
 S

L

T

A

A

C

N

I

D

N

A

H

R

C

D

E
T

Technical Standard

Portable Layout Services:
Context-Dependent and Directional Text

[This page intentionally left blank]

CAE Specification

Portable Layout Services:

Context-dependent and Directional Text

The Open Group

 February 1997, The Open Group

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

CAE Specification

Portable Layout Services: Context-dependent and Directional Text

ISBN: 1-85912-142-X
Document Number: C616

Published in the U.K. by The Open Group, February 1997.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii CAE Specification (1997)

Contents

Chapter 1 Introduction... 1
 1.1 Scope.. 1
 1.2 Example .. 2
 1.3 Target Audience .. 3
 1.4 Approach.. 3

Chapter 2 Complex-Text Languages — An Overview 5
 2.1 Complex-text Languages .. 5
 2.1.1 Layout Transformations and Related Attributes 6
 2.2 Bidirectional Languages .. 7
 2.2.1 The Arabic Languages and their Writing System 7
 2.2.2 The Hebrew Language and its Writing System................................. 9
 2.3 Aspects of Bidirectional Language Writing Systems 11
 2.3.1 Bidirectionality... 11
 2.3.2 Shaping .. 14
 2.3.3 National Numbers... 16
 2.3.4 Bidirectional Data Entry... 16
 2.3.5 Common User Access and Bidirectional Languages 17
 2.4 Thai Language and its Writing System .. 18
 2.4.1 Writing Thai Characters — Graphic Representation 18
 2.4.2 Thai Written Symbols ... 19
 2.4.3 Writing Order ... 20
 2.4.4 What is a Thai Character? .. 20
 2.4.5 Thai Numbers... 21
 2.4.6 Character Composition .. 21
 2.4.7 Thai Character Rendering.. 21
 2.5 Korean Language and its Writing System ... 23
 2.5.1 Hangul Writing System .. 23
 2.5.2 Character Set Considerations.. 25
 2.6 Conclusions and Guidelines... 26

Chapter 3 Interface Overview.. 27
 3.1 Opaque Data .. 27
 3.2 Functions .. 27
 3.3 Descriptors and Data Types.. 28

Chapter 4 Header File <sys/layout.h> .. 29
 4.1 LayoutObject.. 29
 4.1.1 Association with Attribute Objects and Locales 29
 4.1.2 LayoutObject Content... 29
 4.2 Layout Values ... 30
 4.2.1 Descriptors .. 30

Portable Layout Services: Context-dependent and Directional T ext iii

Contents

 4.2.2 Layout Value Data Types ... 37
 4.3 Layout Modifiers... 39

Chapter 5 Layout APIs.. 45
 m_create_layout ().. 46
 m_destroy_layout () ... 47
 m_getvalues_layout ().. 48
 m_setvalues_layout () .. 49
 m_transform_layout ()... 50
 m_wtransform_layout ().. 54
 5.1 Notes.. 59

Appendix A Implementation Example.. 61

Appendix B LO_LTYPE Locale Category... 69
 B.1 Character Classifications Related to Directionality............................. 69
 B.2 Character Classifications of Control Characters 70
 B.3 Character Classifications of National Numbers 70
 B.4 Character Classifications of Composite Graphic Symbols 70
 B.5 Mapping Keywords.. 71
 B.6 Character Classification Related to Character Connectivity 72

Appendix C Dynamic Pluggable Interface... 73
 C.1 Operating System Requirement .. 73
 C.2 Design.. 74
 C.3 Data Structure.. 75
 C.4 Calling Sequence... 77
 C.5 Sample Code .. 78
 C.6 Common Naming for Layout Values ... 80

 Glossary ... 83

 Index... 91

List of Examples

2-1 Example of Symmetrical Swapping... 14
A-1 Internationalised Motif Program to Support Layout APIs 61
A-2 Storage to Explicit Controls... 65
A-3 Explicit to Visual Buffer.. 66

List of Figures

1-1 Layout Transformations in Motif ... 2
2-1 Arabic, Farsi and Urdu Characters... 7
2-2 The Arabic Character Ghayn in its Different Shapes 9
2-3 Shape of the National Numbers in Arabic, Farsi and Urdu.................. 9
2-4 Hebrew Alphabet... 10

iv CAE Specification (1997)

Contents

2-5 Hebrew Long Vowels.. 10
2-6 Hebrew Final Letters... 10
2-7 Thai Text Example ... 18
2-8 Shape of the National Numbers in Thai ... 21
2-9 Korean Writing Direction... 24
2-10 Syllable Composition and Writing Direction in Hangul 25

List of Tables

3-1 Standard Layout Values ... 28

Portable Layout Services: Context-dependent and Directional T ext v

Contents

vi CAE Specification (1997)

Preface

The Open Group

The Open Group is an international open systems organisation that is leading the way in
creating the infrastructure needed for the development of network-centric computing and the
information superhighway. Formed in 1996 by the merger of the X/Open Company and the
Open Software Foundation, The Open Group is supported by most of the world’s largest user
organisations, information systems vendors and software suppliers. By combining the strengths
of open systems specifications and a proven branding scheme with collaborative technology
development and advanced research, The Open Group is well positioned to assist user
organisations, vendors and suppliers in the development and implementation of products
supporting the adoption and proliferation of open systems.

With more than 300 member companies, The Open Group helps the IT industry to advance
technologically while managing the change caused by innovation. It does this by:

• consolidating, prioritising and communicating customer requirements to vendors

• conducting research and development with industry, academia and government agencies to
deliver innovation and economy through projects associated with its Research Institute

• managing cost-effective development efforts that accelerate consistent multi-vendor
deployment of technology in response to customer requirements

• adopting, integrating and publishing industry standard specifications that provide an
essential set of blueprints for building open information systems and integrating new
technology as it becomes available

• licensing and promoting the X/Open brand that designates vendor products which conform
to X/Open Product Standards

• promoting the benefits of open systems to customers, vendors and the public.

The Open Group operates in all phases of the open systems technology lifecycle including
innovation, market adoption, product development and proliferation. Presently, it focuses on
seven strategic areas: open systems application platform development, architecture, distributed
systems management, interoperability, distributed computing environment, security, and the
information superhighway. The Open Group is also responsible for the management of the
UNIX trade mark on behalf of the industry.

The X/Open Process

This description is used to cover the whole Process developed and evolved by X/Open. It
includes the identification of requirements for open systems, development of CAE and
Preliminary Specifications through an industry consensus review and adoption procedure (in
parallel with formal standards work), and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to which a
vendor may register a product. There are currently two forms of Product Standard, namely the
Profile Definition and the Component Definition, although these will eventually be merged into
one.

Portable Layout Services: Context-dependent and Directional T ext vii

Preface

The X/Open brand logo is used by vendors to demonstrate that their products conform to the
relevant Product Standard. By use of the X/Open brand they guarantee, through the X/Open
Trade Mark Licence Agreement (TMLA), to maintain their products in conformance with the
Product Standard so that the product works, will continue to work, and that any problems will
be fixed by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical literature, the main part of which is
focused on specification development and product documentation, but which also includes
Guides, Snapshots, Technical Studies, Branding and Testing documentation, industry surveys
and business titles.

There are several types of specification:

• CAE Specifications

CAE (Common Applications Environment) Specifications are the stable specifications that
form the basis for our product standards, which are used to develop X/Open branded
systems. These specifications are intended to be used widely within the industry for product
development and procurement purposes.

Anyone developing products that implement a CAE Specification can enjoy the benefits of a
single, widely supported industry standard. In addition, they can demonstrate product
compliance through the X/Open brand. CAE Specifications are published as soon as they
are developed, so enabling vendors to proceed with development of conformant products
without delay.

• Preliminary Specifications

Preliminary Specifications usually address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations. They are
published for the purpose of validation through implementation of products. A Preliminary
Specification is not a draft specification; rather, it is as stable as can be achieved, through
applying The Open Group’s rigorous development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued by formal standards
organisations, and developers are encouraged to develop products on the basis of them.
However, experience through implementation work may result in significant (possibly
upwardly incompatible) changes before its progression to becoming a CAE Specification.
While the intent is to progress Preliminary Specifications to corresponding CAE
Specifications, the ability to do so depends on consensus among Open Group members.

• Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia. For example, it
publishes the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum. It also publishes Technology Specifications relating to OSF/1, DCE,
OSF/Motif and CDE.

Technology Specifications (formerly AES Specifications) are often candidates for consensus
review, and may be adopted as CAE Specifications, in which case the relevant Technology
Specification is superseded by a CAE Specification.

viii CAE Specification (1997)

Preface

In addition, The Open Group publishes:

• Product Documentation

This includes product documentation — programmer’s guides, user manuals, and so on —
relating to the Pre-structured Technology Projects (PSTs), such as DCE and CDE. It also
includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

• Guides

These provide information that is useful in the evaluation, procurement, development or
management of open systems, particularly those that relate to the CAE Specifications. The
Open Group Guides are advisory, not normative, and should not be referenced for purposes
of specifying or claiming conformance to a Product Standard.

• Technical Studies

Technical Studies present results of analyses performed on subjects of interest in areas
relevant to The Open Group’s Technical Programme. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

• Snapshots

These provide a mechanism to disseminate information on its current direction and thinking,
in advance of possible development of a Specification, Guide or Technical Study. The
intention is to stimulate industry debate and prototyping, and solicit feedback. A Snapshot
represents the interim results of a technical activity.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new developments
and associated international standards. To distinguish between revised specifications which are
fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://www.opengroup.org/public/pubs.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the
World-Wide Web at http://www.opengroup.org/public/pubs.

Portable Layout Services: Context-dependent and Directional T ext ix

Preface

This Document

This document is a CAE Specification (see above). It describes a set of portable functions for
handling context-dependent and bidirectional text transformations as a logical extension to the
existing POSIX locale model.

Structure

This document is structured as follows:

• Chapter 1 is an introduction.

• Chapter 2 is an overview of aspects of the writing systems of a large family of languages that
are collectively called complex-text languages, including bidirectional languages. If you are
familiar with complex-text languages and the problems associated with their processing and
presentation, you need not read this chapter.

• Chapter 3 outlines the purpose of the m_*_layout () functions, which facilitate the
transformation of data from one form to another.

• Chapter 4 describes the data types and layout values that are defined in the header file
<sys/layout.h>.

• Chapter 5 contains reference manual pages for the m_*_layout () functions in alphabetical
order.

• Appendix A is an implementation example.

• Appendix B describes the LO_LTYPE category, which is basically an extension to the existing
LC_CTYPE category.

• Appendix C defines the interface between the locale-independent and locale-dependent layer
of Layout Services.

Intended Audience

This document is intended for system and application programmers who want to provide
support for complex-text languages.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for filenames, keywords, type names, data structures and their
members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— variable names, for example, substitutable argument prototypes

— environment variables, which are also shown in capitals

— external variables, such as errno

— functions; these are shown as follows: name()

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C

x CAE Specification (1997)

Preface

#define construct.

• The notation [EABCD] is used to identify an error value EABCD.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font.

• Bold fixed width font is used to identify brackets that surround optional items in syntax,
[] , and to identify system output in interactive examples.

• Variables within syntax statements are shown in italic fixed width font .

• Shading is used as described in Section 1.4 on page 3.

