
Technical Standard

ArchiMate® 1.0 Specification

ii Technical Standard (2009)

Copyright © 2009, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the
copyright owner.

It is fair use of this specification for implementers to use the names, labels, etc. contained within the
specification. The intent of publication of the specification is to encourage implementations of the
specification.

This specification has not been verified for avoidance of possible third-party proprietary rights. In
implementing this specification, usual procedures to ensure the respect of possible third-party intellectual
property rights should be followed.

Technical Standard

ArchiMate® 1.0 Specification

ISBN: 1-931624-80-1

Document Number: C091

Published by The Open Group, February 2009.
Some minor corrections applied March 2009 to remain synchronized with the version published by Van
Haren Publishing.

Comments relating to the material contained in this document may be submitted to:

The Open Group
Thames Tower
37-45 Station Road
Reading
Berkshire, RG1 1LX
United Kingdom

or by electronic mail to:

ogspecs@opengroup.org

mailto:ogspecs@opengroup.org

ArchiMate® 1.0 Specification iii

Contents
1 Introduction...1

1.1 Intended Audience ..2
1.2 Structure..2

2 Enterprise Architecture ...4
2.1 Why Enterprise Architecture?...4
2.2 Definitions ..5
2.3 ArchiMate and TOGAF ..6

3 Language Structure ...8
3.1 Design Approach ..8
3.2 Core Concepts...9
3.3 Collaboration and Interaction ...10
3.4 Relationships...10
3.5 Layering..10
3.6 The ArchiMate Framework ..11

4 Business Layer ..13
4.1 Business Layer Metamodel...13
4.2 Structural Concepts...13

4.2.1 Business Actor...14
4.2.2 Business Role ..15
4.2.3 Business Collaboration..16
4.2.4 Business Interface..17
4.2.5 Business Object ...18

4.3 Behavioral Concepts ...19
4.3.1 Business Process..20
4.3.2 Business Function..21
4.3.3 Business Interaction ..22
4.3.4 Business Event ..24
4.3.5 Business Service..25

4.4 Informational Concepts...26
4.4.1 Representation ...27
4.4.2 Meaning...28
4.4.3 Value ...29
4.4.4 Product...30
4.4.5 Contract ...31

4.5 Summary of Business Layer Concepts ...32

5 Application Layer ...34
5.1 Application Layer Metamodel ..34
5.2 Structural Concepts...34

5.2.1 Application Component...35

iv Technical Standard (2009)

5.2.2 Application Collaboration ...36
5.2.3 Application Interface ...37
5.2.4 Data Object..37

5.3 Behavioral Concepts ...38
5.3.1 Application Function...39
5.3.2 Application Interaction..40
5.3.3 Application Service ...41

5.4 Summary of Application Layer Components42

6 Technology Layer ...44
6.1 Technology Layer Metamodel..44
6.2 Structural Concepts...44

6.2.1 Node ..45
6.2.2 Device..46
6.2.3 Infrastructure Interface ..46
6.2.4 Network ...47
6.2.5 Communication Path ...48

6.3 Behavioral Concepts ...48
6.3.1 Infrastructure Service ..49
6.3.2 System Software..49

6.4 Informational Concepts...50
6.4.1 Artifact...50

6.5 Summary of Technology Layer Concepts ..52

7 Cross-Layer Dependencies..53
7.1 Business-Application Alignment ..53
7.2 Application-Technology Alignment ...54

8 Relationships...55
8.1 Structural Relationships..55

8.1.1 Composition Relationship ...55
8.1.2 Aggregation Relationship..56
8.1.3 Assignment Relationship...56
8.1.4 Realization Relationship..57
8.1.5 Used By Relationship..58
8.1.6 Access Relationship ..59
8.1.7 Association Relationship ...59

8.2 Dynamic Relationships ...60
8.2.1 Triggering Relationship...60
8.2.2 Flow Relationship..61

8.3 Other Relationships...61
8.3.1 Grouping..61
8.3.2 Junction ...62
8.3.3 Specialization Relationship ...63

8.4 Summary of Relationships..63
8.5 Derived Relationships...65

9 Architecture Viewpoints ...67
9.1 Introduction...67

ArchiMate® 1.0 Specification v

9.2 Views, Viewpoints, and Stakeholders ..68
9.3 Viewpoint Classification...70
9.4 Basic Viewpoints in ArchiMate..72

9.4.1 Introductory Viewpoint ...72
9.4.2 Organization Viewpoint ..74
9.4.3 Actor Co-operation Viewpoint ..75
9.4.4 Business Function Viewpoint..77
9.4.5 Business Process Viewpoint..78
9.4.6 Business Process Co-operation Viewpoint..........................80
9.4.7 Product Viewpoint...81
9.4.8 Application Behavior Viewpoint...83
9.4.9 Application Co-operation Viewpoint84
9.4.10 Application Structure Viewpoint...86
9.4.11 Application Usage Viewpoint ...87
9.4.12 Infrastructure Viewpoint ...88
9.4.13 Infrastructure Usage Viewpoint ..90
9.4.14 Implementation and Deployment Viewpoint91
9.4.15 Information Structure Viewpoint ..92
9.4.16 Service Realization Viewpoint ..94
9.4.17 Layered Viewpoint ..95
9.4.18 Landscape Map Viewpoint..98

10 Language Extension Mechanisms...100
10.1 Adding Attributes to ArchiMate Concepts and Relations100
10.2 Specialization of Concepts..101

11 Future Directions...103
11.1 Extending and Refining the Concepts...103

11.1.1 Strategy, Goals, Principles, and Requirements..................103
11.1.2 Evolution and Realization ...104
11.1.3 Design Process ..104
11.1.4 Architecture-Level Predictions..104
11.1.5 Other Improvements..105

11.2 Linking to Other Modeling Languages and Frameworks105
11.3 How to Proceed...105

A Summary of Language Notation ...107

B Overview of Relationships..108

vi Technical Standard (2009)

Preface

The Open Group

The Open Group is a vendor-neutral and technology-neutral consortium, whose vision of
Boundaryless Information Flow™ will enable access to integrated information within and
between enterprises based on open standards and global interoperability. The Open Group works
with customers, suppliers, consortia, and other standards bodies. Its role is to capture,
understand, and address current and emerging requirements, establish policies, and share best
practices; to facilitate interoperability, develop consensus, and evolve and integrate
specifications and Open Source technologies; to offer a comprehensive set of services to
enhance the operational efficiency of consortia; and to operate the industry's premier
certification service, including UNIX® certification.

Further information on The Open Group is available at www.opengroup.org.

The Open Group has over 15 years' experience in developing and operating certification
programs and has extensive experience developing and facilitating industry adoption of test
suites used to validate conformance to an open standard or specification.

More information is available at www.opengroup.org/certification.

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on development of Technical and Product Standards and Guides, but which also
includes white papers, technical studies, branding and testing documentation, and business titles.
Full details and a catalog are available at www.opengroup.org/bookstore.

As with all live documents, Technical Standards and Specifications require revision to align with
new developments and associated international standards. To distinguish between revised
specifications which are fully backwards-compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it
replaces the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained
in the previous publication of that title, and there may also be additions/extensions. As
such, both previous and new documents are maintained as current publications.

Readers should note that updates – in the form of Corrigenda – may apply to any publication.
This information is published at www.opengroup.org/corrigenda.

This Document

This document is the Technical Standard for the ArchiMate 1.0 Specification. It has been
developed and approved by The Open Group.

http://www.opengroup.org/
http://www.opengroup.org/certification
http://www.opengroup.org/bookstore
http://www.opengroup.org/corrigenda

ArchiMate® 1.0 Specification vii

Trademarks
Boundaryless Information Flow™ and TOGAF™ are trademarks and Making Standards Work®,
The Open Group®, UNIX®, and the “X” device are registered trademarks of The Open Group in
the United States and other countries.

ArchiMate® is a registered trademark of The Open Group.

Java™ is a trademark of Sun Microsystems, Inc. in the United States and other countries.

MDA®, Model Driven Architecture®, OMG®, and UML® are registered trademarks and
BPMN™, Business Process Modeling Notation™, MOF™, and Unified Modeling Language™ are
trademarks of the Object Management Group.

Telelogic™ is a trademark of Telelogic AB.

The Open Group acknowledges that there may be other brand, company, and product names
used in this document that may be covered by trademark protection and advises the reader to
verify them independently.

viii Technical Standard (2009)

Acknowledgements
The Open Group gratefully acknowledges the contribution of the following people in the
development of this Technical Standard:

• Maria-Eugenia Iacob, University of Twente
• Henk Jonkers, BiZZdesign BV
• Marc M. Lankhorst, Telematica Instituut*
• Erik Proper, Radboud University Nijmegen & Capgemini

The results presented in this Technical Standard have largely been produced during the
ArchiMate project, and The Open Group gratefully acknowledges the contribution of the many
people – former members of the project team – who have contributed to them.

The ArchiMate project comprised the following organizations:

• ABN AMRO
• Centrum voor Wiskunde en Informatica
• Dutch Tax and Customs Administration
• Leiden Institute of Advanced Computer Science
• Ordina
• Radboud Universiteit Nijmegen
• Stichting Pensioenfonds ABP
• Telematica Instituut*

The Open Group and ArchiMate project team would like to thank in particular the following
individuals for their support and contribution to this Technical Standard:

• The Board members of the ArchiMate Foundation
• Mary Beijleveld, UWV
• Adrian Campbell, Ingenia Consulting
• Jos van Hillegersberg, University of Twente
• Andrew Josey, The Open Group
• Louw Labuschagne, Real IRM
• Daniel Moody, University of Twente
• Henk Volbeda, Sogeti
• Egon Willemsz, UWV

* From April 2009, Telematica Instituut is called NOVAY.

ArchiMate® 1.0 Specification ix

Referenced Documents
The following documents are referenced in this Technical Standard:

[1] Enterprise Architecture as Strategy, J.W. Ross, P. Well, D.C. Robertson, Harvard
Business School Press, 2006.

[2] ISO/IEC 42010:2007, Systems and Software Engineering – Recommended Practice
for Architectural Description of Software-Intensive Systems, Edition 1.

[3] Enterprise Architecture at Work: Modeling, Communication, and Analysis,
M.M. Lankhorst et al, Springer, 2005.

[4] The Open Group Architecture Framework TOGAF, Version 9, 2009.

[5] A Framework for Information Systems Architecture, J.A. Zachman, IBM Systems
Journal, Volume 26, No. 3, pp. 276–292, 1987.

[6] ISO/IEC JTC 1/SC 7, Information Technology – Open Distributed Processing –
Reference Model – Enterprise Language, October 2006.

[7] ITU Recommendation X.901 | ISO/IEC 10746-1:1998, Information Technology –
Open Distributed Processing – Reference Model – Part 1: Overview, International
Telecommunication Union, 1996.

[8] Unified Modeling Language: Infrastructure, Version 2.0 (formal/05-05-05), Object
Management Group, March 2006.

[9] Extending and Formalizing the Framework for Information Systems Architecture,
J.F. Sowa, J.A. Zachman,, IBM Systems Journal, Volume 31, No. 3, pp. 590-616,
1992.

[10] Enterprise Ontology: Theory and Methodology, J.L.G. Dietz, Springer, 2006.

[11] Magic Quadrant for Enterprise Architecture Tools IQ06G, A. James, R.A. Handler,
Gartner Research Report G00138197, 2006.

[12] Unified Modeling Language: Superstructure, Version 2.0 (formal/05-07-04), Object
Management Group, August 2005.

[13] A Business Process Design Language, H. Eertink, W. Janssen, P. Oude Luttighuis,
W. Teeuw, C. Vissers, in Proceedings of the First World Congress on Formal
Methods, Toulouse, France, September 1999.

[14] Enterprise Business Architecture: The Formal Link between Strategy and Results,
R. Whittle, C.B. Myrick, CRC Press, 2004.

x Technical Standard (2009)

[15] Composition of Relations in Enterprise Architecture, R.v. Buuren, H. Jonkers,
M.E. Iacob, P. Strating, in Proceedings of the Second International Conference on
Graph Transformation, pp. 39–53, Edited by H. Ehrig et al, Rome, Italy, 2004.

[16] Viewpoints: A Framework for Integrating Multiple Perspectives in System
Development, A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, M. Goedicke,
in International Journal on Software Engineering and Knowledge Engineering,
Volume 2, No. 1, pp. 31–58, 1992.

[17] Viewpoints for Requirements Definition, G. Kotonya, I. Sommerville, IEE/BCS
Software Engineering Journal, Volume 7, No. 6, pp. 375–387, November 1992.

[18] Paradigm Shift – The New Promise of Information Technology, D. Tapscott,
A. Caston, New York: McGraw-Hill, 1993.

[19] The 4+1 View Model of Architecture, P.B. Kruchten, IEEE Software, Volume 12,
No. 6, pp. 42–50, 1995.

[20] Model-Driven Architecture: Applying MDA to Enterprise Computing, D. Frankel,
Wiley, 2003.

[21] Performance and Cost Analysis of Service-Oriented Enterprise Architectures,
H. Jonkers, M. E. Iacob, in Global Implications of Modern Enterprise Information
Systems: Technologies and Applications, Edited by A. Gunasekaran, IGI Global,
2009.

[22] A Model-Driven Approach for the Rule-Based Specification of Services,
M.E. Iacob, H. Jonkers, in Proceedings of the 12th IEEE International EDOC
Conference, Munich, Germany, September 2008.

[23] Petri Nets: Properties, Analysis, and Applications, T. Murata, in Proceedings of the
IEEE, Volume 77, No. 4, pp. 541–580, April 1989.

[24] Business Dynamics: Systems Thinking and Modeling for a Complex World,
J.D. Sterman, McGraw-Hill, 2000.

[25] Operations Research: An Introduction, A.H. Taha, Prentice-Hall, 2006.

[26] Business Process Modeling Notation Specification (dtc/06-02-01), Object
Management Group, February 2006.

[27] Business Motivation Model (BMM) Specification (dtc/2006-08-03), Object
Management Group, August 2006.

[28] Semantics of Business Vocabulary and Business Rules (SBVR), Version 1.0
(formal/08-01-02), Object Management Group, January 2008.

[29] Business Process Definition Metamodel (BPDM) (bmi/2007-03-01), Object
Management Group, March 2007.

ArchiMate® 1.0 Specification xi

[30] Towards Modeling and Reasoning Support for Early-Phase Requirements
Engineering, E. Yu, in Proceedings of the Third IEEE International Symposium on
Requirements Engineering, pp. 226–235, Washington, DC, January 1997.

[31] E3-Value: Design and Evaluation of e-Business Models, J. Gordijn, H. Akkermans,
IEEE Intelligent Systems, Volume 16, No. 4, pp. 11–17, 2001.

[32] Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification
(formal/2008-04-03), Object Management Group, April 2008.

[33] DoD Architecture Framework (DoDAF), Version 1.5, Volume II: Product
Descriptions, US Department of Defense, April 2007.

[34] FEA Consolidated Reference Model, Version 2.3, US Office of Management and
Budget, 2007.

[35] CBDI-SAE Meta Model for SOA Version 2.0, J. Dodd et al, Everware-DBDI, Inc.,
2007.

ArchiMate® 1.0 Specification 1

1 Introduction

An architecture is typically developed because key people have concerns that need to be
addressed by the business and IT systems within the organization. Such people are commonly
referred to as the “stakeholders” in the system. The role of the architect is to address these
concerns, by identifying and refining the requirements that the stakeholders have, developing
views of the architecture that show how the concerns and the requirements are going to be
addressed, and by showing the trade-offs that are going to be made in reconciling the potentially
conflicting concerns of different stakeholders. Without the architecture, it is unlikely that all the
concerns and requirements will be considered and met.

Architecture descriptions are formal descriptions of an information system, organized in a way
that supports reasoning about the structural and behavioral properties of the system and its
evolution. They define the components or building blocks that make up the overall information
system, and provide a plan from which products can be procured, and subsystems developed,
that will work together to implement the overall system. It thus enables you to manage your
overall IT investment in a way that meets the needs of your business.

To provide a uniform representation for such architecture descriptions, the ArchiMate enterprise
architecture modeling language has been developed. It offers an integrated architectural
approach that describes and visualizes the different architecture domains and their underlying
relations and dependencies. In a short time, ArchiMate has become the open standard for
architecture modeling in the Netherlands, it is also fairly well known in the international
enterprise architecture community, and recently it has been brought under the aegis of The Open
Group.

ArchiMate is a lightweight and scalable language in several respects:

• Its architecture framework is simple but comprehensive enough to provide a good
structuring mechanism for architecture domains, layers, and aspects.

• The language incorporates modern ideas of the “service orientation” paradigm that
promotes a new organizing principle in terms of (business, application, and infrastructure)
services for organizations, with far-reaching consequences for their enterprise
architecture.

• Although it intentionally resembles the Unified Modeling Language (UML), the
ArchiMate modeling notation is intuitive and much lighter than currently proposed by
UML 2.0. Nevertheless, the language is expressive enough to allow for the modeling of all
layers (business, application, and technology infrastructure) and all aspects (structure,
behavior, and information) of an organization in an integrated way.

• The two enterprise architecture standards of The Open Group – TOGAF and ArchiMate –
complement each other and can be used well in combination.

2 Technical Standard (2009)

• Finally, tool support for the ArchiMate language is already commercially available (from
BiZZdesign, IDS Scheer, Casewise, Telelogic, and others).

The goal of this Technical Standard is to provide the first official and complete specification of
the ArchiMate standard under the flag of The Open Group.

This specification contains the formal definition of ArchiMate as a visual design language with
adequate concepts for specifying inter-related architectures, and specific viewpoints for selected
stakeholders. This is complemented by some considerations regarding language extension
mechanisms, analysis, and methodological support. Furthermore, this document is accompanied
by a separate document, in which certification and governance procedures surrounding the
specification are specified.

1.1 Intended Audience

The intended audience of this Technical Standard is threefold:

• Enterprise architecture practitioners, such as architects (application, information, process,
infrastructure, products/services, and, obviously, enterprise architects), senior and
operational management, project leaders, and anyone committed to work within the
reference framework defined by the enterprise architecture. It is assumed that the reader
has a certain skill level and is effectively committed to enterprise architecture. Such a
person is most likely to be the architect – that is, someone who has affinity with modeling
techniques, knows his way around the organization, and is familiar with information
technology.

• Those who intend to implement ArchiMate in a software tool. They will find a complete
and detailed description of the language in this document.

• The academic community, on which we rely for amending and improving the language
based on state-of-the-art research results in the architecture field.

1.2 Structure

The structure of this Technical Standard is as follows:

• Chapter 1, Introduction (this chapter)

• Chapter 2, Enterprise Architecture, makes the case for enterprise architecture and for the
necessity of a modeling standard for enterprise architecture.

• Chapter 3, Language Structure, presents some general ideas, principles, and assumptions
underlying the development of the ArchiMate metamodel and introduces the ArchiMate
framework.

• Chapter 4, Business Layer, covers the definition and usage of the business layer concept,
together with examples.

• Chapter 5, Application Layer, covers the definition and usage of the application layer
concept, together with examples.

ArchiMate® 1.0 Specification 3

• Chapter 6, Technology Layer, covers the definition and usage of the technical
infrastructure layer concept, together with examples.

• Chapters 7, Cross-Layer Dependencies, and Chapter 8, Relationships, cover the definition
of relationship concepts in a similar way.

• Chapter 9, Architecture Viewpoints, presents and clarifies a set of architecture viewpoints,
developed in ArchiMate based on practical experience. All ArchiMate viewpoints are
described in detail. For each viewpoint the comprised concepts and relations, the
guidelines for the viewpoint use, and the goal and target group and of the viewpoint are
specified. Furthermore, each viewpoint description contains example models.

