Previous section.

NMF SPIRIT Issue 3.0 Platform Blueprint

NMF SPIRIT Issue 3.0 Platform Blueprint
Copyright © 1995 Network Management Forum

Interoperability and Protocol Suites

Model

Communications models describe protocols. A protocol is an agreed convention for the exchange of information between communicating entities. A protocol describes the format of the exchanged information, including control information and content, the semantics of the control information, and constraints on communication, such as sequencing and state constraints.

In describing communications, it is necessary to identify:

In a describing protocol layering, it is necessary to:

A protocol suite is a set of protocols, including descriptions of each protocol's function, layering relationships and constraints.

The basic communications model is defined by an adaptation of the OSI Reference Model, which classifies protocols by function and provides a basic framework for layering protocols. The OSI Reference Model defines seven layers of communications services. A given layer is defined to be a Service Provider for the next higher layer and a service user of the next lower layer.

There are two essential properties of layering. The first is that a service user is unaware of characteristics of layers below the corresponding Service Provider. The second is that the protocol is layered such that information is exchanged between peer entities at a given layer according to the protocol defined for that layer.

End systems are platforms that implement communications interfaces and support the functions of all seven layers of the OSI Reference Model.

As defined in Part 1, Overview and Core Specifications, protocols are grouped into Application Protocols and Transport and Lower Layer Protocols, designated by APPL and TLL respectively. APIs are associated with protocols only at Application and Transport Layers.1

Figure: Communication Model Mapping

Having this basic grouping for reasons of simplification, it is necessary to describe the possible combinations that can exist among protocols.

Typically, the layering of protocols in a suite is shown graphically by a tile diagram, where each tile represents a protocol at a given layer. The possibility of layering one protocol on another is shown by the lower protocol's tile being positioned directly under the higher protocol's tile.

However, such diagrams are limited when the relationships among protocols become complex. Furthermore, tile diagrams only show protocol layering. They do not show other information such as APIs, constraints and conformance criteria, all of which are relevant for SPIRIT users.

Because of these limitations, protocol suites are defined using tables.

As shown in Modelling Conventions , a table can represent the same information shown graphically by a tile diagram. The tables also identify additional constraints, and any other relevant information such as associated APIs.

Figure: Modelling Conventions

As can be seen in the example above, the two conventions are equivalent representations of layering. As is also shown, it is not necessary to have a one-to-one mapping between protocols and layers in the OSI Reference Model.

As shown in Modelling Conventions , some protocols span multiple OSI Layers. In this case, the protocol appears in the uppermost layer in the graphic convention. In the tabular convention, the upper and lower bounds are listed in the layer column.

Although not shown in the above example, it is also possible for multiple layered protocols to exist within a single OSI Layer.

The tables that represent protocol stacks shall contain the following columns:

Layer
Identifies the corresponding layer in the OSI Reference Model. Where a protocol supports the functions of multiple OSI Layers, the top-most layer is used.

Protocol
A brief description of the protocol. A mnemonic designator for the protocol is shown in bold letters.

Reference
This is the label of the normative reference as given in Part 1, Overview and Core Specifications. The designation of the corresponding standard (for example, IEEE 801.2, RFC 877) is also given.

API
Identifies the associated application programming interfaces, if any.

Over
Identifies the Lower Layer protocols on which the protocol can be layered. An "&" indicates a logical "and" of Lower Layer protocols; that is, layered multiple Lower Layer protocols in conjunction; an "|" indicates a logical "or" of Lower Layer protocols; that is, alternatives. The Lower Layer protocol is indicated in bold using the mnemonic identifier for the protocol that is used in the protocol column.

Constraint
Identifies any constraints on the layering or usage of the protocol. Often these are identified by standard protocol profiles. In such cases, it is noted using the label used in the SPIRIT normative references.

Conformance
Identifies the conformance test suite or testing organisation.