Portable Layout Services: Context-dependent and Directional T ext xi

Trade Marks

Motif, OSF/1 and UNIX are registered trade marks and the ‘‘X Device’’TM and The Open
GroupTM are trade marks of The Open Group.

Unicode is a trade mark of The Unicode Consortium, Inc.

xii CAE Specification (1997)

Acknowledgements

The Open Group gratefully acknowledges the work of the authors of this document:

Israel Gidali (IBM Canada)
John Gioia (IBM Canada)
Frank Rojas (IBM Austin)

In addition many members of the Joint X/Open UniForum Internationalisation Group (XoJIG)
have contributed by reviewing earlier drafts.

This document could not have been prepared without the considerable contribution of many.
The functions defined for Complex-text Language Layout transformations can be seen as the
product of the effort of the architects and developers of the traditional Bidirectional support and
the emerging Unicode focus on directionality.

Special thanks go to Isai Scheinberg, Milos Lalovic and Mel Sher (IBM Canada), and to Mati
Allouche (IBM Israel), for their contribution to the initial specifications of the ‘‘BIDI_HANDLE’’,
the predecessor of LayoutObject. Their work laid the foundation for the Layout Values that are
needed across all locales.

Khaled Sherif (IBM Egypt) and Ehud Nathan (IBM Israel) take most of the credit for the actual
final specifications based on their BIDI support on AIX. Their insight and experience in
development of BIDI software is the foundation for much of the specification. Much of the
prototype and feasibility has been done by them and their respective teams in their countries.

The team led by Nelson Ng (SunSoft) and consisting of Ienup Sung (SunSoft), Shinobu
Matsuzuka (SunSoft), Randy Hill (Sun) and Chookij Vanatham (CDG Systems Ltd.), is to be
credited for the prototype work on the first Thai implementation of the Layout Services. The
Thai prototype has provided valuable feedback regarding the implementation feasibility of the
composite character support. Nelson Ng is to be credited also for the appendix describing the
Dynamic Pluggable Interface of locale-specific Layout Services.

Frank Rojas is to be credited for his creative consolidation of previously divergent and
fragmented ideas and for the foundation of the architectural concepts of Layout Object as
published in a document called The LAYOUT Utility from which the suggested APIs and the
LayoutObject originate.

In preparing the Layout Services sections, the complex-text languages overview and the
LO_LTYPE, and in the editing of this proposal, Israel Gidali has relied upon information
originating from a multitude of sources. Thanks go to:

Apisak Apiwathanokul, Ranat Thopunya and Jenwit Sriwiwattanangkoon (IBM Thailand)
whose work was the main source used by the editor to compile the Thai Language section in the
overview.

Seong Mook Kim (IBM Korea) for his enlightening information regarding the Korean writing
system. Alexis Cheng (NLTC, IBM Canada) for his help with the syntax aspects of the modifiers.

Mike Feldman (Digital Equipment Corporation Israel), Nelson Ng (Sun), Ienup Sung (Sun),
Ranya Abdel Rahman (IBM Egypt), Chun-Wan Lai (Digital Equipment Corporation Hong Kong),
Chookij Vanatham (CDG Systems Limited), Eun Yoon Young (IBM Korea), Lisa Moore (IBM
USA), Anuwat Phrukphicharn (HP Thailand) and Judy Chen (HP USA) for their very
constructive suggestions.

Portable Layout Services: Context-dependent and Directional T ext xiii

Acknowledgements

John Gioia (IBM Canada) who has helped the editor through the esoteric alleys of UNIX and the
C language and for his contributions to the clarification of the XPG implications and the
preparation of the graphic images. Pini Schapira and Adiva Gera (IBM Israel) who started the
initial effort to propose standard enhancements to accommodate the bidirectional
transformations.

Zarko Cvijan, Dr. Hussein Kushki, Fred Bealle, Dr. Umamaheswaran V.S., Sheila Richardson,
Anne Stilman, and Willy Rose from NLTC (IBM Canada), Taweesak Kositapan (IBM Thailand),
Alaa Eddine M. Ghoneim, and Sherif El-Rafei (IBM Egypt), Mati Allouche and Ari Erev (IBM
Israel) for their review and valuable comments on the drafts of the different components of the
proposal.

And last, but not least, Carol Painting, former X/Open editor, who has done an excellent job in
compiling, restructuring, editing, simplifying and moulding this document.

xiv CAE Specification (1997)

Referenced Documents

The following documents are referenced in this specification:

Distributed Internationalisation Services
Snapshot, December 1994, Distributed Internationalisation Services, Version 2
(ISBN: 1-85912-033-4, S308).

ECMA TR/53
European Computer Manufacturers Association, Handling of Bidirectional Texts, 2nd
Edition — June 1992.

ISO/IEC 6429
ISO/IEC 6429: 1992, Information Technology — Control Functions for Coded Character
Sets.

ISO/IEC 10646
ISO/IEC 10646-1: 1993, Information Technology — Universal Multiple-Octet Coded
Character Set (UCS) — Part 1: Architecture and Basic Multilingual Plane.

Unicode
The Unicode Standard, Version 2.0, Addison-Wesley Publishing Company, Inc.1996.

wtt2.0
National Electronics and Computer Technology Center (NECTEC), Computer with WTT
Thai Language Draft Proposal (ISBN 974-7570-66-1).

X11R5 Xlib
CAE Specification, May 1995, Window Management (X11R5): X Lib - C Language Binding
(ISBN: 1-85912-088-1, C508).

XSH, Issue 5
CAE Specification, January 1997, System Interfaces and Headers, Issue 5
(ISBN: 1-85912-181-0, C606).

Portable Layout Services: Context-dependent and Directional T ext xv

Referenced Documents

xvi CAE Specification (1997)

Chapter 1

Introduction

This chapter covers the scope of this document and introduces several important concepts. For
definitions of unfamiliar terms, refer to the glossary.

1.1 Scope
This document describes a set of portable functions for handling context-dependent and
bidirectional text transformations. It is a logical extension to the existing POSIX locale model.

Chapter 2 provides a detailed overview of the writing system aspects of complex-text languages,
including the bidirectional languages,1 Korean and Thai. If you are familiar with complex-text
languages and the problems associated with their processing and presentation, you need not
read Chapter 2.

This document introduces the concepts of complex-text languages and layout transformations. It
defines a locale-associated object called LayoutObject to handle layout transformations. The
layout object may contain an additional locale category, LO_LTYPE, containing character
classifications and mappings for layout transformations.

This document also defines a standard set of layout values containing layout text descriptors and
layout action indicators, and a set of Application Programming Interfaces (APIs) to facilitate
layout transformations for complex-text languages.

This document addresses the need to enhance the existing XPG locale model. It provides
support for the transformations between the layout of text during processing and the layout of
text during presentation of complex-text languages, as an addition to the existing support for the
basic locale services (parsing, tokenising, and so on).

Though the proposed concepts are not constrained to systems with a C-language
implementation only, C-language bindings are provided for the APIs, and C-language examples
are used.

1. The term bidirectional languages is used throughout this document instead of ‘‘languages with a bidirectional script’’. The latter is
the correct form, but is more cumbersome.

Portable Layout Services: Context-dependent and Directional T ext 1

Example Introduction

1.2 Example
OP An example of the need for layout transformations is the implementation of the support for

bidirectional text in Motif. This implementation involves transformations of a logical stream of
bidirectional text into a physical stream presented on a display, with segment inversions and some
character shaping using an intermediary explicit type of text (see Figure 1-1). For a detailed
explanation of the different terms used here, see Chapter 2.

Application

Locale
Function

XmString

CS Text
(XmStringEditor)

Xlib

Fonts
Display

Layout
Function

Logical data
AB cde 12Z

T1

<LTR>AB <push><RTL>cde <LTR>12<pop><LTR>Z

T2

AB 12 edcZ

T3

AB 12 zyxZ

Figure 1-1 Layout Transformations in Motif

OP The transformations transform the logical data to an internal explicit layout (T1), and then
prepare it for presentation by inverting directional segments (T2) and shaping the national
characters, symbolically represented here by lower-case letters (T3).

2 CAE Specification (1997)

Introduction Target Audience

1.3 Target Audience
This extension benefits:

• developers of operating system services or toolkits (such as Motif, terminal emulators,
printer filters) that want to provide support for complex-text layout transformation functions
in a standard, portable way

• developers of application programs, using presentation services or toolkits, in an
environment that supports the layout transformation functions, as follows:

— to modify the system defaults of layout values, when using the layout services provided
by the operating system

— to use the layout functions for transforming a complex text that has a peculiar layout

— to have direct control on the complex-text language presented on a screen or on a printer

• application developers in an environment that does not provide layout transformation
services for complex-text languages, who are willing to implement the proposed APIs.

Existing applications, using internationalised functions (ISO C, XPG4, POSIX, Motif and X), that
are performing logical processing without the need for layout transformations, may not be
affected by this extension. The vast majority of applications that use the standard presentation
services (Motif, curses, and so on) or the layout presentation services that may be provided by
the operating system, with the standard defaults, should not be affected.

1.4 Approach
The set of layout functions address transformation between the layouts of text during processing
and the layouts of text during presentation with appropriate APIs. The associated standard set
of character classifications, mapping and text layout attributes are defined; the framework for
grouping, storing and modifying these attributes is also defined.

Possible implementation examples, as well as some components of the Layout Services (such as
some specific values of the layout values), have been marked in the document by shading and
the letters ‘‘OP’’ in the margin to indicate that they are not mandatory.

Portable Layout Services: Context-dependent and Directional T ext 3

Introduction

4 CAE Specification (1997)

Chapter 2

Complex-Text Languages — An Overview

This chapter contains text which is reprinted with the permission of the author, Israel Gidali.

This chapter presents an overview of aspects of the writing systems of a large family of
languages that are collectively called complex-text languages. Section 2.1 is an introduction to
complex-text languages. Section 2.2 on page 7 discusses bidirectional languages, in particular
Arabic and Hebrew, including their use in a data processing environment. Section 2.4 on page
18 and Section 2.5 on page 23 describe other typical complex-text languages (Thai and Korean).
Section 2.6 on page 26 summarises the main principles and suggests a few guidelines for
application developers.

2.1 Complex-text Languages
In the languages of the western world based on the Latin, Cyrillic and Greek scripts, there is no
difference between how text is stored for data processing and how it is presented on a display or
a printer. The text is read on horizontal lines from left to right, the lines progress from top to
bottom and the characters are stored in a manner identical to how they are presented.

Not all the languages of the world have these characteristics.

In this document, complex-text languages are defined as those languages for which the text has a
different layout when presented from when it is stored for data processing. The term layout,
which is equivalent, in this context, to the term format, refers to the shape of the characters and
the direction of portions of the text.

An additional characteristic of complex-text languages (with the exception of Vietnamese) is the
fact that they do not have upper-case or lower-case characters.

Typical complex-text languages are those with a bidirectional script. Usually they are written
from right to left, with some portions of text, such as numbers and embedded Latin-based text,
written from left to right. Bidirectional languages include the languages of the Middle East and
Africa (Arabic, Hebrew, Urdu, Farsi, Yiddish, and so on). Other complex-text languages include
some languages of Asia that do not limit their encoding to a double-byte scheme (Thai, Lao,
Vietnamese, Korean, and so on).

There is nothing in these languages themselves that is more complex than in the Latin-based
languages; they are special only in that the presented text does not necessarily look identical to
the text as stored.

