of bytes of Private Data supported for the
 it_reject routine. This will be less than or equal to
 IT_MAX_PRIV_DATA. */
 size_t reject_private_data_len;

 /* The maximum number of bytes of Private Data supported for the
 it_ep_disconnect routine. This will be less than or equal to
 IT_MAX_PRIV_DATA. */
 size_t disconnect_private_data_len;

 /* The maximum number of bytes of Private Data supported for the
 it_ud_service_request_handle_create routine. This will be less
 than or equal to IT_MAX_PRIV_DATA. */
 size_t ud_req_private_data_len;

 /* The maximum number of bytes of Private Data supported for the
 it_ud_service_reply routine. This will be less than or equal to
 IT_MAX_PRIV_DATA. */
 size_t ud_rep_private_data_len;

 /* Specifies the number of Spigots associated with this Interface
 Adapter */
 size_t num_spigots;

Interconnect Transport API –Issue 1 277

 278

8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921

 /* An array of Spigot information data structures. The array
 contains num_spigots elements. */
 it_spigot_info_t* spigot_info;

 /* The Handle for the EVD that contains the affiliated async Event
 Stream. If no EVD contains the Affiliated Async Event Stream,
 this member will have the distinguished value IT_NULL_HANDLE */
 it_evd_handle_t affiliated_err_evd;

 /* The Handle for the EVD that contains the unaffiliated async Event
 Stream. If no EVD contains the Unaffiliated Async Event Stream,
 this member will have the distinguished value IT_NULL_HANDLE */
 it_evd_handle_t unaffiliated_err_evd;

} it_ia_info_t;

/* it_lmr_triplet_t.txt */

typedef struct {
 it_lmr_handle_t lmr;
 void *addr;
 it_length_t length;
} it_lmr_triplet_t;

/* it_path_t.txt */

/* This is the remote component of the Path information for the
 InfiniBand transport */
typedef struct {

 /* Partition Key, as defined in the REQ message for the IB
 CM protocol */
 uint16_t partition_key;

 /* Path Packet Payload MTU, as defined in the REQ message
 for the IB CM protocol */
 uint8_t path_mtu : 4;

 /* PacketLifeTime, as defined in the PathRecord in IB
 specification. This field is useful for Consumers that
 wish to use timeout values other than the default ones
 for doing Connection establishment. */
 uint8_t packet_lifetime : 6;

 /* Local Port LID, as defined in the REQ message for the IB
 CM protocol. The low order bits of this value also
 constitute the "Source Path Bits" that are used to
 create an Address Handle. */
 uint16_t local_port_lid;

 /* Remote Port LID, as defined in the REQ message for the
 IB CM protocol. This is also the "Destination LID" used

Interconnect Transport API –Issue 1 278

 279

8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975

 to create an Address Handle. */
 uint16_t remote_port_lid;

 /* Local Port GID in network byte order, as defined in the
 REQ message for the IB CM protocol. This is also used to
 determine the appropriate "Source GID Index" to be used
 when creating an Address Handle. */
 it_ib_gid_t local_port_gid;

 /* Remote Port GID in network byte order, as defined in the
 REQ message for the IB CM protocol. This is also the
 "Destination GID or MGID" used to create an Address
 Handle. */
 it_ib_gid_t remote_port_gid;

 /* Packet Rate, as defined in the REQ message for the IB CM
 protocol. This is also the "Maximum Static Rate" to be
 used when creating an Address Handle. */
 uint8_t packet_rate : 6;

 /* SL, as defined in the REQ message for the IB CM
 protocol. This is also the "Service Level" to be used
 when creating an Address Handle. */
 uint8_t sl : 4;

 /* Subnet Local, as defined in the REQ message for the IB
 CM protocol. When creating an Address Handle, setting
 this bit causes a GRH to be included as part of any
 Unreliable Datagram sent using the Address Handle. */
 uint8_t subnet_local : 1;

 /* Flow Label, as defined in the REQ message for the IB CM
 protocol. This is also the "Flow Label" to be used when
 creating an Address Handle. This is only valid if
 subnet_local is clear. */
 uint32_t flow_label : 20;

 /* Traffic Class, as defined in the REQ message for the IB
 CM protocol. This is also the "Traffic Class" to be
 used when creating an Address Handle. This is only
 valid if subnet_local is clear. */
 uint8_t traffic_class;

 /* Hop Limit, as defined in the REQ message for the IB CM
 protocol. This is also the "Hop Limit" to be used when
 creating an Address Handle. This is only valid if
 subnet_local is clear. */
 uint8_t hop_limit;

} it_ib_net_endpoint_t;

/* This is the remote component of the Path information for the
 VIA transport */
typedef it_via_net_addr_t it_via_net_endpoint_t;

Interconnect Transport API –Issue 1 279

 280

8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029

/* This is the Path data structure used by several routines in
 the API */
typedef struct {

 /* Identifier for the Spigot to be used on the local IA
 Note that this data structure is always used in a
 Context where the IA associated with the Spigot can be
 deduced. */
 size_t spigot_id;

 /* The transport-independent timeout parameter for how long
 to wait, in microseconds, before timing out a Connection
 establishment attempt using this Path. The timeout
 period for establishing a Connection
 can only be specified on the Active side; the timeout
 period can not be changed on the Passive side. */
 uint64_t timeout;

 /* The remote component of the Path */
 union {

 /* For use with InfiniBand */
 it_ib_net_endpoint_t ib;

 /* For use with VIA */
 it_via_net_endpoint_t via;

 } remote;

} it_path_t;

/* it_ep_attributes_t.txt */

typedef uint32_t it_ud_ep_id_t;
typedef uint32_t it_ud_ep_key_t;

typedef enum {
 IT_EP_PARAM_ALL = 0x00000001,
 IT_EP_PARAM_IA = 0x00000002,
 IT_EP_PARAM_SPIGOT = 0x00000004,
 IT_EP_PARAM_STATE = 0x00000008,
 IT_EP_PARAM_SERV_TYPE = 0x00000010,
 IT_EP_PARAM_PATH = 0x00000020,
 IT_EP_PARAM_PZ = 0x00000040,
 IT_EP_PARAM_REQ_SEVD = 0x00000080,
 IT_EP_PARAM_RECV_SEVD = 0x00000100,
 IT_EP_PARAM_CONN_SEVD = 0x00000200,
 IT_EP_PARAM_RDMA_RD_ENABLE = 0x00000400,
 IT_EP_PARAM_RDMA_WR_ENABLE = 0x00000800,
 IT_EP_PARAM_MAX_RDMA_READ_SEG = 0x00001000,
 IT_EP_PARAM_MAX_RDMA_WRITE_SEG = 0x00002000,
 IT_EP_PARAM_MAX_IRD = 0x00004000,