SPIRIT describes three protocol suites:

There is one table for each of these suites. As a matter of convenience for presentation purposes, the table describing the Application Protocol Suite is segmented into 3 parts, one for OSI-based application protocols, one for Internet-based application protocols, and one for DCE (Distributed Computing Environment) application protocols.

OSI Transport and Lower Layer Protocol Suite

The OSI Transport and Lower Layer Protocol Suite is defined below.

Table: OSI Transport and Lower Layer Protocols

Layer Protocol References API Over Constraint Conformance
4 TP4: OSI Transport
Class 4
PRO/TLL-1
(ISO/IEC 8073)
XTI API/COM-1 CLNP
(& ES-IS)2
| CONPI
| X25
PROF-4
PROF-5
PROF-6
PROF-7
ISO/IEC 8073
Amd. 3
4 TP0,2: OSI Transport PRO/TLL-1 XTI API/COM-1 CONPI PPOF-2 ISO/IEC 8073
  Classes 0, 2 (ISO/IEC 8073)   | X25 PROF-3 Amd. 3
3 CLNP: Connectionless
Network Protocol
PRO/TLL-2
(ISO/IEC 8473)
None. LLC |
LAPF &
IP-WAN2
| CONPI
| X25
PRO/TLL-31
(RFC 1490)
used with LAPF
 
3 ES-IS: Routing Exchange Protocol3 PRO/TLL-5
(ISO/IEC 9542)
None. LLC |
LAPF &
IP-WAN2
| CONPI
| X25
Used with
CLNP,
PRO/TLL-31
(RFC 1490)
Used with
LAPF
 
3 CONPI: Connection- PRO/TLL-4   CONP    
  oriented Network (ISO/IEC 9574)        
  Protocol for ISDN          
3 X25: X.25 for Data PRO/TLL-3   CONP    
  Terminal Equipment (ISO/IEC 8878)        
3 CONP: Connection-
oriented Network
Protocol
PRO/TLL-3
(ISO/IEC 8208)
None. LAPB4 PROF-2
PROF-3
PROF-7
ISO/IEC 8208
Amd. 3
3 ISDN-CC: ISDN PRO/TLL-24 None. LAPD    
  Call Control5 (CCITT Q.931)        
2 FR-CC: Frame Relay PRO/TLL-27 None. LAPD |    
  Call Control6 (CCITT Q.933)   LAPF    
2 LAPF: Link Access PRO/TLL-28 None. Physical    
  Procedure to FRBS (CCITT Q.922)        
2 FRBS: Frame Relay
Bearer Service
PRO/TLL-29
(CCITT I.233,
CCITT Q.922,
Annex A)
None. Physical    
2 LAPB: Link Access PRO/TLL-25 None. Physical   ISO 7776
  Procedure Balanced (ISO 7776)       Amd. 1
2 LAPD: Link Access PRO/TLL-26 None. Physical    
  Protocol D (CCITT Q.921)        
2 LLC: Logical Link
Control Types 1, 2
PRO/TLL-15
(ISO 8802-2)
None. CSMA/CD
| 802.5 |
FDDI
Type 1 for
CSMA/CD
 
2-1 CSMA/CD PRO/TLL-17
(ISO/IEC 8802-3)
PRO/TLL-197
None. Physical PROF-4
use one of
CSMA/CD,
802.5,
FDDI
 
2-1 802.5: Token Ring PRO/TLL-20
(ISO/IEC 8802-5)
None. Physical PROF-5
use one of
CSMA/CD,
802.5,
FDDI
 
2-1 FDDI PRO/TLL-21
(ISO 9314)
None. Physical PROF-6
use one of
CSMA/CD,
802.5,
FDDI
 

Internet Transport and Lower Layer Protocol Suite

The Internet Transport and Lower Layer Protocol Suite is defined below. Protocols in this suite layer over various OSI protocols at the Lower Layers.