Though the term complex is used to describe the text of the bidirectional and some other Asian
languages, enabling a program to work in these languages is relatively simple, once the
peculiarities of these languages are understood.

Portable Layout Services: Context-dependent and Directional T ext 5

Complex-text Languages Complex-Text Languages — An Overview

2.1.1 Layout Transformations and Related Attributes

To enter, process and present a text in a complex-text language, it is necessary to perform
transformations between the processing layouts and the presentation layouts. The processing layout
is the layout of text when stored or processed. The presentation layout is the layout of text when
presented on a display or a printer.

These transformations have to take into account specific text attributes, including directionality,
shaping, composition of characters and national numbers. Text attributes that describe
bidirectional writing systems are defined in Section 2.2 on page 7.

An internationalised application must be designed to deal automatically with this kind of
transformation and related attributes.

6 CAE Specification (1997)

Complex-Text Languages — An Overview Bidirectional Languages

2.2 Bidirectional Languages
The bidirectional languages are used mainly in the Middle East. They include Arabic, Urdu,
Farsi, Hebrew and Yiddish.2

In a bidirectional language, the general flow of text proceeds horizontally from right to left, but
numbers are written from left to right, the same way as they are written in English. In addition,
if an English or another left-to-right language text (addresses, acronyms or quotations) is
embedded, it is also written from left to right.

2.2.1 The Arabic Languages and their Writing System

Arabic is a Semitic language that originated with the Arabs of the Hejaz and Nejd regions of
Saudi Arabia. There are several spoken dialects of Arabic, but all are derived from the same
root: the classical Arabic, which is taught at school in all Arab countries, and is used in all these
countries for writing. The written form of the language has different levels of sophistication,
depending on the use. These levels range from newspaper style to literary style, passing
through technical, business and administration styles.

Figure 2-1 Arabic, Farsi and Urdu Characters

2. Arabic is spoken mainly in Algeria, Bahrain, Egypt, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Qatar, Saudi
Arabia, Sudan, Syria, Tunisia, United Arab Emirates, and Yemen. Urdu is spoken mainly in Pakistan. Farsi is spoken mainly in
Iran. Hebrew is spoken mainly in Israel, and Yiddish is spoken mainly in Israel, Europe, and North America.

Portable Layout Services: Context-dependent and Directional T ext 7

Bidirectional Languages Complex-Text Languages — An Overview

Arabic Alphabet Characteristics

The basic Arabic alphabet consists of:

• twenty-five consonants

• three long vowels

• one glottal sign

• seven short vowels

• one diacritic mark.

The following characters are added to the basic set, in a way similar to the accented characters in
Latin-based languages:

• four carried hamzas

• one diphthong

• two grammatically derived characters

• a connector character, which is included for presentation purposes.

In addition, two special characters (Aleph Wasla and superscripted Aleph) are sometimes used
in language education and linguistics.

The Arabic alphabet is also the root from which several other alphabets, such as Farsi and Urdu,
are derived. In addition to the characters of the Arabic alphabet, the Farsi and Urdu alphabets
have a few more specific characters. Farsi adds four consonants to the Arabic alphabet, and
Urdu adds eight.

Character Set Considerations

The Arabic character set has the following characteristics:

• Written Arabic has no equivalent to capital letters.

• The same Arabic characters take on different shapes depending on their position in a text
string and on the surrounding characters.

• Arabic script is cursive. Most characters of a word are connected to each other, as in English
handwriting.

• Characters can be joined to form ligatures.

• A character can be represented with a vowel or diacritic mark written over or under it.

• Arabic characters have different lengths. As a result, wider characters are sometimes
represented on some devices as two coded shapes.

Shapes of the Arabic Characters

Arabic code pages can contain from one to four shapes for each character or ligature, depending
on the implementation. The four possible shapes of an Arabic character are:

Isolated The character is not linked to either the preceding or the following character.

Final The character is linked to the preceding character but not to the following one.

Initial The character is linked to the following character but not to the preceding one.

8 CAE Specification (1997)

Complex-Text Languages — An Overview Bidirectional Languages

Middle The character is linked to both the preceding and following characters.

Isolated

Final

Initial

Middle

Figure 2-2 The Arabic Character Ghayn in its Different Shapes

In a text string, both the connection capabilities of a character and its neighbours, and its
position in the word determine its actual presentation shape.

Numerals Used in Arabic

In countries using Arabic script, the decimal system is in use. In addition to the ‘‘Arabic’’ digits
used in the Western world, national digit shapes, known as Hindi shapes, are in use. The
equivalent of the Arabic digits 1, 2, 3, 4, 5, 6, 7, 8, 9 and 0 are:

Hindi digits (used in Arabic):

Farsi digits:

Urdu digits:

Figure 2-3 Shape of the National Numbers in Arabic, Farsi and Urdu

2.2.2 The Hebrew Language and its Writing System

The Hebrew language dates back to biblical times. It remained relatively unchanged for about
2000 years until the end of the nineteenth century, when the birth of the modern Hebrew
language took place. Since that time, the Academy of the Hebrew Language has extended
traditional Hebrew to include Hebrew words for modern objects and concepts.

Hebrew is used mainly in Israel.

Portable Layout Services: Context-dependent and Directional T ext 9

Bidirectional Languages Complex-Text Languages — An Overview

Hebrew Alphabet Characteristics

The Hebrew alphabet uses 27 characters to represent 22 consonants. This is because five
consonants have different shapes when they appear at the end of a word.

Figure 2-4 Hebrew Alphabet

Vowels are represented in two ways:

• Diacritic marks, called short vowels, may be used above, below or inside characters to
represent vowel sounds. Normally, however, the diacritic marks are not shown; the vowel
sounds are inferred from the context.

• Some consonants also serve as vowels. When they are used in this way, they are called long
vowels.

Vav

Yod

Figure 2-5 Hebrew Long Vowels

Written Hebrew has no equivalent to capital letters. Hebrew does not have a cursive script: the
letters are not connected. Unlike Arabic, Hebrew letters do not take on different shapes
depending on the surrounding letters. The five final shape letters are considered additional,
separate letters of the alphabet.

is the final form of Kaf

is the final form of Mem

is the final form of Nun

is the final form of Pe

is the final form of Tsadi

Figure 2-6 Hebrew Final Letters

10 CAE Specification (1997)

Complex-Text Languages — An Overview Aspects of Bidirectional Language Writing Systems

2.3 Aspects of Bidirectional Language Writing Systems
This section discusses aspects of bidirectional texts, related to directionality, shaping and
national numbers as well as keyboard input and compliance with common user access
guidelines. The text attributes described here also pertain to some degree to other complex-text
languages such as the languages of Asia (for example, Thai, Lao, Korean).

2.3.1 Bidirectionality

In the context of bidirectionality, the following are key concepts:

• segments

• global orientation

• text-types and associated reordering methods

• symmetrical swapping.

These attributes are described below.

Segments

A bidirectional text may consist of a main part that has one directionality (for example, an
Arabic text written from right to left), and portions that have an opposite directionality (for
example, an English address written from left to right.) The portion of text with a different
directionality is called a segment. A bidirectional text thus might have a body of right-to-left text
with embedded left-to right segments. Sometimes a segment with one directionality might itself
have embedded or nested within it an additional segment with an opposite directionality. It is
conceptually possible to have many levels of nesting; in most cases, however, there are no more
than two levels.

One level of nesting is necessary for the entry of numbers within Arabic or Hebrew text. To
simulate bidirectional scripts in the following examples, Hebrew and Arabic text is represented
by lower-case English letters, while English text is represented by upper-case letters.

In Hebrew, it is customary to write the name of the street before the number of the house, as
shown below:

b ecnartne 25 teerts elpam
<--------- -> <-----------

The street name is entered from right to left. The flow then has to be reversed to allow correct
entry of the number from left to right (this being the nested left-to-right segment.) Then the flow
must be reversed again to allow the entry of the entrance information from right to left.

Imagine somebody writing a letter in English to somebody who can read Hebrew too, and
writing his or her address in Hebrew. In this case, the address in Hebrew is actually a nested
segment of the English text.

MY ADDRESS IS b ecnartne 25 teerts elpam THIS MONTH.
------------><--------- -> <----------- --------->

NEST LEVEL: 0000000000000011111111111221111111111111000000000000

Because the nested segment of the address has itself a nested segment (the street number), there
are two levels of nesting.

Portable Layout Services: Context-dependent and Directional T ext 11

Aspects of Bidirectional Language Writing Systems Complex-Text Languages — An Overview

Global Orientation

Bidirectional text may consist of mainly right-to-left text with some left-to-right nested segments
(such as an Arabic text with some information in English), or mainly left-to-right with some
right-to-left segments (such as an English letter with a Hebrew address nested within it). The
predominant direction is called the global orientation; it cannot always be quickly deduced from
the general context.

FRED DOES NOT BELIEVE taht yas syawla i

This sentence has one meaning when the reading is from left to right (Fred does not believe I
always say that), and another meaning when read from right to left (I always say that Fred does
not believe). In the first half of the above example, the global orientation of the text is left-to-
right and in the second half it is right-to-left.

Because the global orientation is not always obvious from the context3 it must be known to the
application developer whose product is processing the bidirectional data.

Note: Not to be confused with the global orientation of the text is the physical orientation of
the presentation device. A display terminal has, for example, a right-to-left physical
orientation if the first character on the screen is the one in the upper right-hand corner
and the general cursor movement is from right to left (and top to bottom.)

Text-types

In a bidirectional text a programmer must clearly distinguish between the physical order in which
the text is presented, and the logical order in which its segments are processed (or pronounced if
read aloud). Some segments may need to be reordered to a logical or physical order.

There are different approaches to how bidirectional text is to be reordered, and at present none
can be said to be prevalent. The concept text-type is used to point to which approach is
applicable for a specific text. The physical and logical order and the different text-types are
discussed further below.

MY WIFE’S NAME IS ilin

The global orientation is left-to-right. The first letter in the text is M, followed by Y and so forth.
In the physical order, after the letters I and S comes the letter i of the segment containing my
wife’s name in Hebrew. Note, however, that my wife’s name is pronounced ‘‘nili’’. In the logical
order the first letter of the name segment is thus the letter n, followed by i, l and i.

Sometimes, for example in on-line help, it is convenient to store the bidirectional text exactly as
presented — that is, in the physical order. But if there is an intent to process the text (for
example, to sort it), the segments must be stored in their logical order. There is no meaning, in the
above example, to sort the name ‘‘ilin’’. It makes sense to reorder the text, so the directional
segment containing the name ‘‘nili’’ is inverted, before being stored for further processing. The
logical order is the preferred sequence for entering text and for processing. Conceptually, any
storage device can be seen as storing the data from left to right. If a programmer wants to
perform straightforward processing on the stored text (sorting, collating, indexing) without the
need to preprocess each segment, the bidirectional data has to be stored in its logical sequence.
This means reversing segments whose direction is opposite to the global orientation.

3. Sometimes it is possible to have a contextual global orientation, where the global orientation is set according to the directional
characteristic of the first character in the data stream that has a distinct directionality.