Interconnect Transport API –Issue 1 280

 281

9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083

 IT_EP_PARAM_MAX_ORD = 0x00008000,
 IT_EP_PARAM_EP_ID = 0x00010000,
 IT_EP_PARAM_EP_KEY = 0x00020000,
 IT_EP_PARAM_MAX_PAYLOAD = 0x00040000,
 IT_EP_PARAM_MAX_REQ_DTO = 0x00080000,
 IT_EP_PARAM_MAX_RECV_DTO = 0x00100000,
 IT_EP_PARAM_MAX_SEND_SEG = 0x00200000,
 IT_EP_PARAM_MAX_RECV_SEG = 0x00400000
} it_ep_param_mask_t;

/*
 * the it_ep_param_mask_t value in the comment beside or
 * following each attribute is the mask value used to select
 * the attribute in the it_ep_query and it_ep_modify calls
 */
typedef struct {
 it_boolean_t rdma_read_enable;
 /* IT_EP_PARAM_RDMA_RD_ENABLE */
 it_boolean_t rdma_write_enable;
 /* IT_EP_PARAM_RDMA_WR_ENABLE */
 size_t max_rdma_read_segments;
 /* IT_EP_PARAM_MAX_RDMA_READ_SEG */
 size_t max_rdma_write_segments;
 /* IT_EP_PARAM_MAX_RDMA_WRITE_SEG */
 uint32_t rdma_read_inflight_incoming;
 /* IT_EP_PARAM_MAX_IRD */
 uint32_t rdma_read_inflight_outgoing;
 /* IT_EP_PARAM_MAX_ORD */
} it_rc_only_attributes_t;

typedef struct {
 it_ud_ep_id_t ud_ep_id; /* IT_EP_PARAM_EP_ID */
 it_ud_ep_key_t ud_ep_key; /* IT_EP_PARAM_EP_KEY */
} it_remote_ep_info_t;

typedef struct {
 it_remote_ep_info_t ep_info;

} it_ud_only_attributes_t;

typedef union {
 it_rc_only_attributes_t rc;
 it_ud_only_attributes_t ud;
} it_service_attributes_t;

typedef struct {
 size_t max_dto_payload_size; /* IT_EP_PARAM_MAX_PAYLOAD */
 size_t max_request_dtos; /* IT_EP_PARAM_MAX_REQ_DTO */
 size_t max_recv_dtos; /* IT_EP_PARAM_MAX_RECV_DTO */
 size_t max_send_segments; /* IT_EP_PARAM_MAX_SEND_SEG */
 size_t max_recv_segments; /* IT_EP_PARAM_MAX_RECV_SEG */

 it_service_attributes_t srv;
} it_ep_attributes_t;

Interconnect Transport API –Issue 1 281

 282

9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137

/* it_event_t.txt */

#define IT_EVENT_STREAM_MASK 0xff000
#define IT_TIMEOUT_INFINITE ((uint64_t)(-1))

typedef enum
{

/* DTO Completion Event Stream */
IT_DTO_EVENT_STREAM = 0x00000,
IT_DTO_SEND_CMPL_EVENT = 0x00001,
IT_DTO_RC_RECV_CMPL_EVENT = 0x00002,
IT_DTO_UD_RECV_CMPL_EVENT = 0x00003,
IT_DTO_RDMA_WRITE_CMPL_EVENT = 0x00004,
IT_DTO_RDMA_READ_CMPL_EVENT = 0x00005,
IT_RMR_BIND_CMPL_EVENT = 0x00006,

/*
 * Communication Management Request Event Stream
 */
IT_CM_REQ_EVENT_STREAM = 0x01000,
IT_CM_REQ_CONN_REQUEST_EVENT = 0x01001,
IT_CM_REQ_UD_SERVICE_REQUEST_EVENT = 0x01002,

/*
 * Communication Management Message Event Stream
 */
IT_CM_MSG_EVENT_STREAM = 0x02000,
IT_CM_MSG_CONN_ACCEPT_ARRIVAL_EVENT = 0x02001,
IT_CM_MSG_CONN_ESTABLISHED_EVENT = 0x02002,
IT_CM_MSG_CONN_DISCONNECT_EVENT = 0x02003,
IT_CM_MSG_CONN_PEER_REJECT_EVENT = 0x02004,
IT_CM_MSG_CONN_NONPEER_REJECT_EVENT = 0x02005,
IT_CM_MSG_CONN_BROKEN_EVENT = 0x02006,
IT_CM_MSG_UD_SERVICE_REPLY_EVENT = 0x02007,

/* Asynchronous Affiliated Event Stream */
IT_ASYNC_AFF_EVENT_STREAM = 0x04000,
IT_ASYNC_AFF_SEVD_ENQUEUE_FAILURE = 0x04001,
IT_ASYNC_AFF_EP_FAILURE = 0x04002,
IT_ASYNC_AFF_EP_BAD_TRANSPORT_OPCODE = 0x04003,
IT_ASYNC_AFF_EP_LOCAL_ACCESS_VIOLATION = 0x04004,
IT_ASYNC_AFF_EP_REQ_DROPPED = 0x04005,
IT_ASYNC_AFF_EP_RDMAW_ACCESS_VIOLATION = 0x04006,
IT_ASYNC_AFF_EP_RDMAW_CORRUPT_DATA = 0x04007,
IT_ASYNC_AFF_EP_RDMAR_ACCESS_VIOLATION = 0x04008,

/* Asynchronous Non-Affiliated Event Stream */

 IT_ASYNC_UNAFF_EVENT_STREAM = 0x08000,
 IT_ASYNC_UNAFF_IA_CATASTROPHIC_ERROR = 0x08001,

IT_ASYNC_UNAFF_SPIGOT_ONLINE = 0x08002,
IT_ASYNC_UNAFF_SPIGOT_OFFLINE = 0x08003,
IT_ASYNC_UNAFF_SEVD_ENQUEUE_FAILURE = 0x08004,