Table: Internet Transport and Lower Layer Protocols

Layer Protocol References API Over Constraint Conformance
4 TCP: Transmission PRO/TLL-6 XTI API/COM-1 IP PROF-7  
  Control Protocol (RFC 793)     (RFC 1122)  
          ADM-1  
          (RFC 1340,  
          RFC 1166)  
4 UDP: User Datagram Protocol PRO/TLL-6
(RFC 768)
XTI API/COM-1 IP PROF-7
(RFC 1122)
ADM-1
(RFC 1340,
RFC 1166)
 
4 TP0: ISO Transport PRO/TLL-12 XTI API/COM-1 TCP    
  Services over TCP (RFC 1006)        
3 IP: Internet Protocol PRO/TLL-7
(RFC 791)
None. IP-WAN1
| IP-LAN1
| IP-LAN2
| IP-LAN3
| PPP
PROF-7
(RFC 1122)
ADM-1
(RFC 1340,
RFC 1166)
 
3 ICMP: Internet Control
Message Protocol8
PRO/TLL-7
(RFC 792)
None. IP PROF-7
(RFC 1122)
ADM-1
(RFC 1340,
RFC 1166)
 
3 BI: Broadcasting
Internet Datagrams
PRO/TLL-9
(RFC 919)
(RFC 922)
PRO/TLL-8
(RFC 950)
PRO/TLL-10
(RFC 1112)
None.   PROF-7
(RFC 1122)
ADM-1
(RFC 1340,
RFC 1166)
used with IP
 
3 SE: Subnet Extension PRO/TLL-8
(RFC 950)
None.   PROF-7
(RFC 1122)
ADM-1
(RFC 1340,
RFC 1166)
used with IP
 
3 IGMP: Internet Group
Management Protocol
PRO/TLL-10
(RFC 1112)
None. IP PROF-7
(RFC 1122)
ADM-1
(RFC 1340,
RFC 1166)
 
3 ARP: Address
Resolution Protocol
PRO/TLL-11
(RFC 826)
None. IP-LAN1
| IP-LAN2
| IP-LAN3
PROF-7
(RFC 1122)
ADM-1
(RFC 1340,
RFC 1166)
 
             
3 RARP: Reverse
Address Resolution
Protocol
PRO/TLL-11
(RFC 903)
None. IP-LAN1
| IP-LAN2
| IP-LAN3
PROF-7
(RFC 1122)
ADM-1
(RFC 1340,
RFC 1166)
 
3 EGP: Exterior
Gateway Protocol9
PRO/TLL-13
(RFC 904)
None. IP PROF-7
(RFC 1009)
ADM-1
(RFC 1340,
RFC 1166)
 
3 RIP: Routing
Information Protocol10
PRO-TLL-13
(RFC 1058)
None. IP PROF-7
(RFC 1009)
ADM-1
(RFC 1340,
RFC 1166)
 
3 OSPF: Open Shortest
Path Fast Protocol11
PRO/TLL-13
(RFC 1247)
None. IP PROF-7
(RFC 1009)
ADM-1
(RFC 1340,
RFC 1166)
 
3 PPP: Point-to-Point
Protocol
PRO/TLL-14
(RFC 1548)
(RFC 1549)
(RFC 1332)
(RFC 1333)
None. Physical ADM-1
(RFC 1340,
RFC 1166)
 
3 IP-WAN1: Transmission PRO/TLL-30 None. CONP    
  of IP Datagrams over (RFC 877)        
  Public Data Networks          
3 IP-WAN2: Multiprotocol PRO/TLL-31 None.   Used with  
  Over Frame Relay (RFC 1490)     FRBS |  
          LAPF  
2 IP-LAN1: Transmission PRO/TLL-18 None. CSMA/CD Use one of  
  of IP Datagrams over (RFC 894)     IP-LAN1,  
  Ethernet Networks12       IP-LAN2,  
          IP-LAN3  
2 IP-LAN2: Transmission PRO/TLL-16 None. Token Ring Use one of  
  of IP Datagrams over (RFC 1042)   802.5 IP-LAN1,  
  IEEE 802 Networks       IP-LAN2,  
          IP-LAN3  
2 IP-LAN3: Transmission PRO/TLL-22 None. FDDI Use one of  
  of IP Datagrams over (RFC 1390)     IP-LAN1,  
  FDDI Networks       IP-LAN2,  
          IP-LAN3  