12 CAE Specification (1997)

Complex-Text Languages — An Overview Aspects of Bidirectional Language Writing Systems

Text-types and Reordering Techniques

Different text-types require different approaches to reordering:

visual text-type
The oldest approach, dating from the time when there was no processing capability at the
workstation, is simply to copy the entire screen to storage, and storage to screen (possibly
inverting every row, depending on the physical orientation of the screen). It is up to each
application programmer to know where the embedded segments are located and to process
them accordingly. This text-type is called visual because it is a replication of the presented
form. Many legacy applications4 and their files have this type of text.

implicit text-type
In the implicit text-type it is assumed that the letters of the Latin alphabet have a strong
inherent left-to-right directionality, and those of the Arabic, Farsi, Urdu and Hebrew
alphabet have a strong right-to-left inherent directionality. An algorithm of implicit text
processing recognises segments based on their inherent directional characteristics, and
segment inversion is performed automatically. The concept of an implicit algorithm is
simple to understand. Its main limitation is that it cannot correctly handle some strings that
have numbers and intermixed left-to-right and right-to-left letters.

explicit text-type
The explicit text-type assumes that there are additional control characters, embedded in the
text, that instruct an explicit algorithm to perform segment inversions, shaping or numeral
selections, and other transformations.

Thus, a text with visual text-type is stored in its physical order, and a text with an implicit text-
type is stored in its logical order, which is better suited for automatic processing. A text with an
explicit text-type is usually stored in logical order, but because of the embedded controls in the
text, the automatic processing is not always straightforward.

There is no one type of text that can be used in all cases. The implicit techniques are usually
heuristic and thus have some limitations as noted previously. The explicit techniques, while
alleviating the limitations of implicit techniques, introduce other limitations such as the need for
automatic processes to cope with embedded controls.

One specific technique, the Basic Display Algorithm,5 tries to be a bridge between the implicit
and explicit techniques. In principle it is an implicit reordering algorithm, but it can deal with a
few specific directional controls embedded in the text.

There are applications and related databases for all three text-types. It is possible for
bidirectional text that is presented one way to be stored in a different layout. A programmer
need only know what text-type or reordering algorithm was used, to correctly transform or
process the bidirectional text.

4. Legacy applications are those which have been inherited from a prior era. They may be obsolete, but must be supported.
5. The Basic Display Algorithm was initially published in the Directionality Appendix A of the Unicode standard.

Portable Layout Services: Context-dependent and Directional T ext 13

Aspects of Bidirectional Language Writing Systems Complex-Text Languages — An Overview

Symmetrical Swapping

Some characters, such as the greater-than sign, have an implied directional meaning and have a
complementary symmetric character with an opposite directional meaning (the less-than sign).
When used within a segment that is presented right-to-left but is inverted (left-to-right) when
stored for processing, such a character might have to be replaced by its symmetric sibling to
ensure that the correct meaning of the text is preserved. The replacement of such a character by
its complement during transformation of a bidirectional text is called symmetrical swapping.

Example 2-1 Example of Symmetrical Swapping

On a right-to-left window of the screen, the expression:

b < a

is read as a is greater than b. In storage the orientation is always left-to-right; the first character in
storage is thus a, followed by < and then b. So the result in storage is:

a < b

which is of course incorrect. In this case, to preserve the correct meaning of the expression, the <
character must be exchanged in storage with >.

Other graphic characters that require symmetrical swapping include the parentheses, square
brackets, braces, and so on.

Although symmetrical swapping is a characteristic of bidirectional languages, it is not always
mandatory for the software functions that transform different bidirectional-language text
layouts. Sometimes this function is performed automatically by the workstation hardware or
microcode.

2.3.2 Shaping

Shaping is the process by which characters are rendered in the appropriate presentation forms.
This might involve the presentation of characters in a form different from the one in which they
are stored. In general, to simplify processing, an unshaped (abstract or basic) representation is
used internally. Shaping takes into account the character being shaped and the characters in its
vicinity, and replaces its abstract representation (or that of its parts) with the proper shape.
Shaping is a characteristic of many complex text languages, in particular the languages of the
Middle East.

The Arabic scripts are cursive. A writing system is cursive if it is suited to handwriting rather
than printing, with adjacent characters in a word connected to each other. Some letters can only
connect to the letter on their right. This is the only way in which Arabic script is used, whether
in books, newspapers, signs, or workstation displays. (English can be handwritten in a cursive
style, for personal communications, but is seldom published or displayed that way. Thus
English is not considered a cursive script.)

Shaping in Cursive Script Languages

In cursive scripts, letters might assume different shapes according to their position in the word
and to the connectivity properties they and the adjacent letters have. There are as many as four
shapes for each letter. As described in Shapes of the Arabic Characters on page 8 characters
may have initial, middle, final, and isolated forms (not all characters have all forms). Only one
shape per letter is represented on Arabic keyboards, but all shapes must be available for
presentation. Similarly, in most cases, a cursive language text is not stored with full shapes.
Each character has a base form, which is an abstraction to allow selection of a cursive character

14 CAE Specification (1997)

Complex-Text Languages — An Overview Aspects of Bidirectional Language Writing Systems

without specifying its shape.

The proper shape can be selected by a shape determination routine, which allows for automatic
(algorithmic) selection of the appropriate shape according to the context as directed by the
software or the user. It may allow for user or software controlled selection of any of the four
shapes mentioned above. Alternatively, it may allow transparent throughput of data: that is, it
may become temporarily deactivated under software or user control. Whenever cursive-
language characters are folded by processing to one shape, they must be reshaped using the same
algorithm prior to presentation. In some very specific cases, data may be corrupted by this
processing, as the algorithm may not be perfectly reversible. As an analogy, in English,
converting 12Ab2 to upper case would result in 12AB2; the return to lower case would result in
12ab2, which is not the same as the original.

Though in most cases a cursive language text would be stored in basic shapes only, there are
cases where it may be stored with characters shaped as presented, as in the case of messages or
on-line help text.

Character Composition, Ligatures and Diacritics

In complex-text languages, it is possible that there is not a one-to-one correspondence between
the number of characters of text stored for processing and the number of characters of the
presented text. Sometimes two or more characters might be represented by a single glyph
occupying one presentation cell:

ligatures
In the cursive languages, ligatures use one glyph to represent two or more specific letters.
For example, the ligature Lamalif is used to represent the frequently used pair of letters Lam
and Alif.

diacritics
These are marks above, near, within or below a consonant. They are used in bidirectional
languages, among other functions, to represent vowels. When kept in storage for
processing, these marks occupy physical positions, but if used for representation, they
might occupy the same cell as the associated consonants.

As a compromise, given existing limitations (in the graphical capabilities and resolution of
the display devices and the number of code points available), bidirectional languages such
as Hebrew have in many implementations given up the ability to represent vowels by
diacritics. The vowels sounds have to be surmised by readers based on their knowledge of
the language and according to the semantics of the text.

However this guesswork is not acceptable for specific applications, such as poetry or
processing of a classical text, which requires the use of diacritics. In some complex-text
languages, such as Thai, the use of vowel symbols and tone marks is mandatory.

In Arabic, spacing diacritics are currently used as a compromise. In the present Arabic
systems, some or all of the Arabic diacritics are implemented as separate characters to be
rendered following the character to which the diacritics belong.

Portable Layout Services: Context-dependent and Directional T ext 15

Aspects of Bidirectional Language Writing Systems Complex-Text Languages — An Overview

2.3.3 National Numbers

In both Latin-based languages and Hebrew, numbers are represented using the so-called Arabic
digits (1, 2, 3, 4, 5, 6, 7, 8, 9 and 0). However, the cursive languages, (Arabic, Farsi, and Urdu), as
well as many other complex-text languages, have their own national glyphs for digits.6 The local
name for numbers used in the cursive languages is not ‘‘Arabic numbers’’, but Hindi or
sometimes Arabic-Indic numbers. The direction of the numbers is always left-to-right.
Mathematical formulae in Arabic are written from right to left and in Farsi they are written from
left to right.

It is important to understand that in most cases, the text stored for processing has numbers
encoded in their Arabic (western) code. When it comes to presentation, these numbers might be
presented using either national glyphs for digits or ordinary Arabic digits, according to the
intent of the user or application developer.

2.3.4 Bidirectional Data Entry

To those unfamiliar with bidirectional languages, understanding how segments of text with
different directionality can actually be entered from a keyboard is somewhat of a puzzle.

Keying Order

The order in which bidirectional data is typed into a workstation is the order in which the text is
meant to be read — the logical order.

Bidirectional Keyboards

The keyboards used for bidirectional languages are similar to those used for English, but on the
same keytops on which Latin characters and symbols are engraved, character symbols specific to
the other language are added. In the case of the cursive languages, such as Arabic, the character
symbols engraved are the basic characters only. Special key combinations are used to switch
between the English keyboard layer and the national-language keyboard layer. For example, in
some cases, the Hebrew layer is made active, on a Hebrew keyboard, by simultaneously
pressing the <Alt> and <Right Shift> keys. Such key combinations are also used to enter
appropriate input modes. For example, in some environments, push mode is entered by
simultaneously pressing <Shift> and <Num Lock>. Push mode is a keyboard input mode in
which characters are pushed in the direction opposite to the base direction of the segment and the
cursor does not move, in the same way the digits behave on the screen of a pocket calculator.

Bidirectional Typing Interfaces

To allow for bidirectional text entry from a keyboard, the interfaces must be able to intercept and
process each keystroke. These interfaces can be part of the terminal and associated controller’s
hardware or microcode, or they can be a specific routine that is added to the operating system.

There are two typing interfaces to consider:

• manual typing method

• automatic (logical) typing method.

6. Other complex-text languages that have their own national glyphs for decimal digits are Devanagari, Gurmukhi, Gujarati, Oriya,
Bengali, Tamil, Telugu, Malayalam, Sinhalese, Khmer (Cambodian), Lao, Mongolian, Chinese, Tibetan and Thai.

16 CAE Specification (1997)

Complex-Text Languages — An Overview Aspects of Bidirectional Language Writing Systems

Manual Typing Method

In the manual typing method the user informs the system in which direction the characters are
to be typed. For mixed-direction typing, the user makes extensive use of the Push and End Push
keyboard functions.

The manual method also supports an Automatic Push (Auto Push) mode. When the Auto Push
setting is active, the Push Mode is started and terminated automatically, according to the actual
characters being typed.

When the manual typing method is active, the keyboard language group and cursor direction
are handled separately by the system. This means that the user has separate control for:

• The direction of the field — controlled by the Field Reverse keyboard function.

• The direction of the typed text — controlled by the Push and End Push keyboard functions.

• The keyboard language group — controlled by the keyboard language group switching keys.

Automatic (Logical) Typing Method

This convention provides some automatic handling of directionality. When this method is
active, the system determines the directionality of each part of the text (each segment) based on
the actual characters being typed, using a set of predefined rules. The method is called logical
because the direction of the text is logically deduced based on the language of the characters.

With this method, the system automatically determines how to display characters in the correct
order when the user switches keyboard language groups.

Another feature of this method is that it handles text in typing order; that is, the system
remembers the order in which the characters were initially typed. It then uses this knowledge
along with a set of predefined rules, to determine how the text is displayed, processed and
deleted by the application.

If the cursor is in the Home position (the first logical position in the field or window) and a
character of a language other than the default language of the current orientation is entered, the
screen or window orientation is reversed automatically. That is, if the character entered is
Hebrew, the window orientation is right-to-left; if the character is English, the window
orientation is left-to-right.