Interconnect Transport API –Issue 1 282

 283

 9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177

 IT_CN_REJ_STALE_CONN = 3, 9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191

/* Software Event Stream */
IT_SOFTWARE_EVENT_STREAM = 0x10000,
IT_SOFTWARE_EVENT = 0x10001,

/* AEVD Notification Event Stream */
IT_AEVD_NOTIFICATION_EVENT_STREAM = 0x20000,
IT_AEVD_NOTIFICATION_EVENT = 0x20001

} it_event_type_t;

/* it_aevd_notification_event_t.txt */

typedef struct {
 it_event_type_t event_number;
 it_evd_handle_t aevd;

 it_evd_handle_t sevd;
} it_aevd_notification_event_t;

/* it_affiliated_event_t.txt */

typedef struct {
 it_event_type_t event_number;
 it_evd_handle_t evd;

 union {
 it_evd_handle_t sevd;
 it_ep_handle_t ep;
 } u;
} it_affiliated_event_t;

/* it_cm_msg_events.txt */

#define IT_MAX_PRIV_DATA 256

typedef enum {
 IT_CN_REJ_OTHER = 0,
IT_CN_REJ_TIMEOUT = 1,
 IT_CN_REJ_BAD_PATH = 2,

 IT_CN_REJ_BAD_ORD = 4,
 IT_CN_REJ_RESOURCES = 5
 } it_conn_reject_code_t;

typedef struct {

it_event_type_t event_number;
it_evd_handle_t evd;
it_cn_est_identifier_t cn_est_id;
it_ep_handle_t ep;
uint32_t rdma_read_inflight_incoming;
uint32_t rdma_read_inflight_outgoing;
it_path_t dst_path;
it_conn_reject_code_t reject_reason_code;

Interconnect Transport API –Issue 1 283

 284

9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245

unsigned char private_data[IT_MAX_PRIV_DATA];
it_boolean_t private_data_present;

} it_connection_event_t;

typedef enum {

IT_UD_SVC_EP_INFO_VALID = 0,
IT_UD_SVC_ID_NOT_SUPPORTED = 1,
IT_UD_SVC_REQ_REJECTED = 2,
IT_UD_NO_EP_AVAILABLE = 3,
IT_UD_REQ_REDIRECTED = 4

} it_ud_svc_req_status_t;

typedef struct {

it_event_type_t event_number;
it_evd_handle_t evd;
it_ud_svc_req_handle_t ud_svc;
it_ud_svc_req_status_t status;
it_remote_ep_info_t ep_info;
it_path_t dst_path;
unsigned char private_data[IT_MAX_PRIV_DATA];
it_boolean_t private_data_present;

} it_ud_svc_reply_event_t;

/* it_cm_req_events.txt */

typedef struct {
 it_event_type_t event_number;
 it_evd_handle_t evd;
 it_cn_est_identifier_t cn_est_id;
 it_conn_qual_t conn_qual;
 it_net_addr_t source_addr;
 size_t spigot_id;
 uint32_t max_message_size;
 uint32_t rdma_read_inflight_incoming;
 uint32_t rdma_read_inflight_outgoing;
 unsigned char private_data[IT_MAX_PRIV_DATA];
 it_boolean_t private_data_present;
} it_conn_request_event_t;

typedef struct {

it_event_type_t event_number;
it_evd_handle_t evd;
it_ud_svc_req_identifier_t ud_svc_req_id;
it_conn_qual_t conn_qual;
it_net_addr_t source_addr;
size_t spigot_id;
unsigned char private_data[IT_MAX_PRIV_DATA];
it_boolean_t private_data_present;

} it_ud_svc_request_event_t;

/* it_dto_events.txt */

typedef enum {

Interconnect Transport API –Issue 1 284

 285

IB_UD_IB_GRH_PRESENT = 0x01 9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296

 * The following two union elements are 9297
9298
9299

} it_dto_ud_flags_t;

typedef struct {

it_event_type_t event_number;
it_evd_handle_t evd;
it_ep_handle_t ep;
it_dto_cookie_t cookie;
it_dto_status_t dto_status;
uint32_t transferred_length;

} it_dto_cmpl_event_t;

typedef struct {
 it_event_type_t event_number;
 it_evd_handle_t evd;
 it_ep_handle_t ep;
 it_dto_cookie_t cookie;
 it_dto_status_t dto_status;

uint32_t transferred_length;
it_dto_ud_flags_t flags;
it_ud_ep_id_t ud_ep_id;
it_path_t src_path;

} it_all_dto_cmpl_event_t;

/* it_software_event_t.txt */

typedef struct {
 it_event_type_t event_number;
 it_evd_handle_t evd;
 void * data;
} it_software_event_t;

/* it_unaffiliated_event_t.txt */

typedef struct {
 it_event_type_t event_number;
 it_evd_handle_t evd;
 it_ia_handle_t ia;
 size_t spigot_id;
} it_unaffiliated_event_t;

/* it_event_t.txt */

typedef struct {
 it_event_type_t event_number;
 it_evd_handle_t evd;
} it_any_event_t;

typedef union
{

/*

 * available for programming convenience.
 *

Interconnect Transport API –Issue 1 285

 286

 * The event_number may be used to determine the 9300
9301
9302

 */ 9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345

 */ 9346
9347
9348
9349
9350
9351
9352
9353

 * it_event_type_t of any event. it_any_event_t
 * allows the evd to be determined as well.

it_event_type_t event_number;
it_any_event_t any;

/*
 * The remaining union elements correspond to
 * the various it_event_type_t types.
 */