Application Protocol Suite

OSI-based Application Protocols

This part of the Application Protocol Suite shows application protocols either defined by OSI entirely or using OSI standard protocols. They run natively over OSI Transport but may also layer over IP via RFC 1006.

Table: OSI-based Application Protocols

Layer Protocol References API Over Constraint Conformance
7 TxRPC: Remote
Procedure Call
PRO/APPL-17
(X/Open C505)
API/COM-813 OSI-TP14 With STDL
must support
ASN.1 BER
transfer
syntax
X/Open
7 OSI-TP: Distributed
Transaction
Processing
PRO/APPL-2
(ISO/IEC 10026)
None.15 CCR &
ACSE &
COPP
ISO/IEC 9805
Amd. 2,
ISO 8823
Amd. 5,
ISO 8327
Amd. 3
 
7 CCR: Commitment,
Concurrency and
Recovery
PRO/APPL-20
(ISO/IEC 9805)
None. COPP ISO/IEC 9805
Amd. 2
used with
ISO TP
 
7 FTAM: File Transfer, PRO/APPL-8 XFTAM API/ ACSE & PROF-8  
  Access and (ISO/IEC 8571) COM-5 COPP    
  Management          
7 MHS: Mail Handling
System
PRO/APPL-7
(CCITT X.400)
X.400 API/
COM-2
XOM API/
DIST-3
ACSE &
RTSE |
ACSE &
ROSE &
RTSE16
   
7 DS: Directory
Services
PRO/APPL-3
(CCITT X.500)
XDS API/
DIST-2
XOM API/
DIST-3
ACSE &
ROSE
   
7 CMIP: Common
Management
Information
Protocol
PRO/APPL-1
(ISO/IEC 9596)
XMP (API/
MGMT-1)
XOM API/
DIST-3
ACSE &
ROSE
   
7 ROSE: Remote PRO/APPL-18 None. RTSE |    
  Operation Service (ISO/IEC 9072)   COPP    
  Element          
7 RTSE: Reliable PRO/APPL-23 None. ACSE &    
  Transfer Service (CCITT X.228)   COPP    
  Element          
7 ACSE: Association PRO/APPL-19 XAP API/ COPP    
  Control Service (ISO 8650) COM-3      
  Element          
6 COPP: Connection- PRO/APPL-21 None. COSP ISO 8823  
  oriented Presentation (ISO 8823)     Amd. 5 used  
  Protocol       with ISO TP  
5 COSP: Connection- PRO/APPL-22 None. TP4 | ISO 8327  
  oriented Session (ISO 8327)   TP0,2 | Amd. 3 used  
  Protocol     TP0: ISO with ISO TP  


Internet-based Application Protocols

The Internet-based application protocols are those defined by RFCs. They run only over IP, and are defined below.

Table: Internet-based Application Protocols

Layer Protocol References API Over Constraint Conformance
5-7 SNMP: Simple Network
Management Protocol
PRO/APPL-15
(RFC 1157)
None. UDP PROF-9
(RFC 1123)
 
5-7 SMTP: Simple Mail
Transfer Protocol
PRO/APPL-10
(RFC 821)
(RFC 822)
(RFC 1049)
None. TCP PROF-9
(RFC 1123)
 
5-7 FTP: File Transfer
Protocol
PRO/APPL-9
(RFC 959)
None. TCP &
Telnet
PROF-9
(RFC 1123)
 
5-7 TFTP: Trivial File
Transfer Protocol
PRO/APPL-9
(RFC 1350)
None. UDP PROF-9
(RFC 1123)
 