2.3.5 Common User Access and Bidirectional Languages

The basic rule for applications that are to conform to Common User Access guidelines is that ‘‘...
All pieces of data must be displayed in the orientation that is correct for the application user.
Data input must be supported in the orientation that is natural for users’’.

Portable Layout Services: Context-dependent and Directional T ext 17

Thai Language and its Writing System Complex-Text Languages — An Overview

2.4 Thai Language and its Writing System
The Thai language is representative of a class of complex-text languages whose characters are
composed of a number of symbols or elements. Thai belongs to the Sino-Tibetan family of
languages. Like the Chinese languages, which also belong to this family, Thai is a monosyllabic
tone language. While it resembles Chinese structurally and though much of its basic vocabulary
is of Chinese origin, it has also been greatly influenced by both Pali and Sanskrit.

The Thai writing system was developed from the Devanagari system, which originated in India
and came to Thailand from Cambodia. A major difference between the Chinese and Thai
writing systems is that while Chinese makes use of a large number of pictorial symbols, Thai
uses an alphabet of consonants, vowels, tone marks, diacritics and special symbols. With some
exceptions, a Thai word can be pronounced correctly on sight, in a similar manner to Italian or
French.

2.4.1 Writing Thai Characters — Graphic Representation

Thai is written from left to right, without spaces between words. Each word is represented by
one or more syllables; each syllable consists of a consonant, a vowel, a tone and a final consonant
or a final diacritic. Spaces in the text indicate the ends of phrases or sentences, and are thus used
as a form of punctuation. Thus, individual words are recognised only by scanning the text for
syllable boundaries. Compared to western writing systems, the composed characters tend to be
taller and thinner.

Figure 2-7 Thai Text Example

A line of Thai text can be considered to be logically divided into four parallel lines:

• the base line, on which consonants, some vowels, some Thai symbols and Thai numbers are
written

• the line below the base line, used for writing lower vowels and lower diacritics

• the line above the base line, used for writing upper vowels and upper diacritics

18 CAE Specification (1997)

Complex-Text Languages — An Overview Thai Language and its Writing System

• the line above the upper vowel line, used for writing tone marks and upper diacritics. (If
there is no upper vowel, the tone mark or the upper diacritic is written on the upper vowel
line.)

tone mark symbol or upper
diacritic symbol position

upper vowel symbol,
tone mark symbol or upper
diacritic symbol position

base line symbol and
Western alphabet position

lower vowel symbol or lower
diacritic symbol position

2.4.2 Thai Written Symbols

Generally speaking, the more than 2,000 characters in the Thai writing system can be categorised
into 20 types of written symbols, with 88 basic symbols:

• 10 base line numerics

• 44 base line consonants

• 3 base line ancient signs

• 2 base line special symbols

• 1 base line currency sign

• 1 base line Thai word break character

• 5 base line leading vowels (vowel in front of consonant)

• 3 base line type 1 following vowels

• 1 base line type 2 following vowels

• 2 base line type 3 following vowels

• 1 upper vowel line type 1 upper vowel

• 2 upper vowel line type 2 upper vowel

• 2 upper vowel line type 3 upper vowel

• 1 upper vowel line ancient sign (or upper vowel line type 3 upper diacritic)

• 4 tone mark line tone marks

• 2 tone mark line type 1 upper diacritic symbol

• 1 tone mark line type 2 upper diacritic symbol

• 1 lower vowel line type 1 lower vowel

• 1 lower vowel line type 2 lower vowel

• 1 lower vowel line lower diacritic symbol

Portable Layout Services: Context-dependent and Directional T ext 19

Thai Language and its Writing System Complex-Text Languages — An Overview

Normally, Thai data is encoded using a single-byte code page, where each symbol has an
adequate code point. The symbols are used to enter Thai data on a Thai keyboard. Thus the
Thai data is stored, for processing purposes, as symbol elements. These elements have to be
combined into characters for rendering purposes.

2.4.3 Writing Order

In the most common writing order, first a base line symbol is written, and then optionally, an
upper vowel or lower vowel symbol is written above or below it. A tone mark symbol may then
optionally be written either above the base line symbol, or above the upper vowel symbol, if
present.

This order of writing is taught in Thai elementary schools. However, writing-order
inconsistencies exist between individuals. The valid combinations of symbols for Thai
composed characters are:

• base line consonant symbol

• base line consonant symbol and tone mark symbol

• base line consonant symbol and upper diacritic symbol

• base line consonant symbol and upper vowel symbol

• base line consonant symbol, upper vowel symbol and tone mark symbol

• base line consonant symbol, upper vowel symbol and upper diacritic symbol

• base line consonant symbol and lower vowel symbol

• base line consonant symbol and lower diacritic symbol

• base line consonant symbol, lower vowel symbol and tone mark symbol.

Any other combinations would be considered invalid.

2.4.4 What is a Thai Character?

From a linguistic or phonetic point of view, the Thai writing system is actually more complex
than that described above. Consonants are written on the base line. A middle vowel can be
written either before, after or straddling the related consonant. Upper-vowels are written above,
and lower vowels below, their related consonant. Vowels are always pronounced and collated
after the consonant. The tone mark is usually written after the upper vowel or lower vowel, but
some people might write it after the consonant. The left and right pieces of a middle vowel,
which straddle a consonant, are included as separate components in some encoding schemes.

To prevent confusion, the term composed character is used here for the representation of one
syllable at a writing position, and the term symbol is used for the components of a composed
character.

20 CAE Specification (1997)

Complex-Text Languages — An Overview Thai Language and its Writing System

2.4.5 Thai Numbers

Although Western numerals (Arabic numbers) are now widely used in Thai writing, there are
also ten Thai glyphs for numbers. In Thai, the equivalent of the Arabic digits 1, 2, 3, 4, 5, 6, 7, 8, 9
and 0 are respectively:

Figure 2-8 Shape of the National Numbers in Thai

2.4.6 Character Composition

According to the rules for writing Thai, only certain combinations of symbols are possible.
When someone fluent in Thai is writing or reading a line, a process of composition is taking place.
In about 74 percent of cases a character is formed from a single symbol; in about 22 percent of
cases, it is formed from two symbols; and in 4 percent of cases it is formed from three symbols.

A Thai speaker does not think of a composed character as, for example, an accented character in
French. This difference in thinking is reflected in the difference between European and Thai
keyboards. In European keyboards, dead keys are used to place accents on characters. The dead
key is pressed first to show the accent, and then the character key is pressed. The cursor moves
only after the character has been entered. All character manipulation is done at the cursor
position.

In Thai the consonant or middle vowel is entered first. It is displayed, and the cursor then
moves one position to the right. The upper and lower (dead key) vowels and tone marks are
then added to the character to the left of the cursor. The rightmost column of positions on the
screen is used to display the cursor only, and data is not allowed in this column. Usually vowels
and tone marks are stacked on the consonants to compose syllables. The exception is middle
vowels, which stay independently at the same level as the consonants.

2.4.7 Thai Character Rendering

Quality font rendering (for example, for desktop publishing), requires additional changes to be
made to a Thai composite character form, and sometimes to other characters in its vicinity.

Examples

• Some of the base line symbols that have a descender in the lower position change shape in
the presence of a lower vowel.

• Some other base line symbols with a descender do not change their shape. Instead, when
these symbols are combined with a lower vowel, the vertical or horizontal position of that
lower vowel is changed. Similarly, when some base line symbols with an ascender are
combined with an upper vowel, a tone mark or both, the location of the upper vowel, tone
mark or both is shifted horizontally.

• The vertical position of a tone mark is dependent upon the presence or absence of an upper
vowel. If an upper vowel is not present, the tone mark is positioned at the level that an
upper vowel would occupy.

• A specific base line vowel partially overlaps with the associated previous consonant. If the
associated consonant does not have an ascender, the vowel is moved up and to the left, to
hang over the right side of the previous base line consonant. If the associated consonant has
an ascender, the vowel is split into two pieces, with one piece positioned to the left of the
ascender and another to the right.

Portable Layout Services: Context-dependent and Directional T ext 21

Thai Language and its Writing System Complex-Text Languages — An Overview

It is thus possible to recognise a similarity between character composition in Thai, and ligatures
composition and shaping in bidirectional languages. The character presented is not identical
with the symbols stored, so a shaping or composing algorithm must be applied.

Similarly, there are cases where the shaping transformation must not to be performed at
rendering, but at a previous stage. When using the high-quality printers adapted for double-byte
character set (DBCS), a shaping of characters (maximum three-symbol), is performed as part of
the transformation of text to a double-byte encoding scheme. In this case, the text can be
considered stored in a shaped form for higher-efficiency printing. This resembles the case in
which Arabic message text is kept in storage in a shaped layout.

22 CAE Specification (1997)

Complex-Text Languages — An Overview Korean Language and its Writing System

2.5 Korean Language and its Writing System
Korean is the official language of Korea (both south and north) and is spoken by more than 60
million people. The Korean language contains not only Korean words, but also borrows a small
number of Chinese-language words. A small number of words are also borrowed from other
foreign languages, such as Japanese, English, German, French, and so on.

The official writing system of Korean is known as Hangul, which means ‘‘the Korean letter’’ in
Korean. It was created and announced by King Sejong and his scholars in 1446. The first
standardisation of Hangul was published by the Korean Language Association in 1933.

Hanja, which means ‘‘Chinese letter’’, is a term sometimes used to describe the ideograms used
to express words borrowed from Chinese. Likewise, the English alphabet is used to express
some English terminology. Nevertheless, contemporary Koreans regard Hangul as the writing
system for the Korean language, and as such the Korean writing system is not ideographic.

Korean script uses Arabic figures to represent numbers in most cases. The pronunciation of
figures can be expressed using either Hangul or Hanja.

2.5.1 Hangul Writing System

In Hangul, a one-syllable letter may be composed of a cluster of two or three elements, the first
of which is always an initial consonant (this can be a null consonant, which is not pronounced).
The initial consonant is placed at the left, at the upper side or at the upper-left side of the syllable
cluster, depending on the second element of the cluster. This second element is always a vowel.
The vowels whose representation is based on a vertical line, are positioned to the right of the
initial consonant. The vowels whose representation is based on a horizontal line are placed
under it. In the case of double vowels with both horizontal and vertical line representation, the
initial consonant is placed at the upper-left side and the double vowel is usually placed at the
right side and under the consonant. If present, the third element of the cluster is a final
consonant, and is always placed under the other two elements of the cluster.

These cluster elements are called Jamo in Korean, where Ja means consonant and mo means
vowel.

In standard Hangul, there are 24 basic Jamo elements, of which 14 are used for consonants. In
the case of sounds that are not representable by the basic Jamo elements, Hangul grammar
allows them to be represented by combining two or more elements. About 27 additional Jamo
elements, of which 16 are used for consonants, belong to such combined Jamo elements.

There are 19 permissible initial consonants, 21 vowels and 28 final consonants. The total number
of possible combinations of Hangul Consonant-Vowel-Consonant (CVC) is thus 11,172
(19x21x28). Everyday Korean, however, makes do with approximately 2,500 combinations.