/*
 * The following two Event structures
 * support the IT_DTO_EVENT_STREAM Event Stream.
 *
 * it_dto_cmpl_event_t supports
 * only the following events:
 * IT_DTO_SEND_CMPL_EVENT
 * IT_DTO_RC_RECV_CMPL_EVENT
 * IT_DTO_RDMA_WRITE_CMPL_EVENT
 * IT_DTO_RDMA_READ_CMPL_EVENT
 * IT_RMR_BIND_CMPL_EVENT
 *
 * it_all_dto_cmpl_event_t supports all
 * possible DTO and RMR events:
 * IT_DTO_SEND_CMPL_EVENT
 * IT_DTO_RC_RECV_CMPL_EVENT
 * IT_DTO_UD_RECV_CMPL_EVENT
 * IT_DTO_RDMA_WRITE_CMPL_EVENT
 * IT_DTO_RDMA_READ_CMPL_EVENT
 * IT_RMR_BIND_CMPL_EVENT
 */
it_dto_cmpl_event_t dto_cmpl;
it_all_dto_cmpl_event_t all_dto_cmpl;

/*
 * The following two Event structures
 * support the IT_CM_REQ_EVENT_STREAM Event
 * stream:
 *
 * it_conn_request_event_t supports:
 * IT_CM_REQ_CONN_REQUEST_EVENT
 *
 * it_ud_svc_request_event_t supports:
 * IT_CM_REQ_UD_SERVICE_REQUEST_EVENT

it_conn_request_event_t conn_req;
it_ud_svc_request_event_t ud_svc_request;

/*
 * The following two Event structures
 * support the IT_CM_MSG_EVENT_STREAM Event
 * stream:

Interconnect Transport API –Issue 1 286

 287

9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407

 *
 * it_connection_event_t supports:
 * IT_CM_MSG_CONN_ACCEPT_ARRIVAL_EVENT
 * IT_CM_MSG_CONN_ESTABLISHED_EVENT
 * IT_CM_MSG_CONN_PEER_REJECT_EVENT
 * IT_CM_MSG_CONN_NONPEER_REJECT_EVENT
 * IT_CM_MSG_CONN_DISCONNECT_EVENT
 * IT_CM_MSG_CONN_BROKEN_EVENT
 *
 * it_ud_svc_reply_event_t supports:
 * IT_CM_MSG_UD_SERVICE_REPLY_EVENT
 */
it_connection_event_t conn;
it_ud_svc_reply_event_t ud_svc_reply;

/*
 * it_affiliated_event_t supports
 * the following Event Stream:
 * IT_ASYNC_AFF_EVENT_STREAM
 */
it_affiliated_event_t aff_async;

/*
 * it_unaffiliated_event_t supports
 * the following Event Stream:
 * IT_ASYNC_UNAFF_EVENT_STREAM
 */
it_unaffiliated_event_t unaff_async;

/*
 * it_software_event_t supports
 * the following Event Stream:
 * IT_SOFTWARE_EVENT_STREAM
 */
it_software_event_t sw;

/*
 * it_aevd_notification_event_t supports
 * the following Event Stream:
 * IT_AEVD_NOTIFICATION_EVENT_STREAM
 */
it_aevd_notification_event_t aevd_notify;

} it_event_t;

/* it_ep_state_t.txt */
typedef enum
{

IT_EP_STATE_UNCONNECTED = 0,
IT_EP_STATE_ACTIVE1_CONNECTION_PENDING = 1,
IT_EP_STATE_ACTIVE2_CONNECTION_PENDING = 2,
IT_EP_STATE_PASSIVE_CONNECTION_PENDING = 3,
IT_EP_STATE_CONNECTED = 4,
IT_EP_STATE_NONOPERATIONAL = 5

Interconnect Transport API –Issue 1 287

 288

9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461

} it_ep_state_rc_t;

typedef enum
{

IT_EP_STATE_UD_NONOPERATIONAL = 0,
IT_EP_STATE_UD_OPERATIONAL = 1

} it_ep_state_ud_t;

typedef union
{

it_ep_state_rc_t rc;
it_ep_state_ud_t ud;

} it_ep_state_t;

/* it_dg_remote_ep_addr_t.txt */

typedef struct
{

it_addr_handle_t addr;
it_remote_ep_info_t ep_info;

} it_ib_ud_addr_t;

typedef enum
{

IT_DG_TYPE_IB_UD
} it_dg_type_t;

typedef struct
{

it_dg_type_t type; /* IT_DG_TYPE_IB_UD */
union {

it_ib_ud_addr_t ud;
} addr;

} it_dg_remote_ep_addr_t;

typedef enum {
 IT_AH_PATH_COMPLETE = 0x1
} it_ah_flags_t;

typedef enum {

IT_ADDR_PARAM_ALL = 0x0001,
 IT_ADDR_PARAM_IA = 0x0002,
 IT_ADDR_PARAM_PZ = 0x0004,
 IT_ADDR_PARAM_PATH = 0x0008
} it_addr_param_mask_t;

typedef struct {

it_ia_handle_t ia; /* IT_ADDR_PARAM_IA */
it_pz_handle_t pz; /* IT_ADDR_PARAM_PZ */
it_path_t path; /* IT_ADDR_PARAM_PATH */

} it_addr_param_t;

typedef struct {

Interconnect Transport API –Issue 1 288

 289

 9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504

 9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515

 /* Remote CM Response Timeout, as defined in the REQ
 message for the IB CM protocol */
 uint8_t remote_cm_timeout : 5;

 /* Local CM Response Timeout, as defined in the REQ
 message for the IB CM protocol */
 uint8_t local_cm_timeout : 5;

 /* Retry Count, as defined in the REQ message for the
 IB CM protocol */
 uint8_t retry_count : 3;

 /* RNR Retry Count, as defined in the REQ message for
 the IB CM protocol */
 uint8_t rnr_retry_count : 3;

 /* Max CM retries, as defined in the REQ message for
 the IB CM protocol */
 uint8_t max_cm_retries : 4;

 /* Local ACK Timeout, as defined in the REQ message
 for the IB CM protocol */
 uint8_t local_ack_timeout : 5;