• Chapter 10, Language Extension Mechanisms, handles about extending and/or
specializing the ArchiMate core language for specialized or domain-specific purposes.

• Chapter 11, Future Directions, identifies extensions and directions for developments in the
next versions of the language.

4 Technical Standard (2009)

2 Enterprise Architecture

2.1 Why Enterprise Architecture?

The primary reason for developing an enterprise architecture is to support the business by
providing the fundamental technology and process structure for an IT strategy. Further, it details
the structure and relationships of the enterprise, its business models, the way an organization will
work, and how and in what way information, information systems, and technology will support
the organization’s business objectives and goals. This makes IT a responsive asset for a
successful modern business strategy.

Today’s CEOs know that the effective management and exploitation of information through IT
is the key to business success, and the indispensable means to achieving competitive advantage.
An enterprise architecture addresses this need, by providing a strategic context for the evolution
of the IT system in response to the constantly changing needs of the business environment.

Furthermore, a good enterprise architecture enables you to achieve the right balance between IT
efficiency and business innovation; in essence, it aligns IT with the business. It allows individual
business units to innovate safely in their pursuit of competitive advantage. At the same time, it
assures the needs of the organization for an integrated IT strategy, permitting the closest possible
synergy across the extended enterprise.

The technical advantages that result from a good enterprise architecture bring important business
benefits, which are clearly visible in the bottom line:

• A more efficient IT operation:

— Lower software development, support, and maintenance costs

— Increased portability of applications

— Improved interoperability and easier system and network management

— Improved ability to address critical enterprise-wide issues like security

— Easier upgrade and exchange of system components

• Better return on existing investment, reduced risk for future investment:

— Reduced complexity in IT infrastructure

— Maximum return on investment in existing IT infrastructure

— The flexibility to make, buy, or outsource IT solutions

— Reduced risk overall in new investment, and the cost of IT ownership

ArchiMate® 1.0 Specification 5

• Faster, simpler, and cheaper procurement:

— Buying decisions are simpler, because the information governing procurement is
readily available in a coherent plan

— The procurement process is faster – maximizing procurement speed and flexibility
without sacrificing architectural coherence

Using an architecture framework will speed up and simplify architecture development, and
communication with non-architects, ensuring more complete coverage and understanding of the
designed solution. The additional understanding across the enterprise enables faster response to
changing business needs.

2.2 Definitions

A good definition of enterprise in the context of this Technical Standard is any collection of
organizations that has a common set of goals and/or a single bottom line. In that sense, an
enterprise can be a government agency, a whole corporation, a division of a corporation, a single
department, or a chain of geographically distant organizations linked together by common
ownership.

The term “enterprise” in the context of “enterprise architecture” can be used to denote both an
entire enterprise, encompassing all of its information systems, and a specific domain within the
enterprise. In both cases, the architecture crosses multiple systems, and multiple functional
groups within the enterprise.

The definition of an architecture used in ISO/IEC 42010:2007 [2] is:

“The fundamental organization of a system, embodied in its components, their relationships to
each other and the environment, and the principles governing its design and evolution.”

As in TOGAF, ArchiMate embraces but does not strictly adhere to ISO/IEC 42010:2007
terminology [2]. We use “architecture” in two different meanings, depending on its contextual
usage:

1. A formal description of a system, or a detailed plan of the system at component level to
guide its implementation.

2. The structure of components, their inter-relationships, and the principles and guidelines
governing their design and evolution over time.

We endeavor to strike a balance between promoting the concepts and terminology of ISO/IEC
42010:2007 – ensuring that our usage of terms is consistent with the standard – and retaining
other commonly accepted terminology that is familiar to the majority of the ArchiMate and
TOGAF readership.

An architecture description is a formal description of an information system, organized in a way
that supports reasoning about the structural properties of the system. It defines the components
or building blocks that make up the overall information system, and provides a plan from which
products can be procured, and systems developed, that will work together to implement the

6 Technical Standard (2009)

overall system. It thus enables you to manage your overall IT investment in a way that meets the
needs of your business.

An architecture framework is a tool which can be used for developing a broad range of different
architectures. It should describe a method for designing an information system in terms of a set
of building blocks, and for showing how the building blocks fit together. It should contain a set
of tools and provide a common vocabulary. It should also include a list of recommended
standards and compliant products that can be used to implement the building blocks.

2.3 ArchiMate and TOGAF

TOGAF is an architecture framework – a set of methods and tools for developing a broad range
of different IT architectures. It enables IT users to design, evaluate, and build the right
architecture for their organization, and reduces the costs of planning, designing, and
implementing architectures based on open systems solutions.

The key to TOGAF is the Architecture Development Method (ADM) – a reliable, proven
method for developing an IT enterprise architecture that meets the needs of your business. The
TOGAF framework considers an overall enterprise architecture as composed of a set of closely
inter-related architectures: Business Architecture, Information Systems Architecture (comprising
Data Architecture and Application Architecture), and Technology (IT) Architecture. The ADM
consists of a stepwise cyclic iterative approach for the development of the overall enterprise
architecture.

The ArchiMate language, as described in this Technical Standard, complements TOGAF in that
it provides a vendor-independent set of concepts, including a graphical representation, that helps
to create a consistent, integrated model “below the waterline”, which can be depicted in the form
of TOGAF’s views.

The structure of the ArchiMate language neatly corresponds with the three main architectures as
addressed in the TOGAF ADM. This is illustrated in Figure 1. This correspondence would
suggest a fairly easy mapping between TOGAF’s views and the ArchiMate viewpoints.

ArchiMate® 1.0 Specification 7

Figure 1: Correspondence between ArchiMate and TOGAF

Some TOGAF views are not matched in ArchiMate, however. Partially, this is because
TOGAF’s scope is broader and in particular addresses more of the high-level strategic issues and
the lower-level engineering aspects of system development, whereas ArchiMate is limited to the
enterprise architecture level of abstraction and refers to other techniques both for strategies,
principles, and objectives, and for more detailed, implementation-oriented aspects (however,
Chapter 11 gives some suggestions for possible extensions of the ArchiMate language in these
areas). Secondly, although some of the TOGAF views cannot easily be mapped onto ArchiMate
viewpoints, the ArchiMate language and its analysis techniques do support the concepts
addressed in these viewpoints. Conversely, ArchiMate viewpoints that deal with the
relationships between architectural layers, such as the product and application usage viewpoints,
are difficult to map onto TOGAF’s structure, in which views are confined to a single
architectural layer.

Although there is no one-to-one mapping between them, there is still a fair amount of
correspondence between the ArchiMate viewpoints and the views that are defined in TOGAF.
Although corresponding viewpoints from ArchiMate and TOGAF do not necessarily have
identical coverage, we can see that many viewpoints from both methods address largely the
same issues.

TOGAF and ArchiMate can easily be used in conjunction and they appear to cover much of the
same ground, be it with some differences in scope and approach.

TOGAF ADM ArchiMate

Technology

Application

Business

Passive
structure

Behavior Active
structure

8 Technical Standard (2009)

3 Language Structure

The unambiguous specification and description of enterprise architecture’s components and
especially of their relationships requires an architecture modeling language that addresses the
issue of consistent alignment and facilitates a coherent modeling of enterprise architectures.

This chapter presents the construction of the ArchiMate architecture modeling language. The
precise definition and illustration of its generic set of concepts follow in Chapters 4, 5, 6, 7, and
8. They provide a proper basis for visualization, analysis, tooling, and use of these concepts.

Sections 3.1 through 3.5 discuss some general ideas, principles, and assumptions underlying the
development of the ArchiMate metamodel. Section 3.6 presents the ArchiMate framework,
which will be used in the remainder of this document as a reference taxonomy scheme for
architecture concepts, models, viewpoints, and views.

3.1 Design Approach

A key challenge in the development of a general metamodel for enterprise architecture is to
strike a balance between the specificity of languages for individual architecture domains, and a
very general set of architecture concepts, which reflects a view of systems as a mere set of inter-
related entities. Figure 2 illustrates that concepts can be described at different levels of
specialization.

ProcessApplication

Domain- and company-
specific concepts

Enterprise architecture
concepts

Generic concepts

m
or

e
ge

ne
ric

m
or

e
sp

ec
ifi

c

Object

Relation

Figure 2: Metamodels at Different Levels of Specificity

At the base of the triangle we find the metamodels of the architecture modeling concepts used by
specific organizations, as well as a variety of existing modeling languages and standards; UML
is an example of a language in this category. At the top of the triangle we find the “most
general” metamodel for system architectures, essentially a metamodel that merely comprises
notions such as “object”, “component”, and “relation”.

ArchiMate® 1.0 Specification 9

The design of the ArchiMate language started from a set of relatively generic concepts (higher
up in the pyramid). These were then specialized towards application at different architectural
layers, as will be explained below.

The most important design restriction on the language is that it has been explicitly designed to be
as small as possible, but still usable for most enterprise architecture modeling tasks. Many other
languages, such as UML 2.0, try to accommodate all needs of all possible users. In the interest of
simplicity of learning and use, ArchiMate has been limited to the concepts that suffice for
modeling the proverbial 80% of practical cases.

3.2 Core Concepts

The language consists of active structure elements, behavioral elements and passive structure
elements. The active structure elements are the business actors, application components and
devices that display actual behavior, i.e., the ‘subjects’ of activity (right side of the Figure 3).
Then there is the behavioral or dynamic aspect (center of Figure 3). The active structure
concepts are assigned to behavioral concepts, to show who or what performs the behavior.

Passive
structure Behavior

Active
structure

Internal

External

Object

Service Interface

Behavior
element

Structure
elementassigned to

assigned to

assigned to

assigned toaccessed by

accesses

accessed by

accesses used by

uses

realized by

realizes uses

used by composes

composed of

triggers / flow totriggerd by / flow from

Figure 3: Generic Metamodel: The Core Concepts of ArchiMate

The passive structure elements are the objects on which behavior is performed. In the domain of
information-intensive organizations, which is the main focus of the language, these are usually
information or data objects, but they may also be used to represent physical objects. These three
aspects – active structure, behavior, and passive structure – have been inspired by natural
language, where a sentence has a subject (active structure), a verb (behavior), and an object
(passive structure).

Second, we make a distinction between an external view and an internal view on systems. When
looking at the behavioral aspect, these views reflect the principles of service orientation. The
service concept represents a unit of essential functionality that a system exposes to its
environment, and it provides a certain value (monetary or otherwise), which thus provides the
motivation for the service’s existence. For the external users, only this external functionality and
value, together with non-functional aspects such as the quality of service, costs, etc., are

10 Technical Standard (2009)

relevant. These can be specified in a contract or Service Level Agreement (SLA). Services are
accessible through interfaces, which constitute the external view on the active structural aspect.

3.3 Collaboration and Interaction

Going one level deeper in the structure of the language, we distinguish between behavior that is
performed by a single structure element (e.g., actor, role component, etc.), or collective behavior
(interaction) that is performed by a collaboration of multiple structure elements.

A collaboration is a (temporary) grouping (or aggregation) of two or more structure elements,
working together to perform some collective behavior. This collective behavior can be modeled
as an interaction.

Collaboration

Structure
element

Interaction

Behaviour
element

1..*

assigned to

assigned to

Figure 4: Collaboration and Interaction

3.4 Relationships

Next to the core concepts outlined above, ArchiMate contains a core set of relationships. Several
of these relationships have been adopted from corresponding relationship concepts that occur in
existing standards; e.g., relationships such as composition, aggregation, association, and
specialization are taken from UML 2.0, while triggering is used in many business process
modeling languages.

Note: For the sake of readability, the metamodel figures in the next sections do not show all
possible relationships in the language. Refer to Section 8.5 on additional derived
relationships. Furthermore, aggregation and composition relationships are always
permitted between two elements that have the same type.

3.5 Layering

The ArchiMate language defines three main layers (depicted with different colors in the
examples in the next chapters), based on specializations of the core concepts described in
Sections 3.2 and 3.3:

1. The Business Layer offers products and services to external customers, which are realized
in the organization by business processes performed by business actors.

ArchiMate® 1.0 Specification 11

2. The Application Layer supports the business layer with application services which are
realized by (software) applications.

3. The Technology Layer offers infrastructure services (e.g., processing, storage, and
communication services) needed to run applications, realized by computer and
communication hardware and system software.

The general structure of models within the different layers is similar. The same types of concepts
and relations are used, although their exact nature and granularity differ. In the next chapters, we
will specialize these concepts to obtain more concrete concepts, which are specific for a certain
layer. Figure 3 shows the central structure that is found in each layer.

In line with service orientation, the most important relation between layers is formed by “used
by” relations, which show how the higher layers make use of the services of lower layers. (Note,
however, that services may not only be used by elements in a higher layer, but also by elements
in the same layer, as is shown in Figure 3.) A second type of link is formed by realization
relationships: elements in lower layers may realize comparable elements in higher layers; e.g., a
“data object” (Application layer) may realize a “business object” (Business layer); or an
“artifact” (Technology layer) may realize either a “data object” or an “application component”
(Application layer).

3.6 The ArchiMate Framework

The aspects and layers identified in the previous sections can be organized as a framework of
nine “cells”, as illustrated in Figure 5. The cells in this framework are a subset of the cells in, for
example, the Zachman framework [5], [9]. Often used architectural domains can be projected
into this framework; Figure 5 shows an example of this.

It is important to realize that the classification of concepts based on conceptual domains, or
based on aspects and layers, is only a global one. It is impossible to define a strict boundary
between the aspects and layers, because concepts that link the different aspects and layers play a
central role in a coherent architectural description. For example, running somewhat ahead of the
later conceptual discussions, (business) functions and (business) roles serve as intermediary
concepts between “purely behavioral” concepts and “purely structural” concepts.

Technology

Application

Business

Environment

Passive
structure

Behavior Active
structure

Process
domain

Information
domain

Data
domain

Organization
domain

Product
domain

Application domain

Technical infrastructure domain

Figure 5: Architectural Framework

12 Technical Standard (2009)

Besides the core aspects shown in Figure 5 (passive structure, behavior, and active structure),
which are mainly operational in nature, there are a number of other important aspects, some of
which may cross several (or all) conceptual domains; for example:

• Goals

• Security

• Governance

• Costs

• Performance

• Timing

• Planning and evolution

The aspects may be added to the models by means of additional concepts, relationships, or
attributes. Also, it may be useful to add concepts or attributes related to the design process rather
than to the system or organization that is to be described or designed. Examples of such concepts
or attributes are requirements and design decisions. These aspects may be addressed in future
extensions of the language (see Chapter 1 for a more thorough discussion of this).

ArchiMate® 1.0 Specification 13

4 Business Layer

4.1 Business Layer Metamodel

Figure 6 shows the metamodel of business layer concepts. The metamodel follows the structure
of the generic metamodel introduced in the previous chapter. However, this layer also includes a
number of additional informational concepts which are relevant in the business domain: a
product and associated contract, the meaning of business objects, and the value of products of
business services.

Business
Object

Business
Service

Business
Interface

Business
Behavior
Element

Business
Role

Business
Process

Business
Function

Business
Actor

Business
Collaboration

Business
Interaction

Business
Event

Contract

Product

Value

Meaning

Representation

assigned to

assigned to

assigned to

assigned toaccessed by

accesses

used by

uses

realized by

realizes uses

used by composes

composed of

aggregated by

aggregates

accessed byaccesses

aggregated by

aggregates

aggregated by

aggregates

assigned to
assigned to

associated with

associated with

triggered by/flow from

triggers/flows to

realized by

realizes

associated with

associated with

Figure 6: Business Layer Metamodel

Note: This figure does not show all permitted relationships: every element in the language
can have composition and aggregation relations with elements of the same type;
furthermore, there are indirect relationships that can be derived, as explained in Section
8.5.

4.2 Structural Concepts

The structure aspect at the business layer refers to the static structure of an organization, in terms
of the entities that make up the organization and their relationships.

14 Technical Standard (2009)

Two types of entities are distinguished:

• The active entities that are the subjects (e.g., business actors or business roles) that
perform behavior such as business processes or functions (capabilities). Business actors
may be individual persons (e.g., customers or employees), but also groups of people
(organization units) and resources that have a permanent (or at least long-term) status
within the organizations. Typical examples of the latter are a department and a business
unit.

• The passive entities (business objects) that are manipulated by behavior such as business
processes or functions. The passive entities represent the important concepts in which the
business thinks about a domain.

Architectural descriptions focus on structure, which means that the inter-relationships of entities
within an organization play an important role. To make this explicit, the concept of business
collaboration has been introduced. Business collaborations have been inspired by collaborations
as defined in the UML 2.0 standard [8], [12], although the UML collaborations apply to
components in the application layer. Also, the ArchiMate business collaboration concept has a
strong resemblance to the “community” concept as defined in the RM-ODP Enterprise Language
[6], as well as to the “interaction point” concept, defined in Amber [13] as the place where
interactions occur.

The concept of business interfaces is introduced to explicitly model the (logical or physical)
locations or channels where the services that a role offers to the environment can be accessed.
The same service may be offered on a number of different interfaces; e.g., by mail, by telephone,
or through the Internet. In contrast to application modeling, it is uncommon in current business
layer modeling approaches to recognize the business interface concept.

4.2.1 Business Actor

A business actor is defined as an organizational entity capable of (actively) performing behavior.

A business actor performs the behavior assigned to (one or more) business roles. Examples of
business actors are humans, departments, and business units. A business actor may be assigned
to one or more business roles. The name of a business actor should preferably be a noun.

Figure 7: Business Actor Notation

Example

The model below illustrates the use of business actors. The company ArchiSurance is modeled
as a business actor that is composed of two departments. The Travel insurance seller role is
assigned to the travel department. In this role, the travel department performs the Take out
insurance process, which offers a service that is accessible via the business interface assigned to
this role.

ArchiMate® 1.0 Specification 15

Luggage
Insurance

Department

Travel
Insurance

Department

Company ArchiSurance

Travel
insurance seller

Take out
insurance

Offering
travel insurance

Example 1: Business Actor

4.2.2 Business Role

A business role is defined as a named specific behavior of a business actor participating in a
particular context.

Business processes or business functions are assigned to a single business role with certain
responsibilities or skills. A business actor that is assigned to a business role ultimately performs
the corresponding behavior. In addition to the relation of a business role with behavior, a
business role is also useful in a (structural) organizational sense; for instance, in the division of
labor within an organization.

A business role may be assigned to one or more business processes or business functions, while
a business actor may be assigned to a business role. A business interface or an application
interface may be used by a business role, while a business interface may be part of a business
role (through a composition relation, which is not shown explicitly in the interface notation). The
name of a business role should preferably be a noun.

Figure 8: Business Role Notation

Example

In the model below, two business roles (Luggage insurance seller and Travel insurance seller) are
involved in a collaboration that results in a Combined insurance selling service. The left hand
illustrates the delivery of a Luggage insurance selling service via a business interface. The right
hand shows how a business process, Take out insurance, is assigned to the Travel insurance seller
and realizes the Travel insurance selling service.

16 Technical Standard (2009)

Luggage
Insurance

Department

Travel
Insurance

Department

Travel
insurance seller

Luggage
insurance seller

Business
collaboration

Take out
insurance

Luggage
insurance selling

Combined
insurance selling

Travel
insurance selling

Example 2: Business Role

4.2.3 Business Collaboration

Business collaboration is defined as a (temporary) configuration of two or more business roles
resulting in specific collective behavior in a particular context.