Writing Hangul Syllables — Graphic Representation

The major graphic distinction in Hangul is between vowels and consonants. Vowels are based
on long horizontal or vertical lines that have distinguishing marks. The basic vowel Jamo
elements are as follows:

Consonants are represented by more compact, two-dimensional signs; the basic consonant Jamo
elements are as follows:

Portable Layout Services: Context-dependent and Directional T ext 23

Korean Language and its Writing System Complex-Text Languages — An Overview

The shapes of the consonants were apparently chosen by King Sejong to represent highly
stylised pictures of the tongue and mouth when the equivalent sounds are pronounced. For
example, the Hangul sign:

which represents a sound equivalent to the English letter n has a shape that suggests the
tongue-tip raised to touch the front of the palate.

Word Grouping and Direction

In Korean, words are made up of syllables, and the words are separated by spaces. There are
two ways in which syllables are juxtaposed to create words and text: vertically (top to bottom
and right to left) and horizontally (left to right and top to bottom.)

In South Korea, although newspapers are printed from top to bottom in vertical columns that
shift from right to left, horizontal writing is very much in use. The script is Hangul, with
occasional Chinese (Hanja) characters as well as Latin-based characters for English text.

In North Korea, newspapers are printed horizontally with Korean script (Hangul only, without
Hanja characters).

If, hypothetically, English were written like Hangul, and the vowel O belonged to the set of
vowels written under the initial consonant while the vowels A and E were written to the right of
the initial consonant, then an English term such as common market would be presented in the
following manner:

Horizontal direction:

C M M A K E
O O R T
M N

Vertical direction of writing:

C
O
M

M
O
N

M A
R

K E
T

Figure 2-9 Korean Writing Direction

The following figure shows actual Hangul Jamo elements and their corresponding composition.
The right-most column is an example of vertical writing; the bottom line is an example of
horizontal writing.

24 CAE Specification (1997)

Complex-Text Languages — An Overview Korean Language and its Writing System

Figure 2-10 Syllable Composition and Writing Direction in Hangul

2.5.2 Character Set Considerations

Korean uses two character sets:

• a single-byte character set (SBCS) made up of Latin characters

• one of two double-byte character set (DBCS):

— Completion code:

a pre-composed Hangul character set of 2,350 syllables
94 Jamo (including old Jamo) elements
a Hanja character set
a non-Hangul and non-Hanja character set containing:

Latin characters
Japanese characters (kanas)
other European characters, numerals and symbols.

— Combination code: this supports all possible combinations of Hangul CVC by assigning
five bits to each CVC. In addition, the code can represent the same Jamo elements, Hanja
character set and the non-Hangul and non-Hanja character set of the Completion code.

Portable Layout Services: Context-dependent and Directional T ext 25

Conclusions and Guidelines Complex-Text Languages — An Overview

2.6 Conclusions and Guidelines
Though so different in their appearances, all complex-text languages — the bidirectional ones
such as Arabic, Farsi, Urdu, Hebrew and Yiddish, or the languages such as Thai, Lao, or Korean
— have a distinct common characteristic: the form of the rendered text is different from that of
the stored text. The transformation functions needed to perform the changes between rendered
and stored text depend on descriptive information pertaining to the attributes of complex-text
languages: global orientation, text-type, symmetrical swapping, shaping and national numbers.

Application developers should be aware of the fact that in the complex-text languages there is a
need for transformations between the different text layouts. They should allow for user or
system exits to facilitate invoking these transformations, in those places where a transformation
might be expected (at input, before output, before a collating process, and so on). Programs
must be able to identify the location and content of the complex-text attributes, and be able to
change their content if needed.

Just as for any other language, an application meant to be used for complex-text languages
should utilise the appropriate language code page and cultural data (date and time layout,
collating sequence, monetary layout, and so on).

Application developers should design their products in such a way that they use, as much as
possible, the standard functions and controls provided by the operating system services or
toolkits for these languages. They might choose to use the APIs offered in the national language
versions of the operating system services or toolkits to perform such transformations (when
available).

It would be good practice to concentrate all the functions related to National Language in a
specific program area for easy maintainability and change support.

26 CAE Specification (1997)

Chapter 3

Interface Overview

This chapter outlines the purpose of the m_*_layout () functions, which facilitate the
transformation of the caller’s data from one form to the other.

A set of APIs to handle these transformations is defined in Chapter 5. To perform their
operations these APIs need descriptive information related to the layouts (layout values of text
attributes) and the peculiarities of the characters of the text (the character classifications and
mapping).

3.1 Opaque Data
The information needed to perform the transformations is encapsulated in an opaque data type
called LayoutObject. All locales supported by the setlocale () function may be associated with a
LayoutObject. Applications that use the LayoutObject functions must first initialise a
LayoutObject.

Layout values are part of the type LayoutObject. A layout value consists of a descriptor and a
data type.

The layout values are text attributes and processing indicators needed by the layout
transformation functions to relate properly to the text being transformed. The layout values
with the data type LayoutTextDescriptor have two values: one for input text and one for the
transformed text.

3.2 Functions
The m_create_layout () function initialises a LayoutObject. When the function m_create_layout ()
is called the locale name is passed to it by an argument of type AttrObject. A null argument
implies using the locale name of the current locale as set by setlocale ().

The main m_*_layout () function is m_transform_layout (), which performs layout transformations,
such as reordering and shaping, on a string of text encoded in a character encoding scheme. A
similar function, m_wtransform_layout () is provided for text encoded in a wide-character
encoding scheme. It also provides information to the application so that it can perform editing,
shaping and character composition operations as required.

Other functions associated with the LayoutObject type are:

• Free a LayoutObject (m_destroy_layout ()).

• Set layout values of a LayoutObject (m_setvalues_layout ()).

• Get layout values of a LayoutObject (m_getvalues_layout ()).

Portable Layout Services: Context-dependent and Directional T ext 27

Descriptors and Data Types Interface Overview

3.3 Descriptors and Data Types
Table 3-1 lists the standard layout values used by the m_*_layout () functions associated with a
type LayoutObject. Each layout value is specified in terms of its descriptor, data type and
whether it may be set (S) or got (G) using m_setvalues_layout () or m_getvalues_layout ()
respectively. For some particular national languages or regional groups and for specific
implementations, additional layout values, beyond those listed here, may be added.

Defaults have been assigned to the layout values for the C locale, because these locales (in the C
library) are the only locales with a consistent behaviour across implementations.

Descriptor Type SG
Orientation LayoutTextDescriptor SG
Context LayoutTextDescriptor SG
TypeOfText LayoutTextDescriptor SG
ImplicitAlg LayoutTextDescriptor SG
Swapping LayoutTextDescriptor SG
Numerals LayoutTextDescriptor SG
TextShaping LayoutTextDescriptor SG
ActiveDirectional BooleanValue G
ActiveShapeEditing BooleanValue G
ShapeCharset char * SG
ShapeCharsetSize int G
ShapeContextSize LayoutEditSize G
InOutTextDescrMask unsigned long SG
InOnlyTextDescr unsigned long SG
OutOnlyTextDescr unsigned long SG
CheckMode LayoutDesc SG
QueryValueSize int G

Table 3-1 Standard Layout Values

Chapter 4 includes descriptions of the layout values needed by the transformation functions,
and the special data structures and types used.

28 CAE Specification (1997)

Chapter 4

Header File <sys/layout.h>

This chapter describes the opaque LayoutObject type and the other data types and layout values
used by the layout services APIs. These are all defined in <sys/layout.h>, which is
implementation dependent.

4.1 LayoutObject
The LayoutObject is an opaque structure that includes values and methods corresponding to a
specific locale.

4.1.1 Association with Attribute Objects and Locales

Taking into account emerging trends to facilitate internationalised functions that satisfy multi-
locale, multi-threading and multi-node processing, the layout object is associated with a
generalised AttrObject that might contain other objects beyond the locale object. For
information on type AttrObject, see the Distributed Internationalisation Services snapshot.

In the absence of an AttrObject, the locale defaults to the locale supported by the setlocale ()
function (see the XSH, Issue 4 specification).

4.1.2 LayoutObject Content

LayoutObject contains or points to:

• definitions of the Layout APIs (the m_*_layout () functions)

• Layout Values:

— text attributes (LayoutTextDescriptors)

— processing indicators (for example a value to indicate whether proper rendering of text
requires a reordering of directional code elements)

— different descriptors related to character shaping

• definitions of the specific data type structures needed

• an optional layout category called LO_LTYPE to contain character classifications and
mapping with a grammar similar to the locale category LC_CTYPE. The proposal is to define
this as a separate layout category included in LayoutObject, so that existing applications are
not affected. However, LO_LTYPE keywords may be added to existing locales. The
description of LO_LTYPE is given in Appendix B.

More detailed descriptions of the different components of LayoutObject follow in subsequent
sections.

Portable Layout Services: Context-dependent and Directional T ext 29

Layout Values Header File <sys/layout.h>

4.2 Layout Values

4.2.1 Descriptors

The different descriptors are described briefly in the following sections. The letters S and G
indicate whether the value may be set or retrieved as shown in Table 3-1 on page 28.

For descriptors that do not have an S indicator, the way in which their initial value is set is
implementation dependent.

Orientation (SG)

In bidirectional languages, some characters (such as the English letters) are considered to have a
strong left-to-right orientation; other characters (such as the Arabic characters) are considered
strong right-to-left characters; and other characters (such as punctuation marks, spaces, and so
on) do not have a strong direction associated with them.

The descriptor Orientation specifies the global directional text orientation. Possible values are:

ORIENTATION_LTR
Left-to-right horizontal rows that progress from top to bottom.

ORIENTATION_RTL
Right-to-left horizontal rows that progress from top to bottom.

ORIENTATION_TTBRL
Top-to-bottom vertical columns that progress from right to left.

ORIENTATION_TTBLR
Top-to-bottom vertical columns that progress from left to right.

ORIENTATION_CONTEXTUAL
The global orientation is set according to the direction of the first significant (strong)
character.

If there are no strong characters in the text and the descriptor is set to this value, the global
orientation of the text is set according to the value of the descriptor Context. This option is
meaningful only for bidirectional text.

The initial state for Orientation is dependent on the LayoutObject. If no value is present, the
default is ORIENTATION_LTR.

Context (SG)

The descriptor Context is meaningful only if the descriptor Orientation is set to
ORIENTATION_CONTEXTUAL. It defines what orientation is assumed when no strong
character appears in the text. Possible values are:

CONTEXT_LTR
In the absence of characters with strong directionality in the text, orientation is assumed to
be left-to-right rows progressing from top to bottom.

CONTEXT_RTL
In the absence of characters with strong directionality in the text, orientation is assumed to
be right-to-left rows progressing from top to bottom.

If no value is specified, the default is CONTEXT_LTR.

30 CAE Specification (1997)

Header File <sys/layout.h> Layout Values

TypeOfText (SG)

The TypeOfText descriptor specifies the ordering of the directional text. Characters may have a
natural orientation attached to them as described under Orientation (SG) on page 30. An
example of how this characteristic could be defined is by the keywords left_to_right and
right_to_left in the layout category LO_LTYPE (see Appendix B). Possible values are:

TEXT_VISUAL
Code elements are stored in visually ordered segments, which can be rendered without any
segment inversion. Practically the whole text could be seen as if there were no sub
segments.