} it_ib_conn_attributes_t;

typedef struct {

 /* VIA currently has no transport-specific connection
 attributes */

} it_via_conn_attributes_t;

typedef union {
 it_ib_conn_attributes_t ib;
 it_via_conn_attributes_t via;
} it_conn_attributes_t;

typedef enum {

IT_CONNECT_FLAG_TWO_WAY = 0x0001,
IT_CONNECT_FLAG_THREE_WAY = 0x0002

} it_cn_est_flags_t;

typedef struct {
it_ia_handle_t ia; /* IT_EP_PARAM_IA */
size_t spigot_id; /* IT_EP_PARAM_SPIGOT */
it_ep_state_t ep_state; /* IT_EP_PARAM_STATE */
it_transport_service_type_t

service_type; /* IT_EP_PARAM_SERV_TYPE */
it_path_t dst_path; /* IT_EP_PARAM_PATH */
it_pz_handle_t pz; /* IT_EP_PARAM_PZ */
it_evd_handle_t request_sevd; /* IT_EP_PARAM_REQ_SEVD */
it_evd_handle_t recv_sevd; /* IT_EP_PARAM_RECV_SEVD */

Interconnect Transport API –Issue 1 289

 290

it_evd_handle_t connect_sevd; /* IT_EP_PARAM_CONN_SEVD */ 9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543

 IT_EVD_PARAM_FD = 0x000080, 9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569

it_ep_attributes_t attr; /* see it_ep_attributes_t
 for mask flags for attr */
} it_ep_param_t;

typedef enum {
 IT_EP_NO_FLAG = 0x00,
 IT_EP_REUSEADDR = 0x01
} it_ep_rc_creation_flags_t;

#define IT_THRESHOLD_DISABLE 0

typedef enum {

IT_EVD_DEQUEUE_NOTIFICATIONS = 0x01,
IT_EVD_CREATE_FD = 0x02,
IT_EVD_OVERFLOW_DEFAULT = 0x04,
IT_EVD_OVERFLOW_NOTIFY = 0x08,
IT_EVD_OVERFLOW_AUTO_RESET = 0x10

} it_evd_flags_t;

typedef enum {
 IT_EVD_PARAM_ALL = 0x000001,
 IT_EVD_PARAM_IA = 0x000002,
 IT_EVD_PARAM_EVENT_NUMBER = 0x000004,
 IT_EVD_PARAM_FLAG = 0x000008,
 IT_EVD_PARAM_QUEUE_SIZE = 0x000010,
 IT_EVD_PARAM_THRESHOLD = 0x000020,
 IT_EVD_PARAM_AEVD_HANDLE = 0x000040,

 IT_EVD_PARAM_BOUND = 0x000100,
 IT_EVD_PARAM_ENABLED = 0x000200,
 IT_EVD_PARAM_OVERFLOWED = 0x000400
} it_evd_param_mask_t;

typedef struct {
 it_ia_handle_t ia; /* IT_EVD_PARAM_IA */
 it_event_type_t event_number; /* IT_EVD_PARAM_EVENT_NUMBER*/
 it_evd_flags_t evd_flag; /* IT_EVD_PARAM_FLAG */
 size_t sevd_queue_size; /* IT_EVD_PARAM_QUEUE_SIZE */
 size_t sevd_threshold; /* IT_EVD_PARAM_THRESHOLD */
 it_evd_handle_t aevd; /* IT_EVD_PARAM_AEVD_HANDLE*/
 int fd; /* IT_EVD_PARAM_FD */
 it_boolean_t evd_bound; /* IT_EVD_PARAM_BOUND */
 it_boolean_t evd_enabled; /* IT_EVD_PARAM_ENABLED */
 it_boolean_t evd_overflowed; /* IT_EVD_PARAM_OVERFLOWED */
} it_evd_param_t;

typedef struct {

 /* Most recent major version number of the IT-API supported by the
 Interface */
 uint32_t major_version;

 /* Most recent minor version number of the IT-API supported by the

Interconnect Transport API –Issue 1 290

 291

 Interface */ 9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598

size_t spigot_id; /* IT_LISTEN_PARAM_SPIGOT_ID */ 9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623

 uint32_t minor_version;

 /* The transport that the Interface uses, as defined in
 it_ia_info_t. */
 it_transport_type_t transport_type;

 /* The name of the Interface, suitable for input to it_ia_create.
 The name is a string of maximum length IT_INTERFACE_NAME_SIZE,
 including the terminating NULL character. */
 char name[IT_INTERFACE_NAME_SIZE];

} it_interface_t;

typedef enum {

IT_LISTEN_NO_FLAG = 0x0000,
IT_LISTEN_CONN_QUAL_INPUT = 0x0001

} it_listen_flags_t;

typedef enum {
 IT_LISTEN_PARAM_ALL = 0x0001,
 IT_LISTEN_PARAM_IA_HANDLE = 0x0002,
 IT_LISTEN_PARAM_SPIGOT_ID = 0x0004,
 IT_LISTEN_PARAM_CONNECT_EVD = 0x0008,
 IT_LISTEN_PARAM_CONN_QUAL = 0x0010
} it_listen_param_mask_t;

typedef struct {

it_ia_handle_t ia_handle; /* IT_LISTEN_PARAM_IA_HANDLE */

it_evd_handle_t connect_evd; /* IT_LISTEN_PARAM_CONNECT_EVD*/
it_conn_qual_t connect_qual;/* IT_LISTEN_PARAM_CONN_QUAL */

} it_listen_param_t;

typedef enum {
 IT_LMR_PARAM_ALL = 0x000001,
 IT_LMR_PARAM_IA = 0x000002,
 IT_LMR_PARAM_PZ = 0x000004,
 IT_LMR_PARAM_ADDR = 0x000008,
 IT_LMR_PARAM_LENGTH = 0x000010,
 IT_LMR_PARAM_MEM_PRIV = 0x000020,
 IT_LMR_PARAM_FLAG = 0x000040,
 IT_LMR_PARAM_SHARED_ID = 0x000080,
 IT_LMR_PARAM_RMR_CONTEXT = 0x000100,
 IT_LMR_PARAM_ACTUAL_ADDR = 0x000200,
 IT_LMR_PARAM_ACTUAL_LENGTH = 0x000400
} it_lmr_param_mask_t;

typedef struct {

it_ia_handle_t ia; /* IT_LMR_PARAM_IA */
it_pz_handle_t pz; /* IT_LMR_PARAM_PZ */
void *addr; /* IT_LMR_PARAM_ADDR */
it_length_t length; /* IT_LMR_PARAM_LENGTH */
it_mem_priv_t privs; /* IT_LMR_PARAM_MEM_PRIV */

