
 S

L

T

A

A

C

N

I

D

N

A

H

R

C

D

E
T

Technical Standard

Systems Management:
Distributed Software Administration

(XDSA)

[This page intentionally left blank]

CAE Specification

Systems Management:

Distributed Software Administration

The Open Group

 RJanuary 1998, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners.

CAE Specification

Systems Management: Distributed Software Administration

ISBN: 1-85912-149-7
Document Number: C701

Published in the U.K. by The Open Group, RJanuary 1998.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii CAE Specification

Contents

Chapter 1 Introduction... 1
 1.1 Scope.. 1
 1.2 Dependencies... 3
 1.2.1 Features Inherited From POSIX.1... 3
 1.2.2 Features Inherited From POSIX.2... 3
 1.3 Conformance ... 4
 1.3.1 Full Conformance .. 4
 1.3.2 Limited Conformance ... 4

Chapter 2 Software Structures... 5
 2.1 Classes and Attributes ... 5
 2.2 Software_Collection ... 7
 2.3 Distribution.. 9
 2.4 Media... 10
 2.5 Installed_Software.. 11
 2.6 Vendor... 12
 2.7 Category.. 13
 2.8 Software .. 14
 2.9 Products .. 16
 2.10 Bundles.. 20
 2.11 Filesets... 23
 2.12 Subproducts... 28
 2.13 Software_Files ... 29
 2.14 Files.. 31
 2.15 Control_Files.. 33

Chapter 3 Common Definition for Utilities .. 35
 3.1 Synopsis .. 35
 3.2 Description... 35
 3.3 Options.. 35
 3.3.1 Non-interactive Operation... 37
 3.4 Operands .. 38
 3.4.1 Software Specification and Logic ... 38
 3.4.1.1 Fully-qualified Software_spec.. 42
 3.4.1.2 Software Compatibility ... 42
 3.4.2 Source and Target Specification and Logic... 42
 3.5 External Influences ... 44
 3.5.1 Defaults and Options Files... 44
 3.5.2 Extended Options .. 44
 3.5.3 Extended Options Syntax... 52
 3.5.3.1 Precedence for Option Specification... 54
 3.5.4 Input Files.. 54

Systems Management: Distributed Software Administration iii

Contents

 3.5.5 Access and Concurrency Control... 54
 3.5.6 Environment Variables ... 55
 3.6 External Effects .. 56
 3.6.1 Control Script Execution and Environment....................................... 56
 3.6.1.1 Control Script Stdout and Stderr... 57
 3.6.1.2 Control Script Return Code .. 57
 3.6.2 Asynchronous Events ... 58
 3.6.3 Stdout ... 69
 3.6.4 Stderr.. 69
 3.6.5 Logging.. 69
 3.7 Extended Description... 70
 3.7.1 Selection Phase ... 70
 3.7.1.1 Starting a Session .. 70
 3.7.1.2 Specifying Targets... 70
 3.7.1.3 Specifying the Source... 71
 3.7.1.4 Software Selections... 72
 3.7.2 Analysis Phase.. 72
 3.7.3 Execution Phase ... 73
 3.7.3.1 Fileset State Transitions ... 73
 3.8 Exit Status... 75
 3.9 Consequences of Errors... 75
 3.10 Error Conditions ... 75

Chapter 4 Software Administration Utilities... 77
 swask ... 78
 swconfig .. 81
 swcopy ... 85
 swinstall .. 90
 swlist ... 104
 swmodify ... 108
 swpackage ... 111
 swremove ... 115
 swverify ... 121

Chapter 5 Software Packaging Layout ... 125
 5.1 Directory Structure... 126
 5.1.1 Exported Catalog Structure ... 126
 5.1.1.1 INDEX File ... 126
 5.1.1.2 Distribution Files... 126
 5.1.1.3 Product Catalog... 127
 5.1.1.4 Product Control Files ... 127
 5.1.1.5 Fileset Control Files.. 128
 5.1.2 File Storage Structure.. 128
 5.1.2.1 Control Directory Names.. 129
 5.2 Software Definition File Format .. 130
 5.2.1 Software Definition File Syntax .. 130
 5.2.1.1 Keyword and Attribute Semantics.. 134
 5.2.1.2 Vendor Defined Keywords and Attributes...................................... 135

iv CAE Specification

Contents

 5.2.2 Distribution Definition ... 135
 5.2.3 Media Definition .. 135
 5.2.4 Installed Software Definition .. 136
 5.2.5 Vendor Definition .. 136
 5.2.6 Category Definition... 136
 5.2.7 Bundle Definition... 137
 5.2.8 Product Definition ... 138
 5.2.9 Subproduct Definition .. 139
 5.2.10 Fileset Definition .. 139
 5.2.11 Control_File Definition... 140
 5.2.12 File Definition ... 141
 5.2.13 Extended Control_File Definitions... 142
 5.2.14 Extended File Definitions... 143
 5.2.14.1 Directory Mapping ... 143
 5.2.14.2 Recursive File Definition ... 143
 5.2.14.3 Explicit File Definition ... 144
 5.2.14.4 Default Permission Definition.. 146
 5.2.14.5 Excluding Files .. 146
 5.2.14.6 IncludingFiles ... 146
 5.2.15 Space Control_file.. 146
 5.3 Serial Format and Multiple Media .. 147

Appendix A Sample File Coding .. 149
 A.1 Defaults File ... 149
 A.2 Product Specification File.. 152
 A.3 Software Packaging Layout.. 154
 A.4 INDEX File ... 155
 A.5 INFO File .. 157
 A.6 Control Script... 158
 A.7 Patch PSF Example ... 159

Appendix B Background Information... 161
 B.1 General.. 161
 B.1.1 Scope and Purpose... 161
 B.1.2 Roles ... 161
 B.1.3 Tasks ... 165
 B.1.4 Update Requirements ... 167
 B.1.5 Patch Requirements... 168
 B.1.6 Conformance .. 169
 B.1.6.1 Implementation Conformance... 169
 B.1.6.2 Distribution Conformance .. 169
 B.2 Software Structures .. 171
 B.2.1 Classes and Attributes .. 171
 B.2.2 Software_Collection .. 176
 B.2.3 Distribution... 176
 B.2.4 Media.. 177
 B.2.5 Installed_Software... 177
 B.2.6 Vendor.. 177

Systems Management: Distributed Software Administration v

Contents

 B.2.7 Category... 178
 B.2.8 Software... 178
 B.2.9 Products ... 179
 B.2.10 Bundles... 181
 B.2.11 Filesets.. 183
 B.2.12 Subproducts.. 183
 B.2.13 Software_Files .. 183
 B.2.14 Files... 185
 B.2.15 Control Files.. 186
 B.3 Common Definitions for Software Administration Utilities 187
 B.3.1 Synopsis... 187
 B.3.2 Description.. 187
 B.3.3 Options... 187
 B.3.3.1 Non-Interactive Operation ... 187
 B.3.4 Operands ... 187
 B.3.4.1 Software Specification and Logic .. 188
 B.3.4.2 Source and Target Specification and Logic...................................... 190
 B.3.5 External Influences .. 191
 B.3.5.1 Defaults and Options Files.. 191
 B.3.5.2 Extended Options ... 191
 B.3.5.3 Extended Options Syntax.. 192
 B.3.5.4 Standard Input... 195
 B.3.5.5 Input Files... 195
 B.3.5.6 Access and Concurrency Control.. 195
 B.3.6 External Effects ... 196
 B.3.6.1 Control Script Execution and Environment.................................... 196
 B.3.6.2 Asynchronous Events .. 200
 B.3.6.3 Stdout.. 200
 B.3.6.4 Stderr... 200
 B.3.6.5 Logging... 200
 B.3.7 Extended Description.. 201
 B.3.7.1 Selection Phase .. 201
 B.3.7.2 Analysis Phase... 201
 B.3.7.3 Execution Phase .. 201
 B.3.8 Exit Status.. 202
 B.3.9 Consequences of Errors.. 202
 B.4 Software Administration Utilities ... 203
 swask ... 204
 swconfig .. 207
 swcopy ... 210
 swinstall .. 212
 swlist ... 221
 swmodify ... 226
 swpackage ... 228
 swremove ... 230
 swverify ... 233
 B.5 Software Packaging Layout.. 235
 B.5.1 Directory Structure.. 236

vi CAE Specification

Contents

 B.5.2 Software Definition File Format ... 236
 B.5.3 Serial Format and Multiple Media ... 240

 Glossary ... 243

 Index... 253

List of Figures

B-1 Roles in Software Administration.. 162
B-2 Example of Software Structure ... 171
B-3 Software Object Containment... 173
B-4 Software Object Inheritance .. 174
B-5 Fileset State Transitions (Within Distributions) 201
B-6 Fileset State Transitions (Within Installed Software) 202
B-7 Installation State Changes.. 212
B-8 Order of Install Operations.. 214
B-9 Order of Remove Operations .. 230

List of Tables

2-1 Attributes of the Software_Collection Common Class 7
2-2 Attributes of the Distribution Class... 9
2-3 Attributes of the Media Class.. 10
2-4 Attributes of the Installed Software Class.. 11
2-5 Attributes of the Vendor Class.. 12
2-6 Attributes of the Category Class .. 13
2-7 Attributes of the Software Common Class .. 14
2-8 Attributes of the Product Class... 16
2-9 Attributes of the Bundle Class .. 20
2-10 Attributes of the Fileset Class ... 23
2-11 Attributes of the Subproduct Class.. 28
2-12 Attributes of the Software_Files Common Class.................................... 29
2-13 Attributes of the File Class... 31
2-14 Attributes of the Control File Class ... 33
3-1 Software_spec Version Identifiers.. 40
3-2 Script Return Codes .. 57
3-3 Event Status .. 58
3-4 General Error Events ... 59
3-5 Session Events .. 61
3-6 Analysis Phase Events .. 63
3-7 Execution Phase Events.. 67
3-8 Return Codes .. 75
4-1 Default Levels... 105
5-1 Example of Software Packaging Layout ... 126
5-2 File Attributes for INFO File.. 141
B-1 Possible Attributes of a Host Class .. 175

Systems Management: Distributed Software Administration vii

Contents

viii CAE Specification

Preface

The Open Group

The Open Group is the leading vendor-neutral, international consortium for buyers and
suppliers of technology. Its mission is to cause the development of a viable global information
infrastructure that is ubiquitous, trusted, reliable, and as easy-to-use as the telephone. The
essential functionality embedded in this infrastructure is what we term the IT DialTone. The
Open Group creates an environment where all elements involved in technology development
can cooperate to deliver less costly and more flexible IT solutions.

Formed in 1996 by the merger of the X/Open Company Ltd. (founded in 1984) and the Open
Software Foundation (founded in 1988), The Open Group is supported by most of the world’s
largest user organizations, information systems vendors, and software suppliers. By combining
the strengths of open systems specifications and a proven branding scheme with collaborative
technology development and advanced research, The Open Group is well positioned to meet its
new mission, as well as to assist user organizations, vendors, and suppliers in the development
and implementation of products supporting the adoption and proliferation of systems which
conform to standard specifications.

With more than 200 member companies, The Open Group helps the IT industry to advance
technologically while managing the change caused by innovation. It does this by:

• consolidating, prioritizing, and communicating customer requirements to vendors

• conducting research and development with industry, academia, and government agencies to
deliver innovation and economy through projects associated with its Research Institute

• managing cost-effective development efforts that accelerate consistent multi-vendor
deployment of technology in response to customer requirements

• adopting, integrating, and publishing industry standard specifications that provide an
essential set of blueprints for building open information systems and integrating new
technology as it becomes available

• licensing and promoting the Open Brand, represented by the ‘‘X’’ mark, that designates
vendor products which conform to Open Group Product Standards

• promoting the benefits of the IT DialTone to customers, vendors, and the public.

The Open Group operates in all phases of the open systems technology lifecycle including
innovation, market adoption, product development, and proliferation. Presently, it focuses on
seven strategic areas: open systems application platform development, architecture, distributed
systems management, interoperability, distributed computing environment, security, and the
information superhighway. The Open Group is also responsible for the management of the
UNIX trademark on behalf of the industry.

Systems Management: Distributed Software Administration ix

Preface

The Development of Product Standards

This process includes the identification of requirements for open systems and, now, the IT
DialTone, development of CAE and Preliminary Specifications through an industry consensus
review and adoption procedure (in parallel with formal standards work), and the development
of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to which a
vendor may register a product.

The ‘‘X’’ device is used by vendors to demonstrate that their products conform to the relevant
Product Standard. By use of the Open Brand they guarantee, through the X/Open Trade Mark
Licence Agreement (TMLA), to maintain their products in conformance with the Product
Standard so that the product works, will continue to work, and that any problems will be fixed
by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on specification development and product documentation, but which also includes
Guides, Snapshots, Technical Studies, Branding and Testing documentation, industry surveys,
and business titles.

There are several types of specification:

• CAE Specifications

CAE (Common Applications Environment) Specifications are the stable specifications that
form the basis for our Product Standards, which are used to develop X/Open branded
systems. These specifications are intended to be used widely within the industry for product
development and procurement purposes.

Anyone developing products that implement a CAE Specification can enjoy the benefits of a
single, widely supported industry standard. Where appropriate, they can demonstrate
product compliance through the Open Brand. CAE Specifications are published as soon as
they are developed, so enabling vendors to proceed with development of conformant
products without delay.

• Preliminary Specifications

Preliminary Specifications usually address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations. They are
published for the purpose of validation through implementation of products. A Preliminary
Specification is not a draft specification; rather, it is as stable as can be achieved, through
applying The Open Group’s rigorous development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued by formal standards
organizations, and developers are encouraged to develop products on the basis of them.
However, experience through implementation work may result in significant (possibly
upwardly incompatible) changes before its progression to becoming a CAE Specification.
While the intent is to progress Preliminary Specifications to corresponding CAE
Specifications, the ability to do so depends on consensus among Open Group members.

• Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia. For example, it
publishes the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum. It also publishes Technology Specifications relating to OSF/1, DCE,

x CAE Specification

Preface

OSF/Motif, and CDE.

Technology Specifications (formerly AES Specifications) are often candidates for consensus
review, and may be adopted as CAE Specifications, in which case the relevant Technology
Specification is superseded by a CAE Specification.

In addition, The Open Group publishes:

• Product Documentation

This includes product documentation—programmer’s guides, user manuals, and so on—
relating to the Pre-structured Technology Projects (PSTs), such as DCE and CDE. It also
includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

• Guides

These provide information that is useful in the evaluation, procurement, development, or
management of open systems, particularly those that relate to the CAE Specifications. The
Open Group Guides are advisory, not normative, and should not be referenced for purposes
of specifying or claiming conformance to a Product Standard.

• Technical Studies

Technical Studies present results of analyses performed on subjects of interest in areas
relevant to The Open Group’s Technical Program. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new developments
and associated international standards. To distinguish between revised specifications which are
fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://www.opengroup.org/corrigenda.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the
World-Wide Web at http://www.opengroup.org/pubs.

Systems Management: Distributed Software Administration xi

Preface

This Document

System administration utilities vary widely between vendors, and system administration is an
area where to date no formal standards have achieved significant industry-wide acceptance.

This Distributed Software Administration (XDSA) specification, which is based on the IEEE
1387.2 Software Administration Standard, addresses this problem, for software administration
in both stand-alone and distributed environments. XDSA defines a software packaging layout, a
set of information maintained about software, and a set of utility programs to manipulate that
software and information. It extends the IEEE 1387.2 Standard by adding significant
functionality to deliver enhanced update and patch facilities.

This specification, like the IEEE 1387.2 Standard, specifies distributed operations without
specifying the mechanism for how it is to be achieved. The Open Group has published a
specification defining interoperability for XDSA, which uses the Distributed Computing
Environment (DCE) Remote Procedure Call (RPC) mechanism — see referenced specification
XDSA-DCE. The Open Group wishes to embrace other interoperability mechanisms for
distributed XDSA working, so hopes to publish further such specifications as and when
sufficient industry support for them becomes evident.

Structure

• Chapter 1: General — describes the scope, objectives, dependencies, and conformance issues
related to this specification.

• Chapter 2: Software Structures — describes the software classes and attributes applicable to
distributed software administration.

• Chapter 3: Common Definitions for Utilities — defines the common parts of the Systems
Administration utilities which are defined in Chapter 4.

• Chapter 4: System Administration Utilities — defines each of the utilities which must be
provided in a conformant implementation of this specification.

• Chapter 5: Software Packaging Layout — describes the components which make up the
package: the directory structure, the software definition file formats, and the serial format of
the layout in the directory structure.

• Appendix A: Sample Files — these are offered for information and guidance of
implementors.

• Appendix B: Rationale and Notes— this gives background information on particular issues
which have been recorded during development of the POSIX 1387.2 Standard and of this
XDSA specification. It includes explanations and rationale which is considered likely to be
useful to implementors and application writers.

A Glossary and Index are also provided.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for filenames, keywords, type names and environmental variables

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— attributes, data types and variable names

xii CAE Specification

Preface

— parameters (also called metavariables)

— option arguments and extended options

— command names

— utilities; these are shown as follows: name

• Normal font is used for the names of constants and literals.

• Syntax, code fragments, and fixed values (for example, true) are shown in fixed width
font.

Systems Management: Distributed Software Administration xiii

Trademarks

Motif, OSF/1, UNIX, and the ‘‘X Device’’ are registered trademarks and IT DialToneTM

and The Open GroupTM are trademarks of The Open Group in the U.S. and other countries.

xiv CAE Specification

Acknowledgements

The Open Group acknowledges the Institution of Electrical and Electronics Engineers, Inc., and
the use of the IEEE 1387.2 Standard as the basis for development of this Distributed Software
Administration (XDSA) specification.

Systems Management: Distributed Software Administration xv

Referenced Documents

The following documents are referenced in this specification:

ISO/IEC 646
ISO/IEC 646: 1991, Information Processing — ISO 7-bit Coded Character Set for Information
Interchange.

ISO POSIX-1
ISO/IEC 9945-1: 1996, Information Technology — Portable Operating System Interface
(POSIX) — Part 1: System Application Program Interface (API) [C Language] (identical to
ANSI/IEEE Std 1003.1-1996). Incorporating ANSI/IEEE Stds 1003.1-1990, 1003.1b-1993,
1003.1c-1995 and 1003.1i-1995. ANSI/IEEE Standard 1003.1-19961.

ISO POSIX-2
ISO/IEC 9945-2: 1993, Information Technology — Portable Operating System Interface
(POSIX) — Part 2: Shell and Utilities (identical to IEEE Std 1003.2-1992 as amended by IEEE
Std 1003.2a-1992).

ISO/IEC 10646
ISO/IEC 10646-1: 1993, Information Technology — Universal Multiple-Octet Coded
Character Set (UCS) — Part 1: Architecture and Basic Multilingual Plane.

POSIX 1387.2
IEEE Std. 1387.2-1995, Information Technology — Portable Operating System Interface
(POSIX) System Administration — Part 2: Software Administration.

XDSA-DCE
CAE Specification, February 1997, Systems Management; Distributed Software
Administration — DCE-RPC Interoperability (XDSA-DCE) (ISBN: 1-85912-137-3, C430),
published by The Open Group.

The following documents provide additional bibliographical references for associated
information:

[B1] Desktop Management Task Force, Desktop Management Interface Specification,
Version 1.0, 29 April 1994.2

[B2] ISO 639: 1988, Code for the representation of names of languages.3

[B3] ISO/IEC 2022: 1994, Information processing — Character code structure and extension
techniques.

[B4] ISO 2047: 1975, Information processing — Graphical representations for the control
characters of the 7-bit coded character set.

1. IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, PO Box 1331,
Piscataway, NJ 08855-1331, USA.

2. DMTF documents can be obtained via the World Wide Web from http://www.dmtf.org/

3. ISO/IEC documents can be obtained from the ISO Central Secretariat, Case postale 56, 1 rue de Varembé, CH-1211, Genève 20,
Switzerland/Suisse.

xvi CAE Specification

Referenced Documents

[B5] ISO 3166: 1993, Codes for the representation of names of countries.

[B6] ISO 4217: 1995, Codes for the representation of currencies and funds.

[B7] ISO/IEC 4873: 1991, Information technology — ISO 8-bit code for information
interchange — Structure and rules for implementation.

[B8] ISO/IEC 6429: 1992, Information technology — Control functions for coded character
sets.

[B9] ISO/IEC 6937: 1994, Information technology — Coded graphic character set for text
communication — Latin alphabet.

[B10] ISO 8601: 1988, Data elements and interchange formats — Information interchange —
Representation of dates and times.

[B11] ISO/IEC 8806: 1991, Information Technology — Computer graphics — Graphical
Kernel System for Three Dimensions (GKS-3D) language bindings — Part 4: C.

[B12] ISO 8859, Information processing — 8-bit single-byte coded graphic character sets.

[B13] ISO/IEC 9899: 1990, Programming languages — C.4

[B14] ISO/IEC 10164-18: 1997: Information Technology — Open Systems Interconnection —
Systems Management — Part 18: Software Management Function.

[B15] ISO/IEC 10646-1: 1993, Information technology — Universal Multiple-Octet Coded
Character Set (UCS) — Part 1: Architecture and Basic Multilingual Plane.

[B16] ISO/IEC TR 10000-1: 1992, Information technology — Framework and taxonomy of
International Standardized Profiles — Part 1: General principles and documentation
framework.

[B17] ISO/IEC JTC 1 N1335, Final Report of ISO/IEC JTC 1 TSG-1 on Standards necessary to
define Interfaces for Application Portability (IAP).

[B18] International Organization for Standardization/Association Française de
Normalisation (ISO/AFNOR, 1989): Dictionary of Computer Science/Dictionnaire de
L’Informatique.

[B19] IEEE Std 100-1992, IEEE Standard Dictionary of Electrical and Electronics Terms.

[B20] IEEE Std 1003.0-1995, IEEE Guide to the POSIX Open Systems Environment (OSE).

[B21] IEEE P1003.1a/D12, Draft Revision to Information technology — Portable Operating
System Interface (POSIX) Part 1: System Application Program Interface (API) [C
Language]5

[B22] IEEE P2003/D7, Standard for Information Technology — &Test Methods for Measuring
Conformance to POSIX.

[B23] IEEE P2003.2/D11, Standard for Information Technology — Test Methods for
Measuring Conformance to POSIX — Part 2: Shell and Utilities.

4. IEC documents can be obtained from the IEC office, 3 rue de Varembé, Case Postale 131, CH-1211, Genève 20,
Switzerland/Suisse.

5. Numbers preceded by ‘‘P’’ are IEEE authorized standards projects that were not approved by the IEEE Standards Board at the
time this publication went to press. For information about obtaining drafts, contact the IEEE.

Systems Management: Distributed Software Administration xvii

Referenced Documents

[B24] RFC 819, Su, Z. and Postel, J. B. Domain naming convention for Internet user
applications.6

[B25] RFC 822, Crocker, D. — Standard for the format of ARPA Internet text messages.

[B26] RFC 920, Postel, J. B. and Reynolds, J. K. Domain requirements.

[B27] RFC 921, Postel, J. B., Domain name system implementation schedule — revised.

[B28] RFC 1123, Braden, R. T., Requirements for Internet hosts — application and support.

[B29] RFC 1514, Grillo, P. and Waldbusser, S., Host Resources MIB

[B30] American Telephone and Telegraph Company, System V (five) Interface Definition
(SVID), Issues 2 and 3.7

[B31] University of California at Berkeley — Computer Science Research Group, 4.3 Berkeley
Software Distribution, Virtual VAX-11 Version, April 1986.

[B32] Guide, May 1992, Systems Management: Identification of Management Services
(XIMS), (S190), published by The Open Group.

[B33] Guide, Sept 1993, Systems Management: Managed Object Guide (XMOG), (G302),
published by The Open Group.

[B34] CAE Specification, March 1994, Systems Management: Management Protocols (XMP)
API, (C306), published by The Open Group.

[B35] Guide, Sept 1993, Systems Management: Reference Model (XRM), (G207), published by
The Open Group.

[B36] Preliminary Specification, August 1994, The Common Object Request Broker:
Architecture and Specification, (C432), published by The Open Group and OMG8.

[B37] XPG3, February 1992, Portability Guide, Issue 3 — 7-volume set plus Overview, (T010),
published by The Open Group.

[B38] July 1996, The Single UNIX Specification — 5-volume set for UNIX 95, (T910),
published by The Open Group.

6. Internet Requests for Comments (RFC) are available from the DDN Network Information Center, SRI International, Menlo Park,
CA, USA 94025.

7. Available from AT&T, Morristown, NJ: UNIX Press, 1986, 1989.
This is one of several documents that represent an industry specification in a related area. The creators of such documents may
be able to identify newer versions of relevance.

7. Available from The Regents of the University of California, Berkeley, CA, USA.
8. Joint publication with the Object Management Group.

xviii CAE Specification

Chapter 1

Introduction

1.1 Scope
This Software Administration specification defines a software packaging layout, and utilities
that operate on that packaging layout as well as software installed from that packaging layout.
The scope of this Software Administration specification is administration of software across
distributed systems. This administration includes, but is not limited to, packaging of software
for distribution, distribution of software to systems, installation and configuration of software
on systems, removal of software from systems, and delivery of updates and patches packaged in
1387.2 format.

This Software Administration specification is motivated by many factors, including a desire by
system administrators and software suppliers to have a common way of installing and removing
software. To meet the needs of these groups, this Software Administration specification consists
of several components, listed below. The readers of this Software Administration specification
include system administrators, suppliers of software that implement this Software
Administration specification, and suppliers of software that use implementations of this
Software Administration specification. Readers in each of these categories may find their
attention drawn to different sections.

The key components are listed below.

Software structures
This Software Administration specification defines a hierarchical set of structures used to
define software. Information is kept about the software based on these structure
definitions. The structure definitions apply both to installed software and to software
prepared for installation but not yet installed.

Software packaging layout
This Software Administration specification defines the organization of software on a
distribution medium, the information held about that software, and the way in which such
information is represented. This enables both portability of software distributions across
systems of different architecture, and the use of different media to distribute software
(including both file system and serial image forms).

Information kept about software
This Software Administration specification defines the information that is held about
software, both installed software and distributions. This definition provides a consistent
view of software, even when that software is provided from various sources. The way in
which the information is held is undefined within this Software Administration
specification.

Utilities to administer software
This Software Administration specification defines a utility to convert software into the
packaging layout, known as a distribution. This Software Administration specification also
contains utilities to examine the information in a distribution, copy software from one
distribution to another, install software from a distribution, remove software from a
distribution, and verify the integrity of a distribution. There are also utilities for configuring
installed software, patching software, verifying the integrity of installed software,
examining and modifying the information held about installed software, and for removing

Systems Management: Distributed Software Administration 1

Scope Introduction

installed software from a system. This provides administrators a consistent method of
dealing with software across all conforming systems.

Distributed software administration
This Software Administration specification defines the concepts, and the utility syntax and
behaviors, for managing software in a distributed environment. This includes the concept
of different software administration roles (developer, packager, manager, source, target and
client). Different utilities involve different roles, and different roles may be distributed
across multiple systems within a single command execution.

Although not requiring a fully conformant POSIX.1 base (ISO/IEC 9945-1 — see referenced
documents) and POSIX.2 (ISO/IEC 9945-2 — see referenced documents), this Software
Administration specification is based upon the knowledge of, and documentation for, existing
programs that assume an interface and architecture similar to that described by POSIX.1 and
POSIX.2. Any questions regarding the definition of terms or the semantics of an underlying
concept should be referred to POSIX.1 and POSIX.2.

This Software Administration specification does not require the use of any specific programming
language and, in particular, does not require the use of the C language. It is based upon the
knowledge of, and documentation for, existing programs that utilize C-language interfaces. Any
questions regarding the definition of terms or the semantics of an underlying concept in this
language should be referred to the C Standard (ISO/IEC 9989 — see referenced documents).

2 CAE Specification

Introduction Dependencies

1.2 Dependencies

1.2.1 Features Inherited From POSIX.1

This section describes some of the features provided by POSIX.1 (ISO/IEC 9945-1 — see
referenced documents) which are assumed to be globally available to all conforming
implementations. This section does not attempt to detail all the POSIX.1 features that are
required by all the utilities defined in this Software Administration specification. The utility
descriptions point out additional functionality required to provide the corresponding features
needed.

The following description explains frequently used concepts. Utility description statements
override these defaults when appropriate.

File System

The hierarchical directory structure of POSIX.1 is assumed to be available, as well as support for
case-sensitive file names. In addition, various file attributes are also assumed to be present,
including the following: type, owner, group, mode, uid, gid, mtime, major, minor.

Environment Variables

The existence of environment variables in general is assumed, as well as PATH, LANG,
LC_ALL, LC_CTYPE, LC_MESSAGES, LC_TIME, TZ.

Data Interchange Format

The ability to read and write the data interchange formats of POSIX.1 is assumed, including both
extended tar and extended cpio. See POSIX.1. See also this Specification Section 5.3 on page
147.

1.2.2 Features Inherited From POSIX.2

This section describes some of the features provided by (POSIX.2) which are assumed to be
globally available to all systems conforming to this specification. It does not attempt to detail all
of the POSIX.2 features that are required by all the utilities and control scripts defined in this
Software Administration specification. Additional functionality required may be found in the
utility descriptions and in Section 3.6.1 on page 56.

All of the utilities defined in POSIX.2 are required, including the shell interpreter (sh). This
assures a portable environment for executable control files.

Systems Management: Distributed Software Administration 3

Conformance Introduction

1.3 Conformance

1.3.1 Full Conformance

A conforming implementation must support all interfaces defined within this Software
Administration specification. These interfaces must support all the functional behavior
described herein. The interfaces covered by this definition of conformance include, but are not
limited to, utilities and their options and extended options, the behavior of the utilities,
including the generation of events, structures, attributes and their values, and file formats.

The system may provide additional or enhanced utilities, functions, or facilities not required by
this Software Administration specification. Optional extensions should be identified explicitly.
Optional extensions should conform to ISO/IEC 9945-2 — see referenced documents, section
2.10.2 (utility syntax guidelines"). Optional extensions, when used, may change the behavior of
utilities, functions, or facilities defined by this Software Administration specification. In such
cases, the conformance statement for the implementation must define an execution environment
(that is, general operating instructions) in which a conformant implementation may be operated
upon and yield the behavior specified by this Software Administration specification. In no case
must such an environment require modification of a conformant implementation.

1.3.2 Limited Conformance

A limited conformance implementation must meet all of the criteria established for a fully
conformant implementation, with the following exception:

• For the value of HOSTin specifications of sources and targets (see Section 3.4.2 on page 42,
the system may support only the local machine. While this type of limited conformance
removes support for remote operations, the syntax of all utilities and files must remain
identical to that required for fully conformant implementations. The way in which this
limitation is imposed by the implementation must be implementation defined.

4 CAE Specification

Chapter 2

Software Structures

2.1 Classes and Attributes
This section describes the software classes and attributes applicable to software administration.
Each utility in section Chapter 4 describes the operations on the software objects including how
the values of the attributes affect the behavior of the operations. Whether these operations and
behaviors are implemented as procedures on software structures or by other means is undefined
within this Software Administration specification.

The software administration classes form a hierarchy that consists of: distributions, media,
installed_software, categories, vendors, bundles, products, subproducts, filesets, control_files,
and files.

At each level, this hierarchy is defined by containment attributes which reference objects at
lower levels. Operations on objects of lower levels, such as files, are actually enacted by
operations on objects of higher levels. For example, files may be created in a distribution by
copying a software product.

A ‘‘common class’’ is used to define attributes that are common between related objects. Objects
inherit attribute definitions from common classes as well as their individual attributes. This
provides logical relationship between the objects that share the same common class. The
software administration common classes are: software_collection, software, and software_file.

Objects that share the same common class are also referred to generically as:
software_collections, software objects, and software_files.

In tables in the following sections, attributes are listed with various properties. The attributes
and their values manifest themselves as part of the utilities defined in section Chapter 4 and the
software packaging layout in section Chapter 5.

The names of attributes are as provided. If the underlying host allows for the distinction of case,
the attribute names is sensitive to case. Where values of attributes are shown, if the underlying
host allows for the distinction of case, the values of attributes is sensitive to case. If the
underlying host does not allow for the distinction of case for either the name or value of an
attribute, the way in which case differences are handled is implementation defined.

The attribute tables in subsequent sections list the following information:

Attribute
The name of the attribute, also used as the keyword for the attribute.

Length
The maximum permitted length of the value of the attribute.

All attribute values in this Software Administration specification are represented only as
strings. The length is the maximum permitted length of the value in bytes or, for attributes
whose values are lists, the maximum permitted number of items permitted in the list. Since
the means of storing such data for installed software is undefined within this Software
Administration specification, an implementation may store such values internally in
different structures for installed software. See the descriptions for distribution catalog ,
exported catalog and installed_software catalog in the Glossary.

Systems Management: Distributed Software Administration 5

Classes and Attributes Software Structures

Permitted Values
The character sequences permitted as values for this attribute.

Default Value
The value of the attribute if the attribute is not specified.

A default value of None means the system will not supply a value in cases where the
attribute has not been specified and the attribute is not one whose values are generated
dynamically. See Section 5.1.1 on page 126 and Section 5.2 on page 130.

The attribute tables are broken into three groups:

• The top group contains the attributes that are used to identify a particular instance.

• The middle group contains the rest of the attributes that describe other information or
behaviors for the object.

• The bottom group contains the attributes that describe the objects contained within this
object. The way in which these lists are represented in software definition files is described in
Section 5.2 on page 130. The way in which these lists are represented by swlist is
described in swlist on page 104.

Beyond this convention, the order of attributes shown in this section is not significant. For any
attribute ordering rules, see Section 5.2 on page 130. Some attributes do not apply to software
objects in both distributions and installed_software objects. See Section 5.2 on page 130 for
details.

Management of lists of software_collections contained within a host is undefined within this
Software Administration specification. See Section 3.4.2 on page 42 for the way in which
software_collections are identified relative to a software host.

6 CAE Specification

Software Structures Software_Collection

2.2 Software_Collection
A software_collection is the common class from which distribution and installed_software
objects inherit.

A software_collection can contain product and bundle software objects. A Software_collection
can contain multiple versions of the same product or bundle software objects, namely products
or bundles that share the same value for the tag attribute.

Each software_collection has a catalog associated with it that contains the metadata describing
all software objects in that collection.1

Table 2-1 Attributes of the Software_Collection Common Class

Attribute Length Permitted Values Default Value

path Undefined Pathname character string Implementation defined

dfilesdfiles 64 Filename character string
1.0 1.0layout_version 64

pfilespfiles 64 Filename character string

List of
bundle_software_specs

bundles Undefined Empty list

List of
product_software_specs

products Undefined Empty list

Software_Collection Attributes

The following attributes describe each instance of the software_collection class, and are inherited
by each instance of the distribution and installed_software classes:

bundles
A list of bundle_software_specs .

Each software_spec refers to a bundle. Each software_spec is fully qualified. See
Section 3.4.1 on page 38 for the syntax of software_spec .

dfiles
The name of the directory in the exported catalog structure below which any attributes
stored as files for the software_collection are stored (see Section 5.1 on page 126.

layout_version
This attribute, and its value, are included for future use.

path
The identifier for a particular software collection on a host.

1. For distribution software_collections, the catalog information is stored in the software packaging layout in an exported catalog
structure. For installed_software objects, how the catalog information is stored (whether in a file or database, for example) is
undefined within this Software Administration specification.

Systems Management: Distributed Software Administration 7

Software_Collection Software Structures

The value of the path attribute is an absolute path. The default value of this attribute is
implementation defined. See Section 3.5.2 on page 44.

pfiles
The name of the directory in the exported catalog structure below which any control_files,
and attributes stored as files, for the product are stored (see Section 5.1 on page 126.

products
A list of product_software_specs .

Each software_spec refers to a product. Each software_spec is fully qualified. See
Section 3.4.1 on page 38 for the syntax of software_spec .

8 CAE Specification

Software Structures Distribution

2.3 Distribution
A distribution contains product and bundle software objects. It is contained on a distribution
media or may be part of the file store of a system. The distribution may contain a variety of
software products and bundles, and that software may be applicable to a variety of hardware
architectures or operating systems.

The distribution class inherits attributes from the software_collection common class.

A particular distribution object is identified within a host by the path attribute. For distributions,
the path attribute is the pathname to the directory containing a distribution in the directory
format of the software packaging layout, or a file or device file containing a distribution in a
serial format of the software packaging layout.

Distributions can contain more than one version of a product or bundle. A version is uniquely
identified within a distribution by the values of the revision , vendor_tag , and architecture
attributes.

Table 2-2 Attributes of the Distribution Class

Attribute Length Permitted Values Default Value

uuid 64 Portable character string Empty string

List of media sequence_number
values

Empty listmedia Undefined

Distribution Attributes

These attributes, along with the attributes listed in Table 2-1 on page 7, describe each instance of
the distribution class:

media
A list of media.sequence_number values for the distribution if the distribution spans multiple
media. Each medium in a distribution has its media.sequence_number in the INDEX file
defined for that medium. See Section 5.3 on page 147. An implementation may include
definitions for all media in the global INDEX file found on the first medium in the
distribution. The media.sequence_number for the first medium in the distribution is 1 and is
the first item in the list.

uuid
A string that should uniquely identify a distribution.

The way in which a unique string is generated is undefined. This attribute is used for
determining whether subsequent media are from the same set as the one that an install or
copy started with. This attribute is defined for distributions that span multiple media.

Systems Management: Distributed Software Administration 9

Media Software Structures

2.4 Media
The media class is used to describe the media attributes for distributions that span multiple
media.

Table 2-3 Attributes of the Media Class

Attribute Length Permitted Values Default Value

1sequence_number 64 Portable character string

Media Attributes

sequence_number
Identifies a particular media when a distribution spans multiple media.

It is used for identifying the correct medium on which to find the distribution files when the
distribution spans multiple media.

10 CAE Specification

Software Structures Installed_Software

2.5 Installed_Software
The installed_software class is used to describe the bundle and product software that has been
installed on a file system.

The installed_software class inherits attributes from the software_collection common class.

A particular installed_software object is identified within a host by both the path attribute
(defined in the software_collection class) and the catalog attribute. For installed_software
objects, the path attribute is the root directory for the installed_software object below which all
the software files were installed.

An installed_software object can contain multiple versions of a product or bundle. Multiple
product and bundle versions are distinguished by the same attributes as distribution products,
plus the user-specifiable location and qualifier attributes. Multiple product versions may be
installed at the same time in an installed_software object. Different product versions may be
installed into different locations, and different filesets from different product versions may be
installed in the same location.

Table 2-4 Attributes of the Installed Software Class

Attribute Length Permitted Values Default Value

Undefined Portable character string Undefinedcatalog

Installed_Software Attributes

This attribute, along with the attributes listed in Table 2-1 on page 7, describe each instance of
the installed_software class:

catalog
Along with the path attribute, identifies a single installed_software object.

Different installed_software objects may have the same value for the path attribute if and
only if the value of their catalog attributes are different.

The catalog attribute is evaluated relative to the path attribute. It may be a POSIX.1
pathname or other identifier: together they form the key to the undefined catalog storage
for this installed_software object.

Systems Management: Distributed Software Administration 11

Vendor Software Structures

2.6 Vendor
The vendor class is used to describe the attributes of the vendors associated with products and
bundles.

Each product or bundle identifies a vendor with a vendor_tag that identifies a particular vendor
object. The vendor_tag attribute is used to distinguish products and bundles from different
vendors that share the same product or bundle tag .

Table 2-5 Attributes of the Vendor Class

Attribute Length Permitted Values Default Value

tag 64 Filename character string Empty string

title 256 Portable character string Empty string
description Undefined Portable character string Empty string

Vendor Attributes

description
A more detailed description of the vendor or information about the vendor.

tag
A short identifying name of the vendor that supplied the product.

This attribute is used to to distinguish products and bundles from different vendors, and for
resolving software specifications. Each software vendor should attempt to have a unique
value for the tag attribute.

title
A longer name of the vendor that supplied the product. It is used for presentation
purposes.

12 CAE Specification

Software Structures Category

2.7 Category

Category Attributes

The category attributes class is used to describe the attributes of the category attributes associated
with products and bundles.

Each product or bundle identifies a category attribute that identifies a particular object. tag .

Table 2-6 Attributes of the Category Class

Attribute Length Permitted Values Default Value

tag 64 Filename character string None

title 256 Portable character string Empty string
description Undefined Portable character string Empty string
revision 64 Portable character string Empty string

Category Attributes

tag
A short name identifying the category. Each category must have a unique tag. This
attribute is used to identify a particular category object that a software item identifies
through one of its attributes. The tag patch is reserved as a built-in category for filesets with
the is_patch attribute.

title
A longer name of the category used for presentation purposes.

description
A more detailed description of the category.

revision
This attribute is only used to determine which category object definition to maintain in a
software collection when one being installed or copied does not match the one already in
the software collection for that category.tag . The category definition with the higher revision
is maintained.

Systems Management: Distributed Software Administration 13

Software Software Structures

2.8 Software
Software is the common class from which products, bundles, filesets and subproducts inherit.

Table 2-7 Attributes of the Software Common Class

Attribute Length Permitted Values Default Value

tag 64 Filename character string None

list of category.tag values Empty list, or
patch if the
object has the
is_patch
attribute set to
true

category_tag Undefined

create_time 16 Integer character string None
description Undefined Portable character string Empty string
is_patch 8 One of: true, false false
mod_time 16 Integer character string None
size 32 Integer character string None
title 256 Portable character string Empty string

Software Common Attributes

The following attributes describe each instance of the software common class, and are inherited
by each instance of the product, bundle, fileset, and subproduct classes:

category_tag
A repeatable tag based attribute identifying a set of categories that a software object is a
member of. This is used as a selection mechanism, and can be used independent of patches.

Like vendor_tag , this attribute optionally is also a pointer to a category object that contains
additional information about this category (a ‘‘title’’ one-line definition, and a ‘‘description’’
of the category).

All software items with the attribute of is_patch set to true , have a built-in category of
patch automatically included. A category of patch can not be specified in the PSF file.

create_time
A value which is set by the implementation to be the time that the catalog information for
this object was first written.

Time is represented as seconds since the Epoch, as defined in POSIX.2.

description
A more detailed description of the software object.

is_patch
A new Boolean attribute, is_patch , will be defined to indicate that a software object is to be
identified as a patch.

Only filesets with the is_patch attribute have patched files in this proposal. The other levels
can be identified as patches for the listing utilities to facilitate identification of patch
software at any level.

14 CAE Specification

Software Structures Software

Patch filesets have particular behaviors:

• Patch filesets are in general similar in operation to normal filesets except that they have
an explicit or implicit ancestor with which they merge during installation, have the
ability to be rolled back, and maintain catalog information to support these features.

• A patch fileset can be installed in the same session as its base, or ancestor, fileset. Patch
filesets will always be installed after the base fileset if installed in the same session.

• Control scripts delivered with the patch fileset will only run when that patch fileset is
installed. They do not replace the control scripts for the base fileset.

mod_time
A value which is set by the implementation to be the time that the catalog information for
this object was last written.

Time is represented as seconds since the Epoch, as defined in POSIX.1.

size
The sum of the sizes in bytes of all files and control_files contained within the software
object.

For objects other than filesets, the value is computed dynamically as required. See Section
5.2.7 on page 137, Section 5.2.8 on page 138, and Section 5.2.9 on page 139.

tag
A short name associated with the software object.

It is the one attribute that is always required to identify a software object. For more
information on software selections, see Section 3.4.1 on page 38.

title
A longer name associated with the software object, used for display purposes.

Systems Management: Distributed Software Administration 15

Products Software Structures

2.9 Products
Products can contain filesets, which can be grouped into subproducts. Products are named by
their tag attributes. A particular product object is uniquely identified within a
software_collection by the tag attribute and by the version distinguishing attributes. The
attributes that uniquely distinguish a particular product version within a software_collection are
revision , architecture , vendor_tag , location , and qualifier.

The product class inherits the attributes of the software common class.

See subsection Software Compatibility within Section 3.4.1 on page 38.

Table 2-8 Attributes of the Product Class

Attribute Length Permitted Values Default Value

architecture 64 Portable character string Empty string
<product.directory>location Undefined Pathname character string

qualifier 64 Portable character string Empty string
revision 64 Portable character string Empty string
vendor_tag 64 Filename character string Empty string

List of fileset tag valuesall_filesets Undefined Empty list
<product.tag>control_directory Undefined Filename character string

copyright Undefined Portable character string Empty string
/directory Undefined Pathname character string
1instance_id 16 Filename character string

One of: true , false trueis_locatable 8
postkernel Undefined Pathname character string Implementation defined

1.0 1.0layout_version 64
Software pattern matching
string

machine_type 64 Empty string

number 64 Portable character string Empty string
Software pattern matching
string

os_name 64 Empty string

Software pattern matching
string

os_release 64 Empty string

Software pattern matching
string

os_version 64 Empty string

List of control_filetag valuescontrol_files Undefined Empty list
List of subproducttag valuessubproducts Undefined Empty list
List of filesettag valuesfilesets Undefined Empty list

16 CAE Specification

Software Structures Products

Product Attributes

The product attributes, along with the attributes listed in Table 2-7 on page 14, describe each
instance of the product class:

all_filesets
This is a list of all filesets defined for the product, as opposed to what is currently installed,
described by the filesets attribute. The all_filesets attribute is used to determine completeness
of this product when another software object has a dependency on this product. In
checking a product prerequisite or corequisite, the existence of a filesettag in all_filesets that
is not actually installed or available indicates that the dependency is not satisfied.

This does not affect exrequisites as they test whether any of the contents of the dependency
specification are present instead of all of the contents tested for prerequisites or corequisites.

architecture
A vendor-defined string used to distinguish variations of a product.

It is used for presentation purposes and for resolving software specifications. If a product
with the same value of the revision and vendor_tag attributes has different versions of
software for different target architectures, or any other variation (such as supported locale),
then the value of the architecture attribute is different for each version. No additional
semantics is assumed for its value.

control_directory
The name of the product control directory below which the control_files for the product are
stored within an exported catalog.

See Section 5.1.

control_files
A list of the values of the tag attribute for all the control_files in the product.

These scripts are executed before and after software load, and before and after software
removal.

copyright
The copyright notice for the product.

directory
The vendor-defined directory commonly associated with the product.

Generally, this will be the directory in or below which all (or mostly all) files within the
product are installed.

For a product which has filesets with is_locatable equals true , all files which contain this
directory as the first part of their path can be relocated to the location directory during
installation by replacing the productdirectory portion with the productlocation.

filesets
A list of the values of the tag attribute for all the filesets in the product which are currently
installed (in an installed_software object) or available (in a distribution).

instance_id
A single attribute that distinguishes versions of products (and bundles) with the same tag.

It is a simple form of the version distinguishing attributes, valid only within the context of
an exported catalog.

is_locatable
A boolean value indicating whether any of the filesets in the product have the is_locatable

Systems Management: Distributed Software Administration 17

Products Software Structures

attribute set to true .

layout_version
This attribute, and its value, are included for future use.

location
Used for resolving software_specs for installed software.

A specific product location refers to all filesets of that product that are installed at that
location. This is the path beneath which the relocatable files of that product are stored. See
subsection ‘‘File Location’’ in swinstall on page 94.

This attribute is valid only for products in installed_software.

machine_type
A software pattern matching string describing valid machine members of the uname
structure as defined by POSIX.2.

It is used for determining compatibility.

number
The semantics associated with the values of this attribute are undefined.

This attribute can be used to store such vendor-defined values as part number, order
number or serial number.

os_name
A software pattern matching string describing valid sysname members of the uname
structure as defined by POSIX.2.

It is used for determining compatibility.

os_release
A software pattern matching string describing valid release members of the uname structure
as defined by POSIX.2.

It is used for determining compatibility.

os_version
A software pattern matching string describing valid version members of the uname structure
as defined by POSIX.2.

It is used for determining compatibility.

postkernel
The path to the script that is run after the kernel filesets have been installed.

Any product containing kernel filesets should include this path. If this attribute is supplied,
the corresponding script is executed used if it exists relative to the root directory of the
installed_software. If this attribute is not supplied, then the implementation defined path
(the default value for the attribute) is used if it exists relative to the root directory of the
installed_software. Note that the use of an alternate root directory may mean that the
default path does not exist relative to the root directory of the installed_software .

qualifier
Specified by a user when installing software and used for identifying a product (or set of
product versions) using a logical name.

Applies only to products in installed_software.

revision
A vendor-defined string describing the revision of the product.

18 CAE Specification

Software Structures Products

It is used for presentation purposes and for resolving software specifications. The revision
is interpreted as a . (period) separated string. See Section 3.4.1 on page 38.

subproducts
A list of the values of the tag attribute for all the subproducts in the product.

vendor_tag
A short identifying name of the vendor that supplied the product.

This attribute may also be used to identify a vendor object containing additional attributes
describing the vendor.

This attribute is used to distinguish software objects, allowing more than one vendor to
produce a product with the same value of the other version distinguishing attributes. It is
used for presentation purposes and for resolving software specifications.

Systems Management: Distributed Software Administration 19

Bundles Software Structures

2.10 Bundles
Bundles are groupings of software objects. Bundles contain references to products, parts of
products, or other bundles. A software object can be referenced by more than one bundle.

The bundle class inherits the attributes of the software common class.

A particular bundle object is uniquely identified within a software_collection by the tag and by
the version distinguishing attributes. The attributes that uniquely distinguish a particular
bundle version are revision , architecture , location , vendor_tag , and qualifier.

Bundles, like products, are named by their tag attributes and share the same name space as
products. Products and bundles is considered together in determining a unique value for
instance_id .

Bundles and products include many of the same attributes. No bundle attributes are
automatically derived from the contained product attributes. They are defined independently.
See subsection ‘‘Software Compatibility’’ in Section 3.4.2 on page 42.

Bundle definitions are copied or installed when explicitly specified in a software selection for
swcopy and swinstall respectively. They remain installed until explicitly removed or until
all of their contents are removed.

Table 2-9 Attributes of the Bundle Class

Attribute Length Permitted Values Default Value

architecture 64 Portable character string Empty string
<<bundle.directory>location Undefined Pathname character string

qualifier 64 Portable character string Empty String
revision 64 Portable character string Empty string
vendor_tag 64 Filename character string Empty string

List of software_specscontents Undefined Empty list
copyright Undefined Portable character string Empty string

Empty stringdirectory Undefined Pathname character string
1instance_id 16 Filename character string

One of: true , false trueis_locatable 8
1.0 1.0layout_version 64
Software pattern matching
string

machine_type 64 Empty string

Portable character stringnumber 64 Empty string
Software pattern matching
string

os_name 64 Empty string

Software pattern matching
string

os_release 64 Empty string

Software pattern matching
string

os_version 64 Empty string

20 CAE Specification

Software Structures Bundles

Bundle Attributes

These attributes, along with the attributes listed in Table 2-7 on page 14, describe each instance
of the bundle class:

architecture
A vendor-defined string used to distinguish variations of a bundle.

It is used for presentation purposes and for resolving software specifications.

contents
A list of software_specs that defines the list of software grouped into this bundle, as
originally defined in the PSF.

copyright
A copyright notice for the bundle.

directory
The default directory (and location) of the bundle.

This is the default path prepended, when the bundle is installed, to the location of each
product and bundle specification within this bundle.

instance_id
A single attribute that distinguishes versions of bundles (and products) with the same tag.

It is a simple form of the version distinguishing attributes, valid only within the context of
an exported catalog.

is_locatable
A boolean value indicating whether any of the contents in the bundle have the is_locatable
attribute set to true .

layout_version
This attribute, and its value, are included for future use.

location
An attribute whose value is set when installing software and used for resolving
software_specs for installed software.

When installing a bundle, the bundle location is prepended to the location specification for
each software_spec in the contents of the bundle, before that software_spec is
resolved.

The contents attribute of the bundle is not modified.

Applies only to bundles in installed_software.

machine_type
A software pattern matching string describing valid machine members of the uname
structure as defined in POSIX.2.

It is used for determining compatibility.

number
The semantics associated with the values of this attribute are undefined.

This attribute can be used to store such vendor-defined values as part number, order
number or serial number.

os_name
A software pattern matching string describing valid sysname members of the uname

Systems Management: Distributed Software Administration 21

Bundles Software Structures

structure as defined in POSIX.2.

It is used for determining compatibility.

os_release
A software pattern matching string describing valid release members of the uname structure
as defined in POSIX.2.

It is used for determining compatibility.

os_version
A software pattern matching string describing valid version members of the uname structure
as defined in POSIX.2.

It is used for determining compatibility.

qualifier
Specified by a user when installing software, and used for identifying a bundle (or set of
bundle versions) using a logical name.

Applies only to bundles in installed_software.

revision
A vendor-defined string used to distinguish different revisions of bundles from one another.

It is used for presentation purposes and for resolving software specifications.

vendor_tag
A short identifying name of the vendor that supplied the bundle.

This attribute is used to identify a vendor object containing additional attributes describing
the vendor.

This attribute is used to distinguish bundles, allowing more than one vendor to produce a
bundle with the same value of the tag attribute.

22 CAE Specification

Software Structures Filesets

2.11 Filesets
The fileset class is used to define a set of software files. The fileset is the smallest level of
software that can be managed by the tasks defined in this standard.

The fileset class inherits attributes from the software common class.

Filesets contain the actual files and control_files that make up the software product.

A particular fileset object is identified within a product by the tag attribute.2

2. A fileset is strictly contained within the product. There can not be more than one fileset in the product with the same tag. A
fileset can not be in more than one product. However, a product may be referenced by more than one bundle.

Systems Management: Distributed Software Administration 23

Filesets Software Structures

Table 2-10 Attributes of the Fileset Class

Attribute Length Permitted Values Default Value

list of fileset software_specs of
the form product.fileset,version

product.tag
.fileset.tag
,r<revision
,a=architecture
,v=vendor_tag

ancestor Undefined

List of patch software_specs of
the form product.fileset,version

applied_patches Undefined Empty list

control_directory <fileset.tag>Undefined Filename character string
List of dependency_specscorequisites Undefined Empty list
List of dependency_specsexrequisites Undefined Empty list
One of: true , false falseis_kernel 8
One of: true , false trueis_locatable 8
One of: true , false falseis_reboot 8
One of: true , false falseis_sparse 8

<product.directory>location Undefined Pathname character string
media_sequence_number List of mediasequence_number

values
1Undefined

One of applied,
committed, superseded

patch_state 16 None

List of dependency_specsprerequisites Undefined Empty list
revision 64 Filename character string None
saved_files_directory Undefined Pathname character string Empty string

One of: configured ,
installed , corrupt ,
removed , available ,
transient

state 16 None

list of patch software_specssupersedes (patch) Undefined Empty list
list of fully qualified fileset
software_specs of the form
product.fileset,version

supersedes (update) Undefined Empty list

patch software_spec of the form
product.fileset,version

superseded_by Undefined Empty string

List of control_filetag valuescontrol_files Undefined Empty list
List of filepath valuesfiles Undefined Empty list

24 CAE Specification

Software Structures Filesets

Fileset Attributes

These attributes, along with the attributes listed in Table 2-7 on page 14, describe each instance
of the fileset class:

ancestor
This attribute is used with a patch_match_target or update_match_target option. It designates
an ancestor fileset to check for when the match_target option is set to true . The default for
this option, if not defined, is any fileset with the same tags and other version distinguishing
attributes, but with a lower product revision.

applied_patches
The applied_patches attribute is used to determine the list of patches that have been applied
to a base fileset. It can be thought of as the inverse of the ancestor attribute.