TEXT_IMPLICIT
Code elements are stored in logically ordered segments. Logically ordered means that the
order in which the characters are stored is the same as the order in which the characters are
pronounced when reading the presented text or the order in which characters would be
entered from a keyboard. Logical order (or logical sequence) of characters is necessary for
processing purposes, for example, when there is a need to sort or index the data. Segments
of reversed orientation are recognised and inverted by a content-sensitive algorithm based
on the natural orientation of characters. Because there are several possible algorithms for
implicit reordering of directional segments, the ImplicitAlg layout value is used when
TypeOfText is set to TEXT_IMPLICIT, to indicate the actual algorithm used.

TEXT_EXPLICIT
Code elements are stored in logically ordered segments with a set of embedded controls.
The explicit algorithm eliminates the ambiguities that might exist in some situations when
using an implicit algorithm, but it introduces the need for additional control characters in
the data stream. The set of embedded controls for TEXT_EXPLICIT is implementation
defined.

Consider the following possible embedded controls:

• Examples of ISO 6429 controls:7

Start Directed String (SDS)
Start Reversed String (SRS)
Select Presentation Directions (SPD)
Graphic Character Combination (GCC)

• Examples of the ISO/IEC 10646 standard (and Unicode) controls: (see the Basic Display
Algorithm published in Appendix A in the Unicode standard).

LEFT-TO-RIGHT EMBEDDING (LRE)
RIGHT-TO-LEFT EMBEDDING (RLE)
RIGHT-TO-LEFT OVERRIDE (RLO)
LEFT-TO-RIGHT OVERRIDE (LRO)
POP DIRECTIONAL FORMAT (PDF)

The LayoutObject preserves a bidirectional state across calls to the m_transform_layout ()
function. The directional state is reset to the initial state each time TypeOfText is set to any value.

7. This example is based upon the control codes required in the ISO/IEC 6429 standard for handling bidirectional text as published
in the ECMA TR/53 standard. This list is given for illustration only. There is no implied connection between the embedded
controls and a specific encoding scheme. The encoding of the above controls depends on the codeset associated with the
LayoutObject. Any ASCII-based encoding uses the ISO/IEC 6429 standard escape sequence definitions.

Portable Layout Services: Context-dependent and Directional T ext 31

Layout Values Header File <sys/layout.h>

Each LayoutObject is expected to provide transformation from each of the above types to any of
the other types. However, some transformations may cause layout (directional) information to
be lost so that text is presented differently after a round trip transformation. This does not imply
any data loss, but only possible loss in layout information.

If the TypeOfText value is not specifically stated, the default (for the C locale) is
TEXT_IMPLICIT.

ImplicitAlg (SG)

The ImplicitAlg descriptor specifies the type of bidirectional implicit algorithm used in
reordering and shaping of directional or context-dependent text.

Possible values of ImplicitAlg are:

ALGOR_IMPLICIT
Directional code elements will be reordered using an implementation-defined implicit
directional algorithm when converting to or from an implicit form.

Although the basic algorithm used when ImplicitAlg is set to ALGOR_BASIC, is an implicit
algorithm, the fact that it recognises some control characters, allows it to be used even when
the TypeOfText descriptor is set to TEXT_EXPLICIT.

Note that when TEXT_EXPLICIT is used in conjunction with ALGOR_BASIC, the controls
may temporarily change the values of Swapping, Numerals and TextShaping. The
ALGOR_IMPLICIT value may be equal to ALGOR_BASIC for a given implementation.
Except in this case, it is not meaningful to have TypeOfText=TEXT_EXPLICIT at the same
time as ImplicitAlg=ALGOR_IMPLICIT.

OP ALGOR_BASIC
Directional code elements should be reordered using the basic implicit directional algorithm
when converting to and from an implicit form. The basic reordering algorithm is the Basic
Display Algorithm published in the Unicode standard. The basic reordering algorithm is
inherently an implicit algorithm, but it may support certain explicit control characters.
Among others, the following controls are recognised when reordering with ALGOR_BASIC:

LEFT-TO-RIGHT MARK (LRM)
RIGHT-TO-LEFT MARK (RLM)

All the controls can be found in the referenced Unicode standard.

If the ImplicitAlg value is not specifically stated, the default (for the C locale) is
ALGOR_IMPLICIT.

Swapping (SG)

The Swapping descriptor specifies whether symmetric swapping is applied to the text. A list of
symmetric swapping characters is given in the ISO/IEC 10646 standard. Possible values are:

SWAPPING_YES
The text conforms to symmetric swapping.

SWAPPING_NO
The text does not conform to symmetric swapping.

If no value is present, the default (for the C locale) is SWAPPING_NO.

32 CAE Specification (1997)

Header File <sys/layout.h> Layout Values

Numerals (SG)

The Numerals descriptor specifies the shaping of numerals recognised by the LayoutObject.
Possible values are:

NUMERALS_NOMINAL
Nominal shaping of numerals using the portable character set (Arabic numerals).

NUMERALS_NATIONAL
National shaping of numerals based on the script of the locale associated with the
LayoutObject (such as the Thai, Farsi, Hindi, or Bengali script).

An example of how national numbers can be defined is by using the keyword
national_number in the layout category LO_LTYPE (see Appendix B on page 69).

NUMERALS_CONTEXTUAL
Contextual shaping of numerals depending on the context (script) of surrounding text (such
as Hindi numbers in Arabic text and Arabic numbers otherwise).

If no value is specified the default value (for the C locale) is NUMERALS_NOMINAL.

TextShaping (SG)

The descriptor TextShaping specifies the shaping; that is, choosing (or composing) the correct
shape of the input or output text.

Note: This layout value is important, in particular for languages where the shapes of the
characters, when presented, correspond to code points that may be different from the
code points of the characters stored for processing:

• In languages such as Arabic or Farsi, the character can have up to four different
shapes (see Shapes of the Arabic Characters on page 8). In these languages the
character is most frequently (but not always) stored and processed using a code
point related to a basic shape. Often, but not always, the basic shape chosen is the
isolated shape.

• In other complex-text languages, such as Thai and Korean, the shaping is actually a
composition process. See Section 2.4.1 on page 18 and Section 2.5.1 on page 23.

Possible values of TextShaping are:

TEXT_SHAPED
The text has presentation form shapes.

TEXT_NOMINAL
The text is in basic form.

TEXT_SHFORM1
The text is in shape form 1.

TEXT_SHFORM2
The text is in shape form 2.

TEXT_SHFORM3
The text is in shape form 3.

TEXT_SHFORM4
The text is in shape form 4.

The set of shaping characters is limited to the codeset of the locale associated with the
LayoutObject.

Portable Layout Services: Context-dependent and Directional T ext 33

Layout Values Header File <sys/layout.h>

If no value is present, the default value (for the C locale) is TEXT_SHAPED.

In this document, the term shape form n is used to mean:

• Arabic Script

shape form 1 initial form

shape form 2 middle form

shape form 3 final form

shape form 4 isolated form

• Thai Script

TEXT_SHAPED In this form, the characters will be shaped conforming to wtt2.0
specification composed form.

shape form 1 In this form, each character will be shaped into an individual display
character occupying a single display cell. Each character has a non-zero
width. For example, Mai_Ek is not composed with its preceding character
and occupies one display cell.

• Hangul Script

shape form 1 initial consonant-only presentation

shape form 2 vowel-only presentation

shape form 3 final consonant-only presentation

shape form 4 decomposed presentation

For example, if each capital letter represents a Jamo, a syllable HAN is
presented as three decomposed Jamos of H, A and N.

ActiveDirectional (G)

If the descriptor ActiveDirectional is set (True), then the LayoutObject includes knowledge of
directional code elements, and proper rendering of text implies reordering of directional code
elements. Otherwise the LayoutObject does not require any reordering of directional code
elements. The way the value of this layout value is set is implementation dependent.

The ActiveDirectional value is guaranteed to remain unchanged for the life of the LayoutObject.

ActiveShapeEditing (G)

If the descriptor ActiveShapeEditing is set (True), the LayoutObject includes knowledge of
context-dependent code elements (an automatic shape determination algorithm) that require
shaping for presentation to the ShapeCharset.

The user of a LayoutObject is then required to initiate or perform some shaping transformation
prior to rendering the text.

Otherwise, the application that uses the LayoutObject does not perform shaping, and all code
elements may be presented independent of the surrounding characters.

The method used to set ActiveShapeEditing is implementation defined. The ActiveShapeEditing
value is guaranteed to remain unchanged for the life of the LayoutObject.

34 CAE Specification (1997)

Header File <sys/layout.h> Layout Values

ShapeCharset (SG)

The descriptor ShapeCharset specifies the charset of the output text when text is shaped; that is,
when ActiveShapeEditing is true. If ActiveShapeEditing is not set (False), in other words, shape
editing is a null operation, the ShapeCharset is guaranteed to match the codeset associated with
the locale of the LayoutObject.

A charset is defined as ‘‘an encoding with a uniform, state-independent mapping from character
to code points’’.

A ShapeCharset is a well known name associated with some type of presentation encoding
usually used to identify the encoding of a font. Yet, a ShapeCharset need not be a font encoding
but may be some intermediate encoding that can then be rendered to a specific font.

Note: LayoutObject may be extended to provide an extended layout value, by which the
individual glyph metrics may be passed into it.

Since the ShapeCharset is associated with a specific font or glyph encoding, when
ActiveShapeEditing is True, the ShapeCharset may (but need not) be the same as the codeset of
the locale associated with the LayoutObject.

Once chosen, the ShapeCharset is guaranteed to be of a uniform size and state independent, but
the size of each ShapeCharset may vary (for example, 8, 16 or another number of bits) so
applications should use the ShapeCharsetSize value when doing storage management.

ShapeCharsetSize (G)

The descriptor ShapeCharsetSize specifies the encoding size of the current ShapeCharset. This
value may change when the ShapeCharset is changed. If ActiveShapeEditing is not set (False)
the ShapeCharsetSize is set to the maximum code element size (in bytes) for the codeset of the
locale for the LayoutObject.

ShapeContextSize (G)

The ShapeContextSize specifies the size of the context (surrounding code elements) that must be
accounted for when performing active shape editing. The ShapeContextSize is defined as
structure of type LayoutEditSize, (see discussion on LayoutEditSize in Type LayoutEditSize on
page 38).

The ShapeContextSize value is guaranteed to remain unchanged for the life of the LayoutObject.

InOutTextDescrMask (SG)

This mask is set to tell the layout functions which text descriptors are initialised to valid values
when either InOnlyTextDescr or OutOnlyTextDescr are set or queried. For example, if the
InOutTextDescrMask is set to denote Orientation and TypeOfText, only these two descriptors
are returned when the InOnlyTextDescr is queried. The values used in InOutTextDescrMask are
actually a bitwise OR of one or more classification criteria.

The way in which these layout values are set is implementation dependent. By default, this
descriptor is initialised to indicate that all the text descriptors are to be set and queried.

Portable Layout Services: Context-dependent and Directional T ext 35

Layout Values Header File <sys/layout.h>

InOnlyTextDescr (SG)

When this descriptor is set it indicates that the input values of the layout values denoted by the
InOutTextDescrMask are set or retrieved when using m_setvalues_layout () or
m_getvalues_layout () respectively. The way this value is set is implementation dependent.

OutOnlyTextDescr (SG)

When this layout value is set it indicates that the output values of the layout values denoted by
the InOutTextDescrMask are set or retrieved when using the m_setvalues_layout () or
m_getlayoutvalues () respectively.

CheckMode (SG)

The CheckMode layout value indicates the level of checking of the elements in the InpBuf for
shaping and reordering purposes. It also defines the behaviour of the implicit algorithm with
respect to standalone neutral characters (until stabilised by a new strong character).