Interconnect Transport API –Issue 1 291

 292

it_lmr_flag_t flags; /* IT_LMR_PARAM_FLAG */ 9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656

 it_boolean_t bound; /* IT_RMR_PARAM_BOUND */ 9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677

uint32_t shared_id; /* IT_LMR_PARAM_SHARED_ID*/
it_rmr_context_t rmr_context; /* IT_LMR_PARAM_RMR_CONTEXT */
void *actual_addr; /* IT_LMR_PARAM_ACTUAL_ADDR */
it_length_t actual_length; /*IT_LMR_PARAM_ACTUAL_LENGTH*/

} it_lmr_param_t;

typedef uint64_t it_rdma_addr_t;

typedef enum {

IT_PZ_PARAM_ALL = 0x01,
IT_PZ_PARAM_IA = 0x02

} it_pz_param_mask_t;

typedef struct {

it_ia_handle_t ia; /* IT_PZ_PARAM_IA */
} it_pz_param_t;

typedef enum {

IT_RMR_PARAM_ALL = 0x000001,
IT_RMR_PARAM_IA = 0x000002,
IT_RMR_PARAM_PZ = 0x000004,
IT_RMR_PARAM_BOUND = 0x000008,
IT_RMR_PARAM_LMR = 0x000010,
IT_RMR_PARAM_ADDR = 0x000020,
IT_RMR_PARAM_LENGTH = 0x000040,
IT_RMR_PARAM_MEM_PRIV = 0x000080,
IT_RMR_PARAM_RMR_CONTEXT = 0x000100

} it_rmr_param_mask_t;

typedef struct {
 it_ia_handle_t ia; /* IT_RMR_PARAM_IA */
 it_pz_handle_t pz; /* IT_RMR_PARAM_PZ */

 it_lmr_handle_t lmr; /* IT_RMR_PARAM_LMR */
 void * addr; /* IT_RMR_PARAM_ADDR */
 it_length_t length; /* IT_RMR_PARAM_LENGTH */
 it_mem_priv_t privs; /* IT_RMR_PARAM_MEM_PRIV */
 it_rmr_context_t rmr_context; /* IT_RMR_PARAM_RMR_CONTEXT */
} it_rmr_param_t;

typedef enum {

IT_UD_PARAM_ALL = 0x00000001,
 IT_UD_PARAM_IA_HANDLE = 0x00000002,
 IT_UD_PARAM_REQ_ID = 0x00000004,
 IT_UD_PARAM_REPLY_EVD = 0x00000008,
 IT_UD_PARAM_CONN_QUAL = 0x00000010,
 IT_UD_PARAM_DEST_PATH = 0x00000020,
 IT_UD_PARAM_PRIV_DATA = 0x00000040,
 IT_UD_PARAM_PRIV_DATA_LENGTH = 0x00000080
} it_ud_svc_req_param_mask_t;

typedef struct {

it_ia_handle_t ia; /* IT_UD_PARAM_IA_HANDLE */

Interconnect Transport API –Issue 1 292

 293

 uint32_t request_id; /* IT_UD_PARAM_REQ_ID */ 9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700

IN it_addr_param_mask_t mask, 9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716

it_status_t it_ep_accept(9717
9718
9719

 it_evd_handle_t reply_evd; /* IT_UD_PARAM_REPLY_EVD */
 it_conn_qual_t conn_qual; /* IT_UD_PARAM_CONN_QUAL */
 it_path_t destination_path; /* IT_UD_PARAM_DEST_PATH */
 unsigned char private_data[IT_MAX_PRIV_DATA];
 /* IT_UD_PARAM_PRIV_DATA */
 size_t private_data_length; /* IT_UD_PARAM_PRIV_DATA_LEN */
} it_ud_svc_req_param_t;

it_status_t it_address_handle_create(

IN it_pz_handle_t pz_handle,
 IN const it_path_t *destination_path,
 IN it_ah_flags_t ah_flags,
 OUT it_addr_handle_t *addr_handle

);

it_status_t it_address_handle_free(
 IN it_addr_handle_t addr_handle
);

it_status_t it_address_handle_modify(
 IN it_addr_handle_t addr_handle,

IN const it_addr_param_t *params
);

it_status_t it_address_handle_query(

IN it_addr_handle_t addr_handle,
IN it_addr_param_mask_t mask,
OUT it_addr_param_t *params

);

it_status_t it_convert_net_addr(

IN const it_net_addr_t* source_addr,
IN it_net_addr_type_t addr_type,
OUT it_net_addr_t* destination_addr

);

IN it_ep_handle_t ep_handle,
IN it_cn_est_identifier_t cn_est_id,
IN const unsigned char *private_data, 9720

9721
9722
9723
9724
9725
9726
9727
9728

IN it_cn_est_flags_t cn_est_flags, 9729
9730
9731

IN size_t private_data_length
);

 it_status_t it_ep_connect(

IN it_ep_handle_t ep_handle,
IN const it_path_t* path,
IN const it_conn_attributes_t* conn_attr,
IN const it_conn_qual_t* connect_qual,

IN const unsigned char* private_data,
IN size_t private_data_length

Interconnect Transport API –Issue 1 293

 294

); 9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758

 IN it_evd_handle_t recv_sevd_handle, 9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785

it_status_t it_ep_disconnect (

IN it_ep_handle_t ep_handle,
IN const unsigned char *private_data,
IN size_t private_data_length

);

it_status_t it_ep_free(

IN it_ep_handle_t ep_handle
);

it_status_t it_ep_modify(

IN it_ep_handle_t ep_handle,
IN it_ep_param_mask_t mask,
IN const it_ep_attributes_t *ep_attr

);

it_status_t it_ep_query(

IN it_ep_handle_t ep_handle,
IN it_ep_param_mask_t mask,
OUT it_ep_param_t *params

);

it_status_t it_ep_rc_create (
 IN it_pz_handle_t pz_handle,
 IN it_evd_handle_t request_sevd_handle,

 IN it_evd_handle_t connect_sevd_handle,
 IN it_ep_rc_creation_flags_t flags,
 IN const it_ep_attributes_t *ep_attr,
 OUT it_ep_handle_t *ep_handle
);

it_status_t it_ep_reset(

IN it_ep_handle_t ep_handle
);

it_status_t it_ep_ud_create (
 IN it_pz_handle_t pz_handle,
 IN it_evd_handle_t request_sevd_handle,
 IN it_evd_handle_t recv_sevd_handle,
 IN const it_ep_attributes_t *ep_attr,
 IN size_t spigot_id,
 OUT it_ep_handle_t *ep_handle