A business process or function may be interpreted as the internal behavior assigned to a single
business role. In some cases behavior is the collective effort of more than one business role; in
fact a collaboration of two or more business roles results in collective behavior which may be
more than simply the sum of the behavior of the separate roles. Business collaborations represent
this collective effort. Business interactions are used to describe the internal behavior that takes
place within business collaboration. A collaboration is a (possibly temporary) collective of roles
within an organization which perform collaborative behavior (interactions). Unlike a department,
which may also group roles, a business collaboration does not have an official (permanent)
status within the organization; it is specifically aimed at a specific interaction or set of
interactions between roles. However, a business collaboration can be regarded as a kind of
“virtual role”, hence its designation as a specialization of role. It is especially useful in modeling
B2B interactions between different organizations.

A business collaboration may be composed of a number of business roles, and may be assigned
to one or more business interactions. A business interface or an application interface may be
used by a business collaboration, while a business collaboration may have business interfaces
(through composition). The name of a business collaboration should preferably be a noun. It is
also rather common to leave a business collaboration unnamed.

Figure 9: Business Collaboration Notation

ArchiMate® 1.0 Specification 17

Example

The model in the model below illustrates a possible use of the collaboration concept. In this
example, selling an insurance product involves the Sales department and a department specialized
in that particular type of insurance. The example also shows that one role, in this case the Sales
department, can participate in more than one collaboration.

Luggage
insurance
department

Medical
insurance

department

Sales
department

Luggage
insurance

sales

Medical
insurance

sales

Example 3: Business Collaboration

4.2.4 Business Interface

A business interface declares how a business role can connect with its environment.

A business interface specifies how the functionality of a business role can be used by other
business roles (provided interface), or which functionality the business roles requires from its
environment (required interface). A business interface exposes a business service to the
environment. The same business service may be exposed through different interfaces.

A business interface may be part of a business role through a composition relation, which is not
shown in the standard notation, and a business interface may be used by a business role. A
business interface may be assigned to one or more business services, which means that these
services are exposed by the interface. The name of a business interface should preferably be a
noun.

Figure 10: Business Interface Notation

Example

In the model below, the business services provided by the Luggage insurance seller and its
collaboration with the Medical insurance seller are exposed by means of a web form and call center
business interface, respectively.

18 Technical Standard (2009)

Medical
insurance

seller

Luggage
insurance seller

Combined
insurance

seller

Web form

Luggage
insurance selling

Call center

Combined
insurance selling

Example 4: Business Interface

4.2.5 Business Object

A business object is defined as a unit of information that has relevance from a business
perspective.

Business objects represent the important “informational” or “conceptual” elements in which the
business thinks about a domain. Generally, a business object is used to model an object type (cf.
a UML class), of which several instances may exist within the organization. A wide variety of
types of business objects can be defined. Business objects are passive in the sense that they do
not trigger or perform processes.

A business object may be accessed (e.g., created, read, written) by a business process, function, a
business interaction, a business event, or a business service. A business object may have
association, specialization, aggregation, or composition relationships with other business objects.
A business object may be realized by a representation or by a data object (or both). The name of
a business object should preferably be a noun.

Figure 11: Business Object Notation

Example

The model below shows a business object Invoice, which aggregates (multiple) business objects
Invoice line. Two possible realizations of this business object exist: an Electronic invoice (data
object) and a Paper invoice (representation). The business process Create invoice creates the
invoice and the invoice lines, while the business process Send invoice accesses the business
object Invoice.

ArchiMate® 1.0 Specification 19

Create
invoice

Send
invoice

InvoiceInvoice
line

Paper
invoiceElectronic

invoice

Example 5: Business Object

4.3 Behavioral Concepts

Based on service orientation, a crucial design decision for the behavioral part of our metamodel
is the distinction between “external” and “internal” behavior of an organization.

The externally visible behavior is modeled by the concept business service. A business service
represents a coherent piece of functionality that offers added value to the environment,
independent of the way this functionality is realized internally. A distinction can be made
between “external” business services, offered to external customers, and “internal” business
services, offering supporting functionality to processes or functions within the organization.

Several types of internal behavior elements that can realize a service are distinguished. Although
the distinction between the two is not always sharp, it is often useful to distinguish a process
view and a function view on behavior; two concepts associated with these views, business
process and business function, are defined. Both concepts can be used to group more detailed
business processes/functions, but based on different grouping criteria. A business process
represents a workflow or value stream consisting of smaller processes/functions, with one or
more clear starting points and leading to some result. It is sometimes described as “customer to
customer”, where this customer may also be an internal customer, in the case of sub-processes
within an organization. The goal of such a business process is to “satisfy or delight the
customer” [14]. A business function offers functionality that may be useful for one or more
business processes. It groups behavior based on, for example, required skills, capabilities,
resources, (application) support, etc. Other methods sometimes call this a business capability.
Typically, the business processes of an organization are defined based on the products and
services that the organization offers, while the business functions are the basis for, for example,
the assignment of resources to tasks and the application support.

A business interaction is a unit of behavior similar to a business process or function, but which
is performed in a collaboration of two or more roles within the organization. Unlike the
interaction concept in Amber [13], which is an atomic unit of collaborative behavior, our
business interaction can be decomposed into smaller interactions. Although interactions are
external behavior from the perspective of the roles participating in the collaboration, the
behavior is internal to the collaboration as a whole. Similar to processes or functions, the result
of a business interaction can be made available to the environment through a business service.

20 Technical Standard (2009)

A business event is something that happens (externally) and may influence business processes,
functions, or interactions. The “business event” concept is similar to the “trigger” concept in
Amber [13] and the “initial state” and “final state” concepts as used in, for example, UML
activity diagrams. However, our business event is more generally applicable in the sense that it
can also be used to model other types of events, in addition to triggers.

4.3.1 Business Process

A business process is defined as a unit of internal behavior or collection of causally-related units
of internal behavior intended to produce a defined set of products and services.

A business process describes the internal behavior performed by a business role that is required
to produce a set of products and services. For a consumer the products and services are relevant
and the required behavior is merely a black box, hence the designation “internal”.

In comparison to a business interaction, in which more than two business roles are (interactively)
involved, only one business role is involved with a business process. However, a (complex)
business process may consist of sub-processes assigned to different business roles.

There is a potential many-to-many relation between business processes and business functions.
Informally speaking, processes describe some kind of “flow” of activities, whereas functions
group activities according to required skills, knowledge, resources, etc.

A business process may be triggered by, or trigger, any other business behavior element (e.g.,
business event, business process, business function, or business interaction). A business process
may access business objects. A business process may realize one or more business services and
may use (internal) business services or application services. A business role or an application
component may be assigned to a business process to perform this process manually or
automated, respectively. The name of a business process should preferably be a verb in the
simple present tense; e.g., “handle claim”.

Business
process

Figure 12: Business Process Notation

Example

The model below illustrates the use of business processes and its relation with other concepts.
The Take out insurance process is composed of three sub-processes. For clarity, the sub-processes
are drawn in the overall process (structuring). Each sub-process triggers the next sub-process.
The event Request for Insurance triggers the first sub-process. A particular role, in this case an
insurance seller, is assigned to perform the required work. The process itself realizes an Insurance
selling service. The Receive request sub-process uses the business object Customer info. Also,
during the take out process, the Process request sub-process makes use of an application service
Transaction entry.

ArchiMate® 1.0 Specification 21

Receive
request

Process
request

Collect
premium

Take out insurance

Request
insurance

Customer
info

Insurance
selling

Insurance
seller

Transaction
entry

Data
processor

Example 6: Business Process

4.3.2 Business Function

A business function is defined as a unit of internal behavior that groups behavior according to,
for example, required skills, knowledge, resources, etc., and is performed by a single role within
the organization.

A business function describes internal behavior performed by a business role that is required to
produce a set of products and services. For a consumer, the products and services are relevant
and the required behavior is merely a black box, hence the designation “internal”.

There is a potential many-to-many relation between business processes and business functions.
Informally speaking, processes describe some kind of “flow” of activities, whereas functions
group activities according to required skills, knowledge, resources etc. Complex processes in
general involve activities that offer various functions. In this sense a business process forms a
string of business functions. In general, a business function delivers added value from a business
point of view. Organizational units or applications may coincide with business functions due to
their specific grouping of business activities.

A business function may be triggered by, or trigger, any other business behavior element
(business event, business process, business function, or business interaction). A business
function may access business objects. A business function may realize one or more business
services and may use (internal) business services or application services. A business role or an
application component may be assigned to a business function. The name of a business function
should preferably be a verb ending with “-ing”; e.g., “claims processing”.

22 Technical Standard (2009)

Figure 13: Business Function Notation

Example

The model below illustrates the use of business functions, as well as the relation between
business functions and business processes. The three business functions group a number of
business sub-processes. The business process, initiated by a business event, involves sub-
processes from different business functions. The Insurer role is assigned to each of the business
functions. Moreover, business functions may access business objects; in this case, the Customer
contact function uses or manipulates the Customer info object. Also, the Financial settlement
function makes use of a Billing application service and realizes a Collecting premium business
service.

Receive
request

Submit
claim

Customer
contact

Process
request

Basic
administration

Collect
premium

Financial
settlement

Customer
info

Financial
support
system

Billing

Collecting
premium

Insurer

Example 7: Business Function

4.3.3 Business Interaction

Business interaction is defined as a unit of behavior performed as a collaboration of two or more
business roles.

ArchiMate® 1.0 Specification 23

A business interaction is similar to a business process/function, but while a process/function may
be performed by a single role, an interaction is performed by multiple roles in collaboration.

A business interaction may be triggered by, or trigger, any other business behavior element
(business event, business process, business function, or business interaction). A business
interaction may access business objects. A business interaction may realize one or more business
services and may use (internal) business services or application services. A business
collaboration or an application collaboration may be assigned to a business interaction. The
name of a business interaction should preferably be a verb in the simple present tense.

Figure 14: Business Interaction Notation

Example

In the model below, a business interaction is triggered by a request. The business interaction
Take out combined insurance is performed as collaboration between the travel and luggage
insurance seller. The business interaction needs the Policy info business object, and realizes the
(external) business service Combined insurance selling. As part of the business interaction, the
Prepare travel policy and Prepare luggage policy are triggered. The Travel insurance seller and Luggage
insurance seller perform these processes separately.

Request
Take out

combined
insurance

Prepare
travel policy

Prepare
luggage policy

Combined
insurance

seller

Travel
insurance

seller

Luggage
insurance seller

Combined
insurance selling

Policy
info

Example 8: Business Interaction

24 Technical Standard (2009)

4.3.4 Business Event

A business event is defined as something that happens (internally or externally) and influences
behavior (business process, business function, business interaction).

Business processes and other business behavior may be triggered or interrupted by a business
event. Also, business processes may raise events that trigger other business processes, functions,
or interactions. A business event is most commonly used to model something that triggers
behavior, but other types of events are also conceivable; e.g., an event that interrupts a process.
Unlike business processes, functions, and interactions, a business event is instantaneous: it does
not have duration. Events may originate from the environment of the organization (e.g., from a
customer), but also internal events may occur generated by, for example, other processes within
the organization.

A business event may trigger or be triggered (raised) by a business process, business function, or
business interaction. A business event may access a business object and may be composed of
other business events. The name of a business event should preferably be a verb in the perfect
tense; e.g., “claim received”.

Figure 15: Business Event Notation

Example

In the model below, the Request insurance event triggers the Take out insurance process. A
business object containing the Customer info accompanies the request. In order to persuade the
customer to purchase more insurance products, a triggering event is raised in the Receive request
process. This triggers the Send product portfolio to customer process.

Request
insurance

Receive
request

Process
request

Collect
premium

Take out insurance

Send
portfolio

Send product
portfolio to customer

Customer
info

Example 9: Business Event

ArchiMate® 1.0 Specification 25

4.3.5 Business Service

A business service is defined as the externally visible (“logical”) functionality, which is
meaningful to the environment and is realized by business behavior (business process, business
function, or business interaction).

A business service exposes the functionality of business roles or collaborations to their
environment. This functionality is accessed through one or more business interfaces. A business
service is realized by one or more business processes, business functions, or business
interactions that are performed by the business roles or business collaborations, respectively. It
may access business objects.

A business service should provide a unit of functionality that is meaningful from the point of
view of the environment. It has a purpose, which states this utility. The environment includes the
(behavior of) users from outside as well as inside the organization.

A business service is associated with a value. A business service may be used by a business
process, business function, or business interaction. A business process, business function, or
business interaction may realize a business service. A business interface or application interface
may be assigned to a business service. A business service may access business objects. The
name of a business service should preferably be a verb ending with “-ing”; e.g., “transaction
processing”. Also, a name explicitly containing the word “service” may be used.

Figure 16: Business Service Notation

Example

In the model below, external and internal business services are distinguished. The Basic
administration function acts as a shared service center. The take out business processes
corresponding with the travel and luggage insurance use the (internal) business services that are
provided by the Basic administration function. Both business processes realize an (external)
business service. The insurance selling service is accessible via a business interface (e.g., web
form) that is used by the insurer. Each business service should be of value to its environment,
which may or may not be explicitly modeled. The value of the Travel insurance selling service to
an external customer is that the customer is insured.

26 Technical Standard (2009)

Take out
travel

insurance

Take out
luggage

insurance

Customer info
processing

Customer
insurance retrieval

Basic administration

Travel insurance
selling

Luggage insurance
selling

Insurance selling

Insurer

Be
insured

Example 10: Business Service

4.4 Informational Concepts

In contrast to the structural and behavioral concepts, which are mainly concerned with the
operational perspective on an enterprise, the informational concepts focus on what we could call
the “intentional” perspective. They provide a way to link the operational side of an organization
to the business goals, and to the products that an organization offers to its customers. We also
classify the product concept itself, together with the related contract concept, as informational
concepts.

Information is fundamentally related to communication. Information always serves a particular
purpose, which is tightly connected to some communicational goal. As communication always
involves a static part (the “message”) and a dynamic part (the communication action itself), the
communicational goals may have a link to both our “meaning” concept and our “value” concept.
Also, in speech act-based approaches to business modeling, such as DEMO [10], the
communicational aspect plays a central role in the context of business transactions.

A representation is the perceptible form of the information carried by a business object, such as
a document. As such, it can be seen as the realization of the associated business object. If
relevant, representations can be classified in various ways; for example, in terms of medium
(e.g., electronic, paper, audio) or format (e.g., HTML, PDF, plain text, bar chart).

A meaning is the contribution of the representation of a business object to the knowledge or
expertise of some actor, given a particular context. In other words, meaning represents the
informative value of a business object for a user of such an object. It is through a certain
interpretation of a representation of the object that meaning is being offered to a certain user or
to a certain category of users. A meaning can very well be a reformulation or transformation of
parts of the object representation in such a way that the role of the meaning is immediately clear
within the user's world, but essentially lies in interpretation by individuals, in context.

ArchiMate® 1.0 Specification 27

For the complete description of a meaning, the following two elements are needed, in addition to
the representations (and, indirectly, business objects) with which the meaning is associated:

• Some sort of meaning description: A meaning description is not equal to the
representation causing the meaning: it is a specialized description that aims to clarify or
stipulate a meaning. Natural language may be used for this, but also formal languages or
diagrams. Typical examples of meaning descriptions are definitions, ontologies,
paraphrases, subject descriptions, and tables of content. Meaning descriptions may draw
from or refer to additional meaning description sources; for example, dictionaries.
Importantly, meaning descriptions do not necessarily have to describe meaning in detail.
The level of detail depends on the types of analysis required. It is quite possible that a
very rough meaning description is good enough to capture at architecture level the sort of
interpretations a business object conveys. Detailed meaning description can only in a
limited number of cases be made very precise; in most cases, interpretation depends on the
general language and knowledge of specific actors, which normally remains largely
implicit.

• A description of the context(s) in which the meaning is conveyed: A context description
covers the situation in which the interpretation takes place. The most important elements
of such a context are the actors sending and receiving the business object, the time and
place of communication and the environment in which this happens. Often, a context can
be briefly described in terms of some business domain.

We see a (financial or information) product as of a collection of services, together with a
contract that specifies the characteristics, rights, and requirements associated with the product.
This “package” is offered as a whole to (internal or external) customers.

We define a contract as a formal or informal specification of agreement that specifies the rights
and obligations associated with a product. The value of a product or service is that which makes
some party appreciate it, possibly in relation to providing it, but more typically to acquiring it.

4.4.1 Representation

Representation is defined as the perceptible form of the information carried by a business object.

Representations (for example, messages or documents) are the perceptible carriers of
information that are related to business objects. If relevant, representations can be classified in
various ways; for example, in terms of medium (electronic, paper, audio, etc.) or format (HTML,
ASCII, PFD, RTF, etc.). A single business object can have a number of different representations,
but a representation always belongs to one specific business object.

A representation may realize one or more business objects. A meaning can be associated with a
representation that carries this meaning. The name of a representation is preferably a noun.

Figure 17: Representation Notation

28 Technical Standard (2009)

Example

The model below shows the business object Request for insurance, which is realized (represented)
by a (physical) request form. The Invoice business object is realized (represented) by a paper bill.

Request

Request
form

Invoice

Bill

Request
insurance

Receive
request

Process
request

Collect
premium

Example 11: Representation

4.4.2 Meaning

Meaning is defined as the knowledge or expertise present in the representation of a business
object, given a particular context.

A meaning is the representation-related counterpart of a value: it represents the functionality of a
representation (for example, a document, message; the representations related to a business
object). It is a description that expresses the intent of a representation; i.e., how it informs the
external user.

It is possible that different users view the informative functionality of a representation
differently. For example, what may be a “registration confirmation” for a client could be a
“client mutation” for a CRM department (assuming for the sake of argument that it is modeled as
an external user). Also, various different representations may carry essentially the same
meaning. For example, various different documents (a web document, a filled-in paper form, a
“client contact” report from the call center) may essentially carry the same meaning.

A meaning can be associated with a representation that carries this meaning. The name of a
meaning should preferably be a noun or noun phrase.

Figure 18: Meaning Notation

ArchiMate® 1.0 Specification 29

Example

The model below shows an Insurance policy document that is the representation of an Insurance
policy, which is a business object. The meaning related to this document is the Insurance policy
notification, which consists of a Policy explanation, an Insurance registration, and a Coverage
description.

Insurance policy
notification

Insurance
registration

Coverage
description

Policy
explanation

Insurance policy
document

Insurance
policy

Example 12: Meaning

4.4.3 Value

Value is defined as that which makes some party appreciate a service or product, possibly in
relation to providing it, but more typically to acquiring it.

Value may apply to what a party gets by selling or making available some product or service, or
it may apply to what a party gets by buying or obtaining access to it. Value is often expressed in
terms of money, but it has long since been recognized that non-monetary value is also essential
to business; for example, practical/functional value (including the right to use a service), and the
value of information or knowledge. Though value can hold internally for some system or
organizational unit, it is most typically applied to external appreciation of goods, services,
information, knowledge, or money, normally as part of some sort of customer-provider
relationship.

A value can be associated with business services and, indirectly, with the products they are part
of, and the roles or actors that use them. Although the name of a value can be expressed in many
different ways (including amounts, objects), where the “functional” value of a service is
concerned it is recommended to try and express it as an action or state that can be performed or
reached as a result of the corresponding service being available.

30 Technical Standard (2009)

Figure 19: Value Notation

Example

In the model below, the value Be Insured is the highest-level expression of what the service
Provide Insurance enables the client to do; three “sub-values” are distinguished that are part of
what Be Insured amounts to.

Protected
from loss Security

Reduced
risk

Be insured

Provide
insurance

Example 13: Value

4.4.4 Product

A product is defined as a coherent collection of services, accompanied by a contract/set of
agreements, which is offered as a whole to (internal or external) customers.

A (financial or information) product consists of a collection of services, and a contract that
specifies the characteristics, rights, and requirements associated with the product. “Buying” a
product gives the customer the right to use the associated services. Generally, the product
concept is used to specify a product type. The number of product types in an organization is
typically relatively stable compared to, for example, the processes that realize or support the
products. “Buying” is usually one of the services associated with a product, which results in a
new instance of that product (belonging to a specific customer). Similarly, there may be services
to modify or destroy a product.

A product may aggregate business services or application services,2 as well as a contract. A
value may be associated with a product. The name of a product is usually the name which is
used in the communication with customers, or possibly a more generic noun (e.g., “travel
insurance”).

2 The latter relation is defined in Chapter 7 on cross-layer dependencies.

ArchiMate® 1.0 Specification 31

Figure 20: Product Notation

Example

In the model below, a bank offers the product Telebanking account to its customers. Opening an
account as well as application support (i.e., helpdesk and the like), are modeled as business
services realized by the Customer relations department. As part of the product, the customer can
make use of a banking service which offers application services realized by the Telebanking
application, such as electronic Money transfer and requesting Account status.

Open
account

Application
support

Account
status

Money
transfer

Contract
Banking
service

Telebanking account

Customer
relations

department
Telebanking
application

Customer

Example 14: Product

4.4.5 Contract

A contract is defined as a formal or informal specification of an agreement that specifies the
rights and obligations associated with a product.

The contract concept may be used to model a contract in the legal sense, but also a more
informal agreement associated with a product. It may also be or include a Service Level
Agreement (SLA), describing an agreement about the functionality and quality of the services
that are part of a product. A contract is a specialization of a business object.

The relationships that apply to a business object also apply to a contract. In addition, a contract
may have an aggregation relationship with a product. The name of a contract is preferably a
noun.

32 Technical Standard (2009)

Figure 21: Contract Notation

Example

The model below shows a Telebanking contract associated with the product Telebanking account.
The contract consists of two parts (subcontracts): the Service Conditions and a Service Level
Agreement.

Telebanking account

Telebanking
contract

Service
Conditions

Service Level
Agreement

Example 15: Contract

4.5 Summary of Business Layer Concepts

Table 1 gives an overview of the concepts at the business layer, with their definitions.

Table 1: Business Layer Concepts

Concept Description Notation
Business actor An organizational entity that is capable of

performing behavior.

Business role A named specific behavior of a business

actor participating in a particular context.

Business
collaboration

A (temporary) configuration of two or
more business roles resulting in specific
collective behavior in a particular context.

ArchiMate® 1.0 Specification 33

Concept Description Notation
Business interface Declares how a business role can connect

with its environment.

Business object A unit of information that has relevance

from a business perspective.

Business process A unit of internal behavior or collection of

causally related units of internal behavior
intended to produce a defined set of
products and services.

Business
process

Business function A unit of internal behavior that groups

behavior according to, for example,
required skills, knowledge, resources, etc.,
and is performed by a single role within
the organization.

Business interaction A unit of behavior performed as a
collaboration of two or more business
roles.

Business event Something that happens (internally or

externally) and influences behavior.

Business service An externally visible unit of functionality,

which is meaningful to the environment
and is provided by a business role.

Representation The perceptible form of the information

carried by a business object.

Meaning The knowledge or expertise present in the

representation of a business object, given
a particular context.

Value That which makes some party appreciate a

service or product, possibly in relation to
providing it, but more typically to
acquiring it.

Product A coherent collection of services,
accompanied by a contract/set of
agreements, which is offered as a whole to
(internal or external) customers.

Contract A formal or informal specification of
agreement that specifies the rights and
obligations associated with a product.

34 Technical Standard (2009)

5 Application Layer

5.1 Application Layer Metamodel

Data
Object

Application
Service

Application
Interface

Application
Function

Application
Component

Application
Collaboration

Application
Interaction

accessed by

accesses

assigned to

assigned to

assigned toassigned to

accessed by

accesses used by

uses

realized by

realizes uses

used by composes

composed of

triggers / flow totriggerd by / flow from
aggregated by

aggregates

Figure 22: Application Layer Metamodel

Note: This figure does not show all permitted relationships: every element in the language
can have composition and aggregation relations with elements of the same type;
furthermore, there are indirect relationships that can be derived as explained in Section
8.5.

5.2 Structural Concepts

The main structural concept for the application layer is the application component. This concept
is used to model any structural entity in the application layer: not just (re-usable) software
components that can be part of one or more applications, but also complete software
applications, sub-applications, or information systems. Although very similar to the UML 2.0
component, our component concept strictly models the structural aspect of an application: its
behavior is modeled by an explicit relationship to the behavioral concepts.

Also in application architecture, the inter-relationships of components are an essential
ingredient. Therefore, we also introduce the concept of application collaboration here, defined
as a collective of application components which perform application interactions. The concept is
very similar to the collaboration as defined in the UML 2.0 standard [8], [12].

In the purely structural sense, an application interface is the (logical) channel through which the
services of a component can be accessed. In a broader sense (as used in, among others, the UML
2.0 definition), an application interface defines some elementary behavioral characteristics: it

ArchiMate® 1.0 Specification 35

defines the set of operations and events that are provided by the component, or those that are
required from the environment. Thus, it is used to describe the functionality of a component. A
distinction may be made between a provided interface and a required interface. The application
interface concept can be used to model both application-to-application interfaces, which offer
internal application services, and application-to business interfaces (and/or user interfaces),
which offer external application services.

Also at the application layer, we distinguish the passive counterpart of the component, which we
call a data object. This concept is used in the same way as data objects (or object types) in well-
known data modeling approaches, most notably the “class” concept in UML class diagrams. A
data object can be seen as a representation of a business object, as a counterpart of the
representation concept in the business layer.

5.2.1 Application Component

An application component is defined as a modular, deployable, and replaceable part of a system
that encapsulates its contents and exposes its functionality through a set of interfaces.

An application component is a self-contained unit of functionality. As such, it is independently
deployable, re-usable, and replaceable. An application component performs one or more
application functions. It encapsulates its contents: its functionality is only accessible through a
set of application interfaces. Co-operating application components are connected via application
collaborations.

An application component may be assigned to one or more application functions, business
processes, or business functions. An application component has (is composed of) one or more
application interfaces, which exposes its functionality. Application interfaces of other
application components may be used by an application component. The name of an application
component should preferably be a noun.

Figure 23: Application Component Notation

Example

In the model below, a financial application is depicted as an application component consisting of
two collaborating subcomponents for accounting and billing.

36 Technical Standard (2009)

Financial application

Accounting
component

Billing
component

Transaction
administration

Example 16: Application Component

5.2.2 Application Collaboration

Application collaboration is defined as a (temporary) configuration of two or more components
that co-operate to jointly perform application interactions.

An application collaboration specifies which components (have to) co-operate to perform some
task. The collaborative behavior, including, for example, the communication pattern of these
components, is modeled by an application interaction.

An application collaboration is a specialization of a component, and aggregates two or more (co-
operating) application components. An application collaboration may be assigned to one or more
application interactions or business interactions. An application interface may be used by an
application collaboration, and an application collaboration may be composed of application
interfaces. The name of an application collaboration should preferably be a noun.

Figure 24: Application Collaboration Notation

Example

In the model below, two components collaborate in transaction administration: an Accounting
component and a Billing component. This collaboration performs the application interaction
Administrate transactions.

Accounting
component

Billing
component

Transaction
administration

Administrate
transactions

Example 17: Application Collaboration

ArchiMate® 1.0 Specification 37

5.2.3 Application Interface

An application interface declares how a component can connect with its environment.

An application interface specifies how the functionality of a component can be accessed by other
components (provided interface), or which functionality the component requires from its
environment (required interface). An application interface exposes an application service to the
environment. The same application service may be exposed through different interfaces.

In a sense, an application interface specifies a kind of contract that a component realizing this
interface must fulfill. This may include parameters, protocols used, pre- and post-conditions, and
data formats.

An application interface may be part of an application component through composition (not
shown in the standard notation), which means that these interfaces are provided or required by
that component, and can be used by other application components. An application interface can
be assigned to application services or business services, which means that the interface exposes
these services to the environment. The name of an application interface should preferably be a
noun.

Figure 25: Application Interface Notation

Example

In the model below, an Accounting component is shown that provides an application interface for
Transaction data exchange, and a Billing component that requires such an interface.

Accounting
component

Billing
component

Transaction data
exchange

Example 18: Application Interface

5.2.4 Data Object

A data object is defined as a coherent, self-contained piece of information suitable for automated
processing.

An application function operates on a data object. A data object may be communicated via
interactions and used or produced by application services. It should be a useful, self-contained
piece of information with a clear meaning to the business, not just to the application level.
Typical examples of data objects are a customer record, a client database, or an insurance claim.

38 Technical Standard (2009)

A data object can be accessed by an application function, application interaction, or application
service. A data object may realize a business object, and may be realized by an artifact. A data
object may have association, specialization, aggregation, or composition relationships with other
data objects. The name of a data object should preferably be a noun.

Figure 26: Data Object Notation

Example

In the model below, two application functions co-operate via an application service, in which a
data object holding Transaction data is exchanged.

Accounting

Transaction
processing

Billing

Transaction
data

Example 19: Data Object

5.3 Behavioral Concepts

Behavior at the application layer can be described in a way that is very similar to business layer
behavior. Also here, we make a distinction between the external behavior of application
components in terms of application services, and the internal behavior of these components; i.e.,
application functions that realize these services.

An application service is an externally visible unit of functionality, provided by one or more
components, exposed through well-defined interfaces, and meaningful to the environment. The
service concept provides a way to explicitly describe the functionality that components share
with each other and the functionality that they make available to the environment. The concept
fits well within the current developments in the area of web services. The functionality that an
interactive computer program provides through a user interface is also modeled using an
application service, exposed by an application-to-business interface representing the user
interface. Internal application services are exposed through an application-to-application
interface.

An application function describes the internal behavior of a component needed to realize one or
more application services. In analogy with the business layer, a separate “application flow”
concept is conceivable as the counterpart of a business process. Note that the internal behavior of

ArchiMate® 1.0 Specification 39

a component should in most cases not be modeled in too much detail in an architectural
description, because for the description of this behavior we may soon be confronted with
detailed design issues.

An application interaction is the behavior of a collaboration of two or more application
components. The UML 2.0 standard [8], [12] also includes the interaction concept. An
application component is external behavior from the perspective of each of the participating
components, but the behavior is internal to the collaboration as a whole.

5.3.1 Application Function

An application function is defined as a representation of a coherent group of internal behavior of
an application component.

An application function describes the internal behavior of a component; for the user of a
component that performs an application function, this function is invisible. If its behavior is
exposed externally, this is done through one or more services. An application function abstracts
from the way it is implemented. Only the necessary behavior is specified.

An application function may realize application services. Application services of other
application functions and infrastructure services may be used by an application function. An
application function may access data objects. An application component may be assigned to an
application function (which means that the application component performs the application
function). The name of an application function should preferably be a verb ending with “-ing”;
e.g., “accounting”.

Figure 27: Application Function Notation

Example

In the model below, the functionality of a Financial application is modeled as an application
function consisting of two sub-functions.

40 Technical Standard (2009)

 Financial administration

Accounting Billing

Financial application

Example 20: Application Function

5.3.2 Application Interaction

Application interaction is defined as a unit of behavior performed by a collaboration of two or
more components.

An application interaction describes the externally visible behavior that is performed by
components that participate in an application collaboration. This may, for example, include the
communication pattern between these components. An application interaction can also specify
the externally visible behavior needed to realize an application service.

An application collaboration may be assigned to an application interaction. An application
interaction may realize an application service. Application services and infrastructure services
may be used by an application interaction. An application interaction may access data objects.
The name of an application interaction should preferably be a verb.

Figure 28: Application Interaction Notation

Example

In the model below, an Accounting component and a Billing component of a financial system co-
operate to compose an administrate transactions interaction. This is modeled as an application
interaction assigned to the collaboration between the two components.

ArchiMate® 1.0 Specification 41

Accounting
component

Billing
component

administrate
transactions

transaction
administration

Example 21: Application Collaboration

5.3.3 Application Service

An application service is defined as an externally visible unit of functionality, provided by one
or more components, exposed through well-defined interfaces, and meaningful to the
environment.

An application service exposes the functionality of components to their environment. This
functionality is accessed through one or more application interfaces. An application service is
realized by one or more application functions that are performed by the component. It may
require, use, and produce data objects.

An application service should be meaningful from the point of view of the environment; it
should provide a unit of functionality that is in itself useful to its users. It has a purpose, which
states this utility to the environment. This means, for example, that if this environment includes
business processes, application services should have business relevance.

A purpose may be associated with an application service. An application service may be used by
business processes, business functions, business interactions, or application functions. An
application function may realize an application service. An application interface may be
assigned to an application service. An application service may access data objects. The name of
an application service should preferably be a verb ending with “-ing”; e.g., “transaction
processing”. Also, a name explicitly containing the word “service” may be used.

Figure 29: Application Service Notation

Example

In the model below, a Transaction processing service is realized by the Accounting application
function. This service is assigned to the Transaction data exchange interface and used by the Billing
application function.

42 Technical Standard (2009)

Accounting

Transaction
processing

Billing Billing
component

Accounting
component

Application
interface

Billing User
interface

Example 22: Application Service

5.4 Summary of Application Layer Components

Table 2 gives an overview of the concepts at the application layer, with their definitions.

Table 2: Application Layer Concepts

Concept Definition Notation
Application
component

A modular, deployable, and replaceable
part of a system that encapsulates its
contents and exposes its functionality
through a set of interfaces.

Application
collaboration

An application collaboration defines a
(temporary) configuration of two or more
components that co-operate to jointly
perform application interactions.

Application
interface

An application interface declares how a
component can connect with its
environment.

Data object A coherent, self-contained piece of

information suitable for automated
processing.

Application
function

A coherent group of internal behavior of a
component.

Application
interaction

A unit of behavior jointly performed by
two or more collaborating components.

ArchiMate® 1.0 Specification 43

Concept Definition Notation
Application
service

An externally visible unit of functionality,
provided by one or more components,
exposed through well-defined interfaces,
and meaningful to the environment.

44 Technical Standard (2009)

6 Technology Layer

6.1 Technology Layer Metamodel

Figure 30 gives an overview of the technology layer concepts and their relationships. Many of
the concepts have been inspired by the UML 2.0 standard [8], [12], as this is the dominant
language and the de facto standard for describing software applications. Whenever applicable,
we draw inspiration from the analogy with the business and application layers.

Artifact

Infra-
structure
Service

Infra-
structure
Interface

Node

DeviceSystem
Software

Communication
path

Network

accessed by

accesses

assigned to

assigned to

used by

uses

composes

composed of

assigned to

assigned to

uses

used by

assigned toassigned to

realized by

realizes

associated with

associated with

associated with

associated with

realized by

realizes

Figure 30: Technology Layer Metamodel

Note: This figure does not show all permitted relationships: every element in the language
can have composition and aggregation relations with elements of the same type;
furthermore, there are indirect relationships that can be derived as explained in Section
8.5.

6.2 Structural Concepts

The main structural concept for the technology layer is the node. This concept is used to model
structural entities in this layer. It is identical to the node concept of UML 2.0. It strictly models
the structural aspect of a system: its behavior is modeled by an explicit relationship to the
behavioral concepts.

An infrastructure interface is the (logical) location where the infrastructure services offered by a
node can be accessed by other nodes or by application components from the application layer.

Nodes come in two flavors: device and system software, both taken from UML 2.0. A device
models a physical computational resource, upon which artifacts may be deployed for execution.

ArchiMate® 1.0 Specification 45

System software is classified as a behavioral concept, since it defines what a device “does”.
Typically, a node will consist of a number of sub-nodes; for example, a device such as a server
and system software to model the operating system.

The inter-relationships of components in the technology layer are mainly formed by the
communication infrastructure. The communication path models the relation between two or
more nodes, through which these nodes can exchange information. The physical realization of a
communication path is a modeled with a network; i.e., a physical communication medium
between two or more devices (or other networks).

6.2.1 Node

A node is defined as a computational resource upon which artifacts may be deployed for
execution.

Nodes are active processing elements that execute and process artifacts, which are the
representation of components and data objects. Nodes are, for example, used to model
application servers, database servers, or client workstations. They can consist of sub-nodes
representing physical devices and execution environments for artifacts.

Nodes can be interconnected by communication paths. Artifacts can be assigned to (i.e.,
deployed on) nodes.

The name of a node should preferably be a noun. A node can consist of sub-nodes.

Artifacts deployed on a node may either be drawn inside the node or connected to it with an
assignment relation.

Figure 31: Node Notation

Example

In the model below, we see an Application Server node, which consists of a Sun Blade device and a
JBoss J2EE Server application.

Application Server

JBoss
J2EE
Server

Sun Blade

Example 23: Node

46 Technical Standard (2009)

6.2.2 Device

A device is defined as a physical computational resource upon which artifacts may be deployed
for execution.

A device is a specialization of a node that represents a physical resource with processing
capability. It is typically used to model hardware systems such as mainframes, PCs, or routers.
Usually, they are part of a node together with system software. Devices may be composite; i.e.,
consist of sub-devices.

Devices can be interconnected by networks. Artifacts can be assigned to (i.e., deployed on)
devices. System software can be assigned to a device. A node can contain one or more devices.

The name of a device should preferably be a noun referring to the type of hardware; e.g., “IBM
System z mainframe”.

A device can consist of sub-devices.

Different icons may be used to distinguish between different types of devices; e.g. mainframes
and PCs.

Figure 32: Device Notation

Example

In the model below, we see a device IBM Systems z to which DB2 system software is assigned.

IBM
System z

DB2IBM
System z

DB2

Example 24: Device

6.2.3 Infrastructure Interface

An infrastructure interface is defined as a point of access where the functionality offered by a
node can be accessed by other nodes and application components.

An infrastructure interface specifies how the infrastructure services of a node can be accessed by
other nodes (provided interface), or which functionality the node requires from its environment
(required interface). An infrastructure interface exposes an infrastructure service to the
environment. The same service may be exposed through different interfaces.

ArchiMate® 1.0 Specification 47

In a sense, an infrastructure interface specifies a kind of contract that a component realizing this
interface must fulfill. This may include, for example, parameters, protocols used, pre- and post-
conditions, and data formats.

An infrastructure interface may be part of a node through composition (not shown in the
standard notation), which means that these interfaces are provided or required by that node, and
can be used by other nodes. An infrastructure service can be assigned to an infrastructure
interface, which exposes the service to the environment.

The name of an infrastructure interface should preferably be a noun.

Infrastructure
interface

Figure 33: Infrastructure Interface Notations

Example

In the model below, we see a Sybase Open Client infrastructure interface exposed, which is part of
the Sybase system software.

Sybase

Sybase Open Client

Example 25: Infrastructure Interface

6.2.4 Network

A network is defined as a physical communication medium between two or more devices.

A network represents the physical communication infrastructure. This may comprise one or
more fixed or wireless network links. The most basic network is a single link between two
devices. A network has properties such as bandwidth and latency. It embodies the physical
realization of the logical communication paths between nodes.

A network connects two or more devices. A network realizes one or more communication paths.

A network can consist of sub-networks.

Figure 34: Network Notation, as Connection and as Box

48 Technical Standard (2009)

Example

In the model below, a 100 Mb/s LAN network connects a mainframe and PC device.

OS/390
mainframe Desktop PC100Mbit/s LAN

Example 26: Network

6.2.5 Communication Path

A communication path is defined as a link between two or more nodes, through which these
nodes can exchange information.

A communication path is used to model the logical communication relations between nodes. It is
realized by one or more networks, which represent the physical communication links. The
communication properties (e.g., bandwidth, latency) of a communication path are usually
aggregated from these underlying networks.

A communication path connects two or more nodes. A communication path is realized by one or
more networks. A communication path is atomic.

Figure 35: Communication Path Notation, as Connection and as Box

Example

In the model below, we see a communication path “message queuing” between an Application
Server and a Client.

Application
Server Clientmessage queuing

Example 27: Communication Path

6.3 Behavioral Concepts

An infrastructure service describes the externally visible and accessible functionality of a node.

System software (similar to the “execution environment” concept of UML 2.0, but with a slightly
broader interpretation) represents the software environment for specific types of components and
data objects that are deployed on it in the form of artifacts.

ArchiMate® 1.0 Specification 49

6.3.1 Infrastructure Service

An infrastructure service is defined as an externally visible unit of functionality, provided by one
or more nodes, exposed through well-defined interfaces, and meaningful to the environment.

An infrastructure service exposes the functionality of a node to its environment. This
functionality is accessed through one or more infrastructure interfaces. It may require, use, and
produce artifacts.

An infrastructure service should be meaningful from the point of view of the environment; it
should provide a unit of functionality that is in itself useful to its users, such as application
components and nodes.

Typical infrastructure services may, for example, include messaging, storage, naming, and
directory services. It may access artifacts; e.g., a file containing a message.

An infrastructure service may be used by application components or nodes. An infrastructure
service is realized by a node. An infrastructure service is exposed by a node by assigning it to its
infrastructure interfaces. An infrastructure service may access artifacts.

The name of an infrastructure service should preferably be a verb ending with “-ing”; e.g.,
“messaging”. Also, a name explicitly containing the word “service” may be used.

An infrastructure service may consist of sub-services.

Figure 36: Infrastructure Interface Notation

Example

In the model below, we see a Messaging service realized by Websphere MQ system software.

Websphere
MQ

Messaging
service

Example 28: Infrastructure Interface

6.3.2 System Software

System software represents a software environment for specific types of components and objects
that are deployed on it in the form of artifacts.

50 Technical Standard (2009)

System software is a specialization of a node that is used to model the software environment in
which artifacts run. This can be, for example, an operating system, a J2EE application server, a
CORBA ORB, a database system, a workflow engine, or COTS software such as ERP or CRM
packages. Also, system software can be used to represent, for example, communication
middleware. Usually, system software is combined with a device representing the hardware
environment to form a general node.

System software can be assigned to a device. Artifacts can be assigned to (i.e., deployed on)
system software. A node can contain system software.

The name of system software should preferably be a noun referring to the type of execution
environment; e.g., “J2EE server”. System software may contain other system software; e.g., an
operating system containing a database.

Figure 37: System Software Notation

Example

In the model below, we see DB2 system software assigned to (deployed on) an OS/390 mainframe
device.

OS/390
mainframe DB2

Example 29: System Software

6.4 Informational Concepts

An artifact is a physical piece of information that is used or produced in a software development
process, or by deployment and operation of a system. It is the representation, in the form of, for
example, a file, of a data object, or an application component, and can be deployed on a node.
The artifact concept has been taken from UML 2.0.

6.4.1 Artifact

An artifact is defined as a physical piece of information that is used or produced in a software
development process, or by deployment and operation of a system.

An artifact represents a concrete element in the physical world. It is typically used to model
(software) products such as source files, executables, scripts, database tables, messages,
documents, specifications, and model files. An instance (copy) of an artifact can be deployed on
a node.

ArchiMate® 1.0 Specification 51

An application component may be realized by one or more artifacts. A data object may be
realized by one or more artifacts. An artifact may be assigned to (i.e., deployed on) a node. Thus,
the two typical ways to use the artifact concept are as an execution component or as a data file.
In fact, these could be defined as specializations of the artifact concept.

The name of an artifact should preferably be the name of the file it represents; e.g., “order.jar”.
An artifact may consist of sub-artifacts.

Figure 38: Artifact Notation

Example

In the example below, we see an artifact Risk management EJB, which represents a deployable
unit of code, assigned to (deployed on) an application server.

J2EE
Application

Server

Risk
management

EJB

Example 30: Artifact

52 Technical Standard (2009)

6.5 Summary of Technology Layer Concepts

Table 3 gives an overview of the concepts at the technology layer, with their definitions.

Table 3: Technology Layer Concepts

Concept Definition Notation
Node A computational resource upon which

artifacts may be deployed for execution.

Device A physical computational resource upon
which artifacts may be deployed for
execution.

Network A physical communication medium between
two or more devices.

Communication
path

A link between two or more nodes, through
which these nodes can exchange information.

Infrastructure
interface

A point of access where the functionality
offered by a node can be accessed by other
nodes and application components.

System software A software environment for specific types of
components and objects that are deployed on
it in the form of artifacts.

Infrastructure
service

An externally visible unit of functionality,
provided by one or more nodes, exposed
through well-defined interfaces, and
meaningful to the environment.

Artifact A physical piece of information that is used or
produced in a software development process,
or by deployment and operation of a system.

ArchiMate® 1.0 Specification 53

7 Cross-Layer Dependencies

In the previous chapters we have presented the concepts to model the business, application, and
technology layers of an enterprise. However, a central issue in enterprise architecture is
business-IT alignment: how can these layers be matched? In this chapter, we describe the
relationships that the ArchiMate language offers to model the link between business,
applications, and technology.

7.1 Business-Application Alignment

Figure 39 shows the relationships between business layer and application layer concepts. There
are three main types of relationships between these layers:

1. Used by relationships, between application service and the different types of business
behavior elements, and between application interface and business role. These
relationships represent the behavioral and structural aspects of the support of the business
by applications.

2. A realization relationship from a data object to a business object, to indicate that the data
object is a digital representation of the corresponding business object.

3. Assignment relationships, between application component and the different types of
business behavior elements, and between application interface and business service, to
indicate that, for example, business processes or business services are completely
automated.

In addition, there may be an aggregation relationship between a product and an application
service, to indicate that the application service can be offered directly to a customer as part of the
product.

Business layer

Application layer

ProductBusiness
Object

Business
Behavior
Element

Business
Role

Business
service

Data
Object

Application
service

Application
interface

Application
component

realized by

realizes aggregates

aggregated by assigned to

assigned to

uses

used by

uses

used by

assigned to

assigned to

Figure 39: Relationships between Business Layer and Application Layer Concepts

Note: This figure does not show all permitted relationships: there are indirect relationships
that can be derived as explained in Section 8.5.

54 Technical Standard (2009)

7.2 Application-Technology Alignment

Figure 40 shows the relationships between application layer and technology layer concepts.
There are two types of relationships between these layers:

1. Used by relationships, between infrastructure service and the different types of application
behavior elements, and between infrastructure interface and application component. These
relationships represent the behavioral and structural aspects of the use of technical
infrastructure by applications.

2. A realization relationship from artifact to data object, to indicate that the data object is
realized by, for example, a physical data file, and from artifact to application component,
to indicate that a physical data file is an executable that realizes an application or part of
an application. (Note: In this case, an artifact represents a “physical” component that is
deployed on a node; this is modeled with an assignment relationship. A (logical)
application component is realized by an artifact and, indirectly, by the node on which the
artifact is deployed.)

Application layer

Technology layer

Data
Object

Artifact

Application
Component

Application
Function

Infrastructure
Service

Infrastructure
Interface

uses

used by

uses

used by

realized by

realizes

realized by

realizes

Figure 40: Relationships between Application Layer and Technology Layer Concepts

Note: This figure does not show all permitted relationships: there are indirect relationships
that can be derived as explained in Section 8.5.

Due to the derived relationships that are explained in Section 8.5, it is also possible to draw
relationships directly between the business and technology layers. For example, if a business
object is realized by a data object, which in turn is realized by an artifact, this artifact indirectly
realizes the business object.

ArchiMate® 1.0 Specification 55

8 Relationships

The metamodels and examples from the previous chapters show the different types of
relationships that the ArchiMate language offers. In this chapter, we provide a more precise
description of these relationships.

The relationships can be classified as either:

• Structural, which model the structural coherence of concepts of the same or different
types

• Dynamic, which are used to model (temporal) dependencies between behavioral concepts

• Other, which do not fall in one of the two above categories

8.1 Structural Relationships

8.1.1 Composition Relationship

The composition relationship indicates that an object consists of a number of other objects.

The composition relationship has been inspired by the composition relationship in UML class
diagrams, but is applicable to compose a wider range of concepts. In contrast to the aggregation
relationship, an object can be part of only one composition.

In addition to composition relationships that are explicitly defined in the metamodel figures of
the previous sections, composition is always possible between two instances of the same
concept.

Figure 41: Composition Notation

Alternatively, a composition relationship can be expressed by nesting the model elements.

Example

The models below show the two ways to express that the application component Financial
application is composed of three other application components.

56 Technical Standard (2009)

Financial
application

Acocunting
component

Billing
component

Payment
component

Acocunting
component

Billing
component

Payment
component

Financial
application

Example 31: Composition

8.1.2 Aggregation Relationship

The aggregation relationship indicates that a concept groups a number of other concepts.

The aggregation relationship has been inspired on the aggregation relationship in UML class
diagrams, but is applicable to aggregate a wider range of concepts. In contrast to the composition
relationship, an object can be part of more than one aggregation.

In addition to aggregation relationships that are explicitly defined in the metamodel figures of
the previous sections, aggregation is always possible between two instances of the same concept.

Figure 42: Aggregation Notation

Alternatively, an aggregation relationship can be expressed by nesting the model elements.

Example

The models below show the two ways to express that the product Car insurance aggregates a
contract (Policy) and two business services.

Policy
Submit
claim

Change
conditions

Car insurance
Car insurance

Change
conditions

Submit
claimPolicy

Example 32: Aggregation

8.1.3 Assignment Relationship

The assignment relationship links active elements (e.g., business roles or application
components) with units of behavior that are performed by them, or business actors with business
roles that are fulfilled by them.

ArchiMate® 1.0 Specification 57

The assignment relationship can relate a business role with a business process or function, an
application component with an application function, a business collaboration with a business
interaction, an application collaboration with an application interaction, a business interface with
a business service, an application interface with an application service, or a business actor with a
business role.

Figure 43: Assignment Notation

Alternatively, an assignment relationship can be expressed by nesting the model elements.

Example

The model in below includes the two ways to express the assignment relationship. The Payment
function (application) is assigned to the Financial application (component), and the Payment service
(application) is assigned to the Application interface.

Payment
function

Financial application

Payment
service

Application
interface

Example 33: Assignment

8.1.4 Realization Relationship

The realization relationship links a logical entity with a more concrete entity that realizes it.

The realization relationship indicates how logical entities (“what”), such as services, are realized
by means of more concrete entities (“how”). The realization relationship is used in an
operational sense (e.g., a process/function realizes a service), but also in a
design/implementation context (e.g., a data object may realize a business object, or an artifact
may realize an application component).

Figure 44: Realization Notation

58 Technical Standard (2009)

Example

The model below illustrates two ways to use the realization relationship. An application
(component) Financial application realizes the Billing service (application); the Billing data object
realizes the business object Invoice.

Financial
application

Billing
data

Billing
service

Send
invoice Invoice

Example 34: Realization

8.1.5 Used By Relationship

The used by relationship models the use of services by processes, functions, or interactions and
the access to interfaces by roles, components, or collaborations.

The used by relationship describes the services that a role or component offers that are used by
entities in the environment. The used by relationship is applied for both the behavior aspect and
the structure aspect.

Figure 45: Used By Notation

Example

The model below illustrates the used by relationship: an application interface (in this case, the
user interface of the application) is used by the Front office employee, while the Update customer
info service is used in the Process change of address business process.

ArchiMate® 1.0 Specification 59

CRM
Application

Update
customer info

Front office
employee

Process
change of address

Example 35: Used By

8.1.6 Access Relationship

The access relationship models the access of behavioral concepts to business or data objects.

The access relationship indicates that a process, function, interaction, service, or event “does
something” with a (business or data) object; e.g., create a new object, read data from the object,
write or modify the object data, or delete the object. The relationship can also be used to indicate
that the object is just associated with the behavior; e.g., it models the information that comes
with an event, or the information that is made available as part of a service. The arrow indicates
the flow of information.

Figure 46: Access Notation

Example

The model below illustrates the access relationship: the Create invoice sub-process writes/creates
the Invoice business object; the Send invoice sub-process reads the Invoice business object.

Create
invoice

Send
invoice

Invoice

Create
invoice

Send
invoice

Invoice

Example 36: Access

8.1.7 Association Relationship

An association models a relationship between objects that is not covered by another, more
specific relationship.

60 Technical Standard (2009)

Association is mainly used, as in UML, to model relationships between business objects or data
objects that are not modeled by the standard relationships aggregation, composition, or
specialization. In addition to this, the association relationship is used to link the informational
concepts with the other concepts: a business object with a representation, a representation with a
meaning, and a business service with a purpose.

Figure 47: Association Notation

Example

The model illustrates a number of uses of the association relationship.

Customer Insurance
policy

Insurance
selling

Be
insured

Insured
object

Example 37: Association

8.2 Dynamic Relationships

8.2.1 Triggering Relationship

The triggering relationship describes the temporal or causal relations between processes,
functions, interactions, and events.

The triggering relationship is used to model the causal relationships between behavior concepts
in a process. No distinction is made between an active triggering relationship and a passive
causal relationship.

Figure 48: Triggering Notation

Example

The model below illustrates that triggering relationships are mostly used to model causal
dependencies between (sub-)processes and/or events.

ArchiMate® 1.0 Specification 61

Receive
request

Process
request

Collect
premium

Request
insurance

Request
granted

Example 38: Triggering

8.2.2 Flow Relationship

The flow relationship describes the exchange or transfer of, for example, information or value
between processes, function, interactions, and events.

The flow relationship is used to model the flow of, for example, information between behavior
concepts in a process. A flow relationship does not imply a causal or temporal relationship.

Figure 49: Flow Notation

Example

The model below shows a Claim assessment business function, which forwards decisions about
the claims to the Claim settlement business function. In order to determine the order in which the
claims should be assessed, Claim assessment makes use of schedule information received from
the Scheduling business function.

Scheduling

Claim
assessment

Claim
settlement

schedule info

decision

Example 39: Flow

8.3 Other Relationships

8.3.1 Grouping

The grouping relationship indicates that objects belong together based on some common
characteristic.

Similar to the UML package, the grouping relationship is used to group an arbitrary group of
model objects, which can be of the same type or of different types. In contrast to the aggregation
or composition relationships, there is no “overall” object of which the grouped objects form a
part.

62 Technical Standard (2009)

Figure 50: Grouping Notation

Unlike the other language concepts, grouping has no formal semantics. It is only used to show
graphically that model elements have something in common. Model elements may belong to
multiple (overlapping) groups.

Example

In the model below, the grouping relationship is used to group business objects that belong to the
same information domain, in this case Financial administration.

 Financial administration

Invoice data Account info

Debt info

Example 40: Grouping

8.3.2 Junction

A junction is used to connect dynamic relationships of the same type.

A junction is used in a number of situations to connect dynamic (triggering or flow)
relationships of the same type; e.g., to indicate splits or joins.

Figure 51: Junction Notation

Example

In the model below, a junction is used to denote an or-split (choice).

ArchiMate® 1.0 Specification 63

Receive
request

Assess
request

Notify
acceptance

Notify
rejection

Pay
accept

reject

Example 41: Junction

8.3.3 Specialization Relationship

The specialization relationship indicates that an object is a specialization of another object.

The specialization relationship has been inspired by the generalization/specialization relationship
in UML class diagrams, but is applicable to specialize a wider range of concepts. The
specialization relationship can relate any instance of a concept with another instance of the same
concept.

Specialization is always possible between two instances of the same concept.

Figure 52: Specialization Notation

Example

The model below illustrates the use of the specialization relationship for a business process. In
this case the Take out travel insurance and Take out luggage insurance processes are a specialization
of a more generic insurance take out process.

Take out
insurance

Take out travel
insurance

Take out luggage
insurance

Example 42: Specialization

8.4 Summary of Relationships

Table 4 gives an overview of the ArchiMate relationships with their definitions.

64 Technical Standard (2009)

Table 4: Relationships

Structural Relationships Notation
Association Association models a relationship between

objects that is not covered by another, more
specific relationship.

Access The access relationship models the access of
behavioral concepts to business or data
objects.

Used by The used by relationship models the use of
services by processes, functions, or
interactions and the access to interfaces by
roles, components, or collaborations.

Realization The realization relationship links a logical
entity with a more concrete entity that
realizes it.

Assignment The assignment relationship links units of
behavior with active elements (e.g., roles,
components) that perform them, or roles with
actors that fulfill them.

Aggregation The aggregation relationship indicates that an
object groups a number of other objects.

Composition The composition relationship indicates that
an object consists of a number of other
objects.

Dynamic Relationships Notation
Flow The flow relationship describes the exchange

or transfer of, for example, information or
value between processes, function,
interactions, and events.

Triggering The triggering relationship describes the
temporal or causal relations between
processes, functions, interactions, and events.

Other Relationships Notation
Grouping The grouping relationship indicates that

objects, of the same type or different types,
belong together based on some common
characteristic.

Junction A junction is used to connect relationships of

the same type.

Specialization The specialization relationship indicates that
an object is a specialization of another object.

ArchiMate® 1.0 Specification 65

8.5 Derived Relationships

The structural relationships described in the previous sections form an important category of
relations to describe coherence. The structural relationships are listed in Table 4 in ascending
order by “strength”: association is the weakest structural relationship; composition is the
strongest. Part of the language definition is an abstraction rule that states that two relationships
that join at an intermediate element can be combined and replaced by the weaker of the two.

If two structural relationships r:R and s:S are permitted between elements a, b, and c such that
r(a,b) and s(b,c), then a structural relationship t:T is also permitted, with t(a,c) and type T being
the weakest of R and S.

Transitively applying this property allows us to replace a “chain” of structural relationships
(with intermediate model elements) by the weakest structural relationship in the chain. For a
more formal description and derivation of this rule we refer to [15].

With this rule, it is possible to determine the “indirect” relationships that exist between model
elements without a direct relationship, which may be useful for, among other things, impact
analysis. An example is shown in Figure 43: assume that we would like to know what the impact
on the client is if the CRM system fails. In this case, an indirect “used by” relation (the thick
arrow on the left) can be derived from this system to the Claim registration service (from the chain
assignment – used by – realization – used by – realization). No indirect (structural) relationship
is drawn between the CRM system and the Claims payment service.

 Handle Claim

Register PayValuateAccept

Customer
administration

service

Payment
service

Claims
administration

service

CRM
system

Policy
administration

Financial
application

Customer
information

service

Claims
payment
service

Claim
registration

service

Client Insurant
Derived
relation

Example 43: Derived Relationship

It is important to note that all these derived relationships are also valid in ArchiMate. These are
not shown in the “barebones” metamodel illustrations shown in the previous sections, because

66 Technical Standard (2009)

this would clutter up the diagrams. However, the table in Appendix B shows all permitted
relationships between two elements in the language.

ArchiMate® 1.0 Specification 67

9 Architecture Viewpoints

9.1 Introduction

Establishing and maintaining a coherent enterprise architecture is clearly a complex task,
because it involves many different people with differing backgrounds using various notations. In
order to get a handle on this complexity, researchers have initially focused on the definition of
architectural frameworks for classifying and positioning the various architectural descriptions
with respect to each other (e.g., the Zachman framework [5], [9]). A problem with looking at
enterprise architecture through the lens of an architectural framework is that it categorizes and
divides architectural descriptions rather than providing insight into their coherence.

ArchiMate advocates a more flexible approach in which architects and other stakeholders can
define their own views on the enterprise architecture. In this approach, views are specified by
viewpoints. Viewpoints define abstractions on the set of models representing the enterprise
architecture, each aimed at a particular type of stakeholder and addressing a particular set of
concerns. Viewpoints can both be used to view certain aspects in isolation, and for relating two
or more aspects.

The notion of viewpoint-oriented architecture has been around for a while in requirements and
software engineering. In the 1990s, a substantial number of researchers worked on what was
phrased as “the multiple perspectives problem” [316], [17]. By this term they referred to the
problem of how to organize and guide (software) development in a setting with many actors,
using diverse representation schemes, having diverse domain knowledge and different
development strategies. A general framework has been developed in order to address the diverse
issues related to this problem [16], [17]. In this framework, a viewpoint combines the notion of
“actor”, “role”, or “agent” in the development process with the idea of a “perspective” or “view”
which an actor maintains. More precisely, viewpoints are defined as loosely coupled, locally
managed, distributable objects; thus containing identity, state, and behavior. A viewpoint is more
than a “partial specification”; in addition, it contains partial knowledge of how to develop that
partial specification. These early ideas on viewpoint-oriented software engineering have found
their way into ISO/IEC 42010:2007 [2] on which we have based our definitions below.

As a result of these ideas, several architecture frameworks can be found in the field of literature,
which are essentially viewpoint classification schemes. For example, the Zachman framework
[5], [9] divides the enterprise architecture into 36 different enterprise-wide “architectures” (i.e.,
viewpoints). Tapscott and Caston’s framework [18] distinguishes five different and
complementing viewpoints: business, work, information, application, and technology. Kruchten
[19] introduces the “4+1” method, in which four views (logic, process, development, and
physical), each having its own notation, are coupled through a fifth view: the scenario view
illustrating the collaboration between the other four views.

Viewpoints are also prominently present in the ISO standardized Reference Model for Open
Distributed Processing (RM-ODP) [7]. The RM-ODP identifies five viewpoints from which to

68 Technical Standard (2009)

specify ODP systems, each focusing on a particular area of concern; i.e., enterprise, information,
computational, engineering, and technology. It is claimed that the ODP viewpoints form a
necessary and sufficient set to meet the needs of ODP standards. More recently, the term
“viewpoint” is also used in OMG’s Model Driven Architecture (MDA) initiative to refer to the
different model types; i.e., Platform-Independent Model (PIM) and Platform-Specific Model
(PSM) [20]. Hence, we conclude that the use of viewpoints and architectural views are well-
established concepts in software architecture.

In the domain of enterprise architecture, the TOGAF framework describes a taxonomy of views
for different categories of stakeholders. Next to this description of views, TOGAF also provides
guidelines for the development and use of viewpoints and views in enterprise architecture
models.

The views and viewpoints proposed by any of the above mentioned frameworks should not be
considered in isolation: views are inter-related and, often, it is exactly a combination of views
together with their underlying inter-dependency relationships the best way to describe and
communicate a piece of architecture. It should, however, be noted that views and viewpoints
have a limiting character. They are eventually a restriction of the whole system (and
architecture) to a partial number of aspects – a view is just a partial incomplete depiction of the
system.

9.2 Views, Viewpoints, and Stakeholders

Views are an ideal mechanism to purposefully convey information about architecture areas. In
general, a view is defined as a part of an architecture description that addresses a set of related
concerns and is addressed to a set of stakeholders. A view is specified by means of a viewpoint,
which prescribes the concepts, models, analysis techniques, and visualizations that are provided
by the view. Simply put, a view is what you see, and a viewpoint is where you are looking from.

ArchiMate® 1.0 Specification 69

Figure 53: Conceptual Model of Architectural Description (from [2])

Viewpoints are a means to focus on particular aspects of the architecture. These aspects are
determined by the concerns of a stakeholder with whom communication takes place. What
should and should not be visible from a specific viewpoint is therefore entirely dependent on the
argumentation with respect to a stakeholder’s concerns.

Viewpoints are designed for the purpose of communicating certain aspects of an architecture.
The communication enabled by a viewpoint can be strictly informative, but in general will be bi-
directional. The architect informs stakeholders, and stakeholders give their feedback (critique or
consent) on the presented aspects. What is and what is not shown in a view depends on the scope
of the viewpoint and on what is relevant to the concerns of the stakeholder. Ideally, these are the
same; i.e., the viewpoint is designed with specific concerns of a stakeholder in mind. Relevance
to a stakeholder’s concern, therefore, is the selection criterion that is used to determine which
objects and relations are to appear in a view.

The following are examples of stakeholders and concerns as a basis for the specification of
viewpoints:

• End user: For example, what are the consequences for his work and workplace?

• Architect: What is the consequence for the maintainability of a system, with respect to
corrective, preventive, and adaptive maintenance?

70 Technical Standard (2009)

• Upper-level management: How can we ensure our policies are followed in the
development and operation of processes and systems? What is the impact of decisions (on
personnel, finance, ICT, etc.)?

• Operational manager, responsible for exploitation or maintenance: For example, what
new technologies are there to prepare for? Is there a need to adapt maintenance processes?
What is the impact of changes to existing applications? How secure are my systems?

• Project manager, responsible for the development of new applications: What are the
relevant domains and their relations? What is the dependence of business processes on the
applications to be built? What is their expected performance?

• Developer: What are the modifications with respect to the current situation that need to be
done?

9.3 Viewpoint Classification

An architect is confronted with many different types of stakeholders and concerns. To help him
in selecting the right viewpoints for the task at hand, we introduce a framework for the definition
and classification of viewpoints and views. The framework is based on two dimensions: purpose
and content. The following three types of architecture support the purpose dimension of
architecture views:

• Designing: Design viewpoints support architects and designers in the design process from
initial sketch to detailed design. Typically, design viewpoints consist of diagrams, like
those used in, for example, UML.

• Deciding: Decision support viewpoints assist managers in the process of decision-making
by offering insight into cross-domain architecture relations, typically through projections
and intersections of underlying models, but also by means of analytical techniques.
Typical examples are cross-reference tables, landscape maps, lists, and reports.

• Informing: Informing viewpoints help to inform any stakeholder about the enterprise
architecture, in order to achieve understanding, obtain commitment, and convince
adversaries. Typical examples are illustrations, animations, cartoons, flyers, etc.

The goal of this classification is to assist architects and others find suitable viewpoints given
their task at hand; i.e., the purpose that a view must serve and the content it should display. With
the help of this framework, it is easier to find typical viewpoints that might be useful in a given
situation. This implies that we do not provide an orthogonal categorization of each viewpoint
into one of three classes; these categories are not exclusive in the sense that a viewpoint in one
category cannot be applied to achieve another type of support. For instance, some decision
support viewpoints may be used to communicate to any other stakeholders as well.

For characterizing the content of a view we define the following abstraction levels:

• Details: Views on the detailed level typically consider one layer and one aspect from the
ArchiMate framework. Typical stakeholders are a software engineer responsible for
design and implementation of a software component or a process owner responsible for

ArchiMate® 1.0 Specification 71

effective and efficient process execution. Examples of views are a BPMN process diagram
and a UML class diagram.

• Coherence: At the coherence abstraction level, multiple layers or multiple aspects are
spanned. Extending the view to more than one layer or aspect enables the stakeholder to
focus on architecture relations like process-uses-system (multiple layer) or application-
uses-object (multiple aspect). Typical stakeholders are operational managers responsible
for a collection of IT services or business processes.

• Overview: The overview abstraction level addresses both multiple layers and multiple
aspects. Typically, such overviews are addressed to enterprise architects and decision-
makers, such as CEOs and CIOs.

In Figure 54, the dimensions of purpose and abstraction level are visualized in a single picture,
together with examples of stakeholders. Table 5 and Table 6 summarize the different purposes
and abstraction levels.

architect,
software

developer,
business process

designer

Deciding

Designing Informing

Details

Coherence

Overview

product manager,
CIO, CEO

customer,
employee,

others

architect,
software

developer,
business process

designer

Deciding

Designing Informing

Details

Coherence

Overview

Deciding

Designing Informing

Details

Coherence

Overview

product manager,
CIO, CEO

customer,
employee,

others

Figure 54: Classification of Enterprise Architecture Viewpoints

Table 5: Viewpoint Purpose

 Typical Stakeholders Purpose Examples
Designing architect, software

developer, business
process designer

navigate, design, support
design decisions, compare
alternatives

UML diagram, BPMN
diagram, flowchart, ER
diagram

Deciding manager, CIO, CEO decision-making cross-reference table,
landscape map, list, report

Informing employee, customer,
others

explain, convince, obtain
commitment

animation, cartoon,
process illustration, chart

72 Technical Standard (2009)

Table 6: Viewpoint Abstraction Levels

 Typical Stakeholders Purpose Examples
Details software engineer,

process owner
design, manage UML class diagram,

BPMN process diagram
Coherence operational managers analyze dependencies,

impact of-change
views expressing
relations like “use”,
“realize”, and “assign”

Overview enterprise architect, CIO,
CEO

change management landscape map

9.4 Basic Viewpoints in ArchiMate

The basic viewpoint in ArchiMate is a selection of a relevant subset of the ArchiMate concepts
(and their relations) and the representation of that part of an architecture that is expressed in
different diagrams. A set of such viewpoints was developed based on practical experience. Some
of these viewpoints have a scope that is limited to a single layer or aspect. Thus, the Business
Function and Business Process viewpoints show the two main perspectives on the business
behavior; the Organization viewpoint depicts the structure of the enterprise in terms of its
departments, roles, etc.; the Information Structure viewpoint describes the information and data
used; the Application Structure, Behavior, and Co-operation viewpoints contain the applications
and components and their mutual relations; and the Infrastructure viewpoint shows the
infrastructure and platforms underlying the enterprise’s information systems in terms of
networks, devices, and system software. Other viewpoints link multiple layers and/or aspects:
the Actor Co-operation and Product viewpoints relate the enterprise to its environment; the
Application Usage viewpoint relates applications to their use in, for example, business
processes; and the Deployment viewpoint shows how applications are mapped onto the
underlying infrastructure.

In the following sections, all ArchiMate viewpoints are separately described in detail. For each
viewpoint the comprised concepts and relations, the guidelines for the viewpoint use, and the
goal and target group and of the viewpoint are indicated. Furthermore, each viewpoint
description contains example models. For more details on the goal and use of viewpoints, refer
to [3], Chapter 7.

9.4.1 Introductory Viewpoint

The Introductory viewpoint forms a subset of the full ArchiMate language using a simplified
notation. It is typically used at the start of a design trajectory, when not everything needs to be
detailed yet, or to explain the essence of an architecture model to non-architects that require a
simpler notation. Another use of this basic, less formal viewpoint is that it tries to avoid the
impression that the architectural design is already fixed, an idea that may easily arise when using
a more formal, highly structured or detailed visualization.

We use a simplified notation for the concepts, and for the relations. All relations except
“triggering” and “realization” are denoted by simple lines; “realization” has an arrow in the
direction of the realized service; “triggering” is also represented by an arrow. The concepts are
denoted with slightly thicker lines and rounded corners, which give a less formal impression.

ArchiMate® 1.0 Specification 73

The example below illustrates this notation. On purpose, the layout of this example is not as
“straight” as an ordinary architecture diagram; this serves to avoid the idea that the design is
already fixed.

Table 7: Introductory Viewpoint Description

Introductory Viewpoint
Stakeholders Enterprise architects, managers
Concerns Make design choices visible, convince stakeholders
Purpose Designing, deciding, informing

Abstraction Level Coherence, Overview, Detail

Layer Business, Application, and Technology layers (see also Figure 5)

Aspects Structure, behavior, information (see also Figure 5)

Concepts and Relations

74 Technical Standard (2009)

Example

Damage claiming process

Customer
information

Claims
payment

CRM
application

 Policy
 administration

 Financial
 application

Claim
registration

Client ArchiSurance

MainframeUNIX
servers

Network

Register Accept Valuate Pay

9.4.2 Organization Viewpoint

The Organization viewpoint focuses on the (internal) organization of a company, a department, a
network of companies, or of another organizational entity. It is possible to present models in this
viewpoint as nested block diagrams, but also in a more traditional way, such as organizational
charts. The Organization viewpoint is very useful in identifying competencies, authority, and
responsibilities in an organization.

Table 8: Organization Viewpoint Description

Organization Viewpoint
Stakeholders Enterprise, process and domain architects, managers, employees,

shareholders
Concerns Identification of competencies, authority, and responsibilities
Purpose Designing, deciding, informing

Abstraction Level Coherence

Layer Business layer (see also Figure 5)

Aspects Structure (see also Figure 5)

ArchiMate® 1.0 Specification 75

Concepts and Relations

Business actor
Business
interface

Business role

Business
collaboration

Example

Customer Relations Intermediary Relations

Front Office

Home
&

Away

Car Legal Aid

Back Office

Finance

Document
Processing

SSC

HRMProduct
Develop-

ment

ArchiSurance

9.4.3 Actor Co-operation Viewpoint

The Actor Co-operation viewpoint focuses on the relations of actors with each other and their
environment. A common example of this is the “context diagram”, which puts an organization
into its environment, consisting of external parties such as customers, suppliers, and other
business partners. It is very useful in determining external dependencies and collaborations and
shows the value chain or network in which the actor operates.

76 Technical Standard (2009)

Another important use of the Actor Co-operation viewpoint is in showing how a number of co-
operating business actors and/or application components together realize a business process.
Hence, in this view, both business actors or roles and application components may occur.

Table 9: Actor Co-operation Viewpoint Description

Actor Co-operation Viewpoint
Stakeholders Enterprise, process, and domain architects
Concerns Relations of actors with their environment
Purpose Designing, deciding, informing

Abstraction Level Detail

Layer Business layer (application layer) (see also Figure 5)

Aspects Structure, behavior (see also Figure 5)

Concepts and Relations

Business service

Business
collaboration

Business role Business
actorBusiness

interface

Application
component

Application
interfaceApplication service

ArchiMate® 1.0 Specification 77

Example

Customer Relations Intermediary Relations

Front Office

Home
&

Away
Car Legal Aid

Back Office

Finance

Document
Processing

SSC

Product
Develop-

ment

HRM

electronic
contractspaper

contracts

claim form
(paper)

claim form
(electronic)

intermediary
contracts

electronic
contracts

confirm.payment
order

ArchiSurance

phone

e-mail

phone

GIM

mail

collaboration
Customer's Bank

IntermediaryCustomer

payment

confirmation

call

write

write

9.4.4 Business Function Viewpoint

The Business Function viewpoint shows the main business functions of an organization and their
relations in terms of the flows of information, value, or goods between them. Business functions
are used to represent the most stable aspects of a company in terms of the primary activities it
performs, regardless of organizational changes or technological developments. Therefore, the
business function architecture of companies that operate in the same market often exhibit close
similarities. The business function viewpoint thus provides high-level insight in the general
operations of the company, and can be used to identify necessary competencies, or to structure
an organization according to its main activities.

Table 10: Business Function Viewpoint Description

Business Function Viewpoint
Stakeholders Enterprise, process, and domain architects
Concerns Identification of competencies, identification of main activities, reduction

of complexity
Purpose Designing

Abstraction Level Coherence

Layer Business layer (see also Figure 5)

Aspects Behavior, structure (see also Figure 5)

78 Technical Standard (2009)

Concepts and Relations

Business function Business role Business actor

Example

Customer

Customer's Bank
Asset Management

Claims HandlingContracting

Financial Handling

Maintaining
Customer
Relations

Maintaining
Intermediary
Relations

customer
information

money

contract
info

asset
info

contract
info.

Insurer

Intermediary

cust.
info

claim
info

Product
Information
Customer

Information

claims

insurance
info

product
info.

9.4.5 Business Process Viewpoint

The Business Process viewpoint is used to show the high-level structure and composition of one
or more business processes. Next to the processes themselves, this viewpoint contains other
directly related concepts, such as:

• The services a business process offers to the outside world, showing how a process
contributes to the realization of the company’s products

• The assignment of business processes to roles, which gives insight into the responsibilities
of the associated actors

• The information used by the business process

Each of these can be regarded as a “sub-view” of the business process view.

Table 11: Business Process Viewpoint Description

Business Process Viewpoint
Stakeholders Process and domain architects, operational managers

ArchiMate® 1.0 Specification 79

Business Process Viewpoint
Concerns Structure of business processes, consistency and completeness,

responsibilities
Purpose Designing

Abstraction Level Detail

Layer Business layer (see also Figure 5)

Aspects Behavior (see also Figure 5)

Concepts and Relations

Business object

Business collaborationBusiness service

Representation Business actorBusiness role

Business interaction

Business process

Business event

Example

AcceptRegister PayValuate

Handle Claim

Damage Occured

Claim Form

Insurance Policy

Customer File

Damage Claim

Customer File

create/
update

read

update
update

read

read

create/
update crud

80 Technical Standard (2009)

9.4.6 Business Process Co-operation Viewpoint

The Business Process Co-operation viewpoint is used to show the relations of one or more
business processes with each other and/or with their environment. It can both be used to create a
high-level design of business processes within their context and to provide an operational
manager responsible for one or more such processes with insight into their dependencies.
Important aspects of business process co-operation are:

• Causal relations between the main business processes of the enterprise

• Mapping of business processes onto business functions

• Realization of services by business processes

• Use of shared data

• Execution of a business process by the same roles or actors

Each of these can be regarded as a “sub-view” of the business process co-operation view.

Table 12: Business Process Co-operation Viewpoint Description

Business Process Co-operation Viewpoint
Stakeholders Process and domain architects, operational managers
Concerns Dependencies between business processes, consistency and completeness,

responsibilities
Purpose Designing, deciding

Abstraction Level Coherence

Layer Business layer, application layer (see also Figure 5)

Aspects Behavior (see also Figure 5)

ArchiMate® 1.0 Specification 81

Concepts and Relations

Business service

Representation Business role

Business interaction

Business process

Business event

Business actor
Business object

Business collaboration

Application service

Example

AcceptRegister PayValuate

Handle Claim

Create Contract Check and
Sign ContractFormalize Request Check and

Sign Contract

Close Contract

Claim
Registration

Service

Claims
Payment
Service

Customer
data mutation

Service

Customer
Information

Service

Insurance
Application

Service

Premium
Payment
Service

Claim
InfoServ

Policy
Creation
Service

CIS

Customer

9.4.7 Product Viewpoint

The Product viewpoint depicts the value these products offer to the customers or other external
parties involved and shows the composition of one or more products in terms of the constituting
(business or application) services, and the associated contract(s) or other agreements. It may also
be used to show the interfaces (channels) through which this product is offered, and the events
associated with the product. A Product viewpoint is typically used in product development to
design a product by composing existing services or by identifying which new services have to be

82 Technical Standard (2009)

created for this product, given the value a customer expects from it. It may then serve as input
for business process architects and others that need to design the processes and ICT realizing
these products.

Table 13: Product Viewpoint Description

Product Viewpoint
Stakeholders Product developers, product managers, process and domain architects
Concerns Product development, value offered by the products of the enterprise
Purpose Designing, deciding

Abstraction Level Coherence

Layer Business layer, application layer (see also Figure 5)

Aspects Behavior, information (see also Figure 5)

Concepts and Relations

Application interface Application component

Business role Business actor

Application service

Business product
Value

Contract

Business process

Business event

Business interface

Business service

ArchiMate® 1.0 Specification 83

Example

Be Insured Customer

Travel Insurance
Policy

Customer
Information

Service

Claims
Payment
Service

Customer
data mutation

Service

Premium
Payment
Service

Claim
Registration

Service

Insurance
Application

Service

Travel Insurance

9.4.8 Application Behavior Viewpoint

The Application Behavior viewpoint describes the internal behavior of an application; e.g., as it
realizes one or more application services. This viewpoint is useful in designing the main
behavior of applications, or in identifying functional overlap between different applications.

Table 14: Application Behavior Viewpoint Description

Application Behavior Viewpoint
Stakeholders Enterprise, process, application, and domain architects
Concerns Structure, relations and dependencies between applications, consistency

and completeness, reduction of complexity
Purpose Designing

Abstraction Level Coherence, details

Layer Application layer (see also Figure 5)

Aspects Information, behavior, structure (see also Figure 5)

84 Technical Standard (2009)

Concepts and Relations

Application interaction

Application function
Data object

Application collaboration

Application interfaceApplication service

Application component

Example

Calculate Risk Calculate
Premium Create Policy Store Policy

Policy Creation

Home & Away
Policy

Administration

Policy
Creation
Service

Customer File
Data

Insurance Policy
Data

Insurance Request
Data

9.4.9 Application Co-operation Viewpoint

The Application Co-operation viewpoint describes the relations between applications
components in terms of the information flows between them, or in terms of the services they
offer and use. This viewpoint is typically used to create an overview of the application landscape
of an organization. This viewpoint is also used to express the (internal) co-operation or
orchestration of services that together support the execution of a business process.

Table 15: Application Co-operation Viewpoint Description

Application Co-operation Viewpoint
Stakeholders Enterprise , process, application, and domain architects
Concerns Relations and dependencies between applications,

orchestration/choreography of services, consistency and completeness,
reduction of complexity

ArchiMate® 1.0 Specification 85

Application Co-operation Viewpoint
Purpose Designing

Abstraction Level Coherence, details

Layer Application layer (see also Figure 5)
Aspects Behavior, structure (see also Figure 5)

Concepts and Relations

Application interaction
Data object

Application interfaceApplication service

Application collaborationApplication component

Example

Risk
Assessment

CRM
System

Web
portal

Call center
application

Front office Applications

Policy Data
Management

Customer Data
Access

Home & Away
Financial

Application

Home & Away
Policy

Administration

86 Technical Standard (2009)

9.4.10 Application Structure Viewpoint

The Application Structure viewpoint shows the structure of one or more applications or
components. This viewpoint is useful in designing or understanding the main structure of
applications or components and the associated data; e.g., to break down the structure of the
system under construction, or to identify legacy application components that are suitable for
migration/integration.

Table 16: Application Structure Viewpoint Description

Application Structure Viewpoint
Stakeholders Enterprise, process, application, and domain architects
Concerns Application structure, consistency and completeness, reduction of

complexity
Purpose Designing

Abstraction Level Details

Layer Application layer (see also Figure 5)

Aspects Structure, information (see also Figure 5)

Concepts and Relations

Application interface

Application collaboration
Data object

Application component

ArchiMate® 1.0 Specification 87

Example

Customer File
Data

Damage Claim
Data

Insurance Policy
Data

Risk
Assessment

Customer Data
Access

Claim Data
Management

Policy Data
Management

Home & Away
Policy

Administration

9.4.11 Application Usage Viewpoint

The Application Usage viewpoint describes how applications are used to support one or more
business processes, and how they are used by other applications. It can be used in designing an
application by identifying the services needed by business processes and other applications, or in
designing business processes by describing the services that are available. Furthermore, since it
identifies the dependencies of business processes upon applications, it may be useful to
operational managers responsible for these processes.

Table 17: Application Usage Viewpoint Description

Application Usage Viewpoint
Stakeholders Enterprise, process, and application architects, operational managers
Concerns Consistency and completeness, reduction of complexity
Purpose Designing, deciding

Abstraction Level Coherence

Layer Business and application layers (see also Figure 5)

Aspects Behavior, structure (see also Figure 5)

88 Technical Standard (2009)

Concepts and Relations

Application service

Application component

Application interface

Data object

Business
object

Business
role

Business
function

Business event

Example

CRM
System

Home & Away
Financial

Application

Home & Away
Policy

Administration

Document
management

system

Scanning
service

Customer
administration

service

Claims
administration

service
Printing
service

Payment
service

Register PayValuateAccept

Handle Claim

9.4.12 Infrastructure Viewpoint

The Infrastructure viewpoint contains the software and hardware infrastructure elements
supporting the application layer, such as physical devices, networks, or system software (e.g.,
operating systems, databases, and middleware).

Table 18: Infrastructure Viewpoint Description

Infrastructure Viewpoint
Stakeholders Infrastructure architects, operational managers
Concerns Stability, security, dependencies, costs of the infrastructure

ArchiMate® 1.0 Specification 89

Infrastructure Viewpoint
Purpose Designing

Abstraction Level Details

Layer Technology layer (see also Figure 5)

Aspects Behavior, structure (see also Figure 5)

Concepts and Relations

Artifact

Systems
software

Node

Device

Infrastructure
service

Infrastructure
interface

Network

Communication
path

Example

BIBIT

File Service Network ServiceDatabase Service

LAN

UNIX
Server

UNIX
Server

UNIX Server Farm

Firewall

NAS File
Server

CICS

DBMS

Message
Queuing

Mainframe

Archisurance

LANFirewall Admin
Server

Intermediary

90 Technical Standard (2009)

9.4.13 Infrastructure Usage Viewpoint

The Infrastructure Usage viewpoint shows how applications are supported by the software and
hardware infrastructure: the infrastructure services are delivered by the devices; system software
and networks are provided to the applications. This viewpoint plays an important role in the
analysis of performance and scalability, since it relates the physical infrastructure to the logical
world of applications. It is very useful in determining the performance and quality requirements
on the infrastructure based on the demands of the various applications that use it.

Table 19: Infrastructure Usage Viewpoint Description

Infrastructure Usage Viewpoint
Stakeholders Application, infrastructure architects, operational managers
Concerns Dependencies, performance, scalability
Purpose Designing

Abstraction Level Coherence

Layer Application and technology layers (see also Figure 5)

Aspects Behavior, structure (see also Figure 5)

Concepts and Relations

Infrastructure service

Node
Communication path

System software Device

Application
component

ArchiMate® 1.0 Specification 91

Example

Message
Queuing

DBMS

Mainframe

Messaging service Data access
service

Home & Away
Policy

Administration

Home & Away
Financial

Application

Car insurance
application

Legal aid
back-office

system

9.4.14 Implementation and Deployment Viewpoint

The Implementation and Deployment viewpoint shows how one or more applications are
realized on the infrastructure. This comprises the mapping of (logical) applications and
components onto (physical) artifacts, such as Enterprise Java Beans, and the mapping of the
information used by these applications and components onto the underlying storage
infrastructure; e.g., database tables or other files. Deployment views play an important role in the
analysis of performance and scalability, since they relate the physical infrastructure to the logical
world of applications. In security and risk analysis, deployment views are used to identify, for
example, critical dependencies and risks.

Table 20: Implementation and Deployment Viewpoint Description

Implementation and Deployment Viewpoint
Stakeholders Application and infrastructure architects, operational managers
Concerns Dependencies, security, risks
Purpose Designing

Abstraction Level Coherence

Layer Application layer, technology layer (see also Figure 5)

Aspects Information, behavior, structure (see also Figure 5)

92 Technical Standard (2009)

Concepts and Relations

Application
collaboration

Application
componentData

object

Artifact Infrastructure
service

Systems
software

Node

Device Network

Communication
path

Example

Bank
System

Home & Away
Financial

Application

NAS File
Server

LAN Firewall BIBIT Firewall LAN

Financial
Software

UNIX Server Farm

BIBIT
Server

9.4.15 Information Structure Viewpoint

The Information Structure viewpoint is comparable to the traditional information models created
in the development of almost any information system. It shows the structure of the information

ArchiMate® 1.0 Specification 93

used in the enterprise or in a specific business process or application, in terms of data types or
(object-oriented) class structures. Furthermore, it may show how the information at the business
level is represented at the application level in the form of the data structures used there, and how
these are then mapped onto the underlying infrastructure; e.g., by means of a database schema.

Table 21: Information Structure Viewpoint Description

Information Structure Viewpoint
Stakeholders Domain and information architects
Concerns Structure and dependencies of the used data and information, consistency

and completeness
Purpose Designing

Abstraction Level Details

Layer Business layer, application layer, technology layer (see also Figure 5)

Aspects Information (see also Figure 5)

Concepts and Relations

Representation
Business object

Artifact

Data object

Meaning

94 Technical Standard (2009)

Example

Claim Form

Customer File

Damage ClaimInsurance Policy

Customer

Insurance
Request

Legal aid
Insurance Policy

Liability
Insurance Policy

Travel
Insurance Policy

Car Insurance Policy Home
Insurance Policy

Customer File
Data

Damage Claim
Data

Insurance Policy
Data

Insurance Request
Data

9.4.16 Service Realization Viewpoint

The Service Realization viewpoint is used to show how one or more business services are
realized by the underlying processes (and sometimes by application components). Thus, it forms
the bridge between the business products viewpoint and the business process view. It provides a
“view from the outside” on one or more business processes.

Table 22: Service Realization Viewpoint Description

Service Realization Viewpoint
Stakeholders Process and domain architects, product and operational managers
Concerns Added-value of business processes, consistency and completeness,

responsibilities
Purpose Designing, deciding

Abstraction Level Coherence

Layer Business layer (application layer) (see also Figure 5)

Aspects Behavior, structure, information (see also Figure 5)

ArchiMate® 1.0 Specification 95

Concepts and Relations

Business role

Business service

Business actor
Business process

Business interaction

Business object

Application component

Business function

Business event

Business collaboration

Data object
Application collaborationApplication service

Example

Customer

Insurance
Application

Service

Claim
Registration

Service

Claims
Payment
Service

Customer
Information

Service

Premium
Payment
Service

Close Contract Handle Claim Inform Customer Collect
Premium

9.4.17 Layered Viewpoint

The Layered viewpoint pictures several layers and aspects of an enterprise architecture in one
diagram. There are two categories of layers, namely dedicated layers and service layers. The
layers are the result of the use of the “grouping” relation for a natural partitioning of the entire
set of objects and relations that belong to a model. The infrastructure, the application, the
process, and the actors/roles layers belong to the first category. The structural principle behind a
fully layered viewpoint is that each dedicated layer exposes, by means of the “realization”
relation a layer of services, which are further on “used by” the next dedicated layer. Thus, we
can easily separate the internal structure and organization of a dedicated layer from its externally
observable behavior expressed as the service layer that the dedicated layer realizes. The order,
number, or nature of these layers are not fixed, but in general a (more or less) complete and
natural layering of an ArchiMate model will contain the succession of layers depicted in the
example given below. However, this example is by no means intended to be prescriptive. The
main goal of the Layered viewpoint is to provide overview in one diagram. Furthermore, this

96 Technical Standard (2009)

viewpoint can be used as support for impact of change analysis and performance analysis or for
extending the service portfolio.

Table 23: Layered Viewpoint Description

Layered Viewpoint
Stakeholders Enterprise, process, application, infrastructure, and domain architects
Concerns Consistency, reduction of complexity, impact of change, flexibility
Purpose Designing, deciding, informing

Abstraction Level Overview

Layer Business layer, application layer, technology layer (see also Figure 5)

Aspects Information, behavior, structure (see also Figure 5)

Concepts and Relations

All concepts and all relations.

ArchiMate® 1.0 Specification 97

Example

ClientInsurant

External Roles and Actors

Claim
Registration

Service

Customer
Information

Service

Claims
Payment
Service

External Business Services

Register Accept Valuate Pay

Handle Claim

Insurer Archisurance

Business processen and internal actors / roles

Premium
Payment
Service

Customer
data mutation

Service

Insurance
Application

Service

External Application Services

Policy Data
Management

CRM
System

Home & Away
Financial

Application
CIS Claim

InfoServ

Application Components and Services

Claim
Files Service

Customer
File Service

External infrastructure services

NAS File
Server

CICS

DBMS

Message
Queuing

Mainframe

UNIX
Server

UNIX
Server

UNIX Server Farm

Infrastructure

98 Technical Standard (2009)

9.4.18 Landscape Map Viewpoint

A landscape map is a matrix that represents a three-dimensional coordinate system that
represents architectural relations. The dimensions of the landscape maps can be freely chosen
from the architecture that is being modeled. In practice, often dimensions are chosen from
different architectural domains; for instance, business functions, application components, and
products. Note that a landscape map uses the ArchiMate concepts, but not the standard notation
of these concepts.

In most cases, the vertical axis represents behavior like business processes or functions; the
horizontal axis represents “cases” for which those functions or processes must be executed, such
as different products, services market segments, or scenarios; the third dimension represented by
the cells of the matrix is used for assigning resources like information systems, infrastructure, or
human resources. The value of cells can be visualized by means of colored rectangles with text
labels. Obviously, landscape maps are a more powerful and expressive representation of
relations than traditional cross tables. They provide a practical manner for the generation and
publication of overview tables for managers, process, and system owners. Furthermore,
architects may use landscape maps as a resource allocation instrument and as an analysis tool for
the detection of patterns and changes in this allocation.

Table 24: Landscape Map Viewpoint Description

Landscape Map Viewpoint
Stakeholders Enterprise architects, top managers: CEO, CIO
Concerns Readability, management and reduction of complexity, comparison of

alternatives
Purpose Deciding

Abstraction Level Overview

Layer Business layer, application layer, technology layer (see also Figure 5)

Aspects Information, behavior, structure (see also Figure 5)

Concepts and Relations

All concepts and relations.

ArchiMate® 1.0 Specification 99

Example

Maintaining
Customer &

Intermediary
Relations

Claim
Handling

Contracting

Document
Processing

Liability
Insurance

Car
Insurance

Travel
Insurance

Home
Insurance

Legal Aid
Insurance

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal Aid
back

office
system

Legal Aid
CRM

Document management system

Home & Away
Financial application

Business
Functions

Products

Financial
Handling

Car insurance
application

100 Technical Standard (2009)

10 Language Extension Mechanisms

Every specific purpose and usage of an architecture modeling language brings about its own
specific demands on the language. Yet, it should be possible to use a language for only a limited,
though non-specific, modeling purpose. Therefore, the ArchiMate core language, embedded in
the ArchiMate metamodel, as described in Chapters 3 to 7, contains only the basic concepts and
relationships that serve general enterprise architecture modeling purposes. However, the
language should also be able to facilitate, through extension mechanisms, specialized, or
domain-specific purposes, such as:

• Support for specific types of model analysis

• Support the communication of architectures

• Capture the specifics of a certain application domain (e.g., the financial sector)

The argument behind this statement is to provide a means to allow extensions of the core
language that are tailored towards such specific domains or applications, without burdening the
core with a lot of additional concepts and notation which most people would barely use. The
remainder of this section is devoted to a number of possible extensions mechanisms that, in
addition to the core, are or can become part of the ArchiMate language.

10.1 Adding Attributes to ArchiMate Concepts and Relations

As said before, the core of ArchiMate contains only the concepts and relationships that are
necessary for general architecture modeling. However, users might want to be able to, for
example, perform model-based performance or cost calculations, or to attach supplementary
information (textual, numerical, etc.) to the model elements. A simple way to enrich ArchiMate
concepts and relationships in a generic way is to add supplementary information by means of a
“profiling” specialization mechanism (see also [13]). A profile is a data structure which can be
defined separate from the ArchiMate language, but can be dynamically coupled with concepts or
relationships; i.e., the user of the language is free to decide whether and when the assignment of
a profile to a model element is necessary. Profiles can be specified as sets of typed attributes, by
means of a profile definition language. Each of these attributes may have a default value that can
be changed by the user.

We can distinguish two types of profiles:

• Pre-defined profiles: These are profiles that have a predefined attribute structure and can
be implemented beforehand in any tool supporting the ArchiMate language. Examples of
such profiles are sets of attributes for ArchiMate concepts and relationships that have to
be specified in order to execute common types of analysis.

ArchiMate® 1.0 Specification 101

• User-defined profiles: Through a profile definition language, the user is able to define
new profiles, thus extending the definition of ArchiMate concepts or relationships with
supplementary attribute sets.

Example

Table 25 below shows possible profiles with input attributes needed for certain types of cost and
performance analysis of architecture models [21]. Each “used by” relationship may have a
weight (indicating the average number of uses); each (business, application, or infrastructure)
“service” may have fixed and variable costs and an (average) service time; and each structure
element (e.g., business role, business actor, application component, device) may have fixed and
variable costs and a capacity.

Table 25: Profile Example

“Used By” Profile “Service” Profile “Structure Element” Profile
Attribute Type Attribute Type Attribute Type
Weight Real Fixed cost Currency Fixed cost Currency
 Variable cost Currency Variable cost Currency
 Service time Time Capacity Integer

10.2 Specialization of Concepts

Specialization is a simple and powerful way to define new concepts based on the existing ones.
Specialized concepts inherit the properties of their “parent” concepts, but additional restrictions
with respect to their use may apply. For example, some of the relationships that apply for the
“parent” concept may not be allowed for the specialization. A specialized concept strongly
resembles a stereotype as it is used in UML. Specialization of concepts provides extra flexibility,
as it allows organizations or individual users to customize the language to their own preferences
and needs, while the underlying precise definition of the concepts is conserved. This also implies
that analysis and visualization techniques developed for the ArchiMate language still apply when
the specialized concepts are used.

Figure 55 shows a number of examples of concept specializations that have proven to be useful
in several practical cases.

102 Technical Standard (2009)

Figure 55: More Examples of Specialized Concepts

Also, the concepts in the layer-specific metamodels can be considered specializations of the
concepts in the generic metamodel of Chapter 3.

As the above examples indicate, we may introduce a new graphical notation for a specialized
concept, but usually with a resemblance to the notation of the parent concept; e.g., by adding or
changing the icon. It is also possible to use a <<stereotype>>-notation as in UML. Finally, for a
specialized concept, certain attributes may be predefined, as described in the previous section.

ArchiMate® 1.0 Specification 103

11 Future Directions

The current version of the ArchiMate language as specified in this Technical Standard has a
strong focus on describing the operational aspects of an enterprise. Although the aim is to keep
the core of the language relatively small, a number of directions for extending the language, as
well as more advanced tool support for inherent features of ArchiMate models, can be
envisaged. In this chapter, we identify some likely extensions for future versions of the language
and associated tool support. Furthermore, we look at the construction of the language itself,
which lends itself to relatively easy generalization and extension.

11.1 Extending and Refining the Concepts

In the practical use of ArchiMate, four fields have been identified in which a future extension of
the language may be advisable:

• Strategy, goals, principles, and requirements

• Evolution and realization of architectures

• The design process

• Architecture-level predictions

11.1.1 Strategy, Goals, Principles, and Requirements

Recall the definition of “architecture” of ISO/IEC 42010:2007 [2]:

“The fundamental organization of a system, embodied in its components, their relationships to
each other and the environment, and the principles governing its design and evolution.”

In the current version of ArchiMate, the emphasis is on concepts related to the first part of this
definition, which we could call the “extensional” aspects of the enterprise; i.e., its appearance as
an operational entity. The “intentional” aspects – i.e., its business goals, principles, policies,
reasons, rules, requirements, and other aspects that influence, guide, and constrain its design and
operation – are less well covered. This would be approximately equivalent to the “Why” column
of the Zachman framework [5], which was intentionally left out of scope in the design of
ArchiMate 1.0.

Thus, an obvious extension is the introduction of concepts to model different kinds of
intentionality, both of the enterprise as a whole (e.g., business goals), and of the translation of
these into restrictions on the architectural design itself (e.g., requirements, principles, rules, and
constraints).

TOGAF makes a distinction between “enterprise principles” (which are closely related to
business goals), “IT principles”, and “architecture principles”. Architecture principles can be

104 Technical Standard (2009)

either principles governing the architecture itself, the process by which it is created, or principles
governing the architecture’s implementation. Architecture principles may pertain to the different
types of architecture that TOGAF distinguishes; i.e., principles can be classified based on their
impact on the business, data, application, or technology architecture.

A topic that is closely related to principles is the use of business rules, which can be seen as a
realization of principles. Business rules separate the business logic from the processes, or put
constraints on the business operations. Business can be specified not only at the detailed design
level and the execution level (i.e., rules that can be directly executed by a rule engine), but also
at the architecture level [22].

11.1.2 Evolution and Realization

Second, an architecture description and the ensuing enterprise is not a static, one-shot affair. Its
evolution also needs to be supported. This entails adding concepts for describing changes – for
example, to define different versions of architecture elements – and the relation over time
between different architecture stages; e.g., plateaus or (current and future) states.

Furthermore, these changes are to be brought about in an orderly fashion: they need to have a
clear relationship with the organizational goals, principles, and rationale mentioned before, and
they should be realized by means of a coherent portfolio of programs and projects that take the
enterprise from one stage to another [29]. Hence, the link between ArchiMate models and
portfolio management needs to be addressed in a future version of the language. This could also
provide an important management tool for overseeing the realization of architectural plans, a
kind of “management dashboard”, enabling informed governance.

11.1.3 Design Process

Third, the language could provide additional support for the early stages of the architecture
development process. In these early stages, architects will often use informal, sketchy, and
incomplete models that later evolve into formally correct ArchiMate models. Hence, a relaxation
of formal correctness criteria in the early design stages might be in order. Support for this design
evolution will of course be closely related to the concepts envisaged in the previous section,
since design decisions are guided by goals, principles, and requirements, and the design process
is instrumental to the evolution of the architecture.

Of course, the concepts for the three areas mentioned need to be highly integrated: goals,
principles, and requirements guide the architecture evolution, which in turn is operationalized in
part by the design process. Full traceability from high-level goals via design decisions down to
the resulting architecture elements is desirable.

11.1.4 Architecture-Level Predictions

When you have to make the business case for different architecture alternatives, it is useful to be
able to predict different qualities of the alternatives: performance, costs, reliability, etc., as
illustrated for example in [21]. This requires different computational models, from where to
some extent existing results can be borrowed; e.g., petri nets [23], system dynamics [24],
operations research, [25], etc. Where [21] illustrated the potential of architecture-level
predictions, more work is needed to make it feasible to include this in ArchiMate tooling.

ArchiMate® 1.0 Specification 105

11.1.5 Other Improvements

Next to the extensions in the areas mentioned above, some definitions of language concepts
might also be improved and clarified. For example, the grouping concept could be given more
explicit semantics. In practical use, some concepts have been used to good effect for other
purposes than strictly intended; their future definitions may be updated to account for such
usage.

11.2 Linking to Other Modeling Languages and Frameworks

Practical experience shows that ArchiMate is a useful and practicable tool for high-level
enterprise architecture modeling. However, it intentionally does not cover the lower levels of
detail of architecture and design for various domains. Rather, it intends to link to more
specialized modeling languages for this. In the ArchiMate language definition, several
application and technology concepts have a clear link to UML 2.0 [8], [12], as has been
described in the previous sections. Similarly, business process concepts are closely related to the
Business Process Modeling Notation (BPMN) [26].

Next to these two languages, there are several other relevant modeling techniques. In particular,
this includes a number of other OMG standards: the Business Motivation Model (BMM) [27] for
specifying the rationale behind an architecture; the Semantics of Business Vocabulary and
Business Rules (SBVR) standard [28] for defining natural-language descriptions of business
entities; the Business Process Definition Metamodel (BPDM) [329] for specifying detailed
business process concepts. Furthermore, the link between ArchiMate and modeling techniques
such as i* [30] for requirements modeling, DEMO [10] for transactional models, and e3value
[31] for business and value networks could be explored further.

The links between these languages and ArchiMate need to be formally specified, possibly in the
form of model transformations as defined in the Model-Driven Architecture (MDA) and the
Queries, Views, & Transformations (QVT) transformation language [332]. Preferably, a generic
linking mechanism based on these transformations will be defined that can also be used to relate
to other, not yet identified languages.

Next to modeling languages, there is also a plethora of architecture frameworks to which
ArchiMate can be related. First, there are of course the Zachman [5] and TOGAF [4]
frameworks. Other relevant frameworks and conceptual models include DoDAF [333], MoDAF
[33], FEA [34], and the CBDI SAE metamodel for SOA [35].

11.3 How to Proceed

Extensions and improvements to the current version of the language need of course to be
approached with caution. A central principle in creating a new language version will be
backwards compatibility: a correct model expressed in ArchiMate 1.0 will still be a correct
model in future language versions.

Luckily, the design of the ArchiMate language already provides us with an important advantage.
Its metamodel is constructed in a stratified fashion, starting from a core set of concepts that are
specialized for each of the different layers (business, application, technology) of the language

106 Technical Standard (2009)

(see Figure 2). This allows us to define a future version of the language explicitly in two strata,
akin to the Infrastructure and Superstructure definitions of UML 2.0 [8], [12]. The current
version of the language could then be viewed as a specific instantiation (i.e., Superstructure) of
the ArchiMate 2.0 core (i.e., Infrastructure). Hence, ArchiMate 1.0 models will be fully correct
ArchiMate 2.0 as well.

To make this happen, first a slight clean-up of the current core concepts (the Infrastructure) is
needed, resulting in a version 1.1 of the language. Since these concepts are invisible to language
users, who only work with the specializations at each layer, the impact of this will be minimal.
Based on this version 1.1, a version 2.0 may then be defined that addresses one or more of the
extensions suggested above.

ArchiMate® 1.0 Specification 107

A Summary of Language Notation

Meaning

Value

Object

Representation

Artifact

Process /
function

Process

Function

Service

Activity

Event

Actor

Role

Component

Interface

provided

required

symmetric

Collaboration

Node

Device System
software

Network

Group

Specialization

Composition

Aggregation

Assignment

Realization

Triggering

Used by

Access

Association

Junction

Product

Flow

Communication
path

System
softwareInteraction

System
software

Contract

Meaning

Value

Object

Representation

Artifact

Process /
function

Process

Function

Service

Activity

Event

Actor

Role

Component

Interface

provided

required

symmetric

Collaboration

Node

Device System
software

Network

Group

Specialization

Composition

Aggregation

Assignment

Realization

Triggering

Used by

Access

Association

Junction

Product

Flow

Communication
path

System
softwareInteraction

Meaning

Value

Object

Representation

Artifact

Process /
function

Process

Function

Service

Activity

Event

Actor

Role

Component

Interface

provided

required

symmetric

Collaboration

Node

Device System
software

Network

Group

Specialization

Composition

Aggregation

Assignment

Realization

Triggering

Used by

Access

Association

Junction

Product

Flow

Communication
path

System
softwareInteraction

Meaning

Value

Object

Representation

Artifact

Process /
function

Process

Function

Service

Activity

Event

Actor

Role

Component

Interface

Meaning

Value

Object

Representation

Artifact

Process /
function

Process

Function

Service

Activity

Event

Actor

Role

Component

Interface

provided

required

symmetric

Collaboration

Node

Device System
software

Network

Group

Specialization

Composition

Aggregation

Assignment

Realization

Triggering

Used by

Access

Association

Junction

Product

Flow

Communication
path

System
softwareInteraction

System
software

Contract

108 Technical Standard (2009)

B Overview of Relationships

Junction Business
activity

Business
event

Business
interaction

Business
process

Business
actor

Business
interface

Business
collab.

Business
role

Business
function

Contract Product Business
service

Value Business
object

Repre-
sentation

Meaning

Junction ft ft ft ft ft ft ft ft ft ft ft
Business activity ft fostu fotu fotu fotu ou ou ou ou fotu ao oru oru o ao ao o
Business event ft fot cfgost fot fot o o o o fot ao o o o ao ao o
Business interaction ft fotu fotu cfgostu fotu ou ou ou ou fotu ao oru oru o ao ao o
Business process ft cfgotu cfgotu fotu cfgostu ou ou ou ou cfgotu ao oru oru o ao ao o
Business actor ft iou iou ou iou cfgostu fiotu cfgiostu cfgiostu fiou ao oru ioru o ao ao o
Business interface ft ou ou ou ou fotu cfgostu fotu fotu ou ao ou iou o ao ao o
Business collaboration ft iou iou iou iou cfgostu cfgiotu cfgiostu cfgiostu fiou ao oru ioru o ao ao o
Business role ft iou iou ou iou cfgostu cfgiotu cfgiostu cfgiostu fiou ao oru ioru o ao ao o
Business function ft cfgotu cfgotu fotu cfgotu fou ou fou fou cfgostu ao oru oru o ao ao o
Contract o o o o o o o o o cgos o o o cgos o o
Product ou ou ou ou ou ou ou ou ou ago cgosu gou o ao ao o
Business service ft ou ou ou ou ou ou ou ou ou ao ou cfgostu o ao ao o
Value o o o o o o o o o o o o cgos o o o
Business object o o o o o o o o o cgos o o o cgos o o
Representation o o o o o o o o o or o o o or cgos o
Meaning o o o o o o o o o o o o o o o cgos
Application collaboration ft iou iou iou iou fotu fotu fotu fotu iou ao oru ioru o ao ao o
Application component ft iou iou ou iou fotu fotu fotu fotu iou ao oru ioru o ao ao o
Application function ft ou ou ou ou ou ou ou ou ou ao ou ou o ao ao o
Application interaction ft ou ou ou ou ou ou ou ou ou ao ou ou o ao ao o
Application interface ft ou ou ou ou fotu fotu fotu fotu ou ao ou iou o ao ao o
Application service ft ou ou ou ou ou ou ou ou ou ao ou fotu o ao ao o
Data object o o o o o o o o o or o o o or o o
Artifact o o o o o o o o o aor or o o aor ao o
Communication path o o o o o o o o o o o o o o o o
Device ft ou ou ou ou ou ou ou ou ou ao ou ou o ao ao o
Node ft ou ou ou ou ou ou ou ou ou ao ou ou o ao ao o
Infrastructure interface ft ou ou ou ou ou ou ou ou ou ao ou ou o ao ao o
Network o o o o o o o o o o o o o o ao o
Infrastructure service ft ou ou ou ou ou ou ou ou ou ao ou ou o ao ao o
System software ft ou ou ou ou ou ou ou ou ou ao ou ou o ao ao o

Junction Business
activity

Business
event

Business
interaction

Business
process

Business
actor

Business
interface

Business
collab.

Business
role

Business
function

Contract Product Business
service

Value Business
object

Repre-
sentation

Meaning

(a)ccess ass(i)gnment (c)omposition (r)ealization (t)riggering Relationships:
a(g)gregation ass(o)ciation (f)low (s)pecialization (u)sed by

ArchiMate® 1.0 Specification 109

Applic.
collaboration

Applic.
component

Applic.
function

Applic.
interaction

Applic.
interface

Applic.
service

Data
object

Artifact Commun.
path

Device Node Infrastr.
interface

Network Infrastr.
service

System
software

ft ft ft ft ft ft ft ft ft ft ft Junction
ou ou ou ou ou oru ao o o o o o o o o Business activity
o o o o o o o o o o o o o o o Business event
ou ou ou ou ou oru ao o o o o o o o o Business interaction
ou ou ou ou ou oru ao o o o o o o o o Business process
fotu fotu ou ou fotu oru ao o o o o o o o o Business actor
fotu fotu ou ou fotu ou ao o o o o o o o o Business interface
fotu fotu ou ou fotu oru ao o o o o o o o o Business collaboration
fotu fotu ou ou fotu oru ao o o o o o o o o Business role
ou ou ou ou ou oru ao o o o o o o o o Business function
o o o o o o o o o o o o o o o Contract
ou ou ou ou ou gou ao o o o o o o o o Product
ou ou ou ou ou fotu ao o o o o o o o o Business service
o o o o o o o o o o o o o o o Value
o o o o o o o o o o o o o o o Business object
o o o o o o o o o o o o o o o Representation
o o o o o o o o o o o o o o o Meaning
cfgostu cfgostu iou iou cfgotu ioru ao o o o o o o o o Application collaboration
cfgostu cfgostu iou ou cfgotu ioru ao o o o o o o o o Application component
ou ou cfgostu fotu ou oru ao o o o o o o o o Application function
ou ou fotu cfgostu ou oru ao o o o o o o o o Application interaction
fotu fotu ou ou cfgostu iou ao o o o o o o o o Application interface
ou ou ou ou ou cfgostu ao o o o o o o o o Application service
o o o o o o cgos o o o o o o o o Data object
oru oru oru oru oru oru aor cgos o o o o o o o Artifact
o o o o o o o o cgos o o o o o o Communication path
ou ou ou ou ou ou ao aiou ioru cfgostu cfgostu cfgotu iou ioru cfgiostu Device
ou ou ou ou ou ou ao aiou ioru cfgostu cfgostu cfgotu iou ioru cfgiostu Node
ou ou ou ou ou ou ao aou ou fotu fotu cfgostu ou iou fotu Infrastructure interface
o o o o o o o o or o o o cgos o o Network
ou ou ou ou ou ou ao aou ou ou ou ou ou cfgostu ou Infrastructure service
ou ou ou ou ou ou ao aiou ioru cfgostu cfgostu cfgotu iou ioru cfgiostu System software

Applic.
collaboration

Applic.
component

Applic.
function

Applic.
interaction

Applic.
interface

Applic.
service

Data
object

Artifact Commun.
path

Device Node Infrastr.
interface

Network Infrastr.
service

System
software

(a)ccess ass(i)gnment (c)omposition (r)ealization (t)riggering Relationships:
a(g)gregation ass(o)ciation (f)low (s)pecialization (u)sed by

110 Technical Standard (2009)

Index
access relationship................................59
actor cooperation view75
aggregation relationship56
application behaviour view...................83
application collaboration36
application component35
application cooperation view................84
application function..............................39
application interaction40
application interface37
application layer11
application service................................41
application structure view86
Application-Technology Alignment.....54
ArchiMate Framework11
artifact ..50
assignment relationship57
association relationship60
attributes ...100
basic viewpoint.....................................72
business actor14
business collaboration16
business event.......................................24
business function21
business function view77
business interaction23
business interface17
business layer10
Business Layer Metamodel13
business object......................................18
business process20
business process cooperation view.......80
Business Process Definition Metamodel

(BPDM) ...105
Business Process Modeling Notation

(BPMN) ...105
business process view...........................78
business products view.........................81
business role ...15
business service25
Business-Application Alignment..........53
collaboration...10
communication path48

composition relationship55
contract...31
data object ..37
decision support viewpoints.................70
derived relationships65
design viewpoints.................................70
device ...46
flow relationship61
grouping relationship61
implementation and deployment view .91
information structure view92
informing viewpoints70
infrastructure interface46
infrastructure service............................49
interaction ..10
introductory viewpoint72
junction ..62
layered view ...95
layering ..10
meaning..28
Model-Driven Architecture (MDA) ...105
network ..47
node..45
organisation structure view74
product ...30
Queries, Views & Transformations

(QVT)..105
realization relationship57
representation.......................................27
Semantics of Business Vocabulary and

Business Rules (SBVR).................105
service realisation view........................94
specialization of Concepts..................101
specialization relationship....................63
system software....................................50
technical infrastructure view88
technology layer...................................11
triggering relationship60
Unified Modeling Language (UML)..105
used by relationship58
value...29
viewpoint..67

	1 Introduction
	1.1 Intended Audience
	1.2 Structure

	2 Enterprise Architecture
	2.1 Why Enterprise Architecture?
	2.2 Definitions
	2.3 ArchiMate and TOGAF

	3 Language Structure
	3.1 Design Approach
	3.2 Core Concepts
	3.3 Collaboration and Interaction
	3.4 Relationships
	3.5 Layering
	3.6 The ArchiMate Framework

	4 Business Layer
	4.1 Business Layer Metamodel
	4.2 Structural Concepts
	4.2.1 Business Actor
	4.2.2 Business Role
	4.2.3 Business Collaboration
	4.2.4 Business Interface
	4.2.5 Business Object

	4.3 Behavioral Concepts
	4.3.1 Business Process
	4.3.2 Business Function
	4.3.3 Business Interaction
	4.3.4 Business Event
	4.3.5 Business Service

	4.4 Informational Concepts
	4.4.1 Representation
	4.4.2 Meaning
	4.4.3 Value
	4.4.4 Product
	4.4.5 Contract

	4.5 Summary of Business Layer Concepts

	5 Application Layer
	5.1 Application Layer Metamodel
	5.2 Structural Concepts
	5.2.1 Application Component
	5.2.2 Application Collaboration
	5.2.3 Application Interface
	5.2.4 Data Object

	5.3 Behavioral Concepts
	5.3.1 Application Function
	5.3.2 Application Interaction
	5.3.3 Application Service

	5.4 Summary of Application Layer Components

	6 Technology Layer
	6.1 Technology Layer Metamodel
	6.2 Structural Concepts
	6.2.1 Node
	6.2.2 Device
	6.2.3 Infrastructure Interface
	6.2.4 Network
	6.2.5 Communication Path

	6.3 Behavioral Concepts
	6.3.1 Infrastructure Service
	6.3.2 System Software

	6.4 Informational Concepts
	6.4.1 Artifact

	6.5 Summary of Technology Layer Concepts

	7 Cross-Layer Dependencies
	7.1 Business-Application Alignment
	7.2 Application-Technology Alignment

	8 Relationships
	8.1 Structural Relationships
	8.1.1 Composition Relationship
	8.1.2 Aggregation Relationship
	8.1.3 Assignment Relationship
	8.1.4 Realization Relationship
	8.1.5 Used By Relationship
	8.1.6 Access Relationship
	8.1.7 Association Relationship

	8.2 Dynamic Relationships
	8.2.1 Triggering Relationship
	8.2.2 Flow Relationship

	8.3 Other Relationships
	8.3.1 Grouping
	8.3.2 Junction
	8.3.3 Specialization Relationship

	8.4 Summary of Relationships
	8.5 Derived Relationships

	9 Architecture Viewpoints
	9.1 Introduction
	9.2 Views, Viewpoints, and Stakeholders
	9.3 Viewpoint Classification
	9.4 Basic Viewpoints in ArchiMate
	9.4.1 Introductory Viewpoint
	9.4.2 Organization Viewpoint
	9.4.3 Actor Co-operation Viewpoint
	9.4.4 Business Function Viewpoint
	9.4.5 Business Process Viewpoint
	9.4.6 Business Process Co-operation Viewpoint
	9.4.7 Product Viewpoint
	9.4.8 Application Behavior Viewpoint
	9.4.9 Application Co-operation Viewpoint
	9.4.10 Application Structure Viewpoint
	9.4.11 Application Usage Viewpoint
	9.4.12 Infrastructure Viewpoint
	9.4.13 Infrastructure Usage Viewpoint
	9.4.14 Implementation and Deployment Viewpoint
	9.4.15 Information Structure Viewpoint
	9.4.16 Service Realization Viewpoint
	9.4.17 Layered Viewpoint
	9.4.18 Landscape Map Viewpoint

	10 Language Extension Mechanisms
	10.1 Adding Attributes to ArchiMate Concepts and Relations
	10.2 Specialization of Concepts

	11 Future Directions
	11.1 Extending and Refining the Concepts
	11.1.1 Strategy, Goals, Principles, and Requirements
	11.1.2 Evolution and Realization
	11.1.3 Design Process
	11.1.4 Architecture-Level Predictions
	11.1.5 Other Improvements

	11.2 Linking to Other Modeling Languages and Frameworks
	11.3 How to Proceed

	A Summary of Language Notation
	B Overview of Relationships