5-7 DNS: Domain
Name System
PRO/APPL-14
(RFC 1034)
(RFC 1035)
None. TCP |
UDP
PROF-9
(RFC 1123)
 
5-7 NTP: Network
Time Protocol
PRO/APPL-4
(RFC 1119)
None. TCP    
5-7 Telnet PRO/APPL-11
(RFC 854)
(RFC 855)
(RFC 856)
(RFC 857)
(RFC 858)
(RFC 859)
(RFC 1116)
None. TCP PROF-9
(RFC 1123)
 
5-7 BOOTP: Bootstrap
Protocol
PRO/APPL-13
(RFC 1542)
None. UDP PROF-9
(RFC 1123)
 
5-7 ECHO: Echo
Protocol
PRO/APPL-12
(RFC 862)
None. TCP |
UDP
   
5-7 X: X Window System PRO/APPL-24 Xlib
(API/PRES-1)
TCP    
5-7 SMB: PC Interworking PRO/APPL-25 None. TCP |
UDP
   


DCE-based Application Protocols

The DCE-based application protocols are defined as part of the X/Open Distributed Computing Environment. They are independent of transport and are listed below.

Table: DCE-based Application Protocols

Layer Protocol References API Over Constraint Conformance
5-7 DCE Time Service PRO/APPL-5
(X/Open C310)
None. DCE RPC RPC over
UDP only
X/Open
5-7 DCE Directory
Service
PRO/APPL-6
(X/Open C312)
XDS API/DIST-2
XOM API/DIST-3
DCE RPC RPC over
UDP only
X/Open
5-7 DCE RPC PRO/APPL-16
(X/Open C309)
RPC API/COM-4 TCP |
UDP |
TP4
  X/Open
5-7 DCE Security PRO/APPL-26 API/SEC-2 DCE RPC   X/Open


Footnotes

1.
Both DIOCES and TR-10000 also group protocols this way.

2.
ES-IS is out-of-band. TP4 does not strictly layer over it, but it does use it.

3.
This is an out-of-band protocol used for controlling the layer in question and is not part of normal data transmission.

4.
Although base standard allows for CONP over LLC, SPIRIT chooses not to exercise this option.

5.
This is an out-of-band protocol used for controlling the layer in question and is not part of normal data transmission.

6.
This is an out-of-band protocol used for controlling the layer in question and is not part of normal data transmission.

7.
CSMA/CD adaptors all support both IEEE 802.3 and DIX 2.0 (Digital, Intel, Xerox) protocols, commonly referred to as Ethernet. Ethernet and IEEE 802.3 differ in the use of a two-octet field in the header. Both protocols run over the same LANs.

8.
This is an out-of-band protocol used for controlling the layer in question and is not part of normal data transmission.

9.
This is a routing protocol.

10.
This is a routing protocol.

11.
This is a routing protocol.

12.
Note that this requires Ethernet (DIX) rather than IEEE 802.3. Both IEEE 802.3 and DIX Ethernet are supported by adaptors and both run over the same wire.

13.
STDL also provides a programming interface for TxRPC. See LANG/TXN-1 for detail mappings of STDL to TxRPC.

14.
Since TxRPC specifies the use of DCE RPC as an ASE of OSI-TP, TxRPC should be characterised more as "with OSI-TP" rather than "over OSI-TP".

15.
There is an X/Open specification, XAP-TP, for the low-level integration of OSI-TP protocols. It is anticipated that only some Service Providers will, on some occasions, need to integrate OSI TP at this low level. (Vendors may use the XAP-TP interface to provide integration of their Communications Resource Managers with OSI-TP, but such use is normally not expected to affect Service Providers.) Thus XAP-TP is not specified here.

16.
ACSE protocol skipped by the RTSE X.410 1984 mode.


Why not acquire a nicely bound hard copy?
Click here to return to the publication details or order a copy of this publication.

Contents Next section Index