);

it_status_t it_evd_create (

IN it_ia_handle_t ia_handle,
IN it_event_type_t event_number,
IN it_evd_flags_t evd_flag,
IN size_t sevd_queue_size,
IN size_t sevd_threshold,

Interconnect Transport API –Issue 1 294

 295

9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839

IN it_evd_handle_t aevd_handle,
OUT it_evd_handle_t *evd_handle,
OUT int *fd

);

 it_status_t it_evd_dequeue(

IN it_evd_handle_t evd_handle,
OUT it_event_t *event

);

it_status_t it_evd_free(

IN it_evd_handle_t evd_handle
);

it_status_t it_evd_modify(

IN it_evd_handle_t evd_handle,
IN it_evd_param_mask_t mask,
IN const it_evd_param_t *params

);

 it_status_t it_evd_post_se(

IN it_evd_handle_t evd_handle,
IN const void *event

);

it_status_t it_evd_query(

IN it_evd_handle_t evd_handle,
IN it_evd_param_mask_t mask,
OUT it_evd_param_t *params

);

 it_status_t it_evd_wait(

IN it_evd_handle_t evd_handle,
IN uint64_t timeout,
OUT it_event_t *event,
OUT size_t *nmore

);

it_status_t it_get_consumer_context(
 IN it_handle_t handle,
 OUT it_context_t *context
);

it_status_t it_get_handle_type(
 IN it_handle_t handle,
 OUT it_handle_type_enum_t *type_of_handle
);

it_status_t it_get_pathinfo(

IN it_ia_handle_t ia_handle,
IN size_t spigot_id,

Interconnect Transport API –Issue 1 295

 296

9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893

IN const it_net_addr_t *net_addr,
IN OUT size_t *num_paths,
OUT size_t *total_paths,
OUT it_path_t *paths

);

it_status_t it_handoff(

IN const it_conn_qual_t *conn_qual,
IN size_t spigot_id,
IN it_cn_est_identifier_t cn_est_id

);

it_status_t it_ia_create(
 IN const char *name,
 IN uint32_t major_version,
 IN uint32_t minor_version,

OUT it_ia_handle_t *ia_handle
);

it_status_t it_ia_free(
 IN it_ia_handle_t ia_handle

);

void it_ia_info_free(

IN it_ia_info_t *ia_info
);

it_status_t it_ia_query(

IN it_ia_handle_t ia_handle,
OUT it_ia_info_t **ia_info

);

void it_interface_list(
 OUT it_interface_t *interfaces,
 IN OUT size_t *num_interfaces,
 IN OUT size_t *total_interfaces
);

it_status_t it_listen_create(

IN it_ia_handle_t ia_handle,
IN size_t spigot_id,
IN it_evd_handle_t connect_evd,
IN it_listen_flags_t flags,
IN OUT it_conn_qual_t *conn_qual,
OUT it_listen_handle_t *listen_handle

);

it_status_t it_listen_free(

IN it_listen_handle_t listen_handle
);

it_status_t it_listen_query(

Interconnect Transport API –Issue 1 296

 297

9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947

IN it_listen_handle_t listen_handle,
IN it_listen_param_mask_t mask,
OUT it_listen_param_t *params

);

it_status_t it_lmr_create(
 IN it_pz_handle_t pz_handle,

IN void *addr,
IN it_length_t length,
IN it_mem_priv_t privs,
IN it_lmr_flag_t flags,
IN uint32_t shared_id,
OUT it_lmr_handle_t *lmr_handle,

 IN OUT it_rmr_context_t *rmr_context
);

it_status_t it_lmr_free(

IN it_lmr_handle_t lmr_handle
);

it_status_t it_lmr_modify(

IN it_lmr_handle_t lmr_handle,
IN it_lmr_param_mask_t mask,
IN const it_lmr_param_t *params

);

it_status_t it_lmr_query(

IN it_lmr_handle_t lmr_handle,
IN it_lmr_param_mask_t mask,
OUT it_lmr_param_t *params

);

it_status_t it_lmr_sync_rdma_read(

IN const it_lmr_triplet_t *local_segments,
IN size_t num_segments

);

it_status_t it_lmr_sync_rdma_write(

IN const it_lmr_triplet_t *local_segments,
IN size_t num_segments

);

it_status_t it_post_rdma_read (

IN it_ep_handle_t ep_handle,
IN const it_lmr_triplet_t *local_segments,

 IN size_t num_segments,
 IN it_dto_cookie_t cookie,
 IN it_dto_flags_t dto_flags,
 IN it_rdma_addr_t rdma_addr,
 IN it_rmr_context_t rmr_context
);

it_status_t it_post_rdma_write (

Interconnect Transport API –Issue 1 297

 298

9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999

10000
10001

 IN it_ep_handle_t ep_handle,
 IN const it_lmr_triplet_t *local_segments,
 IN size_t num_segments,
 IN it_dto_cookie_t cookie,
 IN it_dto_flags_t dto_flags,
 IN it_rdma_addr_t rdma_addr,
 IN it_rmr_context_t rmr_context
);

it_status_t it_post_recv(
 IN it_ep_handle_t ep_handle,
 IN const it_lmr_triplet_t *local_segments,
 IN size_t num_segments,
 IN it_dto_cookie_t cookie,
 IN it_dto_flags_t dto_flags
);

it_status_t it_post_recvfrom(
 IN it_ep_handle_t ep_handle,
 IN const it_lmr_triplet_t *local_segments,
 IN size_t num_segments,
 IN it_dto_cookie_t cookie,
 IN it_dto_flags_t dto_flags
);

it_status_t it_post_send(
 IN it_ep_handle_t ep_handle,
 IN const it_lmr_triplet_t *local_segments,

IN size_t num_segments,
 IN it_dto_cookie_t cookie,
 IN it_dto_flags_t dto_flags
);

it_status_t it_post_sendto(
 IN it_ep_handle_t ep_handle,
 IN const it_lmr_triplet_t *local_segments,
 IN size_t num_segments,
 IN it_dto_cookie_t cookie,
 IN it_dto_flags_t dto_flags,
 IN const it_dg_remote_ep_addr_t *remote_ep_addr
);

it_status_t it_pz_create(
 IN it_ia_handle_t ia_handle,
 OUT it_pz_handle_t *pz_handle
);

it_status_t it_pz_free(
 IN it_pz_handle_t pz_handle
);

it_status_t it_pz_query(
 IN it_pz_handle_t pz_handle,
 IN it_pz_param_mask_t mask,

Interconnect Transport API –Issue 1 298

 299

10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055

 OUT it_pz_param_t *params
);

it_status_t it_reject(

IN it_cn_est_identifier_t cn_est_id,
IN const unsigned char *private_data,
IN size_t private_data_length

);

it_status_t it_rmr_bind(

IN it_rmr_handle_t rmr_handle,
IN it_lmr_handle_t lmr_handle,
IN void *addr,
IN it_length_t length,
IN it_mem_priv_t privs,
IN it_ep_handle_t ep_handle,
IN it_dto_cookie_t cookie,
IN it_dto_flags_t dto_flags,
OUT it_rmr_context_t *rmr_context

);

it_status_t it_rmr_create(

IN it_pz_handle_t pz_handle,
OUT it_rmr_handle_t *rmr_handle

);

it_status_t it_rmr_free(

IN it_rmr_handle_t rmr_handle
);

it_status_t it_rmr_query(

IN it_rmr_handle_t rmr_handle,
IN it_rmr_param_mask_t mask,
OUT it_rmr_param_t *params

);

it_status_t it_rmr_unbind(

IN it_rmr_handle_t rmr_handle,
IN it_ep_handle_t ep_handle,
IN it_dto_cookie_t cookie,
IN it_dto_flags_t dto_flags

);

it_status_t it_set_consumer_context(

IN it_handle_t handle,
IN it_context_t context

);

it_status_t it_ud_service_reply (

IN it_ud_svc_req_identifier_t ud_svc_req_id,
IN it_ud_svc_req_status_t status,
IN it_remote_ep_info_t ep_info,
IN const unsigned char *private_data,
IN size_t private_data_length

Interconnect Transport API –Issue 1 299

 300

); 10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079

10080

10081

10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094

 10095

it_status_t it_ud_service_request (

IN it_ud_svc_req_handle_t ud_svc_handle
);

it_status_t it_ud_service_request_handle_create (

IN const it_conn_qual_t *conn_qual,
IN it_evd_handle_t reply_evd,
IN const it_path_t *destination_path,
IN const unsigned char *private_data,
IN size_t private_data_length,
OUT it_ud_svc_req_handle_t *ud_svc_handle

);

it_status_t it_ud_service_request_handle_free (

 IN it_ud_svc_req_handle_t ud_svc_handle
);

it_status_t it_ud_service_request_handle_query (

IN it_ud_svc_req_handle_t ud_svc_handle,
IN it_ud_svc_req_param_mask_t mask,
OUT it_ud_svc_req_param_t *ud_svc_handle_info

);

B.2 it_api_os_specific.h

#include "/usr/include/sys/types.h"
#include "/usr/include/netinet/in.h"

/* the following should have arrived from types.h */
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned int uint32_t;
typedef unsigned long uint64_t;

/* defines */

#define IT_INTERFACE_NAME_SIZE 128

Interconnect Transport API –Issue 1 300

	Introduction
	Interface Adapters
	Memory Management
	Communication Endpoints
	Data Transfer Operations
	Events
	Event Notification

	Definitions
	Global Behavior
	Non-Blocking APIs
	Thread Safety
	Signal Handlers
	Fork Semantics
	Exec Semantics
	Exit Semantics
	Error Handling
	IT Handle Management

	API Manual Pages
	it_address_handle_create()
	it_address_handle_free()
	it_address_handle_modify()
	it_address_handle_query()
	it_convert_net_addr()
	it_ep_accept()
	it_ep_connect()
	it_ep_disconnect()
	it_ep_free()
	it_ep_modify()
	it_ep_query()
	it_ep_rc_create()
	it_ep_reset()
	it_ep_ud_create()
	it_evd_create()
	it_evd_dequeue()
	it_evd_free()
	it_evd_modify()
	it_evd_post_se()
	it_evd_query()
	it_evd_wait()
	it_get_consumer_context()
	it_get_handle_type()
	it_get_pathinfo()
	it_handoff()
	it_hton64()
	it_ia_create()
	it_ia_free()
	it_ia_info_free()
	it_ia_query()
	it_interface_list()
	it_listen_create()
	it_listen_free()
	it_listen_query()
	it_lmr_create()
	it_lmr_free()
	it_lmr_modify()
	it_lmr_query()
	it_lmr_sync_rdma_read()
	it_lmr_sync_rdma_write()
	it_make_rdma_addr()
	it_post_rdma_read()
	it_post_rdma_write()
	it_post_recv()
	it_post_recvfrom()
	it_post_send()
	it_post_sendto()
	it_pz_create()
	it_pz_free()
	it_pz_query()
	it_reject()
	it_rmr_bind()
	it_rmr_create()
	it_rmr_free()
	it_rmr_query()
	it_rmr_unbind()
	it_set_consumer_context()
	it_ud_service_reply()
	it_ud_service_request()
	it_ud_service_request_handle_create()
	it_ud_service_request_handle_free()
	it_ud_service_request_handle_query()
	Data Type Manual Pages
	it_aevd_notification_event_t
	it_affiliated_event_t
	it_boolean_t
	it_cm_msg_events
	it_cm_req_events
	it_conn_qual_t
	it_context_t
	it_dg_remote_ep_addr_t
	it_dto_cookie_t
	it_dto_events
	it_dto_flags_t
	it_dto_status_t
	it_ep_attributes_t
	it_ep_state_t
	it_event_t
	it_handle_t
	it_ia_info_t
	it_lmr_triplet_t
	it_net_addr_t
	it_path_t
	it_software_event_t
	it_status_t
	it_unaffiliated_event_t
	Implementer’s Guide
	Header Files
	it_api.h
	it_api_os_specific.h