Possible values of CheckMode are:

MODE_STREAM
The string in the InpBuf is expected to have valid combinations of characters or character
elements. No validation is needed before shaping and/or combined character cell
determination. The only thing validated before the transformation is the current state of the
layout object based on previous input data.

The reordering of bidirectional text will assign the nesting level of an unstablised neutral
character such that it follows the level of the previous strong character.

When MODE_STREAM is set, it is guaranteed that:

— No [ERANGE] errors will be returned from the m_*transform_layout () function.

— Each shape associated with a composite sequence will occupy a single display cell.

MODE_EDIT
The shaping of input text may vary depending on locale-specific validation or assumptions.

The reordering of bidirectional text will assign the nesting level of an unstablised neutral
character such that it follows the level of the global orientation.

When MODE_EDIT is set:

— [ERANGE] errors may be returned from the m_*transform_layout () function.

— Not all code elements of a composite sequence may be assumed to occupy a single
display cell.

When no value is present, the default of CheckMode (for the C locale) is MODE_STREAM.

QueryValueSize (G)

The user is responsible for his own memory allocation (for the layout values to be queried);
therefore he needs to know the actual size of each layout value to be queried.

The name QueryValueSize is defined. This can be ORed with any other name. When
m_getvalues_layout () detects that QueryValueSize is ORed with any name it returns the number
of bytes needed to store the value, rather than the value itself. This is to avoid adding a
parameter to m_getvalues_layout ().

36 CAE Specification (1997)

Header File <sys/layout.h> Layout Values

The following example illustrates the use of QueryValueSize:

unsigned long Size;

...

layout[0].name = QueryValueSize | ShapeCharSet;
layout[0].value = &Size;
layout[1].name = 0;
m_getvalues_layout(hlo,layout,&index);

/*Size should now contain the number of bytes needed
/*to hold ShapeCharSet*/

...

4.2.2 Layout Value Data Types

The following describe the data types used for some of the layout values. All layout values are
defined in <sys/layout.h>. The content of <sys/layout.h> is implementation dependent. In
addition the following layout values may be combined (logic OR) into a single type
TextDescriptor:

Orientation
Context
TypeOfText
ImplicitAlg
Swapping
Numerals
TextShaping

The value of these layout values may also be combined (logic OR) into a single attribute. The
layout value AllTextDescriptor can be used to indicate that all LayoutTextDescriptor types are
set (see Type LayoutTextDescriptor on page 38).

Type LayoutValues

Layout values are defined using the LayoutValues data type which is a pointer to the
LayoutValueRec data structure:

#include <sys/layout.h>

typedef struct{
LayoutId name; /* int - the id of the layout value*/
LayoutValue value; /* void* - Data of layout value item */
}LayoutValueRec, *LayoutValues;

The name element denotes the layout value to be set and the value element contains the data to
be set. The LayoutValue data type is a C-language type large enough to contain the following:
char*, long, int*, or a pointer to a function. The end of the array is indicated by a name of value
zero (0).

The m_setvalues_layout () function is a convenient way to set the two members of the
LayoutValueRec structure. This function is usually specified in a stylised manner to minimise
the probability of making a mistake. For further information see m_setvalues_layout () on page
49.

Portable Layout Services: Context-dependent and Directional T ext 37

Layout Values Header File <sys/layout.h>

Type LayoutTextDescriptor

The LayoutTextDescriptor type is used to identify the attributes of source and target text:

#include <sys/layout.h>
typedef int LayoutDesc
typedef struct{

LayoutDesc inp; /* Input buffer description */
LayoutDesc out; /* Output buffer description */
} LayoutTextDescriptorRec, *LayoutTextDescriptor;

The inp and out values are combinations of the appropriate descriptor items. Each of the
descriptors is specified as a combination of one value from each of the following groups — a
value for the input descriptor and a corresponding value for the output descriptor.

Type LayoutEditSize

The LayoutEditSize structure defines the number of surrounding code elements that need to be
considered when performing edit shaping:

structure typedef struct{
int front; /* number of code element in front of the */

/* edit position in logical order */
int back; /* number of code elements following the

/* edit position in logical order*/
} LayoutEditSizeRec, *LayoutEditSize;

When a substring is inserted into a string, the front and back elements define the number of code
elements in front of the substring and the number of code elements after the substring
respectively that need to considered when performing edit shaping. The total number of code
elements needed to be viewed is:

total # of code elements =(fron t + # code elements in substring + back)

If both front and back elements are set to zero, no additional context needs to be considered for
edit shaping. When ActiveShapeEditing is not set (False), the front and back are guaranteed to
be zero.

38 CAE Specification (1997)

Header File <sys/layout.h> Layout Modifiers

4.3 Layout Modifiers
Layout modifiers are Layout values in string form.

Each LayoutObject consists of several different layout values that are specified in Section 4.2 on
page 30 and are initialised at the time the LayoutObject is created by the m_create_layout ()
function. Yet users may wish to announce an initial layout value that may be different from the
default layout value associated with a locale. Thus, the m_create_layout () function supports a
modifier argument that allows the user’s default layout values to be passed in a string form. The
m_create_layout () function supports a grammar for the specification of layout values in string
form.

The following symbols are used in the proposed grammar for layout modifier strings:

Character Description
, Comma
- Hyphen
/ Solidus (Slash)
; Semi-colon
= Equal sign
_ Low line (Underscore)

The following strings are used as prefixes within the grammar definition to mean:

inout_ means the value is to be used for both in and out layout values

in_ means the value is to be used as an in layout value

out_ means the value is to be used as an out layout value.

The proposed grammar is as follows:

LSmodifier_string : ’@ls’ layout

layout : layout ’,’ layout_values
| layout_values
;

layout_values : orientation
| context
| typeoftext
| implicitalg
| swapping
| numerals
| shaping
| checkmode
| shapcharset
;

orientation : ’orientation=’ inout_orient_value
| ’orientation=’ in_orient_value ’:’ out_orient_value
;

inout_orient_value : orient_value
;

Portable Layout Services: Context-dependent and Directional T ext 39

Layout Modifiers Header File <sys/layout.h>

in_orient_value : orient_value
;

out_orient_value : orient_value
;

orient_value : ’ltr’ | ’rtl’ | ’ttblr’ | ’ttbrl’ | ’contextual’
;

context : ’context=’ inout_context_value
| ’context=’ in_context_value ’:’ out_context_value
;

inout_context_value: context_value
;

in_context_value : context_value
;

out_context_value : context_value
;

context_value : ’ltr’ | ’rtl’
;

typeoftext : ’typeoftext=’ inout_text_value
| ’typeoftext=’ in_text_value ’:’ out_text_value
;

inout_text_value : text_value
;

in_text_value : text_value
;

out_text_value : text_value
;

text_value : ’visual’ | ’implicit’ | ’explicit’
;

implicitalg : ’implicitalg=’ inout_algor_value
| ’implicitalg=’ in_algor_value ’:’ out_algor_value
;

inout_algor_value : algor_value
;

in_algor_value : algor_value
;

out_algor_value : algor_value

40 CAE Specification (1997)

Header File <sys/layout.h> Layout Modifiers

;

algor_value : ’basic’ | ’implicit’
;

swapping : ’swapping=’ inout_swap_value
| ’swapping=’ in_swap_value ’:’ out_swap_value
;

inout_swap_value : swap_value
;

in_swap_value : swap_value
;

out_swap_value : swap_value
;

swap_value : ’yes’ | ’no’
;

numerals : ’numerals=’ inout_num_value
| ’numerals=’ in_num_value ’:’ out_num_value
;

inout_num_value : num_value
;

in_num_value : num_value
;

out_num_value : num_value
;

num_value : ’nominal’ | ’national’ | ’contextual’
;

shaping : ’shaping=’ inout_shap_value
| ’shaping=’ in_shap_value ’:’ out_shap_value
;

inout_shap_value : shap_value
;

in_shap_value : shap_value
;

out_shap_value : shap_value
;

shap_value : ’shaped’ | ’nominal’ | ’shform1’ | ’shform2’
| ’shform3’ | ’shform4’

Portable Layout Services: Context-dependent and Directional T ext 41

Layout Modifiers Header File <sys/layout.h>

;

checkmode : ’checkmode=’ mode_value
;

mode_value : ’stream’| ’edit’
;

shapcharset : ’shapcharset=’ charset_name
;

charset_name : char_list number
| number char_list
| char_list
| number
;

char_list : char_list char
| char
;

char : ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’ | ’H’
| ’I’ | ’J’ | ’K’ | ’L’ | ’M’ | ’N’ | ’O’ | ’P’
| ’Q’ | ’R’ | ’S’ | ’T’ | ’U’ | ’V’ | ’W’ | ’X’
| ’Y’ | ’Z’
| ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ | ’g’ | ’h’
| ’i’ | ’j’ | ’k’ | ’l’ | ’m’ | ’n’ | ’o’ | ’p’
| ’q’ | ’r’ | ’s’ | ’t’ | ’u’ | ’v’ | ’w’ | ’x’
| ’y’ | ’z’
| ’!’ | ’%’ | ’(’ | ’)’ | ’*’ | ’+’ | ’-’ | ’.’
| ’_’ | ’?’ |
;

number : number digit
| digit
;

digit : ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’
| ’8’ | ’9’
;

The grammar can be adapted by the implementations to suit their particular needs and their
possible extensions to the layout values.

It is expected that higher-level services will use the grammar above to provide users with
customisation when running applications.

42 CAE Specification (1997)

Header File <sys/layout.h> Layout Modifiers

Examples

1. The Motif text widget may support layout modifiers by means of a resource. If the default
for the Hebrew locale is LTR, the following changes it:

layoutDirection : right_to_left @ls swapping=yes, numerals=national

The key is that the Motif resource value says that right_to_left is the orientation but says
nothing about swapping or numerals. The @ls modifier clarifies this.

2. A string could be embedded in a Help repository (such as CDE’s help volumes) that
describes the layout values to be associated with the text in the help volume. When
presented, the help layout values would be passed to the Text widget (see above) in the
layoutDirection resource. The following is an example of such a string:

@ls typeoftext=visual, orientation=rtl, swapping=no,
numerals=nominal, shapecharset=iso8859-8

Note that while this helps speed up presentation of the help text, searches of the help text
cannot be made using logical-ordered text (which is the default when entered in an input
field). This is because the text (type=visual) has been previously shaped and reordered
and thus any text searches need some other processing to account for this.

Portable Layout Services: Context-dependent and Directional T ext 43

Header File <sys/layout.h>

44 CAE Specification (1997)

Chapter 5

Layout APIs

This chapter defines the m_*_layout () functions in alphabetical order.

Portable Layout Services: Context-dependent and Directional T ext 45

m_create_layout() Layout APIs

NAME
m_create_layout — initialise a layout object

SYNOPSIS
#include <sys/layout.h>

LayoutObject m_create_layout(const AttrObject attrobj ,
const char* modifier);

DESCRIPTION
The m_create_layout () function creates a LayoutObject associated with the locale identified by
attrobj.

The LayoutObject is an opaque object containing all the data and methods necessary to perform
the layout operations on context-dependent or directional characters of the locale identified by
the attrobj. The memory for the LayoutObject is allocated by m_create_layout.() The
LayