
 S

L

T

A

A

C

N

I

D

N

A

H

R

C

D

E
T

Technical Standard

Protocols for Interworking:
XNFS, Version 3W

[This page intentionally left blank]

Open Group Technical Standard

Protocols for Interworking: XNFS, Version 3W

The Open Group

 February 1998, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners.

Open Group Technical Standard

Protocols for Interworking: XNFS, Version 3W

ISBN: 1-85912-184-5
Document Number: C702

Published in the U.K. by The Open Group, February 1998.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii Open Group Technical Standard

Contents

Chapter 1 Introduction... 1
 1.1 Overview .. 1
 1.2 Scope.. 2
 1.3 Audience... 3
 1.4 Terminology... 4
 1.5 Protocol Stacks and Conformance .. 5
 1.6 Relationship to other Open Group Specifications 6
 1.7 References to RFCs ... 7

Chapter 2 XNFS Service Model .. 9
 2.1 Introduction ... 9
 2.2 Informal Overview of XNFS... 10
 2.3 Elements of the XNFS Service Model ... 13
 2.4 XNFS Objects ... 14
 2.4.1 ExportedFileSystem .. 14
 2.4.2 MountedFileSystem .. 15
 2.5 XNFS Server Operations ... 19
 2.5.1 The ExpFileSysOp Operation ... 19
 2.5.2 The UnExpFileSysOp Operation.. 19
 2.5.3 The ExpStdFileSysOp Operation.. 20
 2.5.4 The UnExpStdFileSysOp Operation .. 20
 2.6 XNFS Client Operations .. 21
 2.6.1 The ShowExpFileSysOp Operation .. 21
 2.6.2 The MntFileSysOp Operation... 21
 2.6.3 The UnMntFileSysOp Operation ... 22
 2.6.4 The MntStdFileSysOp Operation... 23
 2.6.5 The UnMntAllFileSys Operation... 23
 2.7 File and Directory Operations.. 24
 2.8 Operation in an International Environment ... 25
 2.8.1 Internationalized XNFS Operations .. 25
 2.8.2 Remote File Systems Created in Different Locales 25

Chapter 3 XDR Protocol Specification.. 27
 3.1 Introduction ... 27
 3.1.1 A Canonical Standard... 27
 3.1.2 Byte Encoding... 28
 3.1.3 Basic Block Size .. 28
 3.2 XDR Data Types .. 29
 3.2.1 Integer .. 29
 3.2.2 Unsigned Integer.. 29
 3.2.3 Hyper Integer and Unsigned Hyper Integer...................................... 30
 3.2.4 Enumeration ... 30

Protocols for Interworking: XNFS, Version 3W iii

Contents

 3.2.5 Boolean... 30
 3.2.6 Fixed-Length Opaque Data ... 30
 3.2.7 Variable-Length Opaque Data .. 31
 3.2.8 String .. 31
 3.2.9 Fixed-Length Array... 32
 3.2.10 Variable-Length Array.. 32
 3.2.11 Structure .. 33
 3.2.12 Discriminated Union... 33
 3.2.13 Void... 34
 3.2.14 Constant... 34
 3.2.15 Typedef... 34
 3.2.16 Optional-data.. 35
 3.3 The XDR Language Specification .. 37
 3.3.1 Notational Conventions ... 37
 3.3.2 Lexical Notes .. 37
 3.3.3 Syntax Information.. 38
 3.3.4 Syntax Notes ... 39
 3.3.5 Use of XDR.. 39
 3.4 Example of an XDR Data Description .. 40

Chapter 4 Remote Procedure Calls : Protocol Specification 43
 4.1 Introduction ... 43
 4.1.1 Terminology.. 43
 4.1.2 The RPC Model .. 43
 4.1.3 Transports and Semantics .. 44
 4.1.4 Binding and Rendezvous Independence .. 45
 4.2 RPC Protocol Requirements ... 46
 4.2.1 Programs and Procedures .. 46
 4.2.2 Authentication.. 47
 4.3 The RPC Message Protocol ... 48
 4.4 Authentication Protocols... 52
 4.4.1 Null Authentication .. 52
 4.4.2 UNIX Authentication.. 52
 4.4.3 DES and Kerberos Authentication ... 53
 4.5 The RPC Language... 54
 4.5.1 The RPC Language Specification ... 54
 4.5.2 An Example Service Described in the RPC Language..................... 54
 4.5.3 Syntax Notes ... 55

Chapter 5 RPC Interface to UDP Transport Services............................... 57
 5.1 Introduction ... 57
 5.2 RPC and Transport Requirements... 57
 5.3 UDP as a Transport Protocol .. 58
 5.4 RPC Interface ... 59
 5.4.1 The RPC Request ... 59
 5.4.2 The RPC Reply ... 59
 5.4.3 Receiving a UDP Reply Packet ... 60
 5.4.4 Closing ... 60

iv Open Group Technical Standard

Contents

Chapter 6 Port Mapper Protocol ... 61
 6.1 Introduction ... 61
 6.2 Introduction to Port Mapper Program Protocol 61
 6.3 Port Mapper Protocol Specification (in RPC Language) 62
 6.4 Port Mapper Procedures.. 63
 PMAPPROC_NULL... 64
 PMAPPROC_SET... 65
 PMAPPROC_UNSET .. 66
 PMAPPROC_GETPORT... 67
 PMAPPROC_DUMP ... 68

Chapter 7 XNFS : Protocol Specification, Version 2 69
 7.1 Introduction ... 69
 7.1.1 Remote Procedure Call ... 69
 7.1.2 External Data Representation ... 69
 7.1.3 Stateless Servers and Idempotency.. 70
 7.2 XNFS Protocol Definition.. 71
 7.2.1 File System Model.. 71
 7.3 RPC Information ... 72
 7.3.1 Sizes of XDR Structures.. 72
 7.3.2 Basic Data Types .. 73
 7.4 XNFS Implementation Issues... 78
 7.5 Server Procedures ... 79
 NFSPROC_NULL ... 80
 NFSPROC_GETATTR .. 81
 NFSPROC_SETATTR... 82
 NFSPROC_ROOT .. 84
 NFSPROC_LOOKUP... 85
 NFSPROC_READLINK... 86
 NFSPROC_READ... 87
 NFSPROC_WRITECACHE... 88
 NFSPROC_WRITE... 89
 NFSPROC_CREATE .. 91
 NFSPROC_REMOVE .. 93
 NFSPROC_RENAME .. 94
 NFSPROC_LINK .. 96
 NFSPROC_SYMLINK ... 97
 NFSPROC_MKDIR .. 99
 NFSPROC_RMDIR .. 101
 NFSPROC_READDIR ... 102
 NFSPROC_STATFS .. 104

Chapter 8 Mount Protocol .. 107
 8.1 Introduction ... 107
 8.2 RPC Information ... 107
 8.2.1 Sizes of XDR Structures.. 107
 8.2.2 Basic Data Types .. 108
 8.3 Server Procedures ... 109

Protocols for Interworking: XNFS, Version 3W v

Contents

 MNTPROC_NULL ... 110
 MNTPROC_MNT... 111
 MNTPROC_DUMP ... 112
 MNTPROC_UMNT ... 113
 MNTPROC_UMNTALL .. 114
 MNTPROC_EXPORT.. 115

Chapter 9 File Locking over XNFS ... 117
 9.1 Introduction ... 117
 9.1.1 NLM Protocol ... 117
 9.1.2 NSM Protocol.. 118
 9.2 Interaction .. 119
 9.2.1 Monitored Locks .. 119
 9.2.2 Non-Monitored Locks... 120
 9.3 Transport Issues .. 121
 9.4 Examples of Locking.. 122
 9.4.1 Server Crash Example... 122
 9.4.2 Client Crash Example ... 124

Chapter 10 Network Lock Manager Protocol ... 127
 10.1 Introduction ... 127
 10.1.1 Versions.. 127
 10.1.2 Synchronization of NLMs.. 127
 10.1.3 DOS-Compatible File-Sharing Support .. 127
 10.2 RPC Information ... 128
 10.2.1 Sizes of XDR Structures.. 128
 10.2.2 Basic Data Types for Locking .. 128
 10.2.3 DOS File-Sharing Data Types.. 131
 10.3 NLM Procedures ... 134
 NLM_NULL... 136
 NLM_TEST.. 137
 NLM_LOCK... 138
 NLM_CANCEL ... 140
 NLM_UNLOCK .. 141
 NLM_GRANTED.. 142
 NLM_TEST_MSG... 143
 NLM_LOCK_MSG ... 144
 NLM_CANCEL_MSG.. 146
 NLM_UNLOCK_MSG... 147
 NLM_GRANTED_MSG .. 148
 NLM_TEST_RES .. 149
 NLM_LOCK_RES ... 150
 NLM_CANCEL_RES ... 151
 NLM_UNLOCK_RES... 152
 NLM_GRANTED_RES.. 153
 NLM_SHARE.. 154
 NLM_UNSHARE.. 156
 NLM_NM_LOCK ... 157

vi Open Group Technical Standard

Contents

 NLM_FREE_ALL.. 159

Chapter 11 Network Status Monitor Protocol.. 161
 11.1 Introduction ... 161
 11.2 RPC Information ... 162
 11.2.1 Sizes of XDR Structures.. 162
 11.2.2 Basic Data Types .. 162
 11.3 NSM Procedures ... 165
 SM_NULL.. 166
 SM_STAT ... 167
 SM_MON... 168
 SM_UNMON .. 170
 SM_UNMON_ALL... 171
 SM_SIMU_CRASH .. 172
 SM_NOTIFY.. 173

Chapter 12 XNFS : Protocol Specification, Version 3.................................. 175
 12.1 Summary of Version 3 Protocol Changes .. 175
 12.2 RPC Information ... 177
 12.2.1 Sizes of XDR Structures.. 177
 12.2.2 Basic Data Types .. 178
 12.2.3 Attributes and Consistency Data on Failure...................................... 188
 12.2.4 General File Name Requirements .. 188
 12.3 XNFS Implementation Issues... 189
 12.3.1 Server/Client Relationship.. 189
 12.3.2 Pathname Interpretation .. 190
 12.3.3 Permission Issues... 190
 12.3.4 Duplicate Request Cache ... 191
 12.3.5 Filename Component Handling... 192
 12.3.6 Synchronous Modifying Operations ... 192
 12.3.7 Stable Storage ... 192
 12.3.8 Lookups and Name Resolution .. 193
 12.3.9 Adaptive Retransmission... 193
 12.3.10 Caching Policies ... 193
 12.3.11 Stable Versus Unstable Writes... 193
 12.3.12 32-bit Clients/Servers and 64-bit Clients/Servers 194
 12.4 Server Procedures ... 195
 NFSPROC3_NULL... 196
 NFSPROC3_GETATTR .. 197
 NFSPROC3_SETATTR .. 199
 NFSPROC3_LOOKUP... 202
 NFSPROC3_ACCESS .. 204
 NFSPROC3_READLINK... 207
 NFSPROC3_READ .. 209
 NFSPROC3_WRITE... 212
 NFSPROC3_CREATE .. 216
 NFSPROC3_MKDIR.. 220
 NFSPROC3_SYMLINK ... 222

Protocols for Interworking: XNFS, Version 3W vii

Contents

 NFSPROC3_MKNOD.. 225
 NFSPROC3_REMOVE.. 228
 NFSPROC3_RMDIR.. 230
 NFSPROC3_RENAME.. 232
 NFSPROC3_LINK .. 235
 NFSPROC3_READDIR ... 238
 NFSPROC3_READDIRPLUS... 241
 NFSPROC3_FSSTAT .. 244
 NFSPROC3_FSINFO ... 246
 NFSPROC3_PATHCONF.. 249
 NFSPROC3_COMMIT .. 251

Chapter 13 Mount Protocol, Version 3 .. 255
 13.1 RPC Information ... 255
 13.1.1 Sizes of XDR Structures.. 255
 13.1.2 Basic Data Types .. 255
 13.2 Server Procedures ... 256
 MOUNTPROC3_NULL... 257
 MOUNTPROC3_MNT .. 258
 MOUNTPROC3_DUMP... 259
 MOUNTPROC3_UMNT... 260
 MOUNTPROC3_UMNTALL .. 261
 MOUNTPROC3_EXPORT ... 262

Chapter 14 Network Lock Manager Protocol, Version 4.......................... 263
 14.1 Introduction ... 263
 14.2 RPC Information ... 264
 14.2.1 Basic Data Types .. 264
 14.3 NLM Procedures ... 267
 NLMPROC3_NULL ... 268
 14.4 Implementation Guidance .. 269

Appendix A Semantic Difference Summary for File Access 271
 A.1 Introduction ... 271
 A.2 Special File Access .. 272
 A.3 UID Mapping by Server .. 272
 A.4 Execution of Set-user-ID Programs... 273
 A.5 Attribute and Access Caching.. 273
 A.5.1 Denial of Access ... 274
 A.5.2 Operations Using File’s Byte Count ... 274
 A.5.3 File Times... 274
 A.6 File Accessibility Changed after Open... 274
 A.6.1 File Attributes Changed after Open... 274
 A.6.2 File Deleted after Open... 275
 A.7 No Protection for In-Use Executables .. 275
 A.8 Transparent Rename or Unlink While Open... 275
 A.9 Data Caching ... 276
 A.9.1 Delayed Write Errors... 276

viii Open Group Technical Standard

Contents

 A.9.2 Read of Old Data.. 276
 A.9.3 Atomicity of Transfer .. 276
 A.9.4 File Time Updates.. 276
 A.10 Directory Caching... 277
 A.11 Time Skew .. 277
 A.12 Server or Network-Induced Delays .. 278
 A.13 Interruption of Function Calls.. 278
 A.14 File and Record Locking.. 278
 A.14.1 Availability of Locking ... 278
 A.14.2 F_GETLK l_pid... 279
 A.14.3 Signals .. 279
 A.14.4 Memory-Mapped Files ... 279
 A.14.5 Error Handling ... 279
 A.15 Network Heterogeneity... 279
 A.15.1 Local Execution of a Remote Program .. 279
 A.15.2 Use of Remote Input Files with Varying Formats............................. 280
 A.15.3 Architectural Dependencies .. 280
 A.15.4 Output Displayed in Conventions of Local System......................... 280
 A.15.5 Filesize Differences .. 280
 A.15.6 Characters in File Names ... 281
 A.15.7 Server Access Control ... 281
 A.15.8 Server Support for File Times ... 282
 A.15.9 Special Files... 282
 A.16 User and Group ID Database Consistency.. 282
 A.17 Access to Read-Only File Systems .. 283
 A.18 Group Ownership of Created Files... 283
 A.19 Consistency of Limits... 283
 A.20 Symbolic Links .. 284
 A.21 Interrupted Root File System Service ... 284
 A.22 Implicit File Access... 284
 A.23 Multiple Hosts ... 285
 A.23.1 Process Identifiers.. 285
 A.23.2 Unique Daemons ... 285

Appendix B Open-System Interface Semantics over XNFS..................... 287
 B.1 Introduction ... 287
 B.2 Functions with no Semantic Differences.. 288
 B.3 Functions with Semantic Differences ... 292

Appendix C Open System Utilities Semantics over XNFS....................... 295
 C.1 Introduction ... 295
 C.2 Common Semantic Differences.. 296
 C.2.1 Execution of Remote Files.. 296
 C.2.2 Interruption of any XNFS Operation... 296
 C.2.3 File Access ... 296
 C.3 Utilities with Semantic Differences... 297

Protocols for Interworking: XNFS, Version 3W ix

Contents

Appendix D Open Systems Transmission Analysis 299
 D.1 Introduction ... 299
 D.2 RPC Calls Generated by Basic XSI Functions 301

Appendix E WebNFS Extensions ... 307
 E.1 Introduction ... 307
 E.2 TCP versus UDP ... 307
 E.3 Well-Known Port .. 307
 E.4 Server Port Monitoring.. 308
 E.5 Public Filehandle... 308
 E.5.1 NFS Version 2 Public Filehandle... 308
 E.5.2 NFS Version 3 Public Filehandle... 308
 E.6 Multi-Component Lookup.. 309
 E.6.1 Canonical Path versus Native Path.. 309
 E.7 NFS URL... 311
 E.7.1 Absolute versus Relative Pathname .. 311
 E.7.2 Symbolic Links ... 312
 E.7.3 Export Spanning Pathnames ... 312
 E.8 Location of Public Filehandle... 314
 E.9 Contacting the Server... 315
 E.10 Mount Protocol.. 316

 Glossary ... 317

 Index... 323

List of Figures

2-1 File Hierarchy on Example System Called alpha.................................... 10
2-2 File Hierarchy on Example System Called beta 10
2-3 View from System alpha of Example File Hierarchy on System beta 11
2-4 Example 2 File Hierarchy on System Called alpha................................. 11
2-5 Resulting File Hierarchy on System alpha from Example 2................. 12

x Open Group Technical Standard

Preface

The Open Group

The Open Group is the leading vendor-neutral, international consortium for buyers and
suppliers of technology. Its mission is to cause the development of a viable global information
infrastructure that is ubiquitous, trusted, reliable, and as easy-to-use as the telephone. The
essential functionality embedded in this infrastructure is what we term the IT DialTone. The
Open Group creates an environment where all elements involved in technology development
can cooperate to deliver less costly and more flexible IT solutions.

Formed in 1996 by the merger of the X/Open Company Ltd. (founded in 1984) and the Open
Software Foundation (founded in 1988), The Open Group is supported by most of the world’s
largest user organizations, information systems vendors, and software suppliers. By combining
the strengths of open systems specifications and a proven branding scheme with collaborative
technology development and advanced research, The Open Group is well positioned to meet its
new mission, as well as to assist user organizations, vendors, and suppliers in the development
and implementation of products supporting the adoption and proliferation of systems which
conform to standard specifications.

With more than 200 member companies, The Open Group helps the IT industry to advance
technologically while managing the change caused by innovation. It does this by:

• Consolidating, prioritizing, and communicating customer requirements to vendors

• Conducting research and development with industry, academia, and government agencies to
deliver innovation and economy through projects associated with its Research Institute

• Managing cost-effective development efforts that accelerate consistent multi-vendor
deployment of technology in response to customer requirements

• Adopting, integrating, and publishing industry standard specifications that provide an
essential set of blueprints for building open information systems and integrating new
technology as it becomes available

• Licensing and promoting the Open Brand, represented by the ‘‘X’’ Device, that designates
vendor products which conform to Open Group Product Standards

• Promoting the benefits of the IT DialTone to customers, vendors, and the public

The Open Group operates in all phases of the open systems technology lifecycle including
innovation, market adoption, product development, and proliferation. Presently, it focuses on
seven strategic areas: open systems application platform development, architecture, distributed
systems management, interoperability, distributed computing environment, security, and the
information superhighway. The Open Group is also responsible for the management of the
UNIX trademark on behalf of the industry.

Protocols for Interworking: XNFS, Version 3W xi

Preface

The Development of Product Standards

This process includes the identification of requirements for open systems and, now, the IT
DialTone, development of Technical Standards (formerly CAE and Preliminary Specifications)
through an industry consensus review and adoption procedure (in parallel with formal
standards work), and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to which a
vendor may register a product.

The ‘‘X’’ Device is used by vendors to demonstrate that their products conform to the relevant
Product Standard. By use of the Open Brand they guarantee, through the Open Brand Trade
Mark License Agreement (TMLA), to maintain their products in conformance with the Product
Standard so that the product works, will continue to work, and that any problems will be fixed
by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on development of Technical Standards and product documentation, but which also
includes Guides, Snapshots, Technical Studies, Branding and Testing documentation, industry
surveys, and business titles.

There are several types of specification:

• Technical Standards (formerly CAE Specifications)

The Open Group Technical Standards form the basis for our Product Standards. These
Standards are intended to be used widely within the industry for product development and
procurement purposes.

Anyone developing products that implement a Technical Standard can enjoy the benefits of a
single, widely supported industry standard. Where appropriate, they can demonstrate
product compliance through the Open Brand. Technical Standards are published as soon as
they are developed, so enabling vendors to proceed with development of conformant
products without delay.

• CAE Specifications

CAE Specifications and Developers’ Specifications published prior to January 1998 have the
same status as Technical Standards (see above).

• Preliminary Specifications

Preliminary Specifications have usually addressed an emerging area of technology and
consequently are not yet supported by multiple sources of stable conformant
implementations. They are published for the purpose of validation through implementation
of products. A Preliminary Specification is as stable as can be achieved, through applying
The Open Group’s rigorous development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued by formal standards
organizations, and developers are encouraged to develop products on the basis of them.
However, experience through implementation work may result in significant (possibly
upwardly incompatible) changes before its progression to becoming a Technical Standard.
While the intent is to progress Preliminary Specifications to corresponding Technical
Standards, the ability to do so depends on consensus among Open Group members.

xii Open Group Technical Standard

Preface

• Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia. For example, it
publishes the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum. It also publishes Technology Specifications relating to OSF/1, DCE,
OSF/Motif, and CDE.

Technology Specifications (formerly AES Specifications) are often candidates for consensus
review, and may be adopted as Technical Standards, in which case the relevant Technology
Specification is superseded by a Technical Standard.

In addition, The Open Group publishes:

• Product Documentation

This includes product documentation—programmer’s guides, user manuals, and so on—
relating to the Pre-structured Technology Projects (PSTs), such as DCE and CDE. It also
includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

• Guides

These provide information that is useful in the evaluation, procurement, development, or
management of open systems, particularly those that relate to the Technical Standards or
Preliminary Specifications. The Open Group Guides are advisory, not normative, and should
not be referenced for purposes of specifying or claiming conformance to a Product Standard.

• Technical Studies

Technical Studies present results of analyses performed on subjects of interest in areas
relevant to The Open Group’s Technical Program. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

Versions and Issues of Specifications

As with all live documents, Technical Standards and Specifications require revision to align with
new developments and associated international standards. To distinguish between revised
specifications which are fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://www.opengroup.org/corrigenda.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the
World-Wide Web at http://www.opengroup.org/pubs.

Protocols for Interworking: XNFS, Version 3W xiii

Preface

This Document

This document describes XNFS, the X/Open NFS Specification. This document supersedes the
previous X/Open publication Protocols for X/Open Interworking, XNFS, Version 3 , Document
Number C525, August 1996. The previous version was aligned with Sun’s NFS Version 3 (RFC
1813). This revised version (XNFS, Version 3W) incorporates the Sun WebNFSTM optional
extensions (RFCs 1738, 1808, 2054, 2055).

The process of accessing remote files and directories as though they were part of the local file
system hierarchy is commonly known as ‘‘transparent file access’’ (TFA). The most widely used
heterogeneous TFA architecture is the Network File System (NFS), originally developed by Sun
Microsystems.

XNFS provides a means of access to files and directories that are physically stored on remote
systems, by extending the semantics of local system interfaces so that applications and end users
can (as far as possible) ignore the distinctions between local and remote objects.

NFS has been implemented on a wide range of architectures, from personal computers to
mainframes and supercomputers. The specifications for the protocols associated with NFS have
been published, and there have been several independent implementations.

With the XNFS specification, X/Open offers the market a temporary but complete solution to the
problem of transparent file access between X/Open-compliant systems. Temporary, because
X/Open recognises the TFA standardisation effort ongoing within the IEEE P1003.1f committee,
and X/Open intends to be compliant with 1003.1f TFA at such time as it becomes an IEEE
standard. Complete, because X/Open now offers both protocols for interoperability (via this
XNFS specification) and interfaces for application/user portability (via the XSI specifications, in
conjunction with the semantic differences defined in the appendices to this document).

This specification is based in part on the X/Open (PC)NFS Specification.

The X/Open (PC)NFS Specification defines the protocols for communication between a PC
client running DOS or OS/2 and an X/Open-compliant server.

The XNFS specification defines:

• The transparent file access service provided by XNFS

• The protocols that support this service between X/Open-compliant machines, which can
take the role of either servers or clients

• The differences in semantics of the X/Open System Interfaces and Headers Specification (see
reference XSH) and the X/Open Commands and Utilities Specification (see reference XCU)
when they are used ‘‘transparently’’ using XNFS rather than locally

Since many of the protocols used are the same for PC and X/Open-compliant system clients,
there is obviously a great deal of overlap between these specifications.

In the event of any inconsistency or disagreement between the two documents, this document is
to be treated as authoritative. At some future date, the X/Open (PC)NFS Specification will be
revised to include only those elements which are specific to PC clients, such as the pcnfsd
protocol, filename and attribute mapping, and the transmission analysis.

xiv Open Group Technical Standard

Preface

Intended Audience

There are two intended audiences for this specification. The first includes anyone who wishes to
implement XNFS as part of an X/Open-compliant system. This specification defines the
protocols that are to be implemented by a conforming system, so that it may interoperate with
other conforming systems. It does not, however, define the way in which these protocols are to
be implemented, nor the way in which XNFS is to be integrated into the rest of the system.

The second audience is the developers of X/Open CAE applications. This group relies upon the
semantics of the XSI as defined in the X/Open System Interfaces and Headers Specification (see
reference XSH) and the X/Open Commands and Utilities Specification (see reference XCU) and
needs to be aware of any semantic changes which the use of XNFS may introduce. These
changes are described in Appendix A, Appendix B and Appendix C. Obviously an XNFS
implementor must be aware of this material so that their implementation does not behave in an
unexpected manner.

Structure

• Chapter 1 introduces the context for NFS.

• Chapter 2 describes the basic XNFS Service Model, in terms of abstract objects and
operations which are implementation-independent.

• Chapter 3 specifies the subset of the XDF protocol used by XNFS.

• Chapter 4 specifies a message protocol (using XDR language) used in implementing an RPC
package.

• Chapter 5 explains how protocols defined as part of XNFS interface with the underlying
transport.

• Chapter 6 describes the port mapper protocol, which maps RPC program and version
numbers to transport-specific port numbers.

• Chapter 7 specifies the NFS protocol that Sun Microsystems, Inc. and others use to provide
transparent remote access to shared file systems over local area networks.

• Chapter 8 specifies the Mount protocol, which is separate from but related to the NFS
protocol.

• Chapter 9 defines the Network Lock Manager (NLM) and Network Status Monitor (NSM)
which together provide stateful services for NFS.

• Chapter 10 defines the NLM protocol.

• Chapter 11 defines the NSM protocol.

• Chapter 12 specifies the additional NFS, Version 3 protocol which must be supported in
addition to that specified in Chapter 7. It includes a summary of the changes introduced in
the Version 3 protocol.

• Chapter 13 specifies an additional Mount, Version 3 protocol which must be supported in
addition to that specified in Chapter 8.

• Chapter 14 specifies an additional NLM, Version 4 protocol which must be supported in
addition to that specified in Chapter 10 in order to support NFS, Version 3.

• Appendix A summarises semantic differences for access of files on remote systems using
XNFS.

Protocols for Interworking: XNFS, Version 3W xv

Preface

• Appendix B describes semantic differences for system interfaces and headers (XSH) which
operate differently when used with XNFS.

• Appendix C describes semantic differences for commands and utilities (XCU) which operate
differently when used with XNFS.

• Appendix D gives a general description of how a system interface (XSH) function is executed
by a sequence of RPCs.

• Appendix E describes the WebNFS extensions to the NFS protocol.

XNFS Version 2 → Version 3 Changes

The changes to the XNFS Issue 4 specification (document number C218, which described Sun
NFS Version 2) to add the NFS Version 3 protocol comprise miscellaneous modifications to
sections in the XNFS Issue 4 specification, plus addition of three new chapters 12, 13 and 14.

A summary of these changes follows:

• Referenced Documents updated.

• Section 1.2 (Scope), 2nd paragraph extended to add:
Protocols corresponding to both NFS Version 2 and NFS Version 3 are specified.
Systems conforming to this document must support both protocol sets.

• Section 1.4 (Protocol Stacks and Conformance), first bullet list extended to add:

— NFS Version 3 (see Chapter 12 on page 175)

— Mount Version 3 (see Chapter 13 on page 255)

— NLM Version 4 (see Chapter 14 on page 263)

• Section 1.4 (Protocol Stacks and Conformance), XPG3/XPG4 Compliance description
extended to read:

This specification applies to Issue 3, Issue 4 and Issue 4, Version 2 of XPG, except
where explicitly stated otherwise.

• New section (Hyper Integer and Unsigned Hyper Integer) added after section 3.2.2, with
subsequent sections renumbered accordingly.

• Section 3.3.3 (Syntax Information), in the BNF grammar, add:

| ["unsigned"] "hyper"

• Section 3.3.4 (Syntax Note), first bullet point, add ‘‘hyper’’ to the list of keywords which
cannot be used as identifiers.

• Section 4.4 (Authentication Protocols), in the first paragraph, change:

two ‘‘flavours’’ of authentication.

to

four ‘‘flavours’’ of authentication.

• Section 4.4 (Authentication Protocols), add:

AUTH_DES = 3,
AUTH_KERB = 4,

to the auth_flavor definition.

xvi Open Group Technical Standard

Preface

• After section 4.4.2, add a new subsection (4.4.3 DES and Kerberos Authentication).

• Section 7.3.2 (Basic Data Types), clarify the meaning of the ‘‘blocks’’ and ‘‘blocksize’’ fields in
the fattr structure.

• Section 7.5.6 (NFSPROC_READLINK Specification), change the Return Code NFSERR_NXIO
to NFSERR_INVAL (to match existing server practice).

• Section 10.2.2 (Basic Data Types for Locking), add to the description for nlm_holder:
The ‘‘oh’’ field is an opaque object that identifies the host, or a process on the host, that
is holding the lock.

• Section 10.2.2 (Basic Data Types for Locking), replace the sentence which describes ‘‘fh’’ and
‘‘oh’’ with:

The ‘‘fh’’ field identifies the file to lock. The ‘‘oh’’ field is an opaque object that
identifies the host, or a process on the host, that is making the request.

• Add Chapter 12 ‘‘Network File System: Protocol Specification, Version 3’’.

• Add Chapter 13 ‘‘Mount Protocol, Version 3’’.

• Add Chapter 14 ‘‘Network Lock Manager Protocol, Version 4’’.

• Appendix A is expanded to include description of those semantic differences for interfaces,
commands and utilities which were previously included in man page descriptions in
Appendices B and C.

• Appendix B is reduced to listing those functions which show no semantic differences (that is,
behave the same) when running in a local file system environment, and also those which may
show a semantic difference when invoked in an XNFS environment. The man page
definitions which described these differences are deleted, since Appendix A now covers these
differences.

• Appendix C is reduced to listing those commands and utilities that show no semantic
differences (that is, behave the same) when running in a local file system environment, and
also those which may show semantic differences when invoked in an XNFS environment.
The man page definitions which described these differences are deleted, since Appendix A
now covers these differences.

• Appendix D revision for NFS Version 3 is represented by an additional bullet item (Version 2
versus Version 3) in Section D.1.

XNFS Version 3 → Version 3W Changes

The changes to the XNFS Version 3 specification (document number C525) to add the WebNFS
extensions to the NFS protocol, comprise various additions to sections 1.6, 2.4.1, 7.2.1, 7.3, 7.3.2,
12.2, 12.2.2, 12.3.8, 12.4.4, and a new Appendix E detailing the WebNFS extensions.

Protocols for Interworking: XNFS, Version 3W xvii

Trade Marks

AT&T is a registered trademark of AT&T in the U.S.A. and other countries.

Diablo is a registered trademark of Xerox Corporation.

Ethernet is a registered trademark of Xerox Corporation.

IBM is a registered trademark of International Business Machines Corporation.

LAN ManagerTM is a trademark of Microsoft Corporation.

MS-DOS is a registered trademark of Microsoft Corporation.

NFS is a registered trademark and Network File SystemTM is a trademark of Sun Microsystems,
Inc.

OS/2 is a registered trademark of International Business Machines Corporation.

PC-NFSTM is a trademark of Sun Microsystems, Inc..

Postscript is a registered trademark of Adobe Systems Incorporated.

VAX is a registered trademark of Digital Equipment Corporation.

VMS is a registered trademark of Digital Equipment Corporation.

Motif, OSF/1, UNIX, and the ‘‘X Device’’ are registered trademarks and IT DialToneTM

and The Open GroupTM are trademarks of The Open Group in the U.S. and other countries.

WebNFSTM is a trademark of Sun Microsystems, Inc.

xviii Open Group Technical Standard

Referenced Documents

The following documents are referenced in this specification:

Open Group Documents

BSFT
CAE Specification, December 1991, Byte Stream File Transfer (BSFT) (ISBN: 1-872630-27-8,
C194), published by The Open Group.

Internationalisation Guide
Guide, July 1993, Internationalisation Guide, Version 2 (ISBN: 1-859120-02-4, G304),
published by The Open Group.

(PC)NFS
Developers’ Specification, August 1990, Protocols for X/Open PC Interworking: (PC)NFS
(ISBN: 1-872630-00-6, D030), published by The Open Group.

XBD, Issue 4, Version 2
CAE Specification, August 1994, System Interface Definitions, Issue 4, Version 2
(ISBN: 1-85912-036-9, C434), published by The Open Group.

XCU, Issue 4, Version 2
CAE Specification, August 1994, Commands and Utilities, Issue 4, Version 2
(ISBN: 1-85912-034-2, C436), published by The Open Group.

XNS (Networking Services, Issue 4)
CAE Specification, August 1994, Networking Services, Issue 4 (ISBN: 1-85912-049-0, C438),
published by The Open Group.

XPG3
X/Open Specification, 1988, 1989, February 1992 (ISBN: 1-872630-43-X, T921); this
specification was formerly X/Open Portability Guide, seven volumes, January 1989
(ISBN: 0-13-685819-8, XO/XPG/89/000).

XSH, Issue 4, Version 2
CAE Specification, August 1994, System Interfaces and Headers, Issue 4, Version 2
(ISBN: 1-85912-037-7, C435), published by The Open Group.

International Standards

ISO 8859-1
ISO 8859-1: 1987, Information Processing — 8-bit Single-byte Coded Graphic Character Sets
— Part 1: Latin Alphabet No. 1.

ISO/IEC 9945-1
ISO/IEC 9945-1: 1990, Information Technology — Portable Operating System Interface
(POSIX) — Part 1: System Application Program Interface (API) [C Language] (identical to
IEEE Std 1003.1-1990).

Protocols for Interworking: XNFS, Version 3W xix

Referenced Documents

Access to IETF RFCs

RFCs may be obtained via Email or FTP from many RFC repositories. Many of these repositories
also now have World Wide Web servers. Try one of the following URLs as a starting point:

http://www.isi.edu/rfc-editor/
http://ds.internic.net/ds/rfc-index.html/

RFCs can be obtained via FTP from DS.INTERNIC.NET, NIS.NSF.NET, NISC.JVNC.NET,
FTP.ISI.EDU, WUARCHIVE.WUSTL.EDU, SRC.DOC.IC.AC.UK, FTP.NCREN.NET,
FTP.SESQUI.NET, FTP.NIC.IT, or FTP.IMAG.FR, using the FTP username anonymous and the
FTP password guest For further information about Internet Protocols in general, please contact:

USC - Information Sciences Institute,
4676, Admiralty Way,
Marina del Rey, CA 90292-6695,
USA

Tel: (+1) 213-822-1511

Internet Protocol Suite RFCs

RFC 1140 - IAB Official Protocol Standards
IETF RFC 1140 gives the state of standardisation of protocols used in the Internet as
determined by the Internet Activities Board (IAB). RFC 1140 was published in May 1990;
this document is reissued on a regular basis, and the reader should obtain the current
version as described above.

RFC 1011 - Official Internet Protocols
IETF RFC 1011 is the authoritative reference as to which document defines each protocol.
RFC 1011 was published in May 1987; this document is reissued on a regular basis, and the
reader should obtain the current version as described above.

The descriptions which follow are derived from RFC 1011.

RFC 791 - Internet Protocol (IP)
Status: Standard. IETF RFC 791 is the universal protocol of the Internet. This datagram
protocol provides the universal addressing of hosts in the Internet.

RFC 792 - Internet Control Message Protocol (ICMP)
Status: Standard. IETF RFC 792 describes the control messages and error reports that go
with the Internet Protocol.

Note: ICMP is defined to be an integral part of IP. An implementation of IP is
incomplete if it does not include ICMP.

RFC 768 - User Datagram Protocol (UDP)
Status: Standard. IETF RFC 768 provides a datagram service to applications. It adds port
addressing to the IP services.

RFC 793 - Transmission Control Protocol (TCP)
Status: Standard. IETF RFC 793 provides a reliable end-to-end data stream service. Note
that RFC 1011 includes many additions and clarifications to RFC 793, and refers to
additional RFCs which go into greater detail on certain topics.

RFC 950 - Internet Subnet Protocol
Status: Standard. IETF RFC 950 specifies procedures for the use of subnets, which are
logical sub-sections of a single Internet network.

xx Open Group Technical Standard

Referenced Documents

RFC 826 - Address Resolution Protocol (ARP)
Status: Standard. IETF RFC 826 is a procedure for finding the network hardware address
corresponding to an Internet Address.

RFC 997 - Internet Numbers
IETF RFC 997 describes the fields of network numbers and autonomous system numbers
that are assigned specific values for actual use, and lists the currently assigned values.

RFC 1060 - Assigned Numbers
Status: Historic. IETF RFC 1060 describes the fields of various protocols that are assigned
specific values for actual use, and lists the currently assigned values.

RFC 894 - Internet Protocol on Ethernet Networks
Status: Standard. IETF RFC 894 describes the representation of Internet Protocol services on
Ethernet networks.

RFC 1011 (includes) Internet Protocol on IEEE 802
IETF RFC 1011 includes description of the latest policy on the transmission of IP datagrams
on IEEE 802 networks.

All of the preceding material should be interpreted in accordance with the following two
documents, which provide an authoritative policy on the way in which the various protocols
should be implemented and administered:

RFC 1122 - Requirements for Internet Hosts - Communication Layers
IETF RFC 1122, R T Braden, October 1989. Status: Standard.

RFC 1123 - Requirements for Internet Hosts - Application and Support
IETF RFC 1123, R T Braden, October 1989. Status: Standard.

In addition, XDR, RPC and NFS are described in the following RFCs:

RFC 1014 - XDR: External Data Representation Standard
IETF RFC 1014, Sun Microsystems, June 1987.

RFC 1057 - RPC: Remote Procedure Call Protocol Specification, Version 2
IETF RFC 1057, Sun Microsystems. June 1988, Status: Informational.

RFC 1094 - NFS: Network File System Protocol Specification
IETF RFC 1094, Sun Microsystems. Mar-01-1989, Status: Informational.

RFC 1813 - NFS: Network File System Prococol, Version 3 Specification
IETF RFC 1813, B Callaghan, B Pawlowski & P Staubach, June 1995. Status: Informational.

RFC 1831 - RPC: Remote Procedure Call Protocol Specification Version 2
IETF RFC 1831, R Srinivasan, August 1995. Status: Proposed Standard.

RFC 1832 - XDR: External Data Representation Standard.
IETF RFC 1832, R Srinivasan, August 1995. Status: Proposed Standard.

RFC 1833 - Binding Protocols for ONC RPC Version 2
IETF RFC 1833, R Srinivasan, August 1995. Status: Proposed Standard.

Protocols for Interworking: XNFS, Version 3W xxi

Referenced Documents

WebNFS-relevant RFCs

RFC 1738 - Uniform Resource Locators (URL)
IETF RFC 1738, T Berners-Lee, L Masinter & M McCahill. December 1994, Status: Proposed
Standard. This document describes the syntax and semantics of absolute Uniform Resource
Locators, which can be used for the location and access of resources via the Internet.

RFC 1808 - Relative Uniform Resource Locators
IETF RFC 1808, R Fielding. June 1995, Status: Proposed Standard. This document describes
the syntax and semantics of relative Uniform Resource Locators. Relative URLs can be used
for the location and access of resources relative to an absolute URL.

RFC 2054 - WebNFS Client Specification
IETF RFC 2054, B Callaghan. October 1996, Status: Informational. This document describes
the procedure that a WebNFS client uses to access an NFS server.

RFC 2055 - WebNFS Server Specification
IETF RFC 2055, B Callaghan, October 1996, Status: Informational. This document describes
the features that are required of a WebNFS server.

RFC 2224 - NFS URL Scheme
IETF RFC 2224, B Callaghan, October 1997, Status: Informational. This document describes a
URL scheme used to refer to files and directories on NFS servers using the general URL
syntax defined in RFC 1738.

Other Documents

Andrew D. Birrell and Bruce Jay Nelson, Implementing Remote Procedure Calls, XEROX CSL-83-7,
October 1983.

Danny Cohen, On Holy Wars and a Plea for Peace, IEEE Computer, October 1981.

Courier: The Remote Procedure Call Protocol, XEROX Corporation, XSIS 038112, December 1981.

Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Bell Laboratories,
Murray Hill, New Jersey, 1978.

J. Postel, Transmission Control Protocol — DARPA Internet Program Protocol Specification, RFC
793, Information Sciences Institute, September 1981.

J. Postel, User Datagram Protocol, RFC 768, Information Sciences Institute, August 1980.

Disk Operating System Technical Reference, IBM part no. 6138536.

xxii Open Group Technical Standard

Chapter 1

Introduction

1.1 Overview
The vast majority of open-systems-compliant systems, now and in the future, will be connected
to other systems in local or wide area networks. To exploit the capabilities of these networks,
two types of mechanism have been used. In the first traditional model, the existence of the
network is explicitly recognised, and interfaces are provided which allow applications or end
users to perform operations across the network. In the second, the semantics of local system
interfaces are extended to allow access to objects on remote systems, so that applications and
end users can (as far as possible) ignore the distinctions between local and remote objects. The
first approach is the subject of the X/Open Networking Services Specification (see reference
XNS). This document is concerned with the second. More specifically, it is concerned with
access to files and directories which are physically stored on remote systems. It does not address
operations on, or communications between, processes within a network.

The process of accessing remote files and directories as though they were part of the local file
system hierarchy has been termed ‘‘transparent file access’’ (TFA). TFA is an attractive concept
for a number of reasons. Using TFA, it becomes possible to use a single set of applications,
utilities, and so on, for local and remote operations. For example, instead of invoking a network
application such as BSFT (see the X/Open BSFT Specification) to copy a file from one system to
another, the XSI cp utility may be used. Accessing a remote file directly, rather than copying it to
the local system and working on the copy, has two obvious benefits. First, the single copy of the
file can be updated without the need to update the copies. Second, the total disk storage used
within the network is reduced. From here it is a short step to using TFA to support a diskless
system, in which all file service is networked. Such a system may offer certain benefits in the
areas of cost, simplicity and administration.

The most widely used heterogeneous TFA architecture is the Network File System (NFS),
originally developed by Sun Microsystems, Inc. NFS has been implemented on a wide range of
architectures, from personal computers to mainframes and supercomputers. The specifications
for the protocols associated with NFS have been published, and there have been several
independent implementations.

With the XNFS specification, The Open Group offers the market a temporary but complete
solution to the problem of transparent file access between open-systems-compliant systems.
Temporary, because The Open Group recognises the TFA standardisation effort ongoing within
the IEEE P1003.1f committee, and The Open Group intends to be compliant with P1003.1f TFA at
such time as it becomes an IEEE standard. Complete, because The Open Group now offers both
protocols for interoperability (via this XNFS specification) and interfaces for application/user
portability (via the XSI specifications, in conjunction with the semantic differences defined in
Appendix A on page 271, Appendix B on page 287 and Appendix C on page 295.

There is a certain overlap between the X/Open (PC)NFS Specification and this specification.
However, the X/Open (PC)NFS Specification contains a large number of PC-specific definitions,
and the two documents address different markets (PC-X/Open Interworking and X/Open-
X/Open interworking, respectively).

Protocols for Interworking: XNFS, Version 3W 1

Scope Introduction

1.2 Scope
This document is a specification for XNFS. XNFS incorporates all of the protocols defined for
NFS, and formalises the semantics for XSI applications and utilities operating on remote file
systems. A system compliant to an Open Brand for XNFS will be able to access files on any
other conforming system, and will be able to make its local files accessible to conforming
systems. It will also be able to act as a file server to personal computers running (PC)NFS, as
described in the X/Open (PC)NFS Specification. It is intended that it will also be able to
interoperate with implementations of NFS on systems which are not compliant with an Open
Brand for XNFS, but such interoperation is outside the scope of this specification. Throughout
this specification, XNFS will refer to the complete specification, while NFS will refer only to the
file-sharing protocol component.

This document contains protocol specifications for External Data Representation (XDR), Remote
Procedure Call Protocol (RPC), the Network File System (NFS) and the XNFS adjunct protocols,
which include Portmap, Mount, Network Status Monitor (NSM) and Network Lock Manager
(NLM). Protocols corresponding to both NFS Version 2 and NFS Version 3 are specified.
Systems conforming to this document must support both protocol sets.

This document introduces the WebNFS extensions in an optional appendix.

The RPC specification is included because the NFS protocols are defined in terms of it. The XDR
specification is included because the NFS protocols and RPC are defined in terms of it.

The inclusion of these specifications does not mandate the use of distinct XDR or RPC
implementation components, nor does it define or mandate any general RPC protocols or
interfaces for distributed client/server applications. However, the RPC and XDR specifications
define unambiguously the encoding of NFS and adjunct protocol requests and responses when
transmitted across a network, as described in Chapter 5 on page 57.

This specification does not define the utilities and interfaces used for the administration of
XNFS. However it is impractical to avoid the issue of configuration entirely. XNFS
implementations include a number of configuration options, and many of the semantic issues
discussed in the appendices are inherently dependent upon the way in which XNFS is
configured. The solution adopted in this document is to define an abstract XNFS Service Model
(see Chapter 2 on page 9) which specifies a set of administrative operations and the attributes of
the entities to be managed. The attributes are those defined in the most widely-used NFS
reference source from Sun Microsystems, Inc., ‘‘NFSSRC4.0’’. The implementation of the
administrative model, in terms of programming interfaces, utilities, data bases and so on, is not
specified, and need not be patterned on NFSSRC4.0. It is intended that this specification is
compatible and interoperable with current practice as described in RFC 1094 and RFC 1813 (see
Section 1.7 on page 7). The behaviour described in Appendix A on page 271, Appendix B on
page 287 and Appendix C on page 295, is presented in terms of the attributes introduced in the
Service Model.

These appendices document the semantic differences experienced when using NFS instead of a
local file system.

2 Open Group Technical Standard

Introduction Audience

1.3 Audience
There are two intended audiences for this specification. The first includes anyone who wishes to
implement XNFS as part of an open-systems-compliant scheme. This specification defines the
protocols which are to be implemented by a conforming system, so that it may interoperate with
other conforming systems. It does not, however, define the way in which these protocols are to
be implemented, nor the way in which XNFS is to be integrated into the rest of the system. If, for
example, an implementation performs a read() on a remote file, this specification defines
completely the format of the remote request and the corresponding response. It does not define
the circumstances under which an implementation should issue a remote read() request.
However, as a guide for implementors, a (non-normative) transmission analysis is included as
Appendix D on page 299.

The second audience is the developers of applications. This group relies upon the semantics of
the XSI as defined in the X/Open System Interfaces and Headers Specification (see reference
XSH) and the X/Open Commands and Utilities Specification (see reference XCU), and needs to
be aware of any semantic changes which the use of XNFS may introduce. These changes are
described in Appendix A on page 271, Appendix B on page 287 and Appendix C on page 295.
Obviously an XNFS implementor must be aware of this material so that his or her
implementation does not behave in an unexpected manner.

Protocols for Interworking: XNFS, Version 3W 3

Terminology Introduction

1.4 Terminology
The following common english words have special meaning when used in this document:

can
This describes a permissible optional feature or behaviour available to the user or application; all
systems support such features or behaviour as mandatory requirements.

implementation-dependent
The value or behaviour is not consistent across all implementations. The provider of an
implementation normally documents the requirements for correct program construction and
correct data in the use of that value or behaviour. When the value or behaviour in the
implementation is designed to be variable or customisable on each instantiation of the system,
the provider of the implementation normally documents the nature and permissible ranges of
this variation. Applications that are intended to be portable must not rely on implementation-
dependent values or behaviour.

legacy
Certain features are legacy , which means that they are being retained for compatibility with older
applications, but have limitations which make them inappropriate for developing portable
applications. New applications should use alternative means of obtaining equivalent
functionality. Legacy features are marked LEGACY.

may
With respect to implementations, the feature or behaviour is optional. Applications should not
rely on the existence of the feature. To avoid ambiguity, the reverse sense of may is expressed as
need not , instead of may not .

must
This means that the behavior described is a requirement on the implementation.

should
With respect to implementations, the feature is recommended, but it is not mandatory.
Applications should not rely on the existence of the feature.

With respect to users or applications, the word means recommended programming practice that
is necessary for maximum portability.

undefined
A value or behaviour is undefined if this document imposes no portability requirements on
applications for erroneous program constructs or erroneous data. Implementations may specify
the result of using that value or causing that behaviour, but such specifications are not
guaranteed to be consistent across all implementations. An application using such behaviour is
not fully portable to all systems.

unspecified
A value or behaviour is unspecified if this document imposes no portability requirements on
applications for correct program construct or correct data. Implementations may specify the
result of using that value or causing that behaviour, but such specifications are not guaranteed
to be consistent across all implementations. An application requiring a specific behaviour,
rather than tolerating any behaviour when using that functionality, is not fully portable to all
systems.

will
This means that the behavior described is a requirement on the implementation.

4 Open Group Technical Standard

Introduction Protocol Stacks and Conformance

1.5 Protocol Stacks and Conformance
An open-systems-conformant XNFS implementation must support the following protocols:

• NFS (see Chapter 7 on page 69)

• Mount (see Chapter 8 on page 107)

• NLM (see Chapter 10 on page 127)

• NSM (see Chapter 11 on page 161)

• Portmap (see Chapter 6 on page 61).

• NFS Version 3 (see Chapter 12 on page 175)

• Mount Version 3 (see Chapter 13 on page 255)

• NLM Version 4 (see Chapter 14 on page 263)

These protocols are defined in terms of the Remote Procedure Call (RPC) protocol, which may
employ the External Data Representation (XDR) encoding to ensure operating system
independence.

Although the RPC protocol is inherently independent of any particular transport service, an
open-systems-conformant NFS implementation must support at least one protocol suite, and
support it in the manner defined in this specification.

This specification defines a single transport service, UDP over IP from the Internet Protocol Suite
(IPS). All XNFS protocols are implemented over this transport.

Note: While an implementation may elect to use some other transport such as TCP for
communication between XNFS components on a single machine, this is an
implementation issue and is not required or described in this specification.

Provided that an interoperable transport service and the same physical connection mechanism
are chosen for two systems, conformance to this specification by both system’s NFS
implementations guarantees that both systems can make their local files accessible for each other
and that they can access each other’s files.

In addition to the protocols described in the chapters mentioned above, the following chapters
are normative for open-systems-compliant NFS implementations:

• Chapter 2 apart from the MntStdFileSysOp and UnMntAllFileSys operations

• Chapter 9

• Appendix A

• Appendix B

• Appendix C.

Compliance

This specification applies to the X/Open Portability Guide, Issue 3 (XPG3) and the Single UNIX
Specification, Issue 4, Version 2 (XCU, XSH and XBD — see Referenced Documents on page
xix), except where explicitly stated otherwise.

Protocols for Interworking: XNFS, Version 3W 5

Relationship to other Open Group Specifications Introduction

1.6 Relationship to other Open Group Specifications
This specification is based in part on the X/Open (PC)NFS Specification.

The X/Open (PC)NFS Specification defines the protocols for communication between a PC
client running DOS or OS/2 and an open-systems-compliant server.

The XNFS specification defines:

• The transparent file access service provided by XNFS

• The protocols that support this service between open-systems-compliant machines, which
can take the role of either servers or clients

• The differences in semantics of the X/Open System Interfaces and Headers Specification (see
reference XSH) and the X/Open Commands and Utilities Specification (see reference XCU)
when they are used ‘‘transparently’’ using XNFS rather than locally.

Since many of the protocols used are the same for PC and open-systems-compliant system
clients, there is obviously a great deal of overlap between these specifications.

In the event of any inconsistency or disagreement between the two documents, this document is
to be treated as authoritative. At some future date, the X/Open (PC)NFS Specification will be
revised to include only those elements which are specific to PC clients, such as the pcnfsd
protocol, filename and attribute mapping, and the transmission analysis.

This specification describes additional return codes and changed behaviour for some of the
system calls and utilities described in the X/Open System Interfaces and Headers Specification
(see reference XSH) and the X/Open Commands and Utilities Specification (see reference XCU).
These are documented in Appendix A on page 271, Appendix B on page 287 and Appendix C on
page 295.

6 Open Group Technical Standard

Introduction References to RFCs

1.7 References to RFCs
This document describes only those protocols which have not otherwise been standardised. The
RFCs listed in the Referenced Documemts section in the front pages of this document should be
consulted for details of the Internet Protocol Suite.

Certain RFC documents are reissued periodically, with each issue receiving a new RFC number.
To determine whether a particular RFC is current or not, the reader should consult a copy of the
latest RFC Index. Guidance on where to find this information is included in the Referenced
Documents section.

Protocols for Interworking: XNFS, Version 3W 7

Introduction

8 Open Group Technical Standard

Chapter 2

XNFS Service Model

2.1 Introduction
This chapter describes the the basic XNFS Service Model (XNFSSM). Its purpose is to provide a
high-level description of the XNFSSM in terms of abstract objects and operations which are
independent of any particular implementation.

The XNFSSM describes the way in which cooperating XNFS client and server systems interact in
order to:

1. (on a server) make a file system available for use by clients

2. (on a client) gain access to a file system on a server and make it usable by local processes

3. (on a client) access files and directories stored on a server

4. (on a client) make a remote file system unusable by local processes and give up access to
the file system

5. (on a server) make a file system unavailable to clients.

Before the formal elements of the XNFSSM are defined, an informal overview may be helpful.

Protocols for Interworking: XNFS, Version 3W 9

Informal Overview of XNFS XNFS Service Model

2.2 Informal Overview of XNFS
This section provides a slightly simplified example of the use of XNFS to access remote files.
Figure 2-1 illustrates a portion of the file hierarchy on an X/Open-compliant system with the
system name alpha.

/

alpha:

usr1bin mntdir

cat carol johngeoff

fu bar

Figure 2-1 File Hierarchy on Example System Called alpha

Users and applications on system alpha can refer to files within this hierarchy with pathnames
such as /bin/cat and /usr1/geoff/fu.

Similarly, Figure 2-2 illustrates part of the file hierarchy on the system beta.

/

beta:

bin staff

cat laura petrjan

first last budget

Figure 2-2 File Hierarchy on Example System Called beta

The administrator of system beta decides to make the portion of the file system hierarchy under
the directory /staff available to other systems within the network. This is accomplished by

10 Open Group Technical Standard

XNFS Service Model Informal Overview of XNFS

exporting the directory /staff.

The administrator of system alpha now decides to make this file system available to users and
applications on alpha. This process is referred to as mounting the remote file system. To mount
a file system, three pieces of information must be provided:

• the name of the system exporting the file system

• the name of the directory to be mounted

• the name of a directory within the local file system to be used as the mount point.

The choice of mount point is important, since it determines the name by which the remote
directory, and everything below it, will be known on the client system. In this case, the
administrator chooses to mount /staff from system beta on the (empty) directory /mntdir. To a
user of system alpha the local file system hierarchy now appears as shown in Figure 2-3.

/

alpha:

usr1bin mntdir

cat carol johngeoff

fu bar

laura petrjan

first last budget

Figure 2-3 View from System alpha of Example File Hierarchy on System beta

If a user types the command /bin/cat /mntdir/jan/first, the result is to list the contents of the file
/staff/jan/first stored on the system beta. The command cd /mntdir/petr will select the directory
/staff/petr on beta as the current directory; typing ls will show the file budget, and df . will
display the amount of free space on the remote file system.

One effect of mounting a file system on a directory is that the contents of the local mount point
directory become inaccessible while the mount is in effect. Since an empty directory is usually
chosen as the mount point, this is not normally a problem. Suppose, however, that the local file
system on alpha was as shown in Figure 2-4.

Protocols for Interworking: XNFS, Version 3W 11

Informal Overview of XNFS XNFS Service Model

/

alpha:

usr1bin usr2

cat carol johngeoff

fu bar

jason petrjim

old new budget

Figure 2-4 Example 2 File Hierarchy on System Called alpha

If the directory /staff on beta is mounted on /usr2, the resulting file system hierarchy will be as
shown in Figure 2-5.

/

alpha:

usr1bin usr2

cat carol johngeoff

fu bar

laura petrjan

first last budget

Figure 2-5 Resulting File Hierarchy on System alpha from Example 2

Note that, for example, the file /usr2/jason/old is now inaccessible. Furthermore, the path
/usr2/petr/budget is still valid, but it now refers to the file /staff/petr/budget on beta.

12 Open Group Technical Standard

XNFS Service Model Elements of the XNFS Service Model

2.3 Elements of the XNFS Service Model
The XNFS Service Model incorporates the following elements:

• the ExportedFileSystem and MountedFileSystem objects

• the ExpFileSysOp and UnExpFileSysOp administrative operations and their derivatives

• the ShowExpFileSysOp, MntFileSysOp and UnMntFileSysOp administrative operations and
their derivatives

• file and directory access.

The operations and objects are abstractions only. It is not expected that an XNFS
implementation will incorporate procedures and data structures which correspond to these
definitions. The (informal) definition of these attributes is not to be interpreted as implying a
specific representation. The process of mounting a file relies on retrieving from the server a
token (FileHandle) which corresponds to the remote file system, and storing an association of this
token with the point in the local file system where the remote file system appears. This may be
implemented in a variety of ways by using, for example, a command line utility, a graphical
network resource browser, or ‘‘on the fly’’ using some kind of ‘‘automounter’’. However the
notion of the FileHandle attribute of a mounted file system must be stored in some form.

Protocols for Interworking: XNFS, Version 3W 13

XNFS Objects XNFS Service Model

2.4 XNFS Objects

2.4.1 ExportedFileSystem

An ExportedFileSystem object is created on an XNFS server as a result of a successful
ExpFileSysOp operation. It is added to the set of exported file systems known to the mount
server.

An XNFS server must implement the following set of ExportedFileSystem attributes, but is not
precluded from adding others.

Attribute Type Recommended
Default

PathName path NO DEFAULT
Mode ReadOnly or ReadWrite ReadWrite
AnonMapping uid or −1 Implementation-dependent
Root list of hostnames No root access
Access list of hosts or groups Unlimited

A WebNFS server must implement the following additional attribute:

Attribute Type Recommended
Default

Public boolean NO DEFAULT

A fuller description of each attribute follows.

PathName=pathname

This attribute identifies the file system object to be exported. This attribute must be specified.

Mode={ReadOnly or ReadWrite}

A value of ReadOnly specifies that the named file system object is not writable by XNFS clients.
ReadWrite (the default) means that read and write access are granted.

AnonMapping=uid

Specifies the UID to be used for NFS accesses from an ‘‘unknown’’ user. Users with UID 0 are
always considered unknown by the NFS server unless they are included in the Root attribute
below. The recommended default value of this attribute is −2. Specifying AnonMapping=-1
disables anonymous access to the file system.

Root=hostname[:hostname] . . .

If this attribute is specified, NFS accesses from the specified systems with UID 0 are processed
without being subject to the AnonMapping process. If this attribute is not specified, all UID 0
accesses are mapped.

14 Open Group Technical Standard

XNFS Service Model XNFS Objects

Access={hostname or groupname}[:{hostname or groupname}] . . .

This attribute may be used to explicitly identify those systems which may have access to the file
system. Each element in the associated list identifies a host, or a group of hosts, which is to be
allowed to mount the file system. The mechanism whereby a hostname or groupname is resolved
is not specified. If this attribute is not specified, the file system is accessible to any client system.
Note that the access control provided by the Access attribute is applied only at the time that the
client mounts the file system object; subsequent NFS accesses using the file handle acquired by
the mount will not be affected by any changes to the Access list.

Public

A WebNFS server may designate a single ExportedFileSystem as the public file system.
References to the public filehandle (see Appendix E on page 307) are taken to mean the root of
this file system. Alternatively, the server may designate a single directory in a non-exported file
system. In this case, references to the public filehandle are taken to mean this directory. If the
server designates a non-exported directory, clients must ensure that paths relative to the public
filehandle refer to objects in an ExportedFileSystem.

2.4.2 MountedFileSystem

A MountedFileSystem object is created on an XNFS client as a result of a successful MntFileSysOp
operation. The local mount point object is marked as remote, as discussed in Section 2.7 on page
24.

An XNFS client must implement the following set of MountedFileSystem attributes, but is not
precluded from adding others.

Attribute Type Supplied in Retrieved Recommended
MntFileSysOp from Default
Operation Server

FileHandle fhtype — X NO DEFAULT
PathName path X — NO DEFAULT
Server hostname X — NO DEFAULT
MountPoint path X — NO DEFAULT
Mode ReadOnly or ReadWrite X — ReadWrite
GrpID boolean X — False
SetUID boolean X — False
ReadSize integer X — UNSPECIFIED
WriteSize integer X — UNSPECIFIED
NFSTimeOut time X — 700 milliseconds
NFSRetransmissions integer X — 3
RetrySemantics Soft or Hard X — Hard
Intr boolean X — False
NFSServerPort UDP port X — 2049
AttribCaching boolean X — False
ACRegMin time X — 3 seconds
ACRegMax time X — 60 seconds
ACDirMin time X — 30 seconds
ACDirMax time X — 60 seconds

A fuller description of each attribute follows.

Protocols for Interworking: XNFS, Version 3W 15

XNFS Objects XNFS Service Model

FileHandle

This attribute identifies the file system object on the server.

PathName=pathname

This attribute identifies the file system object to be mounted. This attribute must be specified.

Server=hostname

This attribute identifies the XNFS server system from which the object is to be mounted. This
attribute must be specified.

MountPoint=pathname

This attribute identifies the local file system object on which the XNFS object is to be mounted.
This attribute must be specified. The mountpoint must exist. Upon completion of the
MntFileSysOp operation, the previous contents of the mountpoint will be inaccessible and the
mountpoint pathname will refer to the XNFS mounted object. Note that if this object is a regular
file rather than a directory the effects of directory-related operations are undefined.

Mode={ReadOnly or ReadWrite}

A value of ReadOnly specifies that the named file system object will be mounted for reading
only. ReadWrite (the recommended default) means that writes will be allowed (although the
server may reject them if the file system object was exported in ReadOnly mode).

GrpID={True or False}

If True, any file or directory created on the file system will inherit the group ID of the parent
directory. If False, the group ID is set to the group of the current process or the parent directory,
as specified by XSI. The recommend default is False.

SetUID={True or False}

If True, programs stored on the XNFS server which have the SetUID attribute may be executed
with the corresponding effective UID. If false, such programs are executed with the current UID.
The recommended default is False.

ReadSize=nn

When reading data from a remote file, the maximum amount of data that will be requested in a
single RPC call is nn bytes. The recommended default value for this attribute is
implementation-dependent. In addition, the XNFS client may limit the maximum transfer size
to the info.tsize advertised by the server in the statfsres attributes (see Section 7.5.0 on page 104).

WriteSize=nn

When writing data to a remote file, the maximum amount of data that will be written in a single
RPC call is nn bytes. The recommended default value for this attribute is implementation-
dependent. In addition, the XNFS client may limit the maximum transfer size to the info.tsize
advertised by the server in the statfsres attributes (see Section 7.5.0 on page 104).

16 Open Group Technical Standard

XNFS Service Model XNFS Objects

NFSTimeOut=nn

Specifies that the initial timeout for an NFS RPC request is nn tenths of a second. (The timeout
for subsequent retransmissions will depend on an implementation-dependent backoff
algorithm.) The recommended default is 7, equivalent to a timeout of 700 milliseconds.

NFSRetransmissions=nn

If the RetrySemantics attribute is Soft, this specifies the number of times that an NFS RPC request
will be retransmitted before the corresponding XSI request fails. The recommended default is 3.

RetrySemantics={Soft or Hard}

If a file system is mounted Hard (the recommended default), a failure of the server to respond to
an NFS RPC causes the request to be retried until the server responds, or until the local process
is interrupted (if Intr=True). If the file system is mounted with RetrySemantics=Soft, the
corresponding XSI call will fail after the number of retries specified by NFSRetransmissions (see
below).

Intr={True or False}

If True, a keyboard signal to a process will cause any operation which is being retried
RetrySemantics=Hard to be abandoned.

NFSServerPort=nn

Specifies that NFS RPC requests are directed to UDP port nn on the server. The recommended
default is 2049.

AttribCaching={True or False}

If True, no attribute, access, or directory caching will be performed. Otherwise the attributes
(including permissions, size and timestamps) for files and directories may be cached to reduce
the need to perform over-the-wire GETATTR or ACCESS RPCs. The ACRegMin, ACRegMax,
ACDirMin and ACDirMax attributes control the length of time for which the cached values will
be retained.

ACRegMin=nn

Hold cached attributes for at least nn seconds after file modification. The recommended default
is 3.

ACRegMax=nn

Hold cached attributes for no more than nn seconds after file modification. The recommended
default is 60.

ACDirMin=nn

Hold cached attributes for at least nn seconds after directory update. The recommended default
is 30.

Protocols for Interworking: XNFS, Version 3W 17

XNFS Objects XNFS Service Model

ACDirMax=nn

Hold cached attributes for no more than nn seconds after directory update. The recommended
default is 60.

18 Open Group Technical Standard

XNFS Service Model XNFS Server Operations

2.5 XNFS Server Operations
The four XNFS server administration operations are used to export or unexport local file system
objects. All require appropriate privileges. These operations merely update the set of
ExportedFileSystem objects; it is the responsibility of the mount server to interpret incoming
MNTPROC_MNT requests and determine whether or not the request is to be granted (see
Section 2.6.2 on page 21). The mechanism by which the XNFS server operations communicate
with the mount server is not specified.

It should be noted that the file system objects must be local to the server system; XNFS does not
support third party or proxy operations.

2.5.1 The ExpFileSysOp Operation

An XNFS server implementation will provide a mechanism by which a local file system object - a
directory or file - is made available for mounting over the network by XNFS clients. The result of
invoking this operation is the creation of an ExportedFileSystem object which is added to the set of
exported file systems known to the mount server.

The ExpFileSysOp operation is invoked with a set of attributes which specify what is to be
exported, which clients may mount the object, and how NFS accesses to the object are to be
handled. These attributes are drawn from the attributes of the ExportedFileSystem object defined
above; at a minimum, the PathName must be specified.

It is not permitted to export a file system object which is either a parent or a sub-directory of one
which is currently exported and is within the same physical file system. This is because security
considerations dictate that an XNFS server must disallow access to the parent directory of the
exported file system object; if this constraint is violated, the server cannot enforce such a policy.

The ExpFileSysOp operation does not involve any direct protocol interaction with client systems.

2.5.2 The UnExpFileSysOp Operation

The UnExpFileSysOp operation may be used to make a previously exported file system object
unavailable. The effect is to remove the specified ExportedFileSystem from the set of exported file
systems known to the mount server and to destroy the object.

Only one attribute may be given.

Attribute Type Recommended
Default

PathName path NO DEFAULT

The PathName attribute uniquely identifies the ExportedFileSystem object which is to be
unexported.

If XNFS clients have previously mounted this file system, they may retain valid file handles for
objects within the file system which is being unexported. The UnExpFileSysOp operation does
not invalidate these file handles, which means that NFS operations to the file system may
continue after the UnExpFileSysOp operation has been completed. An XNFS implementation
may include a separate mechanism to forcibly invalidate existing file handles.

The execution of the UnExpFileSysOp operation does not involve any direct protocol interactions
with XNFS client systems.

Protocols for Interworking: XNFS, Version 3W 19

XNFS Server Operations XNFS Service Model

2.5.3 The ExpStdFileSysOp Operation

An XNFS server implementation may optionally provide a mechanism whereby a predefined
sequence of ExpFileSysOp operations is executed. This sequence is performed by invoking the
ExpStdFileSysOp operation, which will usually be a part of the system start-up sequence. To
support this operation, the XNFS server will implement a StandardExports database. Each record
in this database consists of a set of ExpFileSysOp attributes as described above. When the
ExpStdFileSysOp operation is invoked, an ExpFileSysOp operation is performed for each record of
the StandardExports database.

This specification does not describe the format of the StandardExports database, nor the
mechanisms which may be used to manage it.

2.5.4 The UnExpStdFileSysOp Operation

The UnExpStdFileSysOp operation may be used to unexport every element of the StandardExports
database. For each element of the database, it causes an UnExpFileSysOp operation to be
invoked with the corresponding PathName attribute.

20 Open Group Technical Standard

XNFS Service Model XNFS Client Operations

2.6 XNFS Client Operations
The five XNFS client administration operations are used to mount or unmount remote file
system objects, or to determine what file systems are exported by a server. All except for
ShowExpFileSysOp require appropriate privileges.

2.6.1 The ShowExpFileSysOp Operation

An XNFS client implementation will provide a mechanism by which the user may interrogate an
XNFS server system to determine what file system objects are exported. The ShowExpFileSysOp
operation is invoked with the following attribute:

Attribute Type Recommended
Default

Server hostname NO DEFAULT

For each ExportedFileSystem object exported by the XNFS server hostname, ShowExpFileSysOp will
output the pathname together with a list of the hosts or groups listed in the Access attribute of
the exported file system.

The ShowExpFileSysOp operation causes a MNTPROC_EXPORT RPC call to be performed to the
mount server on the XNFS server system (see Section 8.3.0 on page 115). The mount server
responds by sending a list of exported file system entries, which the ShowExpFileSysOp operation
will render into a suitable form for output. This specification does not define this format.

2.6.2 The MntFileSysOp Operation

An XNFS client implementation will provide a mechanism by which a remote file system object -
a directory or file exported by an XNFS server - is mounted. Mounting a remote file system
consists of creating a MountedFileSystem object with the desired attributes, and associating it
with a local file system object - the mountpoint - so that subsequent XSI references to the
mountpoint will be interpreted as references to the remote file system object.

The attributes of the MntFileSysOp operation fall into two groups. The first consists of attributes
for the MountedFileSystemObject as described above. The second is drawn from the following set
of options which control the way in which the MntFileSysOp call is performed.

Attribute Type Recommended
Default

ReMount boolean False
MountRetryCount integer 0
MountRetry Background or Foreground Foreground

A fuller description of each attribute follows.

ReMount={True or False}

If True, the file system must already be mounted, otherwise an error results. If the Mode with
which the file system was previously mounted is the same as that specified in this MntFileSysOp
request, the operation has no effect. Otherwise the file system is unmounted and remounted.

Protocols for Interworking: XNFS, Version 3W 21

XNFS Client Operations XNFS Service Model

MountRetryCount=nn, MountRetry={Background or Foreground}

If the first attempt to mount the file system fails due to a recoverable error (such as the server
being temporarily inaccessible), and the MountRetryCount is non-zero, the request will be retried
until it is successful or MountRetryCount attempts have been made. If MountRetry is specified as
Background, a new process will be forked to perform the retries in the background, and the
MntFileSysOp operation will terminate successfully.

The execution of the MntFileSysOp operation involves the acquisition of an NFS file handle for
the exported file system object. This is realised by executing a MNTPROC_MNT RPC call to the
mount server program on the XNFS server system, providing as an argument the pathname of
the object (see Section 8.3.0 on page 111). The mount server interrogates the local XNFS server to
retrieve a file handle for the object; if this is successful it examines the set of ExportedFileSystem
objects established by ExpFileSysOp operations to find one which corresponds to that provided
by the client. Having identified the exported file system, the mount server will verify access by
the client based upon the attributes of the exported file system. If the mount is allowed, the file
handle is returned to the XNFS client system. A MountedFileSystem object is created which
includes the file handle and the attributes supplied in the MntFileSysOp invocation. The final
procedure - binding the MountedFileSystem and file handle to the mountpoint on the client - is
implementation-dependent, and is not specified by this standard.

2.6.3 The UnMntFileSysOp Operation

The UnMntFileSysOp operation will be used to unmount a previously mounted
MountedFileSystem object. The file system may be identified by giving a (remote) PathName and
Server, or by specifying the (local) MountPoint. Upon completion of the UnMntFileSysOp
operation, the previous contents of the mountpoint will once more be accessible.

An implementation is not required to support both mechanisms to specify the file system to be
unmounted.

Attribute Type Recommended
Default

PathName path NO DEFAULT
Server hostname NO DEFAULT
MountPoint path NO DEFAULT

A fuller description of each attribute follows.

PathName=pathname

This attribute identifies the remote file system object to be unmounted.

Server=hostname

This attribute identifies the XNFS server system from which the object was mounted.

MountPoint=pathname

This attribute identifies the local file system object on which the XNFS object was mounted.

If the mounted file system is in use, the UnMntFileSysOp operation will fail with an appropriate
error indication. The definition of ‘‘in use’’ is implementation-dependent.

The execution of the UnMntFileSysOp operation causes a MNTPROC_UMNT RPC to be made to
the mount server process on the XNFS server system with the pathname as an argument (see
Section 8.3.0 on page 113).

22 Open Group Technical Standard

XNFS Service Model XNFS Client Operations

2.6.4 The MntStdFileSysOp Operation

An XNFS client implementation may provide a mechanism by which a predefined sequence of
MntFileSysOp operations is executed. This sequence is performed by invoking the
MntStdFileSysOp operation, which will usually be a part of the system start-up sequence. To
realise this mechanism, a StandardMounts database will exist. Each record in this database
consists of a set of MntFileSysOp attributes as described above. When the MntStdFileSysOp
operation is invoked, a MntFileSysOp operation is performed for each record of the
StandardMounts database.

This specification does not describe the format of the StandardMounts database, nor the
mechanisms which may be used to manage it.

2.6.5 The UnMntAllFileSys Operation

An XNFS client implementation may include an UnMntAllFileSys operation which may be used
to unmount some or all mounted file systems.

Attribute Type Recommended
Default

Server hostname All servers

A fuller description of each attribute follows.

Server=hostname

If this attribute is given, all file systems mounted from the given XNFS server are unmounted. If
it is not, all NFS file systems which are mounted by the client are unmounted.

For each MountedFileSystem object which is to be unmounted, an UnMntFileSysOp operation is
invoked with the corresponding PathName and Server attributes.

Protocols for Interworking: XNFS, Version 3W 23

File and Directory Operations XNFS Service Model

2.7 File and Directory Operations
Unlike the administrative part of the model, file and directory access is precisely specified. The
client system must implement a mechanism whereby every active file or directory object is
marked as local or remote. For each active remote object the file handle and MountedFileSystem
must be recorded. Whenever a process executing on the client invokes an XSI function which
refers to a remote file or directory, the XNFS client implementation must interpret this request in
terms of NFS remote procedure calls. Appendix D indicates, but does not completely specify,
how this may be achieved. Chapter 3, Chapter 4, Chapter 5 and Chapter 7 define how NFS
requests are constructed and transmitted to the server. The XNFS server implementation is
responsible for performing UID mapping according to the values of the AnonMapping and Root
attributes of the ExportedFileSystem, interpreting the resulting request in terms of local file system
operations and transmitting the response to the client. Appendix A, Appendix B and Appendix
C indicate, but do not fully specify, the deviations from standard XSI semantics which may
occur.

File locking operations are discussed separately in Chapter 9, Chapter 10 and Chapter 11.

24 Open Group Technical Standard

XNFS Service Model Operation in an International Environment

2.8 Operation in an International Environment
XNFS can operate in a situation where more than one natural language and cultural
environment is in use. There may be different environments on client and server and there may
be different environments used within the client or the server.

The internationalisation facilities that are available and the considerations that apply are
discussed in the X/Open Internationalisation Guide. When the client is implemented in
accordance with its provisions, internationalisation facilities are available, transparently, on the
resulting distributed file system.

Two particular considerations are discussed below.

2.8.1 Internationalized XNFS Operations

It is desirable that the XNFS client and server administrative operations should be
internationalized. This means that each user can invoke these operations via a user interface
that recognizes the character set, collating sequence, date format and other conventions of their
cultural environment and that accepts commands and displays text expressed in their natural
language. It is recommended that implementations include internationalized administrative
operations implemented in accordance with the recommendations of the X/Open
Internationalisation Guide.

2.8.2 Remote File Systems Created in Different Locales

It is possible to access a file system that has been created on the server in a locale that is not in
use, or even not available, on the client. This may give rise to unpredictable results. For
example, filenames created using character sets that are not supported on the client may be
displayed incorrectly. This problem can arise within a single system on which several locales are
available, but is more likely to occur when XNFS is used to provide transparent file access across
several different systems, and users should beware.

Protocols for Interworking: XNFS, Version 3W 25

XNFS Service Model

26 Open Group Technical Standard

Chapter 3

XDR Protocol Specification

This chapter specifies a protocol that is used by many implementors of XNFS. It is derived from
a document designated RFC 1014 by the ARPA Network Information Centre (see Section 1.7 on
page 7).

This chapter includes only the subset of XDR that is required to define the XNFS protocols.

3.1 Introduction
XDR is a standard for the description and encoding of data. It is useful for transferring data
between different computer architectures, and has been used to communicate data between
many diverse machines. XDR fits into the ISO presentation layer, and is roughly analogous in
purpose to X.209 (previously X.409), ISO Abstract Syntax Notation. The major difference
between these two is that XDR uses implicit typing, while X.209 uses explicit typing.

XDR uses a language to describe data formats. The language can only be used to describe data;
it is not a programming language. This language allows description of intricate data formats in
a concise manner. The alternative of using graphical representations (itself an informal
language) quickly becomes incomprehensible when faced with complexity. The XDR language
itself is similar to the C language as defined in the C Programming Language, just as Courier, as
defined in Courier: The Remote Procedure Call Protocol is similar to Mesa. Protocols such as
RPC (Remote Procedure Call) and the NFS (Network File System) use XDR to describe the
format of their data.

The XDR standard assumes that bytes (or octets) are portable (see Section 3.1.2 on page 28). A
data-description language is used to define XDR rather than diagrams, as languages are more
formal than diagrams and lead to less ambiguous descriptions of data. There is also a close
analogy between the types of XDR and a high-level language such as C or Pascal. This makes
the implementation of XDR encoding and decoding modules an easier task.

3.1.1 A Canonical Standard

XDR’s approach to standardising data representations is canonical. That is, XDR defines a single
byte order (big-endian, as described in On Holy Wars and a Plea for Peace, a single floating-point
representation (IEEE), and so on. Any program running on any machine can use XDR to create
portable data by translating its local representation to the XDR standard representations;
similarly, any program running on any machine can read portable data by translating the XDR
standard representations to its local equivalents. The single standard completely decouples
programs that create or send portable data from those that use or receive portable data. The
advent of a new machine or a new language has no effect upon the community of existing
portable data creators and users.

No data-typing is provided in the XDR language as it has a relatively high cost (encoding and
interpreting the type fields) and most protocols already know what data types they are
expecting. However, one can still get the benefits of data-typing using XDR. One way is to
encode two things; first, a string which is the XDR data description of the encoded data, and
then the encoded data itself. Another way is to assign a value to all the types in XDR, and then
define a universal type which takes this value as its discriminant, and for each value, describe
the corresponding data type.

Protocols for Interworking: XNFS, Version 3W 27

Introduction XDR Protocol Specification

3.1.2 Byte Encoding

The XDR standard makes the following assumption: that bytes (or octets) are portable, where a
byte is defined to be 8 bits of data. A given hardware device must encode the bytes onto the
various media in such a way that other hardware devices may decode the bytes without loss of
meaning. For example, the Ethernet standard suggests that bytes are encoded with the least
significant bit first.

3.1.3 Basic Block Size

The representation of all items requires a multiple of four bytes (or 32 bits) of data. Four bytes is
big enough to support most machine architectures efficiently, yet is small enough to keep the
encoded data to a reasonable size. The bytes are numbered 0 to n −1. The bytes are read or
written to a byte stream such that byte m always precedes byte m +1. If the n bytes needed to
contain the data are not a multiple of four, then the n bytes are followed by enough (0 to 3)
residual zero bytes, r, to make the total byte count a multiple of 4. Setting these residual bytes to
zero enables the same data to be encoded to the same result on all machines, allowing encoded
data to be meaningfully compared or checksummed.

byte 0 byte 1 byte n−1 0 0

..

.

.

.

.

.

n bytes r bytes

n+r (where (n+r) mod 4 = 0)

28 Open Group Technical Standard

XDR Protocol Specification XDR Data Types

3.2 XDR Data Types
Each of the sections that follow describes a data type defined in the XDR standard, shows how it
is declared in the language, and includes a graphic illustration of its encoding.

For each data type in the language, a general paradigm declaration is shown. Note that angle
brackets (< and >) denote variable-length sequences of data, and square brackets ([and]) denote
fixed-length sequences of data. n, m and r denote integers. For the full language specification
and more formal definitions of terms such as ‘‘identifier’’ and ‘‘declaration’’, refer to Section 3.3
on page 37.

For some data types, more specific examples are included. A more extensive example of a data
description is in Section 3.4 on page 40.

3.2.1 Integer

An XDR signed integer is a 32-bit datum that encodes an integer in the range
[−2147483648,2147483647]. The integer is represented in two’s complement notation. The most
and least significant bytes are 0 and 3, respectively. Integers are declared as follows:

int identifier;

byte 0 byte 1 byte 2 byte 3

32 bits

(MSB) (LSB)

3.2.2 Unsigned Integer

An XDR unsigned integer is a 32-bit datum that encodes a non-negative integer in the range
[0,4294967295]. It is represented by an unsigned binary number whose most and least significant
bytes are 0 and 3, respectively. An unsigned integer is declared as follows:

unsigned int identifier;

byte 0 byte 1 byte 2 byte 3

32 bits

(MSB) (LSB)

Protocols for Interworking: XNFS, Version 3W 29

XDR Data Types XDR Protocol Specification

3.2.3 Hyper Integer and Unsigned Hyper Integer

Two extensions of the integer and unsigned integer types defined previously are the 64-bit (8-
byte) numbers called hyper integer and unsigned hyper integer. They are represented in two’s
complement notation. The most and least significant bytes are 0 and 7, respectively. Their
declarations are as follows:

hyper identifier;
unsigned hyper identifier;

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

64 bits

(MSB) (LSB)

3.2.4 Enumeration

Enumerations have the same representation as signed integers. Enumerations are handy for
describing subsets of the integers. Enumerated data is declared as follows:

enum { name-identifier = constant, . . . } identifier;

For example, the three colours red, yellow and blue could be described by an enumerated type:

enum { RED = 2, YELLOW = 3, BLUE = 5 } colors;

It is an error to encode as an enum any integer other than those that have been given
assignments in the enum declaration.

3.2.5 Boolean

Booleans are important enough, and occur frequently enough, to warrant their own explicit type
in the standard. Booleans are declared as follows:

bool identifier;

This is equivalent to:

enum { FALSE = 0, TRUE = 1 } identifier;

3.2.6 Fixed-Length Opaque Data

At times, fixed-length uninterpreted data needs to be passed among machines. This data is
called ‘‘opaque’’ and is declared as follows:

opaque identifier[n];

where the constant n is the (static) number of bytes necessary to contain the opaque data. If n is
not a multiple of four, then the n bytes are followed by enough (0 to 3) residual zero bytes, r, to
make the total byte count of the opaque object a multiple of four.

30 Open Group Technical Standard

XDR Protocol Specification XDR Data Types

byte 0 byte 1 byte n-1 0 0

..

.

.

.

.

.

n bytes r bytes

n+r (where (n+r) mod 4 = 0)

0 1

3.2.7 Variable-Length Opaque Data

The standard also provides for variable-length (counted) opaque data, defined as a sequence of n
(numbered 0 to n −1) arbitrary bytes to be the number n encoded as an unsigned integer (as
described below), and followed by the n bytes of the sequence.

Byte m of the sequence always precedes byte m +1 of the sequence, and byte 0 of the sequence
always follows the sequence’s length (count). If n is not a multiple of four, then the n bytes are
followed by enough (0 to 3) residual zero bytes, r, to make the total byte count a multiple of four.
Variable-length opaque data is declared in the following way:

opaque identifier< m>;

or

opaque identifier<>;

The constant m denotes an upper bound of the number of bytes that the sequence may contain.
If m is not specified, as in the second declaration, it is assumed to be 232 −1, the maximum length.
The constant m would normally be found in a protocol specification. For example, a filing
protocol may state that the maximum data transfer size is 8192 bytes, as follows:

opaque filedata<8192>;

This can be illustrated as follows:

length n byte 0 byte 1 byte n-1 0 0

..

..

..

..

..

..

4 bytes n bytes r bytes

n+r (where (n+r) mod 4 = 0)

0 1 2 3 4 5
| | | |

| | |

| |

It is an error to encode a length greater than the maximum described in the declaration.

3.2.8 String

The standard defines a string of n (numbered 0 to n −1) bytes to be the number n encoded as an
unsigned integer (as described above), and followed by the n bytes of the string. Each byte must
be regarded by the implementation as being 8-bit transparent data. This allows use of arbitrary
character set encodings. Byte m of the string always precedes byte m +1 of the string, and byte 0
of the string always follows the string’s length. If n is not a multiple of four, then the n bytes are
followed by enough (0 to 3) residual zero bytes, r, to make the total byte count a multiple of four.
Counted byte strings are declared as follows:

Protocols for Interworking: XNFS, Version 3W 31

XDR Data Types XDR Protocol Specification

string object< m>;

or

string object<>;

The constant m denotes an upper bound of the number of bytes that a string may contain. If m is
not specified, as in the second declaration, it is assumed to be 232 −1, the maximum length. The
constant m would normally be found in a protocol specification. For example, a filing protocol
may state that a filename can be no longer than 255 bytes, as follows:

string filename<255>;

This can be illustrated as:

length n byte 0 byte 1 byte n-1 0 0

..

..

..

..

..

..

4 bytes n bytes r bytes

n+r (where (n+r) mod 4 = 0)

0 1 2 3 4 5
| | | |

| | |

| |

It is an error to encode a length greater than the maximum defined in the declaration.

3.2.9 Fixed-Length Array

Declarations for fixed-length arrays of homogeneous elements are in the following form:

type-name identifier[n];

Fixed-length arrays of elements, numbered 0 to n −1, are encoded by individually encoding the
elements of the array in their natural order, 0 to n −1. Each element’s size is a multiple of four
bytes. Though all elements are of the same type, the elements may have different sizes. For
example, in a fixed-length array of strings, all elements are of type string, yet each element will
vary in its length.

element 0 element 1 element n-1

.. .. .

.. .. .

.. .. .

n elements

3.2.10 Variable-Length Array

Counted arrays provide the ability to encode variable-length arrays of homogeneous elements.
The array is encoded as the element count n (an unsigned integer) followed by the encoding of
each of the array’s elements, starting with element 0 and progressing through element n −1. The
declaration for variable-length arrays follows this form:

type-name identifier< m>;

or

type-name identifier<>;

The constant m specifies the maximum acceptable element count of an array; if m is not
specified, as in the second declaration, it is assumed to be 232 −1.

32 Open Group Technical Standard

XDR Protocol Specification XDR Data Types

n element 0 element 1 element n-1

..

.

.

4 bytes n elements

0 1 2 3 4
| | | |

| | |

|

It is an error to encode a value of n that is greater than the maximum described in the
declaration.

3.2.11 Structure

Structures are declared as follows:

struct {
component-declaration-A;
component-declaration-B;
. . .

} identifier;

The components of the structure are encoded in the order of their declaration in the structure.
Each component’s size is a multiple of four bytes, though the components may be different sizes.

component A component B

.

.

.

3.2.12 Discriminated Union

A discriminated union is a type composed of a discriminant followed by a type selected from a
set of pre-arranged types according to the value of the discriminant. The type of discriminant is
either int, unsigned int or an enumerated type, such as bool. The component types are called
‘‘arms’’ of the union, and are preceded by the value of the discriminant which implies their
encoding. Discriminated unions are declared as follows:

union switch (discriminant-declaration) {
case discriminant-value-A:

arm-declaration-A;
case discriminant-value-B:

arm-declaration-B;
. . .
default: default-declaration;

} identifier;

Each case keyword is followed by a legal value of the discriminant. The default arm is optional.
If it is not specified, then a valid encoding of the union cannot take on unspecified discriminant
values. The size of the implied arm is always a multiple of four bytes.

The discriminated union is encoded as its discriminant followed by the encoding of the implied
arm.

Protocols for Interworking: XNFS, Version 3W 33

XDR Data Types XDR Protocol Specification

discriminant implied arm

4 bytes

0 1 2 3
| | | |

| | |

|

3.2.13 Void

An XDR void is a 0-byte quantity. voids are useful for describing operations that take no data as
input or no data as output. They are also useful in unions, where some arms may contain data
and others do not. The declaration is simply as follows:

void;

voids are illustrated as follows:

0 bytes

3.2.14 Constant

The data declaration for a constant follows this form:

const name-identifier = n;

const is used to define a symbolic name for a constant; it does not declare any data. The
symbolic constant may be used anywhere a regular constant may be used. For example, the
following defines a symbolic constant DOZEN, equal to 12.

const DOZEN = 12;

3.2.15 Typedef

typedef does not declare any data either, but serves to define new identifiers for declaring data.
The syntax is:

typedef declaration;

The new type name is actually the variable name in the declaration part of the typedef. For
example, the following defines a new type called eggbox using an existing type called egg:

typedef egg eggbox[DOZEN];

Variables declared using the new type name have the same type as the new type name would
have in the typedef, if it was considered a variable. For example, the following two declarations
are equivalent in declaring the variable fresheggs:

eggbox fresheggs;
egg fresheggs[DOZEN];

When a typedef involves a struct, enum or union definition, there is another (preferred) syntax
that may be used to define the same type. In general, a typedef of the following form:

typedef <<struct, union, or enum definition>> identifier;

34 Open Group Technical Standard

XDR Protocol Specification XDR Data Types

may be converted to the alternative form by removing the ‘‘typedef’’ part and placing the
identifier after the struct, union or enum keyword, instead of at the end. For example, here are
the two ways to define the type bool:

typedef enum { /* using typedef */
FALSE = 0,
TRUE = 1

} bool;

enum bool { /* preferred alternative */
FALSE = 0,
TRUE = 1

};

The second syntax is preferred because it is not necessary to wait until the end of a declaration to
find the name of the new type.

3.2.16 Optional-data

Optional-data is one kind of union that occurs so frequently that it is given a special syntax of its
own. It is declared as follows:

type-name *identifier;

This is equivalent to the following union:

union switch (bool opted) {
case TRUE:

type-name element;
case FALSE:

void;
} identifier;

It is also equivalent to the following variable-length array declaration, since the boolean opted
can be interpreted as the length of the array:

type-name identifier<1>;

Optional-data is not so interesting in itself, but it is very useful for describing recursive data
structures such as linked-lists and trees. For example, the following defines a type stringlist that
encodes lists of arbitrary length strings:

struct *stringlist {
string item<>;
stringlist next;

};

It could have been equivalently declared as the following union:

union stringlist switch (bool opted) {
case TRUE:

struct {
string item<>;
stringlist next;

} element;
case FALSE:

void;
};

Protocols for Interworking: XNFS, Version 3W 35

XDR Data Types XDR Protocol Specification

or as a variable-length array:

struct stringlist<1> {
string item<>;
stringlist next;

};

Both of these declarations obscure the intention of the stringlist type, so the optional-data
declaration is preferred over both of them. The optional-data type also has a close correlation to
the way in which recursive data structures are represented in high-level languages such as
Pascal or C by use of pointers. In fact, the syntax is the same as that of the C language for
pointers.

36 Open Group Technical Standard

XDR Protocol Specification The XDR Language Specification

3.3 The XDR Language Specification

3.3.1 Notational Conventions

This specification uses an extended Backus-Naur Form notation for describing the XDR
language. Here is a brief description of the notation:

1. The characters |, (,), [,], ", and * are special.

2. Terminal symbols are strings of any characters surrounded by double quotes (").

3. Non-terminal symbols are strings of non-special characters.

4. Alternative items are separated by a vertical bar (|).

5. Optional items are enclosed in brackets.

6. Items are grouped together by enclosing them in parentheses.

7. A * following an item means zero or more occurrences of that item.

For example, consider the following pattern:

"a " "very" (" , " " very")* [" cold " "and"] " rainy " ("day" | "night")

An infinite number of strings match this pattern. A few of them are:

‘‘a very rainy day’’
‘‘a very, very rainy day’’
‘‘a very cold and rainy day’’
‘‘a very, very, very cold and rainy night’’

3.3.2 Lexical Notes

1. Comments begin with "/*" and terminate with "*/ ".

2. White space serves to separate items and is otherwise ignored.

3. An identifier is a letter followed by an optional sequence of letters, digits or underbar "_".
The case (lower or upper) of identifiers is not ignored.

4. A constant is a sequence of one or more decimal digits, optionally preceded by a minus
sign ‘‘−’’.

The character set is consistent with ISO 8859-1: 1987.

Protocols for Interworking: XNFS, Version 3W 37

The XDR Language Specification XDR Protocol Specification

3.3.3 Syntax Information

declaration:
type-specifier identifier

| type-specifier identifier "[" value "]"
| type-specifier identifier "<" [value] ">"
| "opaque" identifier "[" value "]"
| "opaque" identifier "<" [value] ">"
| "string" identifier "<" [value] ">"
| type-specifier "*" identifier
| "void"

value:
constant

| identifier

type-specifier:
["unsigned"] "int"

| ["unsigned"] "hyper"
| "bool"
| enum-type-spec
| struct-type-spec
| union-type-spec
| identifier

enum-type-spec:
"enum" enum-body

enum-body:
"{"
(identifier "=" value)
("," identifier "=" value)*
"}"

struct-type-spec:
"struct" struct-body

struct-body:
"{"
(declaration ";")
(declaration ";")*
"}"

union-type-spec:
"union" union-body

38 Open Group Technical Standard

XDR Protocol Specification The XDR Language Specification

union-body:
"switch" "(" declaration ")" "{"
("case" value ":" declaration ";")
("case" value ":" declaration ";")*
["default" ":" declaration ";"]
"}"

constant-def:
"const" identifier "=" constant ";"

type-def:
"typedef" declaration ";"

| "enum" identifier enum-body ";"
| "struct" identifier struct-body ";"
| "union" identifier union-body ";"

definition:
type-def

| constant-def

specification:
definition *

3.3.4 Syntax Notes

• The following are keywords and cannot be used as identifiers: bool, case, const, default,
enum, hyper, opaque, string, struct, switch, typedef, union, unsigned and void.

• Only unsigned constants may be used as size specifications for arrays. If an identifier is used,
it must have been declared previously as an unsigned constant in a const definition.

• Constant and type identifiers within the scope of a specification are in the same name space
and must be declared uniquely within this scope.

• Similarly, variable names must be unique within the scope of struct and union declarations.
Nested struct and union declarations create new scopes.

• The discriminant of a union must be of a type that evaluates to an integer; that is, int,
unsigned int, bool, an enumerated type or any typedefed type that evaluates to one of these,
is legal. Also, the case values must be one of the legal values of the discriminant. Finally, a
case value may not be specified more than once within the scope of a union declaration.

3.3.5 Use of XDR

Although XDR is used by many implementations of XNFS, it has been defined in this document
as a tool for use in later chapters. No implementation of the XDR language is required by a
server. Furthermore, an implementation of the XDR language is not constrained to use the
lexical and syntactical conventions defined in this specification; in particular, other codesets and
reserved words may be used in implementations that are not based on the English language.

Protocols for Interworking: XNFS, Version 3W 39

Example of an XDR Data Description XDR Protocol Specification

3.4 Example of an XDR Data Description
Here is a short XDR data description of an object called a file, which might be used to transfer
files from one machine to another.

const MAXUSERNAME = 32; /* max length of a user name */
const MAXFILELEN = 65535; /* max length of a file */
const MAXNAMELEN = 255; /* max length of a file name */

/*
* Types of files:
*/

enum filekind {
TEXT = 0, /* ascii data */
DATA = 1, /* raw data */
EXEC = 2 /* executable */

};

/*
* File information, per kind of file:
*/

union filetype switch (filekind kind) {
case TEXT:

void; /* no extra information */
case DATA:

string creator<MAXNAMELEN>; /* data creator */
case EXEC:

string interpretor<MAXNAMELEN>; /* program interpretor */
};

/*
* A complete file:
*/

struct file {
string filename<MAXNAMELEN>; /* name of file */
filetype type; /* info about file */
string owner<MAXUSERNAME>; /* owner of file */
opaque data<MAXFILELEN>; /* file data */

};

40 Open Group Technical Standard

XDR Protocol Specification Example of an XDR Data Description

Suppose now that there is a user named ‘‘john’’ who wants to store his lisp program ‘‘sillyprog’’
that contains just the data ‘‘(quit)’’. His file would be encoded as follows:

Offset Hex Bytes ASCII Description
0 00 00 00 09 Length of filename = 9
4 73 69 6c 6c sill Filename characters
8 79 70 72 6f ypro . . . and more characters . . .

12 67 00 00 00 g. and 3 zero-bytes of fill
16 00 00 00 02 Filekind is EXEC = 2
20 00 00 00 04 Length of interpreter = 4
24 6c 69 73 70 lisp Interpreter characters
28 00 00 00 04 Length of owner = 4
32 6a 6f 68 6e john Owner characters
36 00 00 00 06 Length of file data = 6
40 28 71 75 69 (qui File data bytes . . .
44 74 29 00 00 t). and 2 zero-bytes of fill

If, instead, ‘‘john’’ stored the same file in the text file ‘‘sillytext’’, it would be encoded as follows:

Offset Hex Bytes ASCII Description
0 00 00 00 09 Length of filename = 9
4 73 69 6c 6c sill Filename characters
8 79 74 65 78 ytex . . . and more characters . . .

12 74 00 00 00 t. and 3 zero-bytes of fill
16 00 00 00 00 Filekind is TEXT = 0

Note: no data encoded for void
20 00 00 00 04 Length of owner = 4
24 6a 6f 68 6e john Owner characters
28 00 00 00 06 Length of file data = 6
32 28 71 75 69 (qui File data bytes . . .
36 74 29 00 00 t). and 2 zero-bytes of fill

Protocols for Interworking: XNFS, Version 3W 41

XDR Protocol Specification

42 Open Group Technical Standard

Chapter 4

Remote Procedure Calls : Protocol Specification

This chapter specifies a protocol that is used by many implementors of XNFS. It is derived from
a document designated RFC 1057 by the ARPA Network Information Centre (see Section 1.7 on
page 7).

4.1 Introduction
This chapter specifies a message protocol used in implementing a Remote Procedure Call (RPC)
package. The message protocol is specified with the External Data Representation (XDR)
language (see Chapter 3 on page 27). It is assumed that the reader is familiar with XDR and no
attempt is made to justify it or its uses. The paper by Birrell and Nelson, Implementing Remote
Procedure Calls is recommended as an excellent background to, and justification of, RPC.

4.1.1 Terminology

This chapter discusses servers, services, programs, procedures, clients and versions.

network server A piece of software where network services are implemented.

network service A collection of one or more remote programs.

remote program Implements one or more remote procedures; the procedures, their
parameters and results are documented in the specific program’s protocol
specification.

network clients Pieces of software that initiate remote procedure calls to services.

A network server may support more than one version of a remote program in order to be
forward compatible with changing protocols. For example, a network file service may be
composed of two programs: one program may deal with high-level applications such as file
system access control and locking; the other may deal with low-level file I/O and have
procedures like read and write. A client machine of the network file service would call the
procedures associated with the two programs of the service on behalf of a user on the client
machine.

4.1.2 The RPC Model

The remote procedure call model is similar to the local procedure call model. In the local case,
the caller places arguments to a procedure in some well-specified location (such as a stack). It
then transfers control to the procedure, and eventually gains back control. At that point, the
results of the procedure are extracted from the well-specified location, and the caller continues
execution.

In the remote case, one thread of control logically winds through two processes; one is the
caller’s process, the other is a server’s process. That is, the caller process sends a call message to
the server process and waits (blocks) for a reply message. The call message contains the
procedure’s parameters, among other things. The reply message contains the procedure’s
results, among other things. Once the reply message is received, the results of the procedure are
extracted, and the caller’s execution is resumed.

On the server side, a process is dormant awaiting the arrival of a call message. When one
arrives, the server process extracts the procedure’s parameters, computes the results, sends a

Protocols for Interworking: XNFS, Version 3W 43

Introduction Remote Procedure Calls : Protocol Specification

reply message, and then awaits the next call message. Note that in this model, only one of the
two processes is active at any given time.

However, this model is only given as an example. The RPC protocol makes no restrictions on
the concurrency model implemented, and others are possible. For example, an implementation
may choose to have RPC calls asynchronous, so that the client may do useful work while
waiting for the reply from the server. Another possibility is to have the server create a task to
process an incoming request, so that the server can be free to receive other requests.

4.1.3 Transports and Semantics

The RPC protocol is independent of transport protocols. That is, RPC does not care how a
message is passed from one process to another. The protocol deals only with specification and
interpretation of messages.

It is important to point out that RPC does not try to implement any kind of reliability, and that
the application must be aware of the type of transport protocol underneath RPC. If it knows it is
running on top of a reliable transport such as TCP/IP, as described in Transmission Control
Protocol — DARPA Internet Program Protocol Specification, then most of the work is already
done for it. If, however, it is running on top of an unreliable transport such as UDP/IP, as
described in User Datagram Protocol, it must implement its own retransmission and time-out
policy as the RPC layer does not provide this service.

Because of transport independence, the RPC protocol does not attach specific semantics to the
remote procedures or their execution. Semantics can be inferred from (but should be explicitly
specified by) the underlying transport protocol. For example, consider RPC running on top of an
unreliable transport such as UDP/IP. If an application retransmits RPC messages after short
time-outs, the only thing it can infer if it receives no reply is that the procedure was executed
zero or more times. If it does receive a reply, then it can infer that the procedure was executed at
least once.

A server may wish to remember previously granted requests from a client and not regrant them
in order to ensure some degree of execute-at-most-once semantics. A server can do this by
taking advantage of the transaction ID that is packaged with every RPC request. The main use
of this transaction is by the client RPC layer in matching replies to requests. However, a client
application may choose to reuse its previous transaction ID when retransmitting a request. The
server application, knowing this fact, may choose to remember this ID after granting a request
and not re-grant requests with the same ID in order to achieve some degree of execute-at-most-
once semantics. The server is not allowed to examine this ID in any other way except as a test
for equality.

However, if using a reliable transport such as TCP/IP, the application can infer from a reply
message that the procedure was executed exactly once, but if it receives no reply message, it
cannot assume the remote procedure was not executed. Note that even if a connection-oriented
protocol like TCP is used, an application still needs time-outs and reconnection to handle server
crashes.

There are other possibilities for transports besides datagram or connection-oriented protocols.
For example, a request-reply protocol such as VMTP[2] is perhaps the most natural transport for
RPC. Note that although RPC is currently implemented on top of both TCP/IP and UDP/IP
transports, the XNFS specification defines only the use of connectionless protocols; therefore,
RPC over connection-oriented protocols will not be discussed further in this specification.

44 Open Group Technical Standard

Remote Procedure Calls : Protocol Specification Introduction

4.1.4 Binding and Rendezvous Independence

The act of binding a client to a service is not part of the remote procedure call specification. This
important and necessary function is left up to some higher-level software. (The software may
use RPC itself, see Section 6.2 on page 61.)

Implementors should think of the RPC protocol as the jump-subroutine instruction (JSR) of a
network; the loader (binder) makes JSR useful, and the loader itself uses JSR to accomplish its
task. Likewise, the network makes RPC useful, using RPC to accomplish this task.

Protocols for Interworking: XNFS, Version 3W 45

RPC Protocol Requirements Remote Procedure Calls : Protocol Specification

4.2 RPC Protocol Requirements
The RPC protocol must provide for the following:

• unique specification of a procedure to be called

• provisions for matching response messages to request messages

• provisions for authenticating the caller to service and vice versa.

Besides these requirements, RPC has features that detect the following:

• RPC protocol mismatches

• remote program protocol version mismatches

• protocol errors (such as incorrect specification of a procedure’s parameters)

• reasons why remote authentication failed

• any other reasons why the desired procedure was not called.

4.2.1 Programs and Procedures

The RPC call message has three unsigned fields: remote program number, remote program
version number and remote procedure number. The three fields uniquely identify the procedure
to be called. Program numbers are administered by some central authority. (Currently Sun
Microsystems, Inc. is responsible for administering program numbers.) Once an implementor
has a program number, the remote program can be implemented; the first implementation
would most likely have the version number of 1. Because most new protocols evolve into better,
stable and mature protocols, a version field of the call message identifies which version of the
protocol the caller is using. Version numbers make speaking old and new protocols through the
same server process possible.

The procedure number identifies the procedure to be called. These numbers are documented in
the specific program’s protocol specification. For example, a file service’s protocol specification
may state that its procedure number 5 is read and procedure number 12 is write.

Just as remote program protocols may change over several versions, the actual RPC message
protocol could also change. Therefore, the call message also contains the RPC version number,
which is always 2 for the version of RPC described here.

The reply message to a request message has enough information to distinguish the following
error conditions:

• the remote implementation of RPC does not speak protocol version 2; the lowest and highest
supported RPC version numbers are returned

• the remote program is not available on the remote system

• the remote program does not support the requested version number; the lowest and highest
supported remote program version numbers are returned

• the requested procedure number does not exist (this is usually a caller side protocol or
programming error)

• the parameters to the remote procedure appear to be uninterpretable from the server’s point
of view (again, this is usually caused by a disagreement about the protocol between client
and service).

46 Open Group Technical Standard

Remote Procedure Calls : Protocol Specification RPC Protocol Requirements

4.2.2 Authentication

The RPC protocol provides the fields necessary for a client to identify itself to a service and vice
versa. Security and access control mechanisms can be built on top of the message authentication.
Several different authentication protocols can be supported. A field in the RPC header indicates
which protocol is being used. More information on specific authentication protocols can be
found in Section 4.4 on page 52.

Protocols for Interworking: XNFS, Version 3W 47

The RPC Message Protocol Remote Procedure Calls : Protocol Specification

4.3 The RPC Message Protocol
This section defines the RPC message protocol in the XDR data description language. The
message is defined in a top-down style.

enum msg_type {
CALL = 0,
REPLY = 1

};

/*
* A reply to a call message can take on two forms:
* the message was either accepted or rejected.
*/

enum reply_stat {
MSG_ACCEPTED = 0,
MSG_DENIED = 1

};

/*
* Given that a call message was accepted, the following is the
* status of an attempt to call a remote procedure.
*/

enum accept_stat {
SUCCESS = 0, /* RPC executed successfully */
PROG_UNAVAIL = 1, /* remote hasn’t exported program */
PROG_MISMATCH = 2, /* remote can’t support version number */
PROC_UNAVAIL = 3, /* program can’t support procedure */
GARBAGE_ARGS = 4 /* procedure can’t decode params */

};

/*
* Reasons why a call message was rejected:
*/

enum reject_stat {
RPC_MISMATCH = 0, /* RPC version number is not 2 */
AUTH_ERROR = 1 /* remote can’t authenticate caller */

};

/*
* Why authentication failed:
*/

enum auth_stat {
AUTH_BADCRED = 1, /* bad credentials */
AUTH_REJECTEDCRED = 2, /* client must begin new session */
AUTH_BADVERF = 3, /* bad verifier */
AUTH_REJECTEDVERF = 4, /* verifier expired or replayed */
AUTH_TOOWEAK = 5 /* rejected for security reasons */

};

48 Open Group Technical Standard

Remote Procedure Calls : Protocol Specification The RPC Message Protocol

/*
* The RPC message:
* All messages start with a transaction identifier, xid,
* followed by a two-armed discriminated union. The union’s
* discriminant is a msg_type which switches to one of
* the two types of the message. The xid of a
* REPLY message always matches that of the initiating
* CALL message. N.B.: The xid field may be
* used by clients to match reply messages with call messages,
* or by servers detecting retransmissions; the service side
* cannot treat this xid as any type of sequence number.
*/

struct rpc_msg {
unsigned int xid;
union switch (msg_type mtype) {

case CALL:
call_body cbody;

case REPLY:
reply_body rbody;

} body;
};

/*
* Body of an RPC request call:
* In version 2 of the RPC protocol specification, rpcvers
* must be equal to 2. The fields prog, vers and
* proc specify the remote program, its version number,
* and the procedure within the remote program to be called.
* After these fields are two authentication parameters:
* cred (authentication credentials) and verf
* (authentication verifier). The two authentication parameters
* are followed by the parameters to the remote procedure,
* which are specified by the specific program protocol.
*/

struct call_body {
unsigned int rpcvers; /* must be equal to two (2) */
unsigned int prog;
unsigned int vers;
unsigned int proc;
opaque_auth cred;
opaque_auth verf;
/* procedure specific parameters start here */

};

/*
* Body of an RPC reply:
* The call message was either accepted or rejected.
*/

Protocols for Interworking: XNFS, Version 3W 49

The RPC Message Protocol Remote Procedure Calls : Protocol Specification

union reply_body switch (reply_stat stat) {
case MSG_ACCEPTED:

accepted_reply areply;
case MSG_DENIED:

rejected_reply rreply;
} reply;

/*
* Reply to an RPC request that was accepted by the server:
* there could be an error even though the request was accepted.
* The first field is an authentication verifier that the server
* generates in order to validate itself to the caller. It is
* followed by a union whose discriminant is an enum
* accept_stat. The SUCCESS arm of the union is
* protocol-specific. The PROG_UNAVAIL, PROC_UNAVAIL
* and GARBAGE_ARGS arms of the union are void. The
* PROG_MISMATCH arm specifies the lowest and highest
* version numbers of the remote program supported by the server.
*/

struct accepted_reply {
opaque_auth verf;
union switch (accept_stat stat) {

case SUCCESS:
opaque results[0];
/* procedure-specific results start here */

case PROG_MISMATCH:
struct {

unsigned int low;
unsigned int high;

} mismatch_info;
default:

/*
* Void. Cases include PROG_UNAVAIL,
* PROC_UNAVAIL and GARBAGE_ARGS.
*/

void;
} reply_data;

};

/*
* Reply to an RPC request that was rejected by the server.
* The request can be rejected for two reasons: either the
* server is not running a compatible version of the RPC
* protocol (RPC_MISMATCH), or the server refuses to
* authenticate the caller (AUTH_ERROR). In case of an RPC
* version mismatch, the server returns the lowest and highest
* supported RPC version numbers. In case of refused
* authentication, failure status is returned.
*/

50 Open Group Technical Standard

Remote Procedure Calls : Protocol Specification The RPC Message Protocol

union rejected_reply switch (reject_stat stat) {
case RPC_MISMATCH:

struct {
unsigned int low;
unsigned int high;

} mismatch_info;
case AUTH_ERROR:

auth_stat stat;
};

Protocols for Interworking: XNFS, Version 3W 51

Authentication Protocols Remote Procedure Calls : Protocol Specification

4.4 Authentication Protocols
As previously stated, authentication parameters are opaque, but open-ended to the rest of the
RPC protocol. This section defines four ‘‘flavours’’ of authentication. Other implementations
are free to invent new authentication types, with the same rules of flavour number assignment
as there are for program number assignment.

Provisions for authentication of caller to service and vice versa are provided as a part of the RPC
protocol. The call message has two authentication fields: the credentials and verifier. The reply
message has one authentication field, the response verifier. The RPC protocol specification
defines all three fields to be the following opaque type:

enum auth_flavor {
AUTH_NULL = 0,
AUTH_UNIX = 1,
AUTH_DES = 3,
AUTH_KERB = 4,
/* and more to be defined */

};

struct opaque_auth {
auth_flavor flavor;
opaque body<400>;

};

In other words, any opaque_auth structure is an auth_flavor enumeration followed by a sequence
of bytes which are opaque to the RPC protocol implementation.

The interpretation and semantics of the data contained within the authentication fields is
specified by individual, independent authentication protocol specifications.

If authentication parameters are rejected, the response message will contain information stating
why they were rejected.

4.4.1 Null Authentication

Often calls must be made where the caller does not know who he is, or the server does not care
who the caller is. In this case, the flavour value (the discriminant of the opaque_auth’s union) of
the RPC message’s credentials, verifier and response verifier is AUTH_NULL. The bytes of the
opaque_auth’s body are undefined. It is recommended that the opaque length is zero.

4.4.2 UNIX Authentication

The caller of a remote procedure may wish to identify himself as he is identified on a UNIX
system. The value of the credential’s discriminant of an RPC call message is AUTH_UNIX. The
bytes of the credential’s opaque body encode the following structure:

struct auth_unix {
unsigned int stamp;
string machinename<255>;
unsigned int uid;
unsigned int gid;
unsigned int gids<16>;

};

The stamp is an arbitrary ID which the caller machine may generate. The machinename is the
name of the caller’s machine (like ‘‘krypton’’). Implementations and applications must be able to

52 Open Group Technical Standard

Remote Procedure Calls : Protocol Specification Authentication Protocols

handle machine names as 8-bit transparent data (allowing use of arbitrary character set
encodings). For maximum portability and interworking, it is recommended that applications
and users define machine names containing only the characters of the Portable Filename
Character Set defined in ISO/IEC 9945-1: 1990. The uid is the caller’s effective user ID. The gid is
the caller’s effective group ID. The gids is a counted array of groups which contain the caller as a
member (supplementary groups). An entry in the gids array whose value is 0xffffffff should be
ignored. Although the supplementary group list gids is part of the XNFS specification and is
supported by (PC)NFS clients, it is only optional in the X/Open (PC)NFS Specification. It is
unspecified whether a server uses all the entries in the gids array or only [NGROUPS_MAX]
entries, which may be zero. [NGROUPS_MAX] is defined in the X/Open Commands and
Utilities Specification (see reference XCU). The verifier accompanying the credentials (the verf
field in call_body and accept_reply) should be of AUTH_NULL (defined above).

4.4.3 DES and Kerberos Authentication

The AUTH_DES flavour is defined in RFC 1057. It provides DES-encrypted authentication
parameters based on a network-wide name, with session keys exchanged via a public key
scheme. The AUTH_KERB flavour provides DES encrypted authentication parameters based on
a network-wide name with session keys exchanged via Kerberos, Version 4 secret keys.

The AUTH_DES and AUTH_KERB styles of authentication are based on a network-wide name.
They provide greater security through the use of DES encryption and public keys in the case of
AUTH_DES, and DES encryption and Kerberos secret keys (and tickets) in the AUTH_KERB
case. The server and client must agree on the identity of a particular name on the network, but
the name to identity mapping is more operating system independent than the uid and gid
mapping in AUTH_UNIX. Also, because the authentication parameters are encrypted, a
malicious user must know another user’s network password or private key to masquerade as
that user. Similarly, the server returns a verifier that is also encrypted so that masquerading as a
server requires knowing a network password.

Protocols for Interworking: XNFS, Version 3W 53

The RPC Language Remote Procedure Calls : Protocol Specification

4.5 The RPC Language
Just as it was necessary to describe the XDR data types in a formal language, it is also necessary
to describe the procedures that operate on these XDR data types in a formal language. The RPC
Language is used for this purpose. It is an extension to the XDR language. The following
example is used to describe the essence of the language.

4.5.1 The RPC Language Specification

The RPC language is identical to the XDR language, except for the added definition of a
program-def described below.

program-def:
"program" identifier "{"

version-def
version-def *

"}" "=" constant ";"

version-def:
"version" identifier "{"

procedure-def
procedure-def *

"}" "=" constant ";"

procedure-def:
type-specifier identifier "(" type-specifier ")"
"=" constant ";"

4.5.2 An Example Service Described in the RPC Language

Here is an example of the specification of a simple ping program.

/*
* Simple ping program
*/

program PING_PROG {
/* Latest and greatest version */
version PING_VERS_PINGBACK {

void PINGPROC_NULL(void) = 0;
/*

* Ping the caller, return the round-trip time (in
* microseconds). Returns −1 if the operation timed out.
*/

int PINGPROC_PINGBACK(void) = 1;
} = 2;
/* Original version */
version PING_VERS_ORIG {

void PINGPROC_NULL(void) = 0;
} = 1;

} = 1;
const PING_VERS = 2; /* latest version */

The first version described is PING_VERS_PINGBACK with two procedures, PINGPROC_NULL
and PINGPROC_PINGBACK. PINGPROC_NULL takes no arguments and returns no results, but
it is useful for computing round-trip times from the client to the server and back again. By
convention, procedure 0 of any RPC protocol should have the same semantics, and never require

54 Open Group Technical Standard

Remote Procedure Calls : Protocol Specification The RPC Language

any kind of authentication. The second procedure is used for the client to have the server do a
reverse ping operation back to the client, and it returns the amount of time (in microseconds)
that the operation used. The next version, PING_VERS_ORIG, is the original version of the
protocol and it does not contain PINGPROC_PINGBACK procedure. It is useful for
compatibility with old client programs, and as this program matures it may be dropped from the
protocol entirely.

4.5.3 Syntax Notes

• The keywords program and version are added and cannot be used as identifiers.

• A version name cannot occur more than once within the scope of a program definition; nor
can a version number occur more than once within the scope of a program definition.

• A procedure name cannot occur more than once within the scope of a version definition; nor
can a procedure number occur more than once within the scope of version definition.

• Program identifiers are in the same name space as constant and type identifiers.

• Only unsigned constants can be assigned to programs, versions and procedures.

Protocols for Interworking: XNFS, Version 3W 55

Remote Procedure Calls : Protocol Specification

56 Open Group Technical Standard

Chapter 5

RPC Interface to UDP Transport Services

5.1 Introduction
The purpose of this chapter is to describe how protocols defined as part of XNFS interface with
the underlying transport. These protocols are designed to be machine, operating system,
network architecture and transport protocol-independent. The independence is achieved
through the use of Remote Procedure Call (RPC) primitives built on top of an External Data
Representation (XDR). This specification will deal with the interface between RPC and the
underlying transport.

Though RPC is designed to be transport-independent, this specification will only deal with the
implementation of RPC on top of UDP/IP. It should also be noted that this specification
contains no mention of the programmatic interface to UDP, as this is implementation-specific.

5.2 RPC and Transport Requirements
The RPC protocol is independent of transport protocols; that is, RPC does not care how a
message is passed from one process to another. The protocol deals only with specification and
interpretation of messages.

It is important to note that RPC does not try to implement any kind of reliability, and that the
application must be aware of the type of transport protocol underneath RPC. If the application
knows it is running on top of a reliable transport such as TCP/IP, then most of the work is
already done for it. If, however, it is running on top of an unreliable transport such as UDP/IP,
the application must implement its own retransmission and time-out policy, as the RPC layer
does not provide this service.

Because of transport independence, the RPC protocol does not attach specific semantics to the
remote procedures or their execution. Semantics can be inferred from (but should be explicitly
specified by) the underlying transport protocol. For example, consider RPC running on top of an
unreliable transport such as UDP/IP. If an application retransmits RPC messages after short
time-outs, the only thing it can infer if it receives no reply is that the procedure was executed
zero or more times. If it does receive a reply, then it can infer that the procedure was executed at
least once.

Protocols for Interworking: XNFS, Version 3W 57

UDP as a Transport Protocol RPC Interface to UDP Transport Services

5.3 UDP as a Transport Protocol
UDP (User Datagram Protocol) is a datagram-based protocol that relies on the Internet Protocol
(IP) transport for packet delivery. Because it is a datagram service without any connection,
retransmission or ordering information, UDP delivery is unreliable. Although packets generally
reach their destination, it cannot be guaranteed. They may be lost, duplicated or arrive out of
order.

A UDP packet consists of a UDP header followed by data. The whole is passed to the IP layer
for transmission. The IP layer delivers the data packet to the correct host specified by the
destination IP address and the UDP layer targets the specific destination within the host,
specified by a destination port number.

Full specifications of the UDP and IP protocols are contained in RFC 768 User Datagram Protocol
and RFC 791 Internet Protocol (see Section 1.7 on page 7).

58 Open Group Technical Standard

RPC Interface to UDP Transport Services RPC Interface

5.4 RPC Interface

5.4.1 The RPC Request

A UDP packet containing an RPC request would be as follows:

0 15 16 31

Source Port Destination Port
Length Checksum
Data octets

Source Port The 16-bit port number the RPC client is using.

Destination Port The 16-bit port number on the destination host at which the RPC server is
listening for requests. This must be specified by the protocol layer above
UDP. The NFS and Portmap servers use fixed UDP ports; all others
request a free port from the transport provider and register this port with
the Portmap service; RPC clients will interrogate the Portmap service to
determine the port to be used to reach the intended RPC server.

Length The number of bytes in the packet. This includes the UDP header and the
data (RPC packet in this case).

Checksum The checksum is the 16-bit one’s complement of the one’s complement
sum of all 16-bit words in the pseudo-header, UDP header and raw data.

The UDP pseudo-header consists of the source and destination IP
addresses, the Internet Protocol Number for UDP (17 decimal) and the
UDP length (see RFC 768). An implementation may choose not to
compute a UDP checksum when transmitting a packet, in which case it
must set the checksum field to zero.

Data Octets Provided by the protocol layer above UDP. In this case, this is the RPC
request itself.

In addition, the destination of the UDP packet must be specified as an IP address.

5.4.2 The RPC Reply

Once the RPC request has been received and processed by the server program, the server must
construct a reply packet and send it to the client. The only exception is for asynchronous calls,
such as those used by the Network Lock Manager (see Section 10.3 on page 134 NLM
Procedures, for more details). In that case the server need not send an RPC reply packet. Instead,
the server sends the response, if there is one, as a new RPC from the server to the client. (The
client need not send an RPC reply to this second RPC). New protocols are strongly discouraged
from using asynchronous calls.

In most implementations, the IP protocol layer will provide the upper-layer protocols with the
source and destination IP addresses of the request packet. This information can be used to
construct the return packet. The source port and IP address from the RPC request become the
destination port and IP address of the RPC reply.

The data in the UDP packet is the RPC reply which will contain results and return data from the
RPC server program.

Protocols for Interworking: XNFS, Version 3W 59

RPC Interface RPC Interface to UDP Transport Services

5.4.3 Receiving a UDP Reply Packet

After sending an RPC request, the client program waits for the reply. This may be achieved in
several ways; by issuing a blocking request to receive a packet, or by waiting for an
asynchronous notification from the transport layer. The program may also do other processing
while waiting for the reply. In any case, the application must be able to control how long it waits
for a reply before it times-out the RPC.

In either case the application must be able to control how long it waits for a reply before it
times-out the RPC. An implementation must consider all of the ways in which the wait may be
terminated. If it is impossible to send the request to the server for some reason (if the server
program has failed, or the server system is inaccessible), it is usually the case that a notification
of some kind is returned to the client system, using the ICMP protocol. It is desirable that this
condition can be signalled to the client application so that it need not wait for the request to time
out. In addition, the reception of duplicate or delayed packets may mean that a packet is
received which has the correct transport addressing but is rejected at the RPC layer (due, for
example, to an invalid transaction ID). The transport layer must therefore ensure that packets
can be queued in some fashion so that valid replies are not lost.

5.4.4 Closing

Since UDP is a connectionless transport, no explicit actions are required to terminate the
client/server relationship, although particular implementations may require the freeing of data
structures and so on.

60 Open Group Technical Standard

Chapter 6

Port Mapper Protocol

6.1 Introduction
This chapter describes the port mapper protocol which is related to, but separate from, the RPC
protocol. The port mapper protocol is not specified as a part of the RPC protocol to allow the
implementor flexibility and to facilitate the development of new mechanisms without requiring
the revision of related protocols.

6.2 Introduction to Port Mapper Program Protocol
The port mapper program maps RPC program and version numbers to transport-specific port
numbers. This program makes dynamic binding of remote programs possible. This is desirable
because the range of reserved port numbers is very small, and the number of potential remote
programs is very large. By running only the port mapper on a reserved port, the port numbers
of other remote programs can be ascertained by querying the port mapper.

The port mapper also aids in broadcast RPC. A given RPC program will usually have different
port number bindings on different machines, so there is no way to directly broadcast to all of
these programs. The port mapper, however, does have a fixed port number. So, to broadcast to
a given program, the client actually sends its message to the port mapper located at the
broadcast address. Each port mapper that picks up the broadcast then calls the local service
specified by the client. When the port mapper gets the reply from the local service, it sends the
reply back to the client. For interoperation with personal computer clients, the port mapper
program must support the UDP/IP protocol. The port mapper is contacted by talking to it on
assigned port number 111 (decimal).

Protocols for Interworking: XNFS, Version 3W 61

Port Mapper Protocol Specification (in RPC Language) Port Mapper Protocol

6.3 Port Mapper Protocol Specification (in RPC Language)
const PMAP_PORT = 111; /* port mapper port number */

/*
* A mapping of (program, version, protocol) to port number.
*/

struct mapping {
unsigned int prog;
unsigned int vers;
unsigned int prot;
unsigned int port;

};

/*
* Supported values for the ‘‘prot’’ field.
*/

const IPPROTO_TCP = 6; /* protocol number for TCP/IP */
const IPPROTO_UDP = 17; /* protocol number for UDP/IP */

/*
* A list of mappings.
*/

struct *pmaplist {
mapping map;
pmaplist next;

};

/*
* Arguments to callit.
*/

struct call_args {
unsigned int prog;
unsigned int vers;
unsigned int proc;
opaque args<>;

};

/*
* Results of callit.
*/

struct call_result {
unsigned int port;
opaque res<>;

};

62 Open Group Technical Standard

Port Mapper Protocol Port Mapper Procedures

6.4 Port Mapper Procedures
/*

* Port mapper procedures
*/

program PMAP_PROG {
version PMAP_VERS {

void PMAPPROC_NULL(void) = 0;
bool PMAPPROC_SET(mapping) = 1;
bool PMAPPROC_UNSET(mapping) = 2;
unsigned int PMAPPROC_GETPORT(mapping) = 3;
pmaplist PMAPPROC_DUMP(void) = 4;

} = 2;
} = 100000;

The port mapper program currently supports two protocols (UDP/IP and TCP/IP). The port
mapper is contacted by talking to it on assigned port number 111 on either of these protocols.

The following reference pages define each of the port mapper procedures.

Protocols for Interworking: XNFS, Version 3W 63

PMAPPROC_NULL Port Mapper Protocol

Name
PMAPPROC_NULL Specification — Do Nothing

Call Arguments

None.

Return Arguments

None.

RPC Procedure Descriptions

void
PMAPPROC_NULL(void) = 0;

Description

This procedure does no work. By convention, procedure zero of any RPC program takes no
parameters and returns no results. It is made available to allow server response testing and
timing.

64 Open Group Technical Standard

Port Mapper Protocol PMAPPROC_SET

Name
PMAPPROC_SET Specification — Set Mapping

Call Arguments

mapping mapping;

Return Arguments

bool ret_value;

RPC Procedure Descriptions

bool
PMAPPROC_SET(mapping) = 1;

Description

When a program first becomes available on a machine, it registers itself with the port mapper
program on the same machine. The program passes its program number, mapping.prog, version
number, mapping.vers, transport protocol number, mapping.prot, and the port, mapping.port, on
which it awaits service request. The procedure returns a boolean response whose value is TRUE
if the procedure successfully established the mapping, and FALSE otherwise. The procedure
refuses to establish a mapping if one already exists for the tuple ‘‘(prog, vers, prot)’’.

Protocols for Interworking: XNFS, Version 3W 65

PMAPPROC_UNSET Port Mapper Protocol

Name
PMAPPROC_UNSET Specification — Unset Mapping

Call Arguments

mapping mapping;

Return Arguments

bool ret_val;

RPC Procedure Descriptions

bool
PMAPPROC_UNSET(mapping) = 2;

Description

When a program becomes unavailable, it should unregister itself with the port mapper program
on the same machine. The parameters and results have meanings identical to those of
PMAPPROC_SET. The protocol and port number fields of the argument are ignored.

66 Open Group Technical Standard

Port Mapper Protocol PMAPPROC_GETPORT

Name
PMAPPROC_GETPORT Specification — Get Port

Call Arguments

mapping mapping;

Return Arguments

unsigned int port;

RPC Procedure Descriptions

unsigned int
PMAPPROC_GETPORT(mapping) = 3;

Description

Given a program number mapping.prog, version number mapping.vers, and transport protocol
number mapping.prot, this procedure returns the port number on which the program is awaiting
call requests. A port value of zero means the program has not been registered. The mapping.port
field of the argument is ignored.

Protocols for Interworking: XNFS, Version 3W 67

PMAPPROC_DUMP Port Mapper Protocol

Name
PMAPPROC_DUMP Specification — Dump Mappings

Call Arguments

None.

Return Arguments

pmaplist mappings;

RPC Procedure Descriptions

pmaplist
PMAPPROC_DUMP (void) = 4;

Description

This procedure enumerates all entries in the port mapper’s database. The procedure takes no
parameters and returns a list of program, version, protocol and port values.

68 Open Group Technical Standard

Chapter 7

XNFS : Protocol Specification, Version 2

This chapter specifies a protocol that Sun Microsystems, Inc. and others are using. It is derived
from a document designated RFC 1094 by the ARPA Network Information Center (see Section
1.7 on page 7).

7.1 Introduction
The Network File System (NFS) protocol provides transparent remote access to shared file
systems over local area networks. The NFS protocol is designed to be machine, operating
system, network architecture and transport protocol-independent. This independence is
achieved through the use of Remote Procedure Call (RPC) primitives built on top of an External
Data Representation (XDR). Implementations exist for a variety of machines, from personal
computers to supercomputers.

The supporting mount protocol allows the server to hand out remote access privileges to a
restricted set of clients. It performs the operating system-specific functions that allow a client to
attach remote directory trees to a local file system. The supporting mount protocol (see Chapter
8 on page 107) is used by a client to obtain access to a particular file system, or a subset thereof.
The server will provide a ‘‘handle’’ which the client can use to identify the file system in
subsequent NFS operations. Typically, the client will use the handle to arrange for the remote file
system to appear to the user as part of the local file system.

7.1.1 Remote Procedure Call

The remote procedure call specification provides a procedure-oriented interface to remote
services. Each server supplies a program that is a set of procedures. NFS is one such ‘‘program’’.
The combination of host address, program number and procedure number specifies one remote
service procedure. RPC does not depend on services provided by specific protocols, so it can be
used with any underlying transport protocol (see Chapter 4 on page 43). The remote procedure
call specification provides a procedure-oriented interface to remote services. Each server
supplies a program that is a set of procedures. NFS is one such ‘‘program’’. The RPC protocol is
described in Chapter 4.

7.1.2 External Data Representation

The External Data Representation (XDR) standard provides a common way of representing a set
of data types over a network. The NFS Protocol Specification is written using the RPC data
description language. For more information, see Chapter 3 on page 27. Implementations of XDR
and RPC are available in the public domain, but XNFS does not require their use. Any software
that provides equivalent functionality can be used, and if the encoding is exactly the same it can
interoperate with other implementations of XNFS.

Protocols for Interworking: XNFS, Version 3W 69

Introduction XNFS : Protocol Specification, Version 2

7.1.3 Stateless Servers and Idempotency

The NFS protocol is stateless, in that a server need not maintain any state about the clients which
it serves. It may in fact store state to improve performance, but this state is not necessary for
correct operation. This means that the protocol does not include any mechanisms for managing
server or client failure and restart. However, NFS deals with objects such as files and directories
which inherently have state. This apparent contradiction is resolved by introducing distributed
state and by making operations idempotent.

Distributed state arises when an NFS server passes information such as a file handle or directory
search cookie to a client. The server promises, in effect, that when the client passes this
information back to the server at a later date, it will usually still be valid and can be used to
reconstruct the state needed to perform the requested operation. If the server detects that the
state is invalid, it responds with an indication of the problem. In some cases the client may pass
the response to the calling application. In other cases the client may take some corrective action
and retry the operation.

With a few exceptions, rebooting the server must not invalidate distributed state information.
One exception is that the state associated with unstable writes (see NFSPROC3_WRITE on page
212) may be invalidated when the server reboots. Another exception is that the state associated
with temporary file systems, that is, those that are recreated from scratch by the reboot may be
invalidated. This implies that distributed state will usually refer to objects held on stable server
storage, though servers may employ caching techniques to accelerate the interpretation of this
state in the normal case when no reboot has occurred.

An idempotent operation is one which can be repeated several times without changing the
results. For example, a request to write 5 bytes at offset 165 in a file is idempotent; a request to
write 5 bytes at the current end-of-file is not. NFS employs idempotent operations wherever
possible. Certain operations are inherently not idempotent, for example, deleting a file, so NFS
server implementations will normally include mechanisms to attempt to detect duplicate
requests and furnish the appropriate results. Occasionally this strategy will fail and a client will
receive an unexpected error; NFS clients and their applications must be tolerant of such
occurrences.

70 Open Group Technical Standard

XNFS : Protocol Specification, Version 2 XNFS Protocol Definition

7.2 XNFS Protocol Definition
Servers can change over time, and so can the protocol that they use. RPC therefore provides a
version number with each RPC request. This chapter describes version 2 of the NFS protocol. It
contains procedures and parameters which are unused (obsolete) but which are retained for
compatibility purposes. NFS server implementations should be prepared to handle these
appropriately.

7.2.1 File System Model

NFS assumes a file system that is hierarchical, with directories as all but the bottom-level files.
Each entry in a directory (file, directory, device, and so on) has a string name. Different operating
systems may have restrictions on the depth of the tree or the names used, as well as using
different syntax to represent the ‘‘pathname’’, which is the concatenation of all the
‘‘components’’ (directory and filenames) in the name. A ‘‘file system’’ is a tree on a single server
(usually a single disk or physical partition) with a specified ‘‘root’’. Some operating systems
provide a ‘‘mount’’ operation to make all file systems appear as a single tree, while others
maintain a ‘‘forest’’ of file systems. Ordinary files are unstructured streams of uninterpreted
bytes.

NFS looks up one component of a pathname at a time. It may not be obvious why it does not just
take the whole pathname, travel down the directories, and return a file handle when it is done.
There are several good reasons not to do this. First, pathnames need separators between the
directory components, and different operating systems use different separators. A Network
Standard Pathname Representation could be defined, but then every pathname would have to be
parsed and converted at each end. Other issues are discussed in Section 7.4 on page 78.

An exception to the single component lookup policy can be made in the case of a
multi-component lookup relative to a public filehandle (see Appendix E). In this case the
pathname is required to be slash (/) separated and evaluated by the server. The server must
evaluate any symbolic links that occur in intermediate components of the path, but not a link
that occurs as the final component.

Although files and directories are similar objects in many ways, different procedures are used to
read directories and files. This enforces a common network representation of directory contents
and places the XDR encoding of this information directly in the NFS protocol, rather than
overloading the interpretation of file access operations. It also enforces an access model in
which it is important to retrieve partial directory information or to start a directory search at an
invalid point. The same argument as above could have been used to justify a procedure that
returns only one directory entry per call. However, directories can contain many entries, and a
remote call to return each would lead to unacceptable performance.

Symbolic Links

The NFS file system model includes the concept of symbolic links, in which a directory entry is
associated with a piece of text instead of a file or directory. An NFS client which encounters a
symbolic link while processing a path will normally issue an NFSPROC_READLINK to retrieve
the text, and will then treat this as a path and look up the components to locate the actual file or
directory. An NFS server need not implement symbolic links; if it does not, it must be prepared
to return a PROC_UNAVAIL error if a client invokes NFSPROC_READLINK or
NFSPROC_SYMLINK. Similarly, an NFS client should only issue an NFSPROC_READLINK if a
NFSPROC_LOOKUP returns an entry typed as an NFLNK, and should be prepared to handle
failures of any symbolic link operations.

Protocols for Interworking: XNFS, Version 3W 71

RPC Information XNFS : Protocol Specification, Version 2

7.3 RPC Information

Authentication

The NFS service uses AUTH_UNIX style authentication, except in the NULL procedure where
AUTH_NONE is also permitted.

Transport Protocols

Current implementations of NFS are supported over UDP/IP only.

Port Number

The NFS protocol uses the UDP portnumber 2049 decimal. Since this is not an officially assigned
port, it is possible that it may change in the future. For maximum interoperability it is
recommended (but not required) that NFS servers use UDP port 2049 if possible, and that NFS
clients use the portmap mechanism to locate the NFS program on a server.

WebNFS servers must use UDP and TCP port 2049.

7.3.1 Sizes of XDR Structures

These are the sizes, given in decimal bytes, of various XDR structures used in the protocol:

/*
* The maximum number of bytes of data in a READ or
* WRITE request.
*/

const NFS_MAXDATA = 8192;

/* The maximum number of bytes in a pathname argument. */
const NFS_MAXPATHLEN = 1024;

/* The maximum number of bytes in a filename argument. */
const NFS_MAXNAMLEN = 255;

/*
* The size in bytes of the opaque ‘‘cookie’’ passed by
* READDIR.
*/

const NFS_COOKIESIZE = 4;

/* The size in bytes of the opaque file handle. */
const NFS_FHSIZE = 32;

72 Open Group Technical Standard

XNFS : Protocol Specification, Version 2 RPC Information

7.3.2 Basic Data Types

The following XDR definitions are basic structures and types used in other structures described
later.

stat

enum stat {
NFS_OK = 0,
NFSERR_PERM=1,
NFSERR_NOENT=2,
NFSERR_IO=5,
NFSERR_NXIO=6,
NFSERR_ACCES=13,
NFSERR_EXIST=17,
NFSERR_NODEV=19,
NFSERR_NOTDIR=20,
NFSERR_ISDIR=21,
NFSERR_FBIG=27,
NFSERR_NOSPC=28,
NFSERR_ROFS=30,
NFSERR_NAMETOOLONG=63,
NFSERR_NOTEMPTY=66,
NFSERR_DQUOT=69,
NFSERR_STALE=70,

};

The stat type is returned with every procedure’s results. A value of NFS_OK indicates that the
call completed successfully and the results are valid. The other values indicate some kind of
error occurred on the server side during the servicing of the procedure.

NFSERR_PERM Not owner. The caller does not have the correct ownership to perform
the requested operation.

NFSERR_NOENT No such file or directory. The file or directory specified does not exist.

NFSERR_IO Some sort of hard error occurred when the operation was in progress.
This could be a disk error, for example.

NFSERR_NXIO No such device or address.

NFSERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation.

NFSERR_EXIST File exists. The file specified already exists.

NFSERR_NODEV No such device.

NFSERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFSERR_ISDIR Is a directory. The caller specified a directory in a non-directory
operation.

NFSERR_FBIG File too large. The operation caused a file to grow beyond the server’s
limit.

NFSERR_NOSPC No space left on device. The operation caused the server’s file system to
reach its limit.

Protocols for Interworking: XNFS, Version 3W 73

RPC Information XNFS : Protocol Specification, Version 2

NFSERR_ROFS Read-only file system. Write attempted on a read-only file system.

NFSERR_NAMETOOLONG
File name too long. The filename in an operation was too long.

NFSERR_NOTEMPTY
Directory not empty. Attempted to remove a directory that was not
empty.

NFSERR_DQUOT Disk quota exceeded. The client’s disk quota on the server has been
exceeded.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file referred
to by that file handle no longer exists, or access to it has been revoked.

ftype

enum ftype {
NFNON = 0,
NFREG = 1,
NFDIR = 2,
NFBLK = 3,
NFCHR = 4,
NFLNK = 5

};

The enumeration ftype gives the type of a file. The type NFNON indicates a non-file, NFREG is
a regular file, NFDIR is a directory, NFBLK is a block-special device, NFCHR is a character-
special device, and NFLNK is a symbolic link.

nfscookie

typedef opaque nfscookie[NFS_COOKIESIZE];

The nfscookie is an opaque value that identifies a particular piece of data, such as a directory
entry in the NFSPROC_READDIR call.

fhandle

typedef opaque fhandle[NFS_FHSIZE];

The fhandle is the file handle passed between the server and the client. All file operations are
done using file handles to refer to a file or directory. The file handle can contain whatever
information the server needs to distinguish an individual file.

A filehandle that consists of 32 zero bytes is called the public filehandle. It is used by WebNFS
clients to identify an associated public directory on the server. See Appendix E for further
information.

timeval

struct timeval {
unsigned int seconds;
unsigned int useconds;

};

The timeval structure is the number of seconds and microseconds since midnight January 1,
1970, Greenwich Mean Time. It is used to pass time and date information.

74 Open Group Technical Standard

XNFS : Protocol Specification, Version 2 RPC Information

diropok

struct diropok {
fhandle file;
fattr attributes;

};

The diropok structure is used by the server to return the file handle and attributes of a file after a
successful NFSPROC_LOOKUP, NFSPROC_CREATE or NFSPROC_MKDIR operation.

fattr

struct fattr {
ftype type;
unsigned int mode;
unsigned int nlink;
unsigned int uid;
unsigned int gid;
unsigned int size;
unsigned int blocksize;
unsigned int rdev;
unsigned int blocks;
unsigned int fsid;
unsigned int fileid;
timeval atime;
timeval mtime;
timeval ctime;

};

The fattr structure contains the attributes of a file; type is the type of the file; nlink is the number
of hard links to the file (the number of different names for the same file); uid is the user
identification number of the owner of the file; gid is the group identification number of the group
of the file; size is the size in bytes of the file; blocksize is the preferred block size in bytes for the
file; rdev is the device number of the file if it is type NFCHR or NFBLK; blocks is the number of
512-byte blocks the file takes up on the server; fsid is the file system identifier for the file system
containing the file; fileid is a number that uniquely identifies the file within its file system; atime is
the time when the file was last accessed for either read or write; mtime is the time when the file
data was last modified (written), and ctime is the time when the status of the file was last
changed. Writing to the file also changes ctime if the size of the file changes.

mode is the access mode encoded as a set of bits. Notice that the file type is specified both in the
mode bits and in the file type; the server must ensure they are consistent.

Protocols for Interworking: XNFS, Version 3W 75

RPC Information XNFS : Protocol Specification, Version 2

The descriptions given below specify the bit positions using octal numbers.

Bit Description
0040000 This is a directory; type field must be NFDIR.
0020000 This is a character special file; type field must be NFCHR.
0060000 This is a block special file; type field must be NFBLK.
0100000 This is a regular file; type field must be NFREG.
0120000 This is a symbolic link file; type field must be NFLNK.
0140000 This is a named socket; type field must be NFNON.
0004000 Set user ID on execution.
0002000 Set group ID on execution.
0001000 Not used.
0000400 Read permission for owner.
0000200 Write permission for owner.
0000100 Execute and search permission for owner.
0000040 Read permission for group.
0000020 Write permission for group.
0000010 Execute and search permission for group.
0000004 Read permission for others.
0000002 Write permission for others.
0000001 Execute and search permission for others.

Notes:

1. The bits correspond to the mode bits returned by the stat() XSI system call,
with the addition of the socket and symbolic link combinations which are
supported by NFS and some operating systems.

2. The rdev field in the attributes structure is an operating system-specific device
specifier.

sattr

struct sattr {
unsigned int mode;
unsigned int uid;
unsigned int gid;
unsigned int size;
timeval atime;
timeval mtime;

};

The sattr structure contains the file attributes which can be set from the client. The fields are the
same as for fattr above. A value of 0xffffffff indicates a field that must be ignored. A size of
zero means the file must be truncated to zero length.

76 Open Group Technical Standard

XNFS : Protocol Specification, Version 2 RPC Information

filename

typedef string filename<NFS_MAXNAMLEN>;

The type filename is used for passing filenames or pathname components. A string length of
zero is invalid.

Implementations and applications must be able to handle file names as 8-bit transparent data
(allowing use of arbitrary character set encodings). For maximum portability and interworking,
it is recommended that applications and users define file names containing only the characters of
the Portable Filename Character Set defined in ISO/IEC 9945-1: 1990.

path

typedef string path<NFS_MAXPATHLEN>;

The type path is a pathname to be used in the symbolic link operations NFSPROC_SYMLINK
and NFSPROC_READLINK. The server must consider it as a string with no internal structure. A
string length of zero is invalid.

For maximum portability and interworking, it is recommended that applications and users
define path names containing only the slash character (if required) plus the characters of the
Portable Filename Character Set defined in ISO/IEC 9945-1: 1990.

attrstat

union attrstat switch (stat status) {
case NFS_OK:

fattr attributes;
default:

void;
};

The attrstat structure is a common procedure result. It contains a status and, if the call
succeeded, it also contains the attributes of the file on which the operation was performed.

diropargs

struct diropargs {
fhandle dir;
filename name;

};

The diropargs structure is used in directory operations. The fhandle dir is the directory in which
to find the file name. A directory operation is one in which the directory is affected.

diropres

union diropres switch (stat status) {
case NFS_OK:

struct diropok diropok;
default:

void;
};

The results of a directory operation are returned in a diropres structure. If the call succeeded, a
new file handle file and the attributes associated with that file are returned along with the status.

Protocols for Interworking: XNFS, Version 3W 77

XNFS Implementation Issues XNFS : Protocol Specification, Version 2

7.4 XNFS Implementation Issues
The NFS protocol is designed to be operating system-independent, but since this version was
designed in a UNIX environment, many operations have semantics similar to the operations of
the UNIX file system. This section discusses some of the implementation-specific semantic
issues.

Server/Client Relationship

Every NFS client can also potentially be a server, and remote and local mounted file systems can
be freely intermixed. This leads to some interesting problems when a client travels down the
directory tree of a remote file system and reaches the mount point on the server for another
remote file system. Allowing the server to follow the second remote mount would require loop
detection, server lookup and user revalidation. Instead, it was decided not to let clients cross a
server’s mount point.

When a client does an NFSPROC_LOOKUP on a directory on which the server has mounted a
file system, the client sees the underlying directory instead of the mounted directory. A client
can do remote mounts that match the server’s mount points to maintain the server’s view.

Permission Issues

The NFS protocol, strictly speaking, does not define the permission checking used by servers.
However, it is expected that a server will do normal operating system permission checking
using AUTH_UNIX style authentication as the basis of its protection mechanism. The server gets
the client’s effective UID, effective GID and groups on each call, and uses them to check
permission. There are various problems with this method that can be resolved in interesting
ways.

Using UID and GID implies that the client and server share the same UID list. Every server and
client pair must have the same mapping from user to UID and from group to GID. Since every
client can also be a server, this tends to imply that the whole network shares the same UID/GID
space.

Another problem arises due to the usually stateful open operation. Most operating systems
check permission at open time, and then check that the file is open on each read and write
request. With stateless servers, the server has no idea that the file is open and must do
permission checking on each read and write call. On a local file system, a user can open a file and
then change the permissions so that no one is allowed to touch it, but will still be able to write to
the file because it is open. On a remote file system, by contrast, the write would fail. To get
around this problem, the server’s permission checking algorithm should allow the owner of a file
to access it regardless of the permission setting.

A similar problem has to do with paging in from a file over the network. The operating system
usually checks for execute permission before opening a file for demand paging, and then reads
blocks from the open file. The file may not have read permission, but after it is opened it doesn’t
matter. An NFS server cannot tell the difference between a normal file read and a demand page-
in read. To make this work, the server allows reading of files if the UID given in the call has
execute or read permission on the file.

In most operating systems, a particular user has access to all files no matter what permission and
ownership they have, an NFS client request on behalf of such a user will be made with the user
ID of zero. This ‘‘super-user’’ permission might not be allowed on the server, since anyone who
can gain that privilege on their client system could gain access to all remote files. An XNFS
server, by default, maps user ID 0 to −2 (0xfffffffe) before doing its access checking. A server
implementation may provide a mechanism to change this mapping.

78 Open Group Technical Standard

XNFS : Protocol Specification, Version 2 Server Procedures

7.5 Server Procedures
The protocol definition is given as a set of procedures with arguments and results defined using
the RPC language. A brief description of the function of each procedure should provide enough
information to allow implementation.

All of the procedures in the NFS protocol are synchronous. When a procedure returns to the
client, the operation has completed and any data associated with the request is now on stable
storage. For example, a client NFSPROC_WRITE request will cause the server to update some or
all of the following: data blocks, file system information blocks (such as indirect blocks), and file
attribute information (size and modify times). When the NFSPROC_WRITE returns to the client,
it can assume that the write is safe, even in case of a server crash, and it can discard the data
written. This is a very important part of the statelessness of the server. If the server waited to
flush data from remote requests, the client would have to save those requests so that it could
resend them in case of a server crash.

/*
* Remote file service routines
*/

program NFS_PROGRAM {
version NFS_VERSION {

void NFSPROC_NULL(void) = 0;
attrstat NFSPROC_GETATTR(fhandle)= 1;
attrstat NFSPROC_SETATTR(sattrargs) = 2;
void NFSPROC_ROOT(void) = 3;
diropres NFSPROC_LOOKUP(diropargs) = 4;
readlinkres NFSPROC_READLINK(fhandle) = 5;
readres NFSPROC_READ(readargs) = 6;
void NFSPROC_WRITECACHE(void) = 7;
attrstat NFSPROC_WRITE(writeargs) = 8;
diropres NFSPROC_CREATE(createargs) = 9;
stat NFSPROC_REMOVE(diropargs) = 10;
stat NFSPROC_RENAME(renameargs) = 11;
stat NFSPROC_LINK(linkargs) = 12;
stat NFSPROC_SYMLINK(symlinkargs) = 13;
diropres NFSPROC_MKDIR(createargs) = 14;
stat NFSPROC_RMDIR(diropargs) = 15;
readdirres NFSPROC_READDIR(readdirargs) = 16;
statfsres NFSPROC_STATFS(fhandle) = 17;

} = 2;
} = 100003;

The following reference pages define each of the server mapper procedures.

Protocols for Interworking: XNFS, Version 3W 79

NFSPROC_NULL XNFS : Protocol Specification, Version 2

Name
NFSPROC_NULL — Do Nothing

Call Arguments

None.

Return Arguments

None.

RPC Procedure Description

void
NFSPROC_NULL(void) = 0;

Description

This procedure does no work. It is made available in all RPC services to allow server response
testing and timing.

Return Codes

None.

80 Open Group Technical Standard

XNFS : Protocol Specification, Version 2 NFSPROC_GETATTR

Name
NFSPROC_GETATTR — Get File Attributes

Call Arguments

typedef opaque fhandle[NFS_FHSIZE];

Return Arguments

union attrstat switch (stat status) {
case NFS_OK:

fattr attributes;
default:

void;
};

fattr and sattr are defined in Section 7.3.2 on page 73.

RPC Procedure Description

attrstat
NFSPROC_GETATTR (fhandle) = 1;

Description

If the reply status is NFS_OK, then the reply attributes contains the attributes for the file given by
the input fhandle. The file handle supplied to this procedure can refer to any of the supported
file types. See the definition of ftype in Section 7.3.2 on page 73.

Return Codes

NFS_OK Indicates that the call completed successfully and the results are valid.

NFSERR_IO Some sort of hard error occurred when the operation was in progress.
This could be a disk error, for example.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file referred
to by that file handle no longer exists, or access to it has been revoked.

Protocols for Interworking: XNFS, Version 3W 81

NFSPROC_SETATTR XNFS : Protocol Specification, Version 2

Name
NFSPROC_SETATTR — Set File Attributes

Call Arguments

struct sattrargs {
fhandle file;
sattr attributes;

};

fhandle and sattr are defined in Section 7.3.2 on page 73.

Return Arguments

union attrstat switch (stat status) {
case NFS_OK:

fattr attributes;
default:

void;
};

fattr and sattr are defined in Section 7.3.2 on page 73.

RPC Procedure Description

attrstat
NFSPROC_SETATTR (sattrargs) = 2;

Description

The attributes argument contains fields which are either 0xffffffff or are the new value for the
attributes of file. If the reply status is NFS_OK, then the reply attributes have the attributes of the
file after the NFSPROC_SETATTR operation has completed. The file handle supplied to this
procedure can refer to any of the supported file types, but it may not be possible to set all
attributes in the sattr structure for a particular file type.

Setting the size field to zero in the sattr structure means the server will truncate the file. This
operation should only be permitted on regular files.

Return Codes

NFS_OK Indicates that the call completed successfully and the results are valid.

NFSERR_PERM Not owner. The caller does not have the correct ownership to perform the
requested operation.

NFSERR_IO Some sort of hard error occurred when the operation was in progress.
This could be a disk error, for example.

NFSERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation, or is attempting to change an attribute
which can not be modified for a particular file type.

NFSERR_ISDIR Is a directory. The caller specified a directory in a non-directory
operation.

82 Open Group Technical Standard

XNFS : Protocol Specification, Version 2 NFSPROC_SETATTR

NFSERR_ROFS Read-only file system. Write attempted on a read-only file system.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file referred
to by that file handle no longer exists, or access to it has been revoked.

Protocols for Interworking: XNFS, Version 3W 83

NFSPROC_ROOT XNFS : Protocol Specification, Version 2

Name
NFSPROC_ROOT — Get File System Root

Call Arguments

None.

Return Arguments

None.

RPC Procedure Description

void
NFSPROC_ROOT(void) = 3;

Description

Obsolete. The function of looking up the root file handle is now handled by the mount protocol.
This procedure is no longer used because finding the root file handle of a file system requires
moving pathnames between client and server. To do this correctly would require the definition
of a network standard representation of pathnames. Instead, the function of looking up the root
file handle is done by the MNTPROC_MNT procedure. (See Chapter 8 on page 107.)

Return Codes

None.

84 Open Group Technical Standard

XNFS : Protocol Specification, Version 2 NFSPROC_LOOKUP

Name
NFSPROC_LOOKUP — Look Up File Name

Call Arguments

struct diropargs {
fhandle dir;
filename name;

};

fhandle and filename are defined in Section 7.3.2 on page 73.

Return Arguments

union diropres switch (stat status) {
case NFS_OK:

struct diropok diropok;
default:

void;
};

diropok is defined in Section 7.3.2 on page 73.

RPC Procedure Description

diropres
NFSPROC_LOOKUP(diropargs) = 4;

Description

If the reply status is NFS_OK, then the reply diropok.file and reply diropok.attributes are the file
handle and attributes for the file name in the directory given by dir in the argument. The file
handle supplied to this procedure can refer to any of the supported file types.

Return Codes

NFS_OK Indicates that the call completed successfully and the results are valid.

NFSERR_NOENT No such file or directory. The file or directory specified does not exist.

NFSERR_IO Some sort of hard error occurred when the operation was in progress.
This could be a disk error, for example.

NFSERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation.

NFSERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFSERR_NAMETOOLONG
File name too long. The filename in an operation was too long.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file referred
to by that file handle no longer exists, or access to it has been revoked.

NFSERR_PERM Not owner. The caller does not have correct ownership to perform the
requested operation.

Protocols for Interworking: XNFS, Version 3W 85

NFSPROC_READLINK XNFS : Protocol Specification, Version 2

Name
NFSPROC_READLINK — Read From Symbolic Link

Call Arguments

typedef opaque fhandle[NFS_FHSIZE];

Return Arguments

union readlinkres switch (stat status) {
case NFS_OK:

path data;
default:

void;
};

path and sattr are defined in Section 7.3.2 on page 73.

RPC Procedure Description

readlinkres
NFSPROC_READLINK(fhandle) = 5;

Description

If status has the value NFS_OK, then the reply data is the data in the symbolic link given by the
file referred to by the fhandle argument. The file handle supplied to this procedure must refer to
a file of the symbolic link file type.

An NFS server need not implement symbolic links; if it does not, it will return a
PROC_UNAVAIL error. An NFS client should only issue an NFSPROC_READLINK if a lookup
returns an entry that is typed as NFLNK, and must be prepared to handle failures of any
symbolic link operation.

Note that since NFS always parses pathnames on the client, the pathname in a symbolic link
may mean something different (or be meaningless) on a different client or on the server if a
different pathname syntax is used.

Return Codes

NFS_OK Indicates that the call completed successfully and the results are valid.

NFSERR_IO Some sort of hard error occurred when the operation was in progress.
This could be a disk error, for example.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file referred
to by that file handle no longer exists, or access to it has been revoked.

PROC_UNAVAIL This procedure is not supported.

NFSERR_INVAL The fhandle given in the argument does not refer to a symbolic link.

86 Open Group Technical Standard

XNFS : Protocol Specification, Version 2 NFSPROC_READ

Name
NFSPROC_READ — Read From File

Call Arguments

struct readargs {
fhandle file;
unsigned offset;
unsigned count;
unsigned totalcount;

};

fhandle is defined in Section 7.3.2 on page 73.

Return Arguments

union readres switch (stat status) {
case NFS_OK:

fattr attributes;
opaque data<NFS_MAXDATA>;

default:
void;

};

fattr and sattr are defined in Section 7.3.2 on page 73.

RPC Procedure Description

readres
NFSPROC_READ(readargs) = 6;

Description

Up to count bytes of data are returned from the file given by file starting at offset bytes from the
beginning of the file. The first byte of the file is at offset zero. The file attributes, after the read
takes place, are returned in attributes. Read operations should only be permitted on regular files.
Reading directory files should be performed using the NFSPROC_READDIR procedure (see
Section 7.5.0 on page 102).

Note that the argument totalcount is unused.

Return Codes

NFS_OK Indicates that the call completed successfully and the results are valid.

NFSERR_IO Some sort of hard error occurred when the operation was in progress.
This could be a disk error, for example.

NFSERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation.

NFSERR_ISDIR Is a directory. The caller specified a directory in a non-directory
operation.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file referred
to by that file handle no longer exists, or access to it has been revoked.

Protocols for Interworking: XNFS, Version 3W 87

NFSPROC_WRITECACHE XNFS : Protocol Specification, Version 2

Name
NFSPROC_WRITECACHE — Write to Cache

Call Arguments

None.

Return Arguments

None.

RPC Procedure Description

void
NFSPROC_WRITECACHE(void) = 7;

Description

Function not used.

Return Codes

None.

88 Open Group Technical Standard

XNFS : Protocol Specification, Version 2 NFSPROC_WRITE

Name
NFSPROC_WRITE — Write to File

Call Arguments

struct writeargs {
fhandle file;
unsigned beginoffset;
unsigned offset;
unsigned totalcount;
opaque data<NFS_MAXDATA>;

};

fhandle is defined in Section 7.3.2 on page 73.

Return Arguments

union attrstat switch (stat status) {
case NFS_OK:

fattr attributes;
default:

void;
};

fattr and sattr are defined in Section 7.3.2 on page 73.

RPC Procedure Description

attrstat
NFSPROC_WRITE(writeargs) = 8;

Description

data is written, beginning offset bytes from the beginning of file. The first byte of the file is at offset
zero. If the reply status is NFS_OK, then the reply attributes contains the attributes of the file after
the write has completed. The write operation is atomic. Data from this call to NFSPROC_WRITE
will not be mixed with data from another client’s calls. Write operations should only be
permitted on regular files.

Note that the arguments beginoffset and totalcount are unused.

Return Codes

NFS_OK Indicates that the call completed successfully and the results are valid.

NFSERR_IO Some sort of hard error occurred when the operation was in progress.
This could be a disk error, for example.

NFSERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation.

NFSERR_ISDIR Is a directory. The caller specified a directory in a non-directory
operation.

NFSERR_FBIG File too large. The operation caused a file to grow beyond the server’s
limit.

NFSERR_NOSPC No space left on device. The operation caused the server’s file system to
reach its limit.

NFSERR_ROFS Read-only file system. Write attempted on a read-only file system.

Protocols for Interworking: XNFS, Version 3W 89

NFSPROC_WRITE XNFS : Protocol Specification, Version 2

NFSERR_DQUOT Disk quota exceeded. The client’s disk quota on the server has been
exceeded.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file referred
to by that file handle no longer exists, or access to it has been revoked.

90 Open Group Technical Standard

XNFS : Protocol Specification, Version 2 NFSPROC_CREATE

Name
NFSPROC_CREATE — Create File

Call Arguments

struct createargs {
diropargs where;
sattr attributes;

};

diropargs and sattr are defined in Section 7.3.2 on page 73.

Return Arguments

union diropres switch (stat status) {
case NFS_OK:

struct diropok diropok;
default:

void;
};

fhandle, fattr and stat are defined in Section 7.3.2 on page 73.

RPC Procedure Description

diropres
NFSPROC_CREATE(createargs) = 9;

Description

The file name is created in the directory given by dir. The initial attributes of the new file are
given by diropok.attributes. A reply status of NFS_OK indicates that the file was created, and
reply diropok.file and reply attributes are its file handle and attributes. Any other reply status
means that the operation failed and no file was created.

This procedure is used to create regular files only; directories may be created by the
NFSPROC_MKDIR procedure (see Section 7.5.0 on page 99).

Note that this call will succeed even if the file already exists.

Return Codes

NFS_OK Indicates that the call completed successfully and the results are valid.

NFSERR_IO Some sort of hard error occurred when the operation was in progress.
This could be a disk error, for example.

NFSERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation.

NFSERR_ISDIR Is a directory. The caller specified a directory in a non-directory
operation.

NFSERR_NOSPC No space left on device. The operation caused the server’s file system to
reach its limit.

NFSERR_ROFS Read-only file system. Write attempted on a read-only file system.

NFSERR_NAMETOOLONG
File name too long. The filename in an operation was too long.

NFSERR_DQUOT Disk quota exceeded. The client’s disk quota on the server has been
exceeded.

Protocols for Interworking: XNFS, Version 3W 91

NFSPROC_CREATE XNFS : Protocol Specification, Version 2

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file referred
to by that file handle no longer exists, or access to it has been revoked.

92 Open Group Technical Standard

XNFS : Protocol Specification, Version 2 NFSPROC_REMOVE

Name
NFSPROC_REMOVE — Remove File

Call Arguments

struct diropargs {
fhandle dir;
filename name;

};

fhandle and filename are defined in Section 7.3.2 on page 73.

Return Arguments

stat status;

stat is defined in Section 7.3.2 on page 73.

RPC Procedure Description

stat
NFSPROC_REMOVE(diropargs) = 10;

Description

The file name is removed from the directory given by dir. A reply of NFS_OK means the directory
entry was removed. Any other return value indicates an error, and the file was not removed.
This procedure may be used to remove any of the supported file types except directories.
Removal of directories must be performed using the NFSPROC_RMDIR procedure (see Section
7.5.0 on page 101).

Note that this is generally a non-idempotent operation. A server should attempt to provide this
function in an idempotent fashion. X/Open-compliant systems allow removal of open files. A
process can open a file and, while it is open, remove it from the directory. The file can be read
and written as long as the process keeps it open, even though the file has no name in the file
system. It is impossible for a stateless server to implement these semantics.

Return Codes

NFS_OK Indicates that the call completed successfully and the results are valid.

NFSERR_NOENT No such file or directory. The file or directory specified does not exist.

NFSERR_IO Some sort of hard error occurred when the operation was in progress.
This could be a disk error, for example.

NFSERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation.

NFSERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFSERR_ISDIR Is a directory. The caller specified a directory in a non-directory
operation.

NFSERR_NAMETOOLONG
File name too long. The filename in an operation was too long.

NFSERR_ROFS Read-only file system. Write attempted on a read-only file system.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file referred
to by that file handle no longer exists, or access to it has been revoked.

Protocols for Interworking: XNFS, Version 3W 93

NFSPROC_RENAME XNFS : Protocol Specification, Version 2

Name
NFSPROC_RENAME — Rename File

Call Arguments

struct renameargs {
diropargs from;
diropargs to;

};

diropargs is defined in Section 7.3.2 on page 73.

Return Arguments

stat status;

stat is defined in Section 7.3.2 on page 73.

RPC Procedure Description

stat
NFSPROC_RENAME(renameargs) = 11;

Description

The existing file from.name in the directory given by from.dir is renamed to to.name in the
directory given by to.dir. If the reply is NFS_OK, the file was renamed. The NFSPROC_RENAME
operation is required to be atomic on the server; it cannot be interrupted in the middle; that is, a
link and unlink combination is not sufficient.

Note that this is possibly a non-idempotent operation. A server should attempt to provide this
function in an idempotent fashion.

Return Codes

NFS_OK Indicates that the call completed successfully and the results are valid.

NFSERR_NOENT No such file or directory. The file or directory specified does not exist.

NFSERR_IO Some sort of hard error occurred when the operation was in progress.
This could be a disk error, for example.

NFSERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation.

NFSERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFSERR_ISDIR Is a directory. The caller specified a directory in a non-directory
operation.

NFSERR_NOSPC No space left on device. The operation caused the server’s file system to
reach its limit.

NFSERR_ROFS Read-only file system. Write attempted on a read-only file system.

NFSERR_NAMETOOLONG
File name too long. The filename in an operation was too long.

NFSERR_NOTEMPTY
Directory not empty. Attempted to remove a directory that was not
empty.

94 Open Group Technical Standard

XNFS : Protocol Specification, Version 2 NFSPROC_RENAME

NFSERR_DQUOT Disk quota exceeded. The client’s disk quota on the server has been
exceeded.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file referred
to by that file handle no longer exists, or access to it has been revoked.

Protocols for Interworking: XNFS, Version 3W 95

NFSPROC_LINK XNFS : Protocol Specification, Version 2

Name
NFSPROC_LINK — Create Link to File

Call Arguments

struct linkargs {
fhandle from;
diropargs to;

};

fhandle and diropargs are defined in Section 7.3.2 on page 73.

Return Arguments

stat status;

stat is defined in Section 7.3.2 on page 73.

RPC Procedure Description

stat
NFSPROC_LINK(linkargs) = 12;

Description

Creates the file to.name in the directory given by to.dir, which is a hard link to the existing file
given by from. If the return value is NFS_OK, a link was created. Any other return value indicates
an error, and the link was not created.

Note that this is generally a non-idempotent operation. A server should attempt to provide this
function in an idempotent fashion.

Return Codes

NFS_OK Indicates that the call completed successfully and the results are valid.

NFSERR_PERM Not owner. The caller does not have correct ownership to perform the
requested operation.

NFSERR_IO Some sort of hard error occurred when the operation was in progress.
This could be a disk error, for example.

NFSERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation.

NFSERR_EXIST File exists. The file specified already exists.

NFSERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFSERR_NOSPC No space left on device. The operation caused the server’s file system to
reach its limit.

NFSERR_ROFS Read-only file system. Write attempted on a read-only file system.

NFSERR_NAMETOOLONG
File name too long. The filename in an operation was too long.

NFSERR_DQUOT Disk quota exceeded. The client’s disk quota on the server has been
exceeded.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file referred
to by that file handle no longer exists, or access to it has been revoked.

96 Open Group Technical Standard

XNFS : Protocol Specification, Version 2 NFSPROC_SYMLINK

Name
NFSPROC_SYMLINK — Create Symbolic Link

Call Arguments

struct symlinkargs {
diropargs from;
path to;
sattr attributes;

};

diropargs, path and sattr are defined in Section 7.3.2 on page 73.

Return Arguments

stat status;

stat is defined in Section 7.3.2 on page 73.

RPC Procedure Description

stat
NFSPROC_SYMLINK(symlinkargs) = 13;

Description

Creates the file from.name with ftype NFLNK in the directory given by from.dir. The new file
contains the pathname to and has initial attributes given by attributes. If the return value is
NFS_OK, a link was created. Any other return value indicates an error, and the link was not
created.

A symbolic link is a pointer to another file. The name given in to is not interpreted by the server,
only stored in the newly created file. When the client references a file that is a symbolic link, the
contents of the symbolic link are normally transparently reinterpreted as a pathname to
substitute.

An NFS server need not implement symbolic links; if it does not, it will return an
PROC_UNAVAIL error. An NFS client must be prepared to handle failures of any symbolic link
operation. The NFSPROC_READLINK operation returns the data to the client for interpretation.

Note that servers may ignore the attributes depending on the symbolic link model they use.

Return Codes

NFS_OK Indicates that the call completed successfully and the results are valid.

NFSERR_IO Some sort of hard error occurred when the operation was in progress.
This could be a disk error, for example.

NFSERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation.

NFSERR_EXIST File exists. The file specified already exists.

NFSERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFSERR_NOSPC No space left on device. The operation caused the server’s file system to
reach its limit.

NFSERR_ROFS Read-only file system. Write attempted on a read-only file system.

Protocols for Interworking: XNFS, Version 3W 97

NFSPROC_SYMLINK XNFS : Protocol Specification, Version 2

NFSERR_NAMETOOLONG
File name too long. The filename in an operation was too long.

NFSERR_DQUOT Disk quota exceeded. The client’s disk quota on the server has been
exceeded.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file referred
to by that file handle no longer exists, or access to it has been revoked.

98 Open Group Technical Standard

XNFS : Protocol Specification, Version 2 NFSPROC_MKDIR

Name
NFSPROC_MKDIR — Create Directory

Call Arguments

struct createargs {
diropargs where;
sattr attributes;

};

diropargs and sattr are defined in Section 7.3.2 on page 73.

Return Arguments

union diropres switch (stat status) {
case NFS_OK:

struct diropok diropok;
default:

void;
};

diropok is defined in Section 7.3.2 on page 73.

RPC Procedure Description

diropres
NFSPROC_MKDIR (createargs) = 14;

Description

The new directory where.name is created in the directory given by where.dir. The initial attributes
of the new directory are given by diropok.attributes. A reply status of NFS_OK indicates that the
new directory was created, and reply diropok.file and reply diropok.attributes are its file handle and
attributes. Any other reply status means that the operation failed and no directory was created.

Return Codes

NFS_OK Indicates that the call completed successfully and the results are valid.

NFSERR_IO Some sort of hard error occurred when the operation was in progress.
This could be a disk error, for example.

NFSERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation.

NFSERR_EXIST File exists. The file specified already exists.

NFSERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFSERR_NOSPC No space left on device. The operation caused the server’s file system to
reach its limit.

NFSERR_ROFS Read-only file system. Write attempted on a read-only file system.

NFSERR_NAMETOOLONG
File name too long. The filename in an operation was too long.

NFSERR_DQUOT Disk quota exceeded. The client’s disk quota on the server has been
exceeded.

Protocols for Interworking: XNFS, Version 3W 99

NFSPROC_MKDIR XNFS : Protocol Specification, Version 2

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file referred
to by that file handle no longer exists, or access to it has been revoked.

100 Open Group Technical Standard

XNFS : Protocol Specification, Version 2 NFSPROC_RMDIR

Name
NFSPROC_RMDIR — Remove Directory

Call Arguments

struct diropargs {
fhandle dir;
filename name;

};

fhandle and filename are defined in Section 7.3.2 on page 73

Return Arguments

stat status;

stat is defined in Section 7.3.2 on page 73.

RPC Procedure Description

stat
NFSPROC_RMDIR(diropargs) = 15;

Description

The existing empty directory name in the directory given by dir is removed. If the reply is
NFS_OK, the directory was removed.

Note that this is possibly a non-idempotent operation. A server should attempt to provide this
function in an idempotent fashion.

Return Codes

NFS_OK Indicates that the call completed successfully and the results are valid.

NFSERR_NOENT No such file or directory. The file or directory specified does not exist.

NFSERR_IO Some sort of hard error occurred when the operation was in progress.
This could be a disk error, for example.

NFSERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation.

NFSERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFSERR_ROFS Read-only file system. Write attempted on a read-only file system.

NFSERR_NAMETOOLONG
File name too long. The filename in an operation was too long.

NFSERR_NOTEMPTY
Directory not empty. Attempted to remove a directory that was not
empty.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file referred
to by that file handle no longer exists, or access to it has been revoked.

Protocols for Interworking: XNFS, Version 3W 101

NFSPROC_READDIR XNFS : Protocol Specification, Version 2

Name
NFSPROC_READDIR — Read From Directory

Call Arguments

struct readdirargs {
fhandle dir;
nfscookie cookie;
unsigned count;

};

fhandle and nfscookie are defined in Section 7.3.2 on page 73.

Return Arguments

struct entry {
unsigned fileid;
filename name;
nfscookie cookie;
entry *nextentry;

};

filename and nfscookie are defined in Section 7.3.2 on page 73.

union readdirres switch (stat status) {
case NFS_OK:

struct {
entry *entries;
bool eof;

} readdirok;
default:

void;
};

RPC Procedure Description

readdirres
NFSPROC_READDIR (readdirargs) = 16;

Description

A variable number of directory entries, with a total size of up to count bytes, are returned from
the directory given by dir. If the returned value of status is NFS_OK, then it is followed by a
variable number of entrys. Each entry contains a fileid which consists of a unique number to
identify the file within a file system, the name of the file, and a cookie which is an opaque pointer
to the next entry in the directory. The cookie is used in the next NFSPROC_READDIR call to get
more entries starting at a given point in the directory. The special cookie zero (all bits zero) can
be used to get the entries starting at the beginning of the directory. The fileid field must be the
same number as the fileid in the attributes of the file. The eof flag has a value of TRUE if there are
no more entries in the directory (see Section 7.3.2 on page 73).

A cookie encodes (opaquely) the notion of a pointer into a directory. The length of time for
which a cookie is valid is not defined by this specification. It is possible that directory
operations on the server may mean that when a cookie is presented by a client, it is no longer
possible to seek to the corresponding position in the directory, or it may be that seeking to that
position might cause directory entries which had already been returned to be repeated. In these
cases the server should return an eof indication even if this means that not all directory entries
are returned.

102 Open Group Technical Standard

XNFS : Protocol Specification, Version 2 NFSPROC_READDIR

Return Codes

NFS_OK Indicates that the call completed successfully and the results are valid.

NFSERR_NOENT No such file or directory. The file or directory specified does not exist.

NFSERR_IO Some sort of hard error occurred when the operation was in progress.
This could be a disk error, for example.

NFSERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation.

NFSERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file referred
to by that file handle no longer exists, or access to it has been revoked.

Protocols for Interworking: XNFS, Version 3W 103

NFSPROC_STATFS XNFS : Protocol Specification, Version 2

Name
NFSPROC_STATFS — Get File System Attributes

Call Arguments

typedef opaque fhandle[NFS_FHSIZE];

Return Arguments

union statfsres (stat status) {
case NFS_OK:

struct {
unsigned tsize;
unsigned bsize;
unsigned blocks;
unsigned bfree;
unsigned bavail;

} info;
default:

void;
};

RPC Procedure Description

statfsres
NFSPROC_STATFS(fhandle) = 17;

Description

If the reply status is NFS_OK, then the reply info gives the attributes for the file system that
contains the file referred to by the input fhandle. The attribute fields contain the following
values:

tsize The optimum transfer size of the server in bytes. This is the number of bytes the server
would like to have in the data part of NFSPROC_READ and NFSPROC_WRITE
requests.

bsize The block size in bytes of the file system.

blocks The total number of bsize blocks on the file system.

bfree The number of free bsize blocks on the file system.

bavail The number of bsize blocks available to non-privileged users.

Return Codes

NFS_OK Indicates that the call completed successfully and the results are valid.

NFSERR_IO Some sort of hard error occurred when the operation was in progress.
This could be a disk error, for example.

104 Open Group Technical Standard

XNFS : Protocol Specification, Version 2 NFSPROC_STATFS

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file referred
to by that file handle no longer exists, or access to it has been revoked.

Protocols for Interworking: XNFS, Version 3W 105

XNFS : Protocol Specification, Version 2

106 Open Group Technical Standard

Chapter 8

Mount Protocol

8.1 Introduction
The mount protocol is separate from, but related to, the NFS protocol. It provides operating
system-specific services to get NFS off the ground - looking up server pathnames, validating
user identity, and checking access permissions. Clients use the mount protocol to get the first
file handle, which allows them entry into a remote file system.

Notice that the protocol definition implies stateful servers because the server maintains a list of
client’s mount requests. This corresponds to current implementations which hold the mount list
on stable storage. However, the mount list information is not critical for the correct functioning
of either the client or the server. It is intended for advisory use only; for example, to warn
possible clients when a server is going down. The server must provide a mechanism to
eliminate redundant information from the mount list.

Version 1 of the mount protocol is used with version 2 of the NFS protocol. The only connecting
point is the fhandle structure, which is the same for both protocols.

8.2 RPC Information

Authentication

The mount service uses AUTH_UNIX style authentication only.

Transport Protocols

The mount service is currently supported on UDP/IP only.

Port Number

Consult the server’s port mapper, described in Section 6.2 on page 61, to find the port number on
which the mount service is registered.

8.2.1 Sizes of XDR Structures

These are the sizes, given in decimal bytes, of various XDR structures used in the protocol:

/* The maximum number of bytes in a pathname argument. */
const MNTPATHLEN = 1024;

/* The maximum number of bytes in a name argument. */
const MNTNAMLEN = 255;

/* The size in bytes of the opaque file handle. */
const FHSIZE = 32;

Protocols for Interworking: XNFS, Version 3W 107

RPC Information Mount Protocol

8.2.2 Basic Data Types

This section presents the data types used by the mount protocol. In many cases they are similar
to the types used in NFS.

fhandle

The type fhandle is the file handle that the server passes to the client. All file operations are
done using file handles to refer to a file or directory. The file handle can contain whatever
information the server needs to distinguish an individual file.

This is the same as the fhandle XDR definition in version 2 of the NFS protocol; see Section 7.3.2
on page 73.

fhstatus

union fhstatus switch (unsigned status) {
case 0:

fhandle directory;
default:

void;
};

The type fhstatus is a union. If a status of zero is returned, the call completed successfully, and a
file handle for the directory follows. A non-zero status indicates that an error occurred. In case of
an error, status will be set to one of the following values:

enum stat {
MNT_OK = 0,
MNT_EPERM = 1,
MNT_ENOENT = 2,
MNT_EACCESS = 13,
MNT_EINVAL = 22
};

For a detailed description of the error conditions see Section 2.3, Error Numbers of the X/Open
System Interfaces and Headers Specification (see reference XSH), [EPERM], [ENOENT],
[EACCESS] and [EINVAL].

dirpath

typedef string dirpath<MNTPATHLEN>;

The type dirpath is a server pathname of a directory.

Implementations and applications must be able to handle pathnames as 8-bit transparent data
(allowing use of arbitrary character set encodings). For maximum portability and interworking,
it is recommended that applications and users define pathnames containing only the slash
character (if required) plus the characters of the Portable Filename Character Set defined in
ISO/IEC 9945-1: 1990.

108 Open Group Technical Standard

Mount Protocol RPC Information

name

typedef string name<MNTNAMLEN>;

The type name is an arbitrary string used for various names.

Implementations and applications must be able to handle names as 8-bit transparent data
(allowing use of arbitrary character set encodings). For maximum portability and interworking,
it is recommended that applications and users define names containing only the characters of the
Portable Filename Character Set defined in ISO/IEC 9945-1: 1990.

8.3 Server Procedures
The following reference pages define the RPC procedures supplied by a mount server.

/*
* Protocol description for the mount program
*/

program MOUNTPROG {
/*

* Version 1 of the mount protocol used with
* version 2 of the NFS protocol.
*/

version MOUNTVERS {
void MOUNTPROC_NULL(void) = 0;
fhstatus MOUNTPROC_MNT(dirpath) = 1;
mountlist MOUNTPROC_DUMP(void) = 2;
void MOUNTPROC_UMNT(dirpath) = 3;
void MOUNTPROC_UMNTALL(void) = 4;
exportlist MOUNTPROC_EXPORT(void) = 5;

} = 1;
} = 100005;

Protocols for Interworking: XNFS, Version 3W 109

MNTPROC_NULL Mount Protocol

Name
MNTPROC_NULL — Do Nothing

Call Arguments

None.

Return Arguments

None.

RPC Procedure Description

void
MNTPROC_NULL(void) = 0;

Description

This procedure does no work. By convention, procedure zero of any RPC program takes no
parameters and returns no results. It is made available to allow server response testing and
timing.

Return Codes

None.

110 Open Group Technical Standard

Mount Protocol MNTPROC_MNT

Name
MNTPROC_MNT — Add Mount Entry

Call Arguments

dirpath dirname;

Return Arguments

union fhstatus switch (unsigned status) {
case 0:

fhandle directory;
default:

void;
};

fhandle is defined in Section 7.3.2 on page 73.

RPC Procedure Description

fhstatus
MNTPROC_MNT(dirname) = 1;

Description

If the reply status is 0, then the reply directory contains the file handle for the directory dirname.
This file handle may be used in the NFS protocol. This procedure also adds a new entry to the
mount list for this client mounting dirname.

Return Codes

MNT_OK Indicates that the call completed successfully and the results are valid.

MNT_EPERM Indicates that the call failed because the mount server did not have the
required privileges to perform the mount. (Most implementations
require that the mount server runs with UID 0.) This generally indicates a
server configuration error.

MNT_EACCES Indicates that the call failed because access to the specified directory was
denied. Either no directory in the path dirname is exported, or the client
system is not permitted to mount this directory.

MNT_ENOENT Indicates that the call failed because the specified directory does not exist.
If the server exports only /a/b, an attempt to mount /a/b/c will fail with
ENOENT if the directory does not exist; on the other hand, an attempt to
mount /a/x would fail with EACCES.

MNT_EINVAL Indicates that the call failed because the mount daemon was unable to
translate the path into a file handle. This may indicate a server
configuration error, or may occur if the directory is removed before the
mount is complete.

Protocols for Interworking: XNFS, Version 3W 111

MNTPROC_DUMP Mount Protocol

Name
MNTPROC_DUMP — Return Mount Entries

Call Arguments

None.

Return Arguments

struct *mountlist {
name hostname;
dirpath dirname;
mountlist nextentry;

};

name and dirpath are defined in Section 7.3.2 on page 73.

RPC Procedure Description

mountlist
MNTPROC_DUMP(void) = 2;

Description

Returns the list of remote mounted file systems. The mountlist contains one entry for each
hostname and dirname pair.

Return Codes

None.

112 Open Group Technical Standard

Mount Protocol MNTPROC_UMNT

Name
MNTPROC_UMNT — Remove Mount Entries

Call Arguments

dirpath dirname;

Return Arguments

None.

RPC Procedure Description

void
MNTPROC_UMNT(dirname) = 3;

Description

Removes the mount list entry for the input dirname that records the fact that dirname has been
mounted by the client. dirname must be identical to the argument used in the corresponding
MNTPROC_MNT call. It is not sufficient that the path identified the same file system object after
processing of links, and so on. It must be textually identical.

Return Codes

None.

Protocols for Interworking: XNFS, Version 3W 113

MNTPROC_UMNTALL Mount Protocol

Name
MNTPROC_UMNTALL — Remove all Mount Entries

Call Arguments

None.

Return Arguments

None.

RPC Procedure Descriptions

void
MNTPROC_UMNTALL(void) = 4;

Removes all of the mount list entries for this client.

Return Codes

None.

114 Open Group Technical Standard

Mount Protocol MNTPROC_EXPORT

Name
MNTPROC_EXPORT — Return Export List

Call Arguments

None.

Return Arguments

struct *expinfo {
name expitem;
expinfo expnext;

};

struct *exportlist {
dirpath filesys;
expinfo expinfo;
exportlist next;

};

name and dirpath are defined in Section 7.3.2 on page 73.

RPC Procedure Description

exportlist
MNTPROC_EXPORT(void) = 5;

Description

Returns a variable number of export list entries. Each entry contains a file system name, filesys,
and a list of text items describing how it may be mounted and by whom. Each item is encoded
as an expitem in the list expinfo. The information is implementation-specific, and while it may be
meaningful to the user of the XNFS client system, it is not necessarily interpretable by client
software. Typical information might include the names of systems, or groups of systems, which
are allowed to mount the file system, or options describing access control or UID mapping.

Return Codes

None.

Protocols for Interworking: XNFS, Version 3W 115

Mount Protocol

116 Open Group Technical Standard

Chapter 9

File Locking over XNFS

9.1 Introduction
Because NFS is a stateless service, it cannot provide inherently stateful services such as file
locking and access control synchronisation. Instead these services are provided by two
cooperating processes: the Network Lock Manager (NLM) and the Network Status Monitor
(NSM). The NLM and NSM are RPC-based servers which normally execute as autonomous
‘‘daemon’’ servers on XNFS client and server systems. They work together to provide stateful
file locking and access control capability over XNFS. This chapter describes the RPC protocols
which the NLM and NSM implement, and defines how they interact. Full specifications of the
NLM and NSM protocols are in Chapter 10 on page 127 and Chapter 11 on page 161.

9.1.1 NLM Protocol

The NLM is a service that provides advisory X/Open CAE file and record locking, and DOS
compatible file sharing and locking in an XNFS environment. Its use is strongly encouraged but
not mandatory. XNFS clients must be prepared to interoperate with servers which do not
support this service. It is also recommended, but not required, that locks created by DOS
processes are honoured by processes running on an X/Open host and vice versa.

The NLM provides two types of locks, monitored and non-monitored.

Monitored Locks

Monitored locks are reliable. A client process which establishes monitored locks can be assured
that if the server host, on which the locks are established, crashes and recovers, the locks will be
reinstated without any action on the client process’ part. Likewise, locks that are held by a client
process will be discarded by the NLM on the server host if the client host crashes before the
locks are released.

Monitored locks require both the client and server hosts to implement the NSM protocol.

Monitored locks are preferred over the non-monitored locks.

Non-monitored Locks

Non-monitored locks are provided to support single-tasking personal computers that cannot
run an NSM due to memory or speed constraints. A client that is able to run an NSM should use
monitored locks.

Non-monitored locks provide the same functionality as monitored locks except if the server
host, on which the locks are established, crashes and recovers, the locks will not be re-
established. The personal computer client is responsible for detecting a server host failure and
re-establishing the locks. Additionally, the personal computer client must inform the server
NLM when it has been rebooted so it can discard all locks and file shares held for the client.

Protocols for Interworking: XNFS, Version 3W 117

Introduction File Locking over XNFS

9.1.2 NSM Protocol

The NSM is a service that provides applications with information on the status of network hosts.
It is included in this document as it is heavily used by the NLM to track hosts that have
established locks and the hosts that are holding those locks. Although the NSM is a general
service, this document will only describe the NSM as it is used by the NLM.

Each NSM keeps track of its own ‘‘state’’ and notifies any interested party of a change in this
state. The state is merely a number which increases monotonically each time the condition of
the host changes: an even number indicates the host is down, while an odd number indicates the
host is up.

The NSM does not actively ‘‘probe’’ hosts it has been asked to monitor; instead it waits for the
monitored host to notify it that the monitored host’s status has changed (that is, crashed and
rebooted).

When it receives an SM_MON request an NSM adds the information in the SM_MON parameter
to a notify list. If the host has a status change (crashes and recovers), the NSM will notify each
host on the notify list via the SM_NOTIFY call. If the NSM receives notification of a status
change from another host it will search the notify list for that host and call the RPC supplied in
the SM_MON call.

For obvious reasons, the NSM maintains copies of its current state and of the notify list on stable
storage.

For correct operation of the NLM, the client and server hosts are required to monitor each other.
When a lock request is issued by a process running on the client host, the NLM on the client host
requests the NSM on the client host to monitor the server host. The client NLM then transmits
the lock request to the NLM on the server. On reception of the lock request the NLM on the
server host will request the NSM on the server host to monitor the client host. In this way each
host is monitored by the NSM on the other host.

118 Open Group Technical Standard

File Locking over XNFS Interaction

9.2 Interaction
It is assumed that the user process requests locks and file shares via a user-level API or system
call such as the XSI fcntl(). The NLM protocol provides both synchronous and asynchronous
procedures. An implementor may choose to use either the synchronous or asynchronous
procedures to implement client functionality, but must be able to accept and process both types
of requests.

This section will describe the interaction between the NLM and the NSM for the synchronous
procedures. For simplicity it is assumed that all network lock requests are passed to the client
NLM for handling. This is an implementation dependency; the protocol does not require this.

9.2.1 Monitored Locks

Monitored locks require both the client and server hosts to support the NSM protocol.

Locking

NLM_LOCK requests may be blocking or non-blocking. When the server NLM receives the
NLM_LOCK request, it must make a call to the SM_MON procedure on its local NSM to
monitor the calling host. The SM_MON call includes the name of the host to be monitored and
an RPC to be called if the NSM is notified of a state change for the monitored host. The RPC
information includes a transport end-point, program number, program version, procedure
number and an opaque argument. The RPC information is of significance only to an NLM
implementation, and is not defined by this specification.

If the lock can be granted immediately, or the call was non-blocking, the RPC returns
immediately with the appropriate status (granted or denied).

If the lock cannot be granted immediately (it conflicts with an existing lock) and the call was a
blocking call, the RPC will return with a blocked status, thus allowing the client NLM to
continue processing. At this point the client NLM can choose to cancel the outstanding lock
request by calling the NLM_CANCEL procedure. Upon reception of an NLM_CANCEL request,
the server NLM will then delete the outstanding lock request and may request its local NSM to
stop monitoring the calling host by calling the SM_UNMON procedure.

When the blocked lock request can be processed, the server NLM makes an NLM_GRANTED
call-back to the client NLM indicating success or failure.

Once the lock has been granted, the client NLM instructs the local NSM to monitor the server via
the SM_MON RPC, as described above; once again, the RPC used for notification is not defined
by this specification. At this point the NSMs on both the client and server hosts are monitoring
each other.

Crash Recovery

When the server host crashes and is restarted, its NSM will go through the notify list and will
call the SM_NOTIFY procedure for each of these hosts to inform them of the state change. Each
local NSM that receives this SM_NOTIFY call will search their notify list and make the
corresponding RPC supplied in the previous SM_MON call, to the interested parties. One of the
interested parties will be the client NLM protocol implementation which will have supplied an
RPC which can go through the steps necessary to re-establish the lost locks during the server
NLM server’s grace period.

The grace period is an implementation-dependent time during which the NLM implementation
will only accept requests to re-establish locks or shares that were in effect at the time of the
crash. During this period any other lock or share requests will be returned with a status

Protocols for Interworking: XNFS, Version 3W 119

Interaction File Locking over XNFS

indicating that the NLM is in the grace period and is not accepting new requests.

If the client host crashes, upon reboot, the NSM will go through the same process notifying the
NSMs on hosts in the notify list via the SM_NOTIFY procedure call that there was a change in
state. The server NSM will receive this notification call and in turn notify the server NLM, via
the provided RPC, that the client host had crashed. The server NLM can then dispose of all
locks and shares held by the crashed host.

Unlocking

A monitored lock is unlocked by making a call to the NLM_UNLOCK procedure. The server
NLM will process the request and release the lock and return status. The server NLM can then
ask its local NSM to stop monitoring the calling host via the SM_UNMON procedure call. At
this point the server NLM will check existing blocked lock requests and service them if possible.

9.2.2 Non-Monitored Locks

Non-monitored locks do not require the client or server host to support the NSM protocol. All
non-monitored locks calls are synchronous.

Locking

A client host establishes a non-monitored lock by calling the NLM_NM_LOCK procedure on the
server NLM. The server NLM will process the lock and return status to the client host indicating
whether the lock was granted or denied. The NLM_NM_LOCK procedure call cannot block and
so cannot result in a call-back.

Crash Recovery

If the client host crashes while it has established locks or file shares, it must generate an
NLM_FREE_ALL RPC upon reboot. When it receives an NLM_FREE_ALL request the server
NLM must free all locks and files shares held by the requesting host. The client host has no way
of determining whether the server host crashes, and therefore no way to re-establish the locks
during the server NLM grace period. The client must be prepared to handle errors when a
previously requested lock is lost.

Unlocking

The unlock operation is the same as for monitored locks. The NLM_UNLOCK procedure is
called. The server NLM will process the request and release the lock as requested, and return a
status.

120 Open Group Technical Standard

File Locking over XNFS Transport Issues

9.3 Transport Issues
NLM and NSM implementations are required to support both UDP and TCP transports.
Personal computer NFS clients will always use UDP when issuing locking and sharing requests
to an NLM. Most implementations of the NSM use TCP when interacting with the local NLM
and any remote NSMs, but both NLM and NSM must accept any request over either transport.

Protocols for Interworking: XNFS, Version 3W 121

Examples of Locking File Locking over XNFS

9.4 Examples of Locking
This section outlines the behaviour of the NLM and NSM daemons during an X/Open-
compliant system boot, crash and reboot. It describes the following two cases:

• a client locks a file, and the server crashes and is restarted while the file is locked

• a client locks a file, then crashes and is restarted without releasing the lock.

9.4.1 Server Crash Example

Server NSM Initialisation

The server NSM is started. (Note that NSM and NLM initialisation proceed in parallel.) The
server NSM retrieves a copy of the last server state from stable storage, increments it to the next
odd value, and saves it on stable storage. It then processes the notify list on stable storage,
which is initially empty.

Server NLM Initialisation

The server NLM is started. It issues an SM_UNMON_ALL to the server NSM, from which it
obtains a copy of the server state. It then enters grace period recovery state, waits for the grace
period, and then enters normal service state.

Client NSM Initialisation

The client NSM is started. (Note that NSM and NLM initialisation proceed in parallel.) The
client NSM retrieves a copy of the last client state from stable storage, increments it to the next
odd value, and saves it on stable storage. It then processes the notify list, which is initially
empty.

Client NLM Initialisation

The client NLM is started. It issues an SM_UNMON_ALL to the client NSM, from which it
obtains a copy of the client state. It then enters grace period recovery state, waits for the grace
period, and then enters normal service state.

Client Lock Request

A process on the client system requests a byte range lock on a file stored on the server. The
client NFS passes this request, including the file handle, to the local NLM using a private
protocol.

The client NLM issues an NLM_LOCK RPC to the server NLM. This request includes a copy of
the client state.

The server NLM determines that the lock can be granted. It verifies that this is the first lock held
for the client, and issues an SM_MON call to the server NSM instructing it to monitor the client.

The server NSM saves the client name and RPC information in the notify list, committing the
client name to stable storage, and reports success to the server NLM.

The server NLM records the fact that it is holding a lock for the named client which is in client
state. It then sends a success response to the client NLM.

The client NLM verifies that this is the first lock which it is holding on the server system, and
issues an SM_MON call to the client NSM instructing it to monitor the server.

122 Open Group Technical Standard

File Locking over XNFS Examples of Locking

The client NSM saves the server name and RPC information in the notify list, committing the
server name to stable storage, and reports success to the client NLM.

The client NLM records the fact that the server NLM is holding a lock for it, and returns to the
local application.

Server Failure and Restart

The server system fails and is restarted.

Server NSM Restart

The server NSM is restarted. (Note that NSM and NLM initialisation proceed in parallel.) The
server NSM retrieves a copy of the last server state from stable storage, increments it to the next
odd value, and saves it on stable storage. It then processes the notify list on stable storage,
adding each name to a recovery list.

For each name in the recovery list, the server NSM issues an SM_NOTIFY RPC to the NSM on
the named host. In this example it will issue an SM_NOTIFY to the client NSM, including the
server name and the new server state.

The client NSM receives the SM_NOTIFY RPC and compares the hostname against each entry in
the notify list. When it encounters a match, it calls back the client NLM using the RPC
information provided with the original SM_MON RPC.

The callback procedure in the client NLM notes that the server state has changed and schedules
lock recovery (see below). It then acknowledges the RPC callback from the client NSM.

After comparing the name against all entries in the notify list, the client NSM acknowledges the
SM_NOTIFY RPC from the server NSM.

After processing all entries in the recovery list, the server NSM enters normal service state with
an empty notify list.

Server NLM Restart

The server NLM is started. It issues an SM_UNMON_ALL to the server NSM, from which it
obtains a copy of the new server state. It then enters grace period recovery state.

Client Lock Recovery

The client NLM now attempts to recover all locks which it was holding on the server. For each
lock, it issues an NLM_LOCK request with reclaim set to true. This NLM_LOCK is processed as
described above; the server NLM and NSM register the lock and (re)initiate monitoring of the
client, and the client NLM confirms the lock and arranges for the client NSM to monitor the
server.

Server NLM Restart Completion

At the conclusion of the grace period, the server NLM enters normal service mode.

Protocols for Interworking: XNFS, Version 3W 123

Examples of Locking File Locking over XNFS

Client Unlock Request

Eventually the client application releases the lock on the file. The client NLM issues an
NLM_UNLOCK RPC to the server NLM.

The server NLM releases the lock, and notices that this is the last lock which was being held on
behalf of the client. It issues an SM_UNMON RPC to the server NSM.

The server NSM removes the client from the notify list, and returns to the server NLM, which
completes the NLM_UNLOCK request.

The client NLM deletes the lock record, and notices that this is the last lock which it was holding
on the server. It issues an SM_UNMON RPC to the client NSM.

The client NSM removes the server from the notify list, and returns to the client NLM, which
completes the application’s unlock request.

9.4.2 Client Crash Example

Initialisation

The server and client NSM and NLM are initialised as described in the previous example.

Client Lock Request

The client lock request is processed as described in the previous example.

Client Failure and Restart

The client system fails and is restarted.

Client NSM Restart

The client NSM is restarted. (Note that NSM and NLM initialisation proceed in parallel.) The
client NSM retrieves a copy of the last client state from stable storage, increments it to the next
odd value, and saves it on stable storage. It then processes the notify list on stable storage,
adding each name to a recovery list.

For each name in the recovery list, the client NSM issues an SM_NOTIFY RPC to the NSM on the
named host. In this example it will issue an SM_NOTIFY to the server NSM, including the client
name and the new client state.

The server NSM receives the SM_NOTIFY RPC and compares the hostname against each entry
in the notify list. When it encounters a match, it calls back the server NLM using the RPC
information provided with the original SM_MON RPC.

The callback procedure in the server NLM notes that the client state has changed and releases all
locks held on behalf of the client. It then acknowledges the RPC callback from the server NSM.

After comparing the name against all entries in the notify list, the server NSM acknowledges the
SM_NOTIFY RPC from the client NSM.

After processing all entries in the recovery list, the client NSM enters normal service state with
an empty notify list.

124 Open Group Technical Standard

File Locking over XNFS Examples of Locking

Client NLM Restart

The client NLM is now restarted as normal.

Protocols for Interworking: XNFS, Version 3W 125

File Locking over XNFS

126 Open Group Technical Standard

Chapter 10

Network Lock Manager Protocol

10.1 Introduction
The Network Lock Manager (NLM) is a service that provides advisory X/Open CAE file and
record locking, and DOS compatible file sharing and locking in an XNFS environment. Here,
DOS refers to MS-DOS or PC DOS, and DOS file sharing and record locking is as defined in Disk
Operating System Technical Reference, IBM part no. 6138536.

10.1.1 Versions

There are multiple versions of the NLM. This document describes version 3 which is backward
compatible with versions 1 and 2.

10.1.2 Synchronization of NLMs

Due to the stateless nature of XNFS servers it is difficult to incorporate a stateful service. The
NLM relies on the server holding the locks as the keeper of the state and on the NSM for
information on host status (monitored locks only). When an XNFS server crashes and is
rebooted, locks which it had granted may be recreated by the lock holders (clients) during a
grace period. During this grace period no new locks are accepted although NFS requests are
accepted. The duration of this grace period is implementation-dependent; 45 seconds is
common.

10.1.3 DOS-Compatible File-Sharing Support

Version 3 of the protocol supports DOS compatible file locking and sharing. File sharing is a
mechanism which allows a DOS process to open or create a file and to restrict the way in which
subsequent processes may access the file. For example, a DOS client may request that a file is
opened for reading and writing, and that subsequent users may only open it for reading. To use
a DOS sharing mode an NLM_SHARE request is issued when a file is opened, and a
corresponding NLM_UNSHARE is performed when it is closed. These procedures rely on the
nlm_share structure, defined below. Because the sharing requests were intended to be used by a
single-tasking client host, they are non-monitored.

Protocols for Interworking: XNFS, Version 3W 127

RPC Information Network Lock Manager Protocol

10.2 RPC Information

Authentication

The NLM service uses AUTH_UNIX style authentication only.

Transport Protocols

The NLM Protocol supports both UDP/IP and TCP/IP transports. However, a client
implementation may choose to only generate requests over the UDP/IP protocol.

Port Number

Consult the server’s port mapper, described in Chapter 6 on page 61, to find the port number on
which the NLM service is registered.

10.2.1 Sizes of XDR Structures

These are the sizes, given in decimal bytes, of various XDR structures used in the protocol.

/* The maximum length of the string identifying the caller. */
const LM_MAXSTRLEN = 1024;

/* The maximum number of bytes in the nlm_notify name argument. */
const LM_MAXNAMELEN = LM_MAXSTRLEN+1;

const MAXNETOBJ_SZ = 1024;

10.2.2 Basic Data Types for Locking

The following XDR definitions are the basic structures and types used in the parameters passed
to, and returned from, the NLM.

netobj

opaque netobj<MAXNETOBJ_SZ>

Netobj is used to identify an object, generally a transaction, owner or file. The contents and
form of the netobj are defined by the client.

nlm_stats

enum nlm_stats {
LCK_GRANTED = 0,
LCK_DENIED = 1,
LCK_DENIED_NOLOCKS = 2,
LCK_BLOCKED = 3,
LCK_DENIED_GRACE_PERIOD = 4

};

Nlm_stats are returned whenever the NLM is called upon to create or test a lock on a file.

LCK_GRANTED Indicates that the procedure call completed successfully.

LCK_DENIED Indicates that the request failed.

LCK_DENIED_NOLOCKS
Indicates that the procedure call failed because the server NLM could not

128 Open Group Technical Standard

Network Lock Manager Protocol RPC Information

allocate the resources needed to process the request.

LCK_BLOCKED Indicates the blocking request cannot be granted immediately. The server
NLM will make a call-back to the client with an NLM_GRANTED
procedure call when the lock can be granted.

LCK_DENIED_GRACE_PERIOD
Indicates that the procedure call failed because the server has recently
been rebooted and the server NLM is re-establishing existing locks, and is
not yet ready to accept normal service requests.

Note that some versions of NFS source may use mixed or lower-case names for the enumeration
constants in ‘‘nlm_stats’’.

nlm_stat

struct nlm_stat {
nlm_stats stat;

};

This structure returns lock status. It is used in many of the other data structures.

nlm_res

struct nlm_res {
netobj cookie;
nlm_stat stat;

};

The nlm_res structure is returned by all of the main lock routines except for NLM_TEST which
has a separate return structure defined below. Note that clients must not rely upon the ‘‘cookie’’
being the same as that passed in the corresponding request.

nlm_holder

struct nlm_holder {
bool exclusive;
int uppid;
netobj oh;
unsigned l_offset;
unsigned l_len;

};

The nlm_holder structure identifies the holder of a particular lock. It is used as part of the
return value from the NLM_TEST procedure. The boolean ‘‘exclusive’’ indicates whether the
lock is exclusively held by the current holder. The integer ‘‘uppid’’ provides a unique per-
process identifier for lock differentiation. The values ‘‘l_offset’’ and ‘‘l_len’’ define the region of
the file locked by this holder. The ‘‘oh’’ field is an opaque object that identifies the host, or a
process on the host, that is holding the lock.

Protocols for Interworking: XNFS, Version 3W 129

RPC Information Network Lock Manager Protocol

nlm_testrply

union nlm_testrply switch (nlm_stats stat) {
case LCK_DENIED:

struct nlm_holder holder; /* holder of the lock */
default:

void;
};

The nlm_testrply is used as part of the return value from the NLM_TEST procedure. If the lock
specified in the NLM_TEST procedure call would conflict with a previously granted lock,
information on the holder of the lock is returned in ‘‘holder’’, otherwise just the status is
returned.

nlm_testres

struct nlm_testres {
netobj cookie;
nlm_testrply test_stat;

};

This structure is the return value from the NLM_TEST procedure. The other main lock routines
return the nlm_res structure.

nlm_lock

struct nlm_lock {
string caller_name<LM_MAXSTRLEN>;
netobj fh; /* identify a file */
netobj oh; /* identify owner of a lock */
int uppid; /* Unique process identifier */
unsigned l_offset; /* File offset (for record locking) */
unsigned l_len; /* Length (size of record) */

};

The nlm_lock structure defines the information needed to uniquely specify a lock. The
‘‘caller_name’’ uniquely identifies the host making the call. The ‘‘fh’’ field identifies the file to
lock. The ‘‘oh’’ field is an opaque object that identifies the host, or a process on the host, that is
making the request. ‘‘uppid’’ uniquely describes the process owning the file on the calling host.
The ‘‘uppid’’ may be generated in any system-dependent fashion. On an X/Open-compliant
system it is generally the process ID. On a DOS system it may be generated from the program
segment prefix (PSP). The ‘‘l_offset’’ and ‘‘l_len’’ determine which bytes of the file are locked.

nlm_lockargs

struct nlm_lockargs {
netobj cookie;
bool block; /* Flag to indicate blocking behaviour. */
bool exclusive; /* If exclusive access is desired. */
struct nlm_lock alock; /* The actual lock data (see above) */
bool reclaim; /* used for recovering locks */
int state; /* specify local NSM state */

};

The nlm_lockargs structure defines the information needed to request a lock on a server. The
‘‘block’’ field must be set to true if the client wishes the procedure call to block until the lock can

130 Open Group Technical Standard

Network Lock Manager Protocol RPC Information

be granted (see NLM_LOCK). A false value will cause the procedure call to return immediately
if the lock cannot be granted. The ‘‘reclaim’’ field must only be set to true if the client is
attempting to reclaim a lock held by an NLM which has been restarted (due to a server crash,
and so on). The ‘‘state’’ field is used with the monitored lock procedure call (NLM_LOCK). It is
the state value supplied by the local NSM, see Chapter 11 on page 161.

nlm_cancargs

struct nlm_cancargs {
netobj cookie;
bool block;
bool exclusive;
struct nlm_lock alock;

};

The nlm_cancargs structure defines the information needed to cancel an outstanding lock
request. The data in the nlm_cancargs structure must exactly match the corresponding
information in the nlm_lockargs structure of the outstanding lock request to be cancelled.

nlm_testargs

struct nlm_testargs {
netobj cookie;
bool exclusive;
struct nlm_lock alock;

};

The nlm_testargs structure defines the information needed to test a lock. The information in this
structure is the same as the corresponding fields in the nlm_lockargs structure.

nlm_unlockargs

struct nlm_unlockargs {
netobj cookie;
struct nlm_lock alock;

};

The nlm_unlockargs structure defines the information needed to remove a previously
established lock.

10.2.3 DOS File-Sharing Data Types

The following data types are used in version 3 of the NLM to support DOS 3.1 and above
compatible file-sharing control. All file-sharing procedure calls are non-monitored.

fsh_mode

enum fsh_mode {
fsm_DN = 0, /* deny none */
fsm_DR = 1, /* deny read */
fsm_DW = 2, /* deny write */
fsm_DRW = 3 /* deny read/write */

};

fsh_mode defines the legal sharing modes.

Protocols for Interworking: XNFS, Version 3W 131

RPC Information Network Lock Manager Protocol

fsh_access

enum fsh_access {
fsa_NONE = 0, /* for completeness */
fsa_R = 1, /* read-only */
fsa_W = 2, /* write-only */
fsa_RW = 3 /* read/write */

};

fsh_access defines the legal file access modes.

nlm_share

struct nlm_share {
string caller_name<LM_MAXSTRLEN>;
netobj fh;
netobj oh;
fsh_mode mode;
fsh_access access;

};

The nlm_share structure defines the information needed to uniquely specify a share operation.
The netobj’s define the file. ‘‘fh’’ and owner ‘‘oh’’, ‘‘caller_name’’ uniquely identifies the host.
‘‘mode’’ and ‘‘access’’ define the file-sharing and the access modes.

nlm_shareargs

struct nlm_shareargs {
netobj cookie;
nlm_share share; /* actual share data */
bool reclaim; /* used for recovering shares */

};

This structure encodes the arguments for an NLM_SHARE or NLM_UNSHARE procedure call.
The boolean ‘‘reclaim’’ must be true if the client is attempting to reclaim a previously-granted
sharing request, and false otherwise.

nlm_shareres

struct nlm_shareres {
netobj cookie;
nlm_stats stat;
int sequence;

};

This structure encodes the results of an NLM_SHARE or NLM_UNSHARE procedure call. The
‘‘cookie’’ and ‘‘sequence’’ fields should be ignored; they are required only for compatibility
reasons. The result of the request is given by ‘‘stat’’.

132 Open Group Technical Standard

Network Lock Manager Protocol RPC Information

nlm_notify

struct nlm_notify {
string name<LM_MAXNAMELEN>;
long state;

};

This structure encodes the arguments for releasing all locks and shares a client holds.

Protocols for Interworking: XNFS, Version 3W 133

NLM Procedures Network Lock Manager Protocol

10.3 NLM Procedures
The following reference pages define the protocol used by the NLM using RPC Language.
Version 3 of the protocol is the same as version 1 and 2 with the addition of the non-monitored
locking procedures and the DOS compatible sharing procedures.

/*
* NLM procedures
*/

program NLM_PROG {
version NLM_VERSX {

/*
* synchronous procedures
*/

void NLM_NULL(void) = 0;
nlm_testres NLM_TEST(struct nlm_testargs) = 1;
nlm_res NLM_LOCK(struct nlm_lockargs) = 2;
nlm_res NLM_CANCEL(struct nlm_cancargs) = 3;
nlm_res NLM_UNLOCK(struct nlm_unlockargs) = 4;

/*
* server NLM call-back procedure to grant lock
*/

nlm_res NLM_GRANTED(struct nlm_testargs) = 5;

/*
* asynchronous requests and responses
*/

void NLM_TEST_MSG(struct nlm_testargs) = 6;
void NLM_LOCK_MSG(struct nlm_lockargs) = 7;
void NLM_CANCEL_MSG(struct nlm_cancargs) =8;
void NLM_UNLOCK_MSG(struct nlm_unlockargs) = 9;
void NLM_GRANTED_MSG(struct nlm_testargs) = 10;
void NLM_TEST_RES(nlm_testres) = 11;
void NLM_LOCK_RES(nlm_res) = 12;
void NLM_CANCEL_RES(nlm_res) = 13;
void NLM_UNLOCK_RES(nlm_res) = 14;
void NLM_GRANTED_RES(nlm_res) = 15;

/*
* synchronous non-monitored lock and DOS file-sharing
* procedures (not defined for version 1 and 2)
*/

nlm_shareres NLM_SHARE(nlm_shareargs) = 20;
nlm_shareres NLM_UNSHARE(nlm_shareargs) = 21;
nlm_res NLM_NM_LOCK(nlm_lockargs) = 22;
void NLM_FREE_ALL(nlm_notify) = 23;

} = 3;
} = 100021;

The NLM provides synchronous and asynchronous procedures which provide the same
functionality. The client portion of an NLM may choose to implement locking and file-sharing
functionality by using either set of procedure calls.

134 Open Group Technical Standard

Network Lock Manager Protocol NLM Procedures

The server portion of an NLM implementation must support both the synchronous and
asynchronous procedures.

The asynchronous procedures implement a message passing scheme to facilitate asynchronous
handling of locking and unlocking. Each of the functions Test, Lock, Unlock and Grant is
broken up into a message part, and a result part. An NLM will send a message to another NLM
to perform some action. The receiving NLM will queue the request, and when it is dequeued
and completed, will send the appropriate result via the result procedure. For example an NLM
may send an NLM_LOCK_MSG and will expect an NLM_LOCK_RES in return. These functions
have the same functionality and parameters as the synchronous procedures.

Note that most NLM implementations do not send RPC-layer replies to asynchronous
procedures. When a client sends an NLM_LOCK_MSG call, for example, it should not expect an
RPC reply with the corresponding xid. Instead, it must expect an NLM_LOCK_RES call from
the server. The server should not expect an RPC reply to the NLM_LOCK_RES call.

Protocols for Interworking: XNFS, Version 3W 135

NLM_NULL Network Lock Manager Protocol

Name
NLM_NULL — Do Nothing

Call Arguments

None.

Return Arguments

None.

RPC Procedure Description

void
NLM_NULL(void) = 0;

Description

This procedure does no work. By convention, procedure zero of any RPC program takes no
parameters and returns no results. It is made available to allow server response testing and
timing.

Return Codes

None.

136 Open Group Technical Standard

Network Lock Manager Protocol NLM_TEST

Name
NLM_TEST — Test Lock

Call Arguments

struct nlm_testargs {
netobj cookie;
bool exclusive;
struct nlm_lock alock;

};

Return Arguments

struct nlm_testres {
netobj cookie;
nlm_testrply test_stat;

};

RPC Procedure Description

nlm_testres
NLM_TEST(nlm_testargs) = 1;

Description

This procedure tests to see whether the monitored lock specified by ‘‘alock’’ is available to this
client.

Return Codes

When the procedure returns, ‘‘test_stat.stat’ ’ will be set to one of the following values:

LCK_GRANTED Indicates that the procedure call completed successfully. The server
would be able to grant the lock in question.

LCK_DENIED Indicates that the test failed as it conflicted with existing lock reservations
for the file. ‘‘test_stat.holder’’ describes the current holder of the lock as
follows. The boolean ‘‘exclusive’’ indicates whether the lock is
exclusively held by the current holder or whether other locks are
permitted. The integer ‘‘uppid’’ provides a unique per-process identifier
for lock differentiation. The unsigned values ‘‘l_offset’’ and ‘‘l_len’’
define the region of the file locked by this holder.

LCK_DENIED_NOLOCKS
Indicates that the procedure call failed because the server NLM could not
allocate the resources needed to process the request.

LCK_DENIED_GRACE_PERIOD
Indicates that the procedure call failed because the server host has
recently been rebooted and the server NLM is re-establishing existing
locks, and is not yet ready to accept normal service requests.

Protocols for Interworking: XNFS, Version 3W 137

NLM_LOCK Network Lock Manager Protocol

Name
NLM_LOCK — Establish a Lock

Call Arguments

struct nlm_lockargs {
netobj cookie;
bool block;
bool exclusive;
struct nlm_lock alock;
bool reclaim;
int state;

};

Return Arguments

struct nlm_res {
netobj cookie;
nlm_stat stat;

};

RPC Procedure Description

nlm_res
NLM_LOCK(nlm_lockargs) = 2;

Description

This procedure attempts to establish a monitored lock described in ‘‘alock’’.

If ‘‘block’’ is true, then if the lock request cannot be granted immediately the server will return a
status of ‘‘LCK_BLOCKED’’ for this procedure call. When the request can be granted, the server
will make a call-back to the client with the NLM_GRANTED procedure call. If ‘‘block’’ is set to
false, and the lock cannot be granted immediately, the procedure will return with a status of
LCK_DENIED, and no NLM_GRANTED call-back will be made.

If ‘‘reclaim’’ is true, then the server will assume this is a request to re-establish a previous lock
(for example, after the server has crashed and rebooted). During the grace period the server will
only accept locks with ‘‘reclaim’’ set to true.

‘‘state’’ contains the state of the client’s NSM. This information is kept by the server
implementation, so if the client crashes, the server can determine which locks to discard by
checking this state against the state in the crash notification (SM_NOTIFY) sent by the NSM. See
Chapter 9 on page 117.

Return Codes

When the procedure returns, ‘‘stat’’ will be set to one of the following values:

LCK_GRANTED Indicates that the procedure completed successfully, the lock was
granted.

LCK_DENIED Indicates that the procedure failed because the request conflicted with
existing lock reservations for the file.

LCK_DENIED_NOLOCKS
Indicates that the procedure failed because the server NLM could not
allocate the resources needed to process the request.

LCK_BLOCKED Indicates the blocking request cannot be granted immediately. The server
NLM will make a call-back to the client with an NLM_GRANTED

138 Open Group Technical Standard

Network Lock Manager Protocol NLM_LOCK

procedure when the lock can be granted.

LCK_DENIED_GRACE_PERIOD
Indicates that the procedure failed because the server host has recently
been rebooted and the server NLM is re-establishing existing locks, and is
not yet ready to accept normal service requests.

Protocols for Interworking: XNFS, Version 3W 139

NLM_CANCEL Network Lock Manager Protocol

Name
NLM_CANCEL — Cancel Lock

Call Arguments

struct nlm_cancargs {
netobj cookie;
bool block;
bool exclusive;
struct nlm_lock alock;

};

Return Arguments

struct nlm_res {
netobj cookie;
nlm_stat stat;

};

RPC Procedure Description

nlm_res
NLM_CANCEL(nlm_cancargs) = 3;

Description

This procedure cancels an outstanding blocked lock request.

If the client made an NLM_LOCK procedure with ‘‘nlm_lockargs.block’’ set to true, and the
procedure was blocked by the server (that is, the procedure returned a status of
‘‘LCK_BLOCKED’’), the client can choose to cancel this outstanding lock request by using this
procedure.

The ‘‘block’’, ‘‘exclusive’’ and ‘‘alock’’ arguments must exactly match the corresponding
arguments to the NLM_LOCK procedure.

Return Codes

When the procedure returns, ‘‘stat’’ will be set to one of the following values:

LCK_GRANTED Indicates that the procedure completed successfully. The NLM may also
return this code even if the ‘‘alock.oh’’ of the NLM_CANCEL procedure
call does not match that of the outstanding lock request, or if there is no
matching outstanding lock request.

LCK_DENIED Indicates that the procedure failed possibly because there was no lock to
cancel.

LCK_DENIED_GRACE_PERIOD
Indicates that the procedure failed because the server host has recently
been rebooted and the server NLM is re-establishing existing locks, and is
not yet ready to accept normal service requests.

140 Open Group Technical Standard

Network Lock Manager Protocol NLM_UNLOCK

Name
NLM_UNLOCK — Unlock File

Call Arguments

struct nlm_unlockargs {
netobj cookie;
struct nlm_lock alock;

};

Return Arguments

struct nlm_res {
netobj cookie;
nlm_stat stat;

};

RPC Procedure Description

nlm_res
NLM_UNLOCK(nlm_unlockargs) = 4;

Description

This routine will remove the lock specified by ‘‘alock’’. The valuse of the following fields in the
‘‘alock’’ structure must match the corresponding ‘‘alock’’ fields in the call that created the lock
(NLM_LOCK, NLM_NM_LOCK or NLM_LOCK_MSG): caller_name, fh, oh, and uppid.

Return Codes

When the procedure returns, ‘‘stat’’ will be set to one of the following values:

LCK_GRANTED Indicates that the procedure completed successfully. The NLM may also
return this code even if the ‘‘alock.oh’’ of the NLM_UNLOCK procedure
call does not match the holder of the lock, or if there is no matching lock.

LCK_DENIED_GRACE_PERIOD
Indicates that the procedure failed because the server host has recently
been rebooted and the server NLM is re-establishing existing locks, and is
not yet ready to accept normal service requests.

Protocols for Interworking: XNFS, Version 3W 141

NLM_GRANTED Network Lock Manager Protocol

Name
NLM_GRANTED — Lock Granted

Call Arguments

struct nlm_testargs {
netobj cookie;
bool exclusive;
struct nlm_lock alock;

};

Return Arguments

struct nlm_res {
netobj cookie;
nlm_stat stat;

};

RPC Procedure Description

nlm_res
NLM_GRANTED(nlm_testargs) = 5;

Description

This procedure is a call-back procedure from the server NLM running on the host where the file
resides to the client.

Note: With this procedure the server is the caller and the client the recipient.

This procedure call is made by the NLM server on the host where the file resides and the
procedure is executed, and the return value generated on the client that issued the lock request.

A client issuing an NLM_LOCK procedure that blocks will be returned a status of
‘‘LCK_BLOCKED’’. At a later point, when the lock is granted, the server will issue an
NLM_GRANTED procedure call to the client to indicate the lock has been granted. ‘‘exclusive’’
and ‘‘alock’’ will be the values in the original NLM_LOCK procedure. The client must not
depend on ‘‘cookie’’ being the same in the NLM_LOCK and NLM_GRANTED procedures.

Return Codes

When the server makes the NLM_GRANTED procedure the lock requested by the client has
been granted. The client must now give a return code to the NLM_GRANTED procedure. The
client must return the nlm_res structure to the server with ‘‘stat’’ set to one of the following
values:

LCK_GRANTED Indicates that the procedure completed successfully.

LCK_DENIED Indicates that the procedure failed, possibly due to internal resource
constraints.

LCK_DENIED_GRACE_PERIOD
Indicates that the procedure failed because the client host (the host
making the lock request) has recently been rebooted and its NLM is re-
establishing existing locks, and is not yet ready to accept normal service
requests.

142 Open Group Technical Standard

Network Lock Manager Protocol NLM_TEST_MSG

Name
NLM_TEST_MSG — Test Lock Message

Call Arguments

struct nlm_testargs {
netobj cookie;
bool exclusive;
struct nlm_lock alock;

};

Return Arguments

None. Results are returned asynchronously via the NLM_TEST_RES procedure.

RPC Procedure Description

void
NLM_TEST_MSG(nlm_testargs) = 6;

Description

This procedure is one of the asynchronous RPCs. It performs the same function as the
NLM_TEST procedure.

This procedure tests to see whether the monitored lock specified by ‘‘alock’’ is available to this
client.

Protocols for Interworking: XNFS, Version 3W 143

NLM_LOCK_MSG Network Lock Manager Protocol

Name
NLM_LOCK_MSG — Lock Message

Call Arguments

struct nlm_lockargs {
netobj cookie;
bool block; /* Flag to indicate blocking behaviour. */
bool exclusive; /* If exclusive access is required. */
struct nlm_lock alock; /* Actual lock data */
bool reclaim; /* used for recovering locks */
int state; /* specify local NSM state */

};

Return Arguments

None. Results are returned asynchronously via the NLM_LOCK_RES procedure.

RPC Procedure Description

void
NLM_LOCK_MSG(nlm_lockargs) = 7;

Description

This procedure is one of the asynchronous RPCs. It performs the same function as the
NLM_LOCK procedure.

This procedure attempts to establish a monitored lock described in ‘‘alock’’.

If ‘‘block’’ is true, and the lock request cannot be granted immediately, the server will return an
NLM_LOCK_RES procedure with a status of ‘‘LCK_BLOCKED’’. When the request can be
granted the server will make a call-back to the client with an NLM_GRANTED_MSG procedure.
If ‘‘block’’ is set to false, and the lock cannot be granted immediately, the server will return an
NLM_LOCK_RES procedure with a status of ‘‘LCK_DENIED’’, and no NLM_GRANTED_MSG
call-back will be made.

If ‘‘reclaim’’ is true, then the server will assume this is a request to re-establish a previous lock
(for example, after the server has crashed and rebooted). During the grace period, the server will
only accept locks with ‘‘reclaim’’ set to true.

‘‘state’’ contains the state of the client’s NSM. This information is kept by the server
implementation, so if the client crashes, the server can determine which locks to discard by
checking this state against the state in the crash notification (SM_NOTIFY) sent by the NSM. See
Chapter 9 on page 117.

144 Open Group Technical Standard

Network Lock Manager Protocol NLM_LOCK_MSG

The following sequence occurs if the lock request is blocked:

Client Server

NLM_LOCK_MSG --->

<--- NLM_LOCK_RES (stat is set to LCK_BLOCKED)

when the lock can be granted
<--- NLM_GRANTED_MSG

NLM_GRANTED_RES --->

Protocols for Interworking: XNFS, Version 3W 145

NLM_CANCEL_MSG Network Lock Manager Protocol

Name
NLM_CANCEL_MSG — Cancel a Lock

Call Arguments

struct nlm_cancargs {
netobj cookie;
bool block;
bool exclusive;
struct nlm_lock alock;

};

Return Arguments

None.

RPC Procedure Description

void
NLM_CANCEL_MSG(nlm_cancargs) = 8;

Description

This procedure is one of the asynchronous RPCs. It performs the same function as the
NLM_CANCEL procedure.

If the client makes an NLM_LOCK_MSG procedure with ‘‘nlm_lockargs.block’’ set to true, and
the procedure is blocked by the server (that is, the procedure returned a status of
‘‘LCK_BLOCKED’’), the client can choose to cancel this outstanding lock request by calling this
procedure.

The ‘‘block’’, ‘‘exclusive’’ and ‘‘alock’’ arguments must exactly match the corresponding
arguments to the NLM_LOCK_MSG procedure.

146 Open Group Technical Standard

Network Lock Manager Protocol NLM_UNLOCK_MSG

Name
NLM_UNLOCK_MSG — Unlock Message

Call Arguments

struct nlm_unlockargs {
netobj cookie;
struct nlm_lock alock;

};

Return Arguments

None. Results are returned asynchronously via the NLM_CANCEL_RES procedure.

RPC Procedure Description

void
NLM_UNLOCK_MSG(nlm_unlockargs) = 9;

Description

This procedure is one of the asynchronous RPCs. It performs the same function as the
NLM_UNLOCK procedure.

This routine will remove the lock specified by ‘‘alock’’.

The vaules of the following fields in the ‘‘alock’’ structure must match the corresponding
‘‘alock’’ fields in the call that created the lock (NLM_LOCK, NLM_NM_LOCK, or
NLM_LOCK_MSG): caller_name, fh, oh, and uppid.

Protocols for Interworking: XNFS, Version 3W 147

NLM_GRANTED_MSG Network Lock Manager Protocol

Name
NLM_GRANTED_MSG — Lock Grant Message

Call Arguments

struct nlm_testargs {
netobj cookie;
bool exclusive;
struct nlm_lock alock;

};

Return Arguments

None. Results are returned asynchronously via the NLM_GRANTED_RES procedure.

RPC Procedure Description

void
NLM_GRANTED_MSG(nlm_testargs) = 10;

Description

This procedure is one of the asynchronous RPCs. It performs the same function as the
NLM_GRANTED procedure.

This procedure is a call-back procedure from the server NLM, running on the host where the file
resides, to the client. Note that with this procedure the server is the caller and the client the
recipient. This procedure is called by the NLM server and the return value is generated by the
client via the NLM_GRANTED_RES procedure.

A client issuing an NLM_LOCK_MSG procedure that blocks will be returned an
NLM_LOCK_RES procedure with a status of ‘‘LCK_BLOCKED’’. At a later point, when the lock
is granted on the server, the server will issue an NLM_GRANTED_MSG procedure to the client
to indicate the lock has been granted. ‘‘exclusive’’ and ‘‘alock’’ will be the values in the original
NLM_LOCK_MSG procedure. The client must not depend on ‘‘cookie’’ being the same in the
NLM_LOCK_MSG and NLM_GRANTED_MSG procedures.

On reception of an NLM_GRANTED_MSG the client should generate an NLM_GRANTED_RES
call to the server. See NLM_LOCK_MSG for more information.

148 Open Group Technical Standard

Network Lock Manager Protocol NLM_TEST_RES

Name
NLM_TEST_RES — Test Lock Result

Call Arguments

struct nlm_testres {
netobj cookie;
nlm_testrply test_stat;

};

Return Arguments

None.

RPC Procedure Description

void
NLM_TEST_RES(nlm_testres) = 11;

Description

This procedure is one of the asynchronous RPCs. The server calls this procedure to return results
of the NLM_TEST_MSG procedure to the client (the host issuing the NLM_TEST_MSG call).

‘‘test_stat.stat’ ’ will be set to one of the following values:

LCK_GRANTED Indicates that the ‘‘NLM_TEST_MSG’’ procedure completed successfully.
The server would be able to grant the lock in question.

LCK_DENIED Indicates that the ‘‘NLM_TEST_MSG’’ failed as it conflicted with existing
lock reservations for the file. ‘‘test_stat.holder’’ describes the current
holder of the lock as follows. The boolean ‘‘exclusive’’ indicates whether
the lock is exclusively held by the current holder, or whether other locks
are permitted. The integer ‘‘uppid’’ provides a unique per-process
identifier for lock differentiation. The unsigned values ‘‘l_offset’’ and
‘‘l_len’’ define the region of the file locked by this holder.

LCK_DENIED_NOLOCKS
Indicates that the ‘‘NLM_TEST_MSG’’ failed because the server NLM
could not allocate the resources needed to process the request.

LCK_DENIED_GRACE_PERIOD
Indicates that the ‘‘NLM_TEST_MSG’’ failed because the server host has
recently been rebooted and its NLM is re-establishing existing locks, and
is not yet ready to accept normal service requests.

Protocols for Interworking: XNFS, Version 3W 149

NLM_LOCK_RES Network Lock Manager Protocol

Name
NLM_LOCK_RES — Establish a Lock Result

Call Arguments

struct nlm_res {
netobj cookie;
nlm_stat stat;

};

Return Arguments

None.

RPC Procedure Description

void
NLM_LOCK_RES(nlm_res) = 11;

Description

This procedure is one of the asynchronous RPCs. The server calls this procedure to return results
of the NLM_LOCK_MSG procedure to the client (the host issuing the NLM_LOCK_MSG call).

‘‘stat’’ will be set to one of the following values:

LCK_GRANTED Indicates that the procedure completed successfully; the lock was
granted.

LCK_DENIED Indicates that the procedure failed because the request conflicted with
existing lock reservations for the file.

LCK_DENIED_NOLOCKS
Indicates that the procedure failed because the server NLM could not
allocate the resources needed to process the request.

LCK_BLOCKED Indicates that the blocking request cannot be granted immediately. The
NLM on the server will make a call-back to the client with an
NLM_GRANTED procedure when the lock can be granted.

LCK_DENIED_GRACE_PERIOD
Indicates that the procedure failed because the server host (the host
making the ‘‘NLM_LOCK_RES’’ call) has recently been rebooted and its
NLM is re-establishing existing locks, and is not yet ready to accept
normal service requests.

150 Open Group Technical Standard

Network Lock Manager Protocol NLM_CANCEL_RES

Name
NLM_CANCEL_RES — Cancel Lock Result

Call Arguments

struct nlm_res {
netobj cookie;
nlm_stat stat;

};

Return Arguments

None.

RPC Procedure Description

void
NLM_CANCEL_RES(nlm_res) = 13;

Description

This procedure is one of the asynchronous RPCs. The server calls this procedure to return
results of the NLM_CANCEL_MSG procedure to the client (the host issuing the
NLM_CANCEL_MSG call).

‘‘stat’’ will be set to one of the following values:

LCK_GRANTED Indicates that the procedure completed successfully.

LCK_DENIED Indicates that the procedure failed possibly because there was no lock to
cancel.

LCK_DENIED_GRACE_PERIOD
Indicates that the procedure failed because the server host has recently
been rebooted and its NLM is re-establishing existing locks, and is not yet
ready to accept normal service requests.

Protocols for Interworking: XNFS, Version 3W 151

NLM_UNLOCK_RES Network Lock Manager Protocol

Name
NLM_UNLOCK_RES — Unlock Result

Call Arguments

struct nlm_res {
netobj cookie;
nlm_stat stat;

};

Return Arguments

None.

RPC Procedure Description

void
NLM_UNLOCK_RES(nlm_res) = 14;

Description

This procedure is one of the asynchronous RPCs. The server calls this procedure to return results
of the NLM_UNLOCK_MSG procedure to the client (the host issuing the NLM_UNLOCK_MSG
call).

‘‘stat’’ will be set to one of the following values:

LCK_GRANTED Indicates that the procedure completed successfully.

LCK_DENIED_GRACE_PERIOD
Indicates that the procedure failed because the server host has recently
been rebooted and the server NLM is re-establishing existing locks, and is
not yet ready to accept normal service requests.

152 Open Group Technical Standard

Network Lock Manager Protocol NLM_GRANTED_RES

Name
NLM_GRANTED_RES — Lock Granted Result

Call Arguments

struct nlm_res {
netobj cookie;
nlm_stat stat;

};

Return Arguments

None.

RPC Procedure Description

void
NLM_GRANTED_RES(nlm_res) = 15;

Description

This procedure is one of the asynchronous RPCs. Unlike the other asynchronous calls it is called
by the client (not the server). With this call, the client provides the return values for the
NLM_GRANTED_MSG procedure, previously called by the server.

See NLM_LOCK_MSG for more information.

The client must send the nlm_res structure to the server with ‘‘stat’’ set to one of the following
values:

LCK_GRANTED Indicates that the procedure completed successfully.

LCK_DENIED Indicates that the procedure failed, possibly due to the client not being
able to match ‘‘alock’’ from the NLM_GRANTED_MSG call with any
outstanding lock requests or lack of internal resources.

LCK_DENIED_GRACE_PERIOD
Indicates that the procedure failed because the client host (the host
making the lock request) has recently been rebooted and its NLM is re-
establishing existing locks and is not yet ready to accept normal service
requests.

Protocols for Interworking: XNFS, Version 3W 153

NLM_SHARE Network Lock Manager Protocol

Name
NLM_SHARE — Share a File

Call Arguments

struct nlm_shareargs {
netobj cookie;
nlm_share share;
bool reclaim;

};

Return Arguments

struct nlm_shareres {
netobj cookie;
nlm_stats stat;
int sequence;

};

RPC Procedure Description

nlm_shareres
NLM_SHARE(nlm_shareargs) = 20;

Description

This procedure indicates that a client wishes to open a file using the DOS 3.1 and above file-
sharing modes.

The file to be opened is ‘‘share.fh’’ for access ‘‘share.access’’ in sharing mode ‘‘share.mode’’. The
server will examine any entry sharing reservations for this file to determine whether the share is
permitted, that is, it does not conflict with the existing use of the file. If the share can be granted,
a sharing reservation is established. If a conflict does exist, the request is rejected immediately.
This procedure does not block; it is the responsibility of the client to retry any rejected requests.

If ‘‘reclaim’’ is true, then the server will assume this is a request to re-establish a previous share
(for example, after the server has crashed and rebooted). During the grace period the server will
only accept shares with ‘‘reclaim’’ set to true.

Once a sharing reservation has been established, the lock manager will make no attempt to
verify that the reservation is still valid; if the client host crashes and restarts while the
reservation is still in effect, the client must call the NLM_FREE_ALL procedure to release all
sharing reservations.

Return Codes

When the procedure returns, ‘‘stat’’ will be set to one of the following values:

LCK_GRANTED Indicates that the procedure completed successfully.

LCK_DENIED Indicates that the procedure failed because the request conflicted with
existing sharing reservations for the file.

LCK_DENIED_NOLOCKS
Indicates that the procedure failed because the server NLM could not
allocate the resources needed to process the request.

LCK_DENIED_GRACE_PERIOD
Indicates that the procedure failed because the server host has recently
been rebooted and the server NLM is re-establishing existing locks, and is
not yet ready to accept normal service requests.

154 Open Group Technical Standard

Network Lock Manager Protocol NLM_SHARE

Protocols for Interworking: XNFS, Version 3W 155

NLM_UNSHARE Network Lock Manager Protocol

Name
NLM_UNSHARE — Unshare a File

Call Arguments

struct nlm_shareargs {
netobj cookie;
nlm_share share; /* actual share data */
bool reclaim; /* used for recovering shares */

};

Return Arguments

struct nlm_shareres {
netobj cookie;
nlm_stats stat;
int sequence;

};

RPC Procedure Description

nlm_shareres
NLM_UNSHARE(nlm_shareargs) = 21;

Description

This procedure informs the NLM that the client has closed the file ‘‘share.fh’’. The server will
release the corresponding share reservation. The ‘‘reclaim’’ field is unused in this procedure and
is ignored. It is included for symmetry with the NLM_SHARE procedure.

Return Codes

When the procedure returns, ‘‘stat’’ will be set to one of the following values:

LCK_GRANTED Indicates that the procedure completed successfully.

LCK_DENIED_GRACE_PERIOD
Indicates that the procedure failed because the server host has recently
been rebooted and the server NLM is re-establishing existing locks, and is
not yet ready to accept normal service requests.

156 Open Group Technical Standard

Network Lock Manager Protocol NLM_NM_LOCK

Name
NLM_NM_LOCK — Non-monitored Lock

Call Arguments

struct nlm_lockargs {
netobj cookie;
bool block; /* Flag to indicate blocking behaviour. */
bool exclusive; /* If exclusive access is required. */
struct nlm_lock alock; /* Actual lock data */
bool reclaim; /* used for recovering locks */
int state; /* specify local NSM state */

};

Return Arguments

struct nlm_res {
netobj cookie;
nlm_stat stat;

};

RPC Procedure Description

nlm_res
NLM_NM_LOCK(nlm_lockargs) = 22;

Description

This procedure should only be called by clients that do not run the NSM, for example personal
computer clients. If an NSM is run on the client, then the NLM_LOCK (monitored lock)
procedure should be used. This procedure has the same functionality as the NLM_LOCK
procedure except that there is no monitoring performed via the NSM.

This procedure establishes a non-monitored lock on ‘‘alock.l_len’’ bytes starting at offset
‘‘alock.l_offset’’ in the file identified by ‘‘alock.fh’’. ‘‘state’’ should be set to 0, ‘‘block’’ should be
set to false. This procedure does not block; it is the responsibility of the client to retry any
rejected requests.

Locks created with this procedure should be released with the NLM_UNLOCK procedure.

The phrase ‘‘non-monitored’’ refers to the fact that the NLM will make no attempt to verify that
the lock is still valid; if the client host crashes and restarts while the lock is still in effect, it must
call the NLM_FREE_ALL procedure to release all locks held.

Return Codes

When the procedure returns, ‘‘stat’’ will be set to the following values:

LCK_GRANTED Indicates that the procedure completed successfully.

LCK_DENIED Indicates that the procedure failed because the request conflicted with
existing locks for the file.

LCK_DENIED_NOLOCKS
Indicates that the procedure failed because the server NLM could not
allocate the resources needed to process the request.

Protocols for Interworking: XNFS, Version 3W 157

NLM_NM_LOCK Network Lock Manager Protocol

LCK_DENIED_GRACE_PERIOD
Indicates that the procedure failed because the server host has recently
been rebooted and the server NLM is re-establishing existing locks, and is
not yet ready to accept normal service requests.

158 Open Group Technical Standard

Network Lock Manager Protocol NLM_FREE_ALL

Name
NLM_FREE_ALL — Free All

Call Arguments

struct nlm_notify {
string name<MAXNAMELEN>;
unsigned int state;

};

Return Arguments

void

RPC Procedure Description

void
NLM_FREE_ALL(nlm_notify) = 23;

Description

This procedure informs the server that the client ‘‘name’’ has been rebooted. The server will
discard all file-sharing reservations and file locks currently being held on behalf of the client.
The ‘‘state’’ field is unused and should be set to 0.

This procedure is primarily called by clients that do not implement the NSM protocol and
therefore use the non-monitored lock procedure, NLM_NM_LOCK, or the non-monitored file-
sharing procedure, NLM_SHARE.

Return Codes

None.

Protocols for Interworking: XNFS, Version 3W 159

Network Lock Manager Protocol

160 Open Group Technical Standard

Chapter 11

Network Status Monitor Protocol

11.1 Introduction
This chapter describes the Network Status Monitor (NSM) protocol which is related to, but
separate from, the Network Lock Manager (NLM) protocol. The NSM protocol is not specified
as a part of the NLM protocol to allow the implementor flexibility and to facilitate the
development of new mechanisms without requiring the revision of related protocols.

The NLM uses the NSM protocol to enable it to recover from crashes of either the client or server
host. To provide this functionality the NSM and NLM protocols on both the client and server
hosts must cooperate.

The NSM is a service that provides applications with information on the status of network hosts.
Each NSM keeps track of its own ‘‘state’’ and notifies any interested party of a change in this
state to any other NSM upon request. The state is merely a number which increases
monotonically each time the state of the host changes; an even number indicates the host is
down, while an odd number indicates the host is up.

Applications register the network hosts they are interested in with the local NSM. If one of these
hosts crashes, the NSM on the crashed host, after a reboot, will notify the NSM on the local host
that the state changed. The local NSM can then, in turn, notify the interested application of this
state change.

The NSM is used heavily by the Network Lock Manager (NLM). The local NLM registers with
the local NSM all server hosts on which the NLM has currently active locks. In parallel, the NLM
on the remote (server) host registers all of its client hosts with its local NSM. If the server host
crashes and reboots, the server NSM will inform the NSM on the client hosts of this event. The
local NLM can then take steps to re-establish the locks when the server is rebooted. Low-end
systems that do not run an NSM, due to memory or speed constraints, are restricted to using
non-monitored locks. See Chapter 9 on page 117 and Chapter 10 on page 127.

Protocols for Interworking: XNFS, Version 3W 161

RPC Information Network Status Monitor Protocol

11.2 RPC Information

Authentication

The NSM service uses AUTH_UNIX style of authentication.

Transport Protocols

The NSM Protocol is required to support the UDP/IP transport protocol to allow the NLM to
operate. However, implementors may also choose to support the TCP/IP transport protocol.

Port Number

Consult the server’s port mapper, described in Chapter 6 on page 61, to find the port number on
which the NSM service is registered.

11.2.1 Sizes of XDR Structures

These are the sizes, given in decimal bytes, of various XDR structures used in the protocol.

/*
* This defines the maximum length of the string
* identifying the caller.
*/

const SM_MAXSTRLEN = 1024

11.2.2 Basic Data Types

This section presents the data types used by the NSM.

sm_name

struct sm_name {
string mon_name<SM_MAXSTRLEN>;

};

sm_name is the name of the host to be monitored by the NSM. It is the parameter to the
SM_STAT call.

Implementations and applications must be able to handle host names as 8-bit transparent data
(allowing use of arbitrary character set encodings). For maximum portability and interworking,
it is recommended that applications and users define host names containing only the characters
of the Portable Filename Character Set defined in ISO/IEC 9945-1: 1990. (This also applies to the
"my_id.my_name" fields in the call arguments of the SM_MON, SM_UNMON and
SM_UNMON_ALL procedures.)

res

res {
STAT_SUCC = 0, /* NSM agrees to monitor. */
STAT_FAIL = 1 /* NSM cannot monitor. */

};

res is returned when the NSM is asked whether it can monitor the given host or if it has been
successful in monitoring the given host.

162 Open Group Technical Standard

Network Status Monitor Protocol RPC Information

sm_stat_res

struct sm_stat_res {
res res_stat;
int state;

};

sm_stat_res is the return value from SM_STAT and SM_MON procedures. It includes the return
status of the call and the state number of the local host.

sm_stat

struct sm_stat {
int state; /* state number of NSM */

};

The state number of the NSM monotonically increases each time state of the host changes; an
even number indicates that the host is down, while an odd number indicates that it is up.

my_id

struct my_id {
string my_name<SM_MAXSTRLEN>; /* hostname */
int my_prog; /* RPC program number */
int my_vers; /* program version number */
int my_proc; /* procedure number */

};

my_id contains the RPC call-back information. See SM_NOTIFY for more information.

mon_id

struct mon_id {
string mon_name<SM_MAXSTRLEN>; /* name of the host to be monitored */
struct my_id my_id;

};

Contains the name of the host to be monitored and RPC call-back information. See SM_NOTIFY
for more information.

mon

struct mon {
struct mon_id mon_id;
opaque priv[16]; /* private information */

};

Parameter to SM_MON call. ‘‘priv’’ is information provided by the client that is returned on
notification of a server state change (crash and reboot).

Protocols for Interworking: XNFS, Version 3W 163

RPC Information Network Status Monitor Protocol

stat_chge

struct stat_chge {
string mon_name;
int state;

};

This is the parameter to the SM_NOTIFY call. It contains the name of the host that had a state
change (that is, crashed and recovered) and its new state number.

164 Open Group Technical Standard

Network Status Monitor Protocol NSM Procedures

11.3 NSM Procedures
The following reference pages define the RPC procedures supplied by an NSM server.

/*
* Protocol description for the NSM program.
*/

program SM_PROG {
version SM_VERS {

void SM_NULL(void) = 0;
struct sm_stat_res SM_STAT(struct sm_name) = 1;
struct sm_stat_res SM_MON(struct mon) = 2;
struct sm_stat SM_UNMON(struct mon_id) = 3;
struct sm_stat SM_UNMON_ALL(struct my_id) = 4;
void SM_SIMU_CRASH(void) = 5;
void SM_NOTIFY(struct stat_chg) = 6;

} = 1;
} = 100024;

Protocols for Interworking: XNFS, Version 3W 165

SM_NULL Network Status Monitor Protocol

Name
SM_NULL — Do Nothing

RPC Data Descriptions

Call Arguments

None.

Return Arguments

None.

RPC Procedure Description

void
SM_NULL(void) = 0;

Description

This procedure does no work. By convention, procedure zero of any RPC program takes no
parameters and returns no results. It is made available to allow server response testing and
timing.

Return Codes

None.

166 Open Group Technical Standard

Network Status Monitor Protocol SM_STAT

Name
SM_STAT — Check Status

RPC Data Descriptions

Call Arguments

struct sm_name {
string mon_name<SM_MAXSTRLEN>;

};

Return Arguments

struct sm_stat_res {
res res_stat;
int state;

};

RPC Procedure Description

sm_stat_res
SM_STAT(struct sm_name) = 1;

Description

This procedure tests to see whether the NSM agrees to monitor the given host.

Implementations should not rely on this procedure being operative. In many current
implementations of the NSM it will always return a ‘‘STAT_FAIL’’ status.

Return Codes

When the procedure returns, ‘‘sm_stat_res.sm_stat’ ’ will be set to one of the following values:

STAT_SUCC The NSM will monitor the given host. ‘‘sm_stat_res.state’’ contains the
state of the NSM.

STAT_FAIL The NSM is not be able to monitor the host.

Protocols for Interworking: XNFS, Version 3W 167

SM_MON Network Status Monitor Protocol

Name
SM_MON — Monitor Host

RPC Data Descriptions

Call Arguments

struct my_id {
string my_name<SM_MAXSTRLEN>; /* hostname */
int my_prog; /* RPC program number */
int my_vers; /* program version number */
int my_proc; /* procedure number */

};

struct mon_id {
string mon_name<SM_MAXSTRLEN>;
struct my_id my_id;

};

struct mon {
struct mon_id mon_id;
opaque priv[16];

};

Return Arguments

struct sm_stat_res {
res res_stat;
int state;

};

RPC Procedure Description

sm_stat_res
SM_MON(struct mon) = 2;

Description

This procedure initiates the monitoring of the given host. This call enables the NSM to respond
to notification of change of state calls (SM_NOTIFY) for the host specified in
‘‘mon_id.mon_name’’, and to notify that host, via the SM_NOTIFY call, when its state (that is,
crash and reboot) changes.

‘‘mon_id.mon_name’’ specifies the host to be monitored. ‘‘mon_id.my_id’’ specifies the
hostname, RPC program number, version and procedure number in the local application, for
example, the NLM, to be called when the NSM receives notification via the SM_NOTIFY call,
that the state of host ‘‘mon_id.mon_name’’ has changed. ‘‘priv’’ may contain any private
information required by the SM_MON call. This information will be supplied in the
SM_NOTIFY call. See SM_NOTIFY for more details.

When an NSM receives an SM_MON call it must save the name of the host,
‘‘mon_id.mon_name’’ in a notify list on stable storage. If the host running the NSM crashes, on
reboot it must send out an SM_NOTIFY call to each host in the notify list.

When an NSM receives an SM_NOTIFY call from remote NSM, it must search the notify list for
the host specified in the SM_NOTIFY call, if it is found the RPC specified in ‘‘mon_id.my_id’’ is
made.

168 Open Group Technical Standard

Network Status Monitor Protocol SM_MON

Return Codes

When the procedure returns, ‘‘res_stat’’ will be set to one of the following values:

STAT_SUCC Indicates the procedure completed successfully. The server will be able
to monitor the host requested. ‘‘state’’ will be contain the state of the
remote NSM.

STAT_FAIL Indicates the procedure failed.

Protocols for Interworking: XNFS, Version 3W 169

SM_UNMON Network Status Monitor Protocol

Name
SM_UNMON — Unmonitor Host

RPC Data Descriptions

Call Arguments

struct mon_id {
string mon_name<SM_MAXSTRLEN>;
struct my_id my_id;

};

Return Arguments

struct sm_stat {
int state;

};

RPC Procedure Description

sm_stat
SM_UNMON(struct mon_id) = 3;

Description

This procedure stops monitoring the host ‘‘mon_name’’. The information in ‘‘my_id’’ must
exactly match the information given in the corresponding SM_MON call.

Return Codes

When the procedure returns, ‘‘state’’ . ‘‘state’’ is set to the state of the local NSM.

170 Open Group Technical Standard

Network Status Monitor Protocol SM_UNMON_ALL

Name
SM_UNMON_ALL — Unmonitor All Hosts

RPC Data Descriptions

Call Arguments

struct my_id {
string my_name<SM_MAXSTRLEN>;
int my_prog;
int my_vers;
int my_proc;

};

Return Arguments

struct sm_stat {
int state;

};

RPC Procedure Description

sm_stat
SM_UNMON_ALL(struct my_id) = 4;

Description

This procedure stops monitoring all hosts for which monitoring was requested.

Return Codes

When the procedure returns, ‘‘state’’ will be the state of the local NSM.

Protocols for Interworking: XNFS, Version 3W 171

SM_SIMU_CRASH Network Status Monitor Protocol

Name
SM_SIMU_CRASH — Simulate a Crash

RPC Data Descriptions

Call Arguments

None.

Return Arguments

None.

RPC Procedure Description

void
SM_SIMU_CRASH(void) = 5;

Description

This procedure simulates a crash. The NSM releases all its current state information and
reinitialises itself, incrementing its state variable. It reads through its notify list (see SM_MON)
and informs the NSM on all hosts on the list that the state of this host has changed, via the
SM_NOTIFY procedure.

Return Codes

None.

172 Open Group Technical Standard

Network Status Monitor Protocol SM_NOTIFY

Name
SM_NOTIFY — Notify

RPC Data Descriptions

Call Arguments

struct stat_chge {
string mon_name;
int state;

};

Return Arguments

None.

RPC Procedure Description

void
SM_NOTIFY(struct stat_chge) = 6;

Description

If a host has a state change, either a crash and reboot or the NSM has processed an
SM_SIMU_CRASH call, the local NSM must notify each host on its notify list (see SM_MON) of
the change in state.

‘‘mon_name’’ is the name of the host that had the state change. ‘‘state’’ is the new state for the
host.

When an NSM receives the SM_NOTIFY call it must search its notify list for ‘‘mon_name’’. The
host ‘‘mon_name’’ will be found in the notify list if an SM_MON call was made to the NSM to
register the host. The NSM must call the RPC program, version, procedure number on the
hostname supplied in the ‘‘my_id’’ field of the SM_MON parameter. This RPC will be called
with the following parameter:

struct status {
string mon_name<SM_MAXSTRLEN>;
int state;
opaque priv[16]; /* for private information */

};

Where ‘‘mon_name’’ and ‘‘state’’ are copied from the SM_NOTIFY parameters. ‘‘priv’’ is the
information supplied in the corresponding field of the SM_MON call that registered the host
‘‘mon_name’’.

Return Codes

None.

Protocols for Interworking: XNFS, Version 3W 173

Network Status Monitor Protocol

174 Open Group Technical Standard

Chapter 12

XNFS : Protocol Specification, Version 3

This chapter specifies an additional protocol for the Network File System, the Version 3 protocol,
which must be supported in addition to the Version 2 protocol specified in Chapter 7. This
chapter is written with the assumption that the reader is familiar with the introductory material
in Chapter 7.

12.1 Summary of Version 3 Protocol Changes
This section provides an informative summary of changes to the NFS protocol from Version 2 to
Version 3. All normative aspects of the protocol are described later in this document.

The ROOT and WRITECACHE procedures have been removed. A MKNOD procedure has been
defined to allow the creation of special files, eliminating the overloading of CREATE. Caching
on the client is not defined nor dictated by the NFS Version 3 protocol, but additional
information and hints have been added to the protocol to allow clients that implement caching
to manage their caches more effectively. Procedures that affect the attributes of a file or
directory may now return the new attributes after the operation has completed to optimise out a
subsequent GETATTR used in validating attribute caches. In addition, operations that modify
the directory in which the target object resides return the old and new attributes of the directory
to allow clients to implement more intelligent cache invalidation procedures. The ACCESS
procedure provides access permission checking on the server, the FSSTAT procedure returns
dynamic information about a file system, the FSINFO procedure returns static information about
a file system and server, the READDIRPLUS procedure returns file handles and attributes in
addition to directory entries, and the PATHCONF procedure returns XPG4 pathconf ()
information about a file.

The following is a list of the important changes between the NFS Version 2 protocol and the NFS
Version 3 protocol.

File handle size
The file handle has been increased to a variable-length array of 64 bytes maximum
from a fixed array of 32 bytes. This addresses some known requirements for a
slightly larger file handle size. The file handle was converted from fixed length to
variable length to reduce local storage and network bandwidth requirements for
systems that do not utilise the full 64 bytes of length.

Maximum data sizes
The maximum size of a data transfer used in the READ and WRITE procedures is
now set by values in the FSINFO return structure. In addition, preferred transfer
sizes are returned by FSINFO. The protocol does not place any artificial limits on
the maximum transfer sizes. Filenames and pathnames are now specified as
strings of variable length. The actual length restrictions are determined by the
client and server implementations as appropriate. The protocol does not place any
artificial limits on the length. The NFS3ERR_NAMETOOLONG error is provided
to allow the server to return an indication to the client that it received a pathname
that was too long for it to handle.

Error return
Error returns in some instances now return data (for example, attributes). The
nfsstat3 structure now defines the full set of errors that can be returned by a
server. No other values are allowed.

Protocols for Interworking: XNFS, Version 3W 175

Summary of Version 3 Protocol Changes XNFS : Protocol Specification, Version 3

File type The file type now includes NF3CHR and NF3BLK for special files. Attributes for
these types include subfields for major and minor device numbers traditionally
found on UNIX systems. NF3SOCK and NF3FIFO are now defined for sockets and
FIFOs in the file system.

File attributes
The blocksize (the size in bytes of a block in the file) field has been removed. The
mode field no longer contains file type information. The size and fileid fields have
been widened to 8 byte unsigned integers from 4 byte integers. Major and minor
device information is now presented in a distinct structure. The blocks field name
has been changed to used and now contains the total number of bytes used by the
file. It is also an 8 byte unsigned integer.

Set file attributes
In the NFS Version 2 protocol, the attributes that can be set were represented by a
subset of the file attributes structure; the client indicated those attributes that were
not to be modified by setting the corresponding field to -1, overloading some
unsigned fields. The set file attributes structure now uses a discriminated union
for each field to tell whether or how to set that field. The atime and mtime fields can
be set to either the server’s current time or a time supplied by the client.

LOOKUP The LOOKUP return structure now includes the attributes for the directory
searched.

ACCESS An ACCESS procedure has been added to allow an explicit over-the-wire
permissions check. This addresses known problems with the super-user ID
mapping feature in many server implementations (where, due to mapping of root
user, unexpected permission denied errors could occur while reading from or
writing to a file). This also removes the assumption that was made in the NFS
Version 2 protocol that access to files was based solely on XPG-style mode bits.

READ The reply structure includes a Boolean that is TRUE if the end-of-file was
encountered during the READ. This allows the client to correctly detect end-of-
file.

WRITE The beginoffset and totalcount fields were removed from the WRITE arguments. The
reply now includes a count so that the server can write less than the requested
amount of data, if required. An indicator was added to the arguments to instruct
the server as to the level of cache synchronisation that is required by the client.

CREATE An exclusive flag and a create verifier was added for the exclusive creation of
regular files.

MKNOD This procedure was added to support the creation of special files. This avoids
overloading fields of CREATE as was done in some NFS Version 2 protocol
implementations.

READDIR The READDIR arguments now include a verifier to allow the server to validate the
cookie. The cookie is now a 64 bit unsigned integer instead of the 4 byte array that
was used in the NFS Version 2 protocol. This will help to reduce interoperability
problems.

READDIRPLUS
This procedure was added to return file handles and attributes in an extended
directory list.

FSINFO FSINFO was added to provide nonvolatile information about a file system. The
reply includes preferred and maximum read transfer size, preferred and maximum

176 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 Summary of Version 3 Protocol Changes

write transfer size, and flags stating whether links or symbolic links are supported.
Also returned are preferred transfer size for READDIR procedure replies, server
time granularity and whether times can be set in a SETATTR request.

FSSTAT FSSTAT was added to provide volatile information about a file system, for use by
utilities such as df. The reply includes the total size and free space in the file
system specified in bytes, the total number of files and number of free file slots in
the file system, and an estimate of time between file system modifications (for use
in cache consistency checking algorithms).

COMMIT The COMMIT procedure provides the synchronisation mechanism to be used with
asynchronous WRITE operations.

12.2 RPC Information

Authentication

The NFS service uses AUTH_NONE in the NULL procedure. AUTH_UNIX, AUTH_DES or
AUTH_KERB are used for all other procedures.

Transport Protocols

NFS implementations exist for both UDP/IP and TCP/IP protocols.

Port Number

The NFS Version 3 protocol uses the UDP port number 2049 decimal, the same port as the
Version 2 protocol. Since this is not an officially assigned port, it is possible that it may change in
the future. For maximum interoperability it is recommended (but not required) that NFS servers
use UDP port 2049 if possible, and that NFS clients use the portmap mechanism (see Chapter 6)
to locate the NFS program on a server.

WebNFS servers must use UDP and TCP port 2049.

12.2.1 Sizes of XDR Structures

The following table specifies the sizes, given in decimal bytes, of various XDR structures used in
the protocol:

Structure Size Description
The maximum size in bytes of the opaque file
handle

NFS3_FHSIZE 64

The size in bytes of the opaque cookie verifier
passed by READDIR and READDIRPLUS

NFS3_COOKIEVERFSIZE 8

The size in bytes of the opaque verifier used for
exclusive CREATE

NFS3_CREATEVERFSIZE 8

The size in bytes of the opaque verifier used for
asynchronous WRITE

NFS3_WRITEVERFSIZE 8

Protocols for Interworking: XNFS, Version 3W 177

RPC Information XNFS : Protocol Specification, Version 3

12.2.2 Basic Data Types

The following XDR definitions are basic definitions that are used in other structures.

uint64

typedef unsigned hyper uint64;

int64

typedef hyper int64;

uint32

typedef unsigned long uint32;

int32

typedef long int32;

filename3

typedef string filename3<>;

nfspath3

typedef string nfspath3<>;

fileid3

typedef uint64 fileid3;

cookie3

typedef uint64 cookie3;

cookieverf3

typedef opaque cookieverf3[NFS3_COOKIEVERFSIZE];

createverf3

typedef opaque createverf3[NFS3_CREATEVERFSIZE];

writeverf3

typedef opaque writeverf3[NFS3_WRITEVERFSIZE];

178 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 RPC Information

uid3

typedef uint32 uid3;

gid3

typedef uint32 gid3;

size3

typedef uint64 size3;

offset3

typedef uint64 offset3;

mode3

typedef uint32 mode3;

count3

typedef uint32 count3;

Protocols for Interworking: XNFS, Version 3W 179

RPC Information XNFS : Protocol Specification, Version 3

nfsstat3

enum nfsstat3 {
NFS3_OK = 0,
NFS3ERR_PERM = 1,
NFS3ERR_NOENT = 2,
NFS3ERR_IO = 5,
NFS3ERR_NXIO = 6,
NFS3ERR_ACCES = 13,
NFS3ERR_EXIST = 17,
NFS3ERR_XDEV = 18,
NFS3ERR_NODEV = 19,
NFS3ERR_NOTDIR = 20,
NFS3ERR_ISDIR = 21,
NFS3ERR_INVAL = 22,
NFS3ERR_FBIG = 27,
NFS3ERR_NOSPC = 28,
NFS3ERR_ROFS = 30,
NFS3ERR_MLINK = 31,
NFS3ERR_NAMETOOLONG = 63,
NFS3ERR_NOTEMPTY = 66,
NFS3ERR_DQUOT = 69,
NFS3ERR_STALE = 70,
NFS3ERR_REMOTE = 71,
NFS3ERR_BADHANDLE = 10001,
NFS3ERR_NOT_SYNC = 10002,
NFS3ERR_BAD_COOKIE = 10003,
NFS3ERR_NOTSUPP = 10004,
NFS3ERR_TOOSMALL = 10005,
NFS3ERR_SERVERFAULT = 10006,
NFS3ERR_BADTYPE = 10007,
NFS3ERR_JUKEBOX = 10008

};

The nfsstat3 type is returned with every procedure’s results except for the NULL procedure. A
value of NFS3_OK indicates that the call completed successfully. Any other value indicates that
some error occurred on the call, as identified by the error code. No other values may be returned
by a server. Servers are expected to make a best effort mapping of error conditions to the set of
error codes defined. In addition, no error precedences are specified by this document. Error
precedences determine the error value that should be returned when more than one error applies
in a given situation. The error precedence will be determined by the individual server
implementation. If the client requires specific error precedences, it should check for the specific
errors for itself.

A description of each defined error follows.

NFS3_OK Indicates the call completed successfully.

NFS3ERR_PERM Not owner. The caller does not have the correct ownership to perform
the requested operation.

NFS3ERR_NOENT No such file or directory. The file or directory name specified does not
exist.

NFS3ERR_IO I/O error. Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

180 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 RPC Information

NFS3ERR_NXIO No such device or address.

NFS3ERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation. Contrast this with NFS3ERR_PERM,
which restricts itself to owner permission failures.

NFS3ERR_EXIST File exists. The file specified already exists.

NFS3ERR_XDEV The caller attempted to do a cross-device hard link.

NFS3ERR_NODEV No such device.

NFS3ERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFS3ERR_ISDIR Is a directory. The caller specified a directory in a non-directory
operation.

NFS3ERR_INVAL Invalid argument or unsupported argument for an operation. Two
examples are attempting a READLINK on an object other than a symbolic
link or attempting to SETATTR a time field on a server that does not
support this operation.

NFS3ERR_FBIG File too large. The operation would have caused a file to grow beyond
the server’s limit.

NFS3ERR_NOSPC No space left on device. The operation would have caused the server’s
file system to exceed its limit.

NFS3ERR_ROFS Read-only file system. A modifying operation was attempted on a read-
only file system.

NFS3ERR_MLINK Too many hard links.

NFS3ERR_NAMETOOLONG
The filename in an operation was too long.

NFS3ERR_NOTEMPTY
An attempt was made to remove a directory that was not empty.

NFS3ERR_DQUOT Resource (quota) hard limit exceeded. The user’s resource limit on the
server has been exceeded.

NFS3ERR_STALE Invalid file handle. The file handle given in the arguments was invalid.
The file referred to by that file handle no longer exists or access to it has
been revoked.

NFS3ERR_REMOTE Too many levels of remote in path. The file handle given in the
arguments referred to a file on a non-local file system on the server.

NFS3ERR_BADHANDLE
Invalid NFS file handle. The file handle failed internal consistency
checks.

NFS3ERR_NOT_SYNC
An update synchronisation mismatch was detected during a SETATTR
operation.

NFS3ERR_BAD_COOKIE
A READDIR or READDIRPLUS cookie is stale.

Protocols for Interworking: XNFS, Version 3W 181

RPC Information XNFS : Protocol Specification, Version 3

NFS3ERR_NOTSUPP
The operation is not supported.

NFS3ERR_TOOSMALL
The buffer or request is too small.

NFS3ERR_SERVERFAULT
An error occurred on the server, which does not map to any of the valid
NFS Version 3 protocol error values. The client should translate this into
an appropriate error. Clients based on an XPG system may choose to
translate this to EIO.

NFS3ERR_BADTYPE
An attempt was made to create an object of a type not supported by the
server.

NFS3ERR_JUKEBOX
The server initiated the request, but was not able to complete it in a
timely fashion. The client should wait and then try the request with a
new RPC transaction ID. For example, this error should be returned from
a server that supports hierarchical storage and receives a request to
process a file that has been migrated. In this case, the server should start
the immigration process and respond to client with this error.

ftype3

enum ftype3 {
NF3REG = 1,
NF3DIR = 2,
NF3BLK = 3,
NF3CHR = 4,
NF3LNK = 5,
NF3SOCK = 6,
NF3FIFO = 7

};

The enumeration ftype3 gives the type of a file, as follows:

NF3REG Regular file

NF3DIR Directory

NF3BLK Block special device file

NF3CHR Character special device file

NF3LNK Symbolic link

NF3SOCK Socket

NF3FIFO Named pipe

182 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 RPC Information

specdata3

struct specdata3 {
uint32 specdata1;
uint32 specdata2;

};

The interpretation of the two words depends on the type of file system object. For a block
special (NF3BLK) or character special (NF3CHR) file, specdata1 and specdata2 are the major and
minor device numbers, respectively. For all other file types, these two elements should either be
set to zero or the values should be agreed upon by the client and server. If the client and server
do not agree upon the values, the client should treat these fields as if they are set to zero. This
data field is returned as part of the fattr3 structure and so is available from all replies returning
attributes. Since these fields are otherwise unused for objects that are not devices, out of band
information can be passed from the server to the client. However, both the server and the client
must agree on the values passed.

nfs_fh3

struct nfs_fh3 {
opaque data<NFS3_FHSIZE>;

};

The nfs_fh3 structure is the variable-length opaque object returned by the server on LOOKUP,
CREATE, SYMLINK, MKNOD, LINK or READDIRPLUS operations, which is used by the client
on subsequent operations to reference the file. The file handle contains all the information the
server needs to distinguish an individual file. To the client, the file handle is opaque. The client
stores file handles for use in a later request and can compare two file handles from the same
server for equality by doing a byte-by-byte comparison, but cannot otherwise interpret the
contents of file handles. If two file handles from the same server are equal, they must refer to the
same file, but if they are not equal, no conclusions can be drawn. Servers should try to maintain
a one-to-one correspondence between file handles and files, but this is not required. Clients
should use file handle comparisons only to improve performance, not for correct behaviour.

Servers can revoke the access provided by a file handle at any time. If the file handle passed in a
call refers to a file system object that no longer exists on the server or access for that file handle
has been revoked, the NFS3ERR_STALE error should be returned.

A filehandle with a length of zero is called the public filehandle. It is used by WebNFS clients to
identify an associated public directory on the server.

nfstime3

struct nfstime3 {
uint32 seconds;
uint32 nseconds;

};

The nfstime3 structure gives the number of seconds and nanoseconds since midnight January 1,
1970 Greenwich Mean Time. It is used to pass time and date information. The times associated
with files are all server times except in the case of a SETATTR operation where the client can
explicitly set the file time. A server converts to and from local time when processing time
values, preserving as much accuracy as possible. If the precision of timestamps stored for a file
is less than that defined by the NFS Version 3 protocol, loss of precision can occur. An adjunct
time maintenance protocol is recommended to reduce client and server time skew.

Protocols for Interworking: XNFS, Version 3W 183

RPC Information XNFS : Protocol Specification, Version 3

fattr3

struct fattr3 {
ftype3 type;
mode3 mode;
uint32 nlink;
uid3 uid;
gid3 gid;
size3 size;
size3 used;
specdata3 rdev;
uint64 fsid;
fileid3 fileid;
nfstime3 atime;
nfstime3 mtime;
nfstime3 ctime;

};

The fattr3 structure defines the attributes of a file system object. It is returned by most
operations on an object; in the case of operations that affect two objects (for example, a MKDIR
that modifies the target directory attributes and defines new attributes for the newly created
directory), the attributes for both may be returned. In some cases, the attributes are returned in
the structure, wcc_data, which is defined below; in other cases the attributes are returned alone.

The fattr3 structure contains the basic attributes of a file. All servers must support this set of
attributes even if they have to simulate some of the fields.

type The type of the file.

mode The protection mode bits.

nlink The number of hard links to the file; that is, the number of different names for the same
file.

uid The user ID of the owner of the file.

gid The group ID of the group of the file.

size The size of the file in bytes.

used The number of bytes of disk space that the file actually uses (which can be smaller than
the size because the file may have holes or it may be larger due to fragmentation).

rdev The device file, if the file type is NF3CHR or NF3BLK; see specdata3.

fsid The file system identifier for the file system.

fileid A number that uniquely identifies the file within its file system (on traditional UNIX
systems, this would be the i-number).

atime The time when the file data was last accessed.

mtime The time when the file data was last modified.

ctime The time when the attributes of the file were last changed. Writing to the file changes
the ctime in addition to the mtime.

184 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 RPC Information

The mode bits are defined as follows:

Bit Description
Set user ID on execution.0x00800
Set group ID on execution.0x00400
Save swapped text (not defined in XPG4).0x00200
Read permission for owner.0x00100
Write permission for owner.0x00080
Execute permission for owner on a file. Or lookup (search)
permission for owner in directory.

0x00040

Read permission for group.0x00020
Write permission for group.0x00010
Execute permission for group on a file. Or lookup (search)
permission for group in directory.

0x00008

Read permission for others.0x00004
Write permission for others.0x00002
Execute permission for others on a file. Or lookup (search)
permission for others in directory.

0x00001

post_op_attr

union post_op_attr switch (bool attributes_follow){
case TRUE:

fattr3 attributes;
case FALSE:

void;
};

The post_op_attr structure is used for returning attributes in those operations that are not
directly involved with manipulating attributes. One of the principles of this revision of the NFS
protocol is to return the real value from the indicated operation and not an error from an
incidental operation. The post_op_attr structure was designed to allow the server to recover
from errors encountered while getting attributes.

This appears to make returning attributes optional. However, server implementors are strongly
encouraged to make best effort to return attributes whenever possible, even when returning an
error.

wcc_attr

struct wcc_attr {
size3 size;
nfstime3 mtime;
nfstime3 ctime;

};

The wcc_attr structure is the subset of pre-operation attributes needed to improve support for
the weak cache consistency semantics. The size argument is the file size in bytes of the object
before the operation. The mtime argument is the time of last modification of the object before the
operation. The ctime argument is the time of last change to the attributes of the object before the
operation.

Protocols for Interworking: XNFS, Version 3W 185

RPC Information XNFS : Protocol Specification, Version 3

The use of mtime by clients to detect changes to file system objects residing on a server is
dependent on the granularity of the time base on the server.

pre_op_attr

union pre_op_attr switch (bool attributes_follow){
case TRUE:

wcc_attr attributes;
case FALSE:

void;
};

wcc_data

struct wcc_data {
pre_op_attr before;
post_op_attr after;

};

When a client performs an operation that modifies the state of a file or directory on the server, it
cannot immediately determine from the post-operation attributes whether the operation just
performed was the only operation on the object since the last time the client received the
attributes for the object. This is important, since if an intervening operation has changed the
object, the client will need to invalidate any cached data for the object (except for the data that it
just wrote).

To deal with this, the notion of weak cache consistency data (wcc_data) is introduced. A wcc_data
structure consists of certain key fields from the object attributes before the operation, together
with the object attributes after the operation. This information allows the client to manage its
cache more accurately than in NFS Version 2 protocol implementations. The term weak cache
consistency emphasizes the fact that this mechanism does not provide the strict server-client
consistency that a cache consistency protocol would provide.

In order to support the weak cache consistency model, the server must be able to get the pre-
operation attributes of the object, perform the intended modify operation, and then get the post-
operation attributes atomically. If there is a window for the object to get modified between the
operation and either of the get attributes operations, then the client will not be able to determine
whether it was the only entity to modify the object. Some information will have been lost, thus
weakening the weak cache consistency guarantees.

post_op_fh3

union post_op_fh3 switch (bool handle_follows){
case TRUE:

nfs_fh3 handle;
case FALSE:

void;
};

One of the principles of this revision of the NFS protocol is to return the real value from the
indicated operation and not an error from an incidental operation. The post_op_fh3 structure
was designed to allow the server to recover from errors encountered while constructing a file
handle.

This is the structure used to return a file handle from the CREATE, MKDIR, SYMLINK, MKNOD
and READDIRPLUS requests. In each case, the client can get the file handle by issuing a

186 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 RPC Information

LOOKUP request after a successful return from one of the listed operations. Returning the file
handle is an optimisation so that the client is not forced to issue a LOOKUP request immediately
to get the file handle.

sattr3

enum time_how {
DONT_CHANGE = 0,
SET_TO_SERVER_TIME = 1,
SET_TO_CLIENT_TIME = 2

};

union set_mode3 switch (bool set_it) {
case TRUE:

mode3 mode;
default:

void;
};

union set_uid3 switch (bool set_it) {
case TRUE:

uid3 uid;
default:

void;
};

union set_gid3 switch (bool set_it) {
case TRUE:

gid3 gid;
default:

void;
};

union set_size3 switch (bool set_it) {
case TRUE:

size3 size;
default:

void;
};

union set_atime switch (time_how set_it) {
case SET_TO_CLIENT_TIME:

nfstime3 atime;
default:

void;
};

union set_mtime switch (time_how set_it) {
case SET_TO_CLIENT_TIME:

nfstime3 mtime;
default:

void;
};

Protocols for Interworking: XNFS, Version 3W 187

RPC Information XNFS : Protocol Specification, Version 3

struct sattr3 {
set_mode3 mode;
set_uid3 uid;
set_gid3 gid;
set_size3 size;
set_atime atime;
set_mtime mtime;

};

The sattr3 structure contains the file attributes that can be set from the client. The fields are the
same as the similarly named fields in the fattr3 structure. In the NFS Version 3 protocol, the
attributes that can be set are described by a structure containing a set of discriminated unions.
Each union indicates whether the corresponding attribute is to be updated, and if so, how.

There are two forms of discriminated unions used. In setting the mode, uid , gid or size , the
discriminated union is switched on a Boolean, set_it ; if it is TRUE, a value of the appropriate
type is then encoded.

In setting the atime or mtime, the union is switched on an enumeration type, set_it . If set_it has
the value DONT_CHANGE, the corresponding attribute is unchanged. If it has the value
SET_TO_SERVER_TIME, the corresponding attribute is set by the server to its local time; no
data is provided by the client. Finally, if set_it has the value SET_TO_CLIENT_TIME, the
attribute is set to the time passed by the client in an nfstime3 structure. (See FSINFO in Section
12.4.0 on page 246, which addresses the issue of time granularity).

diropargs3

struct diropargs3 {
nfs_fh3 dir;
filename3 name;

};

The diropargs3 structure is used in directory operations. The file handle, dir , identifies the
directory in which to manipulate or access the file, name. See additional comments in Section
12.3.5 on page 192.

12.2.3 Attributes and Consistency Data on Failure

For those procedures that return either post_op_attr or wcc_data structures on failure, the
discriminated union may contain the pre-operation attributes of the object or object parent
directory. This depends on the error encountered and may also depend on the particular server
implementation. Implementors are strongly encouraged to return as much attribute data as
possible upon failure, but client implementors need to be aware that their implementation must
correctly handle the variant return instance where no attributes or consistency data is returned.

12.2.4 General File Name Requirements

The following requirements apply to all NFS Version 3 protocol procedures in which the client
provides one or more file names in the arguments: LOOKUP, CREATE, MKDIR, SYMLINK,
MKNOD, REMOVE, RMDIR, RENAME and LINK.

1. The file name must not be null nor may it be the null string. The server should return the
NFS3ERR_ACCES error if it receives such a file name. On some clients, a null string used
as a file name is assumed to be an alias for the current directory. Clients that require this
functionality should implement it for themselves and not depend upon the server to
support such semantics.

188 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 RPC Information

2. A filename having the value of ‘‘.’’ (dot) is assumed to be an alias for the current directory.
Clients that require this functionality should implement it for themselves and not depend
upon the server to support such semantics. However, the server should be able to handle
such a filename correctly.

3. A filename having the value of ‘‘. .’’ (dot-dot) is assumed to be an alias for the parent of the
current directory; in other words, the directory that contains the current directory. The
server should be prepared to handle this semantic, if it supports directories, even if those
directories do not contain XPG-style dot or dot-dot entries.

4. If the filename is longer than the maximum for the file system (see PATHCONF in Section
12.4.0 on page 249, specifically name_max), the result depends on the value of the
PATHCONF flag no_trunc. If no_trunc is FALSE, the filename will be silently truncated to
name_max bytes. If no_trunc is TRUE and the filename exceeds the server’s file system
maximum filename length, the operation will fail with the NFS3ERR_NAMETOOLONG
error.

5. In general, there will be characters that a server will not be able to handle as part of a
filename. This set of characters will vary from server to server and from implementation
to implementation. In most cases, it is the server that will control the client’s view of the
file system. If the server receives a filename containing characters that it can not handle,
the NFS3ERR_ACCES error should be returned. Client implementations should be
prepared to handle this side affect of heterogeneity.

See additional comments in Section 12.3.5 on page 192.

12.3 XNFS Implementation Issues
The NFS Version 3 protocol was designed to allow different operating systems to share files.
However, since it was designed in a UNIX environment, many operations have semantics
similar to the operations of the UNIX file system. This section discusses some of the general
implementation-specific details and semantic issues. Procedure descriptions have
implementation guidance specific to that procedure.

12.3.1 Server/Client Relationship

The NFS Version 3 protocol is designed to allow servers to be as simple and general as possible.
Sometimes the simplicity of the server can be a problem, if the client implements complicated
file system semantics.

For example, some operating systems allow removal of open files. A process can open a file and,
while it is open, remove it from the directory. The file can be read and written as long as the
process keeps it open, even though the file has no name in the file system. It is impossible for a
stateless server to implement these semantics. The client can do some tricks such as renaming
the file on remove (to a hidden name), and only physically deleting it on close. The NFS
Version 3 protocol provides sufficient functionality to implement most file system semantics on
a client.

Every NFS Version 3 protocol client can also potentially be a server, and remote and local
mounted file systems can be freely mixed. This leads to some problems when a client travels
down the directory tree of a remote file system and reaches the mount point on the server for
another remote file system. Allowing the server to follow the second remote mount would
require loop detection, server lookup, and user revalidation. Instead, both NFS Version 2
protocol and NFS Version 3 protocol implementations do not typically let clients cross a server’s
mount point. When a client does a LOOKUP on a directory on which the server has mounted a

Protocols for Interworking: XNFS, Version 3W 189

XNFS Implementation Issues XNFS : Protocol Specification, Version 3

file system, the client sees the underlying directory instead of the mounted directory.

For example, if a server has a file system called /usr and mounts another file system on /usr/src, if
a client mounts /usr, it does not see the mounted version of /usr/src. A client could do remote
mounts that match the server’s mount points to maintain the server’s view. In this example, the
client would also have to mount /usr/src in addition to /usr, even if they are from the same
server.

12.3.2 Pathname Interpretation

There are a few complications to the rule that pathnames are always parsed on the client. For
example, symbolic links could have different interpretations on different clients. There is no
answer to this problem in this document.

Another common problem for non-XPG implementations is the special interpretation of the
pathname ‘‘. .’’ to mean the parent of a given directory. A future revision of the protocol may
use an explicit flag to indicate the parent instead; however, it is not a problem because many
working non-XPG implementations exist.

12.3.3 Permission Issues

The NFS Version 3 protocol, strictly speaking, does not define the permission checking used by
servers. However, it is expected that a server will do normal operating system permission
checking using AUTH_UNIX style authentication as the basis of its protection mechanism, or
another stronger form of authentication such as AUTH_DES or AUTH_KERB. With
AUTH_UNIX authentication, the server gets the client’s effective user ID, effective group ID and
groups on each call and uses them to check permission. These are the so-called UNIX
credentials. AUTH_DES and AUTH_KERB use a network name, or netname, as the basis for
identification (from which a UNIX server derives the necessary standard UNIX credentials).
There are problems with this method that have been solved.

Using user ID and group ID implies that the client and server share the same user ID list. Every
server and client pair must have the same mapping from user to user ID and from group to
group ID. Since every client can also be a server, this tends to imply that the whole network
shares the same user/group ID space. If this is not the case, then it usually falls upon the server
to perform some custom mapping of credentials from one authentication domain into another.
A discussion of techniques for managing a shared user space or for providing mechanisms for
user ID mapping is beyond the scope of this document.

Another problem arises due to the usually stateful open operation. Most operating systems
check permission at open time, and then check that the file is open on each read and write
request. With stateless servers, the server cannot detect that the file is open and must do
permission checking on each read and write call. UNIX client semantics of access permission
checking on open can be provided with the ACCESS procedure call in this revision, which allows
a client to explicitly check access permissions without resorting to trying the operation. On a
local file system, a user can open a file and then change the permissions so that no one is allowed
to touch it, but will still be able to write to the file because it is open. On a remote file system, by
contrast, the write would fail. To get around this problem, the server’s permission checking
algorithm should allow the owner of a file to access it regardless of the permission setting. This
is needed in a practical NFS Version 3 protocol server implementation, but it does depart from
correct local file system semantics. This should not affect the return result of access permissions
as returned by the ACCESS procedure, however.

A similar problem has to do with paging in an executable program over the network. The
operating system usually checks for execute permission before opening a file for demand
paging, and then reads blocks from the open file. In a local UNIX file system, an executable file

190 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 XNFS Implementation Issues

does not need read permission to execute (page-in). An NFS Version 3 protocol server can not
tell the difference between a normal file read (where the read permission bit is meaningful) and a
demand page-in read (where the server should allow access to the executable file if the execute
bit is set for that user or group or public). To make this work, the server allows reading of files if
the user ID given in the call has either execute or read permission on the file, through ownership,
group membership or public access. Again, this departs from correct local file system semantics.

In some operating systems, a particular user (on UNIX systems, the user ID 0) has access to all
files, no matter what permission and ownership they have. This super-user permission might
not be allowed on the server, since anyone who can become super-user on their client could gain
access to all remote files. A UNIX server by default maps user ID 0 to a distinguished value
(UID_NOBODY), as well as mapping the groups list, before doing its access checking. A server
implementation may provide a mechanism to change this mapping. This works except for NFS
Version 3 protocol root file systems (required for diskless NFS Version 3 protocol client support),
where super-user access cannot be avoided. Export options are used, on the server, to restrict
the set of clients allowed super-user access.

12.3.4 Duplicate Request Cache

The typical NFS Version 3 protocol failure recovery model uses client time-out and retry to
handle server crashes, network partitions and lost server replies. A retried request is called a
duplicate of the original.

When used in a file server context, the term idempotent can be used to distinguish between
operation types. An idempotent request is one that a server can perform more than once with
equivalent results (though it may in fact change, as a side effect, the access time on a file, say for
READ). Some NFS operations are obviously non-idempotent. They cannot be reprocessed
without special attention simply because they may fail if tried a second time. The CREATE
request, for example, can be used to create a file for which the owner does not have write
permission. A duplicate of this request cannot succeed if the original succeeded. Likewise, a file
can be removed only once.

The side effects caused by performing a duplicate non-idempotent request can be destructive
(for example, a truncate operation causing lost writes). The combination of a stateless design
with the common choice of an unreliable network transport (UDP) implies the possibility of
destructive replays of non-idempotent requests. Though to be more accurate, it is the inherent
stateless design of the NFS Version 3 protocol on top of an unreliable RPC mechanism that
yields the possibility of destructive replays of non-idempotent requests, since even in an
implementation of the NFS Version 3 protocol over a reliable connection-oriented transport, a
connection break with automatic reestablishment requires duplicate request processing (the
client will retransmit the request, and the server needs to deal with a potential duplicate non-
idempotent request).

Most NFS Version 3 protocol server implementations use a cache of recent requests (called the
duplicate request cache) for the processing of duplicate non-idempotent requests. The duplicate
request cache provides a short-term memory mechanism in which the original completion status
of a request is remembered and the operation attempted only once. If a duplicate copy of this
request is received, then the original completion status is returned.

The duplicate-request cache mechanism has been useful in reducing destructive side effects
caused by duplicate NFS Version 3 protocol requests. This mechanism, however, does not
guarantee against these destructive side effects in all failure modes. Most servers store the
duplicate request cache in RAM, so the contents are lost if the server crashes. The exception to
this may possibly occur in a redundant server approach to high availability, where the file
system itself may be used to share the duplicate request cache state. Even if the cache survives

Protocols for Interworking: XNFS, Version 3W 191

XNFS Implementation Issues XNFS : Protocol Specification, Version 3

server reboots (or failovers in the high availability case), its effectiveness is a function of its size.
A network partition can cause a cache entry to be reused before a client receives a reply for the
corresponding request. If this happens, the duplicate request will be processed as a new one,
possibly with destructive side effects.

12.3.5 Filename Component Handling

Server implementations of NFS Version 3 protocol will frequently impose restrictions on the
names that can be created. Many servers will also forbid the use of names that contain certain
characters, such as the path component separator used by the server operating system. For
example, an XPG file system will reject a name that contains ‘‘/’’, while ‘‘.’’ and ‘‘. .’’ are
distinguished in a XPG file system, and must not be specified as the name when creating a file
system object. The exact error status values return for these errors is specified in the description
of each procedure argument. The values (which conform to NFS Version 2 protocol server
practice) are not necessarily obvious, nor are they consistent from one procedure to the next.

12.3.6 Synchronous Modifying Operations

Data-modifying operations in the NFS Version 3 protocol are synchronous. When a procedure
returns to the client, the client can assume that the operation has completed and any data
associated with the request is now on stable storage.

12.3.7 Stable Storage

NFS Version 3 protocol servers must be able to recover without data loss from multiple power
failures (including cascading power failures; that is, several power failures in quick succession),
operating system failures and hardware failure of components other than the storage medium
itself (for example, disk or non-volatile RAM).

Some examples of stable storage that are allowable for an NFS server include:

• Media commit of data; that is, the modified data has been successfully written to the disk
media (for example, the disk platter).

• An immediate reply disk drive with battery-backed on-drive intermediate storage or
uninterruptible power system (UPS).

• Server commit of data with battery-backed intermediate storage and recovery software.

• Cache commit with uninterruptible power system and recovery software.

Conversely, the following are not examples of stable storage:

• An immediate reply disk drive without battery-backed on-drive intermediate storage or
uninterruptible power system.

• Cache commit without both uninterruptible power system and recovery software.

The only exception to this (introduced in Version 3 protocol) is as described under the WRITE
procedure on the handling of the stable bit, and the use of the COMMIT procedure. It is the use
of the synchronous COMMIT procedure that provides the necessary semantic support in the
NFS Version 3 protocol.

192 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 XNFS Implementation Issues

12.3.8 Lookups and Name Resolution

A common objection to the NFS Version 3 protocol is the philosophy of component-by-
component LOOKUP by the client in resolving a name. The objection is that this is inefficient, as
latencies for component-by-component LOOKUP would be unbearable.

Implementation practice solves this issue. A name cache, providing component to file-handle
mapping, is kept on the client to short circuit actual LOOKUP invocations over the wire. The
cache is subject to cache timeout parameters that bound attributes.

Note that multi-component lookup is allowed relative to the public filehandle (see Appendix E)
for use by WebNFS clients as an alternative to the MNTPROC_MNT procedure of the MOUNT
protocol. Clients may also cache the results of these multi-component lookups, subject to the
same timeout parameters that bound attributes.

12.3.9 Adaptive Retransmission

Most client implementations use either an exponential back-off strategy to some maximum
retransmission value, or a more adaptive strategy that attempts congestion avoidance.

12.3.10 Caching Policies

The NFS Version 3 protocol does not define a policy for caching on the client or server. In
particular, there is no support for strict cache consistency between a client and server, nor
between different clients.

12.3.11 Stable Versus Unstable Writes

The setting of the stable field in the WRITE arguments (that is, whether or not to do
asynchronous WRITE requests) is straightforward on a UNIX client. If the NFS Version 3
protocol client receives a write request that is not marked as being asynchronous, it should
generate the RPC with stable set to DATA_SYNC or FILE_SYNC. If the request is marked as
being asynchronous, the RPC should be generated with stable set to UNSTABLE. If the response
comes back with the committed field set to DATA_SYNC or FILE_SYNC, the client should just
mark the write request as done and no further action is required. If committed is set to
UNSTABLE, indicating that the buffer was not synchronised with the server’s disk, the client will
need to mark the buffer in some way that indicates that a copy of the buffer lives on the server
and that a new copy does not need to be sent to the server, but that a commit is required.

Note that this algorithm introduces a new state for buffers, thus there are now three states for
buffers. The three states are dirty, done but needs to be committed, and done. This extra state
on the client will likely require modifications to the system outside of the NFS Version 3 protocol
client.

The asynchronous write opens up the window of problems associated with write sharing. For
example: client A writes some data asynchronously. Client A is still holding the buffers cached,
waiting to commit them later. Client B reads the modified data and writes it back to the server.
The server then crashes. When it comes back up, client A issues a COMMIT operation, which
returns with a different cookie as well as changed attributes. In this case, the correct action may
or may not be to retransmit the cached buffers. Unfortunately, client A can’t tell for sure, so it
will need to retransmit the buffers, thus overwriting the changes from client B. Fortunately,
write sharing is rare and the solution matches the current write sharing situation. Without using
locking for synchronisation, the behaviour will be indeterminate.

In a high availability (redundant system) server implementation, two cases exist that relate to
the verf changing. If the high availability server implementation does not use a shared-memory

Protocols for Interworking: XNFS, Version 3W 193

XNFS Implementation Issues XNFS : Protocol Specification, Version 3

scheme, then the verf must change on failover, since the unsynchronised data is not available to
the second processor and there is no guarantee that the system that had the data cached was able
to flush it to stable storage before going down. The client will need to retransmit the data to be
safe. In a shared-memory high availability server implementation, the verf would not need to
change because the server would still have the cached data available to it to be flushed. The
exact policy regarding the verf in a shared memory high availability implementation, however, is
up to the server implementor.

12.3.12 32-bit Clients/Servers and 64-bit Clients/Servers

The 64 bit nature of the NFS Version 3 protocol introduces several compatibility problems. The
most notable two are mismatched clients and servers; that is, a 32 bit client and a 64 bit server or
a 64 bit client and a 32 bit server.

The problems of a 64 bit client and a 32 bit server are easy to handle. The client will never
encounter a file that it can not handle. If it sends a request to the server that the server can not
handle, the server should reject the request with an appropriate error.

The problems of a 32 bit client and a 64 bit server are much harder to handle. In this situation,
the server does not have a problem because it can handle anything that the client can generate.
However, the client may encounter a file that it can not handle. The client will not be able to
handle a file whose size can not be expressed in 32 bits. Thus, the client will not be able to
properly decode the size of the file into its local attributes structure. Also, a file can grow
beyond the limit of the client while the client is accessing the file.

The solutions to these problems are left up to the individual implementor. However, there are
two common approaches used to resolve this situation. The implementor can choose between
them or even can invent a new solution altogether.

The most common solution is for the client to deny access to any file whose size can not be
expressed in 32 bits. This is probably the safest, but does introduce some strange semantics
when the file grows beyond the limit of the client while it is being access by that client. The file
becomes inaccessible even while it is being accessed.

The second solution is for the client to map any size greater than it can handle to the maximum
size that it can handle. This allows the application access as much of the file as possible given
the 32 bit offset restriction. This eliminates the strange semantic of the file effectively
disappearing after it has been accessed, but does introduce other problems. The client will not
be able to access the entire file.

Currently, the first solution is the recommended solution. However, client implementors are
encouraged to do the best that they can to reduce the effects of this situation.

194 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 Server Procedures

12.4 Server Procedures
The following reference pages define the additional set of procedures, with arguments and
results defined using the RPC language, for the Version 3 protocol.

/*
* Remote file service routines
*/

program NFS_PROGRAM {
version NFS_V3 {

void NFSPROC3_NULL(void) = 0;
GETATTR3res NFSPROC3_GETATTR(GETATTR3args) = 1;
SETATTR3res NFSPROC3_SETATTR(SETATTR3args) = 2;
LOOKUP3res NFSPROC3_LOOKUP(LOOKUP3args) = 3;
ACCESS3res NFSPROC3_ACCESS(ACCESS3args) = 4;
READLINK3res NFSPROC3_READLINK(READLINK3args) = 5;
READ3res NFSPROC3_READ(READ3args) = 6;
WRITE3res NFSPROC3_WRITE(WRITE3args) = 7;
CREATE3res NFSPROC3_CREATE(CREATE3args) = 8;
MKDIR3res NFSPROC3_MKDIR(MKDIR3args) = 9;
SYMLINK3res NFSPROC3_SYMLINK(SYMLINK3args) = 10;
MKNOD3res NFSPROC3_MKNOD(MKNOD3args) = 11;
REMOVE3res NFSPROC3_REMOVE(REMOVE3args) = 12;
RMDIR3res NFSPROC3_RMDIR(RMDIR3args) = 13;
RENAME3res NFSPROC3_RENAME(RENAME3args) = 14;
LINK3res NFSPROC3_LINK(LINK3args) = 15;
READDIR3res NFSPROC3_READDIR(READDIR3args) = 16;
READDIRPLUS3res

NFSPROC3_READDIRPLUS(READDIRPLUS3args) = 17;
FSSTAT3res NFSPROC3_FSSTAT(FSSTAT3args) = 18;
FSINFO3res NFSPROC3_FSINFO(FSINFO3args) = 19;
PATHCONF3res NFSPROC3_PATHCONF(PATHCONF3args) = 20;
COMMIT3res NFSPROC3_COMMIT(COMMIT3args) = 21;

} = 3;
} = 100003;

Protocols for Interworking: XNFS, Version 3W 195

NFSPROC3_NULL XNFS : Protocol Specification, Version 3

Name
NFSPROC3_NULL — Do Nothing

Call Arguments
None.

Return Arguments
None.

RPC Procedure Description

void
NFSPROC3_NULL(void) = 0;

Description
Procedure NULL does no work. It is made available to allow server response testing and timing.

Implementation Guidance
It is important that this procedure do no work at all so that it can be used to measure the
overhead of processing a service request. By convention, the NULL procedure should never
require any authentication. A server may choose to ignore this convention, in a more secure
implementation, where responding to the NULL procedure call acknowledges the existence of a
resource to an unauthenticated client.

Return Codes
Since the NULL procedure takes no NFS Version 3 protocol arguments and returns no NFS
Version 3 protocol response, it can not return an NFS Version 3 protocol error. However, it is
possible that some server implementations may return RPC errors based on security and
authentication requirements.

196 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_GETATTR

Name
NFSPROC3_GETATTR — Get File Attributes

Call Arguments

struct GETATTR3args {
nfs_fh3 object;

};

Return Arguments

struct GETATTR3resok {
fattr3 obj_attributes;

};

union GETATTR3res switch (nfsstat3 status) {
case NFS3_OK:

GETATTR3resok resok;
default:

void;
};

RPC Procedure Description

GETATTR3res
NFSPROC3_GETATTR(GETATTR3args) = 1;

Description
Procedure GETATTR retrieves the attributes for a specified file system object. The object is
identified by the file handle that the server returned as part of the response from a LOOKUP,
CREATE, MKDIR, SYMLINK, MKNOD or READDIRPLUS procedure (or from the MOUNT
service, described in Chapter 13 on page 255).

On entry, the arguments in GETATTR3args are:

object The file handle of an object whose attributes are to be retrieved.

Upon successful return, GETATTR3res.status is NFS3_OK and GETATTR3res.resok contains:

obj_attributes The attributes for the object.

Otherwise, GETATTR3res.status contains the error on failure and no other results are returned.

Implementation Guidance
The attributes of file system objects is a point of major disagreement between different operating
systems. Servers must make a best attempt to support all of the attributes in the fattr3 structure
so that clients can count on this as a common ground. Some mapping may be required to map
local attributes to those in the fattr3 structure.

Today, most client NFS Version 3 protocol implementations implement a time-bounded attribute
caching scheme to reduce over-the-wire attribute checks.

Return Codes

NFS3ERR_IO I/O error. Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFS3ERR_STALE Invalid file handle. The file handle given in the arguments was invalid.
The file referred to by that file handle no longer exists or access to it has
been revoked.

Protocols for Interworking: XNFS, Version 3W 197

NFSPROC3_GETATTR XNFS : Protocol Specification, Version 3

NFS3ERR_BADHANDLE
Invalid NFS file handle. The file handle failed internal consistency
checks.

NFS3ERR_SERVERFAULT
An error occurred on the server, which does not map to any of the valid
NFS Version 3 protocol error values. The client should translate this into
an appropriate error. Clients based on an XPG system may choose to
translate this to EIO.

198 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_SETATTR

Name
NFSPROC3_SETATTR — Set File Attributes

Call Arguments

union sattrguard3 switch (bool check) {
case TRUE:

nfstime3 obj_ctime;
case FALSE:

void;
};

struct SETATTR3args {
nfs_fh3 object;
sattr3 new_attributes;
sattrguard3 guard;

};

Return Arguments

struct SETATTR3resok {
wcc_data obj_wcc;

};

struct SETATTR3resfail {
wcc_data obj_wcc;

};

union SETATTR3res switch (nfsstat3 status) {
case NFS3_OK:

SETATTR3resok resok;
default:

SETATTR3resfail resfail;
};

RPC Procedure Description

SETATTR3res
NFSPROC3_SETATTR(SETATTR3args) = 2;

Description
Procedure SETATTR changes one or more of the attributes of a file system object on the server.
The new attributes are specified by a sattr3 structure.

On entry, the arguments in SETATTR3args are:

object The file handle for the object.

new_attributes A sattr3 structure containing Booleans and enumerations describing the
attributes to be set and the new values for those attributes.

guard A sattrguard3 union:

check TRUE if the server is to verify that guard.obj_ctime matches the ctime for the
object; FALSE otherwise.

A client may request that the server check that the object is in an expected state before
performing the SETATTR operation. To do this, it sets the argument guard.check to TRUE and the
client passes a time value in guard.obj_ctime . If guard.check is TRUE, the server must compare the
value of guard.obj_ctime to the current ctime of the object. If the values are different, the server

Protocols for Interworking: XNFS, Version 3W 199

NFSPROC3_SETATTR XNFS : Protocol Specification, Version 3

must preserve the object attributes and must return a status of NFS3ERR_NOT_SYNC. If
guard.check is FALSE, the server will not perform this check.

Upon successful return, SETATTR3res.status is NFS3_OK and SETATTR3res.resok contains:

obj_wcc A wcc_data structure containing the old and new attributes for the object.

Otherwise, SETATTR3res.status contains the error on failure and SETATTR3res.resfail contains the
following:

obj_wcc A wcc_data structure containing the old and new attributes for the object.

Implementation Guidance
The guard.check mechanism allows the client to avoid changing the attributes of an object on the
basis of stale attributes. It does not guarantee exactly-once semantics. In particular, if a reply is
lost and the server does not detect the retransmission of the request, the procedure can fail with
the NFS3ERR_NOT_SYNC error, even though the attribute setting was previously performed
successfully. The client can attempt to recover from this error by getting fresh attributes from
the server and sending a new SETATTR request using the new ctime. The client can optionally
check the attributes to avoid the second SETATTR request if the new attributes show that the
attributes have already been set as desired (though it may not have been the issuing client that
set the attributes).

The new_attributes.size field is used to request changes to the size of a file. A value of zero causes
the file to be truncated, a value less than the current size of the file causes data from new size to
the end of the file to be discarded, and a size greater than the current size of the file causes
logically zeroed data bytes to be added to the end of the file. Servers are free to implement this
using holes or actual zero data bytes. Clients must not make any assumptions regarding a
server’s implementation of this feature, beyond that the bytes returned will be zeroed. Servers
must support extending the file size via SETATTR.

SETATTR is not guaranteed atomic. A failed SETATTR may partially change a file’s attributes.

Changing the size of a file with SETATTR indirectly changes the mtime. A client must account
for this as size changes can result in data deletion.

If server and client times differ, programs that compare client time to file times can break. A
time maintenance protocol should be used to limit client/server time skew.

In a heterogeneous environment, it is possible that the server will not be able to support the full
range of SETATTR requests. The NFS3ERR_INVAL error may be returned if the server can not
store a user ID or group ID in its own representation of user or group IDs, respectively. If the
server can only support 32 bit offsets and sizes, a SETATTR request to set the size of a file to
larger than can be represented in 32 bits will be rejected with this same error.

Return Codes

NFS3ERR_PERM Not owner. The caller does not have the correct ownership to perform
the requested operation.

NFS3ERR_IO I/O error. Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFS3ERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation. Contrast this with NFS3ERR_PERM,
which restricts itself to owner permission failures.

NFS3ERR_INVAL Invalid argument or unsupported argument for an operation.

200 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_SETATTR

NFS3ERR_NOSPC No space left on device. The operation would have caused the server’s
file system to exceed its limit.

NFS3ERR_ROFS Read-only file system. A modifying operation was attempted on a read-
only file system.

NFS3ERR_DQUOT Resource (quota) hard limit exceeded. The user’s resource limit on the
server has been exceeded.

NFS3ERR_NOT_SYNC
An update synchronisation mismatch was detected during a SETATTR
operation.

NFS3ERR_STALE Invalid file handle. The file handle given in the arguments was invalid.
The file referred to by that file handle no longer exists or access to it has
been revoked.

NFS3ERR_BADHANDLE
Invalid NFS file handle. The file handle failed internal consistency
checks.

NFS3ERR_SERVERFAULT
An error occurred on the server, which does not map to any of the valid
NFS Version 3 protocol error values. The client should translate this into
an appropriate error. Clients based on an XPG system may choose to
translate this to EIO.

Protocols for Interworking: XNFS, Version 3W 201

NFSPROC3_LOOKUP XNFS : Protocol Specification, Version 3

Name
NFSPROC3_LOOKUP — Lookup Filename

Call Arguments

struct LOOKUP3args {
diropargs3 what;

};

Return Arguments

struct LOOKUP3resok {
nfs_fh3 object;
post_op_attr obj_attributes;
post_op_attr dir_attributes;

};

struct LOOKUP3resfail {
post_op_attr dir_attributes;

};

union LOOKUP3res switch (nfsstat3 status) {
case NFS3_OK:

LOOKUP3resok resok;
default:

LOOKUP3resfail resfail;
};

RPC Procedure Description

LOOKUP3res
NFSPROC3_LOOKUP(LOOKUP3args) = 3;

Description
Procedure LOOKUP searches a directory for a specific name and returns the file handle for the
corresponding file system object.

On entry, the arguments in LOOKUP3args are:

what Object to look up.

dir The file handle for the directory to search.

name The filename to be searched for. See Section 12.2.4 on page 188 for more
information on file names.

Upon successful return, LOOKUP3res.status is NFS3_OK and LOOKUP3res.resok contains:

object The file handle of the object corresponding to what.name.

obj_attributes The attributes of the object corresponding to what.name.

dir_attributes The post-operation attributes of the directory what.dir .

Otherwise, LOOKUP3res.status contains the error on failure and LOOKUP3res.resfail contains the
following:

dir_attributes The post-operation attributes for the directory what.dir .

202 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_LOOKUP

Implementation Guidance
At first glance, in the case where what.name refers to a mount point on the server, two different
replies seem possible. The server can return either the file handle for the underlying directory
that is mounted on it or the file handle of the root of the mounted directory. This ambiguity is
simply resolved. A server will not allow a LOOKUP operation to cross a mount point to the root
of a different file system, even if the file system is exported. This does not prevent a client from
accessing a hierarchy of file systems exported by a server, but the client must mount each of the
file systems individually so that the mount point crossing takes place on the client. A given
server implementation may refine these rules given capabilities or limitations particular to that
implementation.

Two filenames are distinguished, as in the NFS Version 2 protocol. The name ‘‘.’’ is an alias for
the current directory and the name ‘‘. .’’ is an alias for the parent directory; that is, the directory
that includes the specified directory as a member. There is no facility for dealing with a
multiparented directory and NFS assumes a hierarchical organisation, organised as a single-
rooted tree.

Unless the lookup is relative to the public filehandle, this procedure does not follow symbolic
links. The client is responsible for all parsing of file names, including file names that are
modified by symbolic links encountered during the lookup process.

WebNFS clients may use a pathname in place of the name where the lookup is relative to the
public filehandle. In this case, the server must cross mount points when evaluating this
pathname and follow any symbolic links that occur in all but the final component of the
pathname.

Return Codes

NFS3ERR_IO I/O error. Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFS3ERR_NOENT No such file or directory. The file or directory name specified does not
exist.

NFS3ERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation. Contrast this with NFS3ERR_PERM,
which restricts itself to owner permission failures.

NFS3ERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFS3ERR_NAMETOOLONG
The filename in an operation was too long.

NFS3ERR_STALE Invalid file handle. The file handle given in the arguments was invalid.
The file referred to by that file handle no longer exists or access to it has
been revoked.

NFS3ERR_BADHANDLE
Invalid NFS file handle. The file handle failed internal consistency
checks.

NFS3ERR_SERVERFAULT
An error occurred on the server, which does not map to any of the valid
NFS Version 3 protocol error values. The client should translate this into
an appropriate error. Clients based on an XPG system may choose to
translate this to EIO.

Protocols for Interworking: XNFS, Version 3W 203

NFSPROC3_ACCESS XNFS : Protocol Specification, Version 3

Name
NFSPROC3_ACCESS — Check Access Permission

Call Arguments

const ACCESS3_READ = 0x0001;
const ACCESS3_LOOKUP = 0x0002;
const ACCESS3_MODIFY = 0x0004;
const ACCESS3_EXTEND = 0x0008;
const ACCESS3_DELETE = 0x0010;
const ACCESS3_EXECUTE = 0x0020;

struct ACCESS3args {
nfs_fh3 object;
uint32 access;

};

Return Arguments

struct ACCESS3resok {
post_op_attr obj_attributes;
uint32 access;

};

struct ACCESS3resfail {
post_op_attr obj_attributes;

};

union ACCESS3res switch (nfsstat3 status) {
case NFS3_OK:

ACCESS3resok resok;
default:

ACCESS3resfail resfail;
};

RPC Procedure Description

ACCESS3res
NFSPROC3_ACCESS(ACCESS3args) = 4;

Description
Procedure ACCESS determines the access rights that a user, as identified by the credentials in the
request, has with respect to a file system object. The client encodes the set of permissions that
are to be checked in a bit mask. The server checks the permissions encoded in the bit mask. A
status of NFS3_OK is returned along with a bit mask encoded with the permissions that the
client is allowed.

The results of this procedure are necessarily advisory in nature. That is, a return status of
NFS3_OK and the appropriate bit set in the bit mask does not imply that such access will be
allowed to the file system object in the future, because access rights can be revoked by the server
at any time.

On entry, the arguments in ACCESS3args are:

object The file handle for the file system object to which access is to be checked.

access A bit mask of access permissions to check. The following access permissions
may be requested:

204 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_ACCESS

ACCESS3_READ
Read data from file or read a directory.

ACCESS3_LOOKUP
Look up a name in a directory (no meaning for non-directory objects).

ACCESS3_MODIFY
Rewrite existing file data or modify existing directory entries.

ACCESS3_EXTEND
Write new data or add directory entries.

ACCESS3_DELETE
Delete an existing directory entry (no meaning for non-directory
objects).

ACCESS3_EXECUTE
Execute file (no meaning for a directory).

Upon successful return, ACCESS3res.status is NFS3_OK. The server should return a status of
NFS3_OK if no errors occurred that prevented the server from making the required access
checks. The results in ACCESS3res.resok are:

obj_attributes The post-operation attributes of object.

access A bit mask of access permissions indicating access rights for the authentication
credentials provided with the request.

Otherwise, ACCESS3res.status contains the error on failure and ACCESS3res.resfail contains the
following:

obj_attributes The attributes of object, if access to attributes is permitted.

Implementation Guidance
In general, it is not sufficient for the client to attempt to deduce access permissions by inspecting
the uid , gid and mode fields in the file attributes, since the server may perform user ID or group
ID mapping or enforce additional access control restrictions. It is also possible that the NFS
Version 3 protocol server may not be in the same ID space as the NFS Version 3 protocol client.
In these cases (and perhaps others), the NFS Version 3 protocol client can not reliably perform an
access check with only the current file attributes.

In the NFS Version 2 protocol, the only reliable way to determine whether an operation was
allowed was to try it and see if it succeeded or failed. Using the ACCESS procedure in the NFS
Version 3 protocol, the client can ask the server to indicate whether or not one or more classes of
operations are permitted. The ACCESS operation is provided to allow clients to check before
doing a series of operations. This is useful in operating systems (such as UNIX) where
permission checking is done only when a file or directory is opened. This procedure is also
invoked by the NFS client access procedure (called possibly through access()). The intent is to
make the behaviour of opening a remote file more consistent with the behaviour of opening a
local file.

The information returned by the server in response to an ACCESS call is not permanent. It was
correct at the exact time that the server performed the checks, but not necessarily afterwards.
The server can revoke access permission at any time.

The NFS Version 3 protocol client should use the effective credentials of the user to build the
authentication information in the ACCESS request used to determine access rights. It is the
effective user and group credentials that are used in subsequent read and write operations. See
the comments in Section 12.3.3 on page 190 for more information on this topic.

Protocols for Interworking: XNFS, Version 3W 205

NFSPROC3_ACCESS XNFS : Protocol Specification, Version 3

Many implementations do not directly support the ACCESS3_DELETE permission. Operating
systems like the UNIX system will ignore the ACCESS3_DELETE bit if set on an access request
on a non-directory object. In these systems, delete permission on a file is determined by the
access permissions on the directory in which the file resides, instead of being determined by the
permissions of the file itself. Thus, the bit mask returned for such a request will have the
ACCESS3_DELETE bit set to zero, indicating that the client does not have this permission.

Return Codes

NFS3ERR_IO I/O error. Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFS3ERR_STALE Invalid file handle. The file handle given in the arguments was invalid.
The file referred to by that file handle no longer exists or access to it has
been revoked.

NFS3ERR_BADHANDLE
Invalid NFS file handle. The file handle failed internal consistency
checks.

NFS3ERR_SERVERFAULT
An error occurred on the server, which does not map to any of the valid
NFS Version 3 protocol error values. The client should translate this into
an appropriate error. Clients based on an XPG system may choose to
translate this to EIO.

206 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_READLINK

Name
NFSPROC3_READLINK — Read From Symbolic Link

Call Arguments

struct READLINK3args {
nfs_fh3 symlink;

};

Return Arguments

struct READLINK3resok {
post_op_attr symlink_attributes;
nfspath3 data;

};

struct READLINK3resfail {
post_op_attr symlink_attributes;

};

union READLINK3res switch (nfsstat3 status) {
case NFS3_OK:

READLINK3resok resok;
default:

READLINK3resfail resfail;
};

RPC Procedure Description

READLINK3res
NFSPROC3_READLINK(READLINK3args) = 5;

Description
Procedure READLINK reads the data associated with a symbolic link. The data is a string that is
opaque to the server. That is, whether created by the NFS Version 3 protocol software from a
client or created locally on the server, the data in a symbolic link is not interpreted when created,
but is simply stored.

On entry, the arguments in READLINK3args are:

symlink The file handle for a symbolic link (file system object of type NF3LNK).

Upon successful return, READLINK3res.status is NFS3_OK and READLINK3res.resok contains:

data The data associated with the symbolic link.

symlink_attributes
The post-operation attributes for the symbolic link.

Otherwise, READLINK3res.status contains the error on failure and READLINK3res.resfail contains
the following:

symlink_attributes
The post-operation attributes for the symbolic link.

Implementation Guidance
A symbolic link is nominally a pointer to another file. The data is not necessarily interpreted by
the server, just stored in the file. It is possible for a client implementation to store a pathname
that is not meaningful to the server operating system in a symbolic link. A READLINK operation
returns the data to the client for interpretation. If different implementations want to share access
to symbolic links, then they must agree on the interpretation of the data in the symbolic link.

Protocols for Interworking: XNFS, Version 3W 207

NFSPROC3_READLINK XNFS : Protocol Specification, Version 3

The READLINK operation is only allowed on objects of type NF3LNK. The server should return
the NFS3ERR_INVAL error if the object is not of type NF3LNK.

Return Codes

NFS3ERR_IO I/O error. Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFS3ERR_INVAL Invalid argument or unsupported argument for an operation.

NFS3ERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation. Contrast this with NFS3ERR_PERM,
which restricts itself to owner permission failures.

NFS3ERR_STALE Invalid file handle. The file handle given in the arguments was invalid.
The file referred to by that file handle no longer exists or access to it has
been revoked.

NFS3ERR_BADHANDLE
Invalid NFS file handle. The file handle failed internal consistency
checks.

NFS3ERR_NOTSUPP
The operation is not supported.

NFS3ERR_SERVERFAULT
An error occurred on the server, which does not map to any of the valid
NFS Version 3 protocol error values. The client should translate this into
an appropriate error. Clients based on an XPG system may choose to
translate this to EIO.

208 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_READ

Name
NFSPROC3_READ — Read From File

Call Arguments

struct READ3args {
nfs_fh3 file;
offset3 offset;
count3 count;

};

Return Arguments

struct READ3resok {
post_op_attr file_attributes;
count3 count;
bool eof;
opaque data<>;

};

struct READ3resfail {
post_op_attr file_attributes;

};

union READ3res switch (nfsstat3 status) {
case NFS3_OK:

READ3resok resok;
default:

READ3resfail resfail;
};

RPC Procedure Description

READ3res
NFSPROC3_READ(READ3args) = 6;

Description
Procedure READ reads data from a file.

On entry, the arguments in READ3args are:

file The file handle of the file from which data is to be read. This must identify a file
system object of type NF3REG.

offset The position within the file at which the read is to begin. An offset of zero means
to read data starting at the beginning of the file. If offset is greater than or equal
to the size of the file, the status NFS3_OK is returned with count set to zero and
eof set to TRUE, subject to access permission checking.

count The number of bytes of data that are to be read. If count is zero, the READ will
succeed and return zero bytes of data, subject to access permission checking.
The count must be less than or equal to the value of the rtmax field in the FSINFO
reply structure for the file system that contains file . If greater, the server may
return only rtmax bytes, resulting in a short read.

Protocols for Interworking: XNFS, Version 3W 209

NFSPROC3_READ XNFS : Protocol Specification, Version 3

Upon successful return, READ3res.status is NFS3_OK and READ3res.resok contains:

file_attributes The attributes of the file on completion of the read.

count The number of bytes of data returned by the read.

eof If the read ended at the end-of-file (formally, in a correctly formed READ
request, if READ3args.offset plus READ3resok.count is equal to the size of the file),
eof is returned as TRUE ; otherwise it is FALSE. A successful READ of an empty
file will always return eof as TRUE.

data The counted data read from the file.

Otherwise, READ3res.status contains the error on failure and READ3res.resfail contains the
following:

file_attributes The post-operation attributes of the file.

Implementation Guidance
The nfsdata type used for the READ and WRITE operations in the NFS Version 2 protocol
defining the data portion of a request or reply has been changed to a variable-length opaque byte
array. The maximum size allowed by the protocol is now limited by what XDR and underlying
transports will allow. There are no artificial limits imposed by the NFS Version 3 protocol.
Consult the FSINFO procedure description for details.

It is possible for the server to return fewer than count bytes of data. If the server returns less than
the count requested and eof set to FALSE, the client should issue another READ to get the
remaining data. A server may return less data than requested under several circumstances. The
file may have been truncated by another client or perhaps on the server itself, changing the file
size from what the requesting client believes to be the case. This would reduce the actual
amount of data available to the client. It is possible that the server may back off the transfer size
and reduce the read request return. Server resource exhaustion may also occur, necessitating a
smaller read return.

Some NFS Version 2 protocol client implementations chose to interpret a short read response as
indicating end-of-file. The addition of the eof flag in the NFS Version 3 protocol provides a
correct way of handling end-of-file.

Some NFS Version 2 protocol server implementations incorrectly returned NFSERR_ISDIR if the
file system object type was not a regular file. The correct return value for the NFS Version 3
protocol is NFS3ERR_INVAL.

Return Codes

NFS3ERR_IO I/O error. Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFS3ERR_NXIO No such device or address.

NFS3ERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation. Contrast this with NFS3ERR_PERM,
which restricts itself to owner permission failures.

NFS3ERR_INVAL Invalid argument or unsupported argument for an operation. Two
examples are attempting a READLINK on an object other than a symbolic
link or attempting to SETATTR a time field on a server that does not
support this operation.

NFS3ERR_STALE Invalid file handle. The file handle given in the arguments was invalid.
The file referred to by that file handle no longer exists or access to it has

210 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_READ

been revoked.

NFS3ERR_BADHANDLE
Invalid NFS file handle. The file handle failed internal consistency
checks.

NFS3ERR_SERVERFAULT
An error occurred on the server, which does not map to any of the valid
NFS Version 3 protocol error values. The client should translate this into
an appropriate error. Clients based on an XPG system may choose to
translate this to EIO.

Protocols for Interworking: XNFS, Version 3W 211

NFSPROC3_WRITE XNFS : Protocol Specification, Version 3

Name
NFSPROC3_WRITE — Write to file

Call Arguments

enum stable_how {
UNSTABLE = 0,
DATA_SYNC = 1,
FILE_SYNC = 2

};

struct WRITE3args {
nfs_fh3 file;
offset3 offset;
count3 count;
stable_how stable;
opaque data<>;

};

Return Arguments

struct WRITE3resok {
wcc_data file_wcc;
count3 count;
stable_how committed;
writeverf3 verf;

};

struct WRITE3resfail {
wcc_data file_wcc;

};

union WRITE3res switch (nfsstat3 status) {
case NFS3_OK:

WRITE3resok resok;
default:

WRITE3resfail resfail;
};

RPC Procedure Description

WRITE3res
NFSPROC3_WRITE(WRITE3args) = 7;

Description
Procedure WRITE writes data to a file.

On entry, the arguments in WRITE3args are:

file The file handle for the file to which data is to be written. This must identify a file
system object of type NF3REG.

offset The position within the file at which the write is to begin. An offset of zero
means to write data starting at the beginning of the file.

count The number of bytes of data to be written. If count is zero, the WRITE will
succeed and return a count of zero, barring errors due to permission checking.
The size of data must be less than or equal to the value of the wtmax field in the
FSINFO reply structure for the file system that contains file . If greater, the server

212 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_WRITE

may write only wtmax bytes, resulting in a short write.

stable If stable is FILE_SYNC, the server must commit the data written plus all file
system metadata to stable storage before returning results. This corresponds to
the NFS Version 2 protocol semantics. Any other behaviour constitutes a
protocol violation. If stable is DATA_SYNC, then the server must commit all of
the data to stable storage and enough of the metadata to retrieve the data before
returning. The server implementor is free to implement DATA_SYNC in the
same fashion as FILE_SYNC, but with a possible performance drop. If stable is
UNSTABLE, the server may commit any part of the data and the metadata to
stable storage, including all or none, before returning a reply to the client. There
is no guarantee whether or when any uncommitted data will subsequently be
committed to stable storage. The only guarantees made by the server are that it
will not destroy any data without changing the value of verf and that it will not
commit the data and metadata at a level less than that requested by the client.
See Section 12.4.0 on page 251 for more information on if and when data is
committed to stable storage.

data The data to be written to the file.

Upon successful return, WRITE3res.status is NFS3_OK and WRITE3res.resok contains:

file_wcc Weak cache consistency data for the file. For a client that requires only the post-
write file attributes, these can be found in file_wcc.after .

count The number of bytes of data written to the file. The server may write fewer
bytes than requested. If so, the actual number of bytes written starting at
location offset is returned.

committed The server should return an indication of the level of commitment of the data
and metadata via committed . If the server committed all data and metadata to
stable storage, committed should be set to FILE_SYNC. If the level of
commitment was at least as strong as DATA_SYNC, then committed should be set
to DATA_SYNC. Otherwise, committed must be returned as UNSTABLE. If stable
was FILE_SYNC, then committed must also be FILE_SYNC; anything else
constitutes a protocol violation. If stable was DATA_SYNC, then committed may
be FILE_SYNC or DATA_SYNC; anything else constitutes a protocol violation. If
stable was UNSTABLE, then committed may be either FILE_SYNC, DATA_SYNC
or UNSTABLE.

verf This is a cookie that the client can use to determine whether the server has
changed state between a call to WRITE and a subsequent call to either WRITE or
COMMIT. This cookie must be consistent during a single instance of the NFS
Version 3 protocol server and must be unique between instances of the NFS
Version 3 protocol server, where uncommitted data may be lost.

Otherwise, WRITE3res.status contains the error on failure and WRITE3res.resfail contains the
following:

file_wcc Weak cache consistency data for the file. For a client that requires only the post-
write file attributes, these can be found in file_wcc.after . Even though the write
failed, full wcc_data is returned to allow the client to determine whether the
failed write resulted in any change to the file.

If a client writes data to the server with the stable argument set to UNSTABLE and the reply
yields a committed response of DATA_SYNC or UNSTABLE, the client will follow up some time
in the future with a COMMIT operation to synchronise outstanding asynchronous data and

Protocols for Interworking: XNFS, Version 3W 213

NFSPROC3_WRITE XNFS : Protocol Specification, Version 3

metadata with the server’s stable storage, barring client error. It is possible that due to client
crash or other error that a subsequent COMMIT will not be received by the server.

Implementation Guidance
The nfsdata type used for the READ and WRITE operations in the NFS Version 2 protocol
defining the data portion of a request or reply has been changed to a variable-length opaque byte
array. The maximum size allowed by the protocol is now limited by what XDR and underlying
transports will allow. There are no artificial limits imposed by the NFS Version 3 protocol.
Consult the FSINFO procedure description in Section 12.4.0 on page 246 for details.

It is possible for the server to write fewer than count bytes of data. In this case, the server should
not return an error unless no data was written at all. If the server writes less than count bytes,
the client should issue another WRITE to write the remaining data.

It is assumed that the act of writing data to a file will cause the mtime of the file to be updated.
However, the mtime of the file should not be changed unless the contents of the file are changed.
Thus, a WRITE request with count set to zero should not cause the mtime of the file to be
updated.

The NFS Version 3 protocol introduces safe asynchronous writes. The combination of WRITE
with stable set to UNSTABLE followed by a COMMIT addresses the performance bottleneck
found in the NFS Version 2 protocol, the need to synchronously commit all writes to stable
storage.

The definition of stable storage has been historically a point of contention. The following
expected properties of stable storage may help in resolving design issues in the implementation.
Stable storage is persistent storage that survives:

• Repeated power failures.

• Hardware failures (of any board, power supply and so on).

• Repeated software crashes, including reboot cycle.

This definition does not address failure of the stable storage module itself.

A cookie, verf , is defined to allow a client to detect different instances of an NFS Version 3
protocol server over which cached, uncommitted data may be lost. In the most likely case, the
verf allows the client to detect server reboots. This information is required so that the client can
safely determine whether the server could have lost cached data. If the server fails unexpectedly
and the client has uncommitted data from previous WRITE requests (done with the stable
argument set to UNSTABLE and in which the result committed was returned as UNSTABLE as
well) it may not have flushed cached data to stable storage. The burden of recovery is on the
client and the client will need to retransmit the data to the server.

A suggested verf cookie would be to use the time that the server was booted or the time the
server was last started (if restarting the server without a reboot results in lost buffers).

The committed field in the results allows the client to do more effective caching. If the server is
committing all WRITE requests to stable storage, then it should return with committed set to
FILE_SYNC, regardless of the value of the stable field in the arguments. A server that uses an
NVRAM accelerator may choose to implement this policy. The client can use this to increase the
effectiveness of the cache by discarding cached data that has already been committed on the
server.

Some implementations may return NFS3ERR_NOSPC instead of NFS3ERR_DQUOT when a
user’s quota is exceeded.

214 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_WRITE

Some NFS Version 2 protocol server implementations incorrectly returned NFSERR_ISDIR if the
file system object type was not a regular file. The correct return value for the NFS Version 3
protocol is NFS3ERR_INVAL.

Return Codes

NFS3ERR_IO I/O error. Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFS3ERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation. Contrast this with NFS3ERR_PERM,
which restricts itself to owner permission failures.

NFS3ERR_FBIG File too large. The operation would have caused a file to grow beyond
the server’s limit.

NFS3ERR_DQUOT Resource (quota) hard limit exceeded. The user’s resource limit on the
server has been exceeded.

NFS3ERR_NOSPC No space left on device. The operation would have caused the server’s
file system to exceed its limit.

NFS3ERR_ROFS Read-only file system. A modifying operation was attempted on a read-
only file system.

NFS3ERR_INVAL Invalid argument or unsupported argument for an operation. Two
examples are attempting a READLINK on an object other than a symbolic
link or attempting to SETATTR a time field on a server that does not
support this operation.

NFS3ERR_STALE Invalid file handle. The file handle given in the arguments was invalid.
The file referred to by that file handle no longer exists or access to it has
been revoked.

NFS3ERR_BADHANDLE
Invalid NFS file handle. The file handle failed internal consistency
checks.

NFS3ERR_SERVERFAULT
An error occurred on the server, which does not map to any of the valid
NFS Version 3 protocol error values. The client should translate this into
an appropriate error. Clients based on an XPG system may choose to
translate this to EIO.

Protocols for Interworking: XNFS, Version 3W 215

NFSPROC3_CREATE XNFS : Protocol Specification, Version 3

Name
NFSPROC3_CREATE — Create a File

Call Arguments

enum createmode3 {
UNCHECKED = 0,
GUARDED = 1,
EXCLUSIVE = 2

};

union createhow3 switch (createmode3 mode) {
case UNCHECKED:
case GUARDED:

sattr3 obj_attributes;
case EXCLUSIVE:

createverf3 verf;
};

struct CREATE3args {
diropargs3 where;
createhow3 how;

};

Return Arguments

struct CREATE3resok {
post_op_fh3 obj;
post_op_attr obj_attributes;
wcc_data dir_wcc;

};

struct CREATE3resfail {
wcc_data dir_wcc;

};

union CREATE3res switch (nfsstat3 status) {
case NFS3_OK:

CREATE3resok resok;
default:

CREATE3resfail resfail;
};

RPC Procedure Description

CREATE3res
NFSPROC3_CREATE(CREATE3args) = 8;

Description
Procedure CREATE creates a regular file.

On entry, the arguments in CREATE3args are:

where The location of the file to be created:

dir The file handle for the directory in which the file is to be created.

name The name that is to be associated with the created file. See Section 12.2.4 on
page 188 for more information on file names.

216 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_CREATE

When creating a regular file, there are three ways to create the file as defined by:

how A discriminated union describing how the server is to handle the file creation
along with the appropriate attributes:

mode One of UNCHECKED, GUARDED and EXCLUSIVE. UNCHECKED means that
the server will create the file without checking for the existence of a duplicate
file in the same directory. In this case, how.obj_attributes is a sattr3 describing the
initial attributes for the file. GUARDED specifies that the server will check for
the presence of a duplicate file before performing the create and will fail the
request with NFS3ERR_EXIST if a duplicate file exists. If the file does not exist,
the request is performed as described for UNCHECKED. EXCLUSIVE specifies
that the server is to follow exclusive creation semantics, using the verifier to
ensure exclusive creation of the target. No attributes may be provided in this
case, since the server may use the target file metadata to store the createverf3
verifier.

Upon successful return, CREATE3res.status is NFS3_OK and the results in CREATE3res.resok are:

obj The file handle of the newly created regular file.

obj_attributes The attributes of the regular file just created.

dir_wcc Weak cache consistency data for the directory where.dir. For a client that
requires on the post-CREATE directory attributes, these can be found in
dir_wcc.after .

Otherwise, CREATE3res.status contains the error on failure and CREATE3res.resfail contains the
following:

dir_wcc Weak cache consistency data for the directory where.dir. For a client that
requires only the post-CREATE directory attributes, these can be found in
dir_wcc.after . Even though the CREATE failed, full wcc_data is returned to allow
the client to determine whether the failing CREATE resulted in any change to the
directory.

Implementation Guidance
Unlike the NFS Version 2 protocol, in which certain fields in the initial attributes structure were
overloaded to indicate creation of devices and FIFOs in addition to regular files, this procedure
only supports the creation of regular files. The MKNOD procedure was introduced in the NFS
Version 3 protocol to handle creation of devices and FIFOs. Implementations should have no
reason in the NFS Version 3 protocol to overload CREATE semantics.

One aspect of the NFS Version 3 protocol CREATE procedure warrants particularly careful
consideration: the mechanism introduced to support the reliable exclusive creation of regular
files. The mechanism comes into play when how.mode is EXCLUSIVE. In this case, how.verf
contains a verifier that can reasonably be expected to be unique. A combination of a client
identifier, perhaps the client network address and a unique number generated by the client,
perhaps the RPC transaction identifier, may be appropriate.

If the file does not exist, the server creates the file and stores the verifier in stable storage. For file
systems that do not provide a mechanism for the storage of arbitrary file attributes, the server
may use one or more elements of the file metadata to store the verifier. The verifier must be
stored in stable storage to prevent erroneous failure on retransmission of the request. It is
assumed that an exclusive create is being performed because exclusive semantics are critical to
the application. Because of the expected usage, exclusive CREATE does not rely solely on the
normally volatile duplicate request cache for storage of the verifier. The duplicate request cache
in volatile storage does not survive a crash and may actually flush on a long network partition,

Protocols for Interworking: XNFS, Version 3W 217

NFSPROC3_CREATE XNFS : Protocol Specification, Version 3

opening failure windows. In the UNIX local file system environment, the expected storage
location for the verifier on creation is the metadata (time stamps) of the file. For this reason, an
exclusive file create may not include initial attributes because the server would have nowhere to
store the verifier.

If the server can not support these exclusive create semantics, possibly because of the
requirement to commit the verifier to stable storage, it should fail the CREATE request with the
NFS3ERR_NOTSUPP error.

During an exclusive CREATE request, if the file already exists, the server reconstructs the file’s
verifier and compares it with the verifier in the request. If they match, the server treats the
request as a success. The request is presumed to be a duplicate of an earlier, successful request
for which the reply was lost and that the server duplicate request cache mechanism did not
detect. If the verifiers do not match, the request is rejected with the status NFS3ERR_EXIST.

Once the client has performed a successful exclusive create, it must issue a SETATTR to set the
correct file attributes. Until it does so, it should not rely upon any of the file attributes, since the
server implementation may need to overload file metadata to store the verifier.

Use of the GUARDED attribute does not provide exactly-once semantics. In particular, if a reply
is lost and the server does not detect the retransmission of the request, the procedure can fail
with NFS3ERR_EXIST, even though the create was performed successfully.

See Section 12.2.4 on page 188 for more information on file names.

Return Codes

NFS3ERR_IO I/O error. Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFS3ERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation. Contrast this with NFS3ERR_PERM,
which restricts itself to owner permission failures.

NFS3ERR_EXIST File exists. The file specified already exists.

NFS3ERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFS3ERR_NOSPC No space left on device. The operation would have caused the server’s
file system to exceed its limit.

NFS3ERR_ROFS Read-only file system. A modifying operation was attempted on a read-
only file system.

NFS3ERR_NAMETOOLONG
The filename in an operation was too long.

NFS3ERR_DQUOT Resource (quota) hard limit exceeded. The user’s resource limit on the
server has been exceeded.

NFS3ERR_STALE Invalid file handle. The file handle given in the arguments was invalid.
The file referred to by that file handle no longer exists or access to it has
been revoked.

NFS3ERR_BADHANDLE
Invalid NFS file handle. The file handle failed internal consistency
checks.

NFS3ERR_NOTSUPP
The operation is not supported.

218 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_CREATE

NFS3ERR_SERVERFAULT
An error occurred on the server, which does not map to any of the valid
NFS Version 3 protocol error values. The client should translate this into
an appropriate error. Clients based on an XPG system may choose to
translate this to EIO.

Protocols for Interworking: XNFS, Version 3W 219

NFSPROC3_MKDIR XNFS : Protocol Specification, Version 3

Name
NFSPROC3_MKDIR — Create a Directory

Call Arguments

struct MKDIR3args {
diropargs3 where;
sattr3 attributes;

};

Return Arguments

struct MKDIR3resok {
post_op_fh3 obj;
post_op_attr obj_attributes;
wcc_data dir_wcc;

};

struct MKDIR3resfail {
wcc_data dir_wcc;

};

union MKDIR3res switch (nfsstat3 status) {
case NFS3_OK:

MKDIR3resok resok;
default:

MKDIR3resfail resfail;
};

RPC Procedure Description

MKDIR3res
NFSPROC3_MKDIR(MKDIR3args) = 9;

Description
Procedure MKDIR creates a new subdirectory.

On entry, the arguments in MKDIR3args are:

where The location of the subdirectory to be created:

dir The file handle for the directory in which the subdirectory is to be created.

name The name that is to be associated with the created subdirectory. See Section
12.2.4 on page 188 for more information on file names.

attributes The initial attributes for the subdirectory.

Upon successful return, MKDIR3res.status is NFS3_OK and the results in MKDIR3res.resok are:

obj The file handle for the newly created directory.

obj_attributes The attributes for the newly created subdirectory.

dir_wcc Weak cache consistency data for the directory where.dir. For a client that
requires only the post-MKDIR directory attributes, these can be found in
dir_wcc.after .

220 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_MKDIR

Otherwise, MKDIR3res.status contains the error on failure and MKDIR3res.resfail contains the
following:

dir_wcc Weak cache consistency data for the directory where.dir. For a client that
requires only the post-MKDIR directory attributes, these can be found in
dir_wcc.after . Even though the MKDIR failed, full wcc_data is returned to allow
the client to determine whether the failing MKDIR resulted in any change to the
directory.

Implementation Guidance
Many server implementations will not allow the filenames ‘‘.’’ or ‘‘. .’’ to be used as targets in a
MKDIR operation. In this case, the server should return NFS3ERR_EXIST. See Section 12.2.4 on
page 188 for more information on file names.

Return Codes

NFS3ERR_IO I/O error. Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFS3ERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation. Contrast this with NFS3ERR_PERM,
which restricts itself to owner permission failures.

NFS3ERR_EXIST File exists. The file specified already exists.

NFS3ERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFS3ERR_NOSPC No space left on device. The operation would have caused the server’s
file system to exceed its limit.

NFS3ERR_ROFS Read-only file system. A modifying operation was attempted on a read-
only file system.

NFS3ERR_NAMETOOLONG
The filename in an operation was too long.

NFS3ERR_DQUOT Resource (quota) hard limit exceeded. The user’s resource limit on the
server has been exceeded.

NFS3ERR_STALE Invalid file handle. The file handle given in the arguments was invalid.
The file referred to by that file handle no longer exists or access to it has
been revoked.

NFS3ERR_BADHANDLE
Invalid NFS file handle. The file handle failed internal consistency
checks.

NFS3ERR_NOTSUPP
The operation is not supported.

NFS3ERR_SERVERFAULT
An error occurred on the server, which does not map to any of the valid
NFS Version 3 protocol error values. The client should translate this into
an appropriate error. Clients based on an XPG system may choose to
translate this to EIO.

Protocols for Interworking: XNFS, Version 3W 221

NFSPROC3_SYMLINK XNFS : Protocol Specification, Version 3

Name
NFSPROC3_SYMLINK — Create a Symbolic Link

Call Arguments

struct symlinkdata3 {
sattr3 symlink_attributes;
nfspath3 symlink_data;

};

struct SYMLINK3args {
diropargs3 where;
symlinkdata3 symlink;

};

Return Arguments

struct SYMLINK3resok {
post_op_fh3 obj;
post_op_attr obj_attributes;
wcc_data dir_wcc;

};

struct SYMLINK3resfail {
wcc_data dir_wcc;

};

union SYMLINK3res switch (nfsstat3 status) {
case NFS3_OK:

SYMLINK3resok resok;
default:

SYMLINK3resfail resfail;
};

RPC Procedure Description

SYMLINK3res
NFSPROC3_SYMLINK(SYMLINK3args) = 10;

Description
Procedure SYMLINK creates a new symbolic link.

On entry, the arguments in SYMLINK3args are:

where The location of the symbolic link to be created:

dir The file handle for the directory in which the symbolic link is to be created.

name The name that is to be associated with the created symbolic link. See Section
12.2.4 on page 188 for more information on file names.

symlink The symbolic link to create.

symlink_attributes
The initial attributes for the symbolic link.

symlink_data The string containing the symbolic link data.

Upon successful return, SYMLINK3res.status is NFS3_OK and SYMLINK3res.resok contains:

obj The file handle for the newly created symbolic link.

222 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_SYMLINK

obj_attributes The attributes for the newly created symbolic link.

dir_wcc Weak cache consistency data for the directory where.dir. For a client that
requires only the post-SYMLINK directory attributes, these can be found in
dir_wcc.after .

Otherwise, SYMLINK3res.status contains the error on failure and SYMLINK3res.resfail contains
the following:

dir_wcc Weak cache consistency data for the directory where.dir. For a client that
requires only the post-SYMLINK directory attributes, these can be found in
dir_wcc.after . Even though the SYMLINK failed, full wcc_data is returned to
allow the client to determine whether the failing SYMLINK changed the
directory.

Implementation Guidance
See Section 12.2.4 on page 188 for more information on file names.

For symbolic links, the actual file system node and its contents are expected to be created in a
single atomic operation. That is, once the symbolic link is visible, there must not be a window
where a READLINK would fail or return incorrect data.

Return Codes

NFS3ERR_IO I/O error. Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFS3ERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation. Contrast this with NFS3ERR_PERM,
which restricts itself to owner permission failures.

NFS3ERR_EXIST File exists. The file specified already exists.

NFS3ERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFS3ERR_NOSPC No space left on device. The operation would have caused the server’s
file system to exceed its limit.

NFS3ERR_ROFS Read-only file system. A modifying operation was attempted on a read-
only file system.

NFS3ERR_NAMETOOLONG
The filename in an operation was too long.

NFS3ERR_DQUOT Resource (quota) hard limit exceeded. The user’s resource limit on the
server has been exceeded.

NFS3ERR_STALE Invalid file handle. The file handle given in the arguments was invalid.
The file referred to by that file handle no longer exists or access to it has
been revoked.

NFS3ERR_BADHANDLE
Invalid NFS file handle. The file handle failed internal consistency
checks.

NFS3ERR_NOTSUPP
The operation is not supported.

NFS3ERR_SERVERFAULT
An error occurred on the server, which does not map to any of the valid

Protocols for Interworking: XNFS, Version 3W 223

NFSPROC3_SYMLINK XNFS : Protocol Specification, Version 3

NFS Version 3 protocol error values. The client should translate this into
an appropriate error. Clients based on an XPG system may choose to
translate this to EIO.

224 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_MKNOD

Name
NFSPROC3_MKNOD — Create a Special Device

Call Arguments

struct devicedata3 {
sattr3 dev_attributes;
specdata3 spec;

};

union mknoddata3 switch (ftype3 type) {
case NF3CHR:
case NF3BLK:

devicedata3 device;
case NF3SOCK:
case NF3FIFO:

sattr3 pipe_attributes;
default:

void;
};

struct MKNOD3args {
diropargs3 where;
mknoddata3 what;

};

Return Arguments

struct MKNOD3resok {
post_op_fh3 obj;
post_op_attr obj_attributes;
wcc_data dir_wcc;

};

struct MKNOD3resfail {
wcc_data dir_wcc;

};

union MKNOD3res switch (nfsstat3 status) {
case NFS3_OK:

MKNOD3resok resok;
default:

MKNOD3resfail resfail;
};

RPC Procedure Description

MKNOD3res
NFSPROC3_MKNOD(MKNOD3args) = 11;

Description
Procedure MKNOD creates a new special file of the type what.type . Special files can be device
files or named pipes.

On entry, the arguments in MKNOD3args are:

where The location of the special file to be created:

Protocols for Interworking: XNFS, Version 3W 225

NFSPROC3_MKNOD XNFS : Protocol Specification, Version 3

dir The file handle for the directory in which the special file is to be created.

name The name that is to be associated with the created special file. See Section 12.2.4
on page 188 for more information on file names.

what A discriminated union identifying the type of the special file to be created along
with the data and attributes appropriate to the type of the special file:

type The type of the object to be created.

When creating a character special file (what.type is NF3CHR) or a block special
file (what.type is NF3BLK), what includes:

device A devicedata3 structure with the following components:

dev_attributes
The initial attributes for the special file.

spec The major number stored in device.spec.specdata1 and the minor
number stored in device.spec.specdata2 .

When creating a socket (what.type is NF3SOCK) or a FIFO (what.type is
NF3FIFO), what includes:

pipe_attributes The initial attributes for the special file.

Upon successful return, MKNOD3res.status is NFS3_OK and MKNOD3res.resok contains:

obj The file handle for the newly created special file.

obj_attributes The attributes for the newly created special file.

dir_wcc Weak cache consistency data for the directory where.dir. For a client that
requires only the post-MKNOD directory attributes, these can be found in
dir_wcc.after .

Otherwise, MKNOD3res.status contains the error on failure and MKNOD3res.resfail contains the
following:

dir_wcc Weak cache consistency data for the directory where.dir. For a client that
requires only the post-MKNOD directory attributes, these can be found in
dir_wcc.after . Even though the MKNOD failed, full wcc_data is returned to allow
the client to determine whether the failing MKNOD changed the directory.

Implementation Guidance
See Section 12.2.4 on page 188 for more information on file names.

Without explicit support for special file type creation in the NFS Version 2 protocol, fields in the
CREATE arguments were overloaded to indicate creation of certain types of objects. This
overloading is not necessary in the NFS Version 3 protocol.

If the server does not support any of the defined types, the NFS3ERR_NOTSUPP error should be
returned. Otherwise, if the server does not support the target type or the target type is invalid,
the NFS3ERR_BADTYPE error should be returned. Note that NF3REG, NF3DIR and NF3LNK
are invalid types for MKNOD. The procedures, CREATE, MKDIR and SYMLINK should be used
to create these file types, respectively, instead of MKNOD.

Return Codes

NFS3ERR_IO I/O error. Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

226 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_MKNOD

NFS3ERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation. Contrast this with NFS3ERR_PERM,
which restricts itself to owner permission failures.

NFS3ERR_EXIST File exists. The file specified already exists.

NFS3ERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFS3ERR_NOSPC No space left on device. The operation would have caused the server’s
file system to exceed its limit.

NFS3ERR_ROFS Read-only file system. A modifying operation was attempted on a read-
only file system.

NFS3ERR_NAMETOOLONG
The filename in an operation was too long.

NFS3ERR_DQUOT Resource (quota) hard limit exceeded. The user’s resource limit on the
server has been exceeded.

NFS3ERR_STALE Invalid file handle. The file handle given in the arguments was invalid.
The file referred to by that file handle no longer exists or access to it has
been revoked.

NFS3ERR_BADHANDLE
Invalid NFS file handle. The file handle failed internal consistency
checks.

NFS3ERR_NOTSUPP
The operation is not supported.

NFS3ERR_SERVERFAULT
An error occurred on the server, which does not map to any of the valid
NFS Version 3 protocol error values. The client should translate this into
an appropriate error. Clients based on an XPG system may choose to
translate this to EIO.

NFS3ERR_BADTYPE
An attempt was made to create an object of a type not supported by the
server.

Protocols for Interworking: XNFS, Version 3W 227

NFSPROC3_REMOVE XNFS : Protocol Specification, Version 3

Name
NFSPROC3_REMOVE — Remove a File

Call Arguments

struct REMOVE3args {
diropargs3 object;

};

Return Arguments

struct REMOVE3resok {
wcc_data dir_wcc;

};

struct REMOVE3resfail {
wcc_data dir_wcc;

};

union REMOVE3res switch (nfsstat3 status) {
case NFS3_OK:

REMOVE3resok resok;
default:

REMOVE3resfail resfail;
};

RPC Procedure Description

REMOVE3res
NFSPROC3_REMOVE(REMOVE3args) = 12;

Description
Procedure REMOVE removes (deletes) an entry from a directory. If the entry in the directory
was the last reference to the corresponding file system object, the object may be destroyed.

On entry, the arguments in REMOVE3args are:

object A diropargs3 structure identifying the entry to be removed:

dir The file handle for the directory from which the entry is to be removed.

name The name of the entry to be removed. See Section 12.2.4 on page 188 for more
information on file names.

Upon successful return, REMOVE3res.status is NFS3_OK and REMOVE3res.resok contains:

dir_wcc Weak cache consistency data for the directory object.dir . For a client that requires
only the post-REMOVE directory attributes, these can be found in dir_wcc.after .

Otherwise, REMOVE3res.status contains the error on failure and REMOVE3res.resfail contains the
following:

dir_wcc Weak cache consistency data for the directory object.dir . For a client that requires
only the post-REMOVE directory attributes, these can be found in dir_wcc.after .

Even though the REMOVE failed, full wcc_data is returned to allow the client to
determine whether the failing REMOVE changed the directory.

228 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_REMOVE

Implementation Guidance
In general, REMOVE is intended to remove non-directory file objects and RMDIR is to be used to
remove directories. However, REMOVE can be used to remove directories, subject to
restrictions imposed by either the client or server interfaces. This had been a source of confusion
in the NFS Version 2 protocol.

The concept of last reference is server specific. However, if the nlink field in the previous
attributes of the object had the value 1, the client should not rely on referring to the object via a
file handle. Likewise, the client should not rely on the resources (disk space, directory entry and
so on) formerly associated with the object becoming immediately available. Thus, if a client
needs to be able to continue to access a file after using REMOVE to remove it, the client must
take steps to make sure that the file will still be accessible. The usual mechanism used is to use
RENAME to rename the file from its old name to a new hidden name.

See Section 12.2.4 on page 188 for more information on file names.

Return Codes

NFS3ERR_NOENT No such file or directory. The file or directory name specified does not
exist.

NFS3ERR_IO I/O error. Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFS3ERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation. Contrast this with NFS3ERR_PERM,
which restricts itself to owner permission failures.

NFS3ERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFS3ERR_NAMETOOLONG
The filename in an operation was too long.

NFS3ERR_ROFS Read-only file system. A modifying operation was attempted on a read-
only file system.

NFS3ERR_STALE Invalid file handle. The file handle given in the arguments was invalid.
The file referred to by that file handle no longer exists or access to it has
been revoked.

NFS3ERR_BADHANDLE
Invalid NFS file handle. The file handle failed internal consistency
checks.

NFS3ERR_SERVERFAULT
An error occurred on the server, which does not map to any of the valid
NFS Version 3 protocol error values. The client should translate this into
an appropriate error. Clients based on an XPG system may choose to
translate this to EIO.

Protocols for Interworking: XNFS, Version 3W 229

NFSPROC3_RMDIR XNFS : Protocol Specification, Version 3

Name
NFSPROC3_RMDIR — Remove a Directory

Call Arguments

struct RMDIR3args {
diropargs3 object;

};

Return Arguments

struct RMDIR3resok {
wcc_data dir_wcc;

};

struct RMDIR3resfail {
wcc_data dir_wcc;

};

union RMDIR3res switch (nfsstat3 status) {
case NFS3_OK:

RMDIR3resok resok;
default:

RMDIR3resfail resfail;
};

RPC Procedure Description

RMDIR3res
NFSPROC3_RMDIR(RMDIR3args) = 13;

Description
Procedure RMDIR removes (deletes) a subdirectory from a directory. If the directory entry of
the subdirectory is the last reference to the subdirectory, the subdirectory may be destroyed.

On entry, the arguments in RMDIR3args are:

object A diropargs3 structure identifying the directory entry to be removed:

dir The file handle for the directory from which the subdirectory is to be removed.

name The name of the subdirectory to be removed. See Section 12.2.4 on page 188 for
more information on file names.

Upon successful return, RMDIR3res.status is NFS3_OK and RMDIR3res.resok contains:

dir_wcc Weak cache consistency data for the directory object.dir . For a client that requires
only the post-RMDIR directory attributes, these can be found in dir_wcc.after .

Otherwise, RMDIR3res.status contains the error on failure and RMDIR3res.resfail contains the
following:

dir_wcc Weak cache consistency data for the directory object.dir . For a client that requires
only the post-RMDIR directory attributes, these can be found in dir_wcc.after .

Note that even though the RMDIR failed, full wcc_data is returned to allow the
client to determine whether the failing RMDIR changed the directory.

230 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_RMDIR

Implementation Guidance
Note that on some servers, removal of a non-empty directory is disallowed.

On some servers, the filename ‘‘.’’ is invalid. These servers will return the NFS3ERR_INVAL
error. On some servers, the filename ‘‘. .’’ is invalid. These servers will return the
NFS3ERR_EXIST error. This would seem inconsistent, but allows these servers to comply with
their own specific interface definitions. Clients must be prepared to handle both cases.

The client should not rely on the resources (disk space, directory entry and so on) formerly
associated with the directory becoming immediately available.

Return Codes

NFS3ERR_NOENT No such file or directory. The file or directory name specified does not
exist.

NFS3ERR_IO I/O error. Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFS3ERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation. Contrast this with NFS3ERR_PERM,
which restricts itself to owner permission failures.

NFS3ERR_INVAL Invalid argument or unsupported argument for an operation. Two
examples are attempting a READLINK on an object other than a symbolic
link or attempting to SETATTR a time field on a server that does not
support this operation.

NFS3ERR_EXIST File exists. The file specified already exists.

NFS3ERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFS3ERR_NAMETOOLONG
The filename in an operation was too long.

NFS3ERR_ROFS Read-only file system. A modifying operation was attempted on a read-
only file system.

NFS3ERR_NOTEMPTY
An attempt was made to remove a directory that was not empty.

NFS3ERR_STALE Invalid file handle. The file handle given in the arguments was invalid.
The file referred to by that file handle no longer exists or access to it has
been revoked.

NFS3ERR_BADHANDLE
Invalid NFS file handle. The file handle failed internal consistency
checks.

NFS3ERR_NOTSUPP
The operation is not supported.

NFS3ERR_SERVERFAULT
An error occurred on the server, which does not map to any of the valid
NFS Version 3 protocol error values. The client should translate this into
an appropriate error. Clients based on an XPG system may choose to
translate this to EIO.

Protocols for Interworking: XNFS, Version 3W 231

NFSPROC3_RENAME XNFS : Protocol Specification, Version 3

Name
NFSPROC3_RENAME — Rename a File or Directory

Call Arguments

struct RENAME3args {
diropargs3 from;
diropargs3 to;

};

Return Arguments

struct RENAME3resok {
wcc_data fromdir_wcc;
wcc_data todir_wcc;

};

struct RENAME3resfail {
wcc_data fromdir_wcc;
wcc_data todir_wcc;

};

union RENAME3res switch (nfsstat3 status) {
case NFS3_OK:

RENAME3resok resok;
default:

RENAME3resfail resfail;
};

RPC Procedure Description

RENAME3res
NFSPROC3_RENAME(RENAME3args) = 14;

Description
Procedure RENAME renames the file identified by from.name in the directory from.dir , to to.name
in the directory to.dir . The operation is required to be atomic to the client. The to.dir and from.dir
must reside on the same file system and server (in other words, the fsid fields in the attributes for
the directories must be the same).

On entry, the arguments in RENAME3args are:

from A diropargs3 structure identifying the source (the file system object to be
renamed):

from.dir The file handle for the directory from which the entry is to be renamed.

from.name The name of the entry that identifies the object to be renamed. See Section 12.2.4
on page 188 for more information on file names.

to A diropargs3 structure identifying the target (the new name of the object):

to.dir The file handle for the directory to which the object is to be renamed.

to.name The new name for the object. See Section 12.2.4 on page 188 for more
information on file names.

If the directory to.dir already contains an entry with the name to.name the source object must be
compatible with the target: either both are non-directories or both are directories and the target
must be empty. If compatible, the existing target is removed before the rename occurs. If they
are not compatible or if the target is a directory but not empty, the server should return the

232 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_RENAME

NFS3ERR_EXIST error.

Upon successful return, RENAME3res.status is NFS3_OK and RENAME3res.resok contains:

fromdir_wcc Weak cache consistency data for the directory from.dir .

todir_wcc Weak cache consistency data for the directory to.dir .

Otherwise, RENAME3res.status contains the error on failure and RENAME3res.resfail contains the
following:

fromdir_wcc Weak cache consistency data for the directory from.dir .

todir_wcc Weak cache consistency data for the directory to.dir .

Implementation Guidance
If to.dir and from.dir reside on different file systems, the NFS3ERR_XDEV error is returned. Even
though the operation is atomic, the status NFS3ERR_MLINK may be returned if the server used
a ‘‘unlink/link/unlink’’ sequence internally.

A file handle may or may not become stale on a rename. However, server implementors are
strongly encouraged to attempt to keep file handles from becoming stale in this fashion.

On some servers, the filenames ‘‘.’’ and ‘‘. .’’ are invalid as either from.name or to.name. In
addition, neither from.name nor to.name can be an alias for from.dir . These servers will return the
NFS3ERR_INVAL error in these cases.

See Section 12.2.4 on page 188 for more information on file names.

Return Codes

NFS3ERR_NOENT No such file or directory. The file or directory name specified does not
exist.

NFS3ERR_IO I/O error. Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFS3ERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation. Contrast this with NFS3ERR_PERM,
which restricts itself to owner permission failures.

NFS3ERR_EXIST File exists. The file specified already exists.

NFS3ERR_XDEV The caller attempted to do a cross-device hard link.

NFS3ERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFS3ERR_ISDIR Is a directory. The caller specified a directory in a non-directory
operation.

NFS3ERR_INVAL Invalid argument or unsupported argument for an operation. Two
examples are attempting a READLINK on an object other than a symbolic
link or attempting to SETATTR a time field on a server that does not
support this operation.

NFS3ERR_NOSPC No space left on device. The operation would have caused the server’s
file system to exceed its limit.

NFS3ERR_ROFS Read-only file system. A modifying operation was attempted on a read-
only file system.

Protocols for Interworking: XNFS, Version 3W 233

NFSPROC3_RENAME XNFS : Protocol Specification, Version 3

NFS3ERR_MLINK Too many hard links.

NFS3ERR_NAMETOOLONG
The filename in an operation was too long.

NFS3ERR_NOTEMPTY
An attempt was made to remove a directory that was not empty.

NFS3ERR_DQUOT Resource (quota) hard limit exceeded. The user’s resource limit on the
server has been exceeded.

NFS3ERR_STALE Invalid file handle. The file handle given in the arguments was invalid.
The file referred to by that file handle no longer exists or access to it has
been revoked.

NFS3ERR_BADHANDLE
Invalid NFS file handle. The file handle failed internal consistency
checks.

NFS3ERR_NOTSUPP
The operation is not supported.

NFS3ERR_SERVERFAULT
An error occurred on the server, which does not map to any of the valid
NFS Version 3 protocol error values. The client should translate this into
an appropriate error. Clients based on an XPG system may choose to
translate this to EIO.

234 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_LINK

Name
NFSPROC3_LINK — Create Link to an Object

Call Arguments

struct LINK3args {
nfs_fh3 file;
diropargs3 link;

};

Return Arguments

struct LINK3resok {
post_op_attr file_attributes;
wcc_data linkdir_wcc;

};

struct LINK3resfail {
post_op_attr file_attributes;
wcc_data linkdir_wcc;

};

union LINK3res switch (nfsstat3 status) {
case NFS3_OK:

LINK3resok resok;
default:

LINK3resfail resfail;
};

RPC Procedure Description

LINK3res
NFSPROC3_LINK(LINK3args) = 15;

Description
Procedure LINK creates a hard link from file to link.name , in the directory link.dir . Both file and
link.dir must reside on the same file system and server.

On entry, the arguments in LINK3args are:

file The file handle for the existing file system object.

link The location of the link to be created:

link.dir The file handle for the directory in which the link is to be created.

link.name The name that is to be associated with the created link. See Section 12.2.4 on
page 188 for more information on file names.

Upon successful return, LINK3res.status is NFS3_OK and LINK3res.resok contains:

file_attributes
The post-operation attributes of the file system object identified by file .

linkdir_wcc Weak cache consistency data for the directory link.dir .

Otherwise, LINK3res.status contains the error on failure and LINK3res.resfail contains the
following:

file_attributes
The post-operation attributes of the file system object identified by file .

Protocols for Interworking: XNFS, Version 3W 235

NFSPROC3_LINK XNFS : Protocol Specification, Version 3

linkdir_wcc Weak cache consistency data for the directory link.dir .

Implementation Guidance
Changes to any property of the hard-linked files are reflected in all of the linked files. When a
hard link is made to a file, the attributes for the file should have a value for nlink that is one
greater than the value before the LINK.

The comments under RENAME regarding object and target residing on the same file system
apply here as well. The comments regarding the target name applies as well. See Section 12.2.4
on page 188 for more information on file names.

Return Codes

NFS3ERR_IO I/O error. Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFS3ERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation. Contrast this with NFS3ERR_PERM,
which restricts itself to owner permission failures.

NFS3ERR_EXIST File exists. The file specified already exists.

NFS3ERR_XDEV The caller attempted to do a cross-device hard link.

NFS3ERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFS3ERR_INVAL Invalid argument or unsupported argument for an operation. Two
examples are attempting a READLINK on an object other than a symbolic
link or attempting to SETATTR a time field on a server that does not
support this operation.

NFS3ERR_NOSPC No space left on device. The operation would have caused the server’s
file system to exceed its limit.

NFS3ERR_ROFS Read-only file system. A modifying operation was attempted on a read-
only file system.

NFS3ERR_MLINK Too many hard links.

NFS3ERR_NAMETOOLONG
The filename in an operation was too long.

NFS3ERR_DQUOT Resource (quota) hard limit exceeded. The user’s resource limit on the
server has been exceeded.

NFS3ERR_STALE Invalid file handle. The file handle given in the arguments was invalid.
The file referred to by that file handle no longer exists or access to it has
been revoked.

NFS3ERR_BADHANDLE
Invalid NFS file handle. The file handle failed internal consistency
checks.

NFS3ERR_NOTSUPP
The operation is not supported.

236 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_LINK

NFS3ERR_SERVERFAULT
An error occurred on the server, which does not map to any of the valid
NFS Version 3 protocol error values. The client should translate this into
an appropriate error. Clients based on an XPG system may choose to
translate this to EIO.

Protocols for Interworking: XNFS, Version 3W 237

NFSPROC3_READDIR XNFS : Protocol Specification, Version 3

Name
NFSPROC3_READDIR — Read From Directory

Call Arguments

struct READDIR3args {
nfs_fh3 dir;
cookie3 cookie;
cookieverf3 cookieverf;
count3 count;

};

Return Arguments

struct entry3 {
fileid3 fileid;
filename3 name;
cookie3 cookie;
entry3 *nextentry;

};

struct dirlist3 {
entry3 *entries;
bool eof;

};

struct READDIR3resok {
post_op_attr dir_attributes;
cookieverf3 cookieverf;
dirlist3 reply;

};

struct READDIR3resfail {
post_op_attr dir_attributes;

};

union READDIR3res switch (nfsstat3 status) {
case NFS3_OK:

READDIR3resok resok;
default:

READDIR3resfail resfail;
};

RPC Procedure Description

READDIR3res
NFSPROC3_READDIR(READDIR3args) = 16;

Description
Procedure READDIR retrieves a variable number of entries, in sequence, from a directory and
returns the name and file identifier for each, with information to allow the client to request
additional directory entries in a subsequent READDIR request.

On entry, the arguments in READDIR3args are:

dir The file handle for the directory to be read.

cookie An opaque value identifying a point in a directory The client sets it to zero in the
first request to read the directory. On subsequent requests, it should be a cookie

238 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_READDIR

as returned by the server.

cookieverf An opaque value verifying the value of the cookie . The client sets it to zero in the
first request to read the directory. On subsequent requests, it should be a
cookieverf , as returned by the server. The cookieverf must match that returned by
the READDIR in which the cookie was acquired.

count The maximum size of the READDIR3resok structure, in bytes. The size must
include all XDR overhead. The server may return fewer than count bytes of data.

Upon successful return, READDIR3res.status is NFS3_OK and READDIR3res.resok contains:

dir_attributes The attributes of the directory dir .

cookieverf The cookie verifier.

reply The directory list:

entries Zero or more directory (entry3) entries.

eof TRUE if the last member of reply.entries is the last entry in the directory or the list
reply.entries is empty and the cookie corresponded to the end of the directory. If
FALSE, there may be more entries to read.

Otherwise, READDIR3res.status contains the error on failure and READDIR3res.resfail contains
the following:

dir_attributes The attributes of the directory dir .

Implementation Guidance
In the NFS Version 2 protocol, each directory entry returned included a cookie identifying a
point in the directory. By including this cookie in a subsequent READDIR, the client could
resume the directory read at any point in the directory. One problem with this scheme was that
there was no easy way for a server to verify that a cookie was valid. If two READDIRs were
separated by one or more operations that changed the directory in some way (for example,
reordering or compressing it), it was possible that the second READDIR could miss entries, or
process entries more than once. If the cookie was no longer usable, for example, pointing into
the middle of a directory entry, the server would have to either round the cookie down to the
cookie of the previous entry or round it up to the cookie of the next entry in the directory. Either
way would possibly lead to incorrect results and the client would be unaware that any problem
existed.

In the NFS Version 3 protocol, each READDIR request includes both a cookie and a cookie
verifier. For the first call, both are set to zero. The response includes a new cookie verifier, with
a cookie per entry. For subsequent READDIRs, the client must present both the cookie and the
corresponding cookie verifier. If the server detects that the cookie is no longer valid, the server
will reject the READDIR request with the status NFS3ERR_BAD_COOKIE. The client should be
careful to avoid holding directory entry cookies across operations that modify the directory
contents, such as REMOVE and CREATE.

One implementation of the cookie-verifier mechanism might be for the server to use the
modification time of the directory, but this might be overly restrictive. A better approach would
be to record the time of the last directory modification that changed the directory organisation in
a way that would make it impossible to interpret a cookie reliably. Servers in which directory
cookies are always valid are free to use zero as the verifier always.

The server may return fewer than count bytes of XDR-encoded entries. The count specified by
the client in the request should be greater than or equal to FSINFO dtpref.

Protocols for Interworking: XNFS, Version 3W 239

NFSPROC3_READDIR XNFS : Protocol Specification, Version 3

Since UNIX clients give a special meaning to the fileid value zero, UNIX clients should be careful
to map zero fileid values to some other value and servers should try to avoid sending a zero
fileid .

Return Codes

NFS3ERR_IO I/O error. Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFS3ERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation. Contrast this with NFS3ERR_PERM,
which restricts itself to owner permission failures.

NFS3ERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFS3ERR_BAD_COOKIE
A READDIR or READDIRPLUS cookie is stale.

NFS3ERR_TOOSMALL
The buffer or request is too small.

NFS3ERR_STALE Invalid file handle. The file handle given in the arguments was invalid.
The file referred to by that file handle no longer exists or access to it has
been revoked.

NFS3ERR_BADHANDLE
Invalid NFS file handle. The file handle failed internal consistency
checks.

NFS3ERR_SERVERFAULT
An error occurred on the server, which does not map to any of the valid
NFS Version 3 protocol error values. The client should translate this into
an appropriate error. Clients based on an XPG system may choose to
translate this to EIO.

240 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_READDIRPLUS

Name
NFSPROC3_READDIRPLUS — Extended Read From Directory

Call Arguments

struct READDIRPLUS3args {
nfs_fh3 dir;
cookie3 cookie;
cookieverf3 cookieverf;
count3 dircount;
count3 maxcount;

};

Return Arguments

struct entryplus3 {
fileid3 fileid;
filename3 name;
cookie3 cookie;
post_op_attr name_attributes;
post_op_fh3 name_handle;
entryplus3 *nextentry;

};

struct dirlistplus3 {
entryplus3 *entries;
bool eof;

};

struct READDIRPLUS3resok {
post_op_attr dir_attributes;
cookieverf3 cookieverf;
dirlistplus3 reply;

};

struct READDIRPLUS3resfail {
post_op_attr dir_attributes;

};

union READDIRPLUS3res switch (nfsstat3 status) {
case NFS3_OK:

READDIRPLUS3resok resok;
default:

READDIRPLUS3resfail resfail;
};

RPC Procedure Description

READDIRPLUS3res
NFSPROC3_READDIRPLUS(READDIRPLUS3args) = 17;

Description
Procedure READDIRPLUS retrieves a variable number of entries from a file system directory
and returns complete information about each along with information to allow the client to
request additional directory entries in a subsequent READDIRPLUS. READDIRPLUS differs
from READDIR only in the amount of information returned for each entry. In READDIR, each
entry returns the filename and the fileid. In READDIRPLUS, each entry returns the name, the
fileid , attributes (including the fileid) and file handle.

Protocols for Interworking: XNFS, Version 3W 241

NFSPROC3_READDIRPLUS XNFS : Protocol Specification, Version 3

On entry, the arguments in READDIRPLUS3args are:

dir The file handle for the directory to be read.

cookie An opaque value identifying a point in a directory The client sets it to zero in the
first request to read the directory. On subsequent requests, it should be a cookie
as returned by the server.

cookieverf An opaque value verifying the value of the cookie . The client sets it to zero in the
first request to read the directory. On subsequent requests, it should be a
cookieverf , as returned by the server. The cookieverf must match that returned by
the READDIRPLUS call in which the cookie was acquired.

dircount The maximum number of bytes of directory information to be returned. This
number does not include the size of the attributes and file handle portions of the
result.

maxcount The maximum size of the READDIRPLUS3resok structure, in bytes. The size
must include all XDR overhead. The server may return fewer than maxcount
bytes of data.

Upon successful return, READDIRPLUS3res.status is NFS3_OK and READDIRPLUS3res.resok
contains:

dir_attributes The attributes of the directory dir .

cookieverf The cookie verifier.

reply The directory list:

entries Zero or more directory (entryplus3) entries.

eof TRUE if the last member of reply.entries is the last entry in the directory or the list
reply.entries is empty and the cookie corresponded to the end of the directory. If
FALSE, there may be more entries to read.

Otherwise, READDIRPLUS3res.status contains the error on failure and READDIRPLUS3res.resfail
contains the following:

dir_attributes The attributes of the directory dir .

Implementation Guidance
Issues that need to be understood for this procedure include increased cache flushing activity on
the client (as new file handles are returned with names that are entered into caches) and over-
the-wire overhead versus expected subsequent LOOKUP elimination. This procedure may
improve performance for directory browsing where attributes are always required (such as for
the Apple Macintosh operating system and for MS-DOS).

The dircount and maxcount fields are included as an optimisation. Consider a READDIRPLUS
call on a UNIX operating system implementation for 1048 bytes; the reply does not contain
many entries because of the overhead due to attributes and file handles. An alternative is to
issue a READDIRPLUS call for 8192 bytes and then only use the first 1048 bytes of directory
information. However, the server doesn’t know that all that is needed is 1048 bytes of directory
information (as would be returned by READDIR). It sees the 8192 byte request and issues a
VOP_READDIR for 8192 bytes. It then steps through all of those directory entries, obtaining
attributes and file handles for each entry. When it encodes the result, the server only encodes
until it gets 8192 bytes of results, which include the attributes and file handles. Thus, it has done
a larger VOP_READDIR and many more attribute fetches than it needed to. The ratio of the
directory entry size to the size of the attributes plus the size of the file handle is usually at least 8
to 1. The server has done much more work than it needed to.

242 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_READDIRPLUS

The solution to this problem is for the client to provide two counts to the server. The first is the
number of bytes of directory information that the client really wants, dircount . The second is the
maximum number of bytes in the result, including the attributes and file handles, maxcount .
Thus, the server will issue a VOP_READDIR for only the number of bytes that the client really
wants to get, not an inflated number. This should help to reduce the size of VOP_READDIR
requests on the server, thus reducing the amount of work done there, and to reduce the number
of VOP_LOOKUP, VOP_GETATTR and other calls done by the server to construct attributes and
file handles.

Return Codes

NFS3ERR_IO I/O error. Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFS3ERR_ACCES Permission denied. The caller does not have the correct permission to
perform the requested operation. Contrast this with NFS3ERR_PERM,
which restricts itself to owner permission failures.

NFS3ERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFS3ERR_BAD_COOKIE
A READDIR or READDIRPLUS cookie is stale.

NFS3ERR_TOOSMALL
The buffer or request is too small.

NFS3ERR_STALE Invalid file handle. The file handle given in the arguments was invalid.
The file referred to by that file handle no longer exists or access to it has
been revoked.

NFS3ERR_BADHANDLE
Invalid NFS file handle. The file handle failed internal consistency
checks.

NFS3ERR_NOTSUPP
The operation is not supported.

NFS3ERR_SERVERFAULT
An error occurred on the server, which does not map to any of the valid
NFS Version 3 protocol error values. The client should translate this into
an appropriate error. Clients based on an XPG system may choose to
translate this to EIO.

Protocols for Interworking: XNFS, Version 3W 243

NFSPROC3_FSSTAT XNFS : Protocol Specification, Version 3

Name
NFSPROC3_FSSTAT — Get Dynamic File System Information

Call Arguments

struct FSSTAT3args {
nfs_fh3 fsroot;

};

Return Arguments

struct FSSTAT3resok {
post_op_attr obj_attributes;
size3 tbytes;
size3 fbytes;
size3 abytes;
size3 tfiles;
size3 ffiles;
size3 afiles;
uint32 invarsec;

};

struct FSSTAT3resfail {
post_op_attr obj_attributes;

};

union FSSTAT3res switch (nfsstat3 status) {
case NFS3_OK:

FSSTAT3resok resok;
default:

FSSTAT3resfail resfail;
};

RPC Procedure Description

FSSTAT3res
NFSPROC3_FSSTAT(FSSTAT3args) = 18;

Description
Procedure FSSTAT retrieves volatile file system state information.

On entry, the arguments in FSSTAT3args are:

fsroot A file handle identifying a object in the file system. This is normally a file handle
for a mount point for a file system, as originally obtained from the MOUNT
service on the server.

Upon successful return, FSSTAT3res.status is NFS3_OK and FSSTAT3res.resok contains:

obj_attributes The attributes of the file system object specified in fsroot .

tbytes The total size, in bytes, of the file system.

fbytes The amount of free space, in bytes, in the file system.

abytes The amount of free space, in bytes, available to the user identified by the
authentication information in the RPC. (This reflects space that is reserved by
the file system; it does not reflect any quota system implemented by the server.)

tfiles The total number of file slots in the file system. (On a UNIX server, this often
corresponds to the number of i-nodes configured.)

244 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_FSSTAT

ffiles The number of free file slots in the file system.

afiles The number of free file slots that are available to the user corresponding to the
authentication information in the RPC. (This reflects slots that are reserved by
the file system; it does not reflect any quota system implemented by the server.)

invarsec A measure of file system volatility—the number of seconds for which the file
system is not expected to change. For a volatile, frequently updated file system,
this will be zero. For an immutable file system, such as a CD-ROM, this would
be the largest unsigned integer. For file systems that are infrequently modified
(for example, one containing local executable programs and on-line
documentation), a value corresponding to a few hours or days might be used.
The client may use this as a hint in tuning its cache management. Note,
however, that this measure is assumed to be dynamic and may change at any
time.

Otherwise, FSSTAT3res.status contains the error on failure and FSSTAT3res.resfail contains the
following:

obj_attributes The attributes of the file system object specified in fsroot .

Implementation Guidance
Not all implementations can support the entire list of attributes. It is expected that servers will
make a best effort at supporting all the attributes.

Return Codes

NFS3ERR_IO I/O error. Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFS3ERR_STALE Invalid file handle. The file handle given in the arguments was invalid.
The file referred to by that file handle no longer exists or access to it has
been revoked.

NFS3ERR_BADHANDLE
Invalid NFS file handle. The file handle failed internal consistency
checks.

NFS3ERR_SERVERFAULT
An error occurred on the server, which does not map to any of the valid
NFS Version 3 protocol error values. The client should translate this into
an appropriate error. Clients based on an XPG system may choose to
translate this to EIO.

Protocols for Interworking: XNFS, Version 3W 245

NFSPROC3_FSINFO XNFS : Protocol Specification, Version 3

Name
NFSPROC3_FSINFO — Get Staticfile System Information

Call Arguments

struct FSINFO3args {
nfs_fh3 fsroot;

};

Return Arguments

const FSF3_LINK = 0x0001;
const FSF3_SYMLINK = 0x0002;
const FSF3_HOMOGENEOUS = 0x0008;
const FSF3_CANSETTIME = 0x0010;

struct FSINFO3resok {
post_op_attr obj_attributes;
uint32 rtmax;
uint32 rtpref;
uint32 rtmult;
uint32 wtmax;
uint32 wtpref;
uint32 wtmult;
uint32 dtpref;
size3 maxfilesize;
nfstime3 time_delta;
uint32 properties;

};

struct FSINFO3resfail {
post_op_attr obj_attributes;

};

union FSINFO3res switch (nfsstat3 status) {
case NFS3_OK:

FSINFO3resok resok;
default:

FSINFO3resfail resfail;
};

RPC Procedure Description

FSINFO3res
NFSPROC3_FSINFO(FSINFO3args) = 19;

Description
Procedure FSINFO retrieves nonvolatile file system state information and general information
about the NFS Version 3 protocol server implementation.

On entry, the arguments in FSINFO3args are:

fsroot A file handle identifying a file object. Normal usage is to provide a file handle
for a mount point for a file system, as originally obtained from the MOUNT
service on the server.

Upon successful return, FSINFO3res.status is NFS3_OK and FSINFO3res.resok contains:

246 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_FSINFO

obj_attributes The attributes of the file system object specified in fsroot .

rtmax The maximum size in bytes of a READ request supported by the server. Any
READ with a number greater than rtmax will result in a short read of rtmax bytes
or less.

rtpref The preferred size in bytes of a READ request. This should be the same as rtmax
unless there is a clear benefit in performance or efficiency.

rtmult The suggested multiple for the size of a READ request.

wtmax The maximum size in bytes of a WRITE request supported by the server. In
general, the client is limited by wtmax since there is no guarantee that a server
can handle a larger write. Any WRITE with a count greater than wtmax will
result in a short write of at most wtmax bytes.

wtpref The preferred size in bytes of a WRITE request. This should be the same as
wtmax unless there is a clear benefit in performance or efficiency.

wtmult The suggested multiple for the size of a WRITE request.

dtpref The preferred size of a READDIR request.

maxfilesize The maximum size in bytes of a file on the file system.

time_delta The server time granularity. When setting a file time using SETATTR, the server
guarantees only to preserve times to this accuracy. If this is { 0, 1 }, the server
can support nanosecond times, { 0, 1000000 } denotes millisecond precision
and { 1, 0 } indicates that times are accurate only to the nearest second.

properties A bit mask of file system properties. The following values are defined:

FSF_LINK
If this bit is 1 (TRUE), the file system supports hard links.

FSF_SYMLINK
If this bit is 1 (TRUE), the file system supports symbolic links.

FSF_HOMOGENEOUS
If this bit is 1 (TRUE), the information returned by PATHCONF is
identical for every file and directory in the file system. If it is zero
(FALSE), the client should retrieve PATHCONF information for each
file and directory as required.

FSF_CANSETTIME
If this bit is 1 (TRUE), the server will set the times for a file via
SETATTR if requested (to the accuracy indicated by time_delta). If it is
zero (FALSE), the server cannot set times as requested.

Otherwise, FSINFO3res.status contains the error on failure and FSINFO3res.resfail contains the
following:

attributes The attributes of the file system object specified in fsroot .

Implementation Guidance
Not all implementations can support the entire list of attributes. It is expected that a server will
make a best effort at supporting all the attributes.

The file handle provided is expected to be the file handle of the file system root, as returned to
the MOUNT operation. Since mounts may occur anywhere within an exported tree, the server
should expect FSINFO requests specifying file handles within the exported file system. A server

Protocols for Interworking: XNFS, Version 3W 247

NFSPROC3_FSINFO XNFS : Protocol Specification, Version 3

may export different types of file systems with different attributes returned to the FSINFO call.
The client should retrieve FSINFO information for each mount completed. Though a server may
return different FSINFO information for different files within a file system, there is no
requirement that a client obtain FSINFO information for other than the file handle returned at
mount.

The maxfilesize field determines whether a server’s particular file system uses 32 bit sizes and
offsets or 64 bit file sizes and offsets. This may affect a client’s processing.

The preferred sizes for requests are nominally tied to an exported file system mounted by a
client. A surmountable issue arises in that the transfer size for an NFS Version 3 protocol request
is not only dependent on characteristics of the file system but also on characteristics of the
network interface, particularly the maximum transfer unit (MTU). A server implementation can
advertise different transfer sizes (for the fields rtmax , rtpref, wtmax , wtpref and dtpref) depending
on the interface on which the FSINFO request is received. This is an implementation issue.

Return Codes

NFS3ERR_STALE Invalid file handle. The file handle given in the arguments was invalid.
The file referred to by that file handle no longer exists or access to it has
been revoked.

NFS3ERR_BADHANDLE
Invalid NFS file handle. The file handle failed internal consistency
checks.

NFS3ERR_SERVERFAULT
An error occurred on the server, which does not map to any of the valid
NFS Version 3 protocol error values. The client should translate this into
an appropriate error. Clients based on an XPG system may choose to
translate this to EIO.

248 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_PATHCONF

Name
NFSPROC3_PATHCONF — Retrieve XPG4 Information

Call Arguments

struct PATHCONF3args {
nfs_fh3 object;

};

Return Arguments

struct PATHCONF3resok {
post_op_attr obj_attributes;
uint32 linkmax;
uint32 name_max;
bool no_trunc;
bool chown_restricted;
bool case_insensitive;
bool case_preserving;

};

struct PATHCONF3resfail {
post_op_attr obj_attributes;

};

union PATHCONF3res switch (nfsstat3 status) {
case NFS3_OK:

PATHCONF3resok resok;
default:

PATHCONF3resfail resfail;
};

RPC Procedure Description

PATHCONF3res
NFSPROC3_PATHCONF(PATHCONF3args) = 20;

Description
Procedure PATHCONF retrieves the XPG4 pathconf () information for a file or directory. If the
FSF_HOMOGENEOUS bit is set in FSFINFO3resok.properties, the pathconf () information will be
the same for all files and directories in the exported file system in which this file or directory
resides.

On entry, the arguments in PATHCONF3args are:

object The file handle for the file system object.

Upon successful return, PATHCONF3res.status is NFS3_OK and PATHCONF3res.resok contains:

obj_attributes The attributes of the object specified by object .

linkmax The maximum number of hard links to an object.

name_max The maximum length in bytes of a filename (pathname component).

no_trunc If TRUE, the server will reject any request that includes a name longer than
name_max with the NFS3ERR_NAMETOOLONG error. If FALSE, any name over
name_max bytes will be silently truncated to name_max bytes.

chown_restricted
If TRUE, the server will reject any request to change either the owner or the

Protocols for Interworking: XNFS, Version 3W 249

NFSPROC3_PATHCONF XNFS : Protocol Specification, Version 3

group associated with a file if the caller does not have the appropriate privileges.

case_insensitive
If TRUE, the server file system does not distinguish case when interpreting
filenames.

case_preserving
If TRUE, the server file system will preserve the case of a name during a
CREATE, MKDIR, MKNOD, SYMLINK, RENAME or LINK operation.

Otherwise, PATHCONF3res.status contains the error on failure and PATHCONF3res.resfail
contains the following:

obj_attributes The attributes of the object specified by object .

Implementation Guidance
In some implementations of the NFS Version 2 protocol, pathconf () information was obtained at
mount time through the MOUNT protocol. The proper place to obtain it is as here, in the NFS
Version 3 protocol itself.

Return Codes

NFS3ERR_STALE Invalid file handle. The file handle given in the arguments was invalid.
The file referred to by that file handle no longer exists or access to it has
been revoked.

NFS3ERR_BADHANDLE
Invalid NFS file handle. The file handle failed internal consistency
checks.

NFS3ERR_SERVERFAULT
An error occurred on the server, which does not map to any of the valid
NFS Version 3 protocol error values. The client should translate this into
an appropriate error. Clients based on an XPG system may choose to
translate this to EIO.

250 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_COMMIT

Name
NFSPROC3_COMMIT — Commit Cached Server Data to Stable Storage

Call Arguments

struct COMMIT3args {
nfs_fh3 file;
offset3 offset;
count3 count;

};

Return Arguments

struct COMMIT3resok {
wcc_data file_wcc;
writeverf3 verf;

};

struct COMMIT3resfail {
wcc_data file_wcc;

};

union COMMIT3res switch (nfsstat3 status) {
case NFS3_OK:

COMMIT3resok resok;
default:

COMMIT3resfail resfail;
};

RPC Procedure Description

COMMIT3res
NFSPROC3_COMMIT(COMMIT3args) = 21;

Description
Procedure COMMIT forces or flushes to stable storage data that was previously written with a
WRITE procedure call with the stable field set to UNSTABLE.

On entry, the arguments in COMMIT3args are:

file The file handle for the file to which data is to be flushed (committed). This must
identify a file system object of type NF3REG.

offset The position within the file at which the flush is to begin. An offset of zero means
to flush data starting at the beginning of the file.

count The number of bytes of data to flush. If count is zero, a flush from offset to the
end-of-file is done.

Upon successful return, COMMIT3res.status is NFS3_OK and COMMIT3res.resok contains:

file_wcc Weak cache consistency data for the file. For a client that requires only the post-
operation file attributes, these can be found in file_wcc.after .

verf This is a cookie that the client can use to determine whether the server has
rebooted between a call to WRITE and a subsequent call to COMMIT. This
cookie must be consistent during a single boot session and must be unique
between instances of the NFS Version 3 protocol server where uncommitted
data may be lost.

Protocols for Interworking: XNFS, Version 3W 251

NFSPROC3_COMMIT XNFS : Protocol Specification, Version 3

Otherwise, COMMIT3res.status contains the error on failure and COMMIT3res.resfail contains the
following:

file_wcc Weak cache consistency data for the file. For a client that requires only the post-
write file attributes, these can be found in file_wcc.after . Even though the
COMMIT failed, full wcc_data is returned to allow the client to determine
whether the file changed on the server between calls to WRITE and COMMIT.

Implementation Guidance
Procedure COMMIT is similar in operation and semantics to the XPG4 fsync() system call that
synchronises a file’s state with the disk, that is it flushes the file’s data and metadata to disk.
COMMIT performs the same operation for a client, flushing any unsynchronised data and
metadata on the server to the server’s disk for the specified file. Like fsync(), it may be that there
is some modified data or no modified data to synchronise. The data may have been
synchronised by the server’s normal periodic buffer synchronisation activity. COMMIT will
always return NFS3_OK, unless there has been an unexpected error.

COMMIT differs from fsync() in that it is possible for the client to flush a range of the file (most
likely triggered by a buffer-reclamation scheme on the client before file has been completely
written).

The server implementation of COMMIT is reasonably simple. If the server receives a full file
COMMIT request; that is, starting at offset zero and count zero, it should do the equivalent of
performing fsync() on the file. Otherwise, it will arrange to have the cached data in the range
specified by offset and count to be flushed to stable storage. In both cases, any metadata
associated with the file must be flushed to stable storage before returning. It is not an error for
there to be nothing to flush on the server. This means that the data and metadata that needed to
be flushed have already been flushed or lost during the last server failure.

The client implementation of COMMIT is a little more complex. There are two reasons for
wanting to commit a client buffer to stable storage. The first is that the client wants to reuse a
buffer. In this case, the offset and count of the buffer are sent to the server in the COMMIT
request. The server then flushes any cached data based on the offset and count , and flushes any
metadata associated with the file. It then returns the status of the flush and the verf verifier. The
other reason for the client to generate a COMMIT is for a full file flush, such as may be done at
close. In this case, the client would gather all of the buffers for this file that contain uncommitted
data, do the COMMIT operation with an offset of zero and count of zero, and then free all of those
buffers. Any other dirty buffers would be sent to the server in the normal fashion.

This implementation will require some modifications to the buffer cache on the client. After a
buffer is written with stable set to UNSTABLE, it must be considered as dirty by the client system
until it is either flushed via a COMMIT operation or written via a WRITE operation with stable
set to FILE_SYNC or DATA_SYNC. This is done to prevent the buffer from being freed and
reused before the data can be flushed to stable storage on the server.

When a response comes back from either a WRITE or a COMMIT operation that contains an
unexpected verf , the client will need to retransmit all of the buffers containing uncommitted
cached data to the server. How this is to be done is up to the implementor. If there is only one
buffer of interest, then it should probably be sent back over in a WRITE request with the
appropriate stable flag. If there more than one, it might be worthwhile retransmitting all of the
buffers in WRITE requests with stable set to UNSTABLE and then retransmitting the COMMIT
operation to flush all of the data on the server to stable storage. The timing of these
retransmissions is left to the implementor.

The above description applies to page-cache-based systems as well as buffer-cache-based
systems. In those systems, the virtual memory system will need to be modified instead of the

252 Open Group Technical Standard

XNFS : Protocol Specification, Version 3 NFSPROC3_COMMIT

buffer cache.

See additional comments in NFSPROC3_WRITE on page 212.

Return Codes

NFS3ERR_IO I/O error. Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFS3ERR_STALE Invalid file handle. The file handle given in the arguments was invalid.
The file referred to by that file handle no longer exists or access to it has
been revoked.

NFS3ERR_BADHANDLE
Invalid NFS file handle. The file handle failed internal consistency
checks.

NFS3ERR_SERVERFAULT
An error occurred on the server, which does not map to any of the valid
NFS Version 3 protocol error values. The client should translate this into
an appropriate error. Clients based on an XPG system may choose to
translate this to EIO.

Protocols for Interworking: XNFS, Version 3W 253

XNFS : Protocol Specification, Version 3

254 Open Group Technical Standard

Chapter 13

Mount Protocol, Version 3

This chapter specifies an additional protocol for the mount service, the V3 protocol, which must
be supported in addition to the protocol specified in Chapter 8.

13.1 RPC Information

Authentication

The mount service uses AUTH_NONE in the NULL procedure. AUTH_UNIX, AUTH_DES or
AUTH_KERB are used for all other procedures, although the mount service can decline to use
the authentication information that is provided.

Transport Address

The mount service is currently supported on UDP/IP only.

Port Number

Consult the server’s port mapper, described in Chapter 6, to find the port number on which the
mount service is registered.

13.1.1 Sizes of XDR Structures

The following table specifies the sizes, given in decimal bytes, of various XDR structures used in
the protocol:

Structure Size Description
Maximum bytes in a pathnameMNTPATHLEN 1024
Maximum bytes in a nameMNTNAMLEN 255
Maximum bytes in a V3 file handleFHSIZE3 64

13.1.2 Basic Data Types

fhandle3

typedef opaque fhandle3<FHSIZE3>;

dirpath

typedef string dirpath<MNTPATHLEN>;

Protocols for Interworking: XNFS, Version 3W 255

RPC Information Mount Protocol, Version 3

name

typedef string name<MNTNAMLEN>;

mountstat3

enum mountstat3 {
MNT3_OK = 0, /* No error */
MNT3ERR_PERM = 1, /* Not owner */
MNT3ERR_NOENT = 2, /* No such file or directory */
MNT3ERR_IO = 5, /* I/O error */
MNT3ERR_ACCES = 13, /* Permission denied */
MNT3ERR_NOTDIR = 20, /* Not a directory */
MNT3ERR_INVAL = 22, /* Invalid argument */
MNT3ERR_NAMETOOLONG = 63, /* Filename too long */
MNT3ERR_NOTSUPP = 10004, /* Operation not supported */
MNT3ERR_SERVERFAULT = 10006 /* A failure on the server */

};

13.2 Server Procedures
The following reference pages define the RPC procedures supplied by a MOUNT Version 3
protocol server.

program MOUNT_PROGRAM {
version MOUNT_V3 {

void MOUNTPROC3_NULL(void) = 0;
mountres3 MOUNTPROC3_MNT(dirpath) = 1;
mountlist MOUNTPROC3_DUMP(void) = 2;
void MOUNTPROC3_UMNT(dirpath) = 3;
void MOUNTPROC3_UMNTALL(void) = 4;
exports MOUNTPROC3_EXPORT(void) = 5;

} = 3;
} = 100005;

256 Open Group Technical Standard

Mount Protocol, Version 3 MOUNTPROC3_NULL

Name
MOUNTPROC3_NULL — Do Nothing

Call Arguments
None.

Return Arguments
None.

RPC Procedure Description

void
MOUNTPROC3_NULL(void) = 0;

Description
Procedure NULL does no work. It is made available to allow server response testing and timing.

Implementation Guidance
It is important that this procedure do no work at all so that it can be used to measure the
overhead of processing a service request. By convention, the NULL procedure should never
require any authentication. A server may choose to ignore this convention, in a more secure
implementation, where responding to the NULL procedure call acknowledges the existence of a
resource to an unauthenticated client.

Return Codes
Since the NULL procedure takes no MOUNT protocol arguments and returns no MOUNT
protocol response, it can not return a MOUNT protocol error. However, it is possible that some
server implementations may return RPC errors based on security and authentication
requirements.

Protocols for Interworking: XNFS, Version 3W 257

MOUNTPROC3_MNT Mount Protocol, Version 3

Name
MOUNTPROC3_MNT — Add Mount Entry

Call Arguments

dirpath dirname;

Return Arguments

struct mountres3_ok {
fhandle3 fhandle;
int auth_flavors<>;

};

union mountres3 switch (mountstat3 fhs_status) {
case MNT_OK:

mountres3_ok mountinfo;
default:

void;
};

RPC Procedure Description

mountres3
MOUNTPROC3_MNT(dirpath) = 1;

Description
Procedure MNT maps a pathname on the server to a file handle. The pathname is a string that
describes a directory on the server. If the call is successful (MNT3_OK), the server returns an
NFS Version 3 protocol file handle and a vector of RPC authentication flavours that are
supported with the client’s use of the file handle (or any file handles derived from it). The
authentication flavours are defined in Section 4.4 on page 52.

Implementation Guidance
If mountres3.fhs_status is MNT3_OK, then mountres3.mountinfo contains the file handle for the
directory and a list of acceptable authentication flavours. This file handle may only be used in
the NFS Version 3 protocol. This procedure also results in the server adding a new entry to its
mount list recording that this client has mounted the directory. AUTH_UNIX authentication or
better is required.

Return Codes

MNT3ERR_NOENT The specified directory does not exist. If the server exports only /a/b, an
attempt to mount /a/b/c will fail with MNT3ERR_NOENT if the directory
does not exist; on the other hand, an attempt to mount /a/x would fail
with MNT3ERR_ACCES.

MNT3ERR_IO I/O error. Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

MNT3ERR_ACCES Access to the specified directory was denied. Either no directory in the
path dirname is exported, or the client system is not permitted to mount
this directory.

MNT3ERR_NOTDIR The specified file is not a directory.

MNT3ERR_NAMETOOLONG
The filename in an operation was too long.

258 Open Group Technical Standard

Mount Protocol, Version 3 MOUNTPROC3_DUMP

Name
MOUNTPROC3_DUMP — Return Mount Entries

Call Arguments
None.

Return Arguments

typedef struct mountbody *mountlist;

struct mountbody {
name ml_hostname;
dirpath ml_directory;
mount listml_next;

};

RPC Procedure Description

mountlist
MOUNTPROC3_DUMP(void) = 2;

Description
Procedure DUMP returns the list of remotely mounted file systems. The mountlist contains one
entry for each client host name and directory pair.

Implementation Guidance
This list is derived from a list maintained on the server of clients that have requested file handles
with the MNT procedure. Entries are removed from this list only when a client calls the UMNT
or UMNTALL procedure. Entries may become stale if a client crashes and does not issue either
UMNT calls for all of the file systems that it had previously mounted or a UMNTALL to remove
all entries that existed for it on the server.

Return Codes
There are no MOUNT protocol errors that can be returned from this procedure. However, RPC
errors may be returned for authentication or other RPC failures.

Protocols for Interworking: XNFS, Version 3W 259

MOUNTPROC3_UMNT Mount Protocol, Version 3

Name
MOUNTPROC3_UMNT — Remove Mount Entry

Call Arguments

dirpath dirname;

Return Arguments
None.

RPC Procedure Description

void
MOUNTPROC3_UMNT(dirpath) = 3;

Description
Procedure UMNT removes the mount list entry for the directory that was previously the subject
of a MNT call from this client. AUTH_UNIX authentication or better is required.

Implementation Guidance
Typically, server implementations have maintained a list of clients that have file systems
mounted. In the past, this list has been used to inform clients that the server was going to be
shutdown.

Return Codes
There are no MOUNT protocol errors that can be returned from this procedure. However, RPC
errors may be returned for authentication or other RPC failures.

260 Open Group Technical Standard

Mount Protocol, Version 3 MOUNTPROC3_UMNTALL

Name
MOUNTPROC3_UMNTALL — Remove All Mount Entries

Call Arguments
None.

Return Arguments
None.

RPC Procedure Description

void
MOUNTPROC3_UMNTALL(void) = 4;

Description
Procedure UMNTALL removes all of the mount entries for this client previously recorded by
calls to MNT. AUTH_UNIX authentication or better is required.

Implementation Guidance
This procedure should be used by clients when they are recovering after a system shutdown. If
the client could not successfully unmount all of its file systems before being shutdown or the
client crashed because of a software or hardware problem, there may be servers that still have
mount entries for this client. This is an easy way for the client to inform all servers at once that it
does not have any mounted file systems. However, since this procedure is generally
implemented using broadcast RPC, it is only of limited usefulness.

Return Codes
There are no MOUNT protocol errors that can be returned from this procedure. However, RPC
errors may be returned for authentication or other RPC failures.

Protocols for Interworking: XNFS, Version 3W 261

MOUNTPROC3_EXPORT Mount Protocol, Version 3

Name
MOUNTPROC3_EXPORT — Return Export List

Call Arguments
None.

Return Arguments

typedef struct groupnode *groups;

struct groupnode {
name gr_name;
groups gr_next;

};

typedef struct exportnode *exports;

struct exportnode {
dirpath ex_dir;
groups ex_groups;
exports ex_next;

};

RPC Procedure Description

exports
MOUNTPROC3_EXPORT(void) = 5;

Description
Procedure EXPORT returns a list of all the exported file systems and which clients are allowed to
mount each one. The names in the group list are implementation-specific and cannot be directly
interpreted by clients. These names can represent hosts or groups of hosts.

Implementation Guidance
This procedure generally returns the contents of a list of shared or exported file systems. These
are the file systems that are made available to NFS Version 3 protocol clients.

Return Codes
There are no MOUNT protocol errors that can be returned from this procedure. However, RPC
errors may be returned for authentication or other RPC failures.

262 Open Group Technical Standard

Chapter 14

Network Lock Manager Protocol, Version 4

14.1 Introduction
This chapter specifies an additional protocol for the Network Lock Manager (NLM), the
Version 4 protocol, which must be supported in addition to the Version 3 protocol specified in
Chapter 10. The NLM Version 4 protocol is valid only when used with the Network File System
Version 3 protocol; the NLM Version 3 protocol is valid only when used with the NFS Version 2
protocol.

This chapter only discusses the differences between the NLM Version 3 and Version 4 protocols.
As with the NFS Version 3 protocol, almost all the names in the NLM Version 4 protocol have
been changed to include a version number. This chapter does not discuss changes that consist
solely of a name change.

Protocols for Interworking: XNFS, Version 3W 263

RPC Information Network Lock Manager Protocol, Version 4

14.2 RPC Information

Authentication

The NLM service uses AUTH_NONE in the NULL procedure. AUTH_UNIX, AUTH_DES or
AUTH_KERB are used for all other procedures.

Transport Address

The NLM service is supported on both TCP/IP and UDP/IP. However, a client implementation
may choose to only generate requests over the UDP/IP protocol.

Port Number

Consult the server’s port mapper, described in Chapter 6, to find the port number on which the
lock manager is registered.

14.2.1 Basic Data Types

uint64

typedef unsigned hyper uint64;

int64

typedef hyper int64;

uint32

typedef unsigned long uint32;

int32

typedef long int32;

nlm4_stats

enum nlm4_stats {
NLM4_GRANTED = 0,
NLM4_DENIED = 1,
NLM4_DENIED_NOLOCKS = 2,
NLM4_BLOCKED = 3,
NLM4_DENIED_GRACE_PERIOD = 4,
NLM4_DEADLCK = 5,
NLM4_ROFS = 6,
NLM4_STALE_FH = 7,
NLM4_FBIG = 8,
NLM4_FAILED = 9

};

The nlm4_stats value indicates the success or failure of a call. This version contains several new
error codes, so that clients can provide more precise failure information to applications.

264 Open Group Technical Standard

Network Lock Manager Protocol, Version 4 RPC Information

NLM4_GRANTED The call completed successfully.

NLM4_DENIED The call failed. For attempts to set a lock, this status implies that if the
client retries the call later, it may succeed.

NLM4_DENIED_NOLOCKS
The call failed because the server could not allocate the necessary
resources.

NLM4_BLOCKED Indicates that a blocking request cannot be granted immediately. The
server will issue an NLMPROC4_GRANTED callback to the client when
the lock is granted.

NLM4_DENIED_GRACE_PERIOD
The call failed because the server is reestablishing old locks after a reboot
and is not yet ready to resume normal service.

NLM4_DEADLCK The request could not be granted and blocking would cause a deadlock.

NLM4_ROFS The call failed because the remote file system is read-only. For example,
some server implementations might not support exclusive locks on read-
only file systems.

NLM4_STALE_FH The call failed because it uses an invalid file handle. This can happen if
the file has been removed or if access to the file has been revoked on the
server.

NLM4_FBIG The call failed because it specified a length or offset that exceeds the range
supported by the server.

NLM4_FAILED The call failed for some reason not already listed. The client should take
this status as a strong hint not to retry the request.

nlm4_holder

struct nlm4_holder {
bool exclusive;
int32 svid;
netobj oh;
uint64 l_offset;
uint64 l_len;

};

Th nlm4_holder structure indicates the holder of a lock. The exclusive field tells whether the
holder has an exclusive lock or a shared lock. The svid field identifies the process that is holding
the lock. The oh field is an opaque object that identifies the host, or a process on the host, that is
holding the lock. The l_len and l_offset fields identify the region that is locked. The only
difference between the NLM Version 3 protocol and the NLM Version 4 protocol is that in the
NLM Version 3 protocol, the l_len and l_offset fields are 32 bits wide, while they are 64 bits wide
in the NLM Version 4 protocol.

Protocols for Interworking: XNFS, Version 3W 265

RPC Information Network Lock Manager Protocol, Version 4

nlm4_lock

struct nlm4_lock {
string caller_name<LM_MAXSTRLEN>;
netobj fh;
netobj oh;
int32 svid;
uint64 l_offset;
uint64 l_len;

};

The nlm4_lock structure describes a lock request. The caller_name field identifies the host that is
making the request. The fh field identifies the file to lock. The oh field is an opaque object that
identifies the host, or a process on the host, that is making the request, and the svid field
identifies the process that is making the request. The l_offset and l_len fields identify the region
of the file that the lock controls. A l_len of zero means ‘‘to end-of-file.’’

There are two differences between the NLM Version 3 protocol and the NLM Version 4 protocol
versions of this structure. First, in the NLM Version 3 protocol, the length and offset are 32 bits
wide, while they are 64 bits wide in the NLM Version 4 protocol. Second, in the NLM Version 3
protocol, the file handle is a fixed-length NFS Version 2 protocol file handle, which is encoded as
a byte count followed by a byte array. In the NFS Version 3 protocol, the file handle is already
variable-length, so it is copied directly into the fh field. That is, the first four bytes of the fh field
are the same as the byte count in an NFS Version 3 protocol nfs_fh3. The rest of the fh field
contains the byte array from the NFS Version 3 protocol nfs_fh3.

nlm4_share

struct nlm4_share {
string caller_name<LM_MAXSTRLEN>;
netobj fh;
netobj oh;
fsh4_mode mode;
fsh4_access access;

};

The nlm4_share structure is used to support DOS file sharing. The caller_name field identifies
the host making the request. The fh field identifies the file to be operated on. The oh field is an
opaque object that identifies the host that is making the request. The mode and access fields
specify the file-sharing and access modes. The encoding of fh is a byte count, followed by the file
handle byte array. See the description of nlm4_lock for more details.

266 Open Group Technical Standard

Network Lock Manager Protocol, Version 4 RPC Information

14.3 NLM Procedures
The procedures in the NLM Version 4 protocol are semantically the same as those in the NLM
Version 3 protocol. The only semantic difference is the addition of a NULL procedure that can be
used to test for server responsiveness. A syntactic change is that the procedures were renamed
to avoid name conflicts with the values of nlm4_stats. Thus the procedure definition is as
follows.

version NLM4_VERS {
void NLMPROC4_NULL(void) = 0;
nlm4_testres NLMPROC4_TEST(nlm4_testargs) = 1;
nlm4_res NLMPROC4_LOCK(nlm4_lockargs) = 2;
nlm4_res NLMPROC4_CANCEL(nlm4_cancargs) = 3;
nlm4_res NLMPROC4_UNLOCK(nlm4_unlockargs) = 4;
nlm4_res NLMPROC4_GRANTED(nlm4_testargs) = 5;
void NLMPROC4_TEST_MSG(nlm4_testargs) = 6;
void NLMPROC4_LOCK_MSG(nlm4_lockargs) = 7;
void NLMPROC4_CANCEL_MSG(nlm4_cancargs) = 8;
void NLMPROC4_UNLOCK_MSG(nlm4_unlockargs) = 9;
void NLMPROC4_GRANTED_MSG(nlm4_testargs) = 10;
void NLMPROC4_TEST_RES(nlm4_testres) = 11;
void NLMPROC4_LOCK_RES(nlm4_res) = 12;
void NLMPROC4_CANCEL_RES(nlm4_res) = 13;
void NLMPROC4_UNLOCK_RES(nlm4_res) = 14;
void NLMPROC4_GRANTED_RES(nlm4_res) = 15;
nlm4_shareres NLMPROC4_SHARE(nlm4_shareargs) = 20;
nlm4_shareres NLMPROC4_UNSHARE(nlm4_shareargs) = 21;
nlm4_res NLMPROC4_NM_LOCK(nlm4_lockargs) = 22;
void NLMPROC4_FREE_ALL(nlm4_notify) = 23;

} = 4;

The following reference page defines the additional NULL procedure.

Protocols for Interworking: XNFS, Version 3W 267

NLMPROC3_NULL Network Lock Manager Protocol, Version 4

Name
NLMPROC3_NULL — Do Nothing

Call Arguments
None.

Return Arguments
None.

RPC Procedure Description

void
NLMPROC4_NULL(void) = 0;

Description
The NULL procedure does no work. It is made available in all RPC services to allow server
response testing and timing.

Implementation Guidance
It is important that this procedure do no work at all so that it can be used to measure the
overhead of processing a service request. By convention, the NULL procedure should never
require any authentication.

Return Codes
It is possible that some server implementations may return RPC errors based on security and
authentication requirements.

268 Open Group Technical Standard

Network Lock Manager Protocol, Version 4 Implementation Guidance

14.4 Implementation Guidance

64-bit Offsets and Lengths

Some NFS Version 3 protocol servers can only support requests where the file offset or length fits
in 32 or fewer bits. For these servers, the lock manager will have the same restriction. If such a
lock manager receives a request that it cannot handle (because the offset or length uses more
than 32 bits), it should return the NLM4_FBIG error.

File Handles

The change in the file handle format from the NFS Version 2 protocol to the NFS Version 3
protocol complicates the lock manager. First, the lock manager needs some way to tell when an
NFS Version 2 protocol file handle refers to the same file as an NFS Version 3 protocol file
handle. (This assumes that the lock manager supports both NLM Version 3 protocol clients and
NLM Version 4 protocol clients.) Second, if the lock manager runs the file handle through a
hashing function, the hashing function may need to be retuned to work with NFS Version 3
protocol file handles as well as NFS Version 2 protocol file handles.

Protocols for Interworking: XNFS, Version 3W 269

Network Lock Manager Protocol, Version 4

270 Open Group Technical Standard

Appendix A

Semantic Difference Summary for File Access

A.1 Introduction
Many of the entries described in the X/Open System Interfaces and Headers Specification (see
reference XSH) and the X/Open Commands and Utilities Specification (see reference XCU) are
directly or indirectly concerned with accessing files stored on the system’s file system.

When documenting those utilities and functions the assumption was made that files being
accessed would reside on the local file system of the system, and that all local file system
semantics would be supported. Users or applications using an XCU utility or XSH function
could therefore rely on described behaviour and error codes being returned as described in that
XPG entry.

When XPG-compliant systems are linked together using XNFS protocols, files on remote
systems may be accessible to a process running on a local system, without the process being
aware that files are remote. In fact, because XNFS provides transparent access to remote files, it
is not possible for a process to distinguish between local and remote files before they are used.
Due to the nature of the way XNFS works, there are some semantic differences between
operations on local files and equivalent operations on remote files.

This appendix gives a summary of these semantic differences. Together with Appendix B and
Appendix C this appendix specifies differences that can occur when using a given utility or
function with a file on a remote file system.

XNFS describes a number of new errors which may occur when CAE applications issue XSH
function calls which refer to XNFS file systems. One error, which occurs when a file handle is
rejected as invalid by the XNFS server, is represented by a new error code, [ESTALE]. All other
errors discussed in this specification are represented by existing XSH error codes; thus the set of
possible interpretations for each of these codes is extended when XNFS is being used. It should
be noted that the X/Open Commands and Utilities Specification (see reference XCU) explicitly
allows implementors to define additional error codes, and does not define which error should be
reported when multiple errors occur during a single operation. Notwithstanding this, the XNFS
specification defines only one new error code, [ESTALE], and implementors of XNFS are
strongly discouraged from introducing additional error codes which are specific to XNFS. See
also the description of NFSERR_STALE in stat on page 73.

There are not many areas in which semantic differences manifest themselves. The following list
summarises differences which are common to many system interface functions or utilities.
Specific differences that are not common to several functions or utilities are discussed in the
description of that function or utility in Appendix B and Appendix C respectively.

Protocols for Interworking: XNFS, Version 3W 271

Special File Access Semantic Difference Summary for File Access

A.2 Special File Access
A process may create, rename, unlink, and get the attributes of a special file that is located on a
remote file system. A process may also fattach () a STREAMS file descriptor to a remote file. If a
process opens a remote special file, a local device will be used instead of the (possibly desired)
remote device. This includes the FIFO special file type, support for which is not mandated in the
XNFS specification.

If a process opens a remote special file, the local device that is used will be the local device that
corresponds to the major and minor numbers associated with the remote special file. If there is
no local device corresponding to this major and minor number pair, the operation will fail. For
example, if pax is used to extract files from a tape, pax must be run on the host that owns the tape
drive.

A process may be unable to create a remote special file, either because the server doesn’t support
special files at all ([EOPNOTSUPP]), or because the server doesn’t support the requested special
file type ([EINVAL]).

See also Section A.15.9 on page 282 for semantic differences that can arise when accessing special
files with Version 2 of the NFS protocol.

A.3 UID Mapping by Server
Access to a file located on a remote file system can be denied, even in the case that the file
permissions do not themselves restrict access. When the server exports a file system, the
following attributes can be specified which control access to the file system:

1. The server will treat requests from a client process with an unknown user ID as having the
user ID that is specified in the ‘‘AnonMapping=’’ ExportedFileSystem attribute. (See the
discussion of the ‘‘AnonMapping=’’ ExportedFileSystem attribute in Section 2.4.1 on page
14.)

2. The server can deny access by privileged user from specified hosts. Should the server
receive a request for file access from a process with an effective user ID of 0 on a denied
host, the request will be processed. However, the value specified in the ‘‘AnonMapping=’’
ExportedFileSystem attribute will be used instead of the effective user ID of the process.
(See the discussion of the ‘‘AnonMapping=’’ and ‘‘Root=’’ ExportedFileSystem attributes
in Section 2.4.1 on page 14.)

If such a mapping occurs and thus causes the server to deny access to a file, the error [EACCES]
will be returned to the process.

In the case that the server denies access by a privileged user, the semantics of those file access
functions that require appropriate privileges may not be available to the calling process, the
error [EPERM] will be returned to the process in these cases.

For access to regular files using Version 3 of the NFS protocol, restrictions due to user ID
mapping are enforced at the time the file is opened, except when a stale entry in the access cache
causes the call to succeed. (See Section A.5 on page 273 for a discussion of the access cache.)
With Version 2, the client need not enforce the restrictions at the time the file is opened. If the
process is able to open the file, the client will generally enforce the restrictions when the process
tries to read or write the file. Because of data caching, though, the client need not enforce the
restrictions until it has tried to read from or write to the server. (See Section A.9.1 on page 276
for a discussion of delayed write errors.)

272 Open Group Technical Standard

Semantic Difference Summary for File Access UID Mapping by Server

Reads or writes may also fail if, for example, the permissions on the file are changed after the file
was opened, as described in Section A.6 on page 274

Operations that require directory updates, such as mkdir(), link (), remove() and mknod(), will
reflect access restrictions immediately for both versions of the NFS protocol. Because of
privilege restrictions, it may be difficult to perform system administration tasks from an XNFS
client. For example, cron jobs may need to be run on the server, even if the relevant files are
exported by the server. Other tasks, such as restoring or installing files using pax , may only be
possible on the server as well.

A.4 Execution of Set-user-ID Programs
Execution semantics of a program having the set-user-ID mode bit are different over NFS (see
exec in the X/Open System Interfaces and Headers Specification (see reference XSH)). When an
NFS file system is mounted by a client, the ‘‘SetUID=’’ mount attribute determines whether
normal set-user-ID execution semantics are in effect. If the attribute is ‘‘False’’, execution of such
a program over NFS will still occur. However, the effective user ID will not be reassigned to the
owner of the program, and will remain equal to the user ID of the process. (See the discussion of
the ‘‘SetUID=’’ MountedFileSystem attribute in Section 2.4.2 on page 15.)

During execution, such a program may be denied an operation such as open(), read() or write(),
because it is not running with the effective user ID with which it was designed to run. In this
case an [EACCES] or an [EPERM] error may be generated depending upon the type of operation
being performed.

A.5 Attribute and Access Caching
There are several semantic differences that occur due to attribute and access caching on the
client. These differences occur when information in the client’s cache does not match the
information that is on the server. Since these caches are updated frequently, there is only a small
window of time in which this information can differ. If the attribute and access caches are
disabled through the ‘‘AttribCaching=’’ MountedFileSystem attribute, or if the client does not
implement these caches, these problems no longer exist. (See the ‘‘AttribCaching=’’,
‘‘ACRegMin=’’ and ‘‘ACRegMax=’’ MountedFileSystem attributes in Section 2.4.2 on page 15.)

Information in a client’s attribute and access caches becomes inaccurate when the attributes of a
file on the server are changed. When such changes are made from a client, that client’s attribute
and access caches are updated immediately in order to maintain a consistent view of the server’s
file system. However, when a process running on the server or on a client changes the attributes
of a file, these results may not be immediately noticeable to other clients.

The attribute cache contains information about files on the server, including:

• the mode of a file

• the user ID and group ID of a file

• the number of bytes in a file

• the access times associated with a file.

The access cache contains the results of previous NFSPROC3_ACCESS calls. On a per-file, per-
user basis, it records which access modes are known to succeed, known to fail, or indeterminate.

Protocols for Interworking: XNFS, Version 3W 273

Attribute and Access Caching Semantic Difference Summary for File Access

Functions such as stat() may return incorrect information if the client’s attribute cache is
inaccurate. Other operations that are based on information in the client’s attribute or access
caches may behave incorrectly if the information in the caches is inaccurate. Examples of this are
given below.

A.5.1 Denial of Access

Access to a file on the server may be denied because the attributes in the client caches are more
restrictive than the attributes on the server. If a privilege has just been allowed on the server, and
the client’s caches still record this privilege as being ‘‘off’’, functions such as open() may fail on
the client.

If the attributes in the client caches are less restrictive than the attributes on the server, functions
such as open() may succeed, but functions like read() or write() may fail.

A.5.2 Operations Using File’s Byte Count

File operations that rely on the byte count of a file may function incorrectly if the byte count
stored in the attribute cache is inaccurate. For example, a write() to a file that was opened with
the O_APPEND flag set may result in the overwriting of data that was appended to that file by a
process executing on another XNFS client. Record locking operations (see Section A.14 on page
278) where l_whence is set to SEEK_END may also fail to behave as intended.

A.5.3 File Times

Programs that use file access and modification times may behave incorrectly. For example, make
may fail to rebuild a target because of stale information about the source’s modification time.

A.6 File Accessibility Changed after Open
A process may be denied further access to an open file if the file is located on a remote file
system. There are two reasons for this given below.

A.6.1 File Attributes Changed after Open

The attributes of the file could be changed after the file was opened.

As part of the stateless behaviour of NFS, the server does not maintain information regarding
files that are open by processes on client systems. Therefore, each time a client process issues a
request to access a file, the request is validated. It is possible that the attributes of a file can
change in between requests from a client process, thus denying further access to a file that had
been previously accessible. In this case functions such as read() and write(), or derived functions
such as fread(), fgets(), etc. may fail with [EACCES].

In the XSI specifications, it is stated that the effect of calling chmod() to change the access
permissions of an open file is implementation-dependent. With NFS, the semantics of chmod()
are different, in that effects are immediate and can cause further access to an open file to be
denied or allowed in a manner different to access to a local file. The two additional cases where
access is allowed by NFS are:

1. Once a file handle has been established, the owner of the file is allowed to access it
regardless of the permission settings associated with the file.

2. Once a file handle has been established and a user has permission to execute a file, then
that user is also granted permission to read the data from the file.

274 Open Group Technical Standard

Semantic Difference Summary for File Access File Accessibility Changed after Open

A.6.2 File Deleted after Open

The file could be deleted by a process on the server, or on another client.

Another function of the stateless behaviour of NFS is that the server cannot prevent the deletion
of a file that is open by a process on a client system and is not open by a process on the server.
When this occurs, the next client request which refers to the file will be rejected with the XNFS-
specific error [ESTALE], indicating that the file handle no longer refers to a valid file system
object. An XNFS client implementation may return a code for [ESTALE] as the reason for the
failure of the XSI call, or may translate it into some other error code. In addition to file
operations such as remove(), read() and stat(), and operations on directories, such as rmdir(),
may fail with [ESTALE]. As described in Section A.14.5 on page 279, record locking operations
may fail in a manner that is implementation-dependent.

If a file is deleted while a process on the server has the file open, client requests using that file
may fail with [ESTALE]. Alternatively, the server may continue granting access to the file as
long as one or more processes on the server have the file open.

As discussed in Section A.22 on page 284, it is possible for a function to fail with [ESTALE] even
if it does not take a file handle or filename as an argument. For example, if a system’s user
database resides on a remote file, getpwuid() will pass along errors that it receives accessing the
database file.

A.7 No Protection for In-Use Executables
If an executable file stored on an XNFS server is being executed on a client system, there is no
mechanism that prevents the file from being deleted, truncated, or overwritten (for example, via
remove(), fopen(), truncate() or write()). The execution of the program may be terminated if this
occurs.

The error [ETXTBSY] is never returned by a function operating on a a remote file over NFS.
Nonetheless, it is possible for calls such as truncate() or write() to fail because an executable file
is being executed on the server. This XNFS Specification does not specify which error code is
returned in this case.

A.8 Transparent Rename or Unlink While Open
If a file on the server is open by a process running on a client, and the file is deleted by the same
or a different process on that client (for example, using remove() or unlink()), the client will
rename the file to a temporary file. Any process that has this file open can continue using it.
When the last process on the client to have this file open closes it, the client issues a request to
the server to delete the temporary file. If a process on the client attempts to remove the
temporary file, the client may remove it, ignore the request, or rename the file to a different
temporary file. Should the client fail before removing the temporary file, the temporary file may
remain indefinitely. It is common practice to have an entry in the XNFS server’s crontab database
to regularly delete these lingering temporary files.

The client’s request to delete the temporary file may not be processed on the server if the server
fails and the ‘‘RetrySemantics=’’ attribute of the mounted file system is Soft. (See the discussion
of ‘‘RetrySemantics=’’ in Section 2.4.2 on page 15.)

Protocols for Interworking: XNFS, Version 3W 275

Transparent Rename or Unlink While Open Semantic Difference Summary for File Access

This XNFS specificationdoes not specify how a client generates the name for the temporary file
described in this section. Nonetheless, it is common practice for the client to pick a name starting
with a period (.) in the same directory as the original file. The presence of this file can cause
attempts to remove the directory (for example, rmdir() or ‘‘rm -rf’’) to fail.

A.9 Data Caching
The following semantic differences may occur due to the buffer cache mechanisms.

A.9.1 Delayed Write Errors

Errors that occur when writing data to the file server will not necessarily be returned through
write(). Calls to write() may put data into the client’s buffer cache and return without error. The
error may occur later when the buffer cache is flushed to the server.

The buffer cache may be flushed in response to a call from the process, for example, sync() or
close(), or it may be flushed asynchronously. If the cache is flushed in response to a call from the
process, the call will return the error. If the buffer cache is flushed asynchronously, the error will
be reflected by a subsequent call to fsync() or close(). Some systems may reflect the error at a
subsequent write(), but application writers must not depend on this behavior.

The sync() call may fail silently because sync() only schedules writes. The actual writes may
happen after sync() has returned.

Some routines, such as fgetpos(), may cause a write() to occur as a side effect. These writes are
also potentially subject to delayed write errors.

A.9.2 Read of Old Data

The information in the buffer cache may be inaccurate and not reflect the latest changes to a file.
Therefore, the read() function may not get the latest contents of a file.

Similarly, functions that invoke read(), such as fscanf() or fgets(), need not return the latest
contents of a file, even when the referenced I/O stream is unbuffered.

A.9.3 Atomicity of Transfer

When a file is being read or written by several processes on different systems, the operations of
the caches on the server and clients will affect the atomicity of data reading and writing. No
assumption can be made that common submultiples for all the cache sizes or alignments will
exist. Consequently, it is impossible to guarantee that any arbitrary multi-byte read or write will
be atomic.

A.9.4 File Time Updates

If a client is able to satisfy a read or write request without contacting the server, the client need
not update one or more of the corresponding file times (st_mtime, st_ctime, and st_atime). This
applies to explicit reads and writes and to implicit reads and writes, such as those from mapped
files and the exec family of functions.

For write requests, programs can force st_mtime and st_ctime to be updated by forcing the
writes to the server, for example with fsync(). There is no corresponding mechanism for forcing
st_atime to be updated. In particular, the functions fstat() and stat() cannot be used to force the
update of file times for either reads or writes.

276 Open Group Technical Standard

Semantic Difference Summary for File Access Directory Caching

A.10 Directory Caching
There are two semantic differences concerning the client’s directory caching mechanism. These
differences occur when the information in the directory cache does not reflect the server’s
directories. As with attribute caching, the information in this cache is refreshed frequently from
the server. However, there is a window of time in which the information in this cache can be
inaccurate. If this caching mechanism is disabled through the ‘‘AttribCaching=False’’
MountedFileSystem attribute, these semantic differences no longer exist. (See the discussions of
the ‘‘AttribCaching=’’, ‘‘ACDirMin=’’ and ‘‘ACDirMax’’ MountedFileSystem attributes in
Section 2.4.2 on page 15.)

The following semantic differences can be noted:

1. It is possible that a client may still record an entry of a file that has just been deleted on the
server. Attempts on the client to create a new file with the same name, for example, using
creat() or link (), may fail, typically with [EEXIST]. Attempts to remove an otherwise
empty directory may fail, typically with [EEXIST] or

2. The result of a process that modifies the contents of a directory may not be immediately
noticeable to other clients. For example, calls to open() or stat() may fail, even if the file
exists on the server. Functions such as tmpnam() may return a filename that is already in
use on the server.

A.11 Time Skew
A process cannot rely on the access times of a remote file to be correct. The access times
associated with a remote file will relate to the system clock on the server system rather than to
that of the client system which last updated the remote file. A comparison of these access times
with the local system clock or the access times of a local file may not be of value. The reasons for
this are:

1. The system clocks on the server and client may not be synchronised.

2. The client and server systems may each have a different notion of system date and time;
for instance, they may be in different time zones.

3. The attribute cache may be holding inaccurate information concerning the times of a file.

As a result, programs whose behavior depends on file times may behave differently or
incorrectly in an XNFS environment. For example, if a file has been modified recently, the ls
command may display the file’s date and time using the format for a modification time in the
future. The make command may mistakenly conclude that a particular target is (or is not) out of
date with respect to its sources. The pax command may function incorrectly with the -u option.

This XNFS specification does not specify whether the routines utime() and utimes() use the client
time or server time when a null time pointer is used, that is, when setting the file times to the
current time.

Protocols for Interworking: XNFS, Version 3W 277

Server or Network-Induced Delays Semantic Difference Summary for File Access

A.12 Server or Network-Induced Delays
When a client makes a request to the server, the client expects a response within a certain time
limit. (See the discussion of the ‘‘NFSTimeOut=’’ MountedFileSystem attribute in Section 2.4.2
on page 15.) Should a response not occur within this time limit, the client may react in two
ways, depending upon values of certain mount attributes:

1. The client may reissue the request repeatedly until either the server responds, or the
maximum number of retries is reached. Should this maximum number of retries be
reached, the client has detected a server failure and returns an error to the process. (See the
discussions of the ‘‘RetrySemantics=’’ and ‘‘NFSRetransmissions=’’ MountedFileSystem
attributes in Section 2.4.2 on page 15.)

2. The client may reissue the request repeatedly until the the server reponds. (See the
discussions of the ‘‘RetrySemantics=’’ and ‘‘NFSRetransmissions=’’ MountedFileSystem
attributes in Section 2.4.2 on page 15.)

This behaviour may cause a function which is waiting for the server’s response to not
return to the calling process for an arbitrary duration of time. The effect on the process is
that it will sleep until the server responds.

When a process issues a stat() of a remote NFS mounted object, or of a directory containing
a remote NFS mounted object, a server request is generated. This may cause a delay if the
server does not respond.

A.13 Interruption of Function Calls
A signal may be posted to a process that is making a request that involves an NFS file. For
example, a user may wish to interrupt a request that is taking a long time to complete. If the file
system was mounted with the ‘‘Intr=’’ attribute set to ‘‘True’’ (see Section 2.4.2 on page 15), the
pending NFS operation will be cancelled and the signal will be processed. Otherwise the NFS
operation will be retried as described in Section A.12, and the signal will not be processed until
the NFS operation succeeds or the retry limit is reached. This behavior applies to any operation
that must contact the server, even functions that are not documented as potentially failing with
[EINTR] (for example, stat(), readlink ()).

A.14 File and Record Locking
File and record locking allows all or part of a file to be locked by calling fcntl() (using F_SETLK
or F_SETLKW) or lockf (). There are several semantic differences regarding file and record
locking over XNFS.

A.14.1 Availability of Locking

For file and record locking to be available, the client and server must support the NLM protocol,
typically by running the XNFS lock server. This XNFS specification does not specify any
mechanism whereby a client can determine whether a server provides locking services, nor does
it define the effects of issuing locking calls when the server does not provide these services.

278 Open Group Technical Standard

Semantic Difference Summary for File Access File and Record Locking

A.14.2 F_GETLK l_pid

The structure flock that is returned from an F_GETLK command contains the process ID (l_pid)
of the process that is holding the lock. When this is a process that is accessing a file on a remote
machine, this process ID is provided as a unique identifier for the process holding the lock, but it
is not necessarily the same as the process ID of that process. This XNFS specification does not
specify a mechanism for identifying which machine the process is running on.

A.14.3 Signals

If a process receives a signal while attempting to acquire or release a remote lock, the call may
return with the error [EINTR], even for non-blocking locks (fcntl() with F_SETLK or lockf () with
F_TLOCK). If this happens, the process cannot determine whether its request succeeded. If the
process exits, the client operating system will release the lock if necessary. If the process catches
the signal and resumes processing, the process should either resubmit the lock request, or it
should explicitly unlock the region it had tried to lock.

A.14.4 Memory-Mapped Files

Under some circumstances it is possible for cooperating processes to inadvertently defeat file
and record locking by mapping all or part of the file into memory with mmap(). For this reason,
mmap() may fail if all or part of the file is locked, and attempts to acquire a lock may fail if all or
part of the file is mapped into memory. Applications can reduce the chances of running into
these restrictions by always locking the entire file, or by locking regions that correspond to
whole pages on the client.

A.14.5 Error Handling

Suppose a process tries to acquire a lock. Due to limitations in Version 3 of the NLM protocol,
the client is unable to distinguish unrecoverable errors from the case where another process
already has a conflicting lock. Examples of unrecoverable errors include:

• after the process had opened the file, the file was deleted by a process on the server or on a
different client.

• the process requested an exclusive lock, the server has the file system mounted read-only,
and the server implementation requires a read-write file system for an exclusive lock.

This XNFS specification does not define the behavior of the client under these circumstances.

A.15 Network Heterogeneity
There are several differences that occur because XNFS can connect heterogeneous environments.

A.15.1 Local Execution of a Remote Program

It is possible that a binary file residing on the server may be incompatible for execution on a
client. For example, it may have been compiled for a different type of machine, or a different
X/Open-compliant operating system. An attempt to execute such a program, for example, via
popen() or system(), or from the shell, will usually fail.

Protocols for Interworking: XNFS, Version 3W 279

Network Heterogeneity Semantic Difference Summary for File Access

A program residing on the server which is compatible for execution with a client may be
incompatible in other ways. For example, it may include references to local resources which are
not accessible on all systems, or have been compiled for a different version of the operating
system which uses a slightly different binary interface. In this case the failure mode cannot be
predicted.

This XNFS specification does not specify any mechanism for determining the compatibility of a
binary program with a particular system, nor the ways in which incompatibilities may manifest
themselves.

A.15.2 Use of Remote Input Files with Varying Formats

Several utilities, for example tabs, as well as several functions, for example getpwuid(), process
files that are in a predefined format. Since there is no standard defining the format for some of
these input files, different implementations may use different formats for the same input file.
Incompatibilities may arise when a utility or function is used with a remote input file having a
different format than expected.

A.15.3 Architectural Dependencies

Some utilities may use input files that have a format which is dependent upon the underlying
architecture of the system. For example, a utility which uses a binary file may not operate
correctly with a binary file from a foreign architecture. Any utility which operates on binary
object files and executable files such as ar and cc will not operate correctly with a binary file from
a foreign system.

Some algorithms, for example the computation of a file’s checksum using sum, may be
dependent upon the architecture of the machine. Therefore, computing the checksum of two
identical files residing on two different machines having different architectures may yield two
different values.

A.15.4 Output Displayed in Conventions of Local System

Utilities which report information about files and/or file systems will behave consistently when
viewed from a single system. However, the results of some of these utilities that are executed on
different systems may differ. For instance, the execution of df on two different systems may
compute the free space of the same mounted file system differently. The output from the nm or
od utilities on two different systems may be formatted differently when run on the same object
file. In many cases, though, the utility provides a mechanism for generating output in a portable
fashion, such as the -P option to df and nm, or the -t option to od .

A.15.5 Filesize Differences

A system need not support native 64-bit file sizes to support the NFS Version 3 protocol. This
lets 32-bit clients interoperate with 64-bit servers and vice-versa, with certain restrictions.

If a program is running on a 64-bit client, calls to routines such as write() or truncate() will fail if
the program tries to create a file that is larger than that which the server supports. Record
locking operations (see Section A.14 on page 278) will fail if the program tries to lock a region of
the file that the server cannot support. The failure status in these cases is typically [EFBIG].

280 Open Group Technical Standard

Semantic Difference Summary for File Access Network Heterogeneity

If a program is running on a 32-bit client, routines such as stat() may return an incorrect size for
a file. If a file is too big for the client to handle, the client may handle requests for the file in one
of two ways:

• Deny access to the file. That is, calls to open() or fopen() will fail if the file exists and is too big
for the client to handle. If the file is small enough initially and then grown too big, for
example, by a process on the server, the call to open() or fopen() will succeed, but attempts to
read or write the file will fail after the client determines that the file has become too big.

• Allow access to the first part of the file. That is, the program will be allowed to read or write
the file up to the 32-bit limit, but not beyond.

A.15.6 Characters in File Names

A server may have an implementation-specific set of characters that it does not allow in file
names. If a program on the client uses one of these characters in a file name, for example in a
creat() or mkdir() call, it may get back the error [EACCES]. Functions that expect the name of an
existing file, for example, stat(), may fail with [EACCES] or [ENOENT]. Note that the contents
of a symbolic link for the symlink() function are not subject to any character restrictions.

Some server implementations do not preserve character case when creating an object in a file
system. That is, they may map all the characters in the name to either lower or upper case. Also,
even if they preserve case when creating an object, some server implementations may ignore
case distinctions for lookup operations. For example, an attempt to create the file ‘‘Makefile’’
may instead create the file ‘‘MAKEFILE’’. Even if the server creates the file using the name
‘‘Makefile’’, attempts to reference ‘‘makefile’’ or ‘‘MakeFILE’’ may all reference the first file
‘‘Makefile’’.

A.15.7 Server Access Control

The server may use an access model other than the traditional UNIX mode bits, for example,
Access Control Lists. In this case the mode bits reported by the client need not accurately
represent the permissions on a file. This inaccuracy can cause several problems, as discussed
below. Some systems implement an additional protocol to avoid these problems. The details of
that protocol are not covered by this XNFS specification and may vary from vendor to vendor.

If the client and server are connected using Version 2 of the NFS protocol, the client relies on the
mode bits to determine whether a given process has access to a given file. If the mode bits are
sufficiently inaccurate, the client may deny access to a process even though the request would
succeed on the server. That is, calls to open() or fopen() may fail on the client when they would
succeed on the server. Conversely, the client may grant access based on the mode bits, only to
have the request denied by the server. That is, the open() call may succeed, but calls to read() or
write() may fail, or there may be delayed write errors as described in Section A.9.1 on page 276.

If the client incorrectly grants a process access to a file and can satisfy read requests from its
cache, the process may successfully read or execute the file, bypassing the restrictions on the
server. It is also possible for an unauthorized process to read a directory in this manner. A
similar security breach is possible for writes to a file: if the client incorrectly grants access to an
unauthorized process while a second, authorized, process is writing to the file, the first process
may successfully update the file on the server. Unauthorized directory updates such as mkdir(),
rmdir(), rename() and remove() should always fail.

Protocols for Interworking: XNFS, Version 3W 281

Network Heterogeneity Semantic Difference Summary for File Access

If the client is using Version 3 of the NFS protocol, the mode bit information may still be
incorrect. Nonetheless, the client’s access decisions should be consistent with the server’s, after
allowing for caching issues as described in Section A.5 on page 273. (With NFS Version 3, the
client can ask the server whether a particular access request should be granted.) This greatly
reduces the probability that a process will incorrectly granted or denied an operation by the
client.

A.15.8 Server Support for File Times

Not all server implementations let the client set the times for a file (st_atime, st_mtime). Those
that do need not support a fine enough clock granularity to fully support interfaces like utime()
or utimes(). For example, they may support a resolution in milliseconds or in minutes. This
means that attempts to set a file’s times, for example with touch() or utimes(), need not change
the file times at all, or the file times may change to values different than those requested.

A.15.9 Special Files

The encoding of major and minor device numbers is not specified by Version 2 of the NFS
protocol, so different implementations may use different encodings. This means that the major
and minor device numbers of a special file may have different values, depending on where the
file is referenced from. Functions such as open() may behave in an unintended manner under
these circumstances.

Bounds checking on the server can cause mknod() to fail, particularly if the client and server are
communicating using Version 2 of the NFS protocol and they disagree on the encoding of the
major and minor device numbers.

A.16 User and Group ID Database Consistency
It is necessary to maintain a consistent user ID to username mapping across the collection of
XNFS servers and clients. The group ID to group name mapping should be consistent as well. If
these databases are not consistently maintained, programs such as ls may report different
owning users or groups depending on where the program is run. Also, access restriction
mechanisms need not function as intended. Access which should be denied may be allowed,
and conversely access which should be allowed may be denied.

In some cases the server may limit the user or group ID values to a subset of the values that are
possible on the client. In this case, of course, it is impossible to have consistent user and group
ID mappings. Routines such as chown() will fail with [EINVAL] when an unsupported user or
group ID is used.

282 Open Group Technical Standard

Semantic Difference Summary for File Access Access to Read-Only File Systems

A.17 Access to Read-Only File Systems
Operations which attempt to write to or modify a remote read-only file system will fail and may
return the error [EROFS]. This will occur if the file system was exported with the
ExportedFileSystem ‘‘Mode=’’ attribute set to ‘‘ReadOnly’’, or if the the file system was mounted
with the MountedFileSystem ‘‘Mode=’’ attribute set to ‘‘ReadOnly’’. (See the discussions of the
‘‘Mode=’’ attribute in both Section 2.4.1 on page 14 and Section 2.4.2 on page 15.) For access
using Version 3 of the NFS protocol, the failure will occur when the file is opened for writing,
unless a stale entry in the client access cache (see Section A.5 on page 273) causes the call to
succeed. With Version 2, the call open(), fopen(), etc. will fail if the client has mounted the file
system read-only, but the call may succeed if the client has mounted the file system read-write
and the server has exported it read-only. If the process is able to open the file for writing,
attempts to write to a regular file (for example, write(), writev()) will generally fail, though data
caching can delay these failures, as described in Section A.9.1 on page 276.

Directory operations on a read-only file system, for example, rmdir(), unlink(), creat(), mknod(),
will fail immediately for both versions of the NFS protocol.

Writes to special files are not subject to read-only restrictions, as they do not require updates to
the file system on the server.

An attempt to obtain an exclusive record lock on a file in a read-only file system may fail. As
described in Section A.14.5 on page 279, the request may fail in an implementation-dependent
manner.

A.18 Group Ownership of Created Files
When the ‘‘GrpID=’’ attribute of the MountedFileSystem object is set to True, the group owner
of a newly created file is always set to the group owner of the directory containing that file. This
may differ from the semantics applied to a locally created file where the group owner may be set
to the effective group ID of the calling process. This semantic difference affects functions such as
open() and creat(), as well as operations such as I/O redirection from the shell.

A.19 Consistency of Limits
The limit on the maximum number of simultaneous supplementary group IDs per process is
allowed to vary between systems and XNFS does not impose any restrictions on the number of
group IDs which are used to determine accessibility to a remote file. However, the server may
impose a lower maximum number than the client and may reject requests from the client which
contain more than the maximum number of supplementary groups allowed by the server.

A similar problem exists with other limits, such as the maximum number of characters in a
filename, or the maximum number of hard links to a file. These limits may vary between
different file systems, and Version 2 of the NFS protocol does not provide a mechanism for this
information to be made available to a client. The limits provided from a call to pathconf () need
not accurately reflect the limit imposed by the server’s file system. This may cause file access
requests to be rejected by the server or for files to be inaccessible from the client.

Protocols for Interworking: XNFS, Version 3W 283

Symbolic Links Semantic Difference Summary for File Access

A.20 Symbolic Links
If the server does not support symbolic links, an attempt to create one with symlink() will fail
with [EOPNOTSUPP]. Also, calls to readlink () may fail with [EOPNOTSUPP] instead of
[EINVAL].

The server treats the contents of a symbolic link as an opaque object, and the XNFS specification
does not define a format for symbolic links. This means that a readlink () call may return a string
that does not look like a path name. It also means that the client may be unable to resolve the
symbolic link, causing routines that involve path names (open(), remove(), mkdir(), stat(), etc.) to
fail if the link is part of the given path.

A client resolves a symbolic link using its own namespace, not the server’s namespace. For
example, a client will interpret a link to ‘‘/bin/sh’’ as referring to the client’s /bin/sh, even if the
link was created on the server. Similarly, a link to ‘‘../new_dir/some_file’’ may take the client to
a local file or a completely different server if it appears in the top directory of a mounted file
system (see Section 2.4.2 on page 15 for an explanation of mounted file systems).

A.21 Interrupted Root File System Service
A client’s root file system may be accessed using the NFS protocol. Diskless clients usually
operate in this manner, and an individual process may change its root file system to a remote file
system using the chroot() call. If service for the root file system is interrupted, service for other
file systems may be interrupted as well. For example, if the server for a diskless client’s root file
system crashes, the client may be unable to access any file systems, even file systems that are
served by a different server, until the crashed server resumes operation.

A.22 Implicit File Access
Several functions in the X/Open System Interfaces and Headers Specification (see reference
XSH) access files even though they do not take a stream handle, file descriptor or path name as
an argument. For example, getpwnam() and getgrnam() use the system’s user and group
databases, respectively. If the databases are implemented as remote files, either through
individual mounts or because the client is diskless, the operations performed by these functions
are subject to the semantic differences described in this appendix.

Other functions may access files other than those specified in the argument list. For example,
ttyname() and getcwd() may use calls to stat() to find a desired file or directory. It is possible
that some of these calls to stat() will inadvertently refer to remote files or directories. Calls to
system() may result in references to remote files, depending on the contents of environment
variables such as PATH and ENV. These references to remote files are subject to the semantic
differences described in this appendix.

284 Open Group Technical Standard

Semantic Difference Summary for File Access Multiple Hosts

A.23 Multiple Hosts
Software that was written for a local file system environment may make uniqueness
assumptions, for example, it may assume that process identifiers are unique. These assumptions
need not be true in an XNFS environment.

A.23.1 Process Identifiers

A common approach for generating a unique filename, particularly in shell scripts, is to append
the process’s process identifier to an application-dependent prefix. This approach can fail if two
processes, each with the same identifier on a different host, attempt to create a unique file in a
shared directory. The X/Open System Interfaces and Headers Specification (see reference XSH)
provides several functions, for example, mkstemp(), that can avoid this uniqueness problem.
Shell scripts must rely on ad-hoc mechanisms for generating unique files, such as including the
host name in the file name.

A.23.2 Unique Daemons

Some system facilities, such as the crontab facility or printer spoolers, may assume the existence
of a single daemon that is started during system initialization. If the files that the daemon uses
are shared using the NFS protocol, the daemon may behave in an unintended manner. For
example, if the crontab database is accessible from more than one system, the same command
may be executed concurrently on different hosts, even if this was not the user’s intent.

Protocols for Interworking: XNFS, Version 3W 285

Semantic Difference Summary for File Access

286 Open Group Technical Standard

Appendix B

Open-System Interface Semantics over XNFS

B.1 Introduction
Many of the interfaces described in the X/Open System Interfaces and Headers Specification
(see reference XSH) are directly or indirectly concerned with accessing files stored on the
system’s file system. This appendix identifies those interfaces which may operate differently
when used with XNFS.

Section B.2 on page 288 lists those functions that show no semantic differences when invoked in
an XNFS environment. That is, they behave the same as when running in a local file system
environment. Section B.3 on page 292 lists those functions that may show a semantic difference
when invoked in an XNFS environment. Appendix A explains the differences that can cause a
function to appear in Section B.3 on page 292. There is only one distinct XNFS error, [ESTALE].
This error occurs when a remote open file or directory is deleted and its file handle becomes
invalid. (See Section A.6 on page 274.)

Another difference concerning errors is that [EACCES] and [EPERM] may occur in unexpected
situations due to the stateless nature of NFS. (See the discussions in Section A.3 on page 272,
Section A.4 on page 273, Section A.6.1 on page 274 and Section A.10 on page 277.)

In all operations that modify a file or directory, the error [EROFS] may be returned. (See the
discussion in Section A.17 on page 283 for more information.)

For a complete list of the non-NFS related errors, as well as the mechanism by which a process
can ascertain an error return code, see Section 2.3, Error Numbers in the X/Open System
Interfaces and Headers Specification (see reference XSH).

Protocols for Interworking: XNFS, Version 3W 287

Functions with no Semantic Differences Open-System Interface Semantics over XNFS

B.2 Functions with no Semantic Differences
The following functions have no change over XNFS:

Functions with no Semantic Differences
a64l() abs() acos()
acosh() advance() alarm()
asctime() asctime_r() asin()
asinh() assert() atanh()
atexit() atof() atoi()
atol() basename() bcmp()
bcopy() brk() bsd_signal()
bsearch() btowc() bzero()
calloc() catclose() cbrt()
ceil() cfgetispeed() cfgetospeed()
cfsetispeed() cfsetospeed() clearerr()
clock() clock_getres() clock_gettime()
clock_settime() closedir() closelog()
compile() confstr() cos()
cosh() crypt() ctermid()
ctime() ctime_r() dbm_clearerr()
dbm_error() difftime() diname()
div() drand48() dup()
ecvt() encrypt() endgrent()
endpwent() erand48() erf()
erfc() exp() expm1()
fabs() fdopen() fileno()
floor() fmod() fnmatch()
fork() mblen() free()
frexp() ftime() gamma()
getcontext() gcvt() getdtablesize()
getegid() getenv() geteuid()
getgid() getgroups() gethostid()
getitimer() getmsg() getopt()
getpagesize() getpass() getpgid()
getpgrp() getpid() getpmsg()
getppid() getpriority() getrlimit()
getrusage() getsid() getsubopt()
gettimeofday() getuid() globfree()
gmtime() gmtime_r() grantpt()
hcreate() hdestroy() hsearch()
hypot() iconv() iconv_close()
ilogb() index() initstate()
insque() ioctl() isalnum()
isalpha() isascii() isastream()
iscntrl() isdigit() isgraph()
islower() isnan() isprint()
ispunct() isspace() isupper()
iswalnum() iswcntrl() iswctype()
iswdigit() iswgraph() iswlower()
iswprint() iswpunct() iswspace()
iswupper() iswxdigit() isxdigit()
j0() j1() jn()
jrand48() l64a() labs()

288 Open Group Technical Standard

Open-System Interface Semantics over XNFS Functions with no Semantic Differences

Functions with no Semantic Differences
ldiv() lcong48() ldexp()
lfind() lgamma() localeconv()
localtime() localtime_r() log()
logb() log1p() log10()
logb() longjump() lrand48()
lsearch() makecontext() malloc()
mblen() mbrlen() mbrtowc()
mbsinit() mbsrtowcs() mbstowcs()
mbtowc() memccpy() memchr()
memcmp() memcpy() memmove()
memprotect() memset() mktime()
mlock() mlockall() modf()
mq_close() mq_getattr() mq_notify()
mq_open() mq_receive() mq_send()
mq_setattr() mq_unlink() mrand48()
msgctl() msgget() msgrcv()
msgsnd() munlock() munlockall()
nanosleep() openlog() nextafter()
nice() nl_langinfo() nrand48()
pause() pclose() pipe()
poll() pow() pthread_attr_setstacksize()
pthread_atfork() pthread_attr_destroy() pthread_attr_getdetachstate()
pthread_attr_getinheritsched() pthread_attr_getschedparam() pthread_attr_getschedpolicy()
pthread_attr_getscope() pthread_attr_getstackaddr() pthread_attr_getstacksize()
pthread_attr_init() pthread_attr_setdetachstate() pthread_attr_setinheritsched()
pthread_attr_setschedparam() pthread_attr_setschedpolicy() pthread_attr_setscope()
pthread_attr_setstackaddr() pthread_cleanup_pop() pthread_cleanup_push()
pthread_cond_broadcast() pthread_cond_destroy() pthread_cond_init()
pthread_cond_signal() pthread_cond_timedwait() pthread_cond_wait()
pthread_condattr_destroy() pthread_condattr_getpshared() pthread_condattr_init()
pthread_condattr_setpshared() pthread_create() pthread_detach()
pthread_equal() pthread_getschedparam() pthread_getspecific()
pthread_key_create() pthread_key_delete() pthread_kill()
pthread_mutex_destroy() pthread_mutex_getprioceiling() pthread_mutex_init()
pthread_mutex_lock() pthread_mutex_setprioceiling() pthread_mutex_trylock()
pthread_mutex_unlock() pthread_mutexattr_destroy() pthread_mutexattr_getprioceiling()
pthread_mutexattr_getprotocol() pthread_mutexattr_getpshared() pthread_mutexattr_init()
pthread_mutexattr_setprioceiling() pthread_mutexattr_setprotocol() pthread_mutexattr_setpshared()
pthread_once() pthread_self() pthread_setcancelstate()
pthread_setcanceltype() pthread_setschedparam() pthread_setspecific()
pthread_sigmask() ptsname() putenv()
putmsg() putpmsg() qsort()
raise() rand() random()
realloc() re_comp() re_exec()
regcmp() regcomp() regex()
regexec() regerror() regfree()
remainder() remque() rewind()
rindex() rint() sbrk()
scalb() sched_get_priority_max() sched_get_priority_min()
sched_getparam() sched_getscheduler() sched_rr_get_interval()
sched_setparam() sched_setscheduler() sched_yield()
seed48() seekdir() select()
sem_close() semctl() semget()

Protocols for Interworking: XNFS, Version 3W 289

Functions with no Semantic Differences Open-System Interface Semantics over XNFS

Functions with no Semantic Differences
sem_getvalue() sem_init() semop()
sem_open() sem_post() sem_trywait()
sem_unlink() sem_wait() setbuf()
setcontext() setgid() setgrent()
setitimer() setjmp() setkey()
setlocale() setlogmask() setpgid()
setpgrp() setpriority() setpwent()
setregid() setreuid() setrlimit()
setsid() setstate() setuid()
setutxent() setvbuf() shmat()
shmctl() shmdt() shmget()
shm_open() shm_unlink() sigaction()
sigaddset() sigdelset() sigemptyset()
sigfillset() sighold() sigignore()
siginterrupt() sigismember() siglongjmp()
signal() signalstack() sigpause()
sigqueue() sigrelse() sigstack()
sigpending() sigprocmask() sigset()
sigsetjmp() sigsuspend() sigtimedwait()
sigwaitinfo() sin() sinh()
sleep() snprintf() sprintf()
sqrt() srand() srand48()
srandom() sscanf() step()
strcasecmp() strcat() strchr()
strcmp() strcoll() strcpy()
strcspn() strdup() strerror()
strfmon() strftime() strlen()
strncasecmp() strncat() strncmp()
strncpy() strpbrk() strptime()
strrchr() strspn() strstr()
strtod() strtok() strtol()
strtoul() strxfrm() swab()
swapcontext() swprintf() swscanf()
sysconf() syslog() tan()
atan() tanh() atan2()
tcdrain() tcflow() tcflush()
tcgetattr() tcgetpgrp() tcgetsid()
tcsendbreak() tcsetattr() tcsetpgrp()
tdelete() telldir() tfind()
time() timer_create() timer_delete()
timer_getoverrun() timer_gettime() timer_settime()
times() toascii() _tolower()
tolower() _toupper() toupper()
towctrans() towlower() towupper()
tsearch() twalk() tzset()
ualarm() ulimit() ulockpt()
umask() uname() ungetc()
ungetwc() usleep() valloc()
vfork() vsnprintf() vsprintf()
vswprintf() vwprintf() wait()
wait3() waitid() waitpid()
wcrtomb() wcscat() wcschr()
wcscmp() wcscoll() wcscpy()

290 Open Group Technical Standard

Open-System Interface Semantics over XNFS Functions with no Semantic Differences

Functions with no Semantic Differences
wcscspn() wcsftime() wcslen()
wcsncat() wcsncmp() wcsncpy()
wcspbrk() wcsrchr() wcsrtombs()
wcsspn() wcsstr() wcstod()
wcstok() wcstol() wcstombs()
wcstoul() wcswcs() wcswidth()
wcsxfrm() wctob() wctomb()
wctrans() wctype() wcwidth()
wmemchr() wmemcmp() wmemcpy()
wmemmove() wmemset() wordexp()
wordfree() wprintf() wscanf()
y0() y1() yn()

It should be noted that the functions which provide inter-process communications via message
queues, shared memory and semaphores all use a key_t to generate the corresponding inter-
process communication channel. Objects of type key_t are not transferable between different
systems and inter-process communications associated with these keys are not available across
an NFS system.

Protocols for Interworking: XNFS, Version 3W 291

Functions with Semantic Differences Open-System Interface Semantics over XNFS

B.3 Functions with Semantic Differences
The following functions have semantic differences over XNFS:

Functions with Semantic Differences
abort() access() aio_cancel()
aio_error() aio_fsync() aio_read()
aio_return() aio_suspend() aio_write()
catgets() catopen() chdir()
chmod() chown() chroot()
close() creat() cuserid()
dbm_close() dbm_delete() dbm_fetch()
dbm_firstkey() dbm_nextkey() dbm_open()
dbm_store() dlclose() dlerror()
dlopen() dlsym() dup2()
endutxent() exec() exit()
fattach() fchdir() fchmod()
fchown() fclose() fcntl()
fdatasync() fdetach() ferror()
feof() fflush() fgetc()
getc_unlocked() getchar_unlocked() getgrgid_r()
getgrnam_r() getlogin_r() fgetpos()
getpwnam_r() getpwuid_r() fgets()
fgetwc() flockfile() fmtmsg()
fopen() fpathconf() fprintf()
fputc() fputs() fputwc()
fputws() fread() freopen()
fscanf() fseek() fsetpos()
fstat() fstatvfs() fsync()
ftell() ftrylockfile() ftw()
funlockfile() fwide() fwprintf()
fwrite() fwscanf() getc()
getchar() getcwd() getdate()
getgrent() getgrgid() getgrnam()
getlogin() getpwent() getpwnam()
getpwuid() gets() getutxent()
getutxid() getutxline() getw()
getwc() getwd() getwchar()
fgetws() fseeko() ftello()
ftok() ftruncate() glob()
iconv_open() isatty() kill()
killpg() lchown() link()
lio_listio() lockf() lseek()
lstat() mkdir() mknod()
mkfifo() mkstemp() mktemp()
mmap() msync() munmap()
nftw() open() opendir()
pathconf() perror() popen()
pread() printf() pthread_cancel()
pthread_exit() pthread_join() pthread_testcancel()
putc() putc_unlocked() putchar()
putchar_unlocked() puts() pututxline()
putw() putwc() putwchar()
pwrite() read() readdir()

292 Open Group Technical Standard

Open-System Interface Semantics over XNFS Functions with Semantic Differences

Functions with Semantic Differences
readdir_r() readlink() readv()
realpath() remove() rename()
rewinddir() rmdir() scanf()
stat() statvfs() symlink()
sync() system() tempnam()
tmpfile() tmpnam() truncate()
ttyname() ttyname_r() ttyslot()
unlink() utime() utimes()
vfprintf() vfwprintf() vprintf()
write() writev()

Where the semantic difference described only applies to Issue 4 X/Open Specifications this is
identified by shading of the appropriate text. Semantic differences which do not contain this
code marking are applicable to both Issue 3 and Issue 4 X/Open Specifications.

Protocols for Interworking: XNFS, Version 3W 293

Open-System Interface Semantics over XNFS

294 Open Group Technical Standard

Appendix C

Open System Utilities Semantics over XNFS

C.1 Introduction
Many of the interfaces described in the X/Open Commands and Utilities Specification (see
reference XCU) are directly or indirectly concerned with accessing files stored on the system’s
file system. This appendix identifies those commands and utilities which may operate
differently when used with XNFS.

The table ‘‘Utilities with no Semantic Differences’’ below lists the commands and utilities that
show no semantic difference when invoked in an XNFS environment. That is, they behave the
same as when running in a local file system environment.

Section C.3 on page 297 lists the commands and utilities that may show semantic differences
when invoked in an XNFS environment.

Appendix A lists the potential differences that can affect those commands and utilities.

Section C.2 on page 296 lists the differences that are most common.

The following utilities and commands have no change over XNFS:

Utilities with no Semantic Differences
alias banner basename bg
cal col dirname echo
env expr false fg
getopts hash ipcrm ipcs
jobs line locale logger
lpstat mesg nice printf
read renice sleep time
tr true type ulimit
umask unalias uname wait
xargs

Protocols for Interworking: XNFS, Version 3W 295

Common Semantic Differences Open System Utilities Semantics over XNFS

C.2 Common Semantic Differences
The following differences apply to almost all of the commands and utilities that may show
semantic differences under an XNFS environment.

C.2.1 Execution of Remote Files

This applies to all of the utilities and commands. If local execution of a remote utility or
command occurs (such as executing the remote image of cmp locally), then the following
semantic difference applies:

• It is possible that the remote program may be incompatible for execution on a local machine.
(See Section A.15.1 on page 279.)

C.2.2 Interruption of any XNFS Operation

All NFS operations involve issuing one or more requests from the client to the server. Therefore
the following semantic difference applies to all NFS operations:

• As described in Section A.12 on page 278, a system call which refers to an NFS file or
directory may take an arbitrary length of time to complete. However, it is possible for the
user to interrupt such an operation if the ‘‘Intr=’’ MountedFileSystem attribute has been set
to ‘‘True’’. (See Section A.13 on page 278.)

C.2.3 File Access

Every command or utility that opens and then accesses a remote file is subject to the following
semantic differences:

• Access to a file located on a remote file system can be denied, even in the case that the file
permissions do not themselves restrict access. (See Section A.3 on page 272.)

• Access to a file on the server may be denied because the attributes in the client cache are
more restrictive than the attributes on the server. (See Section A.5.1 on page 274.)

• Further access to an open file may be denied if the file is located on a remote file system and
the file has either been deleted or the file attributes have changed. (See Section A.6 on page
274.)

• The deletion of a file on a server may not be immediately recorded on the clients due to
directory caching. (See Section A.10 on page 277.)

• The creation of a file on a server may not be immediately noticeable to clients due to
directory caching. (See Section A.10 on page 277.)

• During client/server operations, there may be delays of arbitrary duration. These delays can
be the result of network traffic and server load or availability. (See Section A.12 on page 278
and Section A.21 on page 284.)

• Access protection mechanisms will not function as intended if the user ID databases are not
consistently maintained over the network. (See Section A.16 on page 282.)

Remote file access could conceivably occur with every command or utility if its standard input
or standard output is redirected to a remote file.

296 Open Group Technical Standard

Open System Utilities Semantics over XNFS Utilities with Semantic Differences

C.3 Utilities with Semantic Differences
The following is a list of those utilities and commands that have semantic differences:

Utilities with Semantic Differences
admin ar asa at
awk batch bc c89
calendar cancel cat cc
cd cflow chgrp chmod
chown chroot cksum cmp
comm command compress cp
cpio crontab csplit ctags
cu cut cxref date
dd delta df diff
dircmp dis du ed
egrep ex expand fc
fgrep file find fold
fort77 fuser gencat get
getconf grep head iconv
id join kill lex
link unlink lint ln
localedef logname lp ls
m4 mail mailx make
man mkdir mkfifo more
mv newgrp nl nm
nohup od pack paste
patch pathchk pax pcat
pg pr prs ps
pwd red rm rmdel
rmdir sact sccs sdb
sed sh sort spell
split strings strip stty
sum tabs tail talk
tar tee test touch
tput tsort tty uncompress
unexpand unget uniq unpack
uucp uudecode uuencode uulog
uuname uupick uustat uuto
uux val vi wall
wc what who write
yacc zcat

Where the semantic difference described only applies to Issue 4 X/Open Specifications this is
identified by shading of the appropriate text. Semantic differences which do not contain this
code marking are applicable to both Issue 3 and Issue 4 X/Open Specifications.

Protocols for Interworking: XNFS, Version 3W 297

Open System Utilities Semantics over XNFS

298 Open Group Technical Standard

Appendix D

Open Systems Transmission Analysis

D.1 Introduction
When an XSI System Interface function is applied to an XNFS file system object, the XNFS client
implementation executes a sequence of NFS RPCs to the XNFS server in order to perform the
requested operation. This appendix, describing transmission analysis, provides a general
indication of the sequence of RPCs which is performed for each XSI System Interface function.

In a rudimentary implementation, it might be possible to define the precise sequence of RPCs
that would be performed for each XSI function. However, this is unlikely to be feasible for any
commercially available implementation of NFS within an X/Open-compliant system. Practical
NFS implementations include various cache mechanisms, the purpose of which is to increase
performance by not performing possibly redundant remote procedure calls. However the use of
local caches can introduce ‘‘windows’’ in which the client’s view of the state of the file system
object is incorrect for a short period of time. For this reason, implementations will usually
include mechanisms whereby the administrator of the XNFS client can disable some or all of the
cache schemes, usually on a per-file system basis. The attributes of the MountedFileSystem
which control this are described in Chapter 2 on page 9.

This chapter describes the sequence of NFS RPCs corresponding to each of the most basic XSI
System Interface functions. For example, read() is described, but fread() is not. This corresponds
to the distinction between ‘‘system calls’’ and ‘‘library routines’’ which is made in some
X/Open-compliant systems. For each function, the sequence of RPCs which would occur if all
attribute and directory caching were disabled is described. This is followed by comments on the
way in which the operation of the attribute or directory caches may alter the sequence.

The following general points should be noted:

• Attribute cache consistency.

If attribute caching is enabled, an NFSPROC_GETATTR may be performed at any time in
order to ensure cache consistency.

• Buffer cache operation.

Data to be read will usually be buffered. This may mean that extra NFSPROC_READ
requests may be issued at any time to load the buffers, and that read() requests may be
satisfied from the buffered data, so that there is no obvious correlation between read()
requests and NFSPROC_READ RPCs. Similarly, data which is written by write() and similar
functions may be buffered, with the NFSPROC_WRITE being deferred. This specification
does not define any mechanism whereby this data buffering may be disabled, but it is
expected that an implementation will disable data buffering on a file for which record locking
is in use.

• Looking up a path.

Many of the XSI functions are invoked with a path which is to be interpreted as identifying a
particular file system object. The process of interpreting a path is handled in a broadly
similar manner for all functions, and is denoted by LOOKUP_SEQUENCE in the following
descriptions:

Protocols for Interworking: XNFS, Version 3W 299

Introduction Open Systems Transmission Analysis

— If the path is relative to the current directory, issue an NFSPROC_GETATTR to verify that
the directory is still valid.

— For each component in the path, issue an NFSPROC_LOOKUP to retrieve the file handle
and attributes for the corresponding file system object.

If attribute caching is enabled, the initial NFSPROC_GETATTR call may not be needed. If
directory caching is enabled, it may not be necessary to perform the NFSPROC_LOOKUP for
some components; on the other hand it may be necessary to issue additional
NFSPROC_GETATTR calls to verify that the cached state is up-to-date.

• Relationship to Service Model.

Before an application can invoke XSI functions which refer to an NFS mounted file system,
the file system must be mounted as described in Chapter 2 on page 9. This creates a
MountedFileSystem object which includes the file handle for the remote file system; this is
then used during any LOOKUP_SEQUENCE which traverses the corresponding mount
point.

• Version 2 versus Version 3.

This appendix is derived from Version 2 of the NFS protocol. The sequence of RPCs using
Version 3 of the protocol bears some resemblance to the sequence using Version 2, but it is
complicated by features that exist only in Version 3, such as

— new RPC procedures (for example, ACCESS and READDIRPLUS)

— pre- and post-operation attributes

— asynchronous WRITE calls.

These protocol features are discussed in more detail in Chapter 12 on page 175.

300 Open Group Technical Standard

Open Systems Transmission Analysis RPC Calls Generated by Basic XSI Functions

D.2 RPC Calls Generated by Basic XSI Functions

ACCESS

The ACCESS() XSI System Interface function is implemented as follows:

• A LOOKUP sequence is performed to interpret the path.

• An NFSPROC_GETATTR is performed to retrieve the attributes of the object.

If attribute caching is enabled, the NFSPROC_GETATTR may not be performed.

CHDIR

The CHDIR() XSI System Interface function is implemented as follows:

• A LOOKUP sequence is performed to interpret the path.

• An NFSPROC_GETATTR is performed to retrieve the attributes of the object to verify that it
is a directory.

If attribute caching is enabled, the NFSPROC_GETATTR may not be performed.

CHMOD

The CHMOD() XSI System Interface function is implemented as follows:

• A LOOKUP sequence is performed to interpret the path.

• An NFSPROC_GETATTR is performed to retrieve the attributes of the object.

• An NFSPROC_SETATTR is performed to update the attributes.

If attribute caching is enabled, the NFSPROC_GETATTR may not be performed.

CHOWN

The CHOWN() XSI System Interface function is implemented as follows:

• A LOOKUP sequence is performed to interpret the path.

• An NFSPROC_GETATTR is performed to retrieve the attributes of the object.

• An NFSPROC_SETATTR is performed to update the attributes.

If attribute caching is enabled, the NFSPROC_GETATTR may not be performed.

CHROOT

The CHROOT() XSI System Interface function is implemented as follows:

• A LOOKUP sequence is performed to interpret the path.

• An NFSPROC_GETATTR is performed to retrieve the attributes of the object and verify that
it is a directory.

If attribute caching is enabled, the NFSPROC_GETATTR may not be performed.

Protocols for Interworking: XNFS, Version 3W 301

RPC Calls Generated by Basic XSI Functions Open Systems Transmission Analysis

CLOSE

The CLOSE() XSI System Interface function is implemented as follows:

• Any unwritten data is written to the file using NFSPROC_WRITE.

• If the file was unlinked while open, and this is the last reference to the file, it is finally
unlinked using NFSPROC_REMOVE.

If the XNFS implementation supports the NoCto attribute for MountedFileSystems, and NoCto
for the file system in question is ‘‘true’’, step (i) may be deferred.

CREAT

The CREAT() XSI System Interface function is implemented as follows:

• A LOOKUP sequence is performed to interpret the path.

• If ‘‘exclusive’’ mode is specified, an NFSPROC_LOOKUP will be performed to verify that the
file does not already exist.

• An NFSPROC_CREATE is performed to create the file.

FCNTL

Certain subfunctions of the FCNTL() XSI System Interface function will lead to client-server
interactions. The subfunctions are those concerned with advisory file locking, F_GETLK,
F_SETLK and F_SETLKW. As noted in Chapter 9 on page 117, an implementation may elect to
use synchronous or asynchronous requests for locking services. In addition, locking operations
may cause the lock manager subsystems to initiate or terminate status monitoring. Here we
consider only the case of synchronous lock manager interactions.

• For an F_GETLK request, the local NLM performs a synchronous NLM_TEST RPC to the
remote NLM. If there are any conflicting locks on the file, the first of these is returned in the
RPC reply.

• For an F_SETLK request to lock a file (with ‘‘l_type’’ set to F_RDLCK or F_WRLCK), the local
NLM performs an NLM_LOCK RPC to the remote NLM. In addition, data and attribute
caching are disabled for the file, in order that lock/update/unlock sequences can be
performed synchronously.

• For an F_SETLK (or F_SETLKW) request to unlock a file (with ‘‘l_type’’ set to F_UNLCK), the
local NLM performs an NLM_UNLOCK RPC to the remote NLM.

• For an F_SETLKW request to lock a file (with ‘‘l_type’’ set to F_RDLCK or F_WRLCK), the
local NLM performs an NLM_LOCK RPC to the remote NLM with ‘‘block’’ set to true. If the
request cannot be granted immediately, the server returns the code ‘‘LCK_BLOCKED’’.
When the request can subsequently be honoured, the server NLM will perform an
NLM_GRANTED RPC to the client NLM. If the client NLM does not wish to wait for the
lock to be granted, it may perform an NLM_CANCEL RPC to the server NLM. As for
F_SETLK, data and attribute caching are disabled for the file, in order that
lock/update/unlock sequences can be performed synchronously.

302 Open Group Technical Standard

Open Systems Transmission Analysis RPC Calls Generated by Basic XSI Functions

FSTAT

The FSTAT() XSI System Interface function is implemented as follows:

• An NFSPROC_GETATTR is performed to retrieve the attributes of the object.

If attribute caching is enabled, the NFSPROC_GETATTR may not be performed.

FSYNC

The FSYNC() XSI System Interface function is implemented as follows:

• Any unwritten data is written to the file using NFSPROC_WRITE.

LINK

The LINK() XSI System Interface function is implemented as follows:

• A LOOKUP sequence is performed to interpret the path.

• An NFSPROC_GETATTR is performed to retrieve the attributes of the object.

• An NFSPROC_LINK is performed to create the link.

If attribute caching is enabled, the NFSPROC_GETATTR may not be performed.

LSEEK

The LSEEK() XSI System Interface function is implemented as follows:

• An NFSPROC_GETATTR is performed to retrieve the attributes of the object.

If attribute caching is enabled, the NFSPROC_GETATTR may not be performed.

MKDIR

The MKDIR() XSI System Interface function is implemented as follows:

• A LOOKUP sequence is performed to interpret the path.

• An NFSPROC_MKDIR is performed to create the directory.

• An NFSPROC_SETATTR is performed to set the group ID for the newly-created directory.
(This step is necessary to accommodate a problem with certain server implementations.)

MKFIFO

The MKFIFO() XSI System Interface function is implemented as follows:

• A LOOKUP sequence is performed to interpret the path.

• An NFSPROC_CREATE is performed to create the file system object.

OPEN

The OPEN() XSI System Interface function is implemented as follows:

• A LOOKUP sequence is performed to interpret the path.

• An NFSPROC_GETATTR is performed to retrieve the attributes of the object.

• If ‘‘truncate’’ mode is required, an NFSPROC_CREATE is performed to create a new file.

If attribute caching is enabled, the NFSPROC_GETATTR may not be performed.

Protocols for Interworking: XNFS, Version 3W 303

RPC Calls Generated by Basic XSI Functions Open Systems Transmission Analysis

OPENDIR

The OPENDIR() XSI System Interface function is implemented as follows:

• A LOOKUP sequence is performed to interpret the path.

• An NFSPROC_GETATTR is performed to retrieve the attributes of the object to verify that it
is a directory.

If attribute caching is enabled, the NFSPROC_GETATTR may not be performed.

PATHCONF

The PATHCONF() XSI System Interface function is implemented as follows:

• A LOOKUP sequence is performed to interpret the path.

READ

The READ() XSI System Interface function is implemented as follows:

• An NFSPROC_READ is performed to retrieve the data.

If data caching is enabled, the READ() may be satisfied using cached data. Note that the use of
advisory file locking will disable caching for a file; see FCNTL() for more details.

READDIR

The READDIR() XSI System Interface function is implemented as follows:

• An NFSPROC_READDIR is performed to retrieve the next directory entry.

If directory caching is enabled, the NFSPROC_READDIR may be satisfied from the cached
results of a previous NFSPROC_READDIR, provided that the directory information has not
timed out and is more recent than the last modification time on the directory, which in turn
depends on the (possibly cached) directory attributes.

RENAME

The RENAME() XSI System Interface function is implemented as follows:

• A LOOKUP sequence is performed to interpret the path.

• An NFSPROC_GETATTR is performed to retrieve the attributes of the object.

• An NFSPROC_RENAME is performed to rename the file.

If attribute caching is enabled, the NFSPROC_GETATTR may not be performed.

RMDIR

The RMDIR() XSI System Interface function is implemented as follows:

• A LOOKUP sequence is performed to interpret the path.

• An NFSPROC_RMDIR is performed to remove the directory.

304 Open Group Technical Standard

Open Systems Transmission Analysis RPC Calls Generated by Basic XSI Functions

STAT

The STAT() XSI System Interface function is implemented as follows:

• A LOOKUP sequence is performed to interpret the path.

• An NFSPROC_GETATTR is performed to retrieve the attributes of the object.

If attribute caching is enabled, the NFSPROC_GETATTR may not be performed.

UNLINK

The UNLINK() XSI System Interface function is implemented as follows:

• A LOOKUP sequence is performed to interpret the path.

• If the file is not open on the client system, an NFSPROC_REMOVE is performed to remove
the file.

• If the file is open on the client system, an NFSPROC_RENAME is performed to rename the
file temporarily.

WRITE

The WRITE() XSI System Interface function is implemented as follows:

• An NFSPROC_WRITE is performed to write the data.

If data caching is enabled, the data may be buffered and not written out immediately. In this
case, if attribute caching is enabled, the cached attributes may be updated locally to reflect the
new file size. Note that the use of advisory file locking will disable caching for a file; see
FCNTL() for more details.

Protocols for Interworking: XNFS, Version 3W 305

Open Systems Transmission Analysis

306 Open Group Technical Standard

Appendix E

WebNFS Extensions

E.1 Introduction
The WebNFS extensions are an optional set of extensions to the NFS protocol. They provide
additional semantics that can be applied to versions 2 and 3 of the protocol to: eliminate the
overhead of PORTMAP and MOUNT protocols, make the protocol easier to use where firewall
transit is required, and reduce the number of LOOKUP requests required to identify a particular
file on the server.

This Appendix describes the changes to an NFS implementation that are needed to support the
WebNFS extensions. It also describes NFS URLs, which can be used by WebNFS clients,
including web browsers, to specify files on WebNFS servers.

E.2 TCP versus UDP
The NFS protocol is most well known for its use of UDP, which performs acceptably on local
area networks. However, on wide area networks with error prone, high-latency connections and
bandwidth contention, TCP is well respected for its congestion control and superior error
handling. A growing number of NFS implementations now support the NFS protocol over TCP
connections.

Version 3 of the NFS protocol is particularly well matched to the use of TCP as a transport
protocol. Version 3 removes the arbitrary 8k transfer size limit of version 2, allowing the READ
or WRITE of very large streams of data over a TCP connection. Note that version 2 is also
supported on TCP connections, though the benefits of TCP data streaming will not be as great.

A WebNFS client must first attempt to connect to its server with a TCP connection. If the server
refuses the connection, the client should attempt to use UDP.

E.3 Well-Known Port
While Internet protocols are generally identified by registered port number assignments,
RPC-based protocols register a 32-bit program number and a dynamically assigned port with the
portmap service which is registered on the well-known port 111. Since the NFS protocol is
RPC-based, NFS servers register their port assignment with the portmap service.

NFS servers are constrained by a requirement to re-register at the same port after a server crash
and recovery so that clients can recover simply by retransmitting an RPC request until a
response is received. This is simpler than the alternative of having the client repeatedly check
with the portmap service for a new port assignment. NFS servers typically achieve this port
invariance by registering a constant port assignment, 2049, for both UDP and TCP.

To avoid the overhead of contacting the server’s portmap service, and to facilitate transit
through packet filtering firewalls, WebNFS clients optimistically assume that NFS servers
register on port 2049. Most NFS servers use this port assignment already, so this client optimism
is well justified.

Protocols for Interworking: XNFS, Version 3W 307

Server Port Monitoring WebNFS Extensions

E.4 Server Port Monitoring
Some NFS servers accept requests only from reserved UDP or TCP ports, that is, port numbers
below 1024. These privileged ports are available only to UNIX processes with Super-user
permissions. Requests that do not originate from the range of reserved ports are rejected. This is
an optimistic way of preventing direct access to the server from user processes that may attempt
to spoof AUTH_UNIX RPC credentials.

WebNFS clients are not required to use reserved ports. This means that a WebNFS server must
not check the originating port for requests to filesystems which are made available to WebNFS
clients.

E.5 Public Filehandle
NFS filehandles are normally created by the server and used to identify uniquely a particular file
or directory on the server. The client does not normally create filehandles or have any
knowledge of the contents of a filehandle.

The public filehandle is an an exception. It is an NFS filehandle with a reserved value and
special semantics. A WebNFS client uses the public filehandle as an initial filehandle rather than
using the MOUNT protocol. Since versions 2 and 3 of the NFS protocol have different filehandle
formats, the public filehandle is defined differently for each.

E.5.1 NFS Version 2 Public Filehandle

A version 2 filehandle is an opaque value occupying 32 octets. A version 2 public filehandle has
a zero in each octet (that is, all zeros).

1 32
0 0

E.5.2 NFS Version 3 Public Filehandle

A version 3 filehandle is defined in as a variable length opaque value occupying up to 64 octets.
The length of the filehandle is indicated by an integer value contained in a 4 octet value which
describes the number of valid octets that follow. A version 3 public filehandle has a length of
zero.

0 0 0 0

308 Open Group Technical Standard

WebNFS Extensions Multi-Component Lookup

E.6 Multi-Component Lookup
Normally the NFS LOOKUP request (version 2 or 3) takes a directory filehandle along with the
name of a directory member, and returns the filehandle of the directory member. If a client
needs to evaluate a pathname that contains a sequence of components, then beginning with the
directory filehandle of the first component it must issue a series of LOOKUP requests one
component at a time. For example, evaluation of the path ‘‘a/b/c’’ will generate separate
LOOKUP requests for each component of the pathname ‘‘a’’, ‘‘b’’, and ‘‘c’’.

A LOOKUP request that uses the public filehandle can provide a pathname containing multiple
components. The server is expected to evaluate the entire pathname and return a filehandle for
the final component.

For example, rather than evaluate the path ‘‘a/b/c’’ as:

LOOKUP FH=0x0 "a" →
← FH=0x1

LOOKUP FH=0x1 "b" →
← FH=0x2

LOOKUP FH=0x2 "c" →
← FH=0x3

Relative to the public filehandle, these 3 LOOKUP requests can be replaced by a single
multi-component lookup:

LOOKUP FH=0x0 "a/b/c" →
← FH=0x3

Multi-component lookup is supported only for LOOKUP requests relative to the public
filehandle.

The url-path of the NFS URL (see Section E.7.1 on page 311 must be evaluated as a
multi-component lookup. This implies that the path components are delimited by slashes, and
the characters that make up the path must be in the printable US-ASCII character set.

If the url-path is empty, the client must send a multi-component lookup for the pathname ‘‘.’’
(dot).

E.6.1 Canonical Path versus Native Path

If the pathname in a multi-component LOOKUP request begins with an ASCII character, then it
must be a canonical path. A canonical path is a hierarchically-related, slash-separated sequence
of components, <directory>/<directory>/.../<name>. Occurrences of the ‘‘/’’ character within
a component must be escaped using the escape code %2f. Non-ASCII characters within
components must also be escaped using the ‘‘%’’ character to introduce a 2-digit hexadecimal
code. Occurrences of the ‘‘%’’ character that do not introduce an encoded character must
themselves be encoded with %25.

If the first character of the path is a slash, then the canonical path is evaluated relative to the
server’s root directory. If the first character is not a slash, then the path is evaluated relative to
the directory with which the public filehandle is associated.

Not all WebNFS servers can support arbitrary use of absolute paths. Clearly, the server cannot
return a filehandle if the path identifies a file or directory that is not exported by the server. In
addition, servers need not return a filehandle if the path names a file or directory in an exported
filesystem different from the one that is associated with the public filehandle.

If the first character of the path is 0x80 (non-ASCII), then the following character is the first in a
native path. A native path conforms to the normal pathname syntax of the server. For example:

Protocols for Interworking: XNFS, Version 3W 309

Multi-Component Lookup WebNFS Extensions

Lookup for Canonical Path:

LOOKUP FH=0x0 "/a/b/c"

Lookup for Native Path:

LOOKUP FH=0x0 0x80 "a:b:c"

310 Open Group Technical Standard

WebNFS Extensions NFS URL

E.7 NFS URL
An NFS URL is based on the Common Internet Scheme Syntax described in Section 3.1 of RFC
1738. It has the general form:

nfs://<host>:<port>/<url-path>

The :<port> part is optional. If omitted then port 2049 is assumed. The <url-path> is also
optional. If it is omitted, then the ‘‘/’’ between <host>:<port> and <url-path> may also be
omitted.

The <url-path> is a hierarchical directory path of the form

<directory>/<directory>/<directory>/.../<name>

The <url-path> must consist only of characters within the US-ASCII character set. Within a
<directory> or <name> component, the character ‘‘/’’ is reserved and must be encoded as
described in Section 2.2 of RFC 1738. If <url-path> is omitted, it must default to the path "."
(dot).

When presented with an NFS URL, a client must use the WebNFS technique described in this
document to bind to the server, and evaluate the pathname using the public filehandle and
multi-component lookup.

E.7.1 Absolute versus Relative Pathname

A pathname that begins with a slash character is considered absolute and will be evaluated
relative to the server’s root. A pathname that does not begin with a slash is relative and will be
evaluated relative to the directory with which the public filehandle is associated.

Note that the ‘‘/’’ in an NFS URL that delimits the <host>:<port> from the <url-path> is not
considered part of the pathname. For example, if the public filehandle is associated with the
server’s directory ‘‘/a/b/c’’ then the URL:

nfs://server/d/e/f

will be evaluated with a relative multi-component lookup of the path ‘‘d/e/f’’ relative to the
server’s directory ‘‘/a/b/c’’, while the URL:

nfs://server//a/b/c/d/e/f

will locate the same file with an absolute multi-component lookup of the path ‘‘/a/b/c/d/e/f’’
relative to the server’s filesystem root. Notice that a double slash is required at the beginning of
the path; the first slash is the URL delimiter between the <host>:<port> and the <url-path>, and
the second slash is the first character of <url-path>.

Not all WebNFS servers can support arbitrary use of absolute paths. Clearly, the server must
not return a filehandle if the path identifies a file or directory that is not exported by the server.
In addition, servers need not return a filehandle if the path names a file or directory in an
exported filesystem different from the one that is associated with the public filehandle.

Protocols for Interworking: XNFS, Version 3W 311

NFS URL WebNFS Extensions

E.7.2 Symbolic Links

The NFS protocol supports symbolic links, which are the filesystem equivalent of a relative URL.
If a WebNFS client retrieves a filehandle for a symbolic link (as indicated by the file type
attribute) then it should send a READLINK request to the server to retrieve the path comprising
the symbolic link.

This path should then be combined with the URL which referenced the symbolic link according
to the rules described in RFC 1808. If the relative URL in the symbolic link text is to be resolved
successfully then it must contain only ASCII characters and conform to the syntax described in
RFC 1808. Note that this allows a symbolic link to contain an entire URL and it may specify a
scheme that is not necessarily an NFS URL (for example, HTTP).

An exception to RFC 1808 rules applies in the case of an absolute symbolic link, where the path
begins with a ‘‘/’’. RFC 1808 describes a method for resolving relative URLs with respect to the
base URL. Given a base URL of ‘‘nfs://s/a/b/c’’ which references a symbolic link with contents
‘‘/a/b/c/d’’, the method would yield a URL ‘‘nfs://s/a/b/c/’’ which would be correct only if
the public filehandle were co-located with the server’s filesystem root.

If the symbolic link begins with a slash, then after resolving a relative URL derived from the
symbolic link contents according to the method in RFC 1808, the client must insert an additional
slash in front of the path so that the server will evaluate the path relative to the server’s root,
rather than the public filehandle directory. This variation from the normal method of resolving a
relative URL applies only to handling of symbolic links. The additional slash must not be
inserted if the relative URL was embedded in a document or other encapsulating entity.

For example, if the symbolic link is named by the URL:

nfs://server/a/b

then the the following examples show how a new URL can be formed from the symbolic link
text:

c = nfs://server/a/c

c/d = nfs://server/a/c/d

../c = nfs://server/c

/c/d = nfs://server//c/d

nfs://server2/a/b = nfs://server2/a/b

E.7.3 Export Spanning Pathnames

The server may evaluate a pathname, either through a multi-component LOOKUP or as a
symbolic link embedded in a pathname, that references a file or directory outside of the exported
hierarchy.

Clearly, if the destination of the path is not in an exported filesystem, then the server must return
an error to the client.

Many NFS server implementations rely on the MOUNT protocol for checking access to exported
filesystems, and their NFS server does no access checking. The NFS server assumes that the
filehandle does double duty: identifying a file as well as being a security token. Since WebNFS
clients do not normally use the MOUNT protocol, a server that relies on MOUNT checking
cannot automatically grant access to another exported filesystem at the destination of a
spanning path. These servers must return an error.

312 Open Group Technical Standard

WebNFS Extensions NFS URL

For example: suppose the server exports two filesystems. One is associated with the public
filehandle:

/export/this (public filehandle)

/export/that

The server receives a LOOKUP request with the public filehandle that identifies a file or
directory in the other exported filesystem:

LOOKUP 0x0 "../that/file"

or

LOOKUP 0x0 "/export/that/file"

Even though the pathname destination is in an exported filesystem, the server cannot return a
filehandle without an assurance that the client’s use of this filehandle will be authorized.

Servers that check client access to an export on every NFS request have more flexibility. These
servers can return filehandles for paths that span exports since the client’s use of the filehandle
for the destination filesystem will be checked by the NFS server.

Protocols for Interworking: XNFS, Version 3W 313

Location of Public Filehandle WebNFS Extensions

E.8 Location of Public Filehandle
A server administrator can associate the public filehandle with any file or directory. For instance,
a WebNFS server administrator could attach the public filehandle to the root of an anonymous
FTP archive, so that anonymous FTP pathnames could be used to identify files in the FTP
hierarchy.

On servers that support spanning paths, the public filehandle need not necessarily be attached to
an exported directory, though a successful LOOKUP relative to the public filehandle must
identify a file or directory that is exported.

For instance, if an NFS server exports a directory ‘‘/export/foo’’ and the public filehandle is
attached to the server’s root directory, then a LOOKUP of ‘‘export/foo’’ relative to the public
filehandle will return a valid file handle but a LOOKUP of ‘‘export’’ will return an access error
since the server’s ‘‘/export’’ directory is not exported.

/

export

foo

(public filehandle is here)

(not exported)

(exported)

LOOKUP 0x0 "export" (returns an error)

LOOKUP 0x0 "export/foo" (returns a filehandle)

314 Open Group Technical Standard

WebNFS Extensions Contacting the Server

E.9 Contacting the Server
WebNFS clients should be optimistic in assuming that the server supports the WebNFS
extensions, but must be capable of fallback to conventional methods for server access if the
server does not support them.

The client should start with the assumption that the server supports:

• Version 3 of the NFS protocol

• NFS TCP connections

• Public Filehandles.

If these assumptions are not met, the client should fall back gracefully with a minimum number
of messages. The following steps are recommended:

1. Attempt to create a TCP connection to the server’s port 2049.

If the connection fails then assume that a request sent over UDP will work. Use UDP port
2049.

Do not use the PORTMAP protocol to determine the server’s port unless the server does
not respond to port 2049 for both TCP and UDP.

2. Assume WebNFS and V3 are supported. Send an NFS version 3 LOOKUP, with the public
filehandle for the requested pathname.

If the server returns an RPC PROG_MISMATCH error then assume that version 3 is not
supported. Retry the LOOKUP with a version 2 public filehandle.

Note: The first call may not necessarily be a LOOKUP if the operation is directed at
the public filehandle itself, for example, a READDIR or READDIRPLUS of the
directory that is associated with the public filehandle.

If the server returns an NFS3ERR_STALE, NFS3ERR_INVAL, or NFS3ERR_BADHANDLE
error, then assume that the server does not support the WebNFS extensions because it does
not recognize the public filehandle. The client must use the server’s portmap service to
locate and use the MOUNT protocol to obtain an initial filehandle for the requested path.

WebNFS clients can benefit by caching information about the server:

• Whether the server supports TCP connections (if TCP is supported then the client should
cache the TCP connection as well)

• Which protocol the server supports

• Whether the server supports public filehandles

If the server does not support public filehandles, the client may choose to cache the port
assignment of the MOUNT service as well as previously used pathnames and their filehandles.

Protocols for Interworking: XNFS, Version 3W 315

Mount Protocol WebNFS Extensions

E.10 Mount Protocol
The NFS URL may have limited use for naming files on servers that do not support the public
filehandle and multi-component lookup.

If the server returns an NFS3ERR_STALE, NFS3ERR_INVAL, or NFS3ERR_BADHANDLE error
in response to the client’s use of a public filehandle, then the client should attempt to resolve the
<url-path> to a filehandle using the MOUNT protocol.

Note that the pathname sent to the server in the MOUNTPROC_MNT request is assumed to be a
server native path, rather than a slash-separated path described by RFC 1738. Hence, the
MOUNT protocol can reasonably be expected to map a <url-path> to a filehandle only on
servers that support slash-separated ASCII native paths. In general, servers that do not support
WebNFS access or slash-separated ASCII native paths should not advertise NFS URLs.

At this point the client must already have some indication as to which version of the NFS
protocol is supported on the server. Since the filehandle format differs between NFS versions 2
and 3, the client must select the appropriate version of the MOUNT protocol. MOUNT versions
1 and 2 return only NFS version 2 filehandles, whereas MOUNT version 3 returns NFS version 3
filehandles.

Unlike the NFS service, the MOUNT service is not registered on a well-known port. The client
must use the PORTMAP service to locate the server’s MOUNT port before it can transmit a
MOUNTPROC_MNT request to retrieve the filehandle corresponding to the requested path.
This is described in the following diagram:

Client Server

Mount port ?

Port=984

Filehandle for /export/foo ?

Filehandle-0xf82455ce0...

Portmapper

Mountd @ port 984

NFS servers commonly use a client’s successful MOUNTPROC_MNT request as an indication
that the client has mounted the filesystem and may maintain this information in a file that lists the
filesystems that clients currently have mounted. This information is removed from the file when
the client transmits a MOUNTPROC_UMNT request. Upon receiving a successful reply to a
MOUNTPROC_MNT request, a WebNFS client should send a MOUNTPROC_UMNT request to
prevent an accumulation of mounted records on the server.

316 Open Group Technical Standard

Glossary

ARP
(Address Resolution Protocol) The protocol used to bind a high-level Internet Address to a low-
level physical hardware address. It can only be used on networks that support hardware
broadcast. The protocol is only across a single physical network.

ARPA
(Advanced Research Project Agency) Part of the U.S. Department of Defense. This agency
funded the ARPANET and DARPA Internet. Its present name is DARPA. They are located at
1400, Wilson Blvd, Arlington, VA, U.S.A.

ARPANET
A network built by BBN (Bolt, Beranek and Newman, Incorporated) and funded by ARPA. It
was one of the first largescale packet switched networks, and was used to link academic
institutes involved with ARPA work. It helped with the early network research and formed a
basis for Internet.

big-endian
The name of a particular byte order (coined by Danny Cohen). When looking at addresses in
increasing order, the most significant byte comes first. The Internet protocols use Big-Endian
byte order.

broadcast
To broadcast a packet is the function of delivering a given packet to all hosts that are attached to
the broadcasting delivery system. Broadcasting is implemented both at the hardware and the
software levels.

Byte
8 bits.

CAE
Common Applications Environment.

client-server
The distributed system model where a requesting program (the client) interacts with a program
that can satisfy the request (the server). The client initiates the interaction and may wait for the
server to respond.

connection-oriented service
A service provided between two endpoints along which data is passed in a sequenced and
reliable way.

connectionless service
In a connectionless service each packet is a separate entity containing a source and destination
address; therefore packets may be dropped or delivered out of sequence. The delivery service
offered by the Internet Protocol (IP) is a connectionless service.

CRC
(Cyclic Redundancy Check) An integer calculated from a sequence of octets used to check that
errors have not occurred during their transmission. The CRC is calculated and transmitted with
the octets. At the receiving end the CRC is recalculated and compared with the value sent. If
the values are identical the data is assumed to be error free.

Protocols for Interworking: XNFS, Version 3W 317

Glossary

DARPA
(Defense Advanced Projects Research Agency) Formerly ARPA.

data encapsulation
The way a lower-level protocol accepts a message from a higher-level protocol and places it in
the data portion of the low-level frame.

daemon
A process that is not associated with any user. This sort of process performs system-wide
functions; for example, administration, control of networks and execution-dependent activities.

datagram
A packet sent independently of the others in the network. It contains the source and destination
addresses as well as the data.

distributed database
A distributed database which is split up into several components, with each component on a
different computer. The end-user, however, is given the impression that only a single local
database is used.

effective group ID
An attribute of a process that is used in determining various permissions, including file access
permissions. This value is subject to change during the process lifetime.

effective user ID
An attribute of a process that is used in determining various permissions, including file access
permissions. This value is subject to change during the process lifetime.

Ethernet
A local area network developed by Digital Equipment Corporation, Intel Corporation and Xerox
Corporation. The Ethernet is a passive coaxial cable with the interconnections containing all the
active components.

exec
The XSI system call that is used to start a process running.

fork
The XSI system call which is used to create a new process. The process created is a duplicate of
the calling process.

full-duplex
A transmission channel that can carry signals in both directions simultaneously.

ICMP
(Internet Control and Monitoring Protocol) Part of the Internet Protocol Suite. ICMP is used to
provide network layer management facilities, providing an error reporting facility and routing
suggestions. ICMP also includes an echo request/reply, used to test whether a destination is
reachable and responding.

internet
A large virtual network made up of a series of networks interconnected by routers.

Internet, The
The cooperative virtual network that uses the TCP/IP protocol and includes the ARPANET,
MILNET and NSFnet. It provides universal connectivity and reaches many universities,
government and military establishments.

interoperability
The ability of software and hardware on multiple machines and from multiple vendors to

318 Open Group Technical Standard

Glossary

communicate effectively.

ioctl
A system call which allows a process to specify control information to control a device. This
function exists in both XSI and DOS.

IP
(Internet Protocol) The protocol from the Internet Protocol Suite that provides the basis for
internet communications.

IP
(Interworking Protocol) The OSI protocol which supports the interconnection of separate OSI
networks.

IPC
(Inter-Process Communication) Methods by which two or more processes can communicate; for
example, formatted data streams or shared memory.

LAN
(Local Area Network) A physical network that operates at a high speed over short distances; for
example, Ethernet.

little-endian
The name of a particular byte order (coined by Danny Cohen). When looking at addresses in
increasing order, the least significant byte comes first.

Mount Protocol
This protocol obtains a file handle from the server for the root of a file system which will then be
available through NFS.

Multi-component Lookup
The filename used in a lookup request that uses a public filehandle may contain a
slash-separated pathname. The server is required to evaluate this pathname (crossing
intermediate mountpoints and evaluating symbolic links if necessary) and return the filehandle
for the final component.

NFS
(Network File System) A protocol which allows a set of computers access to each others file
systems. NFS was developed by Sun Microsystems, Inc. and is used primarily on UNIX
systems.

NLM
(Network Lock Manager) An RPC based service which provides advisory DOS file locking and
access control synchronisation across the network. This service is used in conjunction with NFS.

NSFnet
(National Science Foundation NETwork) The collection of networks across the United States
sponsored by NSF.

NSM
Network Status Monitor.

OSI
(Open Systems Interconnect) ISO standards for the interconnection of cooperative (open)
computer systems.

packet
A block of data sent across a packet switching network.

Protocols for Interworking: XNFS, Version 3W 319

Glossary

PCNFSD
(Personal Computer NFS Daemon) The daemon that provides personal computer NFS clients
with authentication and printing services which are usually available in larger and more capable
systems.

PID
(Process ID) The number assigned to a process so that it can be uniquely identified.

port mapper
The port mapper is a program that maps RPC program and version numbers to transport-
specific port numbers thus providing a dynamic binding capability for remote programs.

Public Filehandle
A filehandle with a known value associated with a specific directory on the server. A "version 2"
public filehandle has 32 zero bytes. A "version 3" public filehandle has zero length.

remote mount
The process by which one machine can mount a file system that exists on a remote machine so it
can be accessed as if it were a local file system.

RFC
(Request For Comments) The name of a series of notes that contain surveys, measurements,
ideas, techniques and observations, as well as proposed and accepted Internet protocol
standards.

root (of file system)
The top directory in the directory hierarchical structure.

router
A mechanism for interconnection of two or more networks at the network layer (see bridge,
gateway).

RPC
(Remote Procedure Call) A mechanism allowing a client to call a procedure that a remote server
executes.

socket
A program-defined endpoint for network communication between processes. Sockets are a
particular paradigm used for interprocess communication.

stateful server
A stateful server is a server that maintains information about the state of the transactions it has
processed, for example whether or not a file is currently open.

stateless server
A stateless server is a server that does not maintain state information from one transaction to
another.

TBD
(To Be Defined) Further detail will be provided at a later time.

TCP
(Transmission Control Protocol) The Internet standard transport level connection-oriented
protocol. It provides a full duplex, reliable stream service which allows a process on one
machine to send a stream of data to a process on another. Part of the Internet Protocol Suite.

TTL
(Time To Live) Used to stop the existence of endlessly looping packets. Each packet is assigned
an integer which is decremented each time it passes through a router. If the integer reaches zero

320 Open Group Technical Standard

Glossary

the router discards the packet.

UDP
(User Datagram Protocol) The Internet connectionless protocol. Part of the Internet Protocol
Suite.

umask
The XSI process’s file mode creation mask used during file and directory creation. Bit positions
that are set in the umask are cleared in the mode of the newly created file or directory. The
umask is set using the umask() call.

VC
(Virtual Circuit) The path between two communicating systems that provides a reliable,
sequenced data delivery service.

working directory
A directory, associated with a process, that is used in pathname resolution for pathnames that
do not begin with a slash.

XDR
(External Data Representation) A machine-independent data representation scheme developed
by Sun Microsystems, Inc.

XNFS
The name given to the X/Open Specification for file-sharing services based upon the NFS
architecture developed by Sun Microsystems, Inc.

Protocols for Interworking: XNFS, Version 3W 321

Glossary

322 Open Group Technical Standard

Index

(PC)NFS..2, 6
access cache ...273

inaccuracy of ...274
access control

server...281
appending data

to a file ..274
ar ..280
architectural dependencies...................................280
ARP..317
ARPA ..69, 317
ARPANET..317
atime..75
attribute cache ...273

inaccuracy of ...274
inconsistencies ..273, 299
update of ..273, 299

attribute cache contents ..273
file mode...273
file size ..273
group ID ...273
user ID ..273

attribute caching ...300-301
attributes

of file ..75-76
Audience...3
authentication ...47, 52

null authentication52, 72, 177, 264
UNIX authentication52, 72, 78, 107, 177, 264

automounter ..13
big-endian ..317
binary files

compatibility issues ...280
binding

client to a service ..45
broadcast ..317
Byte..317
CAE ...317
can..4
cc ..280
client ..43
client-server ...317
clock

synchronisation issues277
compatibility

of remote binary files...280

of remote input files...280
of remote programs ...279

connection-oriented protocols44
connection-oriented service317
connectionless protocols ...44
connectionless service ...317
cookie ..70
CRC ..317
crontab ..275
ctime ..75
current directory...300
daemon ...318
DARPA ..318
data caching...276, 299

old data...276
data encapsulation ...318
data transfer

atomicity of..276
data types, basic..73
database

StandardExports...20
datagram ..44, 318
date

system notion of ...277
delayed write errors...276
delays

network-induced..278
denial of access..274
df ..280
directory caching ..277

inaccuracy of ...277
distributed database ..318
EACCES...........................108, 111, 272-274, 277, 287
effective group ID...78, 318
effective user ID..78, 273, 318
EINVAL..108, 111
Elements of the XNFSSM..13

client operations ...21
file and directory operations24
server operations ..19
XNFS objects..14

ENOENT..108, 111
ENOTEMPTY..277
EPERM...108, 111, 273, 287
EROFS...283, 287
error handling..279

Protocols for Interworking: XNFS, Version 3W 323

Index

errors
mapping of...271
unexpected...70
XNFS specific ..271

ESTALE...271, 275
Ethernet ..318
ETXTBSY ..275
exec ..318
executable files

compatibility issues ...280
execute-at-most-once ...44
execution

of remote files..78, 279
ExpFileSysOp..13, 19

restriction on nested exports..............................19
ExpFileSysOp operation ...19
export ..10

database..20
ExportedFileSystem..13-14

attributes ..14
ExportedFileSystem attribute

‘‘Acces=’’ ..15
‘‘AnonMapping=’’14, 272
‘‘Mode=’’..14, 283
‘‘PathName=’’ ...14
‘‘Root=’’..14, 272

ExportedFileSystem object19
ExpStdFileSysOp ..20
file...71

permissions..78
file access

by owner...78
denied ...274
denied after open ...78, 274
denied by server ...272
implicit..284
read-only file systems..283
remote special files...271
stateless behaviour of NFS.........................78, 274
times of ...75, 273
transparent...1
user ID mapping...272
validation of request..274

file access times...75, 273
File and Directory operations24
file attributes..76
file deletion

while being executed ...275
while open ...275

file handle........................13, 69-70, 74, 111, 275, 300
file heirarchy..71

file hierarchy..10
file locking..278

client lock recovery ..123
example of client crash......................................124
example of server crash122
examples of..122
fcntl..302
monitored lock crash recovery........................119
monitored locks..117, 119
non-monitored lock crash recovery120
non-monitored locks117, 120
over XNFS..117
unlocking monitored locks...............................120
unlocking non-monitored locks120

file mode...75, 273
file names ...281
file permissions

root access ..78
file size ..273
file system...71
file system model..71
fileid...75
filesize differences ..280
fork ..318
fsid ...75
full-duplex..318
group ID ...75, 273

database consistency ...282
ICMP ...318
idempotency ..70
implementation-dependent......................................4
implicit file access...284
Informal Overview of XNFS10
internet..318
Internet Protocol Suite ...5

IP ..58
references ...7
TCP..5, 44
TCP/IP..44
UDP...44, 58

Internet, The...318
interoperability ...318
interrupt..284
interruption

of network request ...278
ioctl ..319
IP ..58-59, 319
IPC ..319
LAN...319
legacy...4

324 Open Group Technical Standard

Index

link
symbolic ...71, 76

little-endian..319
locking...278

availability of...278
error handling ...279
memory-mapped files279
signals ...279

LOOKUP sequence71, 299, 301-305
may ..4
memory-mapped files ...279
MntExpFileSysOp...13
MntFileSysOp..21
MntFileSysOp attributes

‘‘MountRetry=’’ ..22
‘‘MountRetryCount=’’...22
‘‘ReMount=’’ ...21

MNTPROC_DUMP..112
MNTPROC_EXPORT ..115
MNTPROC_MNT ..111
MNTPROC_NULL...110
MNTPROC_UMNT ...113
MNTPROC_UMNTALL114
MntStdFileSysOp..23
mode..75
monitored locks ..117, 119

crash recovery ...119
mount..11, 69, 71

automounter..13
example of..10
mount point...11, 21, 78
mount server ...14, 109
unmount operation ..22

mount data types ...108, 255
dirpath ..108
fhandle..108
fhstatus ...108
name..109

mount protocol ...107, 255
Mount Protocol ...319
mount protocol

data types, basic ...108, 255
port number ..107, 255
RPC information...107
transport protocol107, 255
XDR structure sizes..107

mount server..19
mount server procedures109, 256

MNTPROC_DUMP ...112
MNTPROC_EXPORT..115
MNTPROC_MNT ..19, 111

MNTPROC_NULL...110
MNTPROC_UMNT.....................................22, 113
MNTPROC_UMNTALL...................................114

MountedFileSystem...13, 15
attributes ..15

MountedFileSystem attribute
‘‘ACDirMax=’’ ..18
‘‘ACDirMin=’’...17, 277
‘‘ACrefMax=’’ ...273
‘‘ACRegMax’’ ..17
‘‘ACRegMin=’’..17, 273
‘‘AttribCaching=’’................................17, 273, 277
‘‘FileHandle’’ ...16
‘‘GrpID=’’...16
‘‘Intr=’’ ..17
‘‘Mode=’’..16, 283
‘‘MountPoint=’’...16
‘‘NFSRetransmissions=’’17, 278
‘‘NFSTimeOut=’’..17, 278
‘‘PathName=’’ ...16
‘‘ReadSize=’’..16
‘‘RetrySemantic=’’..275
‘‘RetrySemantics=’’......................................17, 278
‘‘Server=’’ ...16
‘‘ServerPort’’..17
‘‘SetUID=’’ ...16, 273
‘‘WriteSize=’’ ...16

MOUNTPROC3_DUMP.......................................259
MOUNTPROC3_EXPORT262
MOUNTPROC3_MNT..258
MOUNTPROC3_NULL ..257
MOUNTPROC3_UMNT.......................................260
MOUNTPROC3_UMNTALL...............................261
mtime ..75
multiple hosts..285
Multi-component Lookup319
must ...4
network clients..43
network delays..278
network file system..69, 175
network server ..43
network service...43
NFS ..1-2, 69, 71, 319

basic data types...73
implementation issues ..78
permission issues ...78
protocol definition..71
server/client relationship78

NFS data types ..73
attrstat ...77
diropargs ..77

Protocols for Interworking: XNFS, Version 3W 325

Index

diropok ...74
diropres...77
fattr ..75
fhandle..74
filename ..77
ftype ..74
path..77
sattr..76
stat ...73
timeval ..74

NFS procedure return code
NFSERR_ACCES73, 82, 85, 87, 89
....................................91, 93-94, 96-97, 99, 101, 103
NFSERR_DQUOT73-74, 89, 91, 94, 96, 98-99
NFSERR_EXIST73, 96-97, 99
NFSERR_FBIG ..73, 89
NFSERR_IO73, 81-82, 85-87, 89, 91
..................................93-94, 96-97, 99, 101, 103-104
NFSERR_ISDIR73, 82, 87, 89, 91, 93-94
NFSERR_NAMETOOLONG73-74, 85, 91
..93-94, 96-97, 99, 101
NFSERR_NODEV ..73
NFSERR_NOENT..............73, 85, 93-94, 101, 103
NFSERR_NOSPC.............73, 89, 91, 94, 96-97, 99
NFSERR_NOTDIR73, 85, 93-94, 96-97
...99, 101, 103
NFSERR_NOTEMPTY73-74, 94, 101
NFSERR_NXIO...73, 86
NFSERR_PERM..................................73, 82, 85, 96
NFSERR_ROFS.......................73, 82, 89, 91, 93-94
..96-97, 99, 101
NFSERR_STALE..........73-74, 81, 83, 85-87, 90-91
..................................93, 95-96, 98-99, 101, 103-104
NFS_OK..73, 81-82
PROC_UNAVAIL.....................................71, 86, 97

NFS server procedures....................................79, 195
ACCESS..17
GETATTR ...17
NFSPROC_CREATE91, 302-303
NFSPROC_GETATTR..........81, 299-301, 303-305
NFSPROC_LINK..96
NFSPROC_LOOKUP....................78, 85, 300, 302
NFSPROC_MKDIR ..99
NFSPROC_NULL...80
NFSPROC_READ ..87, 299
NFSPROC_READDIR.................................74, 102
NFSPROC_READLINK..........................71, 77, 86
NFSPROC_REMOVE..................................93, 302
NFSPROC_RENAME..................................94, 304
NFSPROC_RMDIR....................................101, 304
NFSPROC_ROOT ..84

NFSPROC_SETATTR..........................82, 301, 303
NFSPROC_STATFS..104
NFSPROC_SYMLINK.............................71, 77, 97
NFSPROC_WRITE................79, 89, 104, 299, 305
NFSPROC_WRITECACHE................................88

NFS version-2 protocol specification69
NFS version-3 protocol specification175
nfscookie...74
NFSPROC3_ACCESS ..204
NFSPROC3_COMMIT ..251
NFSPROC3_CREATE ..216
NFSPROC3_FSINFO ...246
NFSPROC3_FSSTAT..244
NFSPROC3_GETATTR..197
NFSPROC3_LINK..235
NFSPROC3_LOOKUP...202
NFSPROC3_MKDIR ..220
NFSPROC3_MKNOD ...225
NFSPROC3_NULL...196
NFSPROC3_PATHCONF249
NFSPROC3_READ...209
NFSPROC3_READDIR ...238
NFSPROC3_READDIRPLUS...............................241
NFSPROC3_READLINK207
NFSPROC3_REMOVE ..228
NFSPROC3_RENAME..232
NFSPROC3_RMDIR ..230
NFSPROC3_SETATTR...199
NFSPROC3_SYMLINK ...222
NFSPROC3_WRITE...212
NFSPROC_CREATE ..91
NFSPROC_GETATTR..81
NFSPROC_LINK ..96
NFSPROC_LOOKUP...85
NFSPROC_MKDIR ..99
NFSPROC_NULL...80
NFSPROC_READ...87
NFSPROC_READDIR ...102
NFSPROC_READLINK ..86
NFSPROC_REMOVE...93
NFSPROC_RENAME ..94
NFSPROC_RMDIR ..101
NFSPROC_ROOT...84
NFSPROC_SETATTR...82
NFSPROC_STATFS ..104
NFSPROC_SYMLINK ...97
NFSPROC_WRITE ...89
NFSPROC_WRITECACHE....................................88
NFSSRC4.0 ...2
NLM ..2, 117

grace period...119

326 Open Group Technical Standard

Index

interaction with NSM..119
restarted by server..123

NLM ...319
NLM data types......................................128, 131, 264

fsh_access...132
fsh_mode..131
netobj...128
nlm_cancargs ..131
nlm_holder...129
nlm_lock...130
nlm_lockargs ...130
nlm_res ...129
nlm_share...132
nlm_shareargs...132
nlm_shareres ...132
nlm_stat ..129
nlm_stats ..128
nlm_testargs ..131
nlm_testres...130
nlm_testrply ..130
nlm_unlockargs ..131

NLM procedure return codes
LCK_BLOCKED129, 138, 140, 142
..144-146, 148, 150
LCK_DENIED............128, 130, 137-138, 140, 142
...............................144, 149-151, 153-154, 157, 302
LCK_DENIED_GRACE_PERIOD..........129, 137
..139-142, 149-154, 156-157
LCK_DENIED_NOLOCKS128, 137-138
..149-150, 154, 157
LCK_GRANTED128, 137-138, 140-142
..149-154, 156-157

NLM procedures...134
NLM_CANCEL..140, 302
NLM_FREE_ALL..159
NLM_GRANTED.......................................142, 302
NLM_LOCK..138, 302
NLM_LOCK_RES...150
NLM_NM_LOCK...157
NLM_NULL ..136
NLM_SHARE..154
NLM_TEST..137, 302
NLM_UNLOCK ...141, 302
NLM_UNSHARE...156

NLM protocol ...117, 127, 263
additional data types ...131
basic data types...128
data types, basic..264
port number...264
RPC information...128
transport protocol ..264

NLMPROC3_NULL...268
NLM_CANCEL ..140
NLM_CANCEL_MSG...146
NLM_CANCEL_RES...151
NLM_FREE_ALL..159
NLM_GRANTED ...142
NLM_GRANTED_MSG..148
NLM_GRANTED_RES..153
NLM_LOCK ..138
NLM_LOCK_MSG...144
NLM_LOCK_RES...150
NLM_NM_LOCK...157
NLM_NULL ..136
NLM_SHARE..154
NLM_TEST ..137
NLM_TEST_MSG...143
NLM_TEST_RES...149
NLM_UNLOCK..141
NLM_UNLOCK_MSG ..147
NLM_UNLOCK_RES..152
NLM_UNSHARE ...156
non-monitored lock crash recovery....................120
non-monitored locks117, 120
NSFnet ..319
NSM ..2, 117, 319

authentication ...162
basic data types...162
interaction with NLM..119
internal state ..118
notification from monitored host....................118
Port Number..162
RPC Information ..162
Transport Protocols..162
XDR structure sizes..162

NSM and NLM interaction...................................119
NSM data types ..162

mon..163
mon_id..163
my_id ..163
res...162
sm_name ..162
sm_stat..163
sm_stat_res ..163
stat_chge...164

NSM procedures...165
SM_MON...168
SM_NOTIFY..173
SM_NULL..166
SM_SIMU_CRASH ..172
SM_STAT..167
SM_UNMON ..170

Protocols for Interworking: XNFS, Version 3W 327

Index

SM_UNMON_ALL..171
NSM protocol..118, 161
Open System

CAE ...3
OSI ...319
packet ..319
path lookup..299
pathname..71
PC Interworking ...6
pcnfsd..6
PCNFSD ...320
PID...320
PMAPPROC_DUMP..68
PMAPPROC_GETPORT...67
PMAPPROC_NULL...64
PMAPPROC_SET ...65
PMAPPROC_UNSET ..66
port mapper107, 255, 264, 320

broadcast address...61
broadcast RPC...61
dynamic binding...61
program protocol ...45
protocol specification ..62
reserved port ...61

port mapper procedures ...63
PMAPPROC_DUMP ...68
PMAPPROC_GETPORT.....................................67
PMAPPROC_NULL...64
PMAPPROC_SET...65
PMAPPROC_UNSET ..66

Port Mapper Protocol...61
port numbers...72, 177
protection of in-use files..78
Protocol Stacks ..5
public filehandle ...308
Public Filehandle ..320
read ..3

atomicity of..276
data caching...299
of old data ..276

read-only file system..283
record locking..278
remote input files

architectural dependency280
compatibility issues ...280

remote mount..320
remote procedure ...46
Remote Procedure Call......................................43, 69
remote procedure number......................................46
remote program ..43

compatibility issues ...280

execution of ...279
set-user-id ..273

remote program number...46
remote version number...46
retry ...278
RFC..7, 320

list of references ..7
RFC documents...7
root...78
root (of file system) ...320
root file system..284
router...320
RPC ...2, 43, 69, 299, 320

call message ...43
interface to UDP ...57
jsr analogy..45
language specification ...54
message fields ...46
message protocol defined...................................48
model of..43
protocol requirements ...46
reliability requirement...57
remote procedure number..................................46
remote program number46
remote version number.......................................46
reply ..59
reply message..43
request ..59
specification of ..2
transport independence57
transport requirements57
unreliable..44

RPC calls
generated by system interface301

RPC protocol ...61
RPC version number..46
security

export considerations ..19
permission issues ...78
user ID database consistency...........................282

server...43
clock synchronisation issues............................277
delays of ...278
execute-at-most-once...44
failure of ...278
user ID mapping...272

server access control ..281
set-user-id...273

remote file with...273
should..4
ShowExpFileSysOp..13, 21

328 Open Group Technical Standard

Index

signals ...279
SM_MON ...168
SM_NOTIFY ..173
SM_NULL ..166
SM_SIMU_CRASH ..172
SM_STAT ..167
SM_UNMON...170
SM_UNMON_ALL ..171
socket ..76, 320
special file access ..272
special files ...282

remote accessibility..271
state

distributed..70
server...107

stateful server ...320
stateless behaviour of NFS274
stateless server ..70, 320
sum ..280
Sun Microsystems, Inc. ..1-2
super-user...78
symbolic link ...71, 76
symbolic links..284
system interface

access ..301
chdir ..301
chmod...274, 301
chown ...301
chroot ..301
close ...301-302
creat ...302
exec..273
fcntl ...119, 302
file locking..302
fread ..299
fstat ..302-303
fsync ..303
getpwuid..275, 280
link...303
lseek...303
mkdir...303
mkfifo..303
open...303
opendir..303-304
pathconf..304
read...3, 276, 299, 304
readdir ..304
rename ..304
rmdir ...304
stat ...76, 278, 304-305
unlink..305

write..276, 299, 305
tabs...280
TBD..320
TCP..44, 320
TCP/IP..44, 57
TFA ..1
thread ..43
time

clock synchronisation..277
system notion of ...277
timeval structure ..74

time updates ..276
transaction ID..44
transparent file access ..1
transport ...44
TTL ..320
UDP...57, 321

packet contents ...58
packet with RPC request59
receiving reply packet ...60

UDP packet
checksum..59
data octets ..59
destination port...59
length ..59
source port ...59

UDP/IP...44, 57
umask..321
undefined..4
UnExpFileSysOp ..13, 19
UnExpFileSysOp attribute

‘‘PathName=’’ ...19
UnExpStdFileSysOp...20
unlocking monitored locks...................................120
unlocking non-monitored locks120
UnMntAllFileSys ..23
UnMntFileSysOp..13, 22
UnMntFileSysOp attribute

‘‘MountPoint=’’...22
‘‘PathName=’’ ...22
‘‘Server=’’ ...22

unmount ...22
unspecified...4
user ID ..75, 273

database consistency78, 282
mapping by server78, 272
unknown to server ...272

VC ..321
version 2 ...300
version 3 ...300
versions...127

Protocols for Interworking: XNFS, Version 3W 329

Index

will ...4
working directory...321
write

appending data...274
atomicity of..276
data caching...299
deferred ..299
delayed errors ...276

XDR ..2, 27, 43, 57, 69, 321
array, fixed length ..32
array, variable length...32
basic block size..28
block size..28
boolean ...30
constant ..34
data types ...29
discriminated union...33
enumeration ..30
fixed-length array...32
fixed-length opaque data....................................30
integer ...29
integer, unsigned..29
opaque data, fixed length30
opaque data, variable length..............................31
protocol specification ..27
RFC status ..27
string ...31
structure ...33
structure sizes.......................................72, 177, 255
typedef..34
union discriminated...33
unsigned integer ...29
variable-length array ...32
variable-length opaque data31
void..34

XDR language..37
notation...37
syntax ..38-39

XDR RFC ..27
XNFS..2

configuration ...2
example of mount ..10
informal overview of ...10
service model ..9, 13

XNFS ..321
XNFS Client Operations..21

File and Directory operations24
MntFileSysOp..21
MntStdFileSysOp ...23
ShowExpFileSysOp..21
UnMntAllFileSys..23

UnMntFileSysOp..22
XNFS Objects...14

ExportedFileSystem...14
MountedFileSystem...15

XNFS Server Operations ...19
ExpFileSysOp..19
ExpStdFileSysOp..20
UnExpFileSysOp ..19
UnExpStdFileSysOp ..20

XNFS Service Model ..2, 9
XNFSSM ...2
XNFSSM, elements of ..13

client operations ...21
file and directory operations24
server operations ..19
XNFS objects..14

330 Open Group Technical Standard

	c702cov.pdf
	Page 1

	blank.pdf
	Page 1