If this attribute is an empty list, then this fileset has no patches applied to it.

control_directory
The name of the fileset control directory below which the control_files for the fileset are
stored within an exported catalog. See Section 5.1 on page 126.

control_files
A list of the values of the tag attribute for the control_files in the fileset

corequisites
A list of dependency_specs for software required to be installed and configured for this
fileset to work.

Dependencies is considered when copying, installing, configuring, verifying, and removing
software. See swconfig on page 82 (swconfig analysis phase), swcopy on page 86 (swcopy
analysis phase), swinstall on page 93 (swinstall analysis phase), swremove on page 116
(swremove analysis phase), and swverify on page 122 (swverify analysis phase).

The software specified by the dependency_spec must be complete in order for the
dependency to be resolved successfully. See all_filesets in Section 2.9.0 on page 17.

exrequisites
A list of dependency_specs for software required not to be installed when this fileset is
installed.

Dependencies is considered when installing, configuring, verifying, and removing software.
See swconfig on page 82 (swconfig analysis phase), swinstall on page 93 (swinstall analysis
phase), swremove on page 116 (swremove analysis phase), and swverify on page 122 (swverify
analysis phase).

No part of the software specified by the dependency_spec may be installed in order for
this dependency to be resolved successfully.

files
A list of the values of the path attribute for the files in the fileset.

is_kernel
A boolean value indicating the fileset requires a kernel rebuild.

is_locatable
A boolean value indicating if the fileset may be re-located during installation.

is_reboot
A boolean value indicating the host on which the fileset is configured should be re-booted.

Systems Management: Distributed Software Administration 25

Filesets Software Structures

is_sparse
This fileset denotes a fileset that is not complete, but one that has been qualified as an
update (as opposed to a patch). One outcome of updating via a sparse fileset is that the
catalog information from the old fileset is merged into the new fileset and the old fileset is
then removed, leaving the system in the same state as it would be after an update of a full
fileset.

This option should be used in conjunction with an ancestor attribute showing exactly which
version or versions of software this sparse fileset can update. Filesets that are sparse are
only useful when installed along with those versions, or when those versions are already
installed.

location
Specifies the location below which relocatable files are stored.

This attribute is only valid for filesets in installed software. It differs from the
productdirectory attribute only if relocation was specified during installation. See ‘‘File
Location’’ subsection in swinstall on page 94.

media_sequence_number
Identifies the media.sequence_number for the medium on which the files for this fileset is
found.

If a single fileset spans multiple media, this attribute identifies a list of
media.sequence_number values, identifying all of the media on which the fileset is found. In
that case, the order of the list is interpreted as the order in which to read the media. See
Section 2.3 on page 9, Section 2.4 on page 10, and Section 5.3 on page 147.

patch_state
The patch_state attribute only applies to installed patches and characterizes the current state
of an installed patch.

prerequisites
A list of dependency_specs for software required to be installed prior to the installation
of this fileset and configured prior to the configuration of this fileset.

Dependencies is considered when copying, installing, configuring, verifying, and removing
software. See swconfig on page 82 (swconfig analysis phase), swcopy on page 86 (swcopy
analysis phase), swinstall on page 93 (swinstall analysis phase), swremove on page 116
(swremove analysis phase), and swverify on page 122 (swverify analysis phase).

The software specified by the dependency_spec must be complete in order for the
dependency to be resolved successfully. See all_filesets in Section 2.9.0 on page 17

Circular definitions should be avoided within package definitions. Behavior when circular
definitions are encountered is implementation defined.

revision
Defines the revision of the fileset.

It is used for presentation purposes and for resolving software specifications. A fileset
revision, but with no behavioral value, must be specified if the patch has the same product
version and same fileset tag as the fileset it patches. Two filesets with the same revision can
now exist in the same product version — the base fileset and one or more patch filesets.

saved_files_directory
The value of the saved_files_directory that swinstall used to save the patched files if
patch_save_files was set to true . When rolling back or committing this patch, this attribute
is used to determine the directory to access the saved files.

26 CAE Specification

Software Structures Filesets

The value of this option should be an absolute path. If the value is relative, the behavior is
undefined. If the value is the empty string, then the behavior is undefined.

state
An indication of the current status of the fileset.

This attribute may have one of the following values: configured , installed ,
corrupt , removed , available , and transient .

supersedes (for patch)
The supersedes attribute is used when a patch is replaced by (or merged into) a later patch.
The attribute indicates which previous patches are replaced by the patch being installed or
copied. This attribute is repeatable in order to facilitate merging of patches.

This attribute is a list of software specifications of other patches that this patch supersedes.
When a patch supersedes another patch, the superseding patch is the one that is
automatically selected by default (similar to the 1387.2 selection hueristic of ‘‘highest
compatible versions’’). See swinstall on page 92. A superseding patch will replace the files
of the patch it supersedes when installed after that patch.

supersedes (for update)
This attributes designates that this fileset supersedes a previous fileset. The behavior
associated with a fileset that supersedes another fileset is similar to the behavior of a fileset
that is simply a later revision of the same fileset. In particular, the superseding fileset:

• Is chosen over the superseded fileset when selecting the highest compatible version of a
fileset that was not fully specified

• Meets the dependencies of filesets depending on the superseded fileset

• Causes removal of the catalog information of the superseded fileset when it is installed
into the same location

If multiple filesets are superseded by the same fileset, then this behavior applies to each of
those filesets.

superseded_by
The superseded_by attribute lists what patch superseded this patch.

Systems Management: Distributed Software Administration 27

Subproducts Software Structures

2.12 Subproducts
Subproducts are groupings of filesets and subproducts within a single product. Subproducts do
not contain filesets or subproducts within the name space of the subproduct, but instead refer to
to them. A subproduct can refer to another subproduct. A subproduct or fileset can be
referenced by more than one subproduct.

The subproduct class inherits the attributes of the software common class.

A particular subproduct object is named, and identified within a product, by the tag attribute.
The values of the tag attribute of all subproducts and filesets is unique within a product.

Subproduct definitions are copied or installed when any fileset specified in the contents of the
subproduct is copied or installed with swcopy or swinstall respectively. They remain
installed until explicitly removed or until all of their contents are removed.

Table 2-11 Attributes of the Subproduct Class

Attribute Length Permitted Values Default Value

List of tag valuescontents Undefined Empty list

Subproduct Attributes

These attributes, along with the attributes listed in Table 2-7 on page 14 describe each instance of
the subproduct class:

contents
A list of tag values that defines the list of filesets and subproducts grouped into this
subproduct.

28 CAE Specification

Software Structures Software_Files

2.13 Software_Files
Software_file is the common class that files and control_files inherit from. A software_file is a
file as defined in POSIX.1.

Table 2-12 Attributes of the Software_Files Common Class

Attribute Length Permitted Values Default Value

cksum 16 Integer character string None
compressed_cksum 16 Integer character string None
compressed_size 16 Integer character string None

One of: uncompressed ,
compressed ,
not_compressible

uncompressedcompression_state 16

compression_type 64 Filename character string Empty string
revision 64 Portable character string Empty string
size 16 Integer character string None
source Undefined Pathname character string None

Software_File Common Attributes

The following attributes describe each instance of the software_file class, and are inherited by
each instance of the files and control_files classes:

cksum
An integer character string representing a 32-bit cyclic redundancy check (CRC) identical to
that returned in the first field of the output of the cksum utility, as defined in POSIX.2.

compressed_cksum
Indicates the cksum CRC of the compressed software file in the same manner as the cksum
attribute.

This attribute may be used to verify the integrity of a compressed file, and to help determine
if a file to be copied is already present at the target.

compressed_size
Indicates the size of the compressed software file in the same manner as the size attribute.

This attribute can be used for computation of disk space analysis when the file will remain
compressed after a copy.

compression_state
Indicates which one of the following conditions is true:

• Uncompressed but permitted to be compressed in a distribution (if this attribute has the
value uncompressed or if no value is supplied for the attribute)

• Already compressed (if this attribute has the value compressed)

• Uncompressed and not permitted to be compressed in a distribution (if this attribute has
the value not_compressible)

Systems Management: Distributed Software Administration 29

Software_Files Software Structures

compression_type
Specifies the compression method used to compress the file if the value of the
compression_state attribute is compressed .

The values supported for compression_type are implementation defined. The way in which
an implementation uses this value to implement or execute the compression or
uncompression of a file is undefined.

revision
This is a string indicating the revision level of the file.

size
Indicates the size of the software file in bytes as defined in POSIX.1. st_size .

source
When used in a PSF, this attribute specifies the pathname of the file or control_file to be
placed in the distribution by the swpackage utility.

30 CAE Specification

Software Structures Files

2.14 Files
Files are the actual files and directories that make up the fileset. Many of the file attributes (such
as owner, group , and mode) are derived from, and dependent upon, a POSIX.1 file system.

The file class inherits attributes from the software_file common class.

A particular file object is identified within a fileset by the path attribute. When a file is located on
a distribution, the path attribute indicates the intended installation location of the file. The value
of the path attribute is also the path below the storage directory for that fileset within file storage
structure of the distribution. See Section 5.1.2 on page 128. While a file is installed (in an
installed_software object), the path attribute indicates the actual location of the file. This path is
relative to the root directory for that installed_software object.

For regular files, the value of the size attribute is the actual file size in bytes. For symbolic links,
this is the string length of the link_source attribute. For hard links, directories, and block and
character special files, this is always zero. These types are set to zero since the actual space
required by these types depends on the file system. An implementation should consider the
impact of these types as part of disk space analysis.

The cksum attribute only has meaning for a file with type of regular file.

Table 2-13 Attributes of the File Class

Attribute Length Permitted Values Default Value

path Undefined Pathname character string None

archive_path Undefined Pathname character string Empty string
gid 16 Integer character string Undefined
group Undefined Filename character string Empty string

One of: true , false falseis_volatile 8
link_source Undefined Pathname character string None
major 16 Portable character string None
minor 16 Portable character string None
mode 16 Octal character string None
mtime 16 Integer character string None
owner Undefined Filename character string Empty string

One of: f , d, h, s , p, b, c ,
x , a,

ftype 8

uid 16 Integer character string Undefined

File Attributes

These attributes, along with the attributes listed in Table 2-7 on page 14, describe each instance
of the file class:

archive_path
This attribute is used to designate the path to the archive that this file should be added to,
instead of installing it to the ‘‘path’’ location. When used in conjunction with the save_files
option, the .o file that previously existed in the archive is saved, and can be restored.

Systems Management: Distributed Software Administration 31

Files Software Structures

gid
The numeric group id of the file (POSIX.1. st_gid).

group
The group name of the file (POSIX.1. gr_name).

is_volatile
A volatile file is a file whose contents can change, or which can be removed after it has been
installed.

link_source
The pathname of the target of the link.

This attribute only has meaning if the file type is a hard or symbolic link.

major
This attribute only has meaning if the file type is character or block special file.

The value of this attribute has the same values and meaning as the devmajor field in the tar
archive specified in POSIX.1.

minor
This attribute only has meaning if the file type is character or block special file.

The value of this attribute has the same values and meaning as the devminor field in the tar
archive specified in POSIX.1.

mode
The mode attribute is an octal representation of the permissions bits of the file (POSIX.1,
st_mode).

This attribute has no meaning if the file type is a hard or symbolic link.

mtime
This is the time of the last data modification of the file (POSIX.1, st_mtime).

owner
The name of the owner of the file (POSIX.1, pw_name).

path
The pathname of the file.

type
Supported file types are those described in POSIX.1, file types, plus hard link and symbolic
link.

The permitted values of this attribute are the following: f (regular file), d (directory), h
(hard link), s (symbolic link), p (named pipe (FIFO)), b (block special device), c
(character special device), x (delete file during an install or update), a (archive file during
install or update).

uid
The numeric user id of the file (POSIX.1, st_uid).

32 CAE Specification

Software Structures Control_Files

2.15 Control_Files
Control_files can be scripts, data files, or INFO files. The product and fileset INFO files in the
software packaging layout are included as control_files. Control scripts are the vendor-supplied
scripts executed at various steps by the software administration utilities.

The control_file class inherits attributes from the software_file common class.

A particular control_file object is identified within a product or fileset by the tag attribute. The
path attribute is the storage location of the file relative to the control directory. For distributions,
the control directory is the directory in the software packaging layout where the control_files are
stored. For installed_software objects, this control directory location is undefined.

Table 2-14 Attributes of the Control File Class

Attribute Length Permitted Values Default Value

tag 64 Filename character string None

shinterpreter Undefined Filename character string
path Undefined Filename character string None

One of: none , success ,
failure , warning

noneresult 16

Control_File Attributes

These attributes, along with the attributes listed in Table 2-7 on page 14, describe each instance
of the control_file class:

interpreter
The name of the interpreter used to execute those control_files that are executed as part of
the utilities defined in this Software Administration specification.

Within a distribution, a value for this attribute other than sh implies that the distribution is
not a conformant one. Such a distribution may be one which is conformant with extensions.
See Section 1.3 on page 4.

path
The filename of the control_file.

Multiple control_file entries can have the same value of the path attribute. This implies that
the same script is executed in different steps within the execution of a utility.

result
Contains the result of the execution of the control script.

This attribute is only valid for control_files in installed_software. A complete list of legal
results is contained in Table 2-14.

Systems Management: Distributed Software Administration 33

Control_Files Software Structures

tag
The identifier of the control_file.

All control files are loaded and maintained within the distribution and installed software
catalogs by the utilities defined in this Software Administration specification. These utilities
execute control scripts with particular tags at various steps in the execution of the utility.
The values for the control_file tag attribute for which this Software Administration
specification defines behavior are as follows:

request
response
checkinstall
preinstall
postinstall
unpreinstall
unpostinstall
verify
fix
checkremove
preremove
postremove
configure
unconfigure
space

34 CAE Specification

Chapter 3

Common Definition for Utilities

This chapter defines the common definitions and behaviors of the utilities defined in this
Software Administration specification. These utilities conform to the utility syntax guidelines in
POSIX.2. The utilities themselves are defined in Chapter 4.

3.1 Synopsis
The following is the general synopsis format for the utilities:

<sw_utility> [-d | -r] [-p] [-u] [-a attribute] [-c catalog] [-s source[
[-f file][-t targetfile][-x option=value][-X options_files]
[software_selections][@ targets]

3.2 Description
The utilities all operate on software_selections in source or target software_collections or both.

3.3 Options
Each of the utilities in this standard does not support all of the options shown below. Each
utility supports the options indicated in its synopsis section and those indicated after the
description of the options in this section. All options can be repeated. Except where otherwise
stated within this Software Administration specification, the behavior for repeated options is
undefined. In addition to those shown below, the -W (capital-W) option is reserved for
implementation extensions. See POSIX.2.

-a attribute
Used to specify the attributes on which the utility operates.

This option can be used multiple times to specify a set of attributes.

Applies to swlist , and swmodify .

-c catalog
Used to specify a file with the software definition file syntax or directory with the exported
catalog structure.

This is where software catalog information (metadata) is to be stored to or retrieved from. If
this information fits into one file, then the catalog can be a file, otherwise it will be a
directory. See Chapter 5 and Section 5.2 on page 130.

Applies to swask , swconfig , swinstall , swlist , and swmodify .

-d Indicates to the utility that the operation is on a distribution instead of installed_software.

Applies to swlist , swmodify , swremove, and swverify .

-f file
Reads the list of software_selections from file .

If this option is specified multiple times, all the software specified by each file is included in
the operation. All of the software specified by using this option, as well as all the software

Systems Management: Distributed Software Administration 35

Options Common Definition for Utilities

specified directly as arguments to the utility, is included in the operation.

The file contains one software selection per line, where a software selection uses the syntax
for software_spec defined in Section 3.4.1 on page 38. Blank lines is ignored. Within the
file, the # (pound) character acts as a comment character. On any line containing a #
(pound) character, all characters that follow the # (pound) character up to, but excluding,
the next <newline> , is ignored.

Applies to all utilities.

-p Previews the operation without making any permanent modifications to the target.

An implementation should run any control scripts that are executed as part of the selection
or analysis phase of the command being previewed, but does not run any that are executed
in the execution phase.

This option can be used with any or all of the other options to understand the impact of an
operation before performing it.

Applies to swconfig , swcopy , swinstall , swmodify , swpackage , and swremove.

-r Indicates to the utility that the operation is on an installed_software object located at an
alternate root, instead of either a distribution or the installed_software object located at / .

Applies to swinstall , swlist , swmodify , swremove, and swverify .

-s source
Specifies the software source for the operation.

For swinstall , swask , and swcopy a source can be specified using the syntax in Section 3.4.2 on
page 42. For swpackage , the source is a product specification file.

Applies to swask , swcopy , swinstall , and swpackage .

-t targetfile
Reads the list of targets from targetfile .

If this option is specified multiple times, all the targets specified by each file is included in
the operation. All of the targets specified by using this option, as well as all the targets
specified directly as arguments to the utility, is included in the operation.

The file contains one target per line, where a target uses the syntax for
software_collection_spec defined in Section 3.4.2 on page 42. Blank lines is ignored.
Within the file, the # (pound) character acts as a comment character. On any line
containing a # (pound) character, all characters that follow the # (pound) character up to,
but excluding, the next <newline> , is ignored.

Applies to swconfig , swcopy , swinstall , swlist , swmodify , swpackage , swremove, and swverify .

-u This is the option used to specify undo or delete behavior to a utility.

Applies to swconfig and swmodify .

-x option=value
Used to override the value of an extended option in the defaults file.

The extended options supported are described in Section 3.5.2 on page 44. This option can
be specified multiple times. If any extended option is defined more than once, the
precedence rules from Section 3.5.3.1 on page 54 is used.

Applies to all utilities.

36 CAE Specification

Common Definition for Utilities Options

-X options_file
Used to override the defaults specified in the system defaults file.

The options supported are described in Section 3.5.2 on page 44. This option can be
specified multiple times. If any extended option from any file is defined more than once, the
precedence rules from Section 3.5.3.1 on page 54 is used.

The file has the format defined in Section 3.5.3 on page 52.

Applies to all utilities.

3.3.1 Non-interactive Operation

All utilities except swask are by default non-interactive. The swinstall and swconfig utilities also
define interactive modes for executing request scripts independent of the swask utility.

The way in which swinstall , swcopy and swpackage utilities handle multiple volumes for sources
or targets is implementation defined.

Systems Management: Distributed Software Administration 37

Operands Common Definition for Utilities

3.4 Operands
There are two types of operands that may be specified on the command line, software_selections
and targets . The software_selections refer to the software objects (bundles, products, subproducts
and filesets) to be operated on. The targets refer to the target software_collections where the
software selections are applied. These two operand types is separated by the @operand. With
the exception of swpackage , the behavior of all utilities defined in this Software Administration
specification is undefined if no software_selections are provided.

3.4.1 Software Specification and Logic

The following specifies the syntax for software selections in utilities (software_spec) and in
dependency specifications (dependency_spec). This syntax is applied by the utilities to search
a software_collection catalog for software. Note that the tokens shown below are defined in the
Glossary. 3

%token FILENAME_CHARACTER_STRING /* as defined in Glossary */
%token NEWLINE_STRING /* as defined in Glossary */
%token PORTABLE_CHARACTER_STRING /* as defined in Glossary */
%token SOFTWARE_PATTERN_MATCH_STRING /* as defined in Glossary */
%token WHITE_SPACE_STRING /* as defined in Glossary */

%start software_selections
%%

software_selections : software_selections ws software_spec
| software_spec
;

software_spec : bundle_software_spec
| product_software_spec
;

bundle_software_spec : bundle_qualifier version
| bundle_qualifier ’.’ product_qualifier version
;

bundle_qualifier : bundle_qualifier ’.’ bundle_tag
| bundle_tag
;

product_software_spec : product_qualifier version
;

product_qualifier : product_tag subproduct_qualifier fileset_qualifier
;

subproduct_qualifier : /* empty */
| subproduct_qualifier ’.’ subproduct_tag
| ’.’ subproduct_tag
;

3. For examples of the use of specifications in this section, see Appendix A.

38 CAE Specification

Common Definition for Utilities Operands

fileset_qualifier : /* empty */
| ’.’ fileset_tag
;

bundle_tag : sw_pattern
;

product_tag : sw_pattern
;

fileset_tag : sw_pattern
;

subproduct_tag : sw_pattern
;

version : /* empty */
| ’,*’
| version_qualifier
;

version_qualifier : version_qualifier ver_item
| ver_item
;

ver_item : ’,’ ver_id ’=’
| ’,’ ver_id ’=’ sw_pattern
| ’,’ ’r’ rel_op dotted_string
;

sw_pattern : SOFTWARE_PATTERN_MATCH_STRING
;

ver_id : ’r’ | ’a’ | ’v’ | ’l’ | ’q’
;

rel_op : ’==’ | ’!=’ | ’>=’ | ’<=’ | ’<’ | ’>’
;

dotted_string : FILENAME_CHARACTER_STRING
;

ws : WHITE_SPACE_STRING
;

%start dependency_spec
%%

dependency_spec : dependency_spec ’|’ software_spec
| software_spec
;

If the software_spec identifies a bundle, product or subproduct software object, then all
filesets contained within that object are included as part of that specification. For software
selections, this means that all of these filesets are included. For dependency specifications, this
means that all of these filesets are needed in order to meet the dependency.

Systems Management: Distributed Software Administration 39

Operands Common Definition for Utilities

If a software_spec identifies a set of filesets that is less that the entire set of filesets within a
bundle or product, the software_spec identifies a partial bundle or product.

Only the specified strings is used to generate a software_spec . Blanks do not appear
between items. The sw_pattern and dotted_string must be enclosed in quotes if they
contain blanks or commas. The bundle_tag , product_tag , subproduct_tag , and
fileset_tag consists of one or more characters from the filename character set, with the
exception that the following three characters . , : (period, comma, and colon) are not
used.

Searching a software_collection catalog for software using a software_spec yields a list of zero
or more software objects that match the software_spec . The rules to be used in the search
are the following:

1. The software_spec is compared against software in the software collection. The
leftmost sw_pattern of the software_spec is matched against the tag attribute of all
bundles and products in the software collection. All objects that match are initially
included for consideration. If the sw_pattern does does not match any bundle or
product, no objects are included.

The version specified in the software_spec is compared against the revision ,
architecture , vendor_tag , location , and qualifier attributes of the objects matching the leftmost
sw_pattern . If any ver_id in the software_spec does not match its corresponding
attribute, that object is removed from consideration. If the same ver_id is given more
than once, all the comparisons specified are performed and all must succeed to be
considered a match.

Table 3-1 Software_spec Version Identifiers

ver_id Attribute

r revision
a architecture
v vendor_tag
l location
q qualifier

An implementation may define additional ver_id items along with the attributes and
objects to which they apply.

For each object still included for consideration, each successive sw_pattern , left to right,
is applied to the bundles, products, subproducts and filesets within that object. The same
sw_pattern may match multiple bundle, product, subproduct and fileset objects. If any
sw_pattern does not match any objects within the current object, the current object is
removed from consideration. If a fileset matches a sw_pattern but there is still an
unmatched sw_pattern in the software_spec , that fileset is not selected.

When there are no more sw_patterns left in the software_spec , all the objects
identified by the rightmost sw_pattern of the software_spec are included in the list
of software that match the software_spec .

2. The comparison performed when the operator is = will be a software pattern match as
described in the Glossary. If the ver_id is specified and the value is an empty string,
then the comparison is successful only if the corresponding attribute is not specified. See

40 CAE Specification

Common Definition for Utilities Operands

Section 3.4.1.1 on page 42.

3. When rel_op is used,4 the comparison is performed on the specified attribute by
dividing it into segments separated by the . (period) character. If there is no period in
an attribute, it contains one segment. The segments are compared with the corresponding
segments of the dotted_string . If all characters in both segments to be compared are
decimal digit characters (0-9),5 the comparison is based on the decimal numeric value of
the segments, starting with the leftmost segment. If either segment includes a any
character other than a decimal digit character, a string comparison is made to determine
the relation. String comparisons is made using, as a collation sequence, the order of
characters in If one operand has fewer segments than the other, the unmatched segments is
compared against the value 0 (zero).

4. When applied to software in installed software collections, use of either the l (location) or
q (qualifier) ver_id causes comparison with the value of the location or qualifier attribute
respectively for each product or bundle in the installed_software object.

For distributions, use of either the l (location) or q (qualifier) ver_id is ignored for the
purpose of comparisons. Although not used for comparisons, the location and qualifier
ver_ids are used by the swinstall utility as the location attribute for installing the software
and the qualifier attribute for the software respectively.

5. When software selections are applied to a source or target, and a software_spec
resolves to more than one software object, then the software_spec is considered
ambiguous. An ambiguous selection may be elective or incidental. An elective ambiguous
selection occurs when a sw_pattern in a software_spec contains a wildcard
character or when the version contains a rel_op , or when the sw_pattern is missing.
In all other cases the selection is an incidental ambiguous selection. An incidental
ambiguous selection is only valid for swlist , and for other utilities generates an event.
(SW_ERROR: SW_SELECTION_NOT_FOUND_AMBIG)

6. If the software_spec begins with a bundletag definition, then that bundle definition is
copied or installed with swcopy or swinstall . Thus, a software_spec which matches one
or more bundles can be used with all other utilities, but only if they were explicitly
installed or copied. However, all subproduct definitions are copied or installed
independently of whether they were explicitly selected. Thus, a software_spec which
matches subproducts can always be used on existing products.

For both bundles and subproducts, if some part of their contents exist, then the selection can be
found; therefore, any operation will succeed. If none of their contents exist, then the selection
cannot be found; therefore, the operation will fail (for those selections not found) as defined in
the individual Extended Description section of each utility.

4. As defined in the syntax for ver_item , this comparison is required for revision only and any other comparison is undefined.
5. Note that leading zeros are acceptable in such segments.

Systems Management: Distributed Software Administration 41

Operands Common Definition for Utilities

3.4.1.1 Fully-qualified Software_spec

A fully-qualified software_spec is one in which no fields contain a shell pattern match string
and all version distinguishing attributes are specified as "ver_id=< value>" (if a value is
supplied) or as "ver_id=" (if no value is supplied or if the value supplied is an empty string).
Note that a fully-qualified software_spec always identifies a software object unambiguously.

When a software_spec is generated by swlist , only the following tags are included: the
product tag for products, the bundle tag for bundles, the product and fileset tag for filesets, and
the product and subproduct tag for subproducts.

3.4.1.2 Software Compatibility

Products contain attributes (os_name , os_version , os_release , and machine_type) related to the
uname() function defined by POSIX.1. These attributes are used by the swinstall , swconfig , and
swverify utilities to determine if software is compatible with a target host. A product is
considered compatible with a target host if each of the uname attributes of the product contains
a pattern in its definition that matches the corresponding values returned by the uname()
function on the target host. If any of these attributes is undefined, it is considered to match any
target host. The compatibility test applies to all components of a product, including
subproducts and filesets.

Bundles, like products, possess uname attributes. The values of the bundle uname attributes
determine the compatibility of the bundle in conjunction with the corresponding attributes of
products within the bundle. A product specified as part of a bundle is considered compatible if
both the product and bundle uname attributes designate that the software is compatible. As
with products, if any of these attributes is undefined, it is considered to match any target host.

3.4.2 Source and Target Specification and Logic

Source and target software_collections are specified using the following syntax.

%token HOST_CHARACTER_STRING /* as defined in Glossary */
%token PATHNAME_CHARACTER_STRING /* as defined in Glossary */
%start target
%%

target : software_collection_spec
;

software_collection_spec : HOST_CHARACTER_STRING ’:’ PATHNAME_CHARACTER_STRING
| HOST_CHARACTER_STRING ’:’
| HOST_CHARACTER_STRING
| PATHNAME_CHARACTER_STRING
;

%start source
%%

source : software_collection_spec
;

The : (colon) is required if both the host and pathname are specified, or if the host portion
starts with a / (slash). The pathname portion is an absolute path. The colon is not allowed by
itself.

42 CAE Specification

Common Definition for Utilities Operands

The HOST_CHARACTER_STRINGportion refers to the implementation defined identifier for a
host. If it is not specified, then the local host is assumed.

The PATHNAME_CHARACTER_STRINGportion refers to the software_collection path attribute
(the location on the host of the distribution or installed_software object).

When the PATHNAME_CHARACTER_STRINGis not specified for installed_software, the
directory / is used.

A PATHNAME_CHARACTER_STRINGother than / for an installed_software object is referred to
as an alternate root directory. When the PATHNAME_CHARACTER_STRINGis not specified for
source distributions, the value of the distribution_source_directory default option is used. When
the PATHNAME_CHARACTER_STRINGis not specified for target distributions, the value of the
distribution_target_directory default option is used.

For installed_software objects, the value of the installed_software_catalog option is used to further
clarify which installed software object is actually being targeted. Multiple installed_software
objects may share the same path attribute, but they have separate catalog information because
they are distinct objects. The installed_software path attribute prepended to the value of the
installed_software_catalog option forms the key for the object into the catalog information. Use of
the installed_software_catalog is independent of the -c option.

An implementation supports source and target distributions in the directory format described in
Section 5.3 on page 147, for all utilities. An implementation supports a source distribution in the
serial format for swask , swinstall , and swcopy utilities. An implementation supports a target
distribution in the serial format for swlist , swcopy , and swpackage . Whether data on an existing
target distribution in serial format is overwritten or merged is implementation defined. An
implementation need not support a target distribution in the serial format for swverify , swremove,
and swmodify . Unless otherwise stated, support for serial distributions includes support for both
extended tar and extended cpio archives. See Section 5.3 on page 147. The format of these
archives is defined in POSIX.1.

Systems Management: Distributed Software Administration 43

External Influences Common Definition for Utilities

3.5 External Influences

3.5.1 Defaults and Options Files

The defaults file allows setting of system wide defaults for extended options that define
information (location of files and other objects), behavior, and policy control items for the
utilities defined in this Software Administration specification. The location of the defaults file is
implementation defined. An implementation may define separate defaults files for each task.
These options also may be specified for each user in the manager role in the file
$HOME/.swdefaults .

3.5.2 Extended Options

The utilities in this Software Administration specification support the following extended
options as noted. If a default value is defined, it is listed after the = (equal sign).

allow_downdate=false
Controls the ability to replace a fileset with one of a lower revision.

If allow_downdate false, do not allow installation of a lower revision of a fileset that is already
installed at a higher revision in this location.

If allow_downdate true, allow installation of a lower revision of a fileset.

Applies to swinstall .

allow_incompatible=false
Controls the ability to install software that is not compatible with the underlying operating
system, as defined in Section 3.4.1.2 on page 42.

If allow_incompatible false, do not allow incompatible software to be operated on if the
installed_software path is /.

If allow_incompatible true, then attempt the operation.

Applies to swinstall , swconfig , and swverify .

allow_multiple_versions=false
Controls the ability to configure multiple versions of a product.

If allow_multiple_versions false, do not attempt to configure a second version of a fileset if one
is already configured. If allow_multiple_versions true, then attempt the operation.

Applies to swconfig .

ask=false
Controls the ability to execute request scripts for selected software.

If ask=false , the utilities do not run any request scripts for selected software. The
behavior of swask for ask=false , is undefined.

If ask=true, the utilities execute all request scripts for selected software after resolving
selections, but before initiating analysis on the targets. This is the default value for swask .

If ask=as_needed , the utilities execute any request scripts for selected software that does
not already have a response file in the control directory where the script would be
executed. The location of this control directory depends on whether the -c option has
been set.

Applies to swask , swconfig , and swinstall .

44 CAE Specification

Common Definition for Utilities External Influences

autoreboot=false
Controls automatic rebooting of the target host. If autoreboot=false , do not automatically
reboot the target host, even if a fileset installed requires a reboot to take effect.

If autoreboot=true , automatically reboot the target host if a fileset requiring a reboot is
installed.

Applies to swinstall .

autorecover=false
Controls automatic recovery if an error occurs during install, as specified in section swinstall
on page 100.

If autorecover=false and an install error occurs, no error recovery is provided at all, not even
as an extension to this Software Administration specification. Consequently, no attempt
should be made to restore the original state of the system prior to install. The value of the
fileset state attribute is set to corrupt .

If autorecover=true and an error occurs, then for any fileset having an install error,
implementations will execute the unpostinstall script (if the postinstall script had been run)
and the unpreinstall script,6 restore the files within the fileset from a copy saved prior to the
failed install, and the restore the value of the state attribute. After recovery of the applicable
filesets, installation can continue with the rest of the filesets in that product and the rest of
the products in the software selections.

Applies to swinstall .

autorecover_product
Like the autorecover option, this option will recover a complete product to the previous state,
including running the appropriate unpreinstall and unpostinstall scripts, if the product
postinstall fails.

This option differs from the autorecover option in that the product will be recovered to its
previous state if any fileset has a script error or a file loading error. This means the install
results in either a fully updated product or the previous product. With the POSIX
autorecover option, only that fileset is recovered, and the other filesets are attempted,
resulting in a partially updated product.

autoselect_dependencies=as_needed
Controls automatic dependency selection.

If autoselect_dependencies=true, (the default for all utilities except swinstall and swcopy),
prerequisite and corequisite dependencies are autoselected if possible during the selection
phase. Autoselection of a dependency is done using the software selection logic found in
Section 3.4.1 on page 38. These dependencies are then operated on as if they were selected
explicitly.

If autoselect_dependencies=as_needed , (the default for swinstall and swcopy), then autoselected
dependencies is only operated upon if the dependency is not already met on the target. This
value only applies to swcopy and swinstall .

If autoselect_dependencies=false , then no dependencies are autoselected for operation. For
install and copy, if the dependencies are not already met on the target, an error occurs when

6. Since failure prior to executing the preinstall script should have no side effects, a failure implies that the unpreinstall script
requires execution.

Systems Management: Distributed Software Administration 45

External Influences Common Definition for Utilities

enforce_dependencies=true.

Applies to swask , swconfig , swcopy , swinstall , and swverify .

autoselect_dependents=false
Controls automatic dependency selection.

If autoselect_dependents=true , dependent software (software that depends on this software)
will be autoselected if possible during the selection phase. This dependent software is
operated upon unless the dependency can be met by other software on the target. If
dependent software exists that can not still meet its dependencies through other unselected
software, then an error occurs.

If autoselect_dependents=false , no dependent software is autoselected.

Applies to swconfig , and swremove.

check_contents=true
Controls verification of file contents.

If check_contents=true, then swverify checks the mtime, size and cksum attributes of files.

If check_contents=false , then swverify does not check the attributes.

This applies to both distribution and installed_software files.

Applies to swverify .

autoselect_patches=true
This option causes all patches (except for those that are superseded by other patches) that
have an ancestor attribute defined for selected software to be automatically selected as well
during swinstall and swcopy operations. The default setting for this option is true .

Applies to swinstall and swcopy .

check_permissions=true
Controls verification of file permissions.

If check_permissions=true, then swverify checks the owner, uid , group , gid , mode attributes of
files, and the major and minor attributes of device files.

If check_permissions=false , then swverify does not check the attributes.

This only applies to installed_software files.

Applies to swverify .

check_requisites=true
Controls verification of fileset requisites.

If check_requisites=true then swverify checks the prerequisites, corequisites, and exrequisites
attributes of files.

If check_requisites=false , then swverify does not check the attributes.

This applies to both distribution and installed_software.

Applies to swverify .

check_scripts=true
Controls the running of the verify script.

If check_scripts=true, then swverify runs the vendor supplied verify script for each fileset
when operating on installed_software objects. When the F option of swverify is used, the

46 CAE Specification

Common Definition for Utilities External Influences

vendor supplied fix script is also executed.

If check_scripts=false , then swverify does not run the scripts.

Applies to swverify .

check_volatile=false
Controls check of volatile files.

If check_volatile=true , then swverify includes files whose is_volatile attribute is set to true in
its check of files and their attributes.

If check_volatile=false , then swverify does not include volatile files. This is useful to eliminate
potentially ‘‘spurious’’ reports from swverify when the only file changes are those to files
known in advance to be volatile.

Applies to swverify .

compress_files=false
Controls whether uncompressed files are to be compressed in the target distribution, as
specified by the value of compression_type .

If compress_files=true, then all files except those that have a compression_state of
not_compressible are compressed, or remain compressed.

If compress_files=false , uncompressed files are not compressed, and the status of any
compressed file is determined by the value of uncompress_files.

Applies to swcopy .

compression_type=implementation_defined_value
Specifies the compression type used to compress the software files.

The values supported for compression_type are implementation defined.

The way in which an implementation uses this value to implement or execute the
compression or uncompression of a file is undefined.

Applies to swcopy .

defer_configure=false
Controls automatic configuration at install.

If defer_configure=false , software being installed is also configured when the root directory is
/ .

If defer_configure=true, then the software is installed but not configured, and may require
configuration (using swconfig) before being used.

Applies to swinstall .

defer_deleting_files=false
This option defers the deleting files of type "delete file" by during install or update.

Applies to swinstall .

distribution_source_directory=implementation_defined_value
Specifies the default distribution directory.

When a source specification does not contain a path specification, the value of this extended
option is used as as the default source distribution directory. When a source specification
does contain a path specification, it is used.

Systems Management: Distributed Software Administration 47

External Influences Common Definition for Utilities

Applies to swask , swcopy , and swinstall .

distribution_target_directory=implementation_defined_value
Specifies the default distribution target.

When a target specification does not contain a path specification, the value of this extended
option is used as the default distribution target. When a target specification does contain a
path specification, it is used. For swpackage , this is used only when media_type=directory .

Applies to swcopy , swlist , swmodify , swpackage , swremove, and swverify .

distribution_target_serial=implementation_defined_value
Specifies the default distribution target.

When a target specification does not contain a path specification and media_type=serial , the
value of this extended option is used as the default distribution target. When a target
specification does contain a path specification, it is used.

Applies to swpackage .

enforce_dependencies=true
Controls the enforcement of dependency specifications.

If enforce_dependenciesr=true, no utility except swremove and the unconfigure option of
swconfig proceeds unless necessary dependencies have been selected, or already exist in the
proper state on the target. The swremove utility and the unconfigure portion of the swconfig
utility does not proceed if operating on the selected software leaves dependent software
with their dependencies unresolved beyond what existed before the utility was executed.

If enforce_dependencies=false , then all utilities proceed even if some dependencies are not met.
Enforcement of dependencies is independent of whether or not they were autoselected.

Applies to swconfig , swcopy , swinstall , swremove, and swverify .

enforce_dsa=true
Controls the handling of disk space analysis errors.

If enforce_dsa=true, the implementation defined error handling procedure is invoked when
the disk space analysis indicates there is not enough disk space.

If enforce_dsa=false , then the operation is attempted even if disk space analysis indicated a
problem.

Applies to swcopy , swinstall , and swpackage .

enforce_locatable=true
Controls the handling of errors when relocating a non-relocatable fileset.

If enforce_locatable=true , an error is generated if an attempt is made to relocate a non-
relocatable fileset.

If enforce_locatable=false , an attempt is made to relocate the fileset in any case.

Applies to swinstall , and swverify .

enforce_scripts=true
Controls the handling of errors generated by scripts.

If enforce_scripts=true, the implementation defined error handling procedure is invoked
when the vendor supplied scripts return an error.

If enforce_scripts=false , all script errors is treated as warnings, and the utility attempts to
continue operation.

48 CAE Specification

Common Definition for Utilities External Influences

Applies to swinstall , and swremove.

files=
Lists the pathnames of file objects to be added or deleted.

If files=’file1 file2 file3 ...’ , then catalog information for those files is added or deleted. When
files are added, the attributes of the file are retrieved from the actual file on the installed file
system. File objects being added or deleted can also be specified in the INFO file format.
There is no supplied default.

Applies to swmodify .

follow_symlinks=false
Controls the following of symbolic links

If follow_symlinks=false , then do not follow any symbolic links that may exist in the
packaging source.

If follow_symlinksr=etrue , then attempt to follow symbolic links.

Applies to swpackage .

installed_software_catalog=implementation_de fined_value
Specifies installed software catalog.

This extended option, along with the installed_software path attribute, defines the logical
installed_software object upon which the utility is operating. This extended option is
resolved relative to the PATHNAME_CHARACTER_STRINGportion of the targets operand.
See Section 3.4.2 on page 42.

This option allows an implementation to define where the catalog information is stored.
This option also allows multiple logical installed_software objects to share the
PATHNAME_CHARACTER_STRINGwhere the software is installed.

Applies to swask , swconfig , swinstall , swlist , swmodify , swremove, and swverify .

logfile=implementation_defined_value
Specifies the location of the the logfile for the management role.

Logfile structure for all roles, logfile locations for other roles, and the effect of this option on
logfile location is implementation defined.

Applies to all utilities except swlist .

loglevel=1
Controls the amount of output sent by the utility to log files (not to stdout and stderr).

See Section 3.6.5 on page 69.

Applies to all utilities except swlist .

match_target=false
When set to true , this option adds software items from the source depot to the selection
list that have the same ancestor as software already installed, if the ancestor software is
installed in only a single location.

Applies to swinstall .

media_capacity=0
The storage capacity in megabytes of the output media.

A value of 0 (zero) indicates an infinite capacity.

Systems Management: Distributed Software Administration 49

External Influences Common Definition for Utilities

Applies to swpackage .

media_type=directory
The default media type.

If media_type=directory , the distribution is located in the value of the
distribution_target_directory option.

If media_type=serial , the distribution is located in the value of the distribution_target_serial
option.

Applies to swpackage .

one_liner=implementation_defined_value
Specifies attributes to list.

The one_liner option specifies the attributes to list by default when neither v and a
attribute options are specified. Only attributes that apply to each object listed are included
for that object. At least one of the tag attribute (of products, subproducts, filesets and
control scripts) or the path attribute (of files) is included. The order of attributes in the
output listing need not be the order of the attributes specified in this option. The listing
format used by one_liner is undefined.

Applies to swlist .

patch_commit=false
When set to true , this removes the saved files for the patches specified in the software
selections operands, meaning that patch can no longer be rolled back.

Applies to swmodify .

patch_save_files=true
This option allows the user to save existing files, enabling rollback of patches, or to not save
files (meaning that patches can not be rolled back).

Applies to swinstall .

patch_filter=*
This option can only be used in conjunction with the options autoselect_patches or
patch_match_target . This option is used to filter the automatically selected patches to only
those meeting the tag, version and category filtering criteria specified. The default value of
this option is ‘‘*’’ (all patches).

Applies to swinstall and swcopy .

patch_match_target=false
This option corresponds to the update match_target option, automatically selecting patches
that have ancestors defined for software currently installed or in the depot. Patches that are
superseded by other patches are not included in the selections. The default value of this
option is false .

Applies to swinstall and swcopy .

reconfigure=false
Controls reconfiguring of software.

If reconfigure=false , do not reconfigure software if it is already in the configured state.

If reconfigure=true, reconfigure the software even if it is already in the configured state.

Applies to swconfig .

50 CAE Specification

Common Definition for Utilities External Influences

recopy=false
Controls copying of filesets.

If recopy=false , do not copy a fileset that is already available on the target at the same
version.

If recopy=true, then copy the fileset in any case.

Applies to swcopy .

reinstall=false
Controls reinstallation of filesets.

If reinstall=false , do not install a fileset that already has the same version already installed.

If reinstall=true , then reinstall the fileset even if this version is already installed.

Applies to swinstall .

reinstall_files=false
When set to true , this option directs the utility to reinstall (or recopy) each file
independent of whether the file is already installed (or in the depot) correctly. When set to
false , if the file is already installed (based on mtime, size and cksum), it is not reinstalled
(or retransferred over the network for distributed install).

Applies to swinstall , swcopy and swpackage .

reinstall_files_use_cksum=true
This option is only applicable if reinstall_files=false . When set to true , this option directs
the utility to include a checksum check when determining if the file is up to date. When set
to false , only size and mtime are checked.

Applies to swinstall , swcopy and swpackage .

save_modified_files=false
This option compares the catalog information for each file in each fileset that is being
updated against the actual size and cksum attributes of the installed files, and saves those
files that differ. Where these files are saved is implementation defined.

Applies to swinstall .

saved_files_directory=<implementation_defined_value>
This option allows the user to specify where the saved files are retained. This directory is
also stored in the installed software catalog for a patch fileset, so the correct location can be
identified when removing or committing a patch, or updating a patches’ ancestor.

This value should be an absolute path. If the value is relative or an empty string, the
behavior is undefined.

Applies to swinstall .

select_local=true
Controls default selection of target.

If select_local=true , and no targets are specified, then the local host is selected as the target.

If select_local=false , then the local host is not automatically included.

Applies to all utilities except swask and swpackage .

software=
Specifies a default set of software_selections for the utility.

Systems Management: Distributed Software Administration 51

External Influences Common Definition for Utilities

Applies to all utilities in this Software Administration specification.

targets=
Specifies a default set of targets for the utility.

See the select_local option.

Applies to all utilities in this Software Administration specification except swpackage .

uncompress_files=false
Controls whether compressed files are to be uncompressed in the target distribution, as
specified by the value of the compression_type attribute of the file.

If uncompress_files=false , all files with a compression_state attribute value of compressed
remain compressed, and the status of uncompressed files is determined by the value of
compress_files.

If uncompress_files=true, all compressed files are uncompressed before being written to the
target distribution.

Applies to swcopy .

verbose=1
Controls the amount of output sent by the utility to stdout and stderr, but not to log files.

For values which are non-negative integers, an increase in verbose does not decrease the
information sent stdout and stderr. All implementations support the values 0 (zero) and 1
(one). If verbose=0, nothing is written to either stdout or stderr. The effect of other values of
verbose is undefined. See also Section 3.6.3 on page 69, and Section 3.6.4 on page 69.

Applies to all utilities in this Software Administration specification.

3.5.3 Extended Options Syntax

The syntax is the same for options specified on the command line and for those specified in the
options file. Individual options use this syntax:

%token FILENAME_CHARACTER_STRING /* as defined in Glossary */
%token PORTABLE_CHARACTER_STRING /* as defined in Glossary */
%token SHELL_TOKEN_STRING /* as defined in Glossary */
%token WHITE_SPACE_STRING /* as defined in Glossary */

%start software_option
%%

software_option : command_qualifier keyword ’=’ value
;

command_qualifier : /* empty */
| command ’.’
;

value : multi_value
| single_value
;

multi_value : value ws single_value
| single_value
;

52 CAE Specification

Common Definition for Utilities External Influences

single_value : SHELL_TOKEN_STRING
;

command : FILENAME_CHARACTER_STRING
;

keyword : FILENAME_CHARACTER_STRING
;

ws : WHITE_SPACE_STRING
;

With respect to this syntax, the following apply:

• command
A keyword prefixed by the command name applies to that utility only.

If no prefix exists, then the keyword applies to all the utilities that support it.

• keyword
Names the option or operand being defined, for example, allow_incompatible for swinstall , and
verbose for all the utilities.

The allowable characters for a keyword are as defined in the filename character set, plus the
- (hyphen) character.

• value
Assigns the value to the keyword.

All extended options are single valued except those that contain lists of software_specs
or software_collection_specs . Quoting of strings and escaping of characters is
handled as specified in POSIX.2.

When specified on the command line, multiple option specifications can be included after a
single -x option if included in quotes and separated by white space. Multiple -x options can
also be used.

For option and defaults files, blank lines and all comment text are ignored. Comment text is any
sequence of characters beginning with a # (pound) character which is neither escaped nor
quoted, and continuing through the end of that line.

If the white space between single values contains a <newline> , either it is ‘‘escaped’’ or the
entire value is quoted.

Systems Management: Distributed Software Administration 53

External Influences Common Definition for Utilities

The following are examples of this syntax:

loglevel=1
allow_incompatible=false
autoselect_dependencies="as_needed"
software="Foo,r=1.2,a=hp-ux bar,a=Aix_3.2"
targets="hosta:/ hostb hostc:"

software="Foo,r=1.2,a=hp-ux
bar,a=Aix_3.2"

targets="hosta:/
hostb
hostc:
"

3.5.3.1 Precedence for Option Specification

Multiple option or operand specifications have a precedence that defines which specifications
are used.

Only the option specifications with the highest level of precedence are used for each options and
operands. The precedence is in increasing order:

1. System defaults file

2. User defaults file

3. Options file

4. Command line options and operands

If there are multiple instances of options at any particular level, then the following rules apply:

• If both keyword and command.keyword exist in the set of defaults or options files for this
level, the command uses the latter, more specific, definition.

• All values for software and targets options from all levels are all included in the resulting
software_selections and target_selections for the command.

• For options besides software and targets , the behavior when multiple or conflicting
specifications are made is undefined. This rule applies to options such as s source where
implementations may choose to assign a logical interpretation to multiple source
specification. The same rule applies to options that are mutually exclusive.

3.5.4 Input Files

The definitions for the swpackage utility (see swpackage on page 111) and the swmodify utility (see
swmodify on page 108) respectively specify additional input files specific to those utilities.

3.5.5 Access and Concurrency Control

An implementation of this Software Administration specification allows a user to create, modify,
delete, and access a catalog that describes a software object located where it is permissible for
that user to respectively create, modify, delete, and access files. Other authorization,
authentication and concurrency control requirements and mechanisms are undefined within this
Software Administration specification. This Software Administration specification does provide
event definitions that an implementation can use for access and concurrency control errors.

54 CAE Specification

Common Definition for Utilities External Influences

If the user of a utility does not have the proper authorization to run a utility, access a
software_collection, or access software objects within that utility, the target may generate an
event (SW_ERROR: SW_ACCESS_DENIED).

If the concurrency control mechanism prevents simultaneous operation on a software collection
or software object, the target may generate an event (SW_ERROR:
SW_CONFLICTING_SESSION_IN_PROGRESS).

If the command will proceed anyway, then the target may generate an event (SW_WARNING:
SW_CONFLICTING_SESSION_IN_PROGRESS).

If the concurrency control mechanism fails for other reasons, the target may generate an event
(SW_ERROR: SW_SOC_LOCK_FAILURE).

3.5.6 Environment Variables

Environment variables are a feature of this Software Administration specification inherited from
POSIX.1. The following environment variables affects the execution of all the utilities defined in
this Software Administration specification:

LANG
This variable determines the locale to use for the locale categories when both LC_ALL
and the corresponding environment variable (beginning with LC_) do not specify a locale.

See POSIX.2.

LC_ALL
This variable determines the locale to be used to override any values for locale categories
specified by the settings of LANG or any environment variables beginning with LC_.

LC_CTYPE
This variable determines the interpretation of sequences of bytes of text data as characters
(for example, single versus multibyte characters in values for vendor defined attributes).

LC_MESSAGES
This variable determines the language in which messages should be written.

LC_TIME
This variable determines the format of dates (create_date and mod_date) when displayed by
swlist .

It should also be used by all utilities when displaying dates and times in stdout, stderr, and
logging.

TZ
This variable determines the time zone for use when displaying dates and times.

Systems Management: Distributed Software Administration 55

External Effects Common Definition for Utilities

3.6 External Effects

3.6.1 Control Script Execution and Environment

The utilities defined in this Software Administration specification causes control files to be
interpreted according to the following rules:

1. If no value is set for the control_file.interpreter attribute, or if the value is set to either the
empty string or sh , the script is interpreted by the POSIX.2 shell.

2. If the value of control_file.interpreter is set to a value other than the empty string or sh ,
then the utility determines the availability of the interpreter in an operating system
dependent fashion equivalent to searching PATH for an executable file with a filename
equivalent to the value of control_file.interpreter. If the interpreter is determined to be
available, the control file is interpreted using that interpreter.

3. If no interpreter is available, then a return code value of 1 (one) is presumed for the script,
and all other actions defined for that return code are assumed. See the definitions for swask
on page 78, swconfig on page 81, swinstall on page 90, swremove on page 115, and swverify
on page 121.

During the execution of each such control script, the following environment variables are
defined for the environment of the control_script:

SW_CATALOG
The value of the installed_software.catalog attribute indicating the location or identification of
the catalog relative to the SW_ROOT_DIRECTORY.

SW_CONTROL_DIRECTORY
The directory where the executing script is located.

This directory is readable from within control script execution and is writable from
commands within control scripts when the request script is being executed. All
control_files are readable by any control script.

SW_CONTROL_TAG
The tag of the script being executed.

This allows the control_script to tell what tag is being executed when the actual script path
is defined for more than one tag .

SW_LOCATION
The base directory where the product or fileset will be installed or is already installed.

This is the value of the location attribute.

SW_PATH
A PATH which, at least, contains all utilities defined by the POSIX.2.7

SW_ROOT_DIRECTORY
The installed_software.path attribute of the installed software object within which the
software containing this control_file is installed.

This is the directory relative to which all operations with the script are performed.8

7. POSIX.2 requires and defines the C function confstr() that obtains such a PATH.
8. For example, if this normally has a value of / , but if a proxy install is done to a target directory /mnt/test/ , this will have the

value of /mnt/test/ .

56 CAE Specification

Common Definition for Utilities External Effects

SW_SESSION_OPTIONS
The pathname of a file containing the value of every option defined for the software utility
being executed, using the options syntax described in Section 3.5.3 on page 52.

The option syntax is restricted such that the command prefix is not used, there are no spaces
on either side of the = (equal sign), and multiple valued options have the values quoted.

This environment variable allows scripts to retrieve any options and values for this
command other than the ones provided explicitly via environment variables. When the file
pointed to by SW_SESSION_OPTIONS is made available to request scripts, the targets
option contains a list of software_collection_specs for all targets specified for the
command. When the file pointed to by SW_SESSION_OPTIONS is made available to
other scripts, the targets option contains the single software_collection_spec for the
targets on which the script is being executed.

An implementation should ensure that each software_collection_spec contained in
the value of the targets option is the same between invocations of commands. This will help
ensure that any per-target information stored by the request script can be located by the
subsequent scripts.

SW_SOFTWARE_SPEC
The value of the fully-qualified software_spec identifying the software object containing
this control script.

In order to allow a control script to know whether it is a new install or an update in order to
change its behavior accordingly, the swinstall utility sets the environment variable
SW_ANCESTORS to the fully qualified software_specs of the ancestor or ancestors of the
fileset that currently are installed.

See Section 3.4.1.1 on page 42.

3.6.1.1 Control Script Stdout and Stderr

The scripts may send information, particularly about reasons for error conditions to stdout and
stderr. The utilities logs stdout and stderr to the logfile of the role executing the script.

3.6.1.2 Control Script Return Code

The scripts return with a return code of 0 (zero), 1 or 2. Additionally, checkinstall ,
checkremove , configure , and unconfigure scripts may return with a return code of 3.
The return codes 4 through 31 (inclusive) are reserved for future use. The meaning of these
return codes is shown in the following table:

Systems Management: Distributed Software Administration 57

External Effects Common Definition for Utilities

Table 3-2 Script Return Codes

Return Code Effect of Return Code Status

The script executed successfully. The utility will
proceed normally.

0 SW_NOTE

The script had an error. The utility generates an error
event and implement the error procedure defined for
this script type.

1 SW_ERROR

The script had a warning. The utility will generate a
warning event and continue.

2 SW_WARNING

The script is forcing a deselection of this product or
fileset. The utility will generate a note and skip this
product or fileset during any further processing.

SW_NOTE3

4-31 Reserved.

All scripts, with the exception of the request script, are non-interactive.

An implementation can define behaviors for additional script return codes. Any such behavior
is implementation defined.

Return codes with no behavior defined by either this Software Administration specification or
the implementation should be treated using the behavior associated with return code 2.

3.6.2 Asynchronous Events

The following are the set of events generated by the utilities defined in this Software
Administration specification. These events are generated during the course of a execution of a
utility. See Section 3.6.5 on page 69.

The event codes and their numeric values are listed in Table 3-4, Table 3-5, Table 3-6, and Table
3-7, inclusive.9

Each event generated also has a severity status associated with it. The event status that can
occur for each event is also listed. Event status also has a numeric value, as described in Table
3-3, Table 3-4, Table 3-5, Table 3-6, and Table 3-7. In addition, all numeric values between 0 and
255 (inclusive) are reserved, either for use in this Software Administration specification (as
described in the accompanying tables) or for use in future revisions of this Software
Administration specification.

9. Not all events are generated by each utility. For example, events related to script execution only apply to swinstall , swask,
swremove and swverify . The specific events generated by each utility are defined in the section for that utility.

58 CAE Specification

Common Definition for Utilities External Effects

Table 3-3 Event Status

Status Effect of Event Value

SW_NOTE The operation continues normally 0
Implementation defined error handling procedure is
invoked

SW_ERROR 1

SW_WARNING The operation continues normally 2

A command will not have an exit code of zero if any SW_ERRORevent occurred during the
course of a command.

The descriptions in the following tables describe the conditions that lead to this event, and the
set of possible event status values for the event. The tables also include ‘‘Manager info’’ and
‘‘Target info’’ that describe the additional information that may be logged for manager and
target role event logging respectively. See Section 3.6.5 on page 69.

Table 3-4 lists general source and target role events. The way in which some of these events are
generated (if at all) may be different for different implementations.

Systems Management: Distributed Software Administration 59

External Effects Common Definition for Utilities

Table 3-4 General Error Events

Event Code Event Status Description Value

The manager is requesting a phase out
of order. Manager info: target. Target
info: current phase.

SW_ILLEGAL_STATE_TRANSITION SW_ERROR 1

The manager has contacted the wrong
target, or this is not a valid manager for
this session. Manager info: target.
Target info: information about the
initiator.

SW_BAD_SESSION_CONTEXT SW_ERROR 2

An illegal or unrecognized option was
sent. Manager info: target, number of
options. Target info: option names and
values.

SW_ILLEGAL_OPTION SW_ERROR 3

The user has insufficient privilege to
perform the requested operation.
Manager info: target. Target info:
information about the initiator.

SW_ACCESS_DENIED SW_ERROR 4

The target role had a memory
allocation error (for example, out of
swap). Manager info: target. Target
info: reasons for error.

SW_MEMORY_ERROR SW_ERROR 5

The target role had a resource
allocation error such as maximum
number of processes reached,
maximum number of files open, etc.
Manager info: target. Target info:
reasons for error.

SW_RESOURCE_ERROR SW_ERROR 6

The target role had an internal
implementation error. Manager info:
target. Target info: reasons for error.

SW_INTERNAL_ERROR SW_ERROR 7

An I/O error occurred while
performing this command. Manager
info: target. Target info: reasons for
error.

SW_IO_ERROR SW_ERROR 8

60 CAE Specification

Common Definition for Utilities External Effects

Table 3-5 lists the source and target role events related to initialization of a session and ending a
session. The way in which some of these events are generated (if at all) may be different for
different implementations.

Table 3-5 Session Events

Event Code Event Status Description Value

Failed to initialize a target session.
Manager info: target. Target info:
reasons for error.

SW_AGENT_INITIALIZATION_FAILED SW_ERROR 10

The target role is not accepting new
requests. Manager info: target.
Target info: reasons for error.

SW_SERVICE_NOT_AVAILABLE SW_ERROR 11

There are other sessions in progress
that may affect the results of this
command. Manager info: target,
number of sessions. Target info:
information about other sessions.

SW_OTHER_SESSIONS_IN_PROGRESS SW_WARNING 12

The command begins on the target.
Manager info: target. Target info:
information about the initiator of
the command.

SW_SESSION_BEGINS SW_NOTE 28

SW_NOTE
SW_WARNING
SW_ERROR

The command ends on the target
successfully, with warnings, or
with errors. Manager info: target.
Target info: none.

SW_SESSION_ENDS 29

The limit of source or target role
sessions on this host has already
been reached. Manager info: target,
number of sessions. Target info:
number of sessions, limit.

SW_CONNECTION_LIMIT_EXCEEDED SW_ERROR 30

The requested target or source
software collections does not exist.
Manager info: target. Target info:
reasons for error.

SW_SOC_DOES_NOT_EXIST SW_ERROR 31

The software_collection exists, but
the information is corrupt.
Manager info: target. Target info:
reasons for error.

SW_SOC_IS_CORRUPT SW_ERROR 32

The target software_collection did
not previously exist and was
created. Manager info: target.
Target info: none.

SW_SOC_CREATED SW_NOTE 34

SW_CONFLICTING_SESSION
_IN_PROGRESS

SW_ERROR
SW_WARNING

A conflicting session is in progress
that will prevent this operation
(error), or cause its results to
possibly be invalid (warning).
Manager info: target. Target info:
information about other sessions.

35

Systems Management: Distributed Software Administration 61

External Effects Common Definition for Utilities

Event Code Event Status Description Value
Can not set the proper access
control to this source or target.
Manager info: target. Target info:
reasons for error.

SW_SOC_LOCK_FAILURE SW_ERROR 36

SW_ERROR
SW_NOTE

The software_collection is a read
only source for a read source or
target (note), or is a target to be
modified (error). Manager info:
target. Target info: none.

SW_SOC_IS_READ_ONLY 37

SW_ERROR
SW_NOTE

The software_collection is on a
remote file system. (Whether note
or error is implementation defined).
Manager info: target. Target info:
none.

SW_SOC_IS_REMOTE 38

The distribution is an incorrect type
for the command (for example, a
tape for swremove). Manager info:
target. Target info: reasons for
error.

SW_SOC_INCORRECT_MEDIA_TYPE SW_ERROR 39

The distribution has a serial format
(for example, a tape). Manager
info: target. Target info: none.

SW_SOC_IS_SERIAL SW_NOTE 40

The software_collection is of the
wrong type (distribution or
installed_software) for the
operation. Manager info: target.
Target info: target type.

SW_SOC_INCORRECT_TYPE SW_ERROR 41

Cannot open logfile to log the
software_collection events.
Manager info: target. Target info:
reasons for error.

SW_CANNOT_OPEN_LOGFILE SW_ERROR 42

The software collection is
inadequately specified for the
operation. Manager info: target.
Target info: reason for error

SW_SOC_AMBIGUOUS_TYPE SW_ERROR 49

The target role is currently
analyzing or executing a command
and will terminate the session once
completed. Manager info: target.
Target info: none.

SW_TERMINATION_DELAYED SW_NOTE 50

The target role failed to initiate the
reboot operation of an install
command and requires manual
reboot. Manager info: target.
Target info: reasons for error.

SW_CANNOT_INITIATE_REBOOT SW_WARNING 51

62 CAE Specification

Common Definition for Utilities External Effects

Table 3-6 lists the source and target role events related to the analysis phase of the commands.
Some of these are also related to the execution phase of the commands.

Table 3-6 Analysis Phase Events

Event Code Event Status Description Value

The analysis phase begins on the
target. Manager info: target. Target
info: none.

SW_ANALYSIS_BEGINS SW_NOTE 52

SW_NOTE
SW_WARNING
SW_ERROR

The analysis phase ends on the
target. The analysis may have
succeeded, had warnings, and/or
errors. Manager info: target. Target
info: none.

SW_ANALYSIS_ENDS 53

One or more filesets were excluded
automatically as the software
identified as exrequisites was also
specified to be selected. Manager
info: target, number of filesets.
Target info: software_specs

SW_EXREQUISITE_EXCLUDE SW_NOTE 56

One or more checkinstall or
checkremove scripts have caused
the software to be unselected and
excluded from further processsing.
Manager info: target, number of
filesets. Target info: software_specs

SW_CHECK_SCRIPT_EXCLUDE SW_NOTE 57

One or more configure or
unconfigure scripts have caused the
software to be unselected and
excluded from further processsing.
Manager info: target, number of
filesets. Target info:
software_specs

SW_CONFIGURE_EXCLUDE SW_NOTE 58

The software selection was found,
but its state was corrupt or
transient . Manager info: target,
number of selections Target info:
software_specs

SW_SELECTION_IS_CORRUPT SW_ERROR 59

Failure contacting or retrieving
information from the source.
Manager info: target. Target info:
reasons for error.

SW_SOURCE_ACCESS_ERROR SW_ERROR 60

The source does not have a media
number of 1 (needed for retrieval
of the INDEX). Manager info:
target, current media number.
Target info: current media number.

SW_SOURCE_NOT_FIRST_MEDIA SW_ERROR 61

SW_ERROR
SW_NOTE

One or more software selections
can not be found. This is an error
for install or copy; otherwise, a
note. Manager info: target, number
of selections. Target info:

SW_SELECTION_NOT_FOUND 62

Systems Management: Distributed Software Administration 63

External Effects Common Definition for Utilities

Event Code Event Status Description Value
software_specs

SW_SELECTION_NOT
_FOUND_RELATED

SW_ERROR
SW_NOTE

One or more software selections
can not be found as specified, but
another version exists. This is an
error for install or copy; otherwise,
a note. Manager info: target,
number of selections. Target info:
software_specs

63

SW_SELECTION_NOT
_FOUND_AMBIG

One or more software selections
can not be unambiguously
determined. Manager info: target,
number of selections. Target info:
software_specs

SW_ERROR 64

SW_ERROR
SW_WARNING

One or more file systems on the
target are not mounted. Manager
info: target, number of file systems.
Target info: file system names.

SW_FILESYSTEMS_NOT_MOUNTED 65

One or more file systems mounted
are not in file system table.
Manager info: target, number of file
systems. Target info: file system
names.

SW_FILESYSTEMS_MORE_MOUNTED SW_WARNING 66

SW_ERROR
SW_WARNING

One or more filesets have a higher
revision already installed. Whether
error or warning is controlled by
allow_downdate option. Manager
info: target, number of filesets.
Target info: software_specs

SW_HIGHER_REVISION_INST ALLED 67

SW_ERROR
SW_NOTE

One or more products would create
a new version in an installation.
Whether error or warning is
controlled by
allow_multiple_versions option.
Manager info: target, number of
products. Target info:
software_specs

SW_NEW_MULTIPLE_VERSION 68

SW_ERROR
SW_WARNING
SW_NOTE

The command is operating on an
existing multiple version of one or
more products. If trying to install
two versions into one location,
generate an event. Warning or note
controlled by
allow_multiple_versions option.
Manager info: target, number of
products. Target info:
software_specs

SW_EXISTING_MULTIPLE_VERSION 69

SW_ERROR
SW_WARNING

One or more dependencies can not
be met. Whether error or warning
is controlled by enforce_dependencies
option. Manager info: target,
number of filesets. Target info:
software_specs ,
dependency_specs

SW_DEPENDENCY_NOT_MET 70

64 CAE Specification

Common Definition for Utilities External Effects

Event Code Event Status Description Value
SW_ERROR
SW_WARNING

One or more products are
incompatible for this target.
Whether error or warning is
controlled by allow_incompatible
option. Manager info: target,
number of products. Target info:
software_specs

SW_NOT_COMPATIBLE 71

One or more checkinstall ,
checkremove or verify scripts
had a warning. Manager info:
target, number of filesets. Target
info: software_specs

SW_CHECK_SCRIPT_WARNING SW_WARNING 72

One or more checkinstall ,
checkremove or verify scripts
failed. Manager info: target,
number of filesets. Target info:
software_specs

SW_CHECK_SCRIPT_ERROR SW_ERROR 73

SW_ERROR
SW_WARNING

Disk space analysis is over the
minimum free limit, but not the
overall limit on the target. Whether
error or warning is controlled by
enforce_dsa option. Manager info:
target, number of file systems.
Target info: file system names,
amount over the minimum free.

SW_DSA_INTO_MINFREE 74

SW_ERROR
SW_WARNING

Disk space analysis is over the
absolute limit. Whether error or
warning is controlled by enforce_dsa
option. Manager info: target,
number of file systems. Target info:
file system names, amount over the
limit.

SW_DSA_OVER_LIMIT 75

SW_ERROR
SW_WARNING

Disk space analysis had an internal
error and failed to run. Whether
error or warning is controlled by
enforce_dsa option. Manager info:
target, number of filesets. Target
info: software_specs

SW_DSA_FAILED_TO_RUN 76

One or more filesets have the same
revision and are being reinstalled
because reinstall true or recopytrue.
Manager info: target, number of
filesets. Target info:
software_specs

SW_SAME_REVISION_INSTALLED SW_NOTE 77

One or more filesets are already
configured Whether they are
reconfigured is controlled by
reconfigure option. Manager info:
target, number of filesets. Target
info: software_specs

SW_ALREADY_CONFIGURED SW_NOTE 78

One or more filesets will be skipped
because of another error within
their product. (Error handling is
implementation defined). Manager

SW_SKIPPED_PRODUCT_ERROR SW_NOTE 79

Systems Management: Distributed Software Administration 65

External Effects Common Definition for Utilities

Event Code Event Status Description Value
info: target, number of filesets.
Target info: software_specs
One or more filesets will be skipped
because of a global error (such as
disk space analysis failure) within
the analyze phase. (Error handling
is implementation defined).
Manager info: target, number of
filesets. Target info:
software_specs

SW_SKIPPED_GLOBAL_ERROR SW_NOTE 80

SW_WARNING
SW_NOTE

One or more files would be created
or removed on a remote file system.
(Policy for loading remote files is
implementation defined). Manager
info: target, number of files. Target
info: file paths.

SW_FILE_IS_REMOTE 81

One or more files will not be
attempted to be created or removed
on a read only file system. Manager
info: target, number of files. Target
info: file paths.

SW_FILE_IS_READ_ONLY SW_WARNING 82

One or more files could not be
removed (for example, text busy, or
non-empty directories). Manager
info: target, number of files. Target
info: file paths.

SW_FILE_NOT_REMOVABLE SW_WARNING 83

One or more files had warnings in
analysis or execution. Manager
info: target, number of files. Target
info: file paths.

SW_FILE_WARNING SW_WARNING 84

One or more files had errors in
analysis or execution. Manager
info: target, number of files. Target
info: file paths.

SW_FILE_ERROR SW_ERROR 85

SW_WARNING
SW_ERROR

A fileset is not locatable.
Controlled by the enforce_locatable
option. Manager info: target,
number of filesets. Target info:
software_specs

SW_NOT_LOCATABLE 86

One or more filesets have the same
revision and are being skipped
because reinstall false or recopyfalse.
Manager info: target, number of
filesets. Target info:
software_specs

SW_SAME_REVISION_SKIPPED SW_NOTE 87

66 CAE Specification

Common Definition for Utilities External Effects

Table 3-7 lists the error, warning and notes for target role events related to the execution phase.

Table 3-7 Execution Phase Events

Event Code Event Status Description Value

The execution phase begins on the
target. Manager info: target. Target
info: none.

SW_EXECUTION_BEGINS SW_NOTE 88

SW_NOTE
SW_WARNING
SW_ERROR

The execution phase ends on the
target. Manager info: target. Target
info: none.

SW_EXECUTION_ENDS 89

SW_SELECTION_SKIPPED
_IN_ANALYSIS

One or more selections will not be
included for execution because
they were determined to be
skipped in analysis. Manager info:
target, number of filesets. Target
info: software_specs

SW_NOTE 90

One or more software selections
were found, but were not analyzed.
Manager info: target, number of
filesets. Target info:
software_specs

SW_SELECTION_NOT_ANALYZED SW_ERROR 91

The source media current being
used is not the same as that used
for analysis. Manager info: target.
Target info: information about
current media and needed media.

SW_WRONG_MEDIA_SET SW_ERROR 92

The target needs the next media.
(Interactive support for media
change is implementation defined).
Manager info: target, needed media
sequence number. Target info:
needed media sequence number.

SW_NEED_MEDIA_CHANGE SW_NOTE 93

The current media sequence
number for the target Manager info:
target, current media sequence
number. Target info: current media
sequence number.

SW_CURRENT_MEDIA SW_NOTE 94

One or more preinstall ,
preremove , unpreinstall , or
fix scripts had a warning.
Manager info: target, number of
scripts. Target info:
software_spec , script tag

SW_PRE_SCRIPT_WARNING SW_WARNING 95

SW_WARNING
SW_ERROR

One or more preinstall ,
preremove , unpreinstall , or
fix scripts failed. Manager info:
target, number of scripts. Target
info: software_spec , script tag

SW_PRE_SCRIPT_ERROR 96

One or more filesets had a warning.
Manager info: target, number of
filesets. Target info:

SW_FILESET_WARNING SW_WARNING 97

Systems Management: Distributed Software Administration 67

External Effects Common Definition for Utilities

Event Code Event Status Description Value
software_specs
One or more filesets had an error.
Manager info: target, number of
filesets. Target info:
software_spec s

SW_FILESET_ERROR SW_ERROR 98

One or more postinstall ,
postremove , or
unpostinstall scripts had a
warning. Manager info: target,
number of filesets. Target info:
software_specs

SW_POST_SCRIPT_WARNING SW_WARNING 99

SW_WARNING
SW_ERROR

One or more postinstall ,
postremove , or
unpostinstall scripts failed.
Manager info: target, number of
filesets. Target info:
software_specs

SW_POST_SCRIPT_ERROR 100

The postkernel kernel build
script had a warning. Manager
info: target. Target info: reasons for
error.

SW_POSTKERNEL_WARNING SW_WARNING 101

The kernel failed to build. Manager
info: target. Target info: reasons for
error.

SW_POSTKERNEL_ERROR SW_ERROR 102

One or more configure or
unconfigure scripts had a
warning. Manager info: target,
number of scripts. Target info:
software_specs , script tag

SW_CONFIGURE_WARNING SW_WARNING 103

SW_WARNING
SW_ERROR

One or more configure or
unconfigure scripts failed.
Manager info: target, number of
scripts. Target info:
software_specs , script tags

SW_CONFIGURE_ERROR 104

An update to the catalog
information for installed_software
or distributions failed. Manager
info: target. Target info: reasons for
error.

SW_DATABASE_UPDATE_ERROR SW_ERROR 105

One or more request scripts had
a warning. Manager info:
software_specs

SW_REQUEST_WARNING SW_WARNING 106

One or more request scripts
failed. Manager info:
software_specs

SW_REQUEST_ERROR SW_ERROR 107

A file could not be compressed or
uncompressed. Manager info:
target. Target info: filepath.

SW_COMPRESSION_FAILURE SW_ERROR 112

File is missing from the source or
target software_collection.
Manager info: target, number of
files. Target info: file path.

SW_FILE_NOT_FOUND SW_ERROR 113

68 CAE Specification

Common Definition for Utilities External Effects

Event Code Event Status Description Value
The execution phase of a fileset
begins. Manager info: target.
Target info: software_spec

SW_FILESET_BEGINS SW_NOTE 117

The execution of a control script
begins. Manager info: target.
Target info: software_spec ,
control script tag

SW_CONTROL_SCRIPT_BEGINS SW_NOTE 118

The execution phase of file begins.
Manager info: target. Target info:
file path.

SW_FILE_BEGINS SW_NOTE 119

3.6.3 Stdout

Events with a status of SW_NOTEwill, if permitted by the value verbose, be directed to stdout.
Manager role events will, if permitted by the value verbose, be directed to stdout. Nothing is
written to stdout if verbose0 (zero). The writing of any target role events to stdout is undefined.

3.6.4 Stderr

If any events with a status of SW_ERRORor SW_WARNINGoccur on a target role, this
information is communicated to the management role. In addition, at least a single message for
that target will, if permitted by the value verbose, be directed to the stderr of the management
role. Nothing is written to stderr if verbose0 (zero).

The sending of any additional messages to stderr of the management role is undefined.

See verbose in section Section 3.5.2 on page 44.

3.6.5 Logging

The management role and target role each log events. The way in which logging is
implemented, including the location of the logfiles, is implementation defined.

Which messages, if any, are placed in the source role logfile is undefined.

All implementations support the values 0 (zero), 1 (one) and 2. . If loglevel0, nothing is
written to log files. The target role logs all events, except file level events, when loglevel1. The
target role redirects, to the logfile, stderr and stdout from control scripts when loglevel1. When
loglevel2, the target role logs file level events. For values which are non-negative integers, an
increase in loglevel does not decrease the information logged for a given role. All other behavior
regarding logging is undefined.

See loglevel in section Section 3.5.2 on page 44.

Systems Management: Distributed Software Administration 69

Extended Description Common Definition for Utilities

3.7 Extended Description
See the individual utility sections for the complete extended descriptions of each task. This
section lists the steps common to the utilities.

There are three phases in the utilities. Targets may be processed in any order or in parallel.

1. Selection phase
When the user specifications are resolved, including source, target, and software
selections.

2. Analysis phase
When the utility attempts to discover conditions which may cause failure when operating
on the selected software.

3. Execution phase
When the actual operations on the software objects take place.

When a utility initiates a session on a target, generate an event.
(SW_NOTE: SW_SESSION_BEGINS)

When the session completes, generate an event.
(SW_NOTE: SW_SESSION_ENDS)

3.7.1 Selection Phase

This section summarizes the common tasks in the selection phase. Errors and warnings are
listed along with the tasks.

3.7.1.1 Starting a Session

On invocation, each command processes options as defined in Section 3.5.3.1 on page 54.

The command exits if the user does not have appropriate privilege. Since implementation of the
security scheme is unspecified within this Software Administration specification, appropriate
privilege is implementation defined. An implementation may generate the following events at
any point in the execution of the command if they are applicable to that implementation:

(SW_ERROR: SW_ACCESS_DENIED)
(SW_ERROR: SW_ILLEGAL_OPTION)
(SW_ERROR: SW_MEMORY_ERROR)
(SW_ERROR: SW_RESOURCE_ERROR)
(SW_ERROR: SW_INTERNAL_ERROR)
(SW_ERROR: SW_TERMINATION_DELAYED)
(SW_ERROR: SW_IO_ERROR)

3.7.1.2 Specifying Targets

A target is specified using the syntax in Section 3.4.2 on page 42. Each target passes the
following validation checks. If any of these checks fail, the command invokes the
implementation defined error handling procedure.

• If the target role was unable to initialize the session on the target host, generate an event.
(SW_ERROR: SW_AGENT_INITIALIZATION_FAILED)

• If administrative access is denied by the target role on the target, generate an event.
(SW_ERROR: SW_ACCESS_DENIED)

• Except for swinstall , swcopy , and swpackage , if the target does not exist on a host, an error is
generated:

70 CAE Specification

Common Definition for Utilities Extended Description

(SW_ERROR: SW_SOC_DOES_NOT_EXIST)

• For swinstall , swcopy , and swpackage , if the target directory does not exist on a host, it is
created with default attributes.
(SW_NOTE: SW_SOC_CREATED)

• If the target is corrupt, generate an event.
(SW_ERROR: SW_SOC_IS_CORRUPT)

• If the target is the wrong type (installed_software or distribution) for the target type the user
specified (with a -r or -d option respectively), generate an event.
(SW_ERROR: SW_SOC_INCORRECT_TYPE)

If both a distribution object and an installed_software object exist at the location specified in
the target, and neither the -d nor the -r option is specified, generate an event.
(SW_ERROR: SW_SOC_AMBIGUOUS_TYPE)

• If the target is a serial distribution, generate an event.
(SW_NOTE: SW_SOC_IS_SERIAL)

If the command is swcopy or swpackage , a serial distribution is overwritten by default. If the
command is swremove, swmodify , or swverify , and the implementation does not support these
on a serial distribution, an event is generated.
(SW_ERROR: SW_SOC_INCORRECT_MEDIA_TYPE)

• If the target is not able to open the implementation defined logfile, generate an event.
(SW_ERROR: SW_CANNOT_OPEN_LOGFILE)

• If the operation needs to modify the target, and it is on a read-only media or file system,
generate an event.
(SW_ERROR: SW_SOC_IS_READ_ONLY)

• An implementation may generate the following events, if they are applicable to that
implementation, when validating a target:
(SW_ERROR: SW_SERVICE_NOT_AVAILABLE)
(SW_WARNING: SW_OTHER_SESSIONS_IN_PROGRESS)
(SW_ERROR: SW_CONNECTION_LIMIT_EXCEEDED)
(SW_NOTE: SW_SOC_IS_REMOTE)
(SW_ERROR: SW_FILESYSTEMS_NOT_MOUNTED)
(SW_ERROR: SW_FILESYSTEMS_MORE_MOUNTED)

3.7.1.3 Specifying the Source

This section only applies to swcopy and swinstall . The source contains software organized in the
software packaging layout. A target can be specified using the syntax in Section 3.4.2 on page
42.

If source is specified, then it is resolved in the context of the management role. If source is not
specified, then a default value is supplied as defined in Section 3.5.3.1 on page 54.

A source must satisfy the following validation checks:

• Verify that the source exists, and may be accessed
(SW_ERROR: SW_SOURCE_ACCESS_ERROR).

• If administrative access is denied by the source role for that source, generate an event.
(SW_ERROR: SW_ACCESS_DENIED)

• Obtain information on what software is available from the source. If the information cannot
be retrieved, or if an problem occurs while processing it, generate an event.

Systems Management: Distributed Software Administration 71

Extended Description Common Definition for Utilities

(SW_ERROR: SW_SOURCE_ACCESS_ERROR)

• If the source is a serial media, and the mediasequence_number is not 1, then generate an
event. (Only the first media has the catalog information on it).
(SW_ERROR: SW_SOURCE_NOT_FIRST_MEDIA)

3.7.1.4 Software Selections

Software selections can be specified on the command line or in an input file using the syntax in
Section 3.4.1 on page 38.

3.7.2 Analysis Phase

This section summarizes the common operations and events in the analysis phase. The analysis
phase occurs before the execution phase, and involves executing checks to determine whether or
not the execution should be attempted.

When the analysis phase begins, generate an event
(SW_NOTE: SW_ANALYSIS_BEGINS)

To begin the analysis phase, the management role (the host on which the utility was invoked)
communicates the selection information to each target in the target list. The target role accesses
the source (for swinstall or swcopy) or target (for other utilities) to get the product catalog
information for the software selections. The product catalog information includes control script
information in the control_files attribute of filesets within each product.

• An implementation may generate any of the following events, if they are applicable to that
implementation, when attempting the analysis or execution phase.
(SW_ERROR: SW_AGENT_INITIALIZATION_FAILED)
(SW_ERROR: SW_ILLEGAL_STATE_TRANSITION)
(SW_ERROR: SW_BAD_SESSION_CONTEXT)

• If the target role cannot access the source, generate an event.
(SW_ERROR: SW_SOURCE_ACCESS_ERROR)

• If an implementation supports access control for particular operations for particular software
objects, and if access is denied for any software object, generate an event.
(SW_ERROR: SW_ACCESS_DENIED)

• If a fileset has an error for which there is not a more specific event defined, generate the
generic event.
(SW_ERROR: SW_FILESET_ERROR)

• If a fileset has a warning for which there is not a more specific event defined, generate the
generic event.
(SW_WARNING: SW_FILESET_WARNING)

• An implementation may generate the following events as applicable to the error handling
procedures for that implementation:
(SW_NOTE: SW_SKIPPED_PRODUCT_ERROR)
(SW_NOTE: SW_SKIPPED_GLOBAL_ERROR)
(SW_WARNING: SW_FILE_IS_READ_ONLY)

See each utility section for the analysis operations specific to each utility. When the analysis
phase ends, generate an event.
(SW_NOTE: SW_ANALYSIS_ENDS)

72 CAE Specification

Common Definition for Utilities Extended Description

3.7.3 Execution Phase

This section summarizes the common operations and events in the execution phase.

When the execution phase begins, generate an event.
(SW_NOTE: SW_EXECUTION_BEGINS)

The execution phase proceeds through the steps defined for each utility. The following events
are common to all utilities.

• When the execution phase executes a script, generate an event.
(SW_NOTE: SW_CONTROL_SCRIPT_BEGINS)

• When the execution phase begins the key operation on a fileset (such as loading or
removing), generate an event.
(SW_NOTE: SW_FILESET_BEGINS)

• When the execution phase begins the key operation on a file (such as loading or removing),
generate an event.
(SW_NOTE: SW_FILE_BEGINS)

• If at any time there is an error rebuilding any catalog files, generate an event.
(SW_ERROR: SW_DATABASE_UPDATE_ERROR)

• If a fileset has an error for which there is not a more specific event defined, generate the
generic event.
(SW_ERROR: SW_FILESET_ERROR)

• If a fileset has a warning for which there is not a more specific event defined, generate the
generic event.
(SW_WARNING: SW_FILESET_WARNING)

• For swinstall and swcopy from a distribution that spans multiple media, an implementation
may generate the following events to convey needed media change information. An
implementation may, but need not, provide such support for other utilities.
(SW_ERROR: SW_WRONG_MEDIA_SET)
(SW_NOTE: SW_NEED_MEDIA_CHANGE)
(SW_NOTE: SW_CURRENT_MEDIA)

• An implementation may generate the following events for software that will not be executed
due to analysis results for that software.
(SW_NOTE: SW_SELECTION_SKIPPED_IN_ANALYSIS)
(SW_ERROR: SW_SELECTION_NOT_ANALYZED)

• The default behavior for filesets in the removed state is the same as for filesets that are non-
existent. Implementations that support the removed state should define extensions to the
1387.2 utilities providing operations on removed filesets.

See each utility section for the execution operations specific to each utility. When the execution
phase completes, generate an event.
(SW_NOTE: SW_EXECUTION_ENDS)

3.7.3.1 Fileset State Transitions

A conforming implementation must maintain the state attribute of each fileset to identify the
condition and validity of that package. A conforming implementation must use these and only
these states as valid values of the filesetstate attribute.

configured
Indicates the fileset in an installed_software object has been configured.

Systems Management: Distributed Software Administration 73

Extended Description Common Definition for Utilities

This state applies to filesets in installed_software objects.

installed
Indicates that the specified fileset has been installed successfully.

corrupt
Indicates that the most recent attempt to handle the fileset was not successful and any
recovery actions that were attempted were similarly unsuccessful.

Software can transition from this state via the swinstall , swcopy , or swremove utilities. Other
implementation defined methods may also exist for transitioning from this state.

This state applies to filesets in distributions and installed_software objects.

removed
This state indicates that the files for the fileset has been removed but the information
remains.

The default behavior when removing software with swremove is to also remove its
information (metadata) from the catalog. An implementation may define a means for
removing software, but maintaining the catalog information. The catalog information can
be separately removed with the swmodify utility.

This state applies to filesets in distributions and installed_software objects.

available
Indicates the fileset is present in the distribution and may be operated on (copied, installed,
etc.) using the appropriate utilities.

This state applies to filesets in a distribution.

transient
Indicates that the fileset is currently being acted on by one of the utilities that modify
software files, thus the state of the software is not well defined.

This state should be replaced by another before the utility completes. Presence of this state
in the software_collection when no utility is running indicates that a utility was previously
interrupted (power failure, kill, etc) and was not able to record a final state indication into
the software_collection catalog. In such case, the implementation defined recovery
procedures can be used to restore the product to a another state.

This state applies to filesets in distributions and installed_software objects.

74 CAE Specification

Common Definition for Utilities Exit Status

3.8 Exit Status
The utility returns one of the following exit codes:

Table 3-8 Return Codes

Return Code Definition

0 The utility was successful on all targets
1 The utility failed on all targets
2 The utility failed on some targets

The exit status for the swpackage utility is different since it is not a distributed utility.

3.9 Consequences of Errors
Utilities can operate on multiple software objects contained in multiple targets. Whether an
error impacts a particular software object, all software objects in the target, or all targets, is
implementation defined. One exception to this is the minimum error recovery procedure
described in swinstall on page 100, which describes fileset level recovery during install.

3.10 Error Conditions
The conditions leading to errors are described in Section 3.6.2 on page 58, and Section 3.7 on
page 70.

Systems Management: Distributed Software Administration 75

Common Definition for Utilities

76 CAE Specification

Chapter 4

Software Administration Utilities

The Software Administration Utilities defined in this chapter must be implemented in all
conformant systems.

The common definitions for utilities are specified in Chapter 3. Where applicable, the definition
for each utility in this chapter refers to these common definitions, to avoid repetition.

• swask

• swcopy

• swconfig

• swinstall

• swlist

• swmodify

• swpackage

• swremove

• swverify

Systems Management: Distributed Software Administration 77

swask Software Administration Utilities

NAME
swask — ask for user responses

SYNOPSIS
swask [-c catalog][-f file][-s source][-t targetfile][-x option=value]

[-X options_file][software_selections][@ targets]

DESCRIPTION
The swask utility runs the interactive software request scripts for the software objects selected.
These scripts store the responses to the response files for later use by the swinstall and
swconfig utilities.

The swinstall and swconfig can also run the interactive request scripts directly.

OPTIONS
The swask utility supports the following options. Where there is no description, the description
in Chapter 3 applies.

-c catalog
Specifies the pathname to an exported catalog structure below which the response files
created by the request scripts are stored for later use.

If the c catalog option is omitted, the utility uses the source catalog, <distribution
path>>/catalog , as the directory in which to store the response files. Hence these
response files will be the ones available for use by the control scripts executed by
swinstall .

-f file

-s source

-t targetfile

-x option=value

-X options_file

OPERANDS
The swask utility supports the software_selections operand described in Chapter 3.

Specifying values for the targets operand does not imply operations on the target role. The
values are simply written as a list of targets for the targets option in the file made available to the
request script via the SW_SESSION_OPTIONS environment variable. See Section 3.6.1 on page
56.

EXTERNAL INFLUENCES
See Chapter 3 for descriptions of external influences common to all utilities.

Extended Options

The swask utility supports the following extended options. The description in Chapter 3 applies.

autoselect_dependencies=true

distribution_source_directory=implementation_defined_value

distribution_source_serial=implementation_defined_value

logfile=implementation_defined_value

loglevel=1

78 CAE Specification

Software Administration Utilities swask

ask=true

software=

verbose=1

EXTERNAL EFFECTS
See Chapter 3.

EXTENDED DESCRIPTION
See Chapter 3 for general information. There are two phases in the swask utility:

1. Selection phase

2. Execution phase

Selection Phase

The software selections apply to the software available from the distribution source if the -s
option was specified. Otherwise, the software selections apply to software that has been already
installed on the targets. Each specified selection is added to the selection list after it passes the
following checks:

• If the -s option is specified and the selection is not available from the source, generate an
event. If the -s option is not specified and the selection is not available from the target,
generate an event.
[SW_ERROR: SW_SELECTION_NOT_FOUND]

• If a unique version can not be identified, generate an event.
[SW_ERROR: SW_SELECTION_NOT_FOUND_AMBIG]

Add any dependencies to the selection list if autoselect_dependencies=true.

Execution Phase

For each selected software that has a request control script:

• If it does not already exist, build the necessary control directories of the exported catalog
structure to hold the response file for that software object.10

• Set the value of the SW_CONTROL_DIRECTORY environment variable to the directory
below which the request script writes the response file. It may be set to the control
directory where the response file will eventually be held, or it may be set to another,
temporary, directory.

If a response file can be found from one of the following sources, searched in the order
specified, then the implementation ensures that the response file is contained within the
directory pointed to by SW_CONTROL_DIRECTORY. The means for doing this (e.g., copy,
link, symlink) is undefined.

1. If -c catalog was specified, any response file already existing below that catalog

2. If -s was not specified, any response file from the catalog of the target or targets
specified

10. If there are multiple product versions selected, they has separate control directories as specified in the software packaging layout.
Update the global INDEX in the exported catalog structure so the appropriate version can be identified later.

Systems Management: Distributed Software Administration 79

swask Software Administration Utilities

3. If -s was specified, any response file already existing in the source catalog.

• If ask=true, execute the request script. If ask=as_needed , execute the request script only
if a response file does not already exist in the control directory.

• The request script writes a single response file in the control directory11 defined by the
supplied environment variable SW_CONTROL_DIRECTORY.

• If a request script returns an error and enforce_scripts=true, generate an event and invoke
the implementation defined error handling procedures.
[SW_ERROR: SW_REQUEST_ERROR]

If a request script returns an error and enforce_scripts=false , generate an event.
[SW_WARNING: SW_REQUEST_ERROR]

If a request script returns a warning, generate an event.
[SW_WARNING: SW_ASK_SCRIPT_WARNING]

EXIT STATUS
See Chapter 3.

CONSEQUENCES OF ERRORS
See Chapter 3.

11. The swinstall and swconfig utilities will distribute the response file to the targets for use by that targets control scripts.

80 CAE Specification

Software Administration Utilities swconfig

NAME
swconfig — configure software

SYNOPSIS
swconfig [-p][-u][-c catalog][-f file][-t targetfile][-x option=value]

[-X options_file][software_selections][@ targets]

DESCRIPTION
The swconfig command configures, unconfigures and reconfigures installed software on the
target hosts specified on the command line for execution on those hosts.

Configuration primarily involves executing vendor-supplied configure and unconfigure
scripts. These scripts configure or unconfigure the installed software. They are only executed
on the target hosts that are intended to actually run the software. Software can be configured
more than once by rerunning the configure scripts.

Configuration can also be done as part of the swinstall and swremove utilities.

OPTIONS
The swconfig utility supports the following options. Where there is no description, the
description in Chapter 3. applies.

-c catalog
If this option is specified, then use the exported catalog structure at this path as the source
of the response files.

If ask=true or ask=as_needed , the control directories in the exported catalog structure are used
for both the eventual source of the response files, and the control directory where the
request scripts are executed in order to create any needed response files.

-f file

-p

-t targetfile

-u Undo configuration.

This option tells the swconfig utility to unconfigure the software, instead of configuring it.

-x option=value

-X options_file

OPERANDS
The swconfig utility supports the software_selections and targets operands described in Chapter 3.

EXTERNAL INFLUENCES
See Chapter 3 for descriptions of external influences common to all utilities.

Extended Options

The swconfig utility supports the following extended options. The description in Chapter 3
applies.

allow_incompatible=false

allow_multiple_versions=false

ask=false

autoselect_dependencies=true

Systems Management: Distributed Software Administration 81

swconfig Software Administration Utilities

autoselect_dependents=false

enforce_dependencies=true

installed_software_catalog=implementation_de fined_valuea

logfile=implementation_defined_value

loglevel=1

reconfigure=false

select_local=true

software="

targets=

verbose=1

EXTERNAL EFFECTS
See Chapter 3.

EXTENDED DESCRIPTION
See Chapter 3 for general information. There are three key phases in the swconfig utility:

1. Selection phase

2. Analysis phase

3. Execution phase

Selection Phase

Software selections apply to the software installed on the target. Each specified selection is
added to the selection list after it passes the following checks:

• If the selection is not found, generate an event.
[SW_WARNING: SW_SELECTION_NOT_FOUND]

• If the selection is not found at that product location but it does exist in another location,
generate an event.
[SW_WARNING: SW_SELECTION_NOT_FOUND_RELATED]

Add any dependencies to the selection list if autoselect_dependencies=true and the task is
configure. Add any dependents to the selection list if the autoselect_dependents=true and the task
is unconfigure.

If ask=true then execute the request scripts for the selected software as described in the swask
utility. See swask extended description.

Analysis Phase

The following checks are made:

• If configuring, check for compatibility of selections, and if the software is not compatible,
generate an event. If allow_incompatible=true generate an event. See Section 3.4.1.2 on page
42.
[SW_WARNING: SW_NOT_COMPATIBLE]

If allow_incompatible=false generate an event.
[SW_ERROR: SW_NOT_COMPATIBLE]

82 CAE Specification

Software Administration Utilities swconfig

• If configuring and the state is corrupt or transient , generate an event.
[SW_ERROR: SW_SELECTION_IS_CORRUPT]

• If the state is already configured when configuring, or not configured when unconfiguring,
generate an event. This event is independent of whether the software will be reconfigured or
not, which in turn is controlled by the reconfigure option.
[SW_NOTE: SW_ALREADY_CONFIGURED]

• Check whether configuring this software will create a new configured version of a fileset, and
generate an event if it will. See the definition for version in the Glossary. If
allow_multiple_versions=true generate an event.
[SW_WARNING: SW_NEW_MULTIPLE_VERSION]

If allow_multiple_versions=false generate an event.
[SW_ERROR: SW_NEW_MULTIPLE_VERSION]

• If the dependencies are not in the configured state and have not been autoselected to be
configured, generate an event. If enforce_dependencies=false generate an event.
[SW_WARNING: SW_DEPENDENCY_NOT_MET]

If enforce_dependencies=true, generate an event.
[SW_ERROR: SW_DEPENDENCY_NOT_MET]

Execution Phase

The sequential relationship between the configure operations is shown in the following list.
Products are ordered by prerequisite dependencies if any. Fileset operations are also ordered by
any prerequisites.

• Configure each product

1. Run configure script for the product.

2. Configure each fileset in the product.

a. Run the configure script for the fileset.

b. Update the result of the script (control_file). Update the state of the fileset to
configured in the database for the installed_software object.

If there is no configure script for a fileset, the state of the fileset is still changed as specified
above.

For unconfigure operations, the order of the products and filesets within the products is the
reverse of the order of products and filesets for configure. The operations are:

• Unconfigure each product:

1. Unconfigure each fileset in the product:

a. Run the unconfigure script for the fileset.

b. Update the result of the script. Update the state of the fileset in the product to
installed in the database for the installed_software object.

2. Run the unconfigure script for the product.

If there is no unconfigure script for a fileset the state of the fileset is still changed as specified
above.

Systems Management: Distributed Software Administration 83

swconfig Software Administration Utilities

Executing Configure Scripts

In this operation, swconfig executes vendor-supplied configure or unconfigure scripts.

The configure scripts are interactive; however, they may access the response file generated
by an interactive request script. If any response file has been generated, it will exist in the
directory pointed to by SW_CONTROL_DIRECTORY.

• If a configure script returns an error and enforce_scripts=true, generate an event and
invoke the implementation defined error handling procedures.
[SW_ERROR: SW_CONFIGURE_ERROR]

• If a configure script returns an error and enforce_scripts=false , generate an event.
[SW_WARNING: SW_CONFIGURE_ERROR]

• If the configure script returns a warning, generate an event.
[SW_WARNING: SW_CONFIGURE_WARNING]

• If a configure script has a return code of 3, generate an event, and exclude the fileset (or
all filesets within the product for a product level script) from any state change between
configured and installed).
[SW_NOTE: SW_CONFIGURE_EXCLUDE]

EXIT STATUS
See Chapter 3.

CONSEQUENCES OF ERRORS
See Chapter 3.

84 CAE Specification

Software Administration Utilities swcopy

NAME
swcopy — copy distribution

SYNOPSIS
swcopy [-p][-f file][-s source][-t targetfile][-x option=value]

[-X options_file][software_selections][@ targets]

DESCRIPTION
The swcopy utility copies or merges software from any source distribution to a target distribution
on the local host, or to the targets specified on the command line. The distribution can then be
accessed by the swinstall utility as a source.

OPTIONS
The swcopy utility supports the following options. Where there is no description, the description
in Chapter 3 applies.

-f file

-p

-s source

-t targetfile

-x option=value

-X options_file

OPERANDS
The swcopy utility supports the software_selections and targets operands described in Chapter 3.

Whether data on an existing target distribution in serial format is overwritten or merged is
implementation defined.

EXTERNAL INFLUENCES
See Chapter 3 for descriptions of external influences common to all utilities.

Extended Options

The swcopy utility supports the following extended options. The description in Chapter 3
applies.

autoselect_dependencies=as_needed

autoselect_patches=true

compress_files=false

compression_type=implementation_defined_value

distribution_source_directory=implementation_defined_value

distribution_target_directory=implementation_defined_value

enforce_dependencies=true

enforce_dsa=true

logfile=implementation_defined_value

loglevel=1

patch_filter=*

Systems Management: Distributed Software Administration 85

swcopy Software Administration Utilities

patch_match_target=false

recopy=false

reinstall_files=false

reinstall_files_use_cksum=true

select_local=true

software=

targets=

uncompress_files=false

verbose=1

EXTERNAL EFFECTS
See Chapter 3.

EXTENDED DESCRIPTION
See Chapter 3 for general information. There are three key phases in the copy utility:

1. Selection phase

2. Analysis phase

3. Execution phase

Selection Phase

If a software selection has dependency specifications on other software and
autoselect_dependencies=true, this software is automatically selected using the method described
in Section 3.4.1 on page 38. The resulting selection must be unambiguous. This automatically
selected software is then copied along with the rest of the selected software. If
autoselect_dependencies=if_needed , then automatically selected software is only copied if the
dependency is not already met.

The swcopy utility supports corequisite and prerequisite dependencies for autoselection, but
treats them equally (no ordering considerations like swinstall). The swcopy utility ignores
exrequisites.

For swcopy each selection added to the selected software list satisfies the following validation
checks. If any of these checks result in an error, the selection is not added to the list.

• If the selection is not available from the source, generate an event.
[SW_ERROR: SW_SELECTION_NOT_FOUND]

• If a unique version can not be identified, generate an event.
[SW_ERROR: SW_SELECTION_NOT_FOUND_AMBIG]

No compatibility filtering is done for swcopy .

In general, usage of the patch_filter and patch_match_target options for copying patches
corresponds exactly to their use in swinstall . One difference is that the ‘‘highest superseding’’
rule is not used; instead, all levels of patches are included.

Analysis Phase

The target role uses the file size information obtained from the source to determine whether or
not the copy utility proceeds on the given target. If any target fails any of the analysis
operations, what software is attempted to be copied is determined by the implementation

86 CAE Specification

Software Administration Utilities swcopy

defined error handling procedures.

The target role checks the following requirements:

• If the target distribution does not exist on a host, create the path to the target with default
attributes and generate an event.
[SW_NOTE: SW_SOC_CREATED]

• Check that selected filesets are not the same version as already available. If recopy=false , note
that these filesets will be skipped by generating an event.
[SW_NOTE: SW_SAME_REVISION_SKIPPED]

If recopy=true, note that they will be recopied by generating an event.
[SW_NOTE: SW_SAME_REVISION_INSTALLED]

• Verify that the needed dependencies of the filesets are met. If enforce_dependencies=true,
generate an event.
[SW_ERROR: SW_DEPENDENCY_NOT_MET]

If 2enforce_dependencies=false" , generate an event.
[SW_WARNING: SW_DEPENDENCY_NOT_MET]

• Check that there is enough free disk space on the target file system to copy the selected
products. If there is not enough disk space and enforce_dsa=true, generate an event.
[SW_ERROR: SW_DSA_OVER_LIMIT]

If there is not enough disk space and enforce_dsa=false , generate an event.
[SW_WARNING: SW_DSA_OVER_LIMIT]

How disk space analysis is implemented is undefined. However an implementation must
account at least for the sizes of the files and control_files being copied.

Execution Phase

As the result of a swcopy , products and bundles, if specified, are copied to the target, which is a
distribution software object.

When creating serial distributions, an implementation must support one or both of the POSIX.1
extended cpio or extended tar archive formats. Whether an implementation supports writing
both archive formats or only one, and which of the formats is supported if only one, is
implementation defined.

The relationship between the fileset loading and state transitions for swcopy is shown in the
following list.

Copy each product:

1. Create the distribution catalog information for the product and its contained
subproducts.

2. Copy each fileset in the product:

a. Create the distribution catalog information for the fileset, setting the state to
transient .

b. Load the files for the fileset.
c. Update the state of the fileset to available .

Copy each bundle:

1. Create the distribution catalog information for the bundle.

Systems Management: Distributed Software Administration 87

swcopy Software Administration Utilities

A depot update is defined as ‘‘copying or packaging a higher revision of a fileset than one that
currently exists within a particular product revision in a depot’’.

When the new revision of the fileset has completed the copy, and the state of the fileset is set to
available , also remove the catalog information for the existing fileset (or set the state of the
existing fileset to removed), and remove any files that were contained in the old fileset but are not
contained in the new fileset. See step 2c above.

For disk space analysis during a copy update, ensure that files that will be removed from a depot
during update are accounted for, in addition to the normal analysis for new files and files being
replaced.

• File Loading

In this step, swcopy copies the files from the source onto the target.

If a file load fails for any other reason such as a lost connection to the remote source or tape
eject, then the fileset load fails. The following are the errors that can occur during the file
loading step:

— If an error or warning occurs while loading a file onto a target, an event is generated and,
for errors, the implementation defined error handling procedures invoked.

Whether remote files are loaded is implementation defined. If the file is on a remote file
system generate an event if it was loaded.
[SW_NOTE: SW_FILE_IS_REMOTE]

Generate an event if it was not loaded.
[SW_WARNING: SW_FILE_IS_REMOTE]

— If the error was a source access problem, the user may attempt to correct the problem and
start over with the fileset that had the failure.
[SW_ERROR: SW_SOURCE_ACCESS_ERROR]

Like install, the reinstall_files option, by default set to true , allows for administrator control
of recopying up to date files independent of a recopy or an update. If set to true , files are
copied independent of whether they are the same. If set to false , then they are checked
first.

Like install , the cksum check can take as long as actually transferring and recopying the file.
The reinstall_files_use_cksum option, by default set to true , can be set to false to skip the
checksum check.

Copying a sparse fileset into a depot has the same behavior as copying a normal fileset into a
depot. If the fileset has a different fileset revision but the same product revision as a fileset
that is already in the depot, it replaces that fileset. If the fileset has a different product
revision, then the copy task will result in both product revisions, and both filesets, residing in
the depot.

• Compression

If compress_files=true is specified, then the files must be compressed as follows in copying to
the target distribution:

— INDEX and INFO files must not be compressed

88 CAE Specification

Software Administration Utilities swcopy

— All files that have the compression_state attribute undefined or its value set to
uncompressed should be compressed. If the file cannot be compressed, generate an
event:
[SW_ERROR: SW_COMPRESSION_FAILURE]

— All files that have the value of the compression_state attribute set to not_compressible
must be copied without change.

— A source file which is already compressed, and which has the value of its compression_type
attribute equal to the value of the compression_type extended option, should be copied
without change.

— If a source file is already compressed, and the value of its compression_type attribute is
different to the value of the compression_type extended option, the behavior is undefined.
Unless the implementation can successfully uncompress the file and then compress it
with the correct type, generate an event:
[SW_ERROR: SW_COMPRESSION_FAILURE]

If uncompress_files=true, the files must be uncompressed as follows in copying to the target
distribution:

— All files with a compression_state attribute value of compressed must be uncompressed
as part of the copy. If the file cannot be uncompressed, generate an event:
[SW_ERROR: SW_COMPRESSION_FAILURE]

— All other files should be copied without change.

If neither compress_files=true nor 2uncompress_files=true" , then the files are copied without
change. Behavior when both are set to true is undefined.

• Copying into Existing Products

When a fileset is copied into an existing target product, the attributes of this existing product
may be affected as follows. If an attribute exists in the product from which the fileset came,
the value of this attribute is set in the target product. Any attributes in the target product not
found in the product from which the fileset came are left unaltered. It is possible for
attributes to be set multiple times as filesets from different products are copied into the target
product.

EXIT STATUS
See Chapter 3.

CONSEQUENCES OF ERRORS
See Chapter 3.

Systems Management: Distributed Software Administration 89

swinstall Software Administration Utilities

NAME
swinstall — install software

SYNOPSIS
swinstall [-p][-r][-c catalog][-f file][-s source][-t targetfile]

[-x option=value][-X options_files][software_selections]
[@ targets]

DESCRIPTION

The swinstall utility installs software from a distribution to installed_software objects on the
targets. It may also configure the software. The software is not necessarily available for use
until after it has been configured.

OPTIONS
The swinstall utility supports the following options. Where there is no description, the
description in Chapter 3 applies.

-c catalog
If this option is specified, then use the exported catalog structure at this path as the source
of the response files.

If ask=true or ask=as_needed , the control directories in the exported catalog structure are used
for both the eventual source of the response files, and the control directory where the the
request scripts are executed in order to create any needed response files.

-f file

-p

-r

-s source

-t targetfile

-x option=value

-X options_file

OPERANDS
The swinstall utility supports the software_selections and targets operands described in Chapter 3.

The utility supports software selection operands with [l=location] part of the syntax,
designating the product location directory that replaces the product directory attribute when
installing the software.

EXTERNAL INFLUENCES
See Chapter 3 for descriptions of external influences common to all utilities.

Extended Options

The swinstall utility supports the following extended options. The description in Chapter 3
applies.

allow_downdate=false

allow_incompatible=false

ask=false

autoreboot=false

90 CAE Specification

Software Administration Utilities swinstall

autorecover=false

autorecover_product

autoselect_dependencies=as_needed

autoselect_patches=true

defer_configure=false

defer_deleting_files=false

distribution_source_directory=implementation_defined_value

enforce_dependencies=true

enforce_locatable=true

enforce_scripts=true

enforce_dsa=true

installed_software_catalog=implementation_de fined_value

logfile=implementation_defined_value

loglevel=1

match_target=false

patch_save_files=true

patch_filter=*

patch_match_target=false

reinstall=false

reinstall_files=false

reinstall_files_use_cksum=true

save_modified_files=false

saved_files_directory=implementation_defined_value

select_local=true

software=

targets=

verbose=1

EXTERNAL EFFECTS
See Chapter 3.

EXTENDED DESCRIPTION
See Chapter 3 for general information. There are three key phases in the swinstall utility:

1. Selection phase

2. Analysis phase

3. Execution phase

Systems Management: Distributed Software Administration 91

swinstall Software Administration Utilities

Selection Phase

Multiple versions of a software product can exist from the source, distinguished by their
respective ‘‘version distinguishing attributes’’ (revision , architecture , and vendor_tag). If the
method described in Section 3.4.1 on page 38 results in an ambiguous selection, the following
method is used to identify a single version:

If allow_incompatible=false , the target uname attributes are used to filter the available
products to only those that are compatible with the target systems, then the version
with the highest possible product revision is chosen from this filtered list. If this
filtering and selection of a highest revision does not result in a unique version, then
no version is selected. If allow_incompatible=true , then only the highest revision is
used to try to determine a unique version. In either case, if there is still an
ambiguous selection, no version is selected. See Section 3.4.1.2 on page 42.

If a software selection has dependency specifications on other software, and the option
autoselect_dependencies=true, the dependency software is attempted to be automatically selected
using the same method to determine a single version. This automatically selected software is
then installed along with the rest of the selected software. If autoselect_dependencies=as_needed ,
then dependency software is attempted to be automatically selected and installed only if the
dependency is not already met on the target.

If a fileset has an exrequisite on another software object, and that other software object is part of
the specified software selection, either explicitly or as part of another selection, then the fileset is
excluded. If two filesets have exrequisites on each other, then the behavior is implementation
defined.

If more than one ancestor is defined, then this new fileset is included in the selection list during
update if either or both ancestors are currently installed and the match_target option is set to true.

Unless ancestor is explicitly defined, all filesets have the default ancestor of any revision less
than itself, that is,

product_tag.fileset_tag,r<revision,a=architecture,v=vendor_tag).

For swinstall , each selection added to the selected software list must satisfy the following
validation checks. If any of these checks result in an event with a status of [SW_ERROR], the
selection is not added to the list and the implementation defined handling procedure can be
invoked.

• If the selection is not available from the source, generate an event.
[SW_ERROR: SW_SELECTION_NOT_FOUND]

• If a unique version can not be identified, generate an event.
[SW_ERROR: SW_SELECTION_NOT_FOUND_AMBIG]

• If an attempt is made to select more than one version of a given product targeted for the
same location, generate an event.
[SW_ERROR: SW_EXISTING_MULTIPLE_VERSION]

• If 2allow_incompatible=true", for each target where the software selected is incompatible with
that target (see Section 3.4.1.2 on page 42, generate an event.
[SW_WARNING: SW_NOT_COMPATIBLE]

If allow_incompatible=false , for each target where the software selected is incompatible with
that target (see Section 3.4.1.2 on page 42, generate an event. The implementation defined
error handling procedure is then invoked.
[SW_ERROR: SW_NOT_COMPATIBLE]

92 CAE Specification

Software Administration Utilities swinstall

• Check if a non-default product location has been specified. If enforce_locatable=true , generate
an event.
[SW_ERROR: SW_NOT_LOCATABLE]

If enforce_locatable=false , generate an event.
[SW_WARNING: SW_NOT_LOCATABLE]

• If the software is excluded, generate an event.
[SW_NOTE: SW_EXREQUISITE_EXCLUDE]

If ask=true then execute the software request scripts for the selected software as described in
the swask utility. See swask on page 78, extended description.

Selection of software to update can be done using the match_target option. The match_target
option provides a shortcut for selecting software. By default set to false . When set to true ,
this option causes each fileset in the distribution to be included in the selection list if:

• A fileset with the same product and fileset tag exists in only one location on the system

• The fileset in the depot has an ancestor attribute that matches a single installed fileset

• It is the highest compatible version if more than one version in the depot matches, including
accounting for superseding filesets

If there are multiple filesets that match (that is, multiple revisions are installed), it is not clear
which if any should be updated, and an event is generated: [SW_WARNING:
SELECTION_NOT_FOUND_AMBIG].

These selections are combined with any other selections specified in the other supported means
(command line operands, a software_selections file or the software extended option), and then go
through the standard software selection checks.

Analysis Phase

The target role uses the file size information and checkinstall scripts obtained from the
source to determine whether or not the install utility proceeds on the given target. When
failures occurs in the disk space analysis and checkinstall scripts, it is implementation
defined whether or not to proceed with a partial list of software selections.

If any target generates an event with a status of [SW_ERROR] during any of the analysis
operations, what software is attempted to be installed is determined by the implementation
defined error handling procedures.

The target role checks the following requirements:

• If the target installed_software object does not exist on a host, create the path to the target
with default attributes, and generate an event.
[SW_NOTE: SW_SOC_CREATED]

• Check that selected filesets are not the same version as already installed. If 2reinstall=false" ,
note that they will be skipped by generating an event.
[SW_NOTE: SW_SAME_REVISION_SKIPPED]

If reinstall=true , note that they will be reinstalled by generating an event.
[SW_NOTE: SW_SAME_REVISION_INSTALLED]

• Check that selected filesets are not lower versions of the fileset already installed on the host.
If allow_downdate=false , generate an event.
[SW_ERROR: SW_HIGHER_REVISION_INSTALLED]

Systems Management: Distributed Software Administration 93

swinstall Software Administration Utilities

If allow_downdate=true , generate an event.
[SW_WARNING: SW_HIGHER_REVISION_INSTALLED]

• Execute vendor-supplied checkinstall scripts to perform product-specific checks of the
target. If the checkinstall script returns an error, and enforce_scripts=true, generate an
event and invoke the implementation defined error handling procedure.
[SW_ERROR: SW_CHECK_SCRIPT_ERROR]

If the checkinstall script returns an error and enforce_scripts=false , generate an event.
[SW_WARNING: SW_CHECK_SCRIPT_ERROR]

If the checkinstall script returns a warning, generate an event.
[SW_WARNING: SW_CHECK_SCRIPT_WARNING]

If the script has a return code of 3, generate an event and unselect the fileset (or all filesets in
the product for a product level script).
[SW_NOTE: SW_CHECK_SCRIPT_EXCLUDE]

• Verify that the needed dependencies of the filesets are met. If enforce_dependenciesr= true,
generate an event.
[SW_ERROR: SW_DEPENDENCY_NOT_MET]

If enforce_dependencies=false , generate an event.
[SW_WARNING: SW_DEPENDENCY_NOT_MET]

• Check that there is enough free disk space on the target file system to install the selected
products. If there is not enough disk space and enforce_dsa=true, generate an event.
[SW_ERROR: SW_DSA_OVER_LIMIT]

If there is not enough disk space and enforce_dsa=false , generate an event.
[SW_WARNING: SW_DSA_OVER_LIMIT]

• An implementation may generate the following events if disk space analysis encountered
any problems that prevented the analysis. If enforce_dsa=true, generate an event.
[SW_ERROR: SW_DSA_FAILED_TO_RUN]

If enforce_dsa=false , generate an event.
[SW_WARNING: SW_DSA_FAILED_TO_RUN]

How disk space analysis is implemented is undefined. However an implementation must
account at least for the sizes of the files and control_files being installed, the additional sizes
from the vendor supplied space file described in Section 5.2 on page 130, and the additional
space required from saving files if autorecover=true and if required by the implementation
defined recovery process.

Most revision checks during operation of install are done fileset by fileset. When checking for
newer revisions of the fileset, the product revision is checked before the fileset revision:

• If one fileset’s product has a revision higher than the other fileset’s product revision, it is a
newer revision.

• If the product’s revisions are undefined or the same, then the fileset revisions are checked.

Execution Phase

The execution phase is the third part of the installation process, and is entered once either the
selections have passed the analysis phase with no events with a status of [SW_ERROR] or if
permitted by the implementation defined error handling procedures.

94 CAE Specification

Software Administration Utilities swinstall

The relationship between the preinstall and postinstall scripts, fileset loading, and
state transitions for swinstall is shown in the following list. Products are ordered by prerequisite
dependencies if any. Fileset operations are also ordered by any prerequisites.

1. Install each product:

a. Create the installed_software catalog information for the product and its contained
subproducts.

b. Run the preinstall script for the product.

c. Install each fileset in the product:

i. Create the installed_software catalog information for the fileset, setting the
state to transient . Also update the state of any existing fileset that is being
updated or downdated to transient .

ii. Run the preinstall script for the fileset.

iii. Load the files for the fileset.

iv. Run the postinstall script for the fileset.

v. Update the results of the scripts. Update the state of the fileset to installed
. Also set the state of any existing fileset that is being updated or downdated to
removed or remove the catalog information for that fileset.

d. Run the postinstall script for the product.

e. Once the catalog information for the last fileset in a particular product version has
been removed due to update, like swremove, the catalog information for that product
version should also be removed. See swremove on page 117.

2. Install each bundle:

a. Create the installed_software catalog information for the bundle.

3. Configure each product (see ‘‘executing configure scripts’’ in swconfig on page 81.

Configuration is done at this point by the swinstall utility only if defer_configure=false , the
target directory is / , and no filesets with the is_reboot attribute equal to true have been
installed.

a. Run the configure script for the product.

b. Configure each fileset in the product:

i. Run the configure script for the fileset.

ii. Update the result of the script. Update the state of the fileset to configured
in the catalog for the installed_software object.

Configuration will not be executed by swinstall if the software creates a multiple version, the
target directory is not / , or if the software is incompatible and allow_incompatible=false (see
Section 3.4.1.2 on page 42). In these cases, swconfig may be used.

If events with a status of [SW_ERROR] are detected during the execution phase, the swinstall
utility generates the appropriate event, any log entries, and invokes the implementation defined
error handling procedures. For each fileset that failed, the installed_software catalog is updated
to the state corrupt .

Systems Management: Distributed Software Administration 95

swinstall Software Administration Utilities

The swinstall utility will only remove catalog information for filesets being updated if they have
the same product and fileset tag in the same location by default. By specifying a supersedes
attribute, catalog information for filesets being updated that have changed names (have a
different tag attribute) or are otherwise superseded by new functionality will be removed as
well.

• File Location

If an alternate root directory was specified (a value for installed_software=path other than / ,
then the alternate root directory is used as a prefix to the file path attribute to determine the
file location in the file system. See Section 3.4.2 on page 42.

The file path will be modified if the product is locatable and a new product location is specified
(using the l=location software specification). The product directory part of the file path is
replaced by the value product location attribute before a file is placed in the target file
system.12

If a bundle location is specified (using the l=location software specification when
specifying a bundle), then the bundle=location will be prepended to the location specification
for each software_spec in the contents of the bundle, prior to replacement of the product
directory part of the file path .

• Preinstall Scripts

In this step of the execution phase, swinstall executes product and fileset preinstall
scripts.

— If a preinstall script returns an error and enforce_scripts=true, generate an event and
invoke the implementation defined error handling procedures.
[SW_ERROR: SW_PRE_SCRIPT_ERROR]

— If the preinstall script returns an error and enforce_scripts=false , generate an event.
[SW_WARNING: SW_PRE_SCRIPT_ERROR]

— If a preinstall script returns a warning, generate an event.
[SW_WARNING: SW_PRE_SCRIPT_WARNING]

Control scripts must adhere to the specifications in section Section 3.6.1 on page 56.

• File Loading

In this step, swinstall loads the files from the source onto the target file system according to
information obtained from the source distribution. All file types are created using the
attributes defined for those files in the source distribution. Regular files (that is, those with a
file type of f) are loaded using the content from the source distribution.

If the source file is a regular file or a directory and its path already exists on the target file
system as a symbolic link, then the symbolic link is followed and the file is stored in the path
defined by the symbolic link.

12. If a product is locatable (has the product=is_locatable attribute set to true), all files that have the value of product directory as the
initial part of their path will be installed to a new location if one has been specified. The product directory attribute is the base
directory for the files that are locatable within a specific product.

96 CAE Specification

Software Administration Utilities swinstall

If the source file is a symbolic link, then the existing path is replaced by symbolic link.

— If there are too many levels of symbolic links,13 then the file is skipped and an event is
generated.
[SW_WARNING: SW_FILE_WARNING]

The file owner and group names are set to the values specified for the file owner and file gid
attributes for the source file. If the target host does not contain those file owner and group
names, the file uid and gid are set to the numeric values specified for these attributes for the
source file. If no values are specified for these attributes, the uid and gid are set to the
effective uid and gid of the current process. See Section 5.2.14.3 on page 144.

— If the user or group of the file is not defined on the target host, or either of these attributes
are not defined for the file, generate an event:
[SW_WARNING: SW_FILE_WARNING]

— If the mode attribute of the file has the set user id on execution (S_ISUID) bit set and
either the user attribute of the file is not defined on the target host or the user attribute is
not specified for the file, the corresponding mode bit in the file system will not be set
when installing the file and an event is generated. See POSIX.1.
[SW_ERROR: SW_FILE_ERROR]

— If the mode attribute of the file has the set group id on execution (S_ISGID) bit set and
either the group attribute of the file is not defined on the target host or the group attribute
is not specified for the file, the corresponding mode bit in the file system will not be set
when installing the file and an event is generated. See POSIX.1.
[SW_ERROR: SW_FILE_ERROR]

The value of the file mode attribute on the file is set to the value of the file mode attribute for
the source file. An exception is that directories that already exist are not modified. If no
values are specified for this attribute, the mode is set to the default file creation mode for the
current process.

If there is an existing installed file that matches the values supplied in the distribution for the
path , cksum, date , and size attributes, the file is not reloaded unless the user has specified that
the fileset is being reinstalled.

The reinstall option is not sufficient for controlling whether files are reinstalled during
update, reinstall or downdate, since it is only controls whether any of the same fileset at a
target location is attempted or not, based on the catalog information stored on that target.
The reinstall_files option, by default set to false , allows for the administrator to check for
up-to-date files independent from the reinstall option. If set to true , files are installed
independently of whether they are the same. If set to false , then the actual size, mtime
and cksum atttributes of the installed files, as opposed to the catalog information about these
files, are checked against the catalog information in the source before installing the file.

As it takes time to compute the cksum when the reinstall_files option is set to false , there is
an option to skip that check that may be sufficient in secure or controlled environments. The
reinstall_files_use_cksum option, by default set to true , can be set to false to skip the
cksum check. In this case, only the size and mtime are checked when determining if the file is

13. It is not the intention of this Software Administration specification to define symbolic links in a manner inconsistent with
POSIX.1. However, no approved POSIX standard currently contains symbolic links. This definition is a placeholder until such
time as an approved standard provides the definition.

Systems Management: Distributed Software Administration 97

swinstall Software Administration Utilities

up to date.

If a file load fails for any other reason such as a lost connection to the remote source or tape
eject, then the fileset install fails.

In order to aid cleanup of obsolete shared files, a new file type x is defined that directs the
install execution phase to remove a file instead of installing it. Files of type x will have the
paths resolved with respect to product location attributes just as normal files to determine the
file to remove. If defer_deleting_files=true, then the files are not removed. Disk space analysis
will account for files of this type by subtracting existing file sizes.

The following are problems that may occur during the file load step:

— If a problem occurs while loading a file onto a target, an event is generated and, for events
with a status of [SW_ERROR], the implementation defined error handling procedures
invoked. If there are too many levels of symbolic links, generate an event.
[SW_ERROR: SW_FILE_ERROR]

Whether remote files are installed is implementation defined. If the file is on a remote file
system and was loaded, generate an event.
[SW_NOTE: SW_FILE_IS_REMOTE]

If it was not loaded, also generate an event.
[SW_WARNING: SW_FILE_IS_REMOTE]

— If a file can not be updated because it is busy, or it is a directory, then move that file to
implementation defined location and generate an event. How these files are eventually
removed is also implementation defined.
[SW_WARNING: SW_FILE_NOT_REMOVABLE]

— If the source becomes inaccessible for any reason during the process of loading files,
generate an event.
[SW_ERROR: SW_SOURCE_ACCESS_ERROR]

If autorecover=true, then all files that are being updated are saved. It is implementation
defined where these files are saved. The saved files for filesets in each product are removed
in an implementation defined manner at some point after that product completes the
execution phase.

Before overwriting any existing file, if the save_modified_files option is set to true , any file
that has a size or cksum different to that in the installed software catalog will be saved to an
implementation defined location. If the save_modified_files option is set to false , then these
files may be overwritten.

After a product has been installed, files in the product of type delete file are removed if the
defer_deleting_files option is set to false . If the defer_deleting_files option is set to true ,
then files of this type are not deleted.

• Compression

When installing files, all compressed files are uncompressed as follows as part of file loading:

— All files that have the compression_state attribute value of compressed are
uncompressed, according to the value of compression_type attribute. The way in which
this is done is implementation defined. If the file cannot be uncompressed, generate an
event.
[SW_ERROR: SW_COMPRESSION_FAILURE]

• Postinstall Scripts

98 CAE Specification

Software Administration Utilities swinstall

In this step, swinstall executes the product and fileset postinstall scripts.

— If a postinstall script returns an error and enforce_scripts=true, generate an event and
invoke the implementation defined error handling procedures.
[SW_ERROR: SW_POST_SCRIPT_ERROR]

— If the postinstall script returns an error and enforce_scripts=false , generate an event.
[SW_WARNING: SW_POST_SCRIPT_ERROR]

— If a postinstall script returns a warning, generate an event.
[SW_WARNING: SW_POST_SCRIPT_WARNING]

• Kernel Scripts Special customization and install steps are executed when processing kernel
filesets. Kernel filesets are those for which the value of the is_kernel attribute is true ,
causing swinstall to modify the fileset load order and to invoke the postkernel script. Apart
from this, swinstall has no special functionality for installing kernels.

The postkernel scripts are those specified by the value of the product=postkernel attribute, or by
the implementation defined default. The functions invoked by this postkernel script are
implementation defined. Examples of use include rebuilding the kernel or moving a new
default kernel into place.

The postkernel script is not interactive, and issues all informative and error messages to
stdout and stderr, which redirects it to the log file. In addition, the postkernel script provides
a standard return value indicating success (0, that is, zero), error (1) or warning (2).

— If the postkernel script has an error, an event is generated and the implementation defined
error handling procedures are invoked.
[SW_ERROR: SW_POSTKERNEL_ERROR]

— If the postkernel script has an warning, an event is generated.
[SW_WARNING: SW_POSTKERNEL_WARNING]

The kernel filesets are processed before the rest of the filesets. All products are first
processed for their kernel filesets, and then all products are processed for their non-kernel
filesets. The ordering of products and filesets also adheres to prerequisites, just as normal
filesets:

1. Install the kernel filesets for each product:

a. Create the installed_software catalog information for the product.

b. Run the preinstall script for the product.

c. Install each kernel fileset in the product:

i. Create the installed_software catalog information for the fileset, setting the
state to transient .

ii. Run the preinstall script for the kernel fileset.

iii. Load the files for the kernel fileset.

iv. Run the postinstall script for the kernel fileset.

v. Update the results of the scripts. Update the state of the fileset to
installed .

d. Run the postinstall script for the product.

2. Perform steps after installing kernel filesets by calling the zero or more scripts defined
by the product.postkernel attributes of each product with a kernel fileset, and the

Systems Management: Distributed Software Administration 99

swinstall Software Administration Utilities

implementation defined default postkernel script if a product does not define a
product.postkernel attribute.

3. Install the rest of the filesets for each product as described in the execution phase
description for swinstall , omitting the kernel filesets already installed.

4. After all filesets have been installed, the implementation defined reboot procedure is
executed on the target host if a fileset with the is_reboot attribute set to true has been
installed and the SW_ROOT_DIRECTORY is / , and autoreboot=true . If rebooting, the
software is not configured. The products will be configured after the reboot in an
implementation defined manner using the swconfig utility.

5. If not rebooting, then configure each product as described in the execution phase for
swinstall (including both kernel and non-kernel filesets).

• Rebooting the System

If this step is required, the target role executes the implementation defined reboot procedure
after all products have been installed. It is performed only when software is installed that
requires a reboot as part of its installation (indicated by the is_reboot fileset attribute).

If the system fails to execute the reboot step, generate an event.
[SW_ERROR: SW_CANNOT_INITIATE_REBOOT]

• Recovery

Within the execution phase of a particular product (from the product preinstall step through
the product postinstall step), if any preinstall script, file loading, or postinstall
script fails for a fileset, that fileset is deemed to have failed during install. The failure of a
product postinstall script is considered the same as if all fileset postinstall scripts
had failed.

If such a failure occurs and autorecover=false , no recovery is provided for any filesets deemed
to have failed during install, and the fileset state attribute of those filesets is set to corrupt .
No further attempt is made to install such filesets during the current invocation of swinstall .
Install can proceed on other filesets which did not fail during install.

If an install failure occurs and autorecover=true, at least the following minimal error recovery
must be provided at the fileset level. Additional recovery behavior, such as recovering the
whole product or all products, is implementation defined. Additionally, if
enforce_dependencies=true, implementations should take into account other filesets in the
product that have a dependency on that failed fileset.

The recovery is initiated at the point of failure, recovering the affected filesets, then
continuing from the point of failure to the remaining filesets.

Recovery involves running unpostinstall scripts, restoring files, and running
unpreinstall scripts. The relationship between these steps for each product is shown in
the following list.14

1. Create the installed_software catalog information for the product.

2. Run the preinstall script for the product.

14. In general, the order when autorecover=true is the same as normally done for successful steps, and the reverse when recovery
steps are being executed.

100 CAE Specification

Software Administration Utilities swinstall

If the preinstall script fails, or if all filesets have failed, run the product
unpreinstall script, remove the catalog information for the product and go on to the
next product.

3. Install each fileset in the product

a. Create the installed_software catalog information for the fileset, setting the state
of it and the fileset being updated to transient .

b. Run the preinstall script for the fileset.

If the preinstall script fails, run the unpreinstall script for the fileset,
remove the catalog information for the fileset, restore the state of the fileset being
updated, and go on to the next fileset.

c. Load the files for the fileset.

Before loading any files, save any existing files that will be overwritten by a file
being loaded from the fileset, and then load the files for the fileset. If the fileset
loading fails, restore the saved files for the fileset, delete all loaded files for which
there is no saved file, and perform the previously described recovery step for this
fileset.

d. Run the postinstall script for the fileset.

If the postinstall script fails, run the unpostinstall script for the fileset,
and perform steps (3b) and (3c) for this fileset.

e. Update the results of the scripts. Update the state of the fileset to installed .

4. Run the product postinstall script.

If the product postinstall script fails, run the product unpostinstall script,
and perform each of the previously described recovery steps for each fileset.

5. This is the first point in the process where the saved files may be removed. Remove the
catalog information for filesets that were updated, or set the state of those filesets to
removed .

Once the catalog information for the last fileset in a particular product version has been
removed due to update, like swremove, the catalog information for that product version
should also be removed. See swremove on page 117.

During update, it may be useful to have either the whole product or no part of it
installed if there is a failure in any fileset or product control script of file loading. Set
the autorecover_product option to true to extend the autorecover behavior. The
behavior is identical except that any failure unwinds the entire product back to where it
was before the install. In the case of a product postinstall script failure, the behavior is
the same. From an implementation standpoint, all files in the product that are being
updated are saved until the product completes successfully.

• Sparse Updates

Updates can be packaged as sparse updates. When selecting a sparse fileset, swinstall has
the following behavior:

— Unless explicitly specified, swinstall will choose the highest compatible revision of a
product and fileset whether it is sparse or not.

— Installing a sparse fileset follows the same rules for update, downdate and reinstall as
other filesets.

Systems Management: Distributed Software Administration 101

swinstall Software Administration Utilities

— If the ancestor of the sparse fileset is not already installed, and it is available from the
depot, it is included in the list of software to install. If the ancestor is not already
installed, and is not in the depot, then the sparse fileset can not be installed and an event
is generated: [SW_ERROR: SW_DEPENDENCY_NOT_MET].

— When installing a sparse fileset, the existing fileset’s catalog information is included as the
catalog information of the sparse fileset, and then augmented with the sparse filesets file
contents (adding and possibly deleting files). Then, as with normal update, the previous
fileset’s catalog information is deleted.

• Patches

Installation of patch products will, in general, follow the same rules as software installation.
The key difference will be that a filtering mechanism is provided that allows only patches
meeting specified criteria selected. The additional filtering mechanism will be provided
through support of category in software specifications, and autoselect_patches ,
patch_match_target and patch_filter options.

When a patch is installed, the fileset that has been patched has the applied_patches attribute
updated to include that patch, and the contained files information updated to include the
patched file attributes.

When a patch is installed, by default it has the patch_state of applied . When that patch is
committed, or it has been installed without saving roll-back files, it has the state of
committed . When that patch is superseded, the patch_state is set to superseded , and the
superseded_by attribute is set to the software_spec of the superseding fileset.

If a fileset is selected for installation and patch filesets for that base fileset exist in the same
source depot, all applicable patches will by default be selected if the autoselect_patches option
is set to true . The following additional rules will apply:

— Patch software selections will be filtered as defined by the patch_filter option.

— If more than one patch to a base fileset exists, patches to that fileset will be examined to
determine if any patches have been superseded by later versions. The superseding patch
will be installed and superseded patches will not be selected.

Patches can also be explicitly specified.

Patches that are installed in a separate session after the base product has been installed, can
be selected explicitly or by matching the installed software using the patch_match_target
option. If patches are selected via matching, the superseding mechanism described above
will be used to determine the most recent patches to a fileset.

Consistent with the current level of expression support in the POSIX standard software
specifications, a version qualifier can be repeated (for "AND" criteria), and the pipe symbol
("|") can be used within qualifiers (for "OR" criteria).

Patches can be explicitly installed without autoselection or matching the target by specifying
one or more software_spec operands.

In order to accommodate patching of libraries (for example libc.a), a new file type of a is
used. When loading a file of type a (archive file), swinstall temporarily installs the .o file to the
target path specified, integrates it into the archive specified by the archive_path attribute of
the file, and then removes the .o file. If rollback is enabled (see below), the original .o file is
automatically extracted first and saved so that it can be replaced. Disk Space Analysis is
performed as needed to account for these operations.

102 CAE Specification

Software Administration Utilities swinstall

If patch filesets and normal filesets are being installed in the same session, then each patch
fileset is considered to have an implied prerequisite on the fileset that it is patching with
respect to ordering. In other words, the product containing the patch fileset will be installed
(or copied into serial distributions) after the one or more products containing that patches
ancestors .

If an ancestor fileset has the is_kernel attribute set to true then the fileset patching it must
have the is_kernel attribute set to true in order for it to be installed in the kernel phase of the
execution. Otherwise, the patch will be installed along with other non-kernel filesets.

Allowing later rollback of a patch requires saving files via the patch_save_files option. This
option is set to true by default, which results in files replaced by the patch being saved for
later rollback. The directory where the saved files are stored is specified by the
saved_files_directory option. The structure of the rollback directory is undefined.

Installation of a new version of a base fileset will result in removal of all filesets which patch
the base fileset, together with any files saved for potential roll-back.

EXIT STATUS
See Chapter 3.

CONSEQUENCES OF ERRORS
See Chapter 3.

Systems Management: Distributed Software Administration 103

swlist Software Administration Utilities

NAME
swlist — list software catalog

SYNOPSIS
swlist [-d][-r][-v][-a attribute][-c catalog][-f file][-l level]

[-t targetfile][-x option=value][-X options_file]
[software_selections][@ targets]

DESCRIPTION
The swlist utility displays information about software that has been installed on a system or is in
a distribution.

When combined with swmodify there is a complete read/write interface to the installed_software
and distribution catalog information.

OPTIONS
The swlist utility supports the following options. Where there is no description, the description
in Chapter 3 applies.

-a attribute
Specifies which attributes to list.

Multiple attributes may be listed by specifying multiple -a attribute options. Only
attributes that apply to each object listed are included for that object. When used with the
v option, the attributes are in the software definition file format. When the v option is not
specified then the listing format is undefined (see one_liner extended option).

In addition to all attribute names defined in Software Administration specification, three
additional items are supported by the -a attribute option:

create_date
If this value is specified, swlist returns a sequence of characters representing the date
associated with the create_time attribute.

The format of this sequence of characters in the POSIX Locale is equivalent to the
default date format described in POSIX.2.

date "+%a %b %e %H:%M:%S %Z %Y"

The format for other Locales is undefined.

mod_date
If this value is specified, swlist returns a sequence of characters representing the date
associated with the mod_time attribute.

The format of this sequence of characters in the POSIX Locale is equivalent to the
default date format described in POSIX.2.

date "+%a %b %e %H:%M:%S %Z %Y"

The format for other Locales is undefined.

software_spec
If this value is specified, swlist returns the conformant software_spec for the object,
as defined in Section 3.4.1.2 on page 42, instead of listing the identified objects.

The software_spec includes the tag of the object, the tag of the associated product
(if this object is a fileset or subproduct), and the version distinguishing attributes of this
object or its associated product (if this object is a fileset or subproduct).

104 CAE Specification

Software Administration Utilities swlist

These additional items can also be used with the one_liner extended option.

-c catalog
Provides a means to list the full catalog structure.

If the -c option is specified, output from swlist is written to an exported catalog structure
instead of stdout.

The -c option specifies a directory below which the catalog information for the specified
objects and attributes are stored. The exported catalog structure is used both for
distributions and installed_software catalog information. See Section 5.1.1 on page 126.

-d

-f file

-l level
Specifies level at which to list the objects below the specified software.

Option level may have values from the enumerated list:
bundle
product
subproduct
fileset
control_file
file
category

If the -l level option is not included, then only the object at the level directly below the
specified software or software_collection is listed. See Table 4-1.

Software Selection Level Listed

none specified products
bundle products
product filesets
subproduct filesets
fileset files

Table 4-1 Default Levels

If no level is specified for bundle and subproduct specifications, all the available or
currently installed product and fileset objects, resolved recursively, are listed.

Multiple -l level options may be used to explicitly control what objects are included.

The categories of available patches can be listed for patches that have included category
objects in their definition. These categories can be listed using the -l category specification.

-r

-t targetfile

-v List all the attribute value pairs of the objects specified.

The -v option specifies that the format of the output is in the INDEX file format, as defined
in Section 5.2 on page 130. Which attributes and objects are included is controlled by other
options and operands. If the -a option is defined, then only those attributes are listed,
otherwise all attributes are listed. If there is no -v option, then listing format is undefined
(see one_liner extended option).

Systems Management: Distributed Software Administration 105

swlist Software Administration Utilities

-x option=value

-X options_file

OPERANDS
The swlist utility supports the software_selections and targets operands described in Chapter 3. If
no software_selections are provided, all software in the catalog (either distribution or installed
software) is selected.

EXTERNAL INFLUENCES
See Chapter 3 for descriptions of external influences common to all utilities.

Extended Options

The swlist utility supports the following extended options. The description in Chapter 3 applies.

distribution_target_directory=implementation_defined_value

installed_software_catalog=implementation_de fined_value

one_liner=implementation_defined_value

select_local=true

software=

targets=

EXTERNAL EFFECTS
See Chapter 3 for general information.

EXTENDED DESCRIPTION
See Chapter 3 for general information. There are two phases in the swlist utility:

1. Selection phase

2. Execution phase

Selection Phase

If there are no software selections specified, then all software from the catalog is processed.
Otherwise, each selection added to the selected software list must satisfy the following
validation check.

• If the selection is not available from the catalog file, generate an event.
[SW_ERROR: SW_SELECTION_NOT_FOUND]

Unlike all other commands, swlist includes all software that matches a specification, even if the
specification is ambiguous.

Implementations that support the removed state need to address swlist just as they do for source
depots with swinstall. These implementations should at least document the behavior for swlist
and other operations on removed filesets. In particular, for swlist , if attempting to list a fileset
from the source that has a removed state, the behavior should be the same as if it was not there,
generating an event.
[SW_ERROR: SW_SELECTION_NOT_FOUND]

When listing a sparse fileset in a depot or in installed software, there are no differences when
filesets is sparse or normal.

106 CAE Specification

Software Administration Utilities swlist

Execution Phase

The attributes for the selections determined from the previous phase are listed in the formats
defined by the options.

EXIT STATUS
See Chapter 3.

CONSEQUENCES OF ERRORS
See Chapter 3.

Systems Management: Distributed Software Administration 107

swmodify Software Administration Utilities

NAME
swmodify — modify software catalog

SYNOPSIS
swmodify [-d][-r][-p][-u][-a attribute=value][-c catalog][-f file]

[-t targetfile [-x option=value][-X options_file]
[software_selections][@ targets]

DESCRIPTION
The swmodify utility provides an object and attribute update, create, and delete interface to the
distribution and installed_software catalog information independent of the other utilities. When
combined with swlist , there is a complete read/write interface to the installed_software and
distribution catalog information.

OPTIONS
The swmodify utility supports the following options. Where there is no description, the
description in Chapter 3 applies.

-a attribute=value
As an alternative to using a software definition file format to describe the file attributes, this
option may be used to add or modify a single attribute (e.g. is_locatable). If combined with
the -u option, this may be used to delete an attribute.

Only one of the -c catalog and -a attribute options may be specified.

-c catalog
This option specifies the pathname of the catalog information. If it is a file, then it will be a
file using the software definition file syntax, in Section 5.2 on page 130 that defines the
objects and attributes desired to be created or modified.

If it is a directory, then it will have the exported catalog structure. For example, this could
be a directory containing the output of the swlist -c command.

Only one of the -c catalog and -a attribute options may be specified.

-d

-f file

-p

-r

-t targetfile

-u
Deletes the objects or attributes specified.

-x option=value

-X option_file

OPERANDS
The swmodify utility supports the software_selections and targets operands described in Chapter 3.

This utility need not support a target distribution in the serial format.

108 CAE Specification

Software Administration Utilities swmodify

EXTERNAL INFLUENCES
See Chapter 3 for descriptions of external influences common to all utilities.

Extended Options

The swmodify utility supports the following extended options. The description in Chapter 3
applies.

distribution_target_directory=implementation_defined_value

installed_software_catalog=implementation_de fined_value

files=

logfile=implementation_defined_value

loglevel=1

patch_commit= false

select_local=true

software=

targets=

verbose=1

Standard Input

Input Files
The source input files may be in one of the following:

• Software definition file, described in Section 5.2 on page 130.

• Exported catalog structure, described in Section 5.2 on page 130.

Note that this structure may be used to describe the installed_software catalog information.
There is a separate product.instance_id for each version of the product.15

EXTERNAL EFFECTS
See Chapter 3.

EXTENDED DESCRIPTION
See Chapter 3 for general information. The swmodify utility consists of three phases:

1. Selection Phase

2. Analysis Phase

3. Execution Phase

Selection Phase

• Specifying the Source

The source selection differs from the general information in Chapter 3 in that the source is a
catalog file, or set of catalog files in the software packaging layout format instead of a
distribution, so there is no access control events for accessing the catalog file.

15. An installed version is distinguished by the same attributes as in a distribution, plus the location attribute.

Systems Management: Distributed Software Administration 109

swmodify Software Administration Utilities

If the file parsing discovers syntax errors, or missing but required attributes, then generate an
event.
[SW_ERROR: SW_SOURCE_ACCESS_ERROR]

• Software Selections

If there are no software selections specified, then all software from the catalog is processed.
Otherwise, each selection added to the selected software list must satisfy the following
validation checks. If any of these checks result in an error, the selection is not added to the
list.

— If the selection is not available from the catalog file, generate an event.
[SW_ERROR: SW_SELECTION_NOT_FOUND]

— If a unique version can not be identified, generate an event.
[SW_ERROR: SW_SELECTION_NOT_FOUND_AMBIG]

Analysis Phase

See Chapter 3.

Execution Phase

The execution phase modifies the target catalog. Certain errors can occur when modifying
the catalog:

— If a file can not be found in order to look up its attributes for modifying the catalog, then
generate an event.
[SW_ERROR: SW_FILE_NOT_FOUND]

— More complex rules apply when modifying attributes that inherit from the product to the
fileset level. The filesets and is_locatable attributes are updated only by swpackage and
swmodify . If a fileset definition is removed with swmodify, the filesets attribute is updated.

— If swmodify is used to change a fileset is_locatable attribute, then the corresponding
product attribute is recalculated.

• Patches

To recover disc space, users may wish to remove versions of files saved by installation of
patches after they are comfortable with the operation of a patch. To commit a patch (remove
the rollback files), swmodify is invoked on the patch by setting the option patch_commit=true .

EXIT STATUS
See Chapter 3.

CONSEQUENCES OF ERRORS
See Chapter 3.

110 CAE Specification

Software Administration Utilities swpackage

NAME
swpackage — package distribution

SYNOPSIS
swpackage [-p][-f file][-s psf][-x option=value][-X options_file]

[software_selections][@ targets]

DESCRIPTION
The swpackage utility packages files from the local host into software objects that can be
managed by the utilities in this Software Administration specification using the definitions from
a PSF. The swpackage utility packages software into distributions that can be installed, copied or
otherwise distributed or managed.

OPTIONS
The swpackage utility supports the following options. Where there is no description, the
description in Chapter 3 applies.

-f file

-p

-s psf
This option specifies the pathname of the PSF which describes the details of the packages
that swpackage operates on.

-x option=value

-X options_file

OPERANDS
The swpackage utility supports the software_selections and targets operands described in Chapter 3
with one exception. The utility may support only a single, local distribution target.

If no software_selections are provided, all software described by the PSF is selected.

Whether data on an existing target distribution in serial format is overwritten or merged is
implementation defined.

EXTERNAL INFLUENCES
See Chapter 3 for descriptions of external influences common to all utilities.

Extended Options

The swpackage utility supports the following extended options. The description in Chapter 3
applies.

distribution_target_directory=implementation_defined_value

distribution_target_serial=implementation_defined_value

enforce_dsa=true

follow_symlinks=false

logfile=implementation_defined_value

loglevel=1

media_capacity=0

media_type=directory

Systems Management: Distributed Software Administration 111

swpackage Software Administration Utilities

psf_source_file=psf

reinstall_files=false

reinstall_files_use_cksum=true

software=

verbose=1

Product Specification File

See Chapter 5.

EXTERNAL EFFECTS
See Chapter 3.

EXTENDED DESCRIPTION
The swpackage utility consists of three phases:

1. Selection Phase

2. Analysis Phase

3. Execution Phase

Selection Phase

• Specifying Targets

The target selection differs from the general information in Chapter 3, in that there may be
only one target. If the target is a serial distribution, swpackage sets default tape types and
sizes as described in the ‘‘extended options’’ description in this man-page definition.

• Specifying the Source

The source selection differs from the general information in section Chapter 3, in that the
source is a PSF, instead of a distribution. Hence there are no access control events for
accessing the PSF.

The selection phase reads (and parses) the PSF to obtain the information from the source PSF.

— The product, subproduct, and fileset structure

— The files contained in each fileset

— The attributes associated with these objects.
If the file parsing discovers syntax errors, or missing but required attributes, generate an
event.
[SW_ERROR: SW_SOURCE_ACCESS_ERROR]

• Software Selections

If there are no software selections specified, then all software from the PSF is processed.
Otherwise, each selection added to the selected software list must satisfy the following
validation checks. If any of these checks result in an error, the selection is not added to the
list.

— If the selection is not available from the PSF, generate an event.
[SW_ERROR: SW_SELECTION_NOT_FOUND]

— if a unique version can not be identified, generate an event.
[SW_ERROR: SW_SELECTION_NOT_FOUND_AMBIG]

112 CAE Specification

Software Administration Utilities swpackage

Analysis Phase

The package analysis phase follows the following steps:

• Checks the dependency specifications for irregularities (such as circular prerequisites or
missing dependencies).
(SW_WARNING: SW_DEPENDENCY_NOT_MET)

• Before a new storage directory is created, swpackage checks to see if this product version has
the same identifying attributes as an existing product version, namely the same tag, revision,
architecture, and vendor_tag. If all the identifying attributes match, then the user is
repackaging (modifying) an existing version. Note if a fileset within that product is being
repackaged by generating an event.
[SW_NOTE: SW_SAME_REVISION_INSTALLED]

• Checks existence and attributes of the control_files and files that the PSF defines. If any are
missing, generate an event.
[SW_ERROR: SW_FILE_NOT_FOUND]

• Check that there is enough free disk space on the target file system to package the selected
products. If enforce_dsa=true, generate an event.
[SW_ERROR: SW_DSA_OVER_LIMIT]

If enforce_dsa=false , generate an event.
[SW_WARNING: SW_DSA_OVER_LIMIT]

Execution Phase

The execution phase packages the source files and information into a product, and create/merge
the product into the target distribution.

When creating a serial distribution, an implementation must support one or both of POSIX.1
extended cpio or extended tar archive formats. Whether an implementation supports writing
both archive formats or only one, and which format is supported if only one, is implementation
defined.

When packaging a product, the storage directory within the target distribution is
created/updated directly by swpackage . For each unique version of the product, a directory is
created using the defined product.tag attribute and a unique sequence number for all the product
versions which use the same tag as specified in Chapter 5.

The swpackage command generates certain attributes as specified in Section 5.2 on page 130.

More complex rules apply when packaging attributes that inherit from the product to the fileset
level. The filesets and is_locatable attributes are updated only by swpackage and swmodify . When
packaging, the value of the filesets attribute is set to include all the filesets in the PSF, plus any
others that exist in the distribution already but are not in the PSF. In the latter case, the user is
warned that the PSF is not complete.

If undefined, the product.is_locatable attribute is set by swpackage if any of the filesets in the filesets
list are locatable. If none of the filesets are locatable, or if that cannot be determined, then the
value of the product.is_locatable attribute is set to false . If defined, the product.is_locatable
attribute is used to define the value of the is_locatable attribute for any filesets that do not have
is_locatable defined. If the value of the is_locatable attribute is defined at both the product and
fileset level, then the fileset definition overrides the product definition.

Systems Management: Distributed Software Administration 113

swpackage Software Administration Utilities

Certain errors can occur when packaging the files:

• If a file can not be added to the distribution for any reason, generate an event.
[SW_ERROR: SW_FILE_ERROR]

Just as is done for swcopy , swpackage will support the reinstall_files and reinstall_files_use_cksum
options. The semantics are the same.

When packaging a sparse fileset, only the files contained within the sparse fileset are included in
the package definition. If an ancestor is not defined, then this sparse fileset can be applied to any
fileset with the same tag, product tag, architecture, vendor_tag, and with a lower revision.

EXIT STATUS
The swpackage utility returns:

0 The products specified in the PSF were successfully packaged onto the media.

1 An error occurred in parsing the PSF. The media was not modified.

2 An error during the packaging operation. The media has been modified. Review the log file
for details.

CONSEQUENCES OF ERRORS
See Chapter 3.

114 CAE Specification

Software Administration Utilities swremove

NAME
swremove — remove software

SYNOPSIS
swremove [-d][-r][-p][-f file][-t targetfile][-x option=value]

[-X options_file][software_selections][@ targets]

DESCRIPTION
The swremove utility performs the opposite function of the install software utility or the copy
software utility. It removes installed software or software stored in a distribution.

The swremove utility removes software installed at the local host or at the targets specified on the
command line. It also removes software from local or remote distributions.

OPTIONS
The swremove utility supports the following options. Where there is no description, the
description in Chapter 3 applies.

-d

-f file

-p

-r

-t targetfile

-x option=value

-X options_file

OPERANDS
The swremove utility supports the software_selections and targets operands described in Chapter 3.

This utility need not support a target distribution in the serial format.

EXTERNAL INFLUENCES
See Chapter 3 for descriptions of external influences common to all utilities.

Extended Options

The swremove utility supports the following extended options. The description in Chapter 3
applies.

autoselect_dependents=false

distribution_target_directory=implementation_defined_value

enforce_dependencies=true

enforce_scripts=true

installed_software_catalog=implementation_de fined_value

logfile=implementation_defined_value

loglevel=1

select_local=true

software=

targets=

Systems Management: Distributed Software Administration 115

swremove Software Administration Utilities

verbose=1

EXTERNAL EFFECTS
See Chapter 3.

EXTENDED DESCRIPTION
See Chapter 3 for general information. The swremove utility consists of three main phases.

1. Selection phase

2. Analysis phase

3. Execution phase.

Selection Phase

As opposed to swinstall , software selections apply to the target distribution or
installed_software.

Each specified selection must pass the following checks. If a specification does not pass a check,
the implementation defined error handling procedure is invoked.

• If the selection is not found, generate an event.
[SW_WARNING: SW_SELECTION_NOT_FOUND]

• If the selection is not found at that product directory, generate an event.
[SW_WARNING: SW_SELECTION_NOT_FOUND_RELATED]

• If a single version of the software is not uniquely identified from the product and product
attributes specified, generate an event.
[SW_ERROR: SW_SELECTION_NOT_FOUND_AMBIG]

Add any dependent software to the selection list if autoselect_dependents=true.

Analysis Phase

This section details the analysis phase. The analysis phase occurs before the removing of files
begins, and involves executing checks to determine whether or not the removal should be
attempted. No aspect of the target host environment is modified, so canceling the removal after
these operations has no negative effect.

The target role makes the following checks:

• When removing installed software, execute vendor-supplied checkremove scripts to
perform product-specific checks of the target. If enforce_scripts=true and the checkremove
script returns an error, an event is generated and the implementation defined error handling
procedure is invoked.
[SW_ERROR: SW_CHECK_SCRIPT_ERROR]

If the checkremove script returns an error and enforce_scripts=false , generate an event.
[SW_WARNING: SW_CHECK_SCRIPT_ERROR]

If the script had a warning, generate an event.
[SW_WARNING: SW_CHECK_SCRIPT_WARNING]

If the script has a return code of 3, generate an event and unselect the fileset (or all filesets in
the product for a product level script).
[SW_NOTE: SW_CHECK_SCRIPT_EXCLUDE]

• Verify that the dependencies are met. The swremove utility does not remove a fileset if it is
required by other filesets that have not been selected for removal or cannot be removed.

116 CAE Specification

Software Administration Utilities swremove

When enforce_dependencies=true and a non-selected fileset depends on a selected fileset, an
event is generated and the implementation defined error handling procedure is invoked.
[SW_ERROR: SW_DEPENDENCY_NOT_MET]

When enforce_dependencies=false , generate an event.
[SW_WARNING: SW_DEPENDENCY_NOT_MET]

If a software object has been specified for removal, and there is a bundle referring to that object
that has not also been specified for removal, the behavior is implementation defined. Likewise,
if a fileset or subproduct object has been specified for removal, and there is a subproduct
referring to that object that has not also been specified for removal, the behavior is
implementation defined.

Execution Phase

For installed_software, the sequential relationship between the unconfigure , preremove ,
and postremove scripts, and removing files for swremove is shown in the following list. The
unconfigure scripts are only run if the target directory is / .

1. Unconfigure each product:

If the fileset has been configured more than once, the unconfigure script must
unconfigure each instance.

a. Unconfigure each fileset in the product:

i. Run the unconfigure script for the fileset.

ii. Update the result of the script. Update the state of the fileset in the product to
installed in the database for the installed_software object.

b. Run the unconfigure script for the product.

2. Remove each product:

a. Run the preremove script for the product.

b. Remove each fileset in the product:

i. Update the state of the fileset to transient in the catalog for the
installed_software object.

ii. Run the preremove script for the fileset.

iii. Remove the files for the fileset.

iv. Run the postremove script for the fileset.

v. Update the results of the scripts. Update the state of the fileset to removed in
the catalog for the installed_software object or remove the catalog information
for the fileset.

c. Run the postremove script for the product.

d. If the catalog information has been removed for all filesets in the product, an
implementation can also remove the catalog information for the product and its
contained subproducts.

3. Remove each bundle:

a. Remove the installed_software catalog information for the bundle.

Systems Management: Distributed Software Administration 117

swremove Software Administration Utilities

4. If the catalog information has been removed for all products and bundles in the
installed_software object, an implementation can also remove the catalog information for
the installed_software object.

For each fileset that failed to be removed, the installed_software catalog information is updated
to the state corrupt .

• Executing Pre-remove Scripts

In this step of the execution phase, swremove executes the software preremove scripts.

— If a preremove script returns an error and 2enforce_scripts=true" , generate an event and
invoke the implementation defined error handling procedures.
[SW_ERROR: SW_PRE_SCRIPT_ERROR]

— If the preremove script returns an error and enforce_scripts=false , generate an event.
[SW_WARNING: SW_PRE_SCRIPT_ERROR]

— If a preremove script returns an warning, generate an event.
[SW_WARNING: SW_PRE_SCRIPT_WARNING]

When swremove is removing from a distribution, no scripts must be run.

• File Removing

In this step, swremove removes the files from the target. The target role attempts to remove
each file from the target file system according to information obtained in the
software_selections sent.

If swremove cannot remove a file (either because the file is busy [ETXTBSY], or for some other
reason), the file name and the reason are logged so an administrator can take corrective
action.
[SW_WARNING: SW_FILE_NOT_REMOVABLE]

If a filename is a symbolic link, the target is not removed. To achieve this behavior, the
swremove utility handles symbolic links according to these rules:

— If a file was recorded in the catalog as a symbolic link to another file, and it is still a
symbolic link on the file system, remove the symbolic link, but do not remove the target
file.

— If a file was recorded in the catalog as a file, but exists as a symbolic link on the file
system, remove the symbolic link, but do not remove the target file.

— If the pathname to the file includes a symbolic link, this path is followed and the correct
file is removed.

All files that are targets of symbolic links are removed when the fileset to which they belong
is removed.

• Executing Post-remove Scripts

In this step of the execution phase, swremove executes software postremove scripts.

— If a postremove script returns an error and enforce_scripts=true, generate an event and
invoke the implementation defined error handling procedures.
[SW_ERROR: SW_POST_SCRIPT_ERROR]

— If the postremove script returns an error and enforce_scripts=false , generate an event.
[SW_WARNING: SW_POST_SCRIPT_ERROR]

118 CAE Specification

Software Administration Utilities swremove

— If a postremove script returns an warning, generate an event.
[SW_WARNING: SW_POST_SCRIPT_WARNING]

• Kernel Reconfiguration

If the is_kernel attribute of the fileset is true, then a warning message to rebuild the kernel is
displayed and also recorded in the log file. However, swremove does not modify any of the
kernel generation files.

• Removing from a Distribution

The list of operations is simpler for removing filesets from a distribution than for
installed_software.

1. Remove each product:

a. Remove each fileset in the product:

i. Update the state of the fileset to transient in the catalog for the
distribution.

ii. Remove the files for the fileset.

iii. Update the state of the fileset to removed in the catalog for the distribution
or remove the catalog information for the fileset.

b. If the catalog information has been removed for all filesets in the product, an
implementation can also remove the catalog information for the product and its
contained subproducts. For each fileset that failed to be removed, the distribution
catalog information is updated to the state corrupt .

2. Remove each bundle:

a. Remove the distribution catalog information for the bundle.

3. If the catalog information has been removed for all products and bundles in the
distribution object, an implementation can also remove the catalog information for the
distribution object.

• Patches

Removal of the base fileset of a patch fileset via swremove will also result in removal of all
patches to that fileset. Likewise when a particular base fileset is overwritten during a
swinstall update operation, all patches for that base are removed as well. Saved rollback data
is also removed when the base fileset to which it applies is updated or removed from the
system.

Removal of a patch automatically rolls back previous files, unless the rollback has been
disabled as described for swinstall on page 90 or swmodify on page 108, or unless the base
fileset is also being removed or updated. The patch fileset has the value of the
saved_files_directory stored as an attribute, so that it can correctly find those files even if
multiple saved_files_directory values have been used for various filesets.

Only patches with the state applied can be rolled back. If a patch with a state of
committed or superseded is attempted to be removed, generate an event. If the files for a
patch do not exist in the saved_files_directory , or that directory no longer exists, generate an
event.
[SW_ERROR:SW_DEPENDENCY_NOT_MET]

An installed patch that has been superseded may not be rolled back unless the superseding
patch is also rolled back.

Systems Management: Distributed Software Administration 119

swremove Software Administration Utilities

EXIT STATUS
See Chapter 3.

CONSEQUENCES OF ERRORS
See Chapter 3.

120 CAE Specification

Software Administration Utilities swverify

NAME
swverify — verify software

SYNOPSIS
swverify [-d][-r][-F][-f file][-t targetfile][-x option=value]

[-X options_file][software_selections][@ targets]

DESCRIPTION
The swverify utility checks the accuracy of software in distributions and installed_software. The
utility checks the integrity of directory structures and the files. Discrepancies are reported on
stderr along with a detailed explanation of the problem.

OPTIONS
The swverify utility supports the following options. Where there is no description, the
description in Chapter 3.

-d

-f file

-F
Correct problems as well as report them.

If check_permissions=true, correct the corresponding problems reported.

If check_scripts=true, correct the corresponding problems reported.

The -F option only applies to installed software.

-r

-t targetfile

-x option=value

-X options_file

OPERANDS
The swverify utility supports the software_selections and targets operands described in Chapter 3.

This utility need not support a target distribution in the serial format.

EXTERNAL INFLUENCES
See Chapter 3. for descriptions of external influences common to all utilities.

Extended Options

The swverify utility supports the following extended options. The description in Chapter 3
applies.

allow_incompatible=false

autoselect_dependencies=true

check_contents=true

check_permissions=true

check_requisites=true

check_scripts=true

check_volatile=false

Systems Management: Distributed Software Administration 121

swverify Software Administration Utilities

distribution_target_directory=implementation_defined_value

enforce_dependencies=true

enforce_locatable=true

installed_software_catalog=implementation_de fined_value

logfile=implementation_defined_value

loglevel=1

select_local=true

software=

targets=

verbose=1

EXTERNAL EFFECTS
See Chapter 3.

EXTENDED DESCRIPTION
See Chapter 3 for general information. The key phases in the swverify utility are:

1. Selection phase

2. Analysis phase

3. Execution phase.

Selection Phase

Like swremove, software selections apply to the software installed (or available in the case of a
distribution).

Each specified selection is added to the selection list after it passes the following checks:

• If the selection is not found, generate an event.
[SW_WARNING: SW_SELECTION_NOT_FOUND]

• If the selection is not found at that product location, but that product exists at another
location, generate an event.
[SW_WARNING: SW_SELECTION_NOT_FOUND_RELATED]

Add any dependencies to the selection list if autoselect_dependencies=true.

Analysis Phase

This section details the analysis phase for swverify . No aspect of the target host environment is
modified unless the -F option is specified. The target role accesses its software_collection
catalog to get the information for the selected software.

The target role makes the following checks:

• An event is generated for each product that is incompatible with the uname attributes of the
target host. See Section 3.4.1.2 on page 42. If allow_incompatible=false , generate an event.
[SW_ERROR: SW_NOT_COMPATIBLE]

If allow_incompatible=true , generate an event.
[SW_WARNING: SW_NOT_COMPATIBLE]

122 CAE Specification

Software Administration Utilities swverify

Applies to installed software.

• An event is generated for each fileset whose state is other than installed , configured, available ,
or removed.
[SW_WARNING: SW_SELECTION_IS_CORRUPT]

Applies to distributions and installed software.

• An event is generated if a dependency can not be met. If enforce_dependencies=true, generate
an event.
[SW_ERROR: SW_DEPENDENCY_NOT_MET]

If enforce_dependencies=false , generate an event.
[SW_WARNING: SW_DEPENDENCY_NOT_MET]

Applies to distributions and installed software.

• Executes vendor-supplied verify scripts, generating an event if a verify script returns either
an error or a warning.
[SW_ERROR: SW_CHECK_SCRIPT_ERROR]
[SW_WARNING: SW_CHECK_SCRIPT_WARNING]

Applies to installed software.

• The following file level checks are made:

— Check for missing files and directories. For installed software, if check_volatile=false , then
this check must not be made for files with file.is_volatile=true .

Applies to distributions and installed software.

— Check for files that have been modified.

For distributions,
check size , cksum, and mtime.

For installed software,
check mode, owner, group , size , cksum, mtime, revision , major , and minor, if defined for
that file object.
If check_volatile=false , then these checks must not be made for files with
file.is_volatile=true .

— If a file is compressed, then the compressed_size and compressed_cksum attributes of the file
should be checked instead of the size and cksum attributes.

Applies to distributions.

— Check symbolic links for correct values.

Applies to distributions and installed software.

If any of these checks fail for any file, generate an event.
[SW_ERROR: SW_FILE_ERROR]

For patches, the verify operation on a patched fileset will check that the patched files are
properly installed. When installing a patch, the ancestor fileset will be updated to have the
correct attributes of the patched files. Verification of a patch fileset will verify that files in a
patch are still properly installed (or in the depot correctly). For installed patches that have the
fileset saved_files_directory defined, the saved files in the saved_files_directory will also be verified.
This verification ensures that a patch can still be successfully rolled back.

Systems Management: Distributed Software Administration 123

swverify Software Administration Utilities

Execution Phase

If the -F option is set, then the execution phase operations are run.

• Execute Fix Scripts

In this step, swverify executes vendor-supplied fix scripts if operating on installed software.

Scripts are executed in the same order as verify scripts. If a fix script returns an error,
generate an event.
[SW_ERROR: SW_PRE_SCRIPT_ERROR]

If a fix script returns a warning, generate an event.
[SW_WARNING: SW_PRE_SCRIPT_WARNING]

Control scripts adhere to the specifications in section Section 3.6.1 on page 56.

• File Level Fix

The following file level fixes are made:

— Missing directories are created (except volatile unless the check_volatile option is true)

— Files that have been modified (except volatile unless the check_volatile option is true) are
fixed for mode, owner, group , major , and minor, as applicable

— Symbolic links are re-created to correct their values.

— Any files with type x (delete file) as a new item are removed.

If any of these fixes fail for any file, generate an event.
[SW_ERROR: SW_FILE_ERROR]

EXIT STATUS
See Chapter 3.

CONSEQUENCES OF ERRORS
See Chapter 3.

124 CAE Specification

Chapter 5

Software Packaging Layout

This section describes the software packaging layout. The software packaging layout consists
of:

1. The directory structure consisting of these major components:

• The exported catalog structure containing software information including software
definition files and customize scripts used by the install/update and copy utilities

• The file storage structure that contains the actual software files for each fileset

2. the software definition file formats and the objects and attributes they contain, INDEX for
software definitions and INFO for file and control_file definitions (used by all the utilities
defined in this Software Administration specification), the PSF for product specification
(used by swpackage), and the space file (used by disk space analysis in install).

3. The serial format of the layout containing an archive of files in the directory structure.

This ordering of directories and files also applies to distributions on a set of hierarchical file
systems which span multiple media.

Thus, two distinct (but related) formats for the software packaging layout are supported by this
Software Administration specification:

• A directory structure format which resides within a POSIX.1 hierarchical file system (disk,
CD-ROM, etc.)

• A bit stream serial format which resides within a POSIX.1 extended cpio or extended tar
archive

A conformant implementation does not contain any other files or directories besides those
explicitly entered in the distribution catalog. However, it can contain other files and directories
besides those belonging to the distribution.

Systems Management: Distributed Software Administration 125

Directory Structure Software Packaging Layout

5.1 Directory Structure
This section describes the directory structure for the software packaging layout, and how this
representation stores the definitions of the software and file objects contained within it. The
directory structure is a POSIX.1 hierarchical file system containing files in the software
packaging layout.

This Software Administration specification defines a single directory structure for directory and
serial distributions. The software packaging layout can be stored in two forms:

• A direct access file system as described in this section

• A serial access extended cpio or extended tar archive as described in POSIX.1

The same structure offers optimal load performance for serial distributions while providing a
simple structure for directory distributions. This structure applies to each media if the
distribution spans multiple media.

The structure supports multiple versions of a product contained within a single distribution,
where versions are distinguished by a unique combination the product tag , revision , architecture ,
and vendor_tag attributes.

Table 5-1 shows the directory structure of a software packaging layout located under a directory
path :

The directory structure for the software packaging layout is divided into two areas:

• The exported catalog structure, consisting of control directories containing the software
definition files that describe the products contained in the distribution, as well as the
software control_files

• The software file storage structure, consisting of the product and fileset storage directories,
under which the actual software files for each fileset are located

5.1.1 Exported Catalog Structure

The catalog structure describes the software contained in the distribution. It is organized by
product, and each product is organized by fileset. The specific contents are described in the
following sections.

5.1.1.1 INDEX File

The distribution catalog contains a global INDEX file:

• catalog/INDEX

This INDEX file contains the definition of all software objects in the distribution.

5.1.1.2 Distribution Files

The catalog/dfiles/ directory contains files used to store certain attributes of the
distribution object. The distribution information stored can include:

• <attribute>

A distribution attribute can be stored as a separate file, the file name of which can be the
name of the attribute.

126 CAE Specification

Software Packaging Layout Directory Structure

Table 5-1 Example of Software Packaging Layout

Directory or File Purpose

path/catalog/ Contains all information about the distributions contents
path/catalog/INDEX Global index of distribution and its contents
path/catalog/dfiles/ Contains distribution attributes stored in files
path/catalog/dfiles/...

path/catalog/product1/ Storage for information on the first product
path/catalog/product1/pfiles Contains all product attributes stored in files
path/catalog/product1/pfiles/INFO Control_file information for this product
path/catalog/product1/pfiles/script Vendor defined control_files
path/catalog/product1/pfiles/...

path/catalog/product1/fileset1 Storage for information and scripts on this fileset
path/catalog/product1/fileset1/INFO File and control_file information for this fileset
path/catalog/product1/fileset1/scripts Vendor defined control_files
path/catalog/product1/fileset1/...

path/catalog/product1/fileset2/ Storage for information and scripts on the next fileset
path/catalog/product1/fileset2/...

path/catalog/product2/ Storage for information on the next product
path/catalog/product2/...

path/product1/ Storage for this product’s filesets
path/product1/fileset1/ Storage for this filesets files
path/product1/fileset1/files Actual directory structure of files
path/product1/fileset1/...

path/product1/fileset2/ Storage for next fileset’s files
path/product1/fileset2/files Actual directory structure of files
path/product1/fileset2/...

path/product2/ Storage for next product’s filesets
path/product2/...

5.1.1.3 Product Catalog

The catalog files for each product are stored under a directory
catalog/< product_control_directory>/ . The way in which the value of each product control
directory is determined is defined below.

5.1.1.4 Product Control Files

The catalog/< product_control_directory>/pfiles/ directory contains the control_files for the
product object. The product control_files include:

• <attribute>

A product attribute can be stored as a separate file, the file name of which can be the name of
the attribute.

Systems Management: Distributed Software Administration 127

Directory Structure Software Packaging Layout

• INFO

Contains the definitions for the control_file objects contained within the product.

• checkinstall
preinstall
...
postremove

The vendor-supplied control scripts for the product.

• <control_file>

All other vendor-defined control_files for this product.

5.1.1.5 Fileset Control Files

The catalog/< product_control_directory>/< fileset_control_directory> directory contains the
control_files for the fileset object. The way in which the value of each fileset control directory is
determined is defined below. The fileset control_files include:

• <attribute>

A fileset attribute can be stored as a separate file, the filename of which can be the name of
the attribute.

• INFO
Contains the definitions for the control_file and file objects contained within the fileset.

• checkinstall
preinstall
...
postremove

The vendor-supplied control scripts for the fileset.

• <control_file>

All other vendor-defined control_files for this fileset.

5.1.2 File Storage Structure

The second portion of a distribution contains the actual software files contained in each fileset
object.

The files of each fileset are store in a directory with the name <fileset_control_directory> which is
itself in a directory called <product_control_directory> .

Each regular file (ones for which file.type is f) is stored in a location defined by appending the
file.path attribute to the path of the fileset file storage directory. This may require the creation of
additional directories. Other file types (directories, except as needed to store files, hard links and
symbolic links) are not required to exist in the distribution. The POSIX.1 file permissions for files
in the file storage area are undefined.

128 CAE Specification

Software Packaging Layout Directory Structure

5.1.2.1 Control Directory Names

In the simplest case, the value of the product.tag attribute is the name of the product control
directory. The fileset.tag attribute is used as the name of the fileset control directory. Two
conditions complicate this simple naming:

1. Length of the tag attribute exceeds {POSIX_PATH_MAX} of the system where the
distribution resides.

2. Name collision with an existing product control directory.

Given that multiple versions of a product may be contained in the same distribution,
collisions from product control directories named by the tag attribute are common.

These conditions are met by defining a control_directory attribute for each product and fileset that
is unique within the distribution. The attribute uses the syntax:

%token FILENAME_CHARACTER_STRING /* as defined in 2.2.2.37 */

%start control_directory
%%

control_directory : tag_part
| tag_part "." instance_id_part
;

tag_part : FILENAME_CHARACTER_STRING
;

instance_id_part : FILENAME_CHARACTER_STRING
;

The tag_part may be the product or fileset tag attribute, truncated as necessary to meet any
filename length restrictions of the operating system.

The instance_id_part is a string that, when added after the ‘‘.’’ (period), defines a
control_directory which, for products, is unique within the distribution and, for filesets, is
unique within the product. For products, this instance_id_part may be the instance_id of
the product if that instance_id was generated considering other products tag_parts in
addition to tag attributes.

Systems Management: Distributed Software Administration 129

Software Definition File Format Software Packaging Layout

5.2 Software Definition File Format
The software definition files contain the software structure and the detailed attributes for
distributions, installed_software, bundles, products, subproducts, filesets, files, and control_files.
While information on installed software is represented in this form as input to or output from
the various software administration utilities, the actual storage of this metadata for installed
software is undefined. This section describes the format of the software definition files:

• The INDEX file contains the definition of distribution or installed_software objects as well as
the software objects contained within those software_collections. The information in this file
is primarily used in selection phases of the utilities.

• The INFO file contains the definition of the software files and control_files for a product or
fileset within a distribution or installed_software object. The information in this file is
primarily used in analysis and execution phases of the utilities.

• The PSF (product specification file) also contains the definition of distribution attributes,
software objects, and the software files and control_files for the product and fileset software
objects. This file is created by the software vendor and used by the packaging tool to create
the distribution, represented by the INDEX and INFO files, in the software packaging
layout.

The PSF supports the same syntax as the INDEX and INFO files. Additional syntactic
constructs are supported for specifying files and control_files. This file is used in selection,
analysis and packaging Phases of the swpackage command.

Additionally, there is a space file that is created by the software vendor for additional disk
space needed for a product or fileset. This file is used in analysis phase of the swinstall command
to account for additional disk space required.

5.2.1 Software Definition File Syntax

The INDEX and INFO files have essentially the same syntax and semantics as the PSF. One key
difference is that the INDEX file does not contain control_file and file definitions, the INFO file
contains only control_file and file definitions, and the PSF file contains all definitions. In a
distribution, each product and fileset has a separate INFO file.

The software specification file syntax is as follows.16

%token FILENAME_CHARACTER_STRING /* as defined in Glossary */
%token NEWLINE_STRING /* as defined in Glossary */
%token PATHNAME_CHARACTER_STRING /* as defined in Glossary */
%token SHELL_TOKEN_STRING /* as defined in Glossary */
%token WHITE_SPACE_STRING /* as defined in Glossary */

%start software_definition_file
%%

software_definition_file : INDEX
| INFO
| PSF
;

16. Refer to Appendix A for examples of the use of this syntax.

130 CAE Specification

Software Packaging Layout Software Definition File Format

INDEX : soc_definition
soc_contents

;

INFO : info_contents
;

PSF : distribution_definition
soc_contents

;

media : /* empty */
| media_definition
;

vendors : /* empty */
| vendors NEWLINE_STRING vendor_definition
| vendor_definition
;

bundles : /* empty */
| bundles NEWLINE_STRING bundle_definition
| bundle_definition
;

products : /* empty */
| products NEWLINE_STRING product_specification
| product_specification
;

product_specification : product_definition
product_contents

;

subproducts : /* empty */
| subproducts NEWLINE_STRING subproduct_definition
| subproduct_definition
;

filesets : filesets NEWLINE_STRING fileset_specification
| fileset_specification
;

fileset_specification : fileset_definition
fileset_contents
/* fileset contents not valid in INDEX files */

;

control_files : /* empty */
| control_files NEWLINE_STRING control_file_definition
| control_file_definition
;

files : /* empty */
| files NEWLINE_STRING file_definition
| file_definition
;

Systems Management: Distributed Software Administration 131

Software Definition File Format Software Packaging Layout

fileset_contents : fileset_contents NEWLINE_STRING fileset_content_items
| fileset_content_items
;

fileset_content_items : control_files
| files
;

info_contents : info_contents NEWLINE_STRING info_content_items
| info_content_items
;

info_content_items : control_files
| files
;

product_contents : product_contents NEWLINE_STRING product_content_items
| product_content_items
;

product_content_items : control_files
/* control_files not valid in INDEX files */

| subproducts
| filesets
;

soc_contents : soc_contents NEWLINE_STRING soc_content_items
| soc_content_items
;

soc_content_items : vendors
| bundles
| products
;

soc_definition : distribution_definition
| installed_software_definition
;

distribution_definition : software_definition
media

;

media_definition : software_definition
;

installed_software_definition : software_definition
;

vendor_definition : software_definition
;

bundle_definition : software_definition
;

product_definition : software_definition
;

subproduct_definition : software_definition

132 CAE Specification

Software Packaging Layout Software Definition File Format

;

fileset_definition : software_definition
;

control_file_definition : software_definition
| extended_definition

/* extended_definition only valid in PSF files */
;

file_definition : software_definition
| extended_definition

/* extended_definition only valid in PSF files */
;

software_definition : object_keyword NEWLINE_STRING
attribute_value_list

;

attribute_value_list : /* empty */
| attribute_value_list attribute_definition NEWLINE_STRING
| attribute_definition NEWLINE_STRING
;

attribute_definition : attribute_keyword WHITE_SPACE_STRING attribute_value
;

object_keyword : FILENAME_CHARACTER_STRING
;

attribute_keyword : FILENAME_CHARACTER_STRING
;

extended_definition : extended_keyword WHITE_SPACE_STRING attribute_value
;

extended_keyword : FILENAME_CHARACTER_STRING
;

attribute_value : attribute_value WHITE_SPACE_STRING single_value
| single_value
| ’<’ WHITE_SPACE_STRING PATHNAME_CHARACTER_STRING
| ’<’ PATHNAME_CHARACTER_STRING
;

single_value : SHELL_TOKEN_STRING
;

The following syntax rules are applicable to software definition files:

1. All keywords and values are represented as character strings.

2. Each keyword is located on a separate line. Keywords can be preceded by white space
(tab, space). White space separates the keyword from the value.

3. Comments can be placed on a line by themselves or after the keyword-value syntax. They
are designated by preceding them with the # (pound) character. The way in which
comments are used in INDEX and INFO is undefined

Systems Management: Distributed Software Administration 133

Software Definition File Format Software Packaging Layout

4. All object keywords have no values. All attribute keywords have one or more values.

5. An attribute value ends on the same line as the keyword with one exception. Attribute
values can span lines if and only if the value is prefixed and suffixed with the " (double
quote) character.

6. When an attribute value begins with < (less than), the remainder of the string value is
interpreted as a filename whose contents will be used as a quoted string value for the
attribute. For INDEX files, the filename is a path relative to the control directory for that
distribution, product, or fileset. For PSF files, the filename is a path to a file on the host that
contains the file.

7. The use of " (double quote) is not required when defining a single line string value that
contains embedded white space. Trailing white space is removed; embedded white space
is used. The quotes can be used.

8. The " (double quote), # (pound), and \ (backslash) characters can be included in multi-
line string values by ‘‘escaping’’ them with \ (backslash).

9. The order of attributes is not significant, except that the layout_version is the first attribute
defined in an INDEX file for a distribution or installed_software object.

5.2.1.1 Keyword and Attribute Semantics

The keywords and attribute types have the following semantics:

1. The object keywords distribution, installed_software, media, category, vendor, bundle,
product, subproduct, fileset, control_file, and file each define a new object of that type.
The keywords distribution, installed_software, product, and fileset also define nested
blocks that contain the objects describing the software hierarchy.

2. If an attribute is not supplied, then its default value is used, unless no default value is
permitted.

3. Attributes that have boolean permitted values are described by the strings true and
false .

4. Attributes that have an enumerated set of permitted values are described by one of the
enumerated values. Enumerated values do not contain spaces and are case sensitive. In
addition, abbreviations of the string are not allowed. For example, conf is not equivalent
to configured .

5. For attributes whose values are integer character strings, the default value is used if the
attribute is not supplied. If the first two characters of an integer character string are 0x
(zero followed by a lowercase ‘‘x’’), then the value is interpreted as hexadecimal.
Otherwise, if the first character of an integer character string is 0 (zero), then the value is
interpreted as octal. Attribute values denoting time are integer character strings that
signify seconds since the Epoch.

6. Attributes whose permitted values are lists of tags or software_spec s can be described
either by one or more repeating keywords, each listing one or more tags or
software_spec s separated by white space (for example, for subproduct.contents or
fileset.prerequisites), or by blocks of object fragments (for example, product, fileset, and file
definitions).

The former is used when the hierarchy is defined by reference, and the latter when the
hierarchy is defined by containment. For example, subproducts and filesets are contained
within products, but filesets are referenced by subproducts.

134 CAE Specification

Software Packaging Layout Software Definition File Format

7. Attributes that have permitted values of software_pattern_matching_string are
software pattern matching strings as described in the Glossary. For all product attributes
related to the uname structure (as defined in POSIX.1, an empty string value is treated as
equivalent to * (asterisk), implying a universal match.

5.2.1.2 Vendor Defined Keywords and Attributes

A software definition file can contain keywords (implying attributes) not defined by this
Software Administration specification. All such keywords in a file not recognized by an
implementation are preserved (along with their associated values) by being transferred to the
resulting INDEX or INFO files created by swpackage or swcopy . For any keyword, the keyword
itself is a filename character string.

The value associated with any keyword is processed as an attribute_value (see Section
5.2.1 on page 130) and thus can be continued across multiple input lines or can reference a file
containing the value for the keyword.

Implementations that make use of keywords beyond those described in this Software
Administration specification take actions they believe appropriate for those keywords. The
handling of any keywords which are both not defined by this Software Administration
specification, and still recognized by an implementation, is undefined.

5.2.2 Distribution Definition

distribution
layout_version layout_version
path path
dfiles dfiles
pfiles pfiles
uuid uuid

INDEX and PSF files can contain distribution definitions. Neither file contains the path attribute.
Its value is generated dynamically by swlist .

The bundles, media , and products attributes are not stored as attributes, but rather as bundle,
media, and product definitions. These attributes are not included in swlist -v output. Rather,
they are generated dynamically only by swlist -a attribute.

A PSF does not require a distribution definition. The PSF does not contain the uuid attribute. It
is generated dynamically, if needed, by swcopy and swpackage .

An INDEX file contains the layout_version attribute as the first attribute defined in the file.
Distributions which span multiple media contains the uuid attribute.

5.2.3 Media Definition

media
sequence_number sequence_number

INDEX files for distributions can contain media definitions.

An INDEX file for a distribution contains the sequence_number attribute if the distribution spans
multiple media.

Systems Management: Distributed Software Administration 135

Software Definition File Format Software Packaging Layout

5.2.4 Installed Software Definition

installed_software
layout_version layout_version
path path
dfiles dfiles
pfiles pfiles
catalog catalog

The storage of catalogs for installed software is undefined. With the use of the swlist utility, the
contents of such catalogs may be manifested in exported catalog form. The rules contained
within this section applies when the contents of an installed software catalog is manifested in
exported catalog form.

INDEX files can contain installed_software definitions. This describes the attributes for
installed_software objects when listed in exported catalog structure using swlist .

The products and bundles attributes are not stored as attributes, but rather as product and bundle
definitions. These attributes are not included in swlist -v output. Rather, they are generated
dynamically only by swlist -a attribute .

An INDEX file does not contain the path or catalog attributes; they are generated dynamically by
swlist .

An INDEX file contains the layout_version attribute as the first attribute defined in the file.

5.2.5 Vendor Definition

vendor
tag tag
title title
description description

INDEX and PSF files can contain vendor definitions. The tag attribute is required for all vendor
objects.

5.2.6 Category Definition

category
tag tag
title title
description description
revision revision

INDEX and PSF files can contain category definitions. The tag attribute is required for all
category objects.

136 CAE Specification

Software Packaging Layout Software Definition File Format

5.2.7 Bundle Definition

bundle
tag tag
architecture architecture
category_tag category_tag
location location
qualifier qualifier
revision revision
vendor_tag vendor_tag
contents contents
copyright copyright
create_time create_time
description description
directory directory
instance_id instance_id
is_locatable is_locatable
is_locatable is_locatable
is_patch is_patch
machine_type machine_type
mod_time mod_time
number number
os_name os_name
os_release os_release
os_version os_version
size size
title title

INDEX and PSF files can contain bundle definitions. The tag and contents attributes are required
for all bundles.

Neither file contains the size attribute. The value of the size attribute is generated dynamically
based on the sizes of the filesets currently contained within the bundle.

An INDEX file also contains an instance_id attribute. The value of the instance_id attribute is
generated dynamically by swpackage or swcopy . An INDEX file for installed software contains a
create_time attribute and a mod_time attribute for each bundle.

Only bundle definitions for installed software may contain either the location or qualifier
attributes; bundle definitions for distributions do not contain either the location or qualifier
attributes.

A PSF should not contain either the location or qualifier attributes; they are ignored when parsing
the file.

Systems Management: Distributed Software Administration 137

Software Definition File Format Software Packaging Layout

5.2.8 Product Definition

product
tag tag
architecture architecture
category_tag category_tag
qualifier qualifier
revision revision
vendor_tag vendor_tag
all_filesets all_filesets
control_directory control_directory
copyright copyright
create_time create_time
directory directory
description description
instance_id instance_id
is_locatable is_locatable
is_patch is_patch
postkernel postkernel
location location
machine_type machine_type
mod_time mod_time
number number
os_name os_name
os_release os_release
os_version os_version
size size
title title

INDEX and PSF files can contain product definitions. The tag and control_directory attributes are
required for all products.

Neither file contains the size attribute. The value of the size attribute is generated dynamically
based on the sizes of the filesets currently contained within the product.

An INDEX file for installed software contains a create_time attribute and a mod_time attribute for
each product.

The control_files, filesets, and subproducts attributes are not stored as attributes, but rather as
control_file, fileset, and subproduct definitions. These attributes are not included in swlist -v
output. Rather, they are generated only by swlist -a attribute .

An INDEX file contains an instance_id attribute. The value of the instance_id attribute is
generated by swpackage or swcopy . An INDEX file also contains a all_filesets attribute in addition
to the fileset definitions. This attribute is generated by swpackage and represents all filesets
defined for the product, as opposed to those that are currently contained within the product.
The value of the filesets and all_filesets attributes may differ, since some originally defined filesets
might not be copied or installed. Only product definitions for installed software may contain
either the location or qualifier attributes; product definitions for distributions do not contain either
the location or qualifier attributes.

A PSF should not contain either the location or qualifier attributes; they are ignored when parsing
the file.

138 CAE Specification

Software Packaging Layout Software Definition File Format

5.2.9 Subproduct Definition

subproduct
tag tag
contents subproducts
category_tag category_tag
create_time create_time
description description
is_patch is_patch
mod_time mod_time
size size
title title

INDEX and PSF files can contain subproduct definitions. The tag and contents attributes are
required for all subproducts.

Neither file contains the size attribute. The value of the size attribute is generated dynamically
based on the sizes of the filesets currently contained within the subproduct.

An INDEX file for installed software contains a create_time attribute and a mod_time attribute for
each subproduct.

5.2.10 Fileset Definition

fileset
tag tag
ancestor ancestor
applied_patches applied_patches
category_tag category_tag
control_directory control_directory
corequisites corequisites
create_time create_time
description description
exrequisites exrequisites
is_reboot is_reboot
is_kernel is_kernel
is_locatable is_locatable
is_patch is_patch
is_sparse is_sparse
location location
media_sequence_number media_sequence_number
mod_time mod_time
patch_state patch_state
prerequisites prerequisites
revision revision
saved_files_directory saved_files_directory
size size
state state
superseded_by superseded_by
supersedes supersedes
title title

INDEX and PSF files can contain fileset definitions. The tag and control_directory attributes are
required for all filesets.

Systems Management: Distributed Software Administration 139

Software Definition File Format Software Packaging Layout

The control_files and files attributes are not stored as attributes, but rather as control_file and file
definitions. These attributes are not included in swlist -v output. Rather, they are generated
only by swlist -a attribute .

An INDEX file contains a size attribute for each defined fileset. Fileset definitions for
distributions that span multiple media contain the media_sequence_number attribute. An INDEX
file for installed_software contains a create_time and a mod_time attribute for each fileset.

A PSF should not contain the applied_patches , location , media_sequence_number, patch_state ,
saved_files_directory , size , state , or superseded_by attributes; they are ignored when parsing the file.
The value of the size attribute is generated dynamically by swpackage based on the sizes of the
files and control_files.

When defining a patch, the attributes that must be defined are the files to be patched, and the
fileset attribute is_patch . This automatically sets the category_tag patch ; the patch category can
not be specified in a PSF file. The product containing a patch or sparse fileset must have a
different tag or revision attribute from the product containing the ancestor fileset being updated.

5.2.11 Control_File Definition

control_file
tag tag
cksum cksum
compressed_cksum compressed_cksum
compressed_size compressed_size
compression_state compression_state
compression_type compression_type
interpreter interpreter
path path
revision revision
size size
source source
result result

INFO and PSF files can contain control_file definitions.

A PSF should not contain the cksum, compressed_cksum, compressed_size, compression_state ,
compression_type , size , or result attributes; they are ignored when parsing the file. The values of
the size and cksum attributes are generated dynamically by swpackage based on the source file. A
PSF contains a source attribute. A PSF can contain a path attribute. If it does not, swpackage uses
the basename obtained from the value of the source attribute as the value of the path attribute. A
PSF can contain a tag attribute. If it does not, swpackage uses the basename obtained from the
value of the path attribute as the value of the tag attribute. The swpackage utility resolves the
value of the tag attribute after it resolves the value of the path attribute.

An INDEX file contains the tag , path , cksum, and size attributes. Control_file definitions for
installed software also contain the result attribute. INDEX files should not contain the source
attribute; it is ignored when parsing the file.

The swpackage command automatically includes the INFO file itself as a control file and adds the
tag , path , and size attributes for it. The value of the cksum attribute for the INFO control_file
itself is not defined. An implementation can choose to store certain software object attributes,
such as copyright , as control_files.

140 CAE Specification

Software Packaging Layout Software Definition File Format

5.2.12 File Definition

file
path path
archive_path archive_path
cksum cksum
compressed_cksum compressed_cksum
compressed_size compressed_size
compression_state compression_state
compression_type compression_type
gid gid
group group
is_volatile is_volatile
link_source link_source
major major
minor minor
mode mode
mtime mtime
owner owner
revision revision
size size
source source
type type
uid uid

INFO and PSF can contain file definitions.

A PSF contains a source attribute. A PSF should not contain the cksum compressed_cksum,
compressed_size, compression_state , compression_type , or size attributes; they are ignored when
parsing the file. Device files (including the major and minor attributes) should not be defined in a
PSF (but can be added via swmodify after being created by a configure script); they are
ignored when parsing the file. The values of the size and cksum attributes are generated
dynamically by swpackage based on the source file. A PSF can contain a path attribute, otherwise
the source is used to defined the path by swpackage . A PSF can contain gid , group , link_source ,
mode, mtime, owner, type , and uid attributes, otherwise they are retrieved from the source file by
swpackage . A PSF can contain is_volatile and revision attributes. Automatic determination of the
file revision is implementation defined.

An INFO file should not contain the source attribute; it is ignored when parsing the file. Table
5-2 shows the required, optional and non-applicable attributes for each of the file types in an
INFO file. The file types are described in Table 2-14 on page 33. Within a fileset, no more than
one copy of a file is stored with the same path.

Within a PSF file, if the same file is defined more than once, the attributes from the last definition
are used and they redefine the attributes previously defined. This action does not cause
additional copies of the file to be stored in the distribution. All attributes not specifically listed
remain unchanged.

Systems Management: Distributed Software Administration 141

Software Definition File Format Software Packaging Layout

Table 5-2 File Attributes for INFO File

attribute f d h s b c p x a

type R R R R R R R R R
path R R R R R R R R R
size R - - - - - - O R
link_source - - R R - - - - -
mode O O - - O O O - O
owner O O - - O O O - O
group O O - - O O O - O
uid O O - - O O O - O
gid O O - - O O O - O
cksum O - - - - - - - O
major - - - - R R - - -
minor - - - - R R - - -
is_volatile O O O O O O O - O
mtime O - - - - - - - O
revision O - - - - - - - O
archive_path - - - - - - - - R

Key: R Required
O Optional
- Ignored

5.2.13 Extended Control_File Definitions

checkinstall source [path]
preinstall source [path]
postinstall source [path]
verify source [path]
fix source [path]
checkremove source [path]
preremove source [path]
postremove source [path]
configure source [path]
unconfigure source [path]
request source [path]
unpreinstall source [path]
unpostinstall source [path]
space source [path]
control_file source [path]

A PSF can contain extended control_file definitions. Each control_file definition defines the
source attribute (the source file) to be used for the script. The keyword (meaning checkinstall,
preinstall, etc.) defines the tag of the script, which tells the utilities when to execute the script.

If the optional path is supplied, it is the file name in the distribution (relative to the control
directory for the software containing this script) used to store the file; otherwise, the
control_file.tag attribute is used as the file name. This also allows a vendor to define one script to
be executed for multiple tags. The script can determine the tag being executed by the
SW_CONTROL_TAG environment variable.

142 CAE Specification

Software Packaging Layout Software Definition File Format

If the control_file keyword is used, then the basename of the source attribute is the tag of the
control_file.

5.2.14 Extended File Definitions

A PSF can contain extended file definitions. The swpackage utility supports these extended file
definition mechanisms:

directory mapping
A PSF can point the swpackage utility at a source directory containing the files for the fileset.
In addition, a PSF can map this source directory to the appropriate (destination) directory
containing this subset of the filesets files.

recursive (implicit) file definition
If a directory mapping is active, a PSF can direct the swpackage utility to include all files
(recursively) from within the directory in the fileset.

explicit file definition
For all or some of the files in the fileset, a PSF can name each source file and destination path
with a one line per file syntax.

default permission definition
For all or some of the files in the fileset, a PSF can define a default set of permissions.

excluding files
Files that otherwise would be included can be explicitly excluded.

including files
File definitions may be included from a separate file.

These mechanisms can all be used in combination with the others.

5.2.14.1 Directory Mapping

directory source [path]

This syntax defines a source directory under which subsequently listed files are located. In
addition, the user can map the source directory to a destination directory under which the
packaged files will be located.

The destination directory is an absolute pathname and is used as a prefix to the path attribute for
each of the files.

The source directory can be either an absolute pathname, or a relative pathname. If relative, the
swpackage utility interprets it relative to the current working directory in which the utility was
invoked.

If the source directory does not exist, the swpackage utility generates an error.

5.2.14.2 Recursive File Definition

file *

This syntax directs the swpackage utility to include every file (and directory) within the current
source directory in the fileset. The swpackage utility attempts to include the entire, recursive
contents of the source directory in the fileset.

The directory keyword is specified before the file * specification is used. After finishing the
recursive processing of the source directory, the swpackage utility processes further specifications
with respect to the original directory.

Systems Management: Distributed Software Administration 143

Software Definition File Format Software Packaging Layout

All other attributes for the destination file object are taken from the source file, unless a
file_permission keyword is active. This keyword is described below.

The user can specify multiple directory and file * pairs to gather all files from different source
directories into a single fileset.

5.2.14.3 Explicit File Definition

file [-t type][-m mode][-o owner [, uid]][-g group [, gid]][-n][-v]
source [path]

Instead of, or in addition to, the recursive file specification, the user can explicitly specify the
files to be packaged into a fileset.

This syntax may be used to redefine an attribute of a previously defined file. All attributes not
specifically listed remain the same.

The directory keyword can be used to define a source (and destination) for explicitly specified
files. If no directory keyword is active, then the full source path and the absolute destination
path (the path attribute) is specified for each file.

The meaning of each of these fields is as follows:

file
This keyword specifies an existing file or directory, perhaps within the currently active
source directory, to include in the fileset. It can also specify a directory, hard link, or
symbolic link that does not exist as a source file, but is created when the fileset is installed.

source
When specifying an existing source file, this value defines the path to it.

If this is a relative path, the swpackage utility searches for it relative to the source directory
set by the directory keyword. If no source directory is active, the swpackage utility searches
for it relative to the current working directory in which the utility was invoked.

All attributes for the destination file object are taken from the source file, unless a
file_permission keyword is active, or the -m, -o , or -g options are also included in the
file specification.

When specifying a new directory to be created upon installation, and there is no destination
path specified, the source defines the path of the installed directory. When specifying a new
hard link or symbolic link to be created upon installation, the source defines the pathname of
the installed file to use as the source for the new file.

path
When specifying a new or existing source file, this value defines the destination path at
which the file will be created or installed. If path is a relative path, the active destination
directory set by the directory keyword is prefixed to it. If the path is relative, and no
destination directory is active, the swpackage utility generates an error. If the path is not
specified, then the source is used as the path , with the appropriate mapping done with the
active destination directory (if any).

-t type
When creating a new directory, hard link or symbolic link (a file in the fileset that does not
exist in the source), this option is specified to define the file type. The following file types
can be created:

d Create a directory. If only the source is specified, it is used as the path . Otherwise, the
source is used to retrieve the attributes for the directory created at path . If the path is

144 CAE Specification

Software Packaging Layout Software Definition File Format

not specified, or any attributes, then default values of the attributes is implementation
defined.

h Create a hard link. Both the source and path are specified. The source is the pathname of
the installed file object to be used as the source for the new hard link (the link_source
attribute).

s Create a symbolic link. Both the source and path are specified. The source is the
pathname of the installed file object to be used as the source for the new symbolic link
(the link_source attribute).

x Delete a file. The remove type, x for the file type attribute deletes any existing file instead
of installing a new file or link.

Files with the types c (character special), b (block special) and p (named pipe | FIFO) are
not supported by swpackage and swinstall and can be created via a configure control script.
In general, device files and pipes are created during system configuration on the system
actually running the software. Also, there can be files of other types that the swpackage
utility does not recognize and which therefore cause an error.

-m mode
This option defines the (octal) mode for a file or directory.

-o [owner][,uid]
This option defines the owner name and/or or uid of the destination file. If only the owner is
specified, then the owner and uid attributes are set for the destination file object, based on the
database of the packaging host. If only the uid is specified, it is set as the uid attribute for the
destination object and no owner name is assigned. If both are specified, each sets the
corresponding attribute for the file object. If neither are specified, then the owner and uid of
the file are used as found in the file system of the packaging host. See ‘‘File Loading’’ in the
definition for swinstall swinstall on page 90.

During an installation, the owner attribute is used to set the owner name and uid, unless the
owner name is not defined in the target system user database. In this case, the value of the
uid attribute is used to set the uid.

-g [group][,gid]
This option defines the group name and/or gid of the destination file. If only the group is
specified, then the group and gid attributes are set for the destination file object based on the
database of the packaging host. If only the group is specified, and it contains digits only, it is
interpreted as the gid, and is set as the gid attribute for the destination object; no group
name is assigned to the object. If both are specified, each sets the corresponding attribute
for the file object. If neither are specified, then the group and gid of the file are used as
found in the file system of the packaging host. See ‘‘File Loading’’ in the definition for
swinstall swinstall on page 90.

During an installation, the group attribute is used to set the group name and gid, unless the
group name is not defined in the target system group database. In this case, the gid attribute
is used to set the gid.

-n This option indicates that the file is not compressible.

-v The use of -v on a source line is used to specify that the file is volatile (contents, attributes
or existence can change after installation).

Systems Management: Distributed Software Administration 145

Software Definition File Format Software Packaging Layout

5.2.14.4 Default Permission Definition

file_permissions [-m mode | -u umask][-o [owner [,]][uid]]
[-g [group [,]][gid]]

A destination file object inherits the mode, owner, and group of the source file. The
file_permissions keyword can be specified to set a default permission mask, owner, and group
for all the files being packaged into the fileset:

file_permissions
This keyword only applies to the fileset it is defined in. Multiple file_permissions can be
specified, and subsequent definitions simply replace previous definitions.

-m mode
This option defines a default (octal) mode for all file objects.

-u umask
Instead of specifying an octal mode as the default, the user can specify an octal umask()
value that gets ‘‘subtracted’’ from the mode of an existing source file, or applied for each
non-existent file, to generate the mode of the destination file.

By specifying a umask() value the user can set a default mode for executable files, non-
executable files, and directories. A specific mode can be set for any file, as described above.

-o [owner[,]][uid]
This option defines the owner name and/or uid of the destination file. See the discussion of
the -o option in Section 5.2.14.3 on page 144.

-g [group[,]][gid] This option defines the group name and/or gid of the destination file. See
the discussion of the -g option in Section 5.2.14.3 on page 144.

5.2.14.5 Excluding Files

exclude source

A file listed after the exclude keyword that was previously included, for example from a
recursive file definition, is excluded from the list of files.

If the source specifies a directory, then all files below that directory are excluded.

5.2.14.6 Including Files

file < include_file

The file keyword can be used to include definitions for files from a separate include_file by
specifying a < (less than) character followed by the include_file.

5.2.15 Space Control_file

path [+|-] size

For each path listed in the space file, the swinstall utility adds the size, in bytes, to the disk
space requirements. The size can be positive (reflecting the maximum transient or permanent
disk space required for the install), or negative (reflecting space freed by one of the scripts
executed by the swinstall command). An implementation must consider positive records and
may consider negative records.

146 CAE Specification

Software Packaging Layout Serial Format and Multiple Media

5.3 Serial Format and Multiple Media
A distribution in the serial format of the software packaging layout is a bit-stream
representation, implemented as a set of POSIX.1 extended cpio or extended tar archives which
contain files in the directory structure of the software packaging layout defined in the beginning
of this Chapter.

A serial distribution can be stored on any serial medium. A serial distribution can also be stored
in any file, within the file system, which supports the storing of POSIX.1 extended cpio or
extended tar archives. How a system reads or writes to the different media devices is outside the
scope of this Software Administration specification.

Implementations support serial distributions if the underlying operating system supports the
pax utility, as defined in POSIX.2, or otherwise supports reading and writing of the extended tar
and extended cpio archives defined in POSIX.1. If serial distributions are supported, the serial
distribution formats supported include extended tar and extended cpio .

The distribution is implemented as a set of one or more POSIX.1 extended cpio or extended tar
archives. The archives reside on a set of one or more serial media, or in a file. Each media in a
serial distribution contains one and only one archive.

A distribution may span multiple media in a hierarchical structure. In this case, the set of files
on any particular media, including the attributes defined in any software definition files, should
be similar to that for a serial archive. In other words, the decision for which files are put on
which media should be the same whether the distribution is serial or hierarchical. Space
considerations on media may cause some differences.

The following are the rules regarding ordering of files within serial distributions. These rules,
including generation of the fileset.media_sequence_number, are implemented by the swpackage
utility.

1. The catalog files (which contain all the information describing the software contained in
the distribution), as well as the control scripts, in this relative order:

a. The global INDEX file, as described in Section 5.1.1 on page 126.

b. The distribution files, as described in Section 5.1.1 on page 126.

c. The product catalog files, product by product, as described in Section 5.1.1 on page
126.

i. The product control files, as described in Section 5.1.1 on page 126.

ii. The fileset control files, fileset by fileset, as described in Section 5.1.1 on page
126.

2. The actual software files, fileset by fileset, as described in Section 5.1.2 on page 128.

a. Prerequisites of filesets before the filesets that depend on them

b. Kernel filesets before non kernel filesets (except where kernel filesets have
prerequisites on non-kernel)

3. Each medium has (as its first file, if a serial medium)

a. A global INDEX file, catalog/INDEX that contains at least the distribution.uuid and
media.sequence_number attributes (used to identify a particular media within a
particular distribution)

4. Each archive starts at the beginning of the medium. Multiple archives on one medium are
not allowed.

Systems Management: Distributed Software Administration 147

Serial Format and Multiple Media Software Packaging Layout

Additionally, in order to increase the usability of multiple media serial distributions, the
following guidelines should be used and in decreasing importance:

• Each medium should contain complete files wherever possible. If a file is larger than the the
capacity defined by the media_capacity option, then the behavior is implementation defined.

• Each medium should contain complete filesets whenever possible or practical. The
fileset.media_sequence_number attribute is the number of the medium where the fileset begins.
If a fileset is larger then the medium size, then the fileset.media_sequence_number attribute
contains the list of media.sequence_numbers describing the media that contain this fileset.

• Each medium should contain complete products whenever possible or practical.

• Each medium should contain needed dependencies whenever possible or practical.

Thus a conforming implementation is able to:

• Read the INDEX off of the first medium for the Selection Phase

• Scan the first medium (and those following as needed) for the necessary catalog files for the
Analysis Phase

• Request the next needed medium for the next needed fileset based on media_sequence_number
during the Execution Phase

• Request the next medium when the fileset spans media

Note that in all respects, a serial distribution conforms to the specifications of the extended cpio
or extended tar archives. See POSIX.1. This includes, but is not limited to, the following:

• Recording format

• Character sets

148 CAE Specification

Appendix A

Sample File Coding

A.1 Defaults File
The following is an example defaults file:

File: /var/adm/sw/defaults
Description: This file contains example system defaults

swinstall.allow_downdate =false
swinstall.allow_incompatible =false
swinstall.ask =false
swinstall.autoreboot =false
swinstall.autoselect_dependencies =true
swinstall.defer_configure =false
swinstall.distribution_source_directory =/var/spool/sw
swinstall.enforce_dependencies =true
swinstall.enforce_dsa =true
swinstall.enforce_locatable =true
swinstall.enforce_scripts =true
swinstall.installed_software_catalog =/var/adm/sw/catalog
swinstall.logfile =/var/adm/sw/swinstall.log
swinstall.loglevel =1
swinstall.reinstall =false
swinstall.select_local =true
swinstall.software =
swinstall.targets =
swinstall.verbose =1

swcopy.autoselect_dependencies =true
swcopy.distribution_source_directory =/var/spool/sw
swcopy.distribution_target_directory =/var/spool/sw
swcopy.enforce_dependencies =true
swcopy.enforce_dsa =true
swcopy.logfile =/var/adm/sw/swcopy.log
swcopy.loglevel =1
swcopy.recopy =false
swcopy.select_local =true
swcopy.software =
swcopy.targets =
swcopy.verbose =1

swremove.autoselect_dependents =false
swremove.distribution_target_directory =/var/spool/sw
swremove.enforce_dependencies =true
swremove.enforce_scripts =true
swremove.installed_software_catalog =/var/adm/sw/catalog
swremove.logfile =/var/adm/sw/swremove.log
swremove.loglevel =1

Systems Management: Distributed Software Administration 149

Defaults File Sample File Coding

swremove.select_local =true
swremove.software =
swremove.targets =
swremove.verbose =1

swconfig.allow_incompatible =false
swconfig.allow_multiple_versions =false
swconfig.ask =false
swconfig.autoselect_dependencies =true
swconfig.autoselect_dependents =false
swconfig.enforce_dependencies =true
swconfig.installed_software_catalog =/var/adm/sw/catalog
swconfig.logfile =/var/adm/sw/swconfig.log
swconfig.loglevel =1
swconfig.reconfigure =false
swconfig.select_local =true
swconfig.software =
swconfig.targets =
swconfig.verbose =1

swask.autoselect_dependencies =true
swask.distribution_source_directory =/var/spool/sw
swask.distribution_source_serial =/dev/rmt/dat
swask.logfile =/var/adm/sw/swask.log
swask.loglevel =1
swask.software =
swask.targets =
swask.verbose =1

swmodify.distribution_target_directory =/var/spool/sw
swmodify.installed_software_catalog =/var/adm/sw/catalog
swmodify.files =
swmodify.logfile =/var/adm/sw/swmodify.log
swmodify.loglevel =1
swmodify.select_local =true
swmodify.software =
swmodify.targets =
swmodify.verbose =1

swverify.allow_incompatible =false
swverify.autoselect_dependencies =true
swverify.check_contents =true
swverify.check_permissions =true
swverify.check_requisites =true
swverify.check_scripts =true
swverify.check_volatile =false
swverify.distribution_target_directory =/var/spool/sw
swverify.enforce_dependencies =true
swverify.enforce_locatable =true
swverify.installed_software_catalog =/var/adm/sw/catalog
swverify.logfile =/var/adm/sw/swverify.log
swverify.loglevel =1
swverify.select_local =true
swverify.software =
swverify.targets =

150 CAE Specification

Sample File Coding Defaults File

swverify.verbose =1

swlist.distribution_target_directory =/var/spool/sw
swlist.installed_software_catalog =/var/adm/sw/catalog
swlist.one_liner =revision title
swlist.select_local =true
swlist.software =
swlist.targets =

swpackage.distribution_target_directory =/var/spool/sw
swpackage.distribution_target_serial =/dev/rmt/dat
swpackage.enforce_dsa =true
swpackage.follow_symlinks =false
swpackage.logfile =/var/adm/sw/swpackage.log
swpackage.loglevel =1
swpackage.media_capacity =1330
swpackage.media_type =directory
swpackage.psf_source_file =psf
swpackage.software =
swpackage.verbose =1

Systems Management: Distributed Software Administration 151

Product Specification File Sample File Coding

A.2 Product Specification File
The following is an example product specification file:

File: psf.posix
Description: This illustrates the structure of a typical application
software product.
distribution
Vendor definition

vendor
tag FineSoft
title Fine Software Corporation

description "Fine Software Corporation
1233 Technology Way
Sunset Bay, Ca, 90456
1-800-555-1231"

Bundle definition:
bundle

tag POSIX-SM
title POSIX 1387 System Management
revision 1.0
vendor_tag FineSoft
contents POSIX-Printer,r=4.0 POSIX-Software,r=2.0
contents POSIX-User,r=1.0

Product definition:
product

tag POSIX-Software
title POSIX 1387.2 Software Administration Utilities
revision 2.0
vendor_tag FineSoft
number J2326AA
description < /build/data/description
copyright < /build/data/copyright
machine_type 9000/[78]*
os_name HP-UX
os_release ?.09.*
os_version ?
directory /

Subproduct definitions:
subproduct

tag Manager
title management utilities
contents commands agent man

subproduct
tag Agent
title target daemon and agent
contents agent man

Fileset definitions:
fileset

tag commands
title Commands (management utilities)
configure scripts/configure.data
prerequisite POSIX-Software.agent
directory /build/usr/sbin /usr/sbin/
file swinstall
file swconfig

152 CAE Specification

Sample File Coding Product Specification File

file swcopy
file swlist
file swremove
file swverify
file swpackage

fileset
tag agent
title Agent (target agent)
configure /build/system/SD-AGENT/customize
unconfigure /build/system/SD-AGENT/decustomize
file /build/usr/sbin/swagentd /usr/sbin/swagentd
file /build/usr/lbin/swagent /usr/lbin/swagent

fileset
tag man
title Manual (man pages)
directory /build/usr/man/man8 /usr/man/man8
file swinstall.8
file swcopy.8
file swremove.8
file swlist.8
file swverify.8
file swconfig.8
file swpackage.8
file swagent.8
file swagentd.8
directory /build/usr/man/man4 /usr/man/man4
file swpackage.4

Systems Management: Distributed Software Administration 153

Software Packaging Layout Sample File Coding

A.3 Software Packaging Layout
The following is an example software packaging layout created from the PSF in Section A.2 on
page 152, for a distribution located at /var/spool/sw/ :

catalog
catalog/INDEX
catalog/dfiles
catalog/dfiles/INDEX
catalog/dfiles/INFO
catalog/POSIX-Software
catalog/POSIX-Software/pfiles
catalog/POSIX-Software/pfiles/INFO
catalog/POSIX-Software/agent
catalog/POSIX-Software/agent/INFO
catalog/POSIX-Software/agent/configure
catalog/POSIX-Software/agent/unconfigure
catalog/POSIX-Software/commands
catalog/POSIX-Software/commands/INFO
catalog/POSIX-Software/commands/configure
catalog/POSIX-Software/man
catalog/POSIX-Software/man/INFO
POSIX-Software
POSIX-Software/agent
POSIX-Software/agent/usr
POSIX-Software/agent/usr/lbin
POSIX-Software/agent/usr/lbin/swagent
POSIX-Software/agent/usr/sbin
POSIX-Software/agent/usr/sbin/swagentd
POSIX-Software/commands
POSIX-Software/commands/usr
POSIX-Software/commands/usr/sbin
POSIX-Software/commands/usr/sbin/swinstall
POSIX-Software/commands/usr/sbin/swpackage
POSIX-Software/man
POSIX-Software/man/usr
POSIX-Software/man/usr/man
POSIX-Software/man/usr/man/man4
POSIX-Software/man/usr/man/man4/swpackage.4
POSIX-Software/man/usr/man/man8
POSIX-Software/man/usr/man/man8/swagent.8
POSIX-Software/man/usr/man/man8/swagentd.8
POSIX-Software/man/usr/man/man8/swconfig.8
POSIX-Software/man/usr/man/man8/swcopy.8
POSIX-Software/man/usr/man/man8/swinstall.8
POSIX-Software/man/usr/man/man8/swlist.8
POSIX-Software/man/usr/man/man8/swpackage.8
POSIX-Software/man/usr/man/man8/swremove.8
POSIX-Software/man/usr/man/man8/swverify.8

154 CAE Specification

Sample File Coding INDEX File

A.4 INDEX File
The following is an example INDEX file for the software packaging layout in Section A.3 on
page 154.

distribution
layout_version 1.0
uuid 944B41Z-X135

media
sequence_number 1

vendor
tag FineSoft
title Fine Software Corporation
description "Fine Software Corporation

1233 Technology Way
Sunset Bay, Ca, 90456
1-800-555-1231"

bundle
tag POSIX-SM
title POSIX 1387 System Management
revision 1.0
vendor_tag FineSoft
contents POSIX-Printer,r=4.0 POSIX-Software,r=2.0 POSIX-User,r=1.0

product
tag POSIX-Software
instance_id 1
control_directory POSIX-Software
revision 2.0
vendor_tag FineSoft
title POSIX 1387.2 Software Administration Utilities
description "The objective of this standard is to address this
problem for software administration, a specific area of system
administration, and to contribute to the overall solution of
administering computing environments, both stand-alone and
distributed.

In pursuit of this goal, this standard defines a set of utilities,
a set of objects acted upon by those utilities, a set of information
maintained about installed software, and the layout on a physical
medium of software awaiting installation.
These definitions provide the flexibility necessary for system
administrators to enforce policies suitable to their environments."
directory /
machine_type 9000/[78]
os_name HP-UX
os_release ?.09.
os_version ?
all_filesets agent commands man
number J2326AA
copyright <copyright

subproduct
tag Agent
title target daemon and agent
contents agent man

subproduct
tag Manager
title management utilities
contents commands agent man

fileset

Systems Management: Distributed Software Administration 155

INDEX File Sample File Coding

tag agent
control_directory agent
size 5333089
title Agent (target agent)
state available

fileset
tag commands
control_directory commands
size 8531074
title Commands (management utilities)
state available
prerequisite POSIX-Software.agent

fileset
tag man
control_directory man
size 162749
title Manual (man pages)
state available

156 CAE Specification

Sample File Coding INFO File

A.5 INFO File
The following is an example INFO file for the software packaging layout in Section A.3 on page
154, and the INDEX file in Section A.4 on page 155.

control_file
path INFO
size 638
tag INFO

control_file
path configure
size 3023
tag configure

control_file
path unconfigure
size 375
tag unconfigure

file
path /usr/lbin/swagent
type f
size 2973696
cksum 3139283961
mode 0555
uid 0
gid 3
owner root
group sys
mtime 739080771

file
path /usr/sbin/swagentd
type f
size 2355200
cksum 1313249400
mode 0555
uid 0
gid 3
owner root
group sys
mtime 739081332

Systems Management: Distributed Software Administration 157

Control Script Sample File Coding

A.6 Control Script
The following is an example control script for the software packaging layout in Section A.3 on
page 154, the INDEX file in Section A.4 on page 155, and the INFO file in Section A.5 on page
157.

#
agent configure script
#
PATH=$SW_PATH
ROOT=$SW_ROOT_DIRECTORY
BASE_DIR=$ROOT/$SW_LOCATION
MY_CATALOG=$SW_ID
MY_CONTROL_DIR=$SW_CONTROL_DIRECTORY
MY_SCRIPT=$SW_CONTROL_TAG
OPTIONS=$SW_SESSION_OPTIONS

Make sure /var/adm/sw/ exists
if [! -d $BASE_DIR/var/adm/sw]
then

mkdir -p $BASE_DIR/var/adm/sw
chmod 555 $BASE_DIR/var/adm/sw

fi

Make sure we are running on "/" (swconfig should enforce this)
if [$ROOT != "/"]
then

Exit error
echo "ERROR: Trying to run $MY_SCRIPT when root is not /."
exit 1

fi

Kill and restart the daemon
daemon_process="‘ps -e|grep swagentd|grep -v grep|awk ’{print $1}’‘"
if ["${daemon_process}" != ""]
then

kill $daemon_process
if [$? != 0]
then

Exit warning
echo "WARNING: Can not kill and restart the daemon."
exit 2

fi
fi
/usr/sbin/swagentd

Exit success
exit 0

158 CAE Specification

Sample File Coding Patch PSF Example

A.7 Patch PSF Example
product

tag OS-Core
revision B.10.01.006
architecture HP-UX_B.10.01_700
vendor_tag HP

title Core Operating System (patch)

machine_type 9000/7??
os_name HP-UX
os_release ?.10.0*
os_version *

is_patch true

category_tag critical

fileset
tag CMDS-MIN
title "Patch of csh and who"
description " Patch of csh and who ... blah blah blah."

assume that other patches to base fileset used up 004 and 005
revision B.10.01.006

ancestor OS-Core.CMDS-MIN,r=B.10.01,a=HP-UX_B.10.01_700,v=hp

is_patch true # this is a patch/sparse fileset
supersedes OS-Core.CMDS-MIN,r=B.10.01.002
supersedes OS-Core.CMDS-MIN,r=B.10.01.003

file /build2/usr/bin/csh /usr/bin/csh
file /build/sbin/who /sbin/who

end
end

Systems Management: Distributed Software Administration 159

Sample File Coding

160 CAE Specification

Appendix B

Background Information

B.1 General

B.1.1 Scope and Purpose

This Appendix provides background information on the approach adopted by the developers of
the 1387.2 Standard, and the reasons why it was specified in the way it is. It is hoped this
information will be helpful to both implementors and users.

A number of areas are not covered in the 1387.2 Standard. A few things (such as physical media)
are truly outside the scope of the Standard. However, some things are listed as either undefined
or unspecified.

The requirements for all POSIX.2 utilities and all the file system features of POSIX.1 were
significant issues in formulating this Standard. It was asserted that the underlying operating
system need not be fully POSIX.1 or POSIX.2 conformant. With the requirement left as it is,
implementation on such systems as DOS, OS/2, MVS, VMS, etc., is feasible.

Implementers of this Standard should provide some guidance to those who write scripts which
will be packaged in distributions. It is actually those scripts that have significant dependencies
on the features of the underlying operating system. Assured portability of scripts is not possible
without assurance of an interpreter and utilities. By allowing other interpreters, some
concession has been made to assist in managing existing software in the real world. The best
portability assumption is that the checkinstall , preinstall , and postinstall scripts
should not depend on features beyond those of POSIX.2 or POSIX.1. The configure scripts
run only on the systems that actually use the software, and hence they need not be as portable as
the preinstall and postinstall scripts.

This Standard specifies distributed operations without specifying the mechanism for how it is to
be achieved.

Work to specify interoperability for this Software Administration specification has been taken up
by The Open Group, which has published a specification defining interoperability using the
Distributed Computing Environment (DCE) remote procedure calls (RPC) — see reference
XDSA-DCE. Specifications for other technologies to provide distributed XDSA working will be
added as and when industry support for them becomes evident.

B.1.2 Roles

In defining standards for software administration, the concept of roles is used to specify the way
interactions occur in order for software administration to take place. Figure B-1 shows the
various roles, including those that are outside the scope of this Software Administration
specification, as well as those within that scope.

Systems Management: Distributed Software Administration 161

General Background Information

..

...

...

...

...

...

...

...

...

...

...

...

...

...

.

swinstall
swcopy

swpackage

swlist, swmodify
swinstall, swcopy, swremove

role

Manager

role

Source

software

distribution

swpackage

swcopy
swverify

swremove
swlist, swmodify

swlist

swconfig
swverify

swcopy
swinstall

data flow

control flow

swcopy
swinstall

swpackage

developed

software

Package

role

Developer

role

out of scope

installed

swinstall, swremove
swlist, swmodify
swverify
swconfig

software

Target

role

Client

role

Figure B-1 Roles in Software Administration

Distributed applications require actions to be performed in more than one place (system or
directory). These distributed portions have often been referred to as client and server. Software
administration tasks also are often initiated by different users at different times. Since the terms
client and server have implementation implications beyond the scope of this Software
Administration specification, the more neutral concept of role is introduced. This stems from a
need to refer to things that occur logically, if not physically, on what might be thought of as a
client or server. In the context of this Software Administration specification, roles are simply a
convenient way of referring to where function is apparent, with no implication for how this is
actually implemented.

It may be helpful to think of roles as separate processes, one per role, but that is only one
possible implementation. Roles may operate on separate systems, or hosts, although all roles
may operate on the same host. For example, the packager role creates an initial distribution.
When copying this distribution, the source role provides read access to the distribution files,
while the target role writes the new copy. This new copy may then be read by another source
role for another install or copy.

For any implementation, a role consists of the entire set of tasks that may occur within the role.
A task is a set of well-defined behaviors and state changes in the managed objects. Tasks are

162 CAE Specification

Background Information General

initiated by the system administrator using a specific command in the command line interface
(CLI). Tasks are defined by this Software Administration specification in terms of the state
changes on the software objects on target hosts.

As each task proceeds, different roles are involved. These roles may be realized on a single
machine or could involve a different machine for each role.

Developer Role
Where the software is developed, tested, and maintained.

This role is outside the scope of this Software Administration specification. In Figure B-1 on
page 162, software is developed by the development role in some environment that results
in it being in the developed state.

Manager Role
Where each task is initiated and is concerned with taking appropriate action at the
completion or failure of a task.

Manager control is understood as a more common need than target control, so at least that
should be supported. For this reason, the manager role sets the options for a task, and each
of the target hosts implements those options. So, any extension involves a set of ways to
define selected control over particular policies. A design for this has not been pursued
beyond recognizing the complexity of the problem.

The manager role provides the means of controlling the way software is created,
transferred, and installed. In particular it provides an administrative interface to the other
roles, enabling their activities to be controlled in a coordinated manner.

Packager Role
Where software that has been developed is organized in a form suitable for distribution.

The packager role transforms a product from the format produced by the developer role to
the format specified by this Software Administration specification for use by the next stage
of the process, the source, and manager roles. The packager role defines the requirements
for this transformation to be successful the input (the product specification file, and the files
it describes), the command line interface to initiate the transformation (swpackage) utility,
and the output of the packaging task (packaging layout).

Two distinct, but related, formats for packaged software are supported by this Software
Administration specification a structured format residing within a POSIX.1 hierarchical file
system (such as disk, CD, etc.), and a bit stream representation residing on any serial device
or file (such as tape, tar archive file, etc.).

Source Role
Where the software exists in a form suitable for distribution and hence forms a context for
the establishment of a repository of software from which the manager may choose to
distribute to the target.

Software exists in the source until it is removed by a task initiated by the manager.

The source role provides a repository where software may be stored, and provides access
for those roles that require the software.

Target Role
The target of a task.

For example, when installing software, the target is where software is installed after having
been delivered from a source. As another example, the target for a copy task command
refers to the distribution where products are added. For management tasks like removing

Systems Management: Distributed Software Administration 163

General Background Information

software, the target refers to either the installed_software objects or the distributions from
which software is being removed.

Part of the distributed model involves the target role granting permission to the manager
role to perform various software administration tasks. Authority for certain classes of tasks
may be individually controllable, for example, modifying vs. listing installed products.
While it is entirely conceivable that the target may want to restrict the way authorized tasks
are performed, it is beyond the scope of this Software Administration specification.

Client Role
Where the software is actually executed or used, which may be different from where it is
actually installed.

Software is configured for use on the client.

An example is installing for an environment where many hosts share software from one
system. Diskless systems are one example of systems that do such sharing. A manager role
initiates the install task with the source role serving the software from the distribution and
the target role installing the software on a fileserver. After the installation is complete, then
a client role on each client sharing this software performs configuration for the shared
software and the client host.

It is important to understand the difference between the target and client roles. The client role is
where the software is actually used and where configuration of the software takes place, while
the target role is where the software is installed. Although in many cases these are the same
machines, in some cases they are different and the separation of configuration from installation
is important. Each target from the targets operand of an install or configure task may identify a
target role (if installing but not configuring), a client role (if just configuring), or both (if
installing and configuring).

Two examples of when these roles refer to different machines are:

• Proxy install (installing on one system for use by another system) where configuration of the
software is done separately, because the target may not have the necessary capabilities or
information, or both, for configuring the client.

• The target is a file server, and there are multiple clients that access the software installed on
the file server. Each client may require separate configuration as targets of swconfig .

Figure B-1 on page 162 shows a split between the manager role and the other roles. The
administrative interface to software administration is provided in the manager role, from which
the individual tasks that take place in the other roles are controlled.

This Software Administration specification defines a set of utilities that is such an administrative
interface. These utilities provide basic facilities for controlling the individual tasks. Other
management applications may be built that provide much more comprehensive software
administration facilities. This Software Administration specification defines facilities that enable
management applications to control software administration across any number of systems with
conforming implementations.

One item of note among the general terms is the definition of symbolic link (see the Glossary).
While not yet standardized (see referenced document B21), symbolic links are an entrenched
part of existing practice. This Software Administration specification makes no attempt to
independently define symbolic links. Rather, the functional characteristics of symbolic links are
undefined.

164 CAE Specification

Background Information General

B.1.3 Tasks

Software administration involves the control of software throughout the software life cycle from
the organization or creation of a software object through its installation, maintenance phases,
and eventual removal.

The following tasks are identified in this Software Administration specification. The defined
utilities provide a way of accomplishing these tasks except as noted.

Install software (swinstall)
This task takes software from a source distribution and installs it on a target file system in a
form suitable to be configured on this system or another system sharing this software. Parts
of software products (subproducts or filesets) can be installed or reinstalled at different
times.

In the case where the system on which the software is installed will also be using the
software (that is, it is acting as both a target and client role), configuring the software can be
combined with the install software task.

Reinstall software (swinstall)
This task is simply installing the exact same software that was previously already installed.

Configure software (swconfig)
This task takes place on the client role that will be using the installed software.
Configuration makes that software ready to use. Configured software can also be
reconfigured as required or can be unconfigured (to deactivate a particular version or
prepare it for removal).

Update software (swinstall)
This task updates the target file system by installing a newer revision of software than is
already installed. This is also referred to as upgrading.

The new revision of software can be installed in the same location as the current revision. In
this case, the software configure scripts executed by the configure task need to handle
saving or updating the necessary configuration data.

The new revision of software can alternatively be installed in a location different than the
current revision. In this case, the old revision may be unconfigured by the unconfigure
script executed as part of the unconfigure task, and the new revision is configured by the
configure scripts executed as part of the configure task.

Downdate software (swinstall)
This task ‘‘downdates’’ the target file system by installing an older revision of software than
is already installed. This is also referred to as ‘‘downgrading’’ or ‘‘reverting.’’

The older revision of software can be installed in the same location as the current revision.
In this case, the configuration process of the older version handles the necessary changes in
configuration.

The older revision of software can alternatively be installed in a location different from that
of the current revision. In this case, the new revision can be unconfigured via the
unconfigure task, and the older revision can be configured either independently, or as part
of install.

Recover software (swinstall)
This task restores the previous version of software (if it exists) in the case where an update,
downdate, or reinstall of software fails. This Software Administration specification defines
the minimum required support for automatic recovery process in the install task.

Systems Management: Distributed Software Administration 165

General Background Information

Apply software patch (swinstall)
This task replaces part of a software fileset with a new set of files by installing a fileset with
those new files in the same location as the fileset being patched. This is also referred to as
fixing software.

Updates and patches can be implemented through standard 1387.2 facilities and control
scripts, although these control scripts can become quite complex. This Software
Administration specification also proposes significant enhancements to the standard to
facilitate these operations.

Remove installed software (swremove)
This task removes software from an installed_software object where it previously was
installed. Parts of software products (subproducts or filesets) can be removed at different
times.

If the system where the software is installed was also using the software, unconfiguring the
software can be combined with the remove software task.

Remove software patch (swremove)
This task removes a patch fileset. This is also referred to as rejecting software.

Filesets related through naming conventions and prerequisites can be used. Restoring patch
files when removing the patched can be achieved via remove control scripts.

Verify the installed software (swverify)
This task checks that software previously installed still exists and is intact. If operating on a
system that was configured to use the software, it can also check that the software is
configured properly.

List installed software information (swlist)
This task provides a list of the software that has been installed on a target. Options are
available to specify which software packages are to be listed and to control the amount of
information provided.

Fix installed software information (swmodify, swverify)
This task modifies information about software that has been installed on a target. Options
are available to specify which software packages, and what information about those
packages, are modified.

Package software (swpackage)
This task takes place in the packager role and transforms developed software into the
software packaging layout suitable for distribution. The metadata that defines the software
objects to be packaged is contained in the product specification file (PSF).

Copy distribution software (swcopy)
This task copies distribution software between a source and a target, for subsequent use of
that target as a source. Copying software can be used to merge distributions, to distribute
products to the installation targets, and then install from that local copy, or to copy part of a
distribution to a removable media for physical distribution (as opposed to electronic
distribution).

Remove distribution software (swremove)
This task removes products from a target distribution.

Check/verify distribution software (swverify)
This task checks that a target distribution exists and is intact.

List distribution information (swlist)
This task lists source or target distribution information. Options are available to specify

166 CAE Specification

Background Information General

which objects in a distribution are to be listed, and to control the amount of information
provided.

Fix distribution information (swmodify, swverify)
This task modifies information that describes, and is contained within, target distributions.
Options are available to specify which objects in a distribution are modified.

License installed software (undefined)
How software licenses are managed is undefined within this Software Administration
specification.

The task definitions were based on study of existing practice for software administration. This
included presentations on existing practice by many different system vendors and system
administrators. From these, a functionally adequate base was selected upon which all parties
could build. While it was recognized that this did not address every concern, it was felt that that
the utility descriptions (including detailed behavior), software structure definitions, and media
layout, provided an excellent starting point. After comparing various existing practices, these
choices appeared to be quite similar to other existing practices in many details of these key areas.

B.1.4 Update Requirements

This XDSA specification enhances the IEEE 1387.2 Standard in its provision for handling
updates.

Customer update requirements for software updates were perceived as follows:

• Ability to update a previous release with a new release with the same reliability,
performance and resultant functionality as installing the new release for the first time, at the
same time preserving any customer data or configuration information.

• Automatic selection of the most recent release, or manual selection of previous releases.

• For network distribution, do not necessarily redistribute files from the new release that have
not changed.

• Record that the previous release has been updated (that is, no longer exists) in the installed
software database.

• As an alternative to in-place updates, support multiple releases of software on a system,
letting the user choose which one to use.

• Goal of no down time while upgrading.

• Support automatic rollback to the previous release if the installation fails.

• Ability to store multiple releases of multiple architectures of software in the same depot.

• Easy identification of different releases of the same software.

Provider update requirements for software updates were perceived as follows:

• Ability to easily repackage and redeliver a software update.

• Ability to have a single package that supports both new installs and update of previous
installs.

• Easy management of customer data and configuration information.

• Ability to deliver multiple releases of software in the same distribution.

• Provide for automatic removal of obsolete files from the release that has been updated.

Systems Management: Distributed Software Administration 167

General Background Information

• Ability to have a ‘‘sparse’’ update, where only a subset of the files in a fileset is updated, but
the result is the same as a full update.

B.1.5 Patch Requirements

This XDSA specification enhances the IEEE 1387.2 Standard in its provision for handling
patches.

Customer patch requirements were perceived as follows:

• Ability to store patches in the same depot as other software.

• Easy identification of available or installed patches and of what filesets have been or can be
patched.

• Automatic installation and copying of patches along with their base filesets.

— Allows installation/copying of patches in the same session as the base software, or during
cold install.

• Improve patch installation performance over script based patches.

• Make patch selection easier by allowing selection of patches based on criteria (categories).

— Criteria could cover categories such as severity, quality, and special cases such as
hardware enablement.

• Provide for automatic removal of patches when software is updated, downdated, reinstalled
or removed.

• Allow automatic selection of patches matching the installed software on target.

— Installs/copies patches matching software installed on target system (or in target depot).

— Criteria categories provide additional control over selection.

• Allow rollback of patches and automatic restoration of previous versions of patched files.

— Switchable rollback capability.

— No special scripts required.

• Provide a mechanism for patch commit. ‘‘Commit’’ of a patch removes rollback information
(recovers disk space used to save previous file versions).

• Ability to list what files will be updated.

• Ability to find out what problems will be fixed by this patch.

Patch provider and support organization requirements were:

• Simplified native patch structure, improved reliability.

• Faster patch production.

• Ability to deliver patches on a single distribution media along with base software.

• Integrate ‘‘reasonably’’ into current patch processes; support both point patches and new
patches superseding one or more previous patches; support patching of libraries.

• Support patching of multiple releases.

168 CAE Specification

Background Information General

B.1.6 Conformance

The intended conformance classes defined in this Software Administration specification are
derived somewhat from the examples of POSIX.1 and POSIX.2, with variations to support
unique situations.

Implementation conformance is intended to be based on implementation of the utilities defined
in this Software Administration specification, and on the proper POSIX.1 and POSIX.2 support
from the operating system.

There is scope for a new conformance class — Distribution Conformance — to allow suppliers of
software to package their software in a conformant manner. Distributions have many of the
characteristics of applications using POSIX.2, since the distributions contain executables
(presumably shell scripts).

B.1.6.1 Implementation Conformance

This class of conformance would require support of all the POSIX.1 and POSIX.2 functionality
referenced in this Software Administration specification. The requirements from POSIX.1 are
primarily for hierarchical file system support, including the file attributes of owner, group, and
mode. In addition, the POSIX.2 utilities are required to support portable scripts.

This would assure that every Conforming Implementation would be able to install any strictly
conforming distribution properly, including the proper settings of file attributes. One might
question this need if one is installing software particular to a system that is not POSIX.1
conformant. It is the pervasive ability to serve the software over a distributed file system that
makes critical the need for all conforming implementations to understand at least one set of well
specified operating system behavior. The one set of operating system behavior chosen is
POSIX.1. The need for POSIX.2 is primarily driven by the presence of executable control files
within distributions. At least one guaranteed mechanism is required to invoke those files, and
the shell interpreter was chosen for that purpose. Further, developers of portable scripts need a
guarantee of some basic set of utilities with which to work, and the POSIX.2 utilities were
chosen for that purpose.

A conforming implementation need not include the POSIX.1 and POSIX.2 implementation itself,
but it must document how such can be obtained for the systems that the implementation
supports. It is reasonable to assume that a given implementation, conformant in the presence of
proper POSIX.1 and POSIX.2 support from the operating system, may still operate correctly on
some distributions even when the proper operating system support is not present in full or in
part.

B.1.6.2 Distribution Conformance

Strictly Conforming POSIX.2 Distribution

The Strictly Conforming Distribution class is intended to provide the highest degree of
portability for a distribution. Conformance to such a class would guarantee that any conforming
implementation could install this software properly.

Systems Management: Distributed Software Administration 169

General Background Information

Conforming POSIX.2 Distribution

The Conforming Distribution class is intended to guarantee that any conforming
implementation can copy or install this software properly. This class would also allow for
additional functionality, which may come either from implementations that can take advantage
of additional attributes, or from software being able to store and retrieve that information from
any Conforming Implementation.

Conforming POSIX.2 Distribution Using Extensions

This class is intended to allow evolution of this Standard, but in an open, consistent and well-
documented manner. Examples of this are compressed media or bootable serial media. Both of
these are features were recognized by the developers of this Standard as important, but
consensus to include them in the 1387.2 Standard was not achieved.

This class would also provide flexibility for distributions needing to conform to other constraints
related to the support of POSIX.1 and POSIX.2. There was strong support among the user
community in the 1387.2 development project for support for interpreters other than sh. Support
for other interpreters also permits the use of such distributions on systems, such as DOS, which
are not conformant with POSIX.1 or POSIX.2.

170 CAE Specification

Background Information Software Structures

B.2 Software Structures

B.2.1 Classes and Attributes

An example of the structure of the software objects for this Software Administration
specification is illustrated in Figure B-2.

Binaries

BinariesLibrariesManuals

Libraries

Fonts Runtime

Tcp-ipNfsX11R4

Runtime

Networks

installed_software @ / distribution @ /cd

systemA

Figure B-2 Example of Software Structure

At the top of the hierarchy is a host, which is a system that conforms to this Software
Administration specification. It is the starting point for finding all the software on that system
that falls within this Software Administration specification. A host contains
software_collections.

There are two distinct types of software_collections, as listed in the following, that may exist
within a conformant system:

distribution
A distribution consists of software products, in a form ready for installation. A distribution
may also contain software bundles. There may be many distributions within a host.

installed_software
An installed_software object consists of products installed from a distribution. An
installed_software object may also contain software bundles. There may be other
installed_software objects for use by this system or for other systems.

Software is organized into a hierarchy of objects, as described in the following, that are operated
on by the utilities defined in this Software Administration specification:

product
A product consists of filesets and control scripts, plus all the associated metadata. The
content of a product may be specified as a collection of subproducts, filesets, or a
combination of the two.

Systems Management: Distributed Software Administration 171

Software Structures Background Information

bundle
A bundle is a grouping of other software objects and is a convenient way to reference a set
of software.

fileset
A fileset consists of the actual files plus control scripts. Filesets are generally the lowest
level of software object that can be operated on by the utilities.

subproduct
Subproducts are a grouping of other subproducts, or of filesets, or of some combination,
that resolve to a group of filesets. Subproducts are a convenient way to aggregate filesets.

The software_files define the files and control_files that are contained in the software objects that
are operated on during a software administration utility. There are two classes of software_files
as described in the following:

control_file
Control_files consist of control scripts and other files that are used in various ways by the
utilities. Control scripts are executed by the utilities at various points in a task. Control
scripts provide a way to perform steps, in addition to those executed by the utilities, at
various points in the task such as preinstall checking, postinstall customization,
configuration, and verification. Either a single script with multiple entry points, or multiple
scripts can be defined.

Most control scripts are run on the target, which may be a different architecture than the
client on which the software operates. They should, therefore, use POSIX.2 utilities, except
where they can determine that they are running on the client.

In addition to scripts, other control_files provide input to the control scripts, or to the
utilities directly (for example, the response and space control_files).

file
Files are the lowest level of object defined by this Software Administration specification.
Files contain the attributes describing the file including the contents of the file and its
installed location.

The distributions and installed_software objects are the sources or targets of a software
administration command. The software objects (products, filesets, bundles, and subproducts)
are the objects that are being applied to those targets.

This Software Administration specification describes the structure and the attributes for
software_collections, software objects, and software_files. It also describes the behaviors for the
utilities that operate on these objects. However, these structure definitions are not managed
object classes in the ISO sense because the behaviors are not described in terms of methods
within object classes17.

Figure B-3 on page 173 shows the components of the software object hierarchy. The
containment arrows designate objects that are defined within the context of their containing
objects. An object can only exist within one containing object. The identifier of an object (for

17. Object classes are templates for the creation of object instances. They are analogous to the definition statements used in
programming languages to define data structures that will be created later. Objects contain more than data structures, in that
they also possess methods (procedures that are executed by objects). A well-formed object class has methods defined that
handle all object data manipulation, including creation, modification, and listing, so that the actual storage of the data is
appropriately hidden from the application using the objects.

172 CAE Specification

Background Information Software Structures

example, the tag attribute of a fileset) only needs to be unique within the scope of the containing
object.

The reference arrows designate objects that are included when this object is operated on. An
object may be referred to by more than one object. Bundles need not refer to entire products, but
can refer to individual filesets or subproducts. Fileset and subproduct objects can be referenced
directly by bundles by also identifying the product of which the fileset or subproduct is a part.

Software

Software

Distribution

Host

Product

Fileset

File

Bundle

Subproduct

Installed Software)

(same objects as

File

containment

reference

Collections

Hosts
Software

Software

Files Control

Software
Installed

Figure B-3 Software Object Containment

Figure B-4 on page 174 shows the software administration common classes and the software
objects that inherit attributes from these common classes.

Systems Management: Distributed Software Administration 173

Software Structures Background Information

Software Collection

Distribution

Software

Product Fileset

Bundle Subproduct

Software File

File Control File

Installed Software

Figure B-4 Software Object Inheritance

Interoperability between implementations of this Software Administration specification may be
achieved through the definition of methods for the first two of these common classes,
"software_collections" and software. The software_collections are the source and target objects
for software administration, while the software objects are the objects that are operated on
within the context of the software_collections. Operations on individual software_files
independent of operations on software objects is undefined.

This Software Administration specification also does not define how remote file systems are
managed. In the simplest case, each file system is ‘‘local’’ to a single host, and all installations
may be directed to the file system through an agent process on that host. Thus, files on a file
system are contained within one of the installed software collections contained below that host.

174 CAE Specification

Background Information Software Structures

On the other hand, an implementation may also choose to allow installation to a remote file
system over a remote file system protocol. That is, the target process is running on a host that is
different from the one that contains the file system. In this case, the files on that file system may
be contained within the same software collection as before, or may be contained within a local
software collection. In another implementation, all software collections may be stored within a
global naming service instead of below any particular host.

An implementation may choose to define a software host object, or manage software as part of a
more general host object. The attributes of a host object that are of interest to this Software
Administration specification are shown in Table B-1.

Table B-1 Possible Attributes of a Host Class

Attribute Length Permitted Values Default Value

host Undefined Portable character set None

os_name 32 Portable character set None
os_release 32 Portable character set None
os_version 32 Portable character set None
machine_type 32 Portable character set None

List of distribution directoriesdistributions Undefined Empty list
List of installed_software
directories and catalog
identifiers

installed_software Undefined Empty list

The following are the attributes of the hosts that contain software_collections managed by this
Software Administration specification:

distributions
The list of distribution.path attributes for distributions in the software host object.

These describe the PATHNAMEportion of a software_collection source or target.

host
Identifier used to specify the host portion of a software source or target.

Identification of a remote host system is dependent on the networking services
implementation and thus the syntax and semantics of the host name is undefined within
this Software Administration specification.

installed_software
The list of installed_software path and installed_software catalog attributes for
installed_software objects in the software host object.

These describe the PATHNAMEportion of a software_collection target.

machine_type
Corresponds to the machine member of the uname() structure defined in POSIX.1 section
4.4.1.

It is the hardware type on which the system is running.

Systems Management: Distributed Software Administration 175

Software Structures Background Information

os_name
Corresponds to the sysname member of the uname() structure defined in POSIX.1 section
4.4.1.

It is the name of this implementation of the operating system.

os_release
Corresponds to the release member of the uname() structure defined in POSIX.1 section 4.4.1.

It is the release level of the operating system implementation.

os_version
Corresponds to the version member of the uname() structure defined in POSIX.1 section
4.4.1.

It is the version level of this release of the operating system.

B.2.2 Software_Collection

This class definition exists for convenience in defining the classes that inherit from it. It is not
intended that any direct instances of this class be created, but only of the classes that inherit
from it.

Multiple versions of products and bundles are possible when subsequent releases of a product
or bundle have different revision numbers, and when products or bundles targeted for different
machine types or other OS attributes define the architecture attribute differently.

The layout_version attribute is the version number of this Software Administration specification
to which the distribution conforms. The name of this Software Administration specification (for
example, P1387.2-19xx) was considered but there was concern that the delay between IEEE
acceptance and ISO acceptance would make it hard to pick the year correctly. It is not clear
when to change the number from 1.0 to 1.1 or even from 1.x to 2.0.

It is possible for an INDEX file describing a distribution to contain products with different
values of layout_version . The software_collection layout_version refers only to the format of the
distribution attributes and the product keyword. After the product keyword, the product
layout_version defines the format of the definitions of all objects within that product.

B.2.3 Distribution

POSIX.1 allows for different pathname and filename sizes. Thus it is possible for a distribution
to be created on one system and not be readable or installed on another system (each of which
conforms with this Software Administration specification) because of differences in their
POSIX.1 {NAME_MAX} and {PATH_MAX}. Consideration was given to attributes defining the
longest sizes of file names and paths on a distribution, but these were not included since their
use could neither ensure failure nor success of installing or copying a particular product from
the distribution. Another issue implementors should consider is the maximum name and path
that may be contained within a supported archive.

The need for the media_sequence_number attribute is to number the tapes (or disks or whatever) if
a distribution is on more than one of them. If there is only one, then its number is 1.

The following attributes at one point were listed as distribution attributes. However, it was
determined that the only time it could be guaranteed that these attributes were accurate was for
an initial distribution definition. As soon as a swcopy or swremove operation occurred on a
distribution, the attributes could be invalid because it would be impossible to modify these
attributes in any logical manner based on the operation. It is recognized that these attributes are
valuable and many vendors may choose to put them in as vendor extensions.

176 CAE Specification

Background Information Software Structures

tag
A short name associated with the distribution, used for selecting the distribution from the
command line

title
A longer name used for display purposes.

description
A more detailed description of the contents of the distribution.

revision
A revision associated with the distribution.

media_type
Describes the type of media being used (for example, CD-ROM, 8 mm, etc.)

copyright
The copyright notice for the distribution.

create_time
The date, in seconds since the Epoch, when the distribution was made.

number
The vendor part number for the distribution.

architecture
A sequence of characters used by a vendor to describe the machine or product. This is
presumably more ‘‘user friendly’’ than the values returned by the uname utility.

Usually distributions will be created upon creation of the first product with swpackage or swcopy .
Usually distributions will be removed as a part of removing the last product with swremove. An
implementation may choose to provide more explicit control for creation and deletion of empty
distributions. The swcopy and swremove utilities should be used for this purpose. The swmodify
utility may also be used.

B.2.4 Media

This section is inserted to maintain parallel numbering with the main section numbering in
Chapter 2 on page 5. No additional rationale is required under this heading.

B.2.5 Installed_Software

The installed_software catalog may be located by something as simple as a pathname where the
catalog is stored as a file, or it could be located in a more complicated fashion such as with a key
from a directory service used to identify all or part of a database.

B.2.6 Vendor

The vendor.tag attribute is intended to distinguish software objects from different vendors that
happen to have the same product.tag . A vendor should attempt to choose a vendor.tag that is
unique among all vendors.

Systems Management: Distributed Software Administration 177

Software Structures Background Information

B.2.7 Category

This section is inserted to maintain parallel numbering with the main section numbering in
Chapter 2 on page 5. No additional rationale is required under this heading.

B.2.8 Software

This class definition exists for convenience in defining the classes that inherit from it. It is not
intended that any direct instances of this class be created, but only of the classes that inherit
from it.

This standard has defined four related software objects:

• Products

• Filesets

• Bundles

• Subproducts

See Figure B-4 on page 174. Implementations are encouraged to present these to the user as
hierarchy of similar ‘‘software’’ objects, and to actually implement these so that they differ only
as needed. That is to say, an implementation should use inheritance from a common class as
much as possible. The rationale for the four differently named software objects is as follows:

• Products and filesets are concepts firmly entrenched in existing practice. All of the many
practices that have contributed to this standard have included these two levels. Manageable
software objects necessarily includes some files to manage. This is the basis of a software
product. Additionally, most application software has both required and optional pieces, so
often only a subset of the product may be installed. Thus, a fileset is chosen as a ‘‘set of files’’
and a product is a collection of filesets that have a number of shared attributes, and are
distributed in a single distribution (usually from a single vendor).

• It was agreed that a ‘‘recursive notational convenience’’ was very desirable. Additionally,
many (but not all) existing practices had realized the need for various overlapping groupings
of software into new ‘‘configurations.’’ Bundles and subproducts are merely ‘‘macro’’ or
‘‘recursive’’ products and filesets, respectively. Just as products and filesets are a bit
different, the use of bundles and subproducts are a bit different. Bundles provide a way to
make products out of existing products or parts of products. Subproducts provide a way to
provide selectable units that may overlap in fileset contents. For example, a fileset may be
part of ‘‘runtime’’ support as well as ‘‘development’’ environment subproducts. Finally,
bundles and subproducts are recursive in that they may contain other bundles and
subproducts, respectively.

• The containment of filesets and subproducts within products allows for derived naming of
components of a product that is, a simple tag for a component relative to a more complex
name (tag , revision , vendor_tag , architecture) for a product. In addition, this leads to
distributions with a simple directory structure for filesets within products.

The need to localize the following descriptive software and vendor attributes was recognized
title , description and copyright . However, since the existing practice for localization of software
information files in portable media is immature, this has been deferred to a possible future
revision of this Software Administration specification.

178 CAE Specification

Background Information Software Structures

Until a future revision of this Software Administration specification addresses localization, one
recommended way to internationalize these attributes is to create vendor-defined attributes with
the format:

keyword.<LANG>

where keyword is ‘‘description.’’, ‘‘title", or ‘‘copyright’’, and <LANG> is the value of the LANG
environment variable. An implementation should then recognize if LANG is set to a value other
than its default and search for a corresponding attribute. If that attribute does not exist, then the
default one will be used. For example:

product
tag GreatProduct
title "This is great!"
title.FRENCH "C’est magnifique!"
title.GERMAN "Sehr gut!"
description"Long boring paragraph why this is great"
description.FRENCH "...
description.GERMAN "...
. . .

Note that the tag , revision , and other attributes that affect the defined behavior of the
implementation, shall not be internationalized. For this revision of this Software Administration
specification, this includes all defined attributes except title , description , and copyright .

The size for the software may be larger than that supported by the POSIX.1 size_t structure since
software can contain many files. It is recommended that an implementation allocate at least 64 b
for the internal storage of the software size attribute.

B.2.9 Products

The value of the revision attribute is interpreted as a . (period) separated string, as defined in
Section 2.9.0 on page 17, and further in Section 3.4.1 on page 38. This definition permits the use
of such a string, but does not require it. The string can be constructed entirely without the use of
periods. An example of the comparison is:

A1.003.01 < A.004.00 < B.000.00
A1_003_01 < A_004_00 < B_000_00
First < Second < Third
First < Fourth < Second

Historically, some implementations computed the value of instance_id sequentially, while other
implementations have used an algorithm based on the product tag , vendor_tag , and the various
machine type attributes. No implementation is specified, other than to guarantee that the tag
and instance_id uniquely identify the product within the distribution or installed_software
object. This is to make it easier to specify a particular product when there are other products
sharing the same tag as would be the case when there are different product instances in a
distribution for several machine types or multiple concurrent versions on a host.

The vendor_tag attribute is intended to be universally unique to distinguish product and bundle
software objects that otherwise would be treated as the same object if the tag , revision , and
architecture attributes were the same. Guaranteeing universal uniqueness is difficult at best, and
no need was seen at present to cause the value of vendor_tag to be either some sort of machine-
generated universally unique value or officially registered.

Multiple versions of the ‘‘same’’ product or bundle (ones with the same value for the tag
attribute) is supported by each version possessing values of the version distinguishing attributes

Systems Management: Distributed Software Administration 179

Software Structures Background Information

unique within that installed software catalog.

The architecture attribute should include information related to four uname() structure members.
The architecture attribute is needed for software_spec s since the patterns used for
determining compatibility in the attributes related to uname() can be somewhat complex and
contain patterns, while software_spec s themselves can contain patterns.

It is recommended that a set of guidelines be used for the architecture attributes to maintain a
consistent ‘‘syntax’’ for related architectures. This increases the usability of this field for users
selecting software. An example guideline is to order any information contained in the value of
the attribute in a consistent way, separated by a consistent delimiter. For example:

architecture sunos_4.1_sun4

for a product with the attributes:

os_name sunos
os_rev 4.1.*
os_ver *
machine_type sun4*

Another example is:

architecture hp-ux_9_pa-risc

for a product with the attributes:

os_name hp-ux
os_rev 9.*|10.*
os_ver [a..e]
machine_type 9000/[6..8]???

Product machine attributes describe the target systems on which this product may be installed.
Each of these keywords are related to a POSIX.1 uname() member and may be defined as a
simple string, or a software pattern matching notation. How compatible software is determined
depends on whether the products are being installed on the system that will be using them, or
whether the installation will be used by other systems with perhaps different attributes.

If a uname attribute is undefined, the behavior is essentially the same as if it were defined to be
* (meaning compatible with all systems).

The product directory for an application should be the directory that is part of all paths in the
product. Thus, if an application has three filesets that contain files below /appl/console ,
/appl/agent , and /appl/data respectively, the product.directory attribute should be set to
/appl . If a user relocates the product with a command like:

swinstall appl,r=1.0,l=/disk2/appl

then all three filesets have the same location attribute. If the user relocates the product to three
different locations:

swinstall appl.console,r=1.0,l=/disk1/appl
swinstall appl.agent,r=1.0,l=/disk2/appl
swinstall appl.data,r=1.0,l=/disk3/appl

then each fileset will have a different location attribute. There will be three product instances
containing the three filesets (since products versions are distinguished by location), but the user
can still identify all three filesets as one with the specification:

swverify appl,r=1.0,l=*

180 CAE Specification

Background Information Software Structures

Alternatively, the user could relate all these locations with the same version qualifier, such as
"q=current" as follows:

swinstall appl.console,r=1.0,l=/disk1/appl,q=current
swinstall appl.agent,r=1.0,l=/disk2/appl,q=current
swinstall appl.data,r=1.0,l=/disk3/appl,q=current

and subsequently identify all pieces with:

swverify appl,q=current

The postkernel attribute supports the ability to install one operating system in proxy (to an
alternate root) by another implementation that does not understand that operating system. All
products that contain kernel filesets that will be installed into the same installed_software object
should have the same path defined. There should be one core OS kernel fileset that includes this
path in its set of files so that it has been installed by the time the postkernel script is executed.

In general, a product with no preinstall or postinstall scripts is recoverable. However,
if there are preinstall or postinstall scripts, then unpreinstall and
unpostinstall scripts shall be provided if any steps need to be undone to support
autorecovery.

There was an issue whether dependencies should be an attribute of a product. The following
types of dependencies have been discussed:

• Fileset to fileset within a product.

• Fileset to (some other) product.

• Fileset in one product to fileset in another product.

• Product to product.

• Product to fileset in some other product.

• Product to fileset in that product (essentially mandatory fileset).

The last three dependency types are not necessary if the first three types exist (which they do),
since those dependencies can be specified in terms of the others. For example, if an entire
product depends on a second product, then the second product can be defined as a dependency
for all filesets in the first product.

The developers of this Software Administration specification recognized that numerous
additional dependency requirements are possible, particularly for software updates. These may
be handled via checkinstall scripts, and can be considered for future revisions of this
Software Administration specification.

The intention behind the inclusion of the layout_version attribute within a product is that it be
required if its value is different than that for its associated software_collection .

B.2.10 Bundles

Bundles serve two purposes they allow the software supplier to group different subsets of
products into new configurations or products, and they allow the software administrator to
build useful groups of software (configurations) from already defined bundles and products.

The bundle class does not have location or directory attributes. This is because
software_spec s within the bundles can refer to products with different default directory
attributes or even products that have been relocated.

Systems Management: Distributed Software Administration 181

Software Structures Background Information

Bundles have ‘‘uname’’ attributes that only have any value if the bundle aggregate has a
different compatibility than that of any of its contents. Besides offering more control to the
person defining the bundle, it is useful in a GUI that wants to only display compatible software
by default. For example, a bundle may contain one product that operates on a system with an
uname attribute of ‘‘A’’ and another product that operates on systems with uname attributes of
‘‘A’’ or ‘‘B’’. In this case, it might be useful to define the bundle attribute to be ‘‘A’’. Since it is
possible that not all the bundles contents exist in a particular distribution or installed_software
object, it may not be possible to determine the compatibility of the bundle in all cases unless the
bundle attributes are also defined.

The vendor_tag attribute is intended to be universally unique to prevent naming clashes for
similarly named products and bundles from different vendors. Guaranteeing universal
uniqueness is difficult at best; it was deemed unnecessary at present to cause the value of
vendor_tag to be either some sort of machine-generated universally unique value or officially
registered.

The intention behind the inclusion of the layout_version attribute within a bundle is that it be
required if its value is different than that for its associated software_collection .

The value of the bundlecontents attribute is not modified when a location is specified for a
bundle, allowing future resolutions of its contents to remain consistent. For example, assume
bundles "CAT" and "DOG", and products "FOO" and "BAR" , all with directory attributes
defined as "/" :

bundle
tag CAT
contents DOG,l=/dog BAR,l=/bar

bundle
tag DOG
contents FOO,l=/foo

When the bundle "CAT" is installed and relocated to /cat , the following objects are installed:

CAT,l=/cat
DOG,l=/cat/dog
FOO,l=/cat/dog/foo
BAR,l=/cat/bar

So, when resolving "CAT,l=/cat" in installed software, applying the proper locations to the
software_spec s in the contents will result in the same software_spec s in the installed
software.

Bundle definitions are only copied or installed when explicitly specified since they are external
to the product and not always applicable to the use of the product installed. The creator of a
product has no control over what bundles reference it. For example, a product may be a member
of numerous bundles, and many of those bundles will likely have nothing to do with the bundles
and products chosen to be installed. Also, see Section B.2.12 on page 183.

Bundles and subproducts have lists defining their contents that are always copied (contents is a
static attribute). So, if a partial bundle or product is copied, the value of the contents attribute
does not change. However, by comparing that attribute to what objects are actually installed,
‘‘completeness’’ of a bundle or subproduct can be determined.

182 CAE Specification

Background Information Software Structures

B.2.11 Filesets

The media_sequence_number is used for serial distributions to describe which media the archive
containing the fileset starts on. There is generally one archive per media, unless a fileset is larger
than a media. Each media has a unique sequence number whether it begins an archive or
continues a previous one.

At one point a fileset class attribute existed that could contain the value of recommended,
mandatory, or optional. The attribute was removed because it was felt that this Software
Administration specification could not specify any behavior for the attribute. It would be
possible to make a specific fileset mandatory by having all other filesets in that product specify it
as either a prerequisite or corequisite.

Another way to handle recommended, mandatory, or optional filesets would be to create
subproducts with tags of the appropriate names. Although this Software Administration
specification does not specify any behavior based on the name of subproduct tag, a specific
implementation could define behavior as an extension.

When there is a dependency on a software item that is the ancestor of a new software item, it is
desirable for the standard to allow that new software item to meet that dependency. This is
more complex than might initially be apparent, since dependencies and ancestor definitions
involve ranges of revisions and other expressions. The working group felt a separate
‘‘supersedes’’ attribute might be a better solution, so explicit supersede control is separate from
the ancestor/match_target functionality. Requiring supersedes to be fully qualified software
specs only would help eliminate the ‘‘pattern-to-pattern’’ comparisons.

Patches do not have to supersede other patches in the same fileset. This allows ‘‘point’’
patching: separate patches that patch separate parts of the same fileset.

Patches that supersede all previous patches (cumulative patches) can be specified with a single
software_spec if a patch strategy uses the same product and fileset tags, and an ascending
revision numbering scheme.

Example:

supersedes product.fileset,r<revision

B.2.12 Subproducts

Unlike bundles, subproduct definitions (that are internal to a product) are copied or installed
when any fileset specified in the contents attribute of the subproduct is copied or installed.
Products are meant to be sets of related software and are usually created and managed by one
person or organization. Additionally, subproducts are normally used to specify useful subsets
of filesets within the product, which in turn are useful for dependencies. With subproducts, the
‘‘parts make up the whole.’’

B.2.13 Software_Files

This class definition exists for convenience in defining the classes that inherit from it. It is not
intended that any direct instances of this class be created, but only of the classes that inherit
from it.

The compression_type attribute allows compressing and uncompressing of individual files during
swcopy , and uncompressing during swinstall . The way in which an implementation uses this
attribute is undefined, although the general thought was that this would normally be the name
of a compression/uncompression routine with a simple interface.

Systems Management: Distributed Software Administration 183

Software Structures Background Information

An implementation should be flexible in locating routines specified by compression_type,
utilizing any or all of the following:

• Built-in knowledge of the compression_type format for compressing and uncompressing

• The product control directory for a program named in compression_type

• PATH on the target system for a program named in compression_type

No particular compression method is specified in the standard largely because the developers of
this Software Administration specification saw no standard for file compression and did not
want to specify all of the details of the compression methodology as part of this Software
Administration specification. It was generally agreed that to achieve adequate interoperability, a
single method of consensus should be supported by all implementations. It is likely that the
format used by the gzip utility is appropriate for all implementations. Each implementation may
support any number of other methods.

The interface to the compression routine was also left unspecified. It is recommended that input
be taken from stdin and output be directed to stdout, that the routine operate with no option to
imply compress, and that a -u option imply uncompress. However, specific compression
routines may require more complex interfaces.

The group also considered archiving of compressed files, that is, concatenation or other
combination into a single file. The main purpose of this would be to save cluster space on
diskette distributions. It was finally decided that the risks for current standardization were too
high especially if an archive extended over more than one diskette and the issue was left
implementation dependent. In implementing this, there should be consideration of the
following factors:

• A new archive_source attribute to indicate that the file contents are within a named archive.

• Defining a new fileset archive_type attribute with values of empty string, cat , or the name of
an archive routine like tar . The type cat indicates simple appending to an archive file. If
cat (or even possibly tar) were used, an archive_offset attribute would indicate where
within the archive the file started. This could be used for fast single-file extraction using
either size or compressed_size.

• Extended options on swcopy for archive_files and archive_type (similar to compress_files and
compression_type). The uncompress_filestrue option on swcopy would both unarchive and
uncompress.

• An archiver interface that permitted appending or extracting one file at a time.

• The archiver, like the compressor, could be distributed in the product control directory.

Finally, compression support for swpackage was considered, and deemed as unnecessary, since
compression can be achieved by copying after packaging. But an implementation can easily add
attributes to achieve this function.

184 CAE Specification

Background Information Software Structures

B.2.14 Files

The letters chosen for the file type attribute are consistent with the syntax of the find utility with
the -type option, as defined in POSIX.2. Hard links are not specifically mentioned in POSIX.1
section 5.6.1.1. Symbolic links are not mentioned in POSIX.1 but are included to support existing
practice. Work to standardize symbolic links is included in referenced document [B21]".

Implementations running on operating systems that do not support a POSIX.1 file system can
interpret the defined attributes in any appropriate way. Any implementation can extend file
attributes with additional attributes appropriate to the file system in question. To avoid
confusion when defining new attributes for a particular file system, it might be best to prefix
such attributes with a designator of the file system. An example, for a FAT file system, might be
the attributes FAT_Hidden and FAT_Readonly .

There was some debate whether the major and minor attributes are appropriate or not since there
is no standard that specifies how these files are created. In addition, this Software
Administration specification specifies that the serial distribution be in POSIX.1 cpio or tar format;
however these attributes are biased towards tar format as opposed to cpio format.

Considered was a size file type (z) that was removed in favor of the space control_file similar
to SVR4. An implementation may choose to internally implement a size type or a separate
size_file object to represent the data from this file.

The developers of this Software Administration specification considered an is_exclusive
(directory) attribute that was removed due to objections that the utilities would remove files that
they did not have recorded in their database. Also, this was not a common need, and can be
implemented either as vendor extension or by having software fix script implement similar
functionality.

There has been much discussion about compression being handled within the scope of this
Software Administration specification. Currently there are ways that both implementations and
individual software products can handle compression. Compression can be handled through
cooperation of the source and target roles, if they are from the same implementation. Software
vendors can choose to ship their files compressed and uncompress them as part of the
postinstall script. They can add a space control_file to account for the extra space
required.

A similar need would apply to other post processing, such as for ANDF files that are processed
as part of postinstall or configuration.

Though it may be adequate for protecting against accidental damage, the existing POSIX.2 cksum
is considered inadequate for virus protection. Implementations may wish to create additional
vendor-defined attributes and utility behaviors for this purpose.

Each of the prerequisite or corequisite dependency_spec s in the list is required to resolve
successfully in order for dependencies to be met. Also, a dependency_spec can contain
alternate software_spec s separated by the | (vertical line) character (see Section 3.4.1 on
page 38). So, if a fileset has a corequisite dependency on software, expressed with a Boolean
equation (A|B|C)&(D|E) , this can be specified in a PSF as:

corequisite A|B|C
corequisite D|E

There are files (particularly for OS software such as /etc/rc for SVR4 and autoexec.bat
for DOS) that are modified between software update times. These may be termed modifiable
files. Although OS modifiable files are slowly being replaced by mechanisms where applications
can simply add their own requirements as separate read-only files in a particular directory, there
currently would be some value in supporting features where modifiable files are compared with

Systems Management: Distributed Software Administration 185

Software Structures Background Information

the original files to see what changes need to be applied during software updates. Actually
implementing these changes is a more difficult problem since it requires knowledge of the
formats of the files being updated. Similarly, reversing (during swremove) changes made to
modifiable files (during swinstall and swconfig) is an exceedingly difficult problem. The existing
practice for treating modifiable files is fairly ad-hoc. It was not feasible to address all of the
possible needs for updating modifiable files. Instead, it does provide the attribute is_volatile for
files that may be modified after installation, and leaves the rest of the treatment of modifiable
files as either implementation defined, or handled in control scripts. This area may be
considered for a future revision of this Software Administration specification.

B.2.15 Control Files

Using tags as the identifier of when a script should be executed (independent of the path the
script is stored as) allows anywhere from one file per tag to one file for all tags. A concern on PC
or DOS systems is that requiring more than one control script for all tags is a space problem.
Instead, software vendors might prefer a single master script that took care of all needs.
Multiple scripts are also supported, since many software vendors favor this approach over a
‘‘mega-script.’’ However, other vendors may prefer the single script approach, especially to
save space if there are many scripts defined for this product that share a lot of the same code.

Control files do not have mode, owner, group , uid , gid , and mtime attributes since they are not
necessary for the execution of the control scripts or for the management of these files within the
distribution or installed software catalog. However, an implementation shall ensure that they
are executable.

The interpreter attribute has two uses. It is useful for those who choose not to use the POSIX.2
shell, that is, sh. It is also useful for systems that would not otherwise require POSIX.2. Those
creating distributions and control files are encouraged to use the POSIX.2 shell for portability.

186 CAE Specification

Background Information Common Definitions for Software Administration Utilities

B.3 Common Definitions for Software Administration Utilities

B.3.1 Synopsis

No additional rationale is required under this heading.

B.3.2 Description

No additional rationale is required under this heading.

B.3.3 Options

The -d option is needed to remove ambiguity for utilities that operate on both distributions and
installed software.

The -r option is needed for the following reasons. Installing software at / involves a
somewhat different set of operations than software installed at an alternate root, as well as a
different implied use. Software installed on alternate roots is not configured in the context of the
target where the software is installed, but rather in the context of the client actually running the
software. Another difference is that the target is not rebooted after installing software that
requires a reboot (the clients of the software need to be rebooted). An alternate root containing
operating system software can be thought of as a root to which one could chroot(). From a
usability standpoint, it is important that alternate roots are understood to be different than
relocating a software product, or specifying an alternate catalog for the same root.

Related to the -s option, an implementation could define an additional source syntax to use
well-known sources whose existence is available through some sort of directory service.

The -s option could be extended to supported multiple source specifications. There are several
possible ways to interpret multiple sources, including searching sources sequentially, ignoring
all specifications after the first one, using the last specification, or choosing the ‘‘best’’ source
based on criteria such as performance or ability to reduce network load. It may even be
desirable for multiple source specifications to be interpreted differently for different commands.

An implementation may implement the -p option (preview) by simply executing the command
through the analysis phase. Alternatively, an implementation may emulate the execution phase,
listing the operations that would occur, including listing control scripts that would be run, but
not actually performing those operations. As preview is undefined, other alternatives are
possible.

B.3.3.1 Non-Interactive Operation

It is recognized that there may need to be some sort of interaction with the user in order to
handle multiple volumes (for example,for example, tapes) for sources and targets.

B.3.4 Operands

The 1387.2 developers concluded that the @character does not have any applicable precedence
as a separator of operands, so the use of @in mail addresses and BSD commands is a bit
different. Another point was that having two lists of operands was not desirable in any case.

On the other hand, the two types of operands are the two key objects upon which the utilities
operate. The syntax is valid according to the utility guidelines from POSIX.2 section 2.10 2.
Distributed utilities extend the problem space that POSIX.2 has already addressed, thus the need
for precedence might be less. Thus, it was decided that the @was acceptable, and perhaps
desirable over the alternatives.

Systems Management: Distributed Software Administration 187

Common Definitions for Software Administration Utilities Background Information

One alternative was to move one or both operands to options (such as -S for software and -T
for targets). But, it was felt that this was not necessary because there are already -f and -t
options for files containing lists of operands. Another point was that listing target operands on
the command line was not critical in any case, as an administrator of many systems would not
use either the @ targets or -T target syntax.

B.3.4.1 Software Specification and Logic

Using a less formal grammar convention that defines zero or one item by enclosing these items
in [] (brackets) and zero or more repeated items in {} (braces), the following shows a
common subset of the software_spec syntax:

software_spec : bundle_tags [product_tags] [version]
| product_tags [version]
| ’*’ [version]
;

bundle_tags : bundle { ’.’ bundle }
;

product_tags : product
[’.’ subproduct { ’.’ subproduct }]
[’.’ fileset]

;
version : { ’,r’ rel_op revision }

[’,a=’ architecture]
[’,v=’ vendor_tag]
[’,l=’ location]
[’,q=’ qualifier]

| ’,*’
;

rel_op : ’==’ | ’!=’ | ’>=’ | ’<=’ | ’<’ | ’>’
;

The keywords bundle, product, subproduct, and fileset refer to the tag attributes of those
objects. The value of revision is usually a dot separated string compared to the value of the
revision attribute of the first object. The values of architecture , vendor_tag , location ,
and qualifier are usually exact strings or patterns compared to the like-named attributes of
the first object. These version attributes can validly be specified like revision is, but
operators and multiple specifications do not make much sense.

Examples of software_spec s are:

*
Networks
Networks.X11
Networks.X11.Runtime,a=*80?86*
X11
X11.Runtime
X11.Runtime,r=4,v=CloneInc
X11.Runtime,r>=4.0,r<5.0
X11,r=4.03.07,l=/usr/X11R4
X11,r=5.00,l=/usr/X11R5,q=latest
X11,*
*,a=*80?86*

188 CAE Specification

Background Information Common Definitions for Software Administration Utilities

A software_spec shall begin with a bundle or product tag . A particular bundle or product
object can be determined since they share the same name space (they also have different
instance_id attributes).

The location attribute applied to the product means all filesets in that product in that location.
This is the same set of filesets as if the location attribute was applied to the filesets.

Since the components of the version_qualifier of a bundle_software_spec refer to the
attributes of bundle objects, there is no way to select one version of a product if more than one
version is specified in the bundlecontents. Neither the inclusion of multiple versions of a product
within a bundle, nor the specifying of partial bundles, is seen as the normal use model, so having
this Software Administration specification limit the flexibility slightly in this area was deemed as
acceptable.

This Software Administration specification permits the use of values other than those defined in
Section 3.4.1 on page 38 for ver_id . This Software Administration specification also permits
the use of ver_id in conjunction with attributes and objects other than the first listed in a
software_spec . This allows additional flexibility for identifying software objects.

A possible syntax for these vendor extensions include, but are not limited to:

ver_id attribute object
br revision bundle
ba architecture bundle
bv vendor_tag bundle
bl location bundle
pr revision product
pa architecture product
pv vendor_tag product
pl location product
fr revision fileset
fl location fileset

The ver_id fr is seen as most useful since it can identify a particular fileset object within a
product where the product may not have a revision, but the fileset does. Note however, that any
object can still be identified with only the attributes defined in this Software Administration
specification. For example, if a bundle includes two partial products with the same tag value but
different revisions or locations, these partial products could be identified with the standard
syntax by excluding the bundle portion of the software_spec . For example,
bundle.product,pr=1.3 could also be identified by a software_spec of
product,r=1.3 .

In another example, the fileset that could be identified by its revision
(product.fileset,fr=1.3) could also be identified by a software_spec (for example,
product,r=revision), where revision refers to the product revision, including possibly the
empty string.

Relocation occurs by replacing the product.directory part of each file path as it occurs in the
distribution, with the location specified and using the resulting path for installation. This is still
relative to the installed_software directory described below. See swinstall on page 96 for more
information.

Using a sw_pattern in a software_spec is a way for the user to indicate that all software
objects that match the software_spec are to be included. For example, applying the

Systems Management: Distributed Software Administration 189

Common Definitions for Software Administration Utilities Background Information

software_spec ‘‘*’’ to swcopy means to copy all software in the distribution. Applying the
software_spec ‘‘Foo,*’’ to swremove means to remove all versions of Foo.

The behavior for swlist is different (by default including all software if none is specified) because
this is the command that is used to find all versions of software, and because listing cannot
negatively affect the state of the software_collection.

If using software pattern matching notation characters on the command line, they shall be
escaped or enclosed in single quotes to avoid matching files in the current working directory.

This specification provides the means to select products and specify dependencies using a single
syntax. The use of the shell-type pattern match specified in POSIX.2 section 3.13 allows for
reasonable specification of sets of values that share such patterns. Thus, for example, a
specification of "a=HP-UX*" may be used to select packages for any of a set of architectures.
The specification using the relational operators provides support for testing the type of
release/version specifications that are frequently used by vendors. In particular, it provides
support for testing when a numeric test is needed (for example, comparing 2.9 to 2.10 as version
levels of a product). Additional operators such as >> were considered. The specification of the
>> operator allows the user to specify the selection of the most recent (highest version number)
of a set of otherwise identical packages. This exposes to the interface the mechanism used by
swinstall to select such a package.

The range of attributes that may be specified allows for selection of packages that may be
needed to support code serving to alternate architectures, or other operating environments. In
addition, it provides the needed support to specify installed software that may only be
distinguished by the location of installation.

Examples of fully-qualified software_spec s are:

Foo,r=3.0,a=,v=XT
BundleA.Foo,r=1.0,a=,v=XT
Dow.Bar,r=2.0,a=SunOS,v=,l=/opt/foo.2

It is possible for bundles to contain software_spec s that are not fully-qualified. This is not
recommended for bundle definitions provided by software vendors because the results of
operations on this bundle may be undesirable for an administrator. However, there is some
flexibility provided by ambiguous software specs that administrators may want to use.

For example, a bundle with contents ‘‘*.Man’’ could be used to manipulate all ‘‘Man’’
filesets or subproducts in all products.

If a vendor includes any wildcards in a software_spec in a bundle definition, then the
vendor_tag attribute should be included and its value should have no wildcards, thus limiting the
scope of the pattern matching.

The difference between ‘‘FOO,v=’’ and ‘‘FOO’’ is that the first will only match a product
or bundle ‘‘FOO’’ where vendor is not defined, while the second will match a product or
bundle ‘‘FOO’’ with any vendor definition.

B.3.4.2 Source and Target Specification and Logic

Using a less formal grammar convention that defines zero or one item by enclosing these items
in [] (brackets) and zero or more repeated items in {} (braces), the following shows a
common subset of the software_collection_spec syntax:

software_collection_spec : [hos t] [’:’] [path]

Examples of distribution software_collection_spec s are:

190 CAE Specification

Background Information Common Definitions for Software Administration Utilities

/var/spool/sw
hostA
hostA.cloneinc.com
hostA:/var/spool/sw
15.1.94.296
15.1.94.296:/depots/applications

Examples of installed_software software_collection_spec s are:

/
hostA
hostA.cloneinc.com
hostA:/
15.1.94.296
15.1.94.296:/exports/applications

Target distributions in the serial format need not be supported for swverify , swremove, and
swmodify as this requires the implementation to unload the entire distribution, merge in the
changes, then reload it. The user can accomplish this (and an implementation can implement
this) by first copying the distribution into a directory format, implementing the changes, then
copying the distribution back to the serial media. This operation also could require significant
temporary disk space.

A similar rationale applies to swcopy , and swpackage , which by default, overwrite the existing
distribution instead of merging in the specified software.

B.3.5 External Influences

B.3.5.1 Defaults and Options Files

For SVR4 or similar file system layout, the defaults file may be located in
/var/adm/sw/defaults . The use of this location is strongly encouraged.

The 1387.2 developers considered the difference between ‘‘system-level’’ defaults and ‘‘site-
level’’ defaults.

The former is provided by the implementation of the utilities and the latter is constructed by the
administrator. The intent here is for the implementation to respect any customizations to the
system level defaults file, so it can be used for site policies. It is recommended that
implementations ‘‘hard code’’ the defaults as opposed to relying on the system file containing all
definitions, and provide a means to support new options in future releases without changing the
site specific values in the system defaults file.

B.3.5.2 Extended Options

For SVR4 or similar file system layout, distribution_source_directory may be set to
/var/spool/sw . The use of this location is encouraged.

For SVR4 or similar file system layout, distribution_target_directory may be set to
/var/spool/sw . The use of this location is encouraged.

For SVR4 or similar file system layout, installed_software_catalog may be set to
/var/adm/sw/catalog . The use of this location is encouraged. The catalog may simply be a
pathname of a directory where the database containing the catalog is stored, or may be a key
into a directory service specifying a catalog in a file or database, or any other implementation-
defined method of specifying a catalog. The location of the storage for the catalog itself is
implementation defined.

Systems Management: Distributed Software Administration 191

Common Definitions for Software Administration Utilities Background Information

The swinstall utility, and other utilities that operate on installed_software, modify the catalog
information based on the outcome of the utility. Information contained within the catalog is
resolved in the context of each target.

Originally, it was thought that a catalog would be kept as a flat file in a directory that could be
specified using this option. In the interest of generality, so that implementors might be allowed
to use databases, the catalog attribute is now described as a key. This allows an implementor to
either use a flat file or a database or some other form of persistent storage for the information,
yet still be able to separate the address space as desired. The motivation for permitting the
separate address space stems from the following two cases. First, it seems desirable to allow
ordinary (non-root) users to be able to use swinstall to store software in their own private space.
Likely the only real restriction is a potential lack of write authority to the central storage for the
catalog, hence the ability to create a separate catalog. This also allows a user to manage personal
software with utilities such as swremove or other utilities. Second, installations may wish to
deploy stable versions of their software in the normal location, and a test version installed in a
second location where access may be more tightly controlled. There may even be other versions
installed that are under development. Since this software may have identical attributes, it is
desirable to allow such separate space for management. Both of these examples show the need
for separate domains of software management.

Two values of autoselect_dependencies (autoselect_dependencies=true and
autoselect_dependencies=as_needed) support different possible policies by the user. Having
autoselect_dependencies=true ensures that all targets are kept in sync, while having
autoselect_dependencies=as_needed prevents the possibility of updating dependency software to a
higher revision unnecessarily.

Autoselection of a dependency across products is possible if a compatible product version with
the highest revision that meets the dependency is unique. In other words, the same rules apply
for dependency selection as for normal selection as described in Section 3.4.1 on page 38.

For the ask option, the checkinstall and configure scripts are required to detect needed
response files when they are necessary, and return with the appropriate warning or error.

For the installed_software_catalog option, the catalog and the directory together form a key to
identify one installed_software object. For example, this would allow the files on the file system
to be split up into different management domains. For example, OS software, networking
software, and application software could be in three different logical installed_software objects,
although they are all installed under the root file system.

B.3.5.3 Extended Options Syntax

In the interest of having a single common extended option syntax for all the POSIX system
administration standards, the following syntax was agreed upon. As of this writing, the syntax
is a superset of that used by this Software Administration specification, IEEE P1387.3, and IEEE
P1387.4.

%token FILENAME_CHARACTER_STRING /* as defined in 2.2.2.37 */
%token NEWLINE_STRING /* as defined in 2.2.2.61 */
%token PORTABLE_CHARACTER_STRING /* as defined in 2.2.2.68 */
%token SHELL_TOKEN_STRING /* as defined in 2.2.2.80 */
%token WHITE_SPACE_STRING /* as defined in 2.2.2.110 */

%start sysadmin_option
%%

sysadmin_option : qualifier option operator_value
;

192 CAE Specification

Background Information Common Definitions for Software Administration Utilities

qualifier : compulsory_qualifier command_qualifier
;

compulsory_qualifier : /* empty */
| ’-’ | ’=’
;

command_qualifier : /* empty */
| command ’.’
;

option : keyword op_ws
;

operator_value : ’==’
| value_qualifier ’=’ value
;

value_qualifier : /* empty */
| ’+’ | ’-’
;

value : op_ws value ws single_value
| op_ws single_value
;

single_value : value_structure
| SHELL_TOKEN_STRING
;

value_structure : ’{’ op_ws value_list op_ws ’}’
;

value_list : /* empty */
| value_list ws single_value
| single_value
;

command : FILENAME_CHARACTER_STRING
;

keyword : SHELL_TOKEN_STRING
;

op_ws : /* empty */
| ws
;

ws : WHITE_SPACE_STRING
;

%start command_line_options
%%
command_line_options : command_line_options ws sysadmin_option

| sysadmin_option
;

%start options_file
%%

Systems Management: Distributed Software Administration 193

Common Definitions for Software Administration Utilities Background Information

options_file : options_file NEWLINE_STRING option_file_line
| option_file_line
;

option_file_line : op_ws op_comment
| op_ws sysadmin_option op_ws op_comment
;

op_comment : /* empty */
| ’#’ PORTABLE_CHARACTER_STRING
;

Notes:

1. A - (hyphen) qualifier indicates a compulsory behavior while = (equal) indicates a non-
compulsory behavior.

2. For options that support multiple values, values can be added to the existing list of values
by using the += (plus equal) operator. Similarly, values can be removed by using the -=
(hyphen equal) operator. Any option can be set to the default value by using the ==
(equal equal) operator and value combination.

3. A shell token can be an unquoted or quoted string according to the rules of token
recognition rules described in POSIX.2 section 3.3 (token recognition). For example, it can
use single or double quotes and can contain like quotes if escaped with backslash. It can
also support the same level of internationalization as the POSIX shell.

4. The multiple value convention is consistent with white space separating tokens in
commands (operands) and allows commas to be used in the single_value . This also
allows multiple values to be specified without using quotes (although quotes are still
needed for multiple values on the command line).

5. If the extended option specification contains any white space at all, then the entire
specification shall be quoted if used on a command line. This is because the -x option,
which conforms to POSIX.2, requires exactly one value that is then processed using the
above syntax.

6. When specified on the command line, multiple option specifications can be included after a
single -x option if included in quotes and separated by spaces. Multiple -x options may
also be used.

7. For option and defaults files, blank lines and all comment text [any sequence of characters
beginning with an unescaped # (pound) and continuing through the end of that line] are
ignored according to the shell token recognition rules as described in POSIX.2 section 3.3.

Precedence for Option Specification

The first rule defines typical precedence of system defaults, then a user defined set of defaults,
then per task exceptions or specifications. The second rule supports normal use models of
defining multiple ‘‘sets’’ of target_selections and software_selections, and being able to operate
on the union of those sets. Also, the -f and -t options are simply another form for specifying
operands, and are at the same level of precedence, and are thus combined with other selections.
The third rule is generally an error, and the behavior is undefined (that is, it may be an error, or
an implementation may chose to implement last- or first-wins). For example on HP-UX:

194 CAE Specification

Background Information Common Definitions for Software Administration Utilities

$ cc -O -g x.c
$ cc: warning 414: Debug and Optimization are mutually exclusive.

-g option ignored.

$ cc -g -O x.c
$ cc: warning 414: Debug and Optimization are mutually exclusive.

-O option ignored.

It might be convenient to have a mechanism to allow the system administrator to define a
default in the system defaults file that cannot be overridden by a user. Such a function may be
supplied by an implementation as an extension. This may also be considered as part of a future
revision to this Software Administration specification.

B.3.5.4 Standard Input

No additional rational is required under this heading.

B.3.5.5 Input Files

No additional rational is required under this heading.

B.3.5.6 Access and Concurrency Control

If the installed_software_catalog is referenced by a path on the file system, then the user can create
a catalog in their own user work space (creating their own installed_software object), and install
and manage software in that installed_software object.

If the catalog is stored in a file, then a corresponding ability to create an installed_software object
(and thus, a catalog) is needed.

Access control includes such things as requiring particular authority to operate on particular
software or software_collections. Concurrency control is the prevention of more than one writer
at a time to the catalog or data areas. Restrictions to prevent multiple concurrent writers were
originally part of the draft, but later determined to be excessively restrictive. It is conceivable
that more than one writer could safely be active at a time if the work involves no common files.
Failure to allow multiple concurrent readers of the catalog, or other data files, is strongly
discouraged.

There are two aspects to access control as follows:

• Those related to file system access and hence determined by the operating system (that is, the
ability to write the files described by the sofware file objects).

• Any additional access control on the software objects, including access to (possibly remote)
software collections.

For access control to the files themselves, this Software Administration specification defaults to
the file permissions defined by POSIX.1. File attributes are defined for the files, hence the
implementation will set the POSIX.1 file permissions based on those values. Deviations from
this model are permitted only for implementations running on file systems that are not POSIX.1
conformant, and then only as long as the implementation documents the resulting behavior.

Any additional access control to the software objects defined in this Software Administration
specification (for example, permission to install specific software into specific software
collections on specific hosts), is undefined. An implementation may choose to have no access
control. For example, anyone may install any software to any system as long as the previous
POSIX.1 file permissions are satisfied. An implementation may also choose to provide both
authorization and authentication for access to all software objects and hosts, as well as a

Systems Management: Distributed Software Administration 195

Common Definitions for Software Administration Utilities Background Information

distributed interface for managing the access control lists.

Like the definition of the model to implement distributed aspects of this standard, access control
beyond that required by the underlying operating system is undefined. It was determined that
both of these rely on technologies that have not been formally standardized, and may better be
addressed in other forums.

B.3.6 External Effects

B.3.6.1 Control Script Execution and Environment

The provision for interpreters other than sh was requested by users among the developers of this
Software Administration specification, as well as producers representing systems that might
lack a POSIX.2 or even POSIX.1 operating system. By making this provision, many felt that a
greater degree of acceptance and usefulness could be gained.

The restrictions placed on the option syntax are such that each of the options can be easily
parsed and hence set by a control script by simply sourcing the file. The term ‘‘sourcing’’ as
used here implies the use of the ‘‘.’’ command in the POSIX.2 shell. For example, the following
are formats for the SW_SESSION_OPTIONS file that can be sourced:

loglevel=1
enforce_dependencies=false
software="A B C"

loglevel=1
enforce_dependencies=false
software="
A
B
C"

It is possible for the scripts to determine the loglevel for the command from the file pointed to by
SW_SESSION_OPTIONS, and use that to affect the amount of stdout generated.

An implementation may have an implementation-defined user controllable behavior that
invokes error handling procedures in the case of warnings returned from script execution.

The purpose of the environment variables is to pass vital information to the scripts so that they
may operate appropriately under different circumstances. For example, they may want to take
very different actions when SW_ROOT_DIRECTORY is some value other than / . It has also
been discussed that there may need to be some way to pass other information to these scripts
such as option values specified in the defaults and options file that control policy. This can be
achieved with the SW_SESSION_OPTIONS variable, which points to a file containing all the
options passed to the command, including options, selections, and targets.

One reason that this Software Administration specification differentiates install and remove
scripts from configure scripts is to separate installing software from configuring software for
actual use. This supports installing software to alternate root directories on servers for use by
clients that configure that software.

The developers of this Software Administration specification also discussed, but did not include,
the use of several of these variables for setting the value of specific utility options when the
utilities are called from control scripts. These variables are as follows:

SW_ROOT_DIRECTORY
Could be used to specify the directory portion of all target operands.

196 CAE Specification

Background Information Common Definitions for Software Administration Utilities

SW_LOCATION
Could be used to specify productlocation portion of all software_selection operands.

SW_CATALOG
Could be used to specify the value of the installed_software_catalog option.

The scripts need to be aware of the environment under which they are operating. The
environments that these scripts run under are as follows:

• All scripts

Each script shall be passed its script tag , the root directory to which installing, the product
directory where the product is located, and the control directory where the script is being
executed from, as the environment variables SW_CONTROL_TAG,
SW_ROOT_DIRECTORY, SW_LOCATION, and SW_CONTROL_DIRECTORY,
respectively.

• preinstall , postinstall , preremove , postremove , unpreinstall ,
unpostinstall

The install and remove scripts are run when loading or removing the software, or when
recovering from a failed install. These may be executed by swinstall or swremove running on a
host with a different architecture from the software. So, only the set of POSIX.2 utilities are
guaranteed to be available on the server. Since the architecture of the file server is not
necessarily known, the path to these commands is passed to the scripts via the environment
variable SW_PATH.

Additionally, these scripts need to know the alternate root directory so that operations are
within the context of that root, not the root of the file server. (This directory is supplied to
the scripts via an environment variable SW_ROOT_DIRECTORY.) It is critical that
SW_ROOT_DIRECTORY is honored by these scripts.

• checkinstall , checkremove , verify

It is expected, but not assumed, that these scripts mostly check the state of a system that will
actually run the software. For the install check (checkinstall) script, again only a
minimum set of commands is guaranteed to be available. This is because all check scripts are
executed before any new software is installed. For the remove check and verify scripts
(checkremove and verify), files from this software and its prerequisites are guaranteed to
be available.

Because of alternate root installation, these scripts also need to be aware of the
SW_ROOT_DIRECTORY.

• configure , unconfigure

These scripts configure the system for the software. Therefore they can run architecture
specific commands, including files that are part of the software that defines the scripts. They
are only run within the context of the system that will actually use the software. The
SW_ROOT_DIRECTORY will always be / .

Systems Management: Distributed Software Administration 197

Common Definitions for Software Administration Utilities Background Information

Control Script Behavior

Control scripts allow vendors to perform tasks and operations, in addition to those that the tasks
perform. The swinstall , swverify , and swremove utilities may each execute one or more vendor-
supplied scripts. The presence of these scripts in the distribution is optional. Vendors of
software to be installed need only provide those scripts that meet a particular need of the
software. The following summarizes the standard scripts:

request (Request script)

This is the only script that may be interactive. This script may be run by swask , swinstall , or
swconfig after selection, and before the ‘‘analysis’’ phase in order to request information
from the administrator that will be needed for the configure script when that script is
run later.

This script is executed on the manager role and it is the responsibility of the script to write
all information into the response file in the directory where the script is being executed
(the SW_CONTROL_DIRECTORY). The utilities will then copy this file to the
SW_CONTROL_DIRECTORY on the target role where the configure and other scripts
are executed from. This response file may be used by any other scripts, but particularly
the configure script.

A recommended syntax for the response file is a set of attribute-value pairs that can be
easily sourced by the configure script. For example, a request script might look like
the following:

echo "Enter path to locate the database"
read $path
echo db_path=$path >> $SW_CONTROL_DIR/response

and the using configure script:

$db_path=$default_db_path
if [-f $SW_CONTROL_DIR/response]
then

. $SW_CONTROL_DIR/response
fi
create_db ($db_path)

response (Response file)

The response file is generated by the request script and located in the same directory
as that and the other scripts. The format and content of the response file is vendor
defined. For example, it may be a list of environment variable definitions so that the
consumer script can just source this file.

checkinstall (Install check script)

This script is run by swinstall during the ‘‘analysis’’ phase in an attempt to ensure that the
installation (and configuration) succeeds. For example, the OS run state, running processes,
or other prerequisite conditions beyond dependencies may be checked. Running this script
shall be free of side-effects, for example,for example, processes may not be killed, files may
not be moved or removed, etc.

preinstall (Install preload script)

This script is run by swinstall prior to loading the software files. For example, this script
may remove obsolete files, or move an existing file aside during an update.

198 CAE Specification

Background Information Common Definitions for Software Administration Utilities

This script and the next script are part of the ‘‘load’’ phase of the software installation
process. Within each product, all preinstall scripts are run (order is dictated by any
prerequisites), all filesets are loaded, then all postinstall scripts are run.

postinstall (Install postload script)

This script is run by swinstall after loading the software files. For example, this script may
move a default file into place.

unpostinstall (Recovery postload script)

This script is run by swinstall before restoring the software files if the postinstall script
has been run. It can be used to undo the actions of the postinstall script.

unpreinstall (Recovery preload script)

This script is only run by swinstall after restoring the software files if the preinstall
script has been run. It can be used to undo the actions of the preinstall script.

verify (Verify script)

This script is run by the swverify command any time after the software has been installed or
configured. Like other scripts it is intended to verify anything that the commands do not
verify by default. For example, this script may check that the software is configured
properly and has a proper license to use it.

fix (Fix script)

This script is run by the swverify command when the -F option is used. Its purpose is to
correct any problems reported by the verify script.

checkremove (Remove check script)

The remove check script is run by swremove during the remove ‘‘analysis’’ phase to allow
any vendor-defined checks before the software is permanently removed. For example, the
script may check whether anyone is currently using the software.

preremove (Preremove script)

This script is executed just before removing files. It may be destructive to the software
being removed, as removal of files is the next step. It is the companion script to the install
postload script (postinstall). For example, it may remove files that the install postload
script created.

This script and the next script are part of the ‘‘remove’’ phase of the software remove
process. Within each product, all remove preremove scripts are run (in the reverse order
dictated by any prerequisites), all files are removed, then all remove postremove scripts
are run.

postremove (Postremove script)

This script is executed just after removing files. It is the companion script to the the install
preload script (preinstall). For example, if this was a patch fileset, then the install
preload script may move the original file aside, and this remove postload script may move
the original file back if the patch was removed.

configure (Configure script)

This script is executed by swinstall after all software has been installed (including loading
files and running postinstall scripts) if software is being installed at / . It is also may
run by swconfig , even if the software has already been configured (allowing the
administrator to reconfigure software).

Systems Management: Distributed Software Administration 199

Common Definitions for Software Administration Utilities Background Information

unconfigure (Unconfigure script)

This script is executed by swremove before any software is removed (including removing
files and running preremove scripts), if removing from software installed at / . It is may
also be run by swconfig .

Other scripts

The vendor may include other control scripts, such as a script that is sourced by the above
scripts, or scripts not defined in this Software Administration specification. The location of
the control scripts is passed to all scripts via an environment variable
SW_CONTROL_DIRECTORY.

Control Script Return Code

This Software Administration specification only specifies return codes from scripts that affect
operation of the utilities. If the script writer wants to convey additional information to the user,
such information should be written to stderr or stdout, which gets recorded by the target role
logging. See Section 3.6.5 on page 69.

A implementation that supports additional behaviors may initiate those behaviors based on
implementation-defined return values from control scripts.

B.3.6.2 Asynchronous Events

Control script execution and file operations only generate note events at the beginning of the
step, not at both the beginning and the end. This is because there is an event immediately after
each script or file completes (for example, the next file beginning, or the end of fileset execution).
Additionally, if there is any error with the script or file, there is a warning or error event
generated after the file completes.

B.3.6.3 Stdout

No additional rational is required under this heading.

B.3.6.4 Stderr

There is a variety of warnings and errors that could occur at the target role. It is desirable that
this information be communicated back to the management role and displayed on stderr of the
management role. Of course the detail of the information is determined by the verbose level.
However, since this Software Administration specification does not specify the communication
mechanism between the management and target roles, it should not place unnecessary
requirements on this communication mechanism, especially since this could be occurring in a
distributed environment with the management role communicating with multiple target roles.
Thus the only requirement here is that the target role be able to communicate a binary
fail/success back to the management role.

B.3.6.5 Logging

For the management role, the information placed in the logfile is equivalent to the information
sent to stderr and stdout if the verbose level was the same value as the loglevel .

The stdout, stderr, and logfile output should contain the severity of the event as part of the
output message. For example:

NOTE: The analysis phase succeeded on target "zook:/".
WARNING: Target "zook:/": 2 configure scripts had warnings.

200 CAE Specification

Background Information Common Definitions for Software Administration Utilities

B.3.7 Extended Description

B.3.7.1 Selection Phase

An implementation may define other valid source specifications, such as ‘‘well-known’’ sources
that may be available via a directory service or an object request broker.

B.3.7.2 Analysis Phase

No additional rational is required under this heading.

B.3.7.3 Execution Phase

start copy

AVAILABLE

TRANSIENT CORRUPT
cmd failed

start cmd

cmd = [copy | remove]

start cmd

start copy

REMOVED(non-existent)

remove complete

modify

Figure B-5 Fileset State Transitions (Within Distributions)

Figure B-5 and Figure B-6 on page 202 show the state transition diagrams for Installed Software
and Distributions.

It is clear that some vendors may want additional states. But allowing other values would make
it problematic for any implementation trying to make decisions on how to deal with filesets with
unrecognized states. An implementation may create an additional fileset attribute that would
further modify the meaning of the attribute. For example, they may create an attribute called
state_info and this attribute may have the value of files_missing when the state attribute is
set to corrupt . There could be several valid values of this new attribute to describe various
possibilities of a corrupt state. Of course, since this would be an implementation-specific
extension, other implementations would not need to recognize this attribute or its semantics.

The default for updating, downdating or removing a fileset is to remove the information from
the catalog. However, implementations may instead set these filesets to have a state of removed.

Systems Management: Distributed Software Administration 201

Common Definitions for Software Administration Utilities Background Information

The default behavior for filesets in the removed state is the same as for filesets that are ‘‘non-
existent’’. Implementations that support the removed state should define extensions to the POSIX
utilities providing operations on removed filesets. For example:

swlist -x show_removed=true

cmd failed

start cmd

start cmd

cmd = [install | remove]

unconfigureconfigure

install complete

CONFIGURED

INSTALLED

CORRUPTTRANSIENT

start install

REMOVED

start install

remove complete

modify

(non-existent)

Figure B-6 Fileset State Transitions (Within Installed Software)

B.3.8 Exit Status

No additional rational is required under this heading.

B.3.9 Consequences of Errors

Since the utilities in this Software Administration specification operate on multiple software
objects for multiple targets, the handling of error conditions (which is basically a policy decision)
is complex. For example, should success be only all or nothing; or only, if all operations succeed
for a specific host; or only, if all operations succeed for a specific product on all hosts? The type
of error or errors causing such definitions of success or failure is implementation defined.
Whether or not the user may specify policies regarding the way in which errors are handled is
also implementation defined.

202 CAE Specification

Background Information Software Administration Utilities

B.4 Software Administration Utilities
The following discussion on the approach of the 1387.2 developers to defining each software
administration utility is presented in the same reference manual page style as that used in
Chapter 4 for the actual definition of these utilities.

Systems Management: Distributed Software Administration 203

swask Background Information

NAME
swask — Ask for user responses"

SYNOPSIS
No additional rationale is required under this heading.

DESCRIPTION
The purpose of this utility is to provide support for interactive requirements for software. By
being able to execute these interactive scripts independently of swinstall and swconfig , it allows
those utilities to still be scheduled for non-interactive execution.

The request scripts can be used to ask the administrator questions, or requests, where
responses are needed by the software before installation or configuration.

The utility may be used to perform the following task:

• Answer the requests of software that has interactive customization needs.

The swask utility and request scripts are for software specific questions only. It does not
provide any mechanism for implementation specific questions, although an implementation can
choose to support implementation, site, or system-specific enhancements as normal
implementation extensions.

OPTIONS
No additional rationale is required under this heading.

OPERANDS
No additional rationale is required under this heading.

EXTERNAL INFLUENCES
No additional rationale is required under this heading.

EXTERNAL EFFECTS
No additional rationale is required under this heading.

EXTENDED DESCRIPTION
This Software Administration specification has not included a naming convention or structure
for storing per client response information. If a request script requires per client information,
then it needs to store that information for all clients in the response file, and then locate the
appropriate information during configuration.

This Software Administration specification provides a means for the request script to
determine which clients are being requested, and for the configure script to determine that
client. See Section 3.6.1 on page 56.

For example, a request script that requests per client keys is as follows:

set - $targets
echo ’keys="’ > response
for i in $targets
do

echo enter key for $i
read j
echo $i $j >> response

done
echo ’"’ >> response

204 CAE Specification

Background Information swask

and the corresponding configure script that looks up the correct key from the response
file:

set - $keys
while [-n $1]
do

if ["$1" = "$targets"]
then

echo key is $2
break

fi
shift; shift;

done

An implementation needs to ensure that any response files that already exist in the source or
the catalog are copied to the SW_CONTROL_DIRECTORY before the request script is
executed. The order of checks for response files allows for the following precedence:

• User input (if ask=true)

• Pre-existing response file

• Pre-existing client configuration

• Model response file (from source)

There are numerous ways to implement where the request scripts are executed and what
SW_CONTROL_DIRECTORY is set to, for the command:

swask -s source -c catalog Foo.Bar

EXAMPLES
Example implementation A:

mkdir catalog/Foo/Bar
copy request script for Foo.Bar to catalog/Foo/Bar
copy any necessary response file to catalog/Foo/Bar

if catalog/Foo/Bar/response exists, no action
else if source/catalog/Foo/Bar/response exists, copy it

set SW_CONTROL_DIRECTORY=catalog/Foo/Bar
execute catalog/Foo/Bar/request
(remove catalog/Foo/Bar/request)

Example implementation B:

mkdir catalog/Foo/Bar /usr/tmp/aaaa43542/Foo/Bar
copy request script for Foo.Bar to /usr/tmp/aaaa43542/Foo/Bar
copy any necessary response file to catalog/Foo/Bar

if catalog/Foo/Bar/response exists, no action
else if source/catalog/Foo/Bar/response exists, copy it

set SW_CONTROL_DIRECTORY=catalog/Foo/Bar
execute /usr/tmp/aaaa43542/Foo/Bar/request
(remove /usr/tmp/aaaa43542/Foo/Bar)

Systems Management: Distributed Software Administration 205

swask Background Information

Example implementation C:

mkdir /usr/tmp/aaaa43542
copy any necessary response file to /usr/tmp/aaaa43542

catalog/Foo/Bar/response exists, copy it
else if source/catalog/Foo/Bar/response exists, copy it

set SW_CONTROL_DIRECTORY=/usr/tmp/aaaa43542
execute source/catalog/Foo/Bar/request
mkdir catalog/Foo/Bar
cp /usr/tmp/aaaa43542/response catalog/Foo/Bar
(remove /usr/tmp/aaaa43542)

EXIT STATUS
No additional rationale is required under this heading.

CONSEQUENCES OF ERRORS
No additional rationale is required under this heading.

206 CAE Specification

Background Information swconfig

NAME
swconfig — Configure software

SYNOPSIS
No additional rationale is required under this heading.

DESCRIPTION
The purpose of configuration is to configure the host for the software, and configure the product
for host-specific information. For example, software may need to modify the /etc/rc setup
file, or the default environment set in /etc/profile . It may need to ensure that proper
codewords are in place for that host, or do some compilations. Unconfiguration undoes these
steps.

This utility may be used to perform the following tasks:

• Configuring software on target hosts that will actually be running the software

• Configuring independent of the remove and install utilities

• Configuring or unconfiguring hosts that share software from another host where the
software is actually installed

• Reconfiguring when configuration failed, was deferred, or needs to be changed

OPTIONS
No additional rationale is required under this heading.

OPERANDS
No additional rationale is required under this heading.

EXTERNAL INFLUENCES
No additional rationale is required under this heading.

EXTERNAL EFFECTS
No additional rationale is required under this heading.

EXTENDED DESCRIPTION
When there is no script, the software is still transitioned to configured by swconfig . The state
of the fileset without any configuration requirements is still changed to denote to the users of the
software that the software is ready to use. Having one state for both software that requires
configuration, and for software that does not, is easier than checking that all software that
requires configuration is in the configured state, and that all software that does not require
configuration is in the installed state.

If there are not sufficient (or any for that matter) responses in the response file, the
configure script can log that further interaction is required and exit with a failure. This can
prompt the user to execute the swconfig utility with ask=true.

The request script is executed at the manager role at the end of the selection phase, after the
user has specified the software, but before analysis or execution begins on the target roles. The
developers of this Software Administration specification considered defining a separate phase
between the selection and analysis phases for swconfig and swinstall , but maintained the request
steps as part of the selection phase for simplicity.

Reconfiguration may be useful when some system configuration has changed. This may include
running with ask=true so the user can input different information.

There is the case where the configure script is not sufficient for configuring the software. If
there is another configuration process that needs to be run, then this process should not change
the state of the software to configured. After the other process is run, it can change the state to

Systems Management: Distributed Software Administration 207

swconfig Background Information

configured using the swmodify utility. There are also situations where there can be multiple
configurations of the same installed_software object. This Software Administration specification
does not currently address this except by putting the burden on the software to manage the
multiple configurations. This Software Administration specification does support the user
rerunning the configure script each time a new configuration is needed. Using swconfig -u
can likewise interact with the user to unconfigure one, but not all, of the configurations. For
both of these cases, if the script exits with return code 3, the software does not transition to the
installed (that is, unconfigured) state.

The configure scripts should also adhere to specific guidelines. For example, these scripts are
only executed in the context of the host that the software will be running on so they are not as
restrictive as customize scripts. However, in a diskless or NFS environment, they need to use
file locking on any updates to shared files, as there may be multiple configure scripts
operating at the same time on these shared files. The configure and unconfigure scripts
need to be noninteractive, but may use the information in the response files generated by the
ask script.

For diskless, cold install (initial OS install), and generally building an OS to a separate disk,
swconfig can be automatically run after the system reboots to its real host to configure all
unconfigured filesets.

This Software Administration specification does not define how file sharing, including diskless
machines, should be implemented. However, separable configuration and installation steps
provide the basic building blocks.

One possible file sharing solution involves each client having its own installed software catalog
from which the shared software can be configured, and the configured state can be recorded.
This catalog can be built by ‘‘link installing’’ the software; instead of loading files and running
preinstall and postinstall scripts, link each product’s files to the client file system.
Then, build the catalog information of this linked software as if it were installed and configure
the client.

Another possible solution involves each client recording its configured state in a shared installed
software catalog. In order to do this, the installed software could maintain a configured_instances
attribute to hold a list of configured client names. Each client’s configure and
unconfigure script could add or delete its name from this list.

These scripts could also control whether the installed software state attribute was changed from
installed to configured via swconfig . If configuring, then the reconfigure option would
need to be set to true. If unconfiguring, then the unconfigure script could exit with a return
code of 3 (exclude) unless the configured_instances attribute was empty so that the installed
software state would remain configured .

Update Capabilities

The 1387.2 standard simply runs a configure script during configuration as part of swinstall or as
part of a separate swconfig (likewise it runs unconfigure as part of a swremove or as part of a
separate swconfig -u).

The following is not covered by 1387.2, and must be performed in control scripts for
distributions conformant with 1387.2:

• Removing obsolete files from previous revisions of a fileset (should be currently done in a
configure script or a product postinstall and not a fileset postinstall script, due to recovery
considerations)

208 CAE Specification

Background Information swconfig

• ‘‘User configurable files’’ (files that are shipped, but that the user can make changes to) can
either be shipped in a ‘‘new configuration’’ location and conditionally copied during
configure, or they can be shipped in-place but requiring a preinstall script to save off the
existing file

• Any merging of existing user information and new software provided information is not
supported by the utilities and must be done in a control script

Although the standard does not address file sharing, the separate configure phase is intended to
allow multiple clients to run configure after the software has been installed on a file server.

If one version of software is installed and configured, and a newer version is installed in a
different location, then swinstall will not automatically configure the second version. The
swconfig utility needs to be run separately to:

• Either unconfigure the first version, then rerun to configure the new version

• By setting the allow_multiple_versions option to true , swconfig will attempt to configure the
new version while still having the existing version in the configured state

Managing Updates

Recovery steps will account for the remove (‘‘x’’) file type, so this no longer needs to be done in
configure scripts for shared files. Configure scripts still need to manipulate all private files.

For file sharing considerations, files should be determined to be ‘‘shared’’ or ‘‘private’’. In
general, all read-only or binary files are considered shared and should be manipulated in the
install execution phase (including the preinstall, file loading and postinstall steps). All user
modifiable files are considered private should be manipulated in the configuration phase. In
particular, prototypes of user modifiable files should be shipped as ‘‘shared’’ prototypes, and
then copied or merged to a writable area (in the client’s view), during configure.

New files created by the configure script should be added to the installed software catalog using
the swmodify utility.

Example:

swmodify -x files="newfile" PRODUCT.FILESET

Instead of merging old and new configuration files that may have been modified by users as
well, it is better to design a system that is more updatable, such as a directory that contains
system provided and user provided information in separate files. This allows newer
versions to simply replace the files that they previously supplied.

EXAMPLES
No additional rationale is required under this heading.

EXIT STATUS
No additional rationale is required under this heading.

CONSEQUENCES OF ERRORS
No additional rationale is required under this heading.

Systems Management: Distributed Software Administration 209

swcopy Background Information

NAME
swcopy — Copy distribution

SYNOPSIS
No additional rationale is required under this heading.

DESCRIPTION
This utility may be used to perform the following tasks:

• Copy software from one distribution to another

• Merge software from one distribution into another

• Copy software to a temporary distribution located to improve swinstall reliability or
performance

OPTIONS
No additional rationale is required under this heading.

OPERANDS
No additional rationale is required under this heading.

EXTERNAL INFLUENCES
No additional rationale is required under this heading.

EXTERNAL EFFECTS
No additional rationale is required under this heading.

EXTENDED DESCRIPTION
The swcopy utility operates much like the swinstall utility. The key distinction between swcopy
and swinstall is the way products are loaded. With swcopy , products are not installed for general
use below the root directory. Instead, they are placed into a distribution, which can then act as a
source for swinstall .

Update Capabilities

Unlike installation where products can not exist in the same location at the same time, every
product that differs in any one of the revision, architecture or vendor_tag attributes is treated as a
separate version of the product and does not update or overwrite any other version. Thus, when
a newer revision of a product is copied into a depot, it does not in any way affect the older
revision. As covered previously, swinstall will automatically choose the highest revision unless
the revision explicitly specified.

When the same revision of a fileset within the same product version is being copied, it is
considered a ‘‘recopy’’. The fileset is skipped unless the ‘‘recopy’’ option is set to true , just as
is done with the reinstall option to swinstall .

Example:

swcopy -x recopy=true PRODUCT.FILESET,r=<same>

This will recopy all files in the fileset.

If the same product version has been repackaged so that attributes of the same product version
(that is, same revision, architecture and vendor_tag), are different between the new product
instance being copied in and the existing product instance, then the values of the new product
are retained. The values of any attributes in the old product that are undefined in the new
product are also retained.

210 CAE Specification

Background Information swcopy

An update within a depot is not clearly defined in 1387.2 (updates of filesets within existing
product version are usually only needed during the development phase of a software product).
Released products will generally have new revisions, or patches to a current revision.

EXAMPLES
Copy the software_selections listed in /tmp/load.products other default values defined in the
/var/adm/sw/defaults file) as follows:

swcopy -f /tmp/load.products

Remove a product Foo from the distribution on the tape device /dev/rct0 as follows:

swcopy -s /dev/rct0 * @ /tmp/depot"
swremove -d Foo @ /tmp/depot"
swcopy -s /tmp/depot * @ /dev/rct0"

Example of reinstall_files:

swcopy -x reinstall_files=false

Another example of reinstall_files:

swcopy -x reinstall_files=false reinstall_files_use_cksum=falsed

Examples of patch specification:

Example:

swcopy -x autoselect_patches=true X11,r=6

Copy X11,r=6 software from one depot to another and also copy all patches for that base
software.

Example:

swcopy -x autoselect_patches=true \
-x patch_filter="*,c=critical"

Copy all software from a depot and also copy a filtered set of patches (those with a category
of ‘‘critical’’), for the base software.

Example:

swcopy -x patch_match_target=true

Copy from a depot containing patches and also non-patch software, all patches for the base
filesets which are already present in the target depot.

Example:

swcopy -x patch_match_target=true -x patch_filter="*,c=critical"

Copy from a depot containing patches and possibly also non-patch software, a filtered set of
patches for the base filesets which are already present in the target depot.

EXIT STATUS
No additional rationale is required under this heading.

CONSEQUENCES OF ERRORS
No additional rationale is required under this heading.

Systems Management: Distributed Software Administration 211

swinstall Background Information

NAME
swinstall — Install software

SYNOPSIS
No additional rationale is required under this heading.

DESCRIPTION
This utility may be used to perform the following tasks:

• Install operating system or application software, including configuration of operating system
or application software as part of the install.

• Reinstall the exact same version as already installed.

• Update (or upgrade) operating system or application software to a higher revision, and
downdate (or downgrade) operating system or application software to a lower revision.

• Apply software patches that have been packaged as standard software objects (filesets).

• Install additional versions of software when one already exists.

The install software task can have different connotations depending upon the life cycle stage of
the software package. Figure B-7 illustrates the various state transitions that can occur during
an installation of software.

original sources
(supplier’s copy)

source
containing
packages

software not already
on system, software
on a system able to

be used

software existed, replace
with exactly same version
(preserve/don’t preserve

customer changes)

software existed, replace
with newer version

software existed, patch/fix
at (not new version)

software existed, add
another version (both

then exist)

install

re-install

upgrade

patch

(install)

Figure B-7 Installation State Changes

These transitions comprise the set of install software tasks supported by this Software
Administration specification.

The facilities provided by swinstall and swcopy are basic building blocks on which other function
may be built. A few examples are shown below simply for the purpose of illustration. In the
course of the illustration, various network sizes are given, but they are fictitious and supplied
solely for illustration.

212 CAE Specification

Background Information swinstall

• Some users might consider swinstall to work well for doing remote installation to tens of
machines. But with hundreds of machines, perhaps a better strategy would be to use swcopy
to place a distribution on several servers for use in several parallel swinstall invocations.
Also, this example could be cascaded for hierarchical operation with thousands or hundreds
of thousands of machines.

• In addition, organizations that use special purpose software distribution programs could
choose to use swcopy for that purpose, sending a copy of a distribution to some number of
machines, pausing until assured that copies have arrived intact at all machines before
proceeding, and finally causing swinstall to begin work on each machine at the same time.

• An installation process that makes efficient use of network resources might analyze the
routing of distributions or files, discover that some traverse a common path before diverging,
and cause only one copy to be sent over the common link using the swcopy utility.

OPTIONS
No additional rationale is required under this heading.

OPERANDS
No additional rationale is required under this heading.

EXTERNAL INFLUENCES
No additional rationale is required under this heading.

EXTERNAL EFFECTS
No additional rationale is required under this heading.

EXTENDED DESCRIPTION
The operations of the execution phase involve actual modification of the target file system and
environment, and so from this point the utility is committed to the installation (in the sense that
restoration to the state prior to load may not be possible).

Initially, swinstall , as well as swremove, would not act upon files in remote file systems.
Although this was viewed as a good idea, it was removed. A vendor could check for local vs.
remote file systems as a value-added feature, although it would require use of non-POSIX
functionality. It should be noted that such a file system check involves policy, and thus should
be overridable.

The normal use model is to install the latest revision of the product that matches the machine
attributes of the targets. The default options fit this use model even when the targets specified
have different uname attributes. As an example, assume the following command was issued:

swinstall -s source product1 @ host1 host2

Further, assume that host1 and host2 have different uname attributes and that the source
contains instances of product1 that match the uname attributes of the two targets. The resulting
install places the instance of product1 that matches the uname attributes of host1 onto host1,
and the instance of product1 that matches the uname attributes of host2 onto host2.

The use of allow_incompatible=true is not the normal use model, and thus it is difficult to build in
automatic filtering of selections. Thus, the user is required to uniquely specify which version is
to be installed.

During disk space analysis, an implementation need only process paths with positive sizes in the
space file to generate a maximum transient disk space requirement. Both space freed after
successfully installing products when autorecover=true and negative size records can be used to
generate a second and final disk space requirement.

Systems Management: Distributed Software Administration 213

swinstall Background Information

How disk space analysis is implemented is undefined by 1387.2. When updating, each file size
should be checked against any existing file at that location, on a per file system basis, unless
rollback is enabled. In that case, the size of the existing files should be measured on the file
system where they will reside until the install is committed.

Configuration occurs on hosts where the software is to be used, as opposed to the hosts that are
serving software. For example, a host of one OS or architecture may be a file server of software
for another OS or architecture. Configuration is where the software is configured specifically for
or by the host, or vice versa, where the host is configured for or by the software. Examples are
any compilation, modifying the host default PATHNAMEfor the software, or configuring the
software for host-specific parameters. Contrast this to preinstall and postinstall
scripts that should be written in a portable and relative (to the root directory) way since they
may be executed in proxy. They are appropriate for operations that manage the files in the
software that are to be served as an installation as opposed to being use as a configuration.
Because the root directory is / , this is not an alternate root or proxy install, that is, the software
is intended to be used on this host. When the root directory is not / , then a proxy install
situation should be assumed, and the client of this installation instead should be rebooted and
run the configuration. These client steps are undefined within this Software Administration
specification. Since reboot is done only in non-proxy installations, the implementation of the
‘‘target role’’ that runs on the target architecture can execute the implementation-defined reboot
process and then execute swconfig .

Reboot is executed after all filesets, kernel or otherwise, have been installed in order to avoid
multiple reboots. This rationale is similar to a situation in kernel building. In that case, kernel
building is only done after all filesets with the is_kernel attribute set to true are loaded in order
to avoid multiple kernel builds.

The operating system underlying an implementation may require additional support for
rebooting. For example, some systems may require intermediate reboots (reboot during the
install process, with the install process continued after reboot). This, in turn, may require
additional script return codes, or additional semantics for the is_reboot attribute. Clearly such
additions are peculiar to the requirements of particular operating systems. Such additions
should be documented by the implementation.

A file that is defined as /<product.directory>/<file> is (by default) installed in the same location as
follows:

/<product.directory>/<file>.

If a location was specified in the software selections, then the file is instead installed to the
location as follows:

/<product.location>/<file>.

Additionally, if both an alternate root and a location was specified, the file is installed to the
location as follows:

/<alternate_root>/<product.location>/<file>.

An example use for a preinstall script might be saving existing files before loading new
ones. An example use for a postinstall script might be to clean up previously installed
versions of a product, or to move a default file into place. These scripts are supplied by the
vendor and are executed by the target role on each target. Note that the target role is not
necessarily the system that will be using the software (the client role), and that multiple client
roles may share the software from the same target role.

It is not sufficient to only state that the postkernel script is implementation defined. The name of
the script, and also its location in the file system on each target host, should be known. Since

214 CAE Specification

Background Information swinstall

Order of Install Operations:

Example Dependencies:

P2P1

P1P2 configure

F1F2F4 F6 F3F5 configure

P1

F5 F3F6F4 F2 F1

F1F2F4 F6 F3F5

P2

F1F2F4 F6 F3F5

P1P2 preinstall

preinstall

file loading

postinstall

postinstall

(reboot)

Execution Phase:

F1F2F4 F6 F3F5
checkinstall

F6F5F4F3F2F1

checkinstallP1P2

Analysis Phase:

Figure B-8 Order of Install Operations

kernel filesets can be loaded for alien architectures (e.g., in diskless workstations), this script
should also be aware of the effective root directory through the SW_ROOT_DIRECTORY
environment variable. In general, all products with kernel filesets for a particular architecture
should have the same productpostkernel attribute defined. This script is contained within the
product that contains the core operating system filesets. The implementation-defined default

Systems Management: Distributed Software Administration 215

swinstall Background Information

path value for postkernel permits operating system implementation agreements that simplify the
need for each product to define this attribute. A side effect of this product level attribute is that
different products in the same distribution and same installation could conceivably have
different values for the name of the script. In that case, multiple (probably redundant) kernel
builds would occur and the order of fileset loads and kernel rebuilds would have to be specified.

The postkernel step after kernel filesets have been loaded is based on the HP-UX model for
kernel building. This model supports both rebuilding of the kernel for OS updates, and insertion
of an appropriate default kernel for new installations or installation in proxy. It also supports
ensuring that a working kernel is in place before committing to the bulk of the install. For
example, updating the HP-UX operating system to a new revision requires installing kernel
related filesets and rebuilding the kernel successfully before loading the rest of the filesets. This
ensures that the new kernel is operational (noted by the success of the postkernel script) before
loading filesets whose executables will not run on the previous kernel. If the kernel build step
was not insured to be successful, then you could have an unusable or even unbootable system.

When the installation is being done in proxy, the kernel build step should move a default new
kernel into place instead of building a new kernel, since the architecture of the installed software
may be different from the architecture of the server (the target role performing the installation).
The script may check if it is an alternate root install by checking the SW_ROOT_DIRECTORY
environment variable, and for the purpose of kernel building, it should take actions appropriate
to a proxy install. Then, a new kernel containing the appropriate configuration (e.g., drivers) for
the software installed may be built after or during the implementation specific configuration
step (configuration occurs in the context of the system using the software).

Since the postkernel script is part of the target installed_software object, there is flexibility as to
what actual steps are performed. For example, if a ‘‘cross-compiler’’ kernel building
functionality existed in the target role, a new kernel could actually be built even in proxy.

There have been requests for removal of the required postkernel script return codes in swinstall on
page 99, so making them undefined. It was concluded that it is important to keep them.

Update Capabilities

If there are multiple versions of software available in a depot (distribution), swinstall will choose
the highest compatible revision of software if a revision, architecture or vendor_tag is not
explicitly specified.

When installing a revision of a fileset, if there is currently a revision installed at the target
location, then the install is considered an update , reinstal or downdate . In general, only updates
proceed to execution phase; reinstalls and downdates are skipped.

During execution phase when updating, reinstalling or downdating a fileset, the catalog
information for the existing fileset has its state set to ‘‘transient’’ during the course of an install,
and then is removed or set to the ‘‘removed’’ state when the execution of that fileset completes.

By default, a file is installed into the location defined by its path attribute unless the product has
been relocated. The only way to change the location of a file is change the root directory or the
product location . This implies that any existing file at that location will be overwritten during
the installation of the new fileset.

If the exact file (based on path, size, mtime and cksum attributes) is already installed, it is not
reinstalled unless the user has specified that the filesets are being reinstalled. But, reinstall is
defined as only applying to whether to reinstall a fileset with the same revision, not a file. This is
vague when updates are considered (see below).

216 CAE Specification

Background Information swinstall

Example:

swinstall -x reinstall=true PRODUCT,r=1

When applying the POSIX defined recovery to update, if the autorecover option is set to true ,
then, if a fileset control script or file loading fails, then that fileset is removed, leaving the
existing fileset in the state where it was previously. The next fileset is then attempted. If a
product control script fails, then all filesets in the product that are being updated will be
returned to their previous state.

Example:

swinstall -x autorecover=true PRODUCT,r=1

Downdate (or downgrade) is similarly defined, and behaves in much the same way as update.
In general, software packages do not handle downdating very well (since the higher revisions of
software have not been developed yet, the requirements for downgrading are not known). For
this reason, the user must override the default behavior by setting the ‘‘allow_downdate’’ option
to true .

Example:

swinstall -x allow_downdate=true PRODUCT,r=lower_revision

The administrator can also choose to install multiple versions of the same product (i.e. multiple
revisions), by choosing different locations. The product is_locatable option must be true (the
default). If a multiple version is being installed, swinstall will not Configure the new version.
This is because the user needs to decide which version is the ‘‘current’’ version to be configured
into the system, and then manually unconfigure one and configure the other.

The developers of this specification found autorecover_product preferrable to the POSIX
autorecover that can result in a partially updated product.

The developers of this specification considered sparse upgrades good for marketing purposes
(that is, publically available free upgrades for those that have the base, without having to give
out the whole thing)

This specification provides capabilities for ‘‘recovery’’ to the previous state if an install fails (for
example, due to a lost connection to the source or a failed preinstall or postinstall script). Since
it is common practice for a new release (update or upgrade) of a product to be of better quality
than a patch (or fix), functionality supporting manual rollback of an update is not included at
this time. The administrator can manually rollback to a previous release by installing and
managing multiple installed versions instead of performing an update, or by reinstalling the
lower version (downdate or downgrade).

Examples:

swinstall -x reinstall=true -x reinstall_files=false

This reinstalls the fileset, but does not retransfer or reinstall any files that are already up to
date.

swinstall -x reinstall_files=false PRODUCT,r=<newer>

This updates the product, but still checks each file before retransfer or reinstall.

Systems Management: Distributed Software Administration 217

swinstall Background Information

Patch Operations

Several new attributes and options are used to implement these capabilities.

• In general, patches to a fileset can be either ‘‘superseding’’ (replacing previous patches to this
fileset) or ‘‘point’’ patches (independent patches that can be installed at the same time,
possibly with no side effects). This is controlled by the i supersedes attribute.

• In general, patches can be named after the product and fileset which they patch, or can have
completely independent product and fileset names (for example, named after the defect
number they fix). The fileset or filesets a patch applies to is defined by the ancestor attribute.

• In general, patches can be managed separately from regular software items. They are not
‘‘visible’’ to the casual user unless explicitly requested for install or listing. Selection for
installation and listing is supported by the category attribute and special patch management
options to the POSIX commands; explicit patches can also be included directly in POSIX
software selections.

The following are examples of patch installation in same session as base product:

Example:

swinstall -x autoselect_patches=true X11

This is the default behavior for patch installation. All patches applying to software being
installed (in this case X11) are selected.

Example:

swinstall -x autoselect_patches=true \
-x patch_filter="*,c=critical" X11

These settings would cause all applicable patches that include the category ‘‘critical’’ to be
selected and installed along with the selected software.

Example:

swinstall -x autoselect_patches=true \
-x patch_filter="X11,c=critical" BaseOS X11 Networking

These settings would cause only applicable patches for the product X11 that include the
category ‘‘critical’’ to be selected and installed along with the other selected non-patch
software ‘‘BaseOS’’ and ‘‘Networking’’.

Example:

swinstall -x autoselect_patches=false X11 \
X11.Runtime,r=1.0.1 PH02-3425

This installs a product and two explicitly defined patches (showing different patch naming
schemes). Note that the ‘‘autoselect_patches’’ defaults to true .

The following are examples of patch installation after base product is installed:

Example:

swinstall -x patch_match_target=true

These options will select the highest superseding patches in the depot that correspond to
currently installed software.

218 CAE Specification

Background Information swinstall

Example:

swinstall -x patch_match_target=true -x patch_filter="X11"

These options will select the highest superseding patches in the depot that have an ancestor
on system, and that have a product tag of ‘‘X11’’.

Example:

swinstall -x patch_match_target=true \
-x patch_filter="X11,c=critical" Networking.TCP,r=1.0.1

These options will select all critical patches with product tag X11 if their ancestors are
installed and also will install an explicitly specified patch.

Example:

swinstall -x patch_match_target=true \
-x patch_filter="*,c=critical"

These options will select all patches in the depot that correspond to currently installed
software and that contain the category ‘‘critical’’.

The following is an example of Multiple criteria with patch filtering:

Example:

swinstall -x patch_match_target=true \
-x patch_filter="X11,c=critical,c=test_level_4|hand_certified"

This will bring down any patches for X11 that have the category ‘‘critical’’ and either the
category ‘‘test_level_4’’ OR the category ‘‘hand_certified’’.

The following is an example of Explicitly loading patches:

Example:

swinstall fix12312 Networking.TCP,r=1.0.1

This shows identification of a specific patch product (using one naming convention of
naming the product for the defect it fixes) as well as explicitly identifying a patch fileset
(using the other naming convention of naming patches after the filesets they patch).

The following is an example of saving patch files:

Example:

swinstall -x patch_save_files=true -x patch_match_target=true

FURTHER EXAMPLES
Install the C and Pascal products from the network source, sw_server as follows:

swinstall -s sw_server cc pascal

Install the C and Pascal products on some remote hosts as follows:

swinstall -s sw_server cc pascal @ hostA hostB hostC

Update the Omniback product from a CD-ROM mounted at /cd as follows:

swinstall -s /cd omniback

Install an incompatible version of Omniback as follows:

swinstall -x allow_incompatible=true omniback,a=foreign

Systems Management: Distributed Software Administration 219

swinstall Background Information

Install all products from the cartridge tape /dev/rct0 as follows:

swinstall -s /dev/rct0 *

Install the software_selections listed in /tmp/install.products on the hosts listed in
/tmp/install.hosts as follows:

swinstall -f /tmp/install.products -h /tmp/install.hosts

Example of match_target:

swinstall -s new_media -x match_target=true

Example of reinstall_files:

swinstall -x reinstall_files=false reinstall_files_use_cksum=false

Example of autorecover_product:

swinstall -x autorecover_product=true PRODUCT

EXIT STATUS
No additional rationale is required under this heading.

CONSEQUENCES OF ERRORS
No additional rationale is required under this heading.

220 CAE Specification

Background Information swlist

NAME
swlist — List software

SYNOPSIS
No additional rationale is required under this heading.

DESCRIPTION
The swlist utility may be used to perform the following tasks:

• List distribution, installed_software, software and software_file objects

• List the attributes of each of the objects

It provides the means to read the catalog information. For installed_software, this information is
stored in an implementation specific fashion. A read interface is needed to support portability
between conforming implementations. In particular, an implementation may need to export
current data for import into a new implementation.

A read interface should also support the objective of distributed administration by providing a
standard interface for output of information about software being managed by any conforming
implementation.

Finally, a vendor integrating into the standard software management environment needs a
standard way to query the catalog about itself as well as other products, both from vendor-
supplied scripts and the product execution itself.

The swlist command line interface meets these key objectives. There could be an additional
requirement that a standard programmatic interface be defined for access to the catalog by
related management applications, as well as software product executables. This objective can
only be (reasonably) met by defining language specific or language independent interfaces, as
well as the data structures needed to represent at least single software attributes. Alternatively,
a standard object-oriented interface for retrieving objects and attributes from a standard
administration catalog could be defined through which this Software Administration
specification could support its defined software objects. This is not an objective of this Software
Administration specification at this time.

Discussed, but not included, is a possible vendor extension for swlist to provide an interface into
displaying the attributes of the defaults files for the various utilities. The syntax for listing an
attribute would be

swlist -l <utility> -a <option>

OPTIONS

The output is the parsable form as it is in a known format, with attribute (keyword value) pairs.
It is analogous to a POSIX.2 ls long listing. The undefined format should include at least the
object tag attribute (for product, subproduct, fileset, control_file) or path attribute (for files).

Management of the host object (which contains the attributes for lists of distributions and
installed_software objects) is undefined within this Software Administration specification. Still,
and can be used to get lists of distributions and installed_software objects respectively on the
host.

To list the files in a fileset object, then no option is needed. But, to list both the files and
control_files, then both and are needed. Likewise, and can be used together to list both the
subproduct and fileset objects contained in a product.

If the -v is not specified, a typical implementation might list all attributes specified on one line
per object.

Systems Management: Distributed Software Administration 221

swlist Background Information

Both the -l and -a options can be used to obtain lists of contained objects where -l returns
available or currently installed objects and -a returns all objects defined in the original
distribution. Only the -l option can be used to obtain attributes of those contained objects.
Note that the keyword for -a attribute is just the plural of the keyword for -l level . For
example:

swlist -a control_files <fileset>

lists the defined control_file tags for the fileset, while:

swlist -l control_file -a result <fileset>

lists the result attribute of each control_file object in the fileset.

Note that the -l option could be extended to one more level, host, that would list all
distributions on the host.

Both the targets operand and the [-s source] option were considered for administrator
convenience, but the latter was removed from this Software Administration specification. The
former is used to list software available from a distribution that is being used as a target. The
latter was possible for listing software available from a distribution that is being used as a source
with other commands; however, it can also be accessed as a target.

In addition to all attribute names defined in Software Administration specification, the following
three additional items are supported by the -a attribute option: software_spec , mod_date
and create_date .

The software_spec item is supported in order for users of swlist to generate the exact
conformant software_spec needed to uniquely identify a software object. This was included
because creating a software_spec from the correct version distinguishing attributes is
moderately difficult.

The mod_date and create_date items are intended for use by administrators to easily see
when the software object was first installed or available, or when it was last modified. The
format of these strings should be time zone and locale dependent, such as:

Jan 14 1993 4:30 PM

In addition, software_spec , date , and create_date should not be stored in any
software definition file. If they are found there, they will be ignored. Whether they are
implemented as attributes, methods on existing attributes, or some other method, it does not
matter. They may be specified like any other attributes for administrator convenience.

OPERANDS
No additional rationale is required under this heading.

EXTERNAL INFLUENCES
The one_liner extended option is used to create default output for the novice user, as well as for
the experienced user. A typical implementation might list all attributes in the one_liner on one
line per object. The tag and path attribute behavior also applies if the one_liner is undefined or set
to no attributes. If the tag and path are really not desired in the output, then the -a attribute
option may be used.

More advanced support for formatting output, such as a format option using printf() syntax, was
discussed, but it was deemed that this is a reasonable area for vendor extension, and not
necessary for this Software Administration specification given the -v parsable format.

222 CAE Specification

Background Information swlist

EXTERNAL EFFECTS
No additional rationale is required under this heading.

EXTENDED DESCRIPTION

Update Capabilities

When a product is partially updated (one or more, but not all, filesets have been updated by
filesets from a different version of the product), then two product versions exist on the system,
each partially complete. The swlist utility will show both.

Example:

swlist -l fileset -x one_liner="revision title" SW-DIST

SW-DIST B.10.10 HP-UX Software Distributor
SW-DIST.SD-AGENT B.10.10 HP-UX Software Distributor agent

SW-DIST B.10.20 HP-UX Software Distributor
SW-DIST.SD-CMDS B.10.20 HP-UX Software Distributor commands

Once the product is completely updated, only the newer version is listed.

Example:

swlist -l fileset -a revision -a title SW-DIST

SW-DIST B.10.20 HP-UX Software Distributor
SW-DIST.SD-AGENT B.10.20 HP-UX Software Distributor agent
SW-DIST.SD-CMDS B.10.20 HP-UX Software Distributor commands

Patch

Filtering according to category will be supported. The use of category filtering will allow easy
selection of all patch software objects. Software objects with the is_patch attribute set to true
have the built-in category of ‘‘patch’’. The category ‘‘patch’’ is reserved for this use.

This can be used to list available patches, and patches with a certain name.

The fileset attribute applied_patches is automatically updated to include any patches that have
been installed and applied to it, due to it being in the patch fileset’s ancestor list. This can
include patches that perhaps do not share the same product tag as the base filesets (ancestors)
they patch.

Any fileset that has been patched has an applied_patches attribute listing all of the patches that
have been applied to it.

Listing what products and filesets a patch applies to can be generated by listing the ancestor
attribute. A list of what patches a patch superseded can be generated by listing the supersedes
attribute.

EXAMPLES
List all distributions on a host:

swlist -d -l distribution @ host

List all products in the default distribution:

swlist -d

List all files in an installed fileset:

Systems Management: Distributed Software Administration 223

swlist Background Information

swlist Product.Fileset
swlist -a files Product.Fileset
swlist -l file Product.Fileset

List all files and control_files in a fileset, in INFO file format:

swlist -v -l file -l control_file Product.Fileset

List the states of control_files in product:

swlist -a state -l control_file Product

List the definition of the contents of a bundle in the default distribution:

swlist -d -a products -a bundles Bundle

Dump an installed_software catalog:

swlist -l file -l control_file -l bundle -l subproduct -c
exported_catalog

List a fileset software object into the software definition file format:

swlist -l fileset -v -c exported_catalog Product.Fileset

List a product’s copyright:

swlist -a copyright Product

List the values of all product and fileset software: tag , revision , and title attributes from the
default distribution:

swlist -d -l fileset -x one_liner=’tag revision title’

Example of listing sparse filesets:

swlist -l fileset -a revision -a is_sparse PRODUCT,r=10.0

PRODUCT 10.0
PRODUCT.FILESET 1.0 false
PRODUCT.FILESET 2.0 true

Examples of patch listing:

Example:

swlist -d -l product -l bundle -a software_spec *,c=patch
PH003-23245,r=1.0,a=,v=
PH056-45545,r=1.0,a=,v=
X11,r=5.00.01,a=FLUX,v=FLB

This lists all products and bundles in a depot that have the is_patch attribute set to true .

Example:

swlist -l fileset -a software_spec X11,c=patch

X11.Runtime,r=5.00.01,a=FLUX,v=FLB,fr=1.0.1

This lists all patch filesets in the product X11 (but only patches that have the product tag
X11).

224 CAE Specification

Background Information swlist

Example of listing applied patches:

Example:

swlist -l fileset -a applied_patches X11

X11.Runtime
X11.Runtime,r=1.0,a=FLUX,v=FLB,fr=1.0.1
X11.Manuals
X11.Libraries PH056-45545.PH056-45545,r=1.0,a=FLUX,v=FLB

This shows patches with matching and non-matching tags.

Example of listing patch categories:

Example:

swlist -d -l category -s /CD

critical Patches that fix system hangs or data corruption.

S747_upgrade Patches that are needed to upgrade to an S747.

security_patch Patches affecting system security.

The swlist command lists the categories defined in the depot mounted at /CD. The attributes of
the category objects are controlled by the POSIX one_liner default (in this case set to ‘‘tag title’’).

Example:

swlist -a description -l category critical

List a particular attribute of a category object identifed by the tag ‘‘critical’’.

Note: 1387.2 could also use a -l vendor.

EXIT STATUS
No additional rationale is required under this heading.

CONSEQUENCES OF ERRORS
No additional rationale is required under this heading.

Systems Management: Distributed Software Administration 225

swmodify Background Information

NAME
swmodify — Modify software catalog

SYNOPSIS
No additional rationale is required under this heading.

DESCRIPTION
The swmodify command provides the write interface to the catalog information. For installed
software this may be in an implementation specific manner. A write interface is needed to
support portability between conforming implementations. In particular, an implementation
may need to import current data dumped from a previously used implementation.

Another objective of this Software Administration specification to provide administrator
portability. A write interface provides a standard way for administrators to integrate software
initially administered (installed) using other tools besides those defined in this Software
Administration specification.

Finally, there needs to be a standard way for a software vendor to access and modify attributes
in the catalog belonging to their product from their vendor-defined scripts, or from the execution
of the product itself.

The swmodify command line interface meets these key objectives. There could be an additional
requirement that a standard programmatic interface be defined for access to the catalog by the
target role. The objective here would be to be able to link in different conforming catalog
implementations with the conforming target role. This objective can only be (reasonably) met by
defining a programmatic interface, as well as the data structures needed to represent all software
objects and attributes. Alternatively, a standard object-oriented interface for setting and
committing objects to a standard administration catalog could be defined through which this
Software Administration specification could support its defined software objects. This is not an
objective of this Software Administration specification at this time. This utility may be used to
perform the following tasks:

• Modify or fix attributes at all levels of a distribution or installed_software object.

• Add and delete software objects from within scripts or other management interfaces.

• Add and delete software file objects from scripts or other management interfaces. This is
similar to installf in SVR4.

• Convert the format of installed_software databases such as when one database technology is
being replaced by another.

A proposal was discussed to extend swmodify to provide an interface into modifying the
attributes of the defaults files for the various utilities. The syntax for modifying an attribute
would be

swmodify -l <utility> -a <option>=<value>

OPTIONS
No additional rationale is required under this heading.

OPERANDS
When an exported_catalog is specified (a file in the software definition format or a directory in
the exported catalog structure), any software selections apply to the exported_catalog, not the
target. If the software from the exported_catalog matches more than one software object in the
target, those modifications are not applied.

If an exported_catalog is not specified, the software selections apply just to the target. If they
resolve to more than one software object, those modifications are not applied.

226 CAE Specification

Background Information swmodify

EXTERNAL INFLUENCES
The files option provides a convenient interface for adding to the catalog files that were created
by control scripts, without having to create an intermediate input file. This provides function
equivalent to that of the SVR4 installf command. For example:

cp $SW_ROOT_DIRECTORY/$SW_LOCATION/lib/default \
$SW_ROOT_DIRECTORY/etc/file

swmodify -x files=$SW_ROOT_DIRECTORY/etc/file \
Product.Fileset,l=$SW_LOCATION

EXTERNAL EFFECTS
No additional rationale is required under this heading.

EXTENDED DESCRIPTION
No additional rationale is required under this heading.

EXAMPLES
Reload an installed_software catalog:

swmodify -c swlist_output_dir

Add a software object defined in the software definition file format:

swmodify -c swmodify_input_file

Delete an obsolete fileset:

swmodify -u Product.Fileset

Delete three files from a configure script:

swmodify -u -x files="file1 file2 file3" Product.Fileset

Modify a distribution level attribute:

swmodify -d -a name=$NAME

Committing a patch:

swmodify -x patch_commit=true X11.Runtime,r=1.0.8

The patch shown above is now committed and can not be rolled back.

Note: patch_commit needs to be able to commit all patches back to the base.

EXIT STATUS
No additional rationale is required under this heading.

CONSEQUENCES OF ERRORS
No additional rationale is required under this heading.

Systems Management: Distributed Software Administration 227

swpackage Background Information

NAME
swpackage — Package distribution

SYNOPSIS
No additional rationale is required under this heading.

DESCRIPTION
This utility may be used to perform the following tasks:

• Package software into a new or existing distribution directory on the local host.

• Package software into a new serial distribution that may be a character-special file
representing a DDS, nine-track tape, cartridge tape, or a regular file, within which the
POSIX.1 extended tar or extended cpio archive is stored.

Both outputs use the same software packaging layout, but in different formats (directory versus
serial).

OPTIONS
No additional rationale is required under this heading.

OPERANDS
No additional rationale is required under this heading.

EXTERNAL INFLUENCES
No additional rationale is required under this heading.

EXTERNAL EFFECTS
No additional rationale is required under this heading.

EXTENDED DESCRIPTION
A target distribution may only be the first step in creating a CD-ROM, either as a serial or
directory distribution. There is no special support provided by swpackage for the creation of
CD-ROM.

Distribution tapes are created in POSIX.1 extended cpio or extended tar format. To create the
tape, swpackage first builds the products into a temporary distribution. (It is removed when
swpackage completes.) To conserve space, all files may exist as references to the real source files.
After the distribution is constructed, swpackage then archives it, along with the real files, onto the
tape device.

The swpackage command supports two methods for making additions and/or modifications to
an existing distribution:

1. Modify the PSF used to package some or all of the products in the existing distribution.
Then invoke swpackage and specify the appropriate software_selections on the command
line. Each specified software selection should correspond to a modified product,
subproduct, or fileset definition within the PSF. If new filesets are being added to an
existing product, swpackage will identify the product and add the filesets. If product,
subproduct, or fileset attributes are being modified, swpackage will match them and do the
replacements.

2. Create a new delta PSF for the products being modified. Send this delta file as the source
PSF, and swpackage will repackage all of the specified products. The smallest unit that can
be changed is the fileset. If a file within a fileset is added, modified, or deleted, the new
fileset would replace the existing fileset. Enough product information needs to be given to
correctly identify the product in which this fileset is located. When swpackage reads the
delta PSF, it parses and deals only with the differences.

228 CAE Specification

Background Information swpackage

As the delta PSF comes closer to the original PSF, the repackage process will take as much
time or more as the original packaging.

If a modified product, subproduct, or fileset specification redefines any attributes, the new
attribute values will replace the existing values.

EXAMPLES
Package the products specified in /develop/product_list onto a distribution located at the
default location:

swpackage -s /develop/product_list

Package the same products onto the distribution located at /develop/cd , from where they can
printed onto a master CD-ROM as follows:

swpackage -x media_type=directory -d /develop/cd 2
-s /develop/product_list

Create a tape media on a 1300 MB DDS tape loaded at /dev/dat as follows:

swpackage -x media_type=serial -x media_capacity=1300 -d /dev/dat 2
-s /develop/product_list

EXIT STATUS
No additional rationale is required under this heading.

CONSEQUENCES OF ERRORS
No additional rationale is required under this heading.

Systems Management: Distributed Software Administration 229

swremove Background Information

NAME
swremove — Remove software

SYNOPSIS
No additional rationale is required under this heading.

DESCRIPTION
This utility may be used to perform the following tasks:

• Remove installed software.

• Remove software from a distribution.

• Remove software patches that have been packaged as standard software objects (filesets).

OPTIONS
No additional rationale is required under this heading.

OPERANDS
No additional rationale is required under this heading.

EXTERNAL INFLUENCES
No additional rationale is required under this heading.

EXTERNAL EFFECTS
No additional rationale is required under this heading.

EXTENDED DESCRIPTION
The remove software utility is a reversal of the install software utility. The stages, such as check
remote, pre-remove customization, etc., are identical in purpose to the counterpart stage of the
swinstall utility.

The swinstall utility automatically installs all filesets that a selected fileset depends on, but
swremove needs to be explicitly told to remove filesets that depend on a selected fileset. This may
be changed by setting autoselect_dependentstrue. The swremove utility has this default because it
is easier to remove additional things if they are not wanted (that is, remove the dependencies)
than it is to restore something that was erroneously removed.

When removing software objects, but not a bundle or subproduct that refer to those objects, the
standard specifies the behavior as implementation-defined. Consensus on this matter was not
achieved. An implementation may choose to remove the object, to warn the user and remove
the object, or make this case an error and not remove this object. If this is an error, then the user
should have a way to override this behavior.

The general consensus was that removing part of a bundle should be a warning or an error, and
removing part of a subproduct should be a note or a warning. A bundle will not get installed
unless explicitly specified. So, removing part of another installed bundle is not necessarily
desirable. On the other hand, a subproduct may get installed as a result of a product being
installed. Also, if there is a good reason why the subproduct needs to be complete (that is, there
is a dependency on it), then an implementation may generate an error or warning based on
dependency checks.

An example use of an unconfigure script is to perform an orderly shutdown of an application
in preparation for removing it. The unconfigure script is a script or program supplied by the
vendor. It is executed by the client role on each target host.

Originally, the behavior of swremove was to remove empty directories not referenced by other
products. The ability to have multiple catalogs made this impractical. Since this seemed overly
restrictive, the behavior with respect to directories is now implementation defined.

230 CAE Specification

Background Information swremove

Order of Remove Operations:

Example Prerequisites:

P2

F1 F2 F3 F6 F4 F5

unconfigure

unconfigure

checkremove

checkremove

Analysis Phase:

Execution Phase:

P2P1

F1 F2 F3 F6 F4 F5

P1

P1 P2

F1 F2 F3 F4 F5 F6

postremove

postremove

file removal

preremove

preremoveP1

P1

P2

P2

F1

F1

F1

F2

F2

F2

F3

F3

F3

F6

F6

F6

F4

F4

F4

F5

F5

F5

Figure B-9 Order of Remove Operations

Note, however, that unremoved directories should still be logged.

Systems Management: Distributed Software Administration 231

swremove Background Information

The following is an example of rolling back a patch:

Example:

swremove X11.Runtime,r=1.0.8

This removes the patch X11.Runtime,r=1.0.8 and restores the saved files.

EXAMPLES
Remove the C and Pascal products as follows:

swremove cc pascal

Remove the C and Pascal products stored in the distribution /var/spool/sw as follows:

swremove -d cc pascal @ /var/spool/sw

Remove the Green and Blue subproducts from the Foo product, and write detailed messages to
the stdout/stderr, as follows:

swremove -x verbose=2 Foo.Green Foo.Blue

Preview what would happen if the Green and Blue subproducts were removed from the Foo
product as follows:

swremove -p Foo.Green Foo.Blue

Remove the software_selections listed in /tmp/remove.list as follows:

swremove -f /tmp/remove.list

EXIT STATUS
No additional rationale is required under this heading.

CONSEQUENCES OF ERRORS
No additional rationale is required under this heading.

232 CAE Specification

Background Information swverify

NAME
swverify — Verify software

SYNOPSIS
No additional rationale is required under this heading.

DESCRIPTION
This utility may be used to perform the following tasks:

• Verify the installed software, including dependencies, file attributes, and running verify
scripts.

• Verify the distribution software, including dependencies, and file contents attributes.

• Fix installed software information including running fix scripts.

OPTIONS
No additional rationale is required under this heading.

OPERANDS
No additional rationale is required under this heading.

EXTERNAL INFLUENCES
File system permissions cannot be verified in distributions since there is no requirement that
distribution files have the permissions set to those defined for them. The swinstall utility sets the
permissions based on the attributes defined, not the existing permissions. It is expected that the
default permissions an implementation uses for files within distributions is the same as the
attributes defined. However, there are some security considerations, as well as media
considerations, such as for CD-ROMs, that would make those permissions different.

Note that the verify script is free of side effects.

Originally, the options with the check_ prefix had command line options. However, it was felt so
many option letters confused the command line. In addition, the semantics of which checks to
perform were difficult to specify. It was felt that by adding these options to the options file, a
system could be configured to perform those set of checks to be used in the normal case. When a
different set of checks are desired, a user could override specific checks with the -x option=value
option or specify a different options file with the -X options_file option.

EXTERNAL EFFECTS
No additional rationale is required under this heading.

EXTENDED DESCRIPTION
A verify script is used to ensure that the configuration of the software is correct. Possible
vendor-specific operations for a verify script include the following:

• Determination of active or inactive state of the product.

• Check for corruption (correctness) of product configuration files (writable files).

• Check for correct and incorrect configuration of the product into the OS platform, services, or
configuration files.

• Check licensing situation.

Note also that if a preinstall or postinstall script changes attributes of a file during
install, then the swmodify command should be used to adjust those attributes in the
installed_software catalog. Otherwise, file level verify will likely fail.

A fix script is used to attempt to fix the installed software. Possible vendor-specific operations
for a fix script include similar operations to rerunning a preinstall or postinstall

Systems Management: Distributed Software Administration 233

swverify Background Information

script. Operations similar to rerunning a configure script are also possible if the state of the
software is configured.

Like the file types of d (directory), and s (symlink), ‘‘swverify -F ’’ (fix) will remove any files
with type x (delete file) during execute phase.

Note: ‘‘swverify -F ’’ does not fix size, mtime or cksum.

EXAMPLES
No additional rationale is required under this heading.

EXIT STATUS
No additional rationale is required under this heading.

CONSEQUENCES OF ERRORS
No additional rationale is required under this heading.

234 CAE Specification

Background Information Software Packaging Layout

B.5 Software Packaging Layout
Software to be distributed according to this Software Administration specification is represented
in a form defined as the software packaging layout. The software packaging layout provides a
standard for representing software using the exported form of the software catalog, and a
structure for the actual software files.

The reason for specifying a standard software packaging layout is to allow for interoperable
media. In other words, any conforming distribution may be read by any conforming
implementation.

This layout does not dictate how the software files are actually located in the file system. The
layout provides a portable means to store and distribute files for any file organization. Installing
could involve a transformation from a canonical form to one that conforms to the requirements
of the architecture of the machine on which the software is to run.

The software catalog refers to the information (metadata) that describes software objects in a
particular distribution or installed software object. Each catalog describes exactly one
software_collection (installed_software object or distribution).

The information in the software catalog may be created, altered, and removed using the utilities
defined in this Software Administration specification. A system administrator may use swlist ,
for example, to obtain a list of installed software products, the shell scripts used for installing a
product, or the files contained within a product.

Each system has a default catalog for installed_software. This catalog provides information on
the products installed for use on that system. Permission to modify the catalog may be restricted
to the system administrator. Since there are times when users without special privileges may
wish to use software administration tools to install and maintain software in their parts of the
file store, additional installed_software objects, in separate software catalogs, may be created
and acted upon by any user having appropriate authority.

The way that installed_software catalog information is stored (whether kept in text files or
databases, whether distributed or centralized), is undefined within this Software Administration
specification.

Systems Management: Distributed Software Administration 235

Software Packaging Layout Background Information

B.5.1 Directory Structure

An implementation may want to support several levels of INDEX files. The global INDEX file
shall contain the correct information, and other lower level INDEX files may be used for
convenience of the implementation when building the global INDEX. The following INDEX
files, when simply concatenated together, form the following global INDEX:

• catalog/dfiles/INDEX
A distribution INDEX contains the definition of the attributes set for the distribution itself
and the bundle definitions.

• catalog/ <product_control_directory>/pfiles/INDEX
A product INDEX contains the definition of the product and subproduct attributes for the
product object that product_control_directory represents.

• catalog/ <product_control_directory>/ <fileset_control_directory>/INDEX
A fileset INDEX contains the definition of the fileset attributes for the fileset object that
fileset_control_directory represents.

An example of product control directory name follows. If a product with the tag attribute value
of SDU is added to a distribution, and no other objects with the same value of tag exist, the
product_control_directory for storing the product object is SDU/. If another product object with
the tag SDUis added to the distribution, the product_control_directory for that product object is
SDU.2/ . The first SDU product was assigned the value of 1 for its productinstance_id.

B.5.2 Software Definition File Format

Through the software definition files contained in this Software Administration specification, an
exported catalog structure representation is defined within the context of a distribution. This is
necessary to have interoperable media. It is also used to define an exported catalog structure
representation for installed_software objects. This is necessary for swlist output.

In the PSF, attributes may be undefined or set explicitly unless their default value is none . Most
attributes have a default value. Default values are logically required for attributes that may be
optionally specified in the PSF.

Most Boolean attributes default to false, such as is_reboot , is_kernel , and is_locatable . Instead of
defaulting all Boolean attributes to false through clever wording of the attribute tag, some
default to true , such as is_locatable .

The distribution keywords and the layout_version specification should not be changed in future
amendments to this Software Administration specification so an implementation can determine
the version of the layout being used.

In the PSF, the < (less than) is a token for unambiguous parsing, but it does not imply that the
file contents should be included (that is, file re-direction). The alternative is to take the file from
that path on the development system and store it as a control_file (for example,for example, a
copyright control_file containing that attribute).

Vendor-defined attributes include any attribute that has a keyword not defined by this Software
Administration specification. Since the value of any vendor-defined attribute is interpreted
simply as a string, the original value entered in the PSF is preserved through packaging and
copy operations. The value is thus preserved until the package is finally installed. During
installation, swinstall may be affected by vendor-defined attributes in the INDEX or INFO files
and may choose to preserve or not preserve the associated values for such keywords. The
swinstall utility is only required to preserve in the catalog those values that correspond to the
keywords defined in this Software Administration specification. Refer also to portions of the
extended description for the swinstall utility.

236 CAE Specification

Background Information Software Packaging Layout

Since device file creation is not possible in a portable way (that is, not included in POSIX.1 or
POSIX.2), only a configure script that is running on the target system can reliably create
devices files. POSIX.1 does define the ‘‘syntax’’ of major and minor, so it is possible for the
configure script to add these attributes via swmodify (and for swmodify to look up their values
through POSIX.1 interfaces). This in turn allows swverify to verify that these are correct.

The extended file definition syntaxes provide a flexible interface to individual software vendor
development and build systems. These build systems may contain files to be packaged existing
anywhere from intermingled with source files to a target build tree containing the files in the
locations they would be in after installation.

• The directory mapping is intended for use with target build trees where all files are below a
build root. The build root maps to some directory in the installed location such as / or some
subdirectory like the product_control_directory .

• Recursive (implicit) file specification can be used with the previous instead of explicitly
defining each file. In this case the mapped directory shall contain only the files from that
particular fileset, and shall map to some directory (for example, /) on the installed system.

• Explicit file specification is useful for build systems where files are not organized in the same
way they are to be installed, and for build systems that want the control of listing each file
explicitly (implicit specification could possibly lead to unwanted files being packaged).

• Packaged files, by default, take the permissions of the files being packaged. Specification of
permissions override the permissions of the files being packaged. Alternatively, each file
may have its permissions explicitly defined.

The following examples illustrate the use of the directory and file keywords:

1. Include all files under /build/s/ , to have a product.directory as /opt/sw :

directory /build/s /opt/sw
file *

2. Include only certain files under /build/s/ , to be rooted under /opt/sw :

directory /build/s /opt/sw
file bin/swinstall
file -t h bin/swinstall bin/swcopy

file -t d lib/nls
file nls/swinstall.cat lib/nls/swinstall.cat

file data/swinstall.defaults newconfig/defaults/swinstall
file data/swinstall.defaults /var/adm/sw/defaults/swinstall

3. Explicitly list files, no directory mapping specified:

file /build/s/bin/swinstall /opt/sw/bin/swinstall
file -t h /opt/sw/bin/swinstall /opt/sw/bin/swcopy

file -t d /opt/sw/lib/nls/
file /build/s/nls/swinstall.cat /opt/sw/lib/swinstall.cat

Systems Management: Distributed Software Administration 237

Software Packaging Layout Background Information

4. Use all specification types to include files:

directory /build/s /opt/sw
file *
file bin/swinstall
file -t h bin/swinstall bin/swcopy

file data/swinstall.defaults newconfig/defaults/swinstall
file data/swinstall.defaults /var/adm/sw/defaults/swinstall

The following examples illustrate the use of the file_permissions keyword:

1. Set a read-only 444 mode for all file objects (requires override for every executable file and
directory):

file_permissions -m 444

2. Set a read mode for non-executable files, and a read/execute mode for executable files and
for directories:

file_permissions -u 222

3. Set the same mode defaults, plus an owner and group:

file_permissions -u 222 -o bin -g bin

4. Set the same mode defaults, plus a uid and gid:

file_permissions -u 222 -o 2 -g 2

5. Set the owner write permission (in addition to the above):

file_permissions -u 022 -o 2 -g 2

If the user defines no file_permissions, swpackage uses the default value:

file_permissions -u 000

for destination file objects based on existing source files. This means that the mode, owner/uid,
and group/gid are set based on the source file, unless specific overrides are specified for a
destination file.

The default value:

file_permissions -u 000 -o bin,2 -g bin,2

is used by swpackage for destination file objects being created (not based on existing source files).

If neither the path nor any attributes is specified, then the suggested default values of the
attributes are:

-m 0777 -o bin,2 -g bin,2

These are only suggestions, since the default values in this case are implementation defined.

The space file is used to account for disk space used (positive size) or freed (negative size) by
control script execution. Negative sizes may be used by a more sophisticated disk space
analysis that accounts for transient as well as final disk space. For example, if a fileset has a
configure script that creates a 200 KB file /usr/foo/data/file , it can include a space
file with the entry:

/usr/foo/data 200000

238 CAE Specification

Background Information Software Packaging Layout

This will tell the implementation to add 200 KB to the disk space requirements. If the
configure script moves a 35 KB file from /etc/file to /sbin/bin , it could include the
entries:

/etc/file -35000
/sbin/file +35000

An implementation may choose to ignore the negative entry, producing a ‘‘worst case’’ disk
space requirement. Alternatively, the implementation may choose to list the ‘‘worst case’’
requirement (ignoring the negative entry, reflecting the transient disk space required), and then
the final disk space (accounting for the negative entry). Finally, if a configure script created a
temporary 5 MB file under /tmp , it could add the entries:

/tmp 5000000
/tmp -5000000

The following are examples for ‘‘update packaging’’:

Example of type (x):

file -t x /oldfile

This adds a remove file to the fileset definition. It gives the software packager explicit
control over which files to remove (useful if any of the files from previous revisions were
user configurable).

Example of ancestor

product
tag NEWPROD

fileset
tag NEWFILESET
ancestor OLDPROD.OLDFILESET,r=10.0

This designates NEWPROD.NEWFILESET to be included in the list of filesets generated by
the match_target option to swinstall if OLDPROD.OLDFILESET has been installed.

Example of supersedes

product
tag NEWPROD

fileset
tag NEWFILESET
supersedes OLDPROD.OLDFILESET,r=10.0

This designates that installing NEWPROD.NEWFILESET will result in removing the catalog
information for OLDPROD.OLDFILESET.

Patch Packaging

If the patch uses the same product tag and fileset tag as the fileset it is patching, then no ancestor
is necessarily needed. But, unless this patch patches all previous releases of the base fileset, an
ancestor must be specified. If the patch has a different product and fileset tag than the fileset it
patches it must also have an ancestor.

A unique product revision must be specified for a patch fileset if that patch has the same product
tag and fileset tag as the fileset it is patching.

If this is the first patch of any particular patch stream, then it does not need a supersedes attribute.
This is true for all original point patches. If this patch replaces one or more other patches, then it

Systems Management: Distributed Software Administration 239

Software Packaging Layout Background Information

must specify the appropriate supersedes attribute.

All patch software objects with the is_patch attribute automatically have the built-in patch
category included in the list of category_tags.

A fileset that has the is_patch attribute will not update a fileset with the same tag as is done with
normal filesets. In the case of filesets with is_patch set to true , the ‘‘revision’’ is now a version
distinguishing attribute at the fileset level.

The category_tag and is_patch attributes at all other levels of software objects besides fileset are
for display and selection purposes only. These attributes are not version distinguishing
attributes.

The 1387.2 developers discussed whether patch verification capabilities could be defined that
might help the quality of patches, but concluded that this would be outside the scope of their
task.

Library/Kernel Patching

In order to patch an archive library, a new file type designed for archive library maintenance is
supported. The "file" specification for a .o file also includes the library in which the file is to be
placed (using ar).

Example:

file -t a -a /usr/lib/foolib.a /build/newfile.o \
/usr/lib/newfile.o

file
type a
archive_path /usr/lib/foolib.a
source /build/newfile.o
path /usr/lib/newfile.o

B.5.3 Serial Format and Multiple Media

The 1387.2 developers discussed the desire for system vendors to have both a boot partition and
the serial archive distribution containing the operating system software on a single medium.
Numerous strategies were discussed, but no solution could be found that met all the disparate
boot strategies. Vendors that have this need may need to create nonconforming media that have
both the boot partition and the distribution on the media. They should then copy that
distribution into a conforming form.

Separate archives on each medium allows the swinstall utility to only request the needed
medium (via the media_sequence_number), without having to scan each one sequentially. The rule
concerning a fileset being in one archive is needed so the swinstall utility knows whether to
request the next medium when it reaches the end of the current archive.

When packaging a product that contains kernel or prerequisite filesets onto a serial media,
swpackage should put the filesets on the serial media in the same order in which they will be
requested by swinstall in order to minimize media rewinds. If the packager and install utilities
used are from different implementations, then the amount of rewinds dramatically increases.
One possible ordering convention is as follows:

1. Order all products alphabetically by their product tag (and as they are encountered for
multiple versions of the same product). Order all filesets alphabetically within each
product. This results in the initial ordering for all filesets.

240 CAE Specification

Background Information Software Packaging Layout

2. Traverse the list front to back, moving all kernel filesets to the front of the list in their same
relative order to each other.

3. For each fileset, determine all of the prerequisite dependents for that fileset, meaning
filesets that have a prerequisite on this fileset, or a prerequisite on an object containing this
fileset. Traverse the list back to front, moving each fileset in front of the first of its
dependents in the current list order, considering dependencies across products and
chaining of prerequisites as follows:

• If the first dependent is in the same product, move the fileset just in front of that
dependent.

• If it is in a different product, move it in just in front of all filesets in product that
contains the dependent.

• If a fileset A depends on B which depends on C, move the filesets in C in front of A.

• Leave the fileset where it is if there are no dependents.

• Do not move any fileset more than once. Note that circular prerequisites will cause at
most two moves, possibly resulting in the original order.

4. Traverse the list front to back, determining a new product order as each new product is
encountered. The filesets within each product are also ordered by traversing front to back.

5. Using this product order, place all product catalog files on the serial media; then place all
kernel filesets from each product on the serial media (including the prerequisites of kernel
filesets); then place all non-kernel filesets from each product on the media.

When installing filesets, use this same order to load kernel filesets before non-kernel filesets, and
to load prerequisites before their dependents.

Additional files besides just those for the distribution may be needed on distributions. For
example, a software vendor may want to include a copy of the swinstall utility on the media.

Systems Management: Distributed Software Administration 241

Background Information

242 CAE Specification

Glossary

General Terms

application
The term application includes executable programs that use implementations of this
Software Administration specification. Such executable programs can include control files.

can
An indication of a permissible optional feature or behavior The implementation must
support such features or behaviors as mandatory requirements.

implementation
An object providing the services defined by this Software Administration specification. The
word implementation is to be interpreted to mean that object, after it has been modified in
accordance with the manufacturer’s instructions to configure it for conformance with this
Software Administration specification, or to select some of the various optional facilities
described by this Software Administration specification through customization by local
system administrators or operators.

An exception to this meaning occurs when using the term implementation defined (see below).

implementation defined
An indication that the implementation provider must define (and document) the
requirements for correct program constructs and correct data of a value or behavior.

When the value or behavior in the implementation is designed to be variable or
customizable on each instantiation of the system, the implementation provider must
document the nature and permissible ranges of this variation in their submission claiming
conformance.

may
An indication of an optional feature or behavior of the implementation that is not required
by this Software Administration specification, although there is no prohibition against
providing it.

A fully conformant implementation (see Section 1.3.1 on page 4 is permitted to use such
features, but must not rely on the implementation’s actions in such cases. To avoid
ambiguity, the reverse sense of may is not expressed as may not , but as need not .

must
A mandatory requirement on the implementation if it is to be fully conformant.

obsolescent
An indication that a certain feature may be considered for withdrawal in future revisions of
this Software Administration specification.

should
With respect to implementations, an indication of an implementation recommendation, but
not a requirement.

Systems Management: Distributed Software Administration 243

Glossary

Technical Terms

analysis phase
The steps a software administration utility performs, before modifying the target, while
attempting to ensure that the execution of operations on the target will succeed.

API
Application Programming Interface

attribute
A component of an object, possessing a name and one or more values.

autoselect
The automatic selection, within a utility, of software beyond that directly specified by the
user in order to meet the dependencies of the user-specified software.

autorecovery
The process of restoring installed software to the state it was in prior to the invocation, and
subsequent failure during execution, of the swinstall utility.

bundle
A software object used to build groupings from a grouping of other software objects, such
as all or parts of other bundles and products. See Section 2.10 on page 20.

catalog
The metadata describing all the software objects that are a part of a single
software_collection.

class
Used to describe the structure and attributes of each level of the software hierarchy that is
used to organize and manage software files.

client role
Where the software is actually executed or used (as opposed to the target, where it is
actually installed). The configuration of software is performed by this role.

command line interface (CLI)
A means of invoking utilities by issuing commands from within a POSIX.2 shell, implying
that neither graphics nor windows are required.

common class
Used to define those aspects of different software objects that are the same. The common
classes for this Software Administration specification are software_collections, software and
software_files. The names of these classes are also used to generically describe any object
that shares that common class.

compressed file
a file that has been transformed in a manner intended to reduce its size without loss of
information.

containment
A relationship between two objects such that one is said to belong to, or form part of, the
other. All objects except software_collection objects must be contained within exactly one
object. The containment of software_collection objects is undefined within this Software
Administration specification.

control directory
The directory below which the control_files for filesets and products are stored within
exported catalogs for installed software.

244 CAE Specification

Glossary

control_files
The control scripts executed by the utilities, the INFO file describing the files in a fileset, and
other files associated with a software object.

control script
A control_file associated with a software object that is executed by the software
administration utilities.

corequisite
The specification in a software object that another software object must be installed in
conjunction with the installation of the first and configured in conjunction with the
configuration of the first.

CRC
Cyclic Redundancy Check

decimal character string
A sequence of characters from the set of decimal digits the first of which must not be the
digit zero.

default option
The value for an extended option as defined in a defaults file. See below.

defaults file
A system specific or user specific file that contains the default values for extended options
used by the software administration utilities.

dependency
A software object that is a prerequisite, corequisite or exrequisite for a software object.

dependent
A software object which specifies a prerequisite, corequisite or exrequisite on another
software object.

developer role
Where software is developed, tested, and maintained.

directory medium
A medium which contains a distribution in a POSIX.1 hierarchical file system format. An
example of this is a distribution contained in a POSIX.1 file system format on a CD-ROM.

distribution
A software_collection containing software in the software packaging layout.

distribution catalog
The catalog of metadata for a distribution software_collection. Unlike a catalog for an
installed_software object, a distribution catalog is stored in a particular exported catalog
structure that is part of the software packaging layout.

distribution path
The pathname below which the catalog describing the distribution is located. If the
distribution is on a single medium, all software for it is located below this path.

downdate
Installing an older revision of software than one that is currently installed, into the same
location. This is also referred to as downgrading or reverting.

event
An occurrence which may require reporting by the utilities defined in this Software
Administration specification. to describe a significant occurrence. The reporting of an event

Systems Management: Distributed Software Administration 245

Glossary

may cause data to be written to stdout, to stderr, or to a log file.

execution phase
The operations a software administration utility performs that modify the target.

exported catalog
Refers to information organized in the exported catalog structure of the standard packaging
layout. It is used for distribution catalogs as well as exporting installed software catalogs
using swlist.

exrequisite
The specification in a software object that it must not be installed if one or more specific
software objects are installed.

extended option
The options that can be specified with the x option. These options may be defined in
defaults files or options files.

filename
A POSIX.1 filename with characters drawn from the POSIX.1 portable filename character set
(see POSIX.1).

filename character string
A sequence of characters from the portable filename character set (see POSIX.1 below), not
including the / (slash) character.

fileset
Defines the files that make up a software object, and is the lowest level of software object
that can be specified as input to the software administration utilities.

file storage structure
The storage directories in the software packaging layout under which the actual software
files for each fileset are located.

fully qualified software_spec
A software_spec which always identifies a software object unambiguously.

graphical user interface (GUI)
A means of presenting function to a user through the use of graphics.

host
A machine that contains software managed by this Software Administration specification.18

INDEX file
an exported catalog containing the metadata describing the software objects and attributes
for all bundles, products, subproducts and filesets.

INFO file
For each product and fileset, the file within an exported catalog containing the metadata
describing the software_file objects and attributes.

18. A host may contain both installed_software and distribution software_collections. The name of the host is the starting point for
finding all software on that machine managed by this Software Administration specification. The path attribute of a
software_collection, along with the specification of a host, can be used on the command line to identify a particular
software_collection to be managed by this Software Administration specification.

246 CAE Specification

Glossary

inheritance
The way in which the attribute definitions of a common object class are used as a part of the
definition of other object classes. The definition of the new object class includes the
definition of the common class plus the additional definitions specific to the new object
class.

installed software
Any software object created by the use of the swinstall utility.

installed_software
A software_collection containing installed software. This software is in a state ready for
use, or ready to be shared by client systems. A directory path on a system and an
installed_software catalog together identify a unique installed_software object.

installed_software catalog
The catalog of metadata for an installed_software software_collection. Unlike a catalog for
a distribution object, the storage and format of an installed_software catalog is undefined
within this Software Administration specification. The ability to dump and restore all or
part of an installed_software catalog into an exported catalog structure is included in this
Software Administration specification.

installed_software path
The root directory of an installed_software object. The pathname below which all software
for that object must be installed.

integer character string
One of a decimal character string, an octal character string, or a hexadecimal character
string.

interactive
The behavior of a utility or control_script which requires input from the user during its
execution.

kernel fileset
A fileset in which one or more of the referenced files forms part of the kernel, and denoted
by having the value of its is_kernel attribute set to true.

locatable fileset
A fileset for which permission is granted to swinstall to install the files in a different
location as specified by the user, and denoted by having the value of its is_locatable attribute
set to true.

locatable software
Software that contains locatable filesets.

manager role
Where each task is initiated. The manager role is concerned with taking appropriate action at
the completion or failure of a task.

metadata
The information kept about software. It consists of the values of the various attributes of
each of the objects.

newline string
A white space string (see below), consisting only of the <newline> character, which is
defined in POSIX.2.

Systems Management: Distributed Software Administration 247

Glossary

object
An instance in the software hierarchy that can be operated on using the software
administration utilities.

octal character string
A sequence of characters from the set of octal digits, the first of which must be the digit
zero.

options file
A file that can be specified with the x option. This file contains extended option definitions
that override default definitions. See also defaults file

patch
A fix to existing product that does not provide significant new functionality and is to be
installed over an existing installation. This is also refered to as fixing. See also update .

packager role
Where software that has been developed is organized in a form suitable for distribution.

pathname
A POSIX.1 pathname with characters drawn from the POSIX.1 portable character set.

pathname character string
A sequence of characters from the portable filename character set as defined in POSIX.1.

portable character string
A sequence of characters from the portable character set as defined in POSIX.2.

prerequisite
The specification in a software object that it must not be installed until after some other
software object is installed, and configured until after the other software object is
configured,

The manner of honoring such a prerequisite is described in swinstall on page 92.

product
A software object used to define a set of related software. Filesets are contained within
products.

product specification file (PSF)
The input file used to define the structure and attributes of software objects and related files
to be packaged by the swpackage utility.

proxy install
A proxy install uses an alternate root directory as the target path.

recovery
The ability of the swinstall utility, for a failed software install, to return the system to the
state that it was in before the failure, including restoring the files.

reboot fileset
A fileset which, if installed, requires reboot of the operating system to complete its
installation, and denoted by having the value of its is_reboot attribute set to true.

rebooting
An implementation defined procedure generally used to terminate and then restart
operations on the target system.

role
The context in which an operation is executed. The utilities in this Software Administration

248 CAE Specification

Glossary

specification require the ability to perform operations on more than one system, perhaps by
more than one person. These operations are separated into distinct roles developer,
packager, manager, source, target, and client.

selection phase
The set of steps performed by software administration utility to process selections and
options.

serial medium
A medium which contains a POSIX.1 extended tar or extended cpio archive. See POSIX.1.

session
An execution of a software administration command from initiation to completion on all
applicable roles.

shell token string
A sequence of shell tokens. Shell tokens are defined in POSIX.2.

software
A generic term referring to software objects or a structured set of files. This term can refer
to the objects forming the hierarchical structure (software objects), or to the actual files and
control_files (software files).

software_collection
A grouping of software objects that are managed by the software administration utilities.
Software_collections are the sources and targets of these utilities. This Software
Administration specification defines two types of software_collections installed_software
and distributions.

software common class
The common class describing the common attributes associated with the hierarchical
structure of software objects defined by this Software Administration specification.

software definition files
The files containing the software structure and detailed attributes for distributions,
installed_software, bundles, products, subproducts, filesets, files, and control_files.

To communicate metadata information relating to both distributions and installed software,
software definition files serve as input to, or output from, the various software
administration utilities. The format used by software administration utilities to store
metadata relating to installed software is undefined.

software file
A generic term referring to the files and control_files that are contained within software
objects and managed by the utilities in this Software Administration specification.

software_file common class
The common class that relates the two types of files defined by this Software
Administration specification, namely the actual files that make up the software, plus the
control_files that are executed by the utilities when operating on software.

software_files
A generic term referring to file and control_file objects (those that share the same
software_file common class).

software hierarchy
Hierarchical organization of objects that are managed by the software administration
utilities.

Systems Management: Distributed Software Administration 249

Glossary

software location
The directory relative to the installed_software root directory where the relocatable files of
the software have been located.

software object
An object which inherits attributes of the software common class, meaning a bundle,
product, subproduct or fileset object.

software packaging layout
The format for software in a distribution. It contains the metadata for the distribution
catalog in a well defined exported form, as well as the files for the software objects in that
distribution.

software pattern match string
A sequence of one or more strings, each made up of a sequence of one or more characters
from the shell ‘‘Pattern Matching Notation’’ strings described in POSIX.2. If there are two or
more strings, the strings are separated by the | character. The match is true if any of the
sequences of strings match according to POSIX.2. A software pattern match string must be
portable character string.

software_spec
A string that is used to identify one or more software objects for input to a software
administration utility.

source
The specification of a source distribution object for a software administration utility. The
source host provides a means to locate the source role and the source path is a path
accessible to the source host.

source host
The host portion of a source specification.

source path
The pathname portion of a source specification.

source role
Where the software exists in a form suitable for distribution, forming a context for the
establishment of a repository of software from which the manager may choose to distribute
to targets. Software exists in the source until it is removed by a task initiated by the
manager. The source role provides a repository where software may be stored, and
provides access for those roles that require the software.

subproduct
A software object which is a grouping of software filesets and other subproducts within a
product.

symbolic link (symlink)
A type of file that contains a pathname. Rather than containing data itself, this type of file
resolves to another, as defined by the contained pathname. The way in which this type of
file is handled by implementations of this Software Administration specification is
undefined.19

19. It is not the intention of this Software Administration specification to define symbolic links in a manner inconsistent with
POSIX.1. However, no approved POSIX standard currently contains symbolic links. This definition is a placeholder until such
time as an approved standard provides the definition.

250 CAE Specification

Glossary

system
An implementation of this Software Administration specification.

target
The specification of a target distribution object, or installed software object, for a software
administration utility. The target host provides a means to locate the target role and the
target path is a path accessible to the target host.

target host
The host portion of a target specification.

target path
The pathname portion of a target specification.

target role
Where software is installed, removed, listed, and otherwise operated on by the utilities. For
example, when installing software, the target is where software is installed after having
been delivered from a source. As another example, the target for a copy operation
command refers to the distribution to which products are added. For management
operations like removing software, the target refers to either the installed_software objects
or the distributions from which software is being removed.

update
Installing a newer revision of software than one that is currently installed, into the same
location. This is also referred to as upgrading. This implies that two filesets that have the
same tag and same product tags can not be installed in, or exist in, the same location at the
same time (with the exception of patching enhancements). Updates (or upgrades) generally
involve software releases providing significant new functionality that can be installed for
the first time or can update an existing installation. Patches (or fixes) generally involve fixes
to existing products that do not provide significant new functionality and are to be installed
over an existing installation. Updates generally involve software releases providing
significant new functionality. See also patch .

UTF-8
UCS Transformation Format 8, as defined in ISO/IEC 10646-1: 1993, See referenced
documents.

vendor
An item, such as a nonstandard attribute, that is defined by the vendor that created
(packaged) the software.

vendor-supplied
An item, such as a control file, that is supplied by the creator (packager) of the software.

version
A unique identification of software based on the attributes of the software. Version
differentiates software objects with the same value of the tag attribute. Versions of bundles
or products have the same value of the tag attribute and will differ by the value of at least
one of revision , architecture , vendor_tag , location or qualifier attributes. The location and
qualifier attributes only apply to software in installed_software software_collections. A
fileset is considered a version of another fileset if they have the same fileset tag and their
respective products have the same product tag.

white space string
A sequence of one or more white space characters (as defined in POSIX.2.

Systems Management: Distributed Software Administration 251

Glossary

wildcard character
One of * ? [(asterisk, question mark, open bracket). Such characters are used in
software pattern match strings

252 CAE Specification

Index

machine ..175
release ...176
size_t ..179
st_gid..32
st_gid..32
sysname..176
version ..176
alternate root directory.................18, 36, 43, 96, 181

...187, 196-197, 214, 216
analysis phase ...244
API...244
application ...243
attribute ..244

vendor defined..135
attributes

category ..13
dfiles..126
names as keywords..5
of bundle ..20
of control file..33
of distribution..9
of file..31
of fileset ..24
of installed software ..11
of media..10
of product...16
of software ...14
of software collection...7
of software file...29
of subproduct ..28
of vendor ..12
pfiles..127
semantics of ...134
uname...42, 122, 182
version distinguishing..........9, 11, 16, 20, 92, 104

attributesqq, version distinguishing179, 222
autorecovery..244
autoselect..244
bundle ...244
can..243
catalog...7, 244
class ...244
client role..244
command line interface (CLI)244
command_line_options, definition.....................193
common class ..244

compressed file ...244
conformance ..4
conforming distribution..33
conforming implementation4
containment ...244
control directory ...244
control script..245
control script example ...158
control_files ...245
corequisite ...86, 183, 245
CRC ...245
decimal character string..245
default option..245
defaults file...245
defaults file example..149
dependency..245
dependency_spec definition

39 ..
dependent ..245
developer role..245
devices ..237
devmajor...32
devminor ..32
directory medium...245
distributed interoperability161
distribution ..245
distribution catalog ..245
distribution path...245
distribution, bootable ..170
distribution, compressed170
downdate ...245
event ..245
execution phase ..246
existing practice ..167
exported catalog ...7, 246
exrequisite..86, 246
extended option ..246
file loading..96
file storage structure ..246
filename ..246
filename character string.......................................246
fileset ...246
fully qualified software_spec246
graphical user interface (GUI)246
hard link ...185
host ..246

2 CAE Specification

Index

implementation...243
implementation defined33, 47, 243
INDEX file ..246
INDEX file example ...155
INFO file...246
INFO file example ..157
inheritance..247
installed software ...247
installed_software ..247
installed_software catalog....................................247
installed_software path...247
integer character string..247
interactive...247
interoperability ...161
kernel...67
kernel fileset...247
keyword ...5, 53-54, 130, 133-135, 144, 221-222, 236
keywords

all_filesets...138
applied_patches..139
architecture ..137-138
archive_path..141
catalog...136
category_tag ..137-139
checkinstall ..142
checkremove ...142
cksum ..140-141
compressed_cksum....................................140-141
compressed_size ...140-141
compression_state140-141
compression_type140-141
configure ..142
contents ..137
control_directory ..138-139
control_file ...142
copyright ..137-138
corequisites ..139
create_time...137-139
description ...136-139
dfiles..136
directory ...137-138, 143
exrequisites ..139
file...143-144
files ..135
filesets ...139
file_permissions..146
fix ...142
gid..141
group...141
instance_id ...137-138
interpreter ..140

is_kernel ...139
is_locatable...137-139
is_patch...137-139
is_reboot ...139
is_volatile ...141
layout_version...135-136
link_source...141
location ...137-139
machine_type ..137-138
major ...141
media_sequence_number.................................139
minor...141
mode ...141
mod_time ...137-139
mtime..141
names of attributes...5
number..137-138
os_name..137-138
os_release ...137-138
os_version ..137-138
owner ..141
patch_state ...139
path..135-136, 140-141, 146
pfiles ..135-136
postinstall...142
postkernel_type ..138
postremove ..142
preinstall...142
preremove..142
prerequisites ..139
qualifier...137-138
request ..142
result ...140
revision ...136-139, 141
semantics of ...134
sequence_number ..135
size ...137-141
source ..140-141
space..142
state ...139
subproducts...139
superseded_by..139
supersedes ...139
tag ..136-140
title ...136-139
type..141
uid..141
unconfigure..142
unpostinstall..142
unpreinstall..142
vendor defined..135

Systems Management: Distributed Software Administration 3

Index

vendor_tag ...137-138
verify ...142

keywords, distribution..236
limited conformance ..4
locatable fileset..247
locatable software...247
manager role..247
may ..243
media...147-148
media sequence number.................................67, 140
medium...147-148
metadata...247
must...243
newline string..247
object ...248
obsolescent...243
octal character string..248
options file..248
options_file, definition...194
packager role ...248
patch..248
pathname..248
pathname character string....................................248
portable character string248
POSIX.1 ...3
POSIX.2 ...3
prerequisite...................86, 95, 99, 113, 147, 166, 183

..197-199, 240-241, 248
product ...248
product specification file (PSF)............................248
proxy install56, 164, 181, 187, 214, 216, 248
PSF example ..152
pw_name..32
reboot fileset ..248
rebooting ..248
recovery ..248
role ...248
sample code

control script ...158
defaults file ..149
INDEX file..155
INFO file...157
PSF...152
software packaging layout154

selection phase ..249
serial medium..249
session...249
shell token string ..249
should ...243
software ..249
software common class ...249

software definition files...249
software file ...249
software hierarchy..249
software location ..250
software object ..250
software packaging layout250
software packaging layout example154
software pattern match string250
software_collection ..249
software_collection_spec definition42
software_definition_file definition130
software_file common class249
software_files ..249
software_option definition52
software_selections definition38
software_spec..250
software_spec definition...38
source ..250
source host ...250
source path...250
source role..250
source, well-known..201
state, restoring...101
states

available ...201
configured..201
corrupt ..201
installed ..201
removed ...201
transient..201

st_mode ..32
st_mtime ...32
st_size..30
st_uid...32
subproduct...250
SVR4 ..191
swask ..78, 204
swconfig ...81, 207
swcopy..85, 210
swinstall ...90, 212
swlist ...104, 221
swmodify ...108, 226
swpackage ...111, 228
swremove...115, 230
swverify..121, 233
symbolic link ...185
symbolic link (symlink)...250
sysadmin_option, definition192
system ...251
tar ...32
target ...251

4 CAE Specification

Index

target host ..251
target path..251
target role ...251
uname.......................................18, 21-22, 42, 122, 135
update ...251
UTF-8...251
vendor...251
vendor-supplied ...251
version ..251
version distinguishing.....................................92, 104
white space string...251
wildcard character..252

Systems Management: Distributed Software Administration 5

Index

6 CAE Specification

	c701cov.pdf
	Page 1

	blank.pdf
	Page 1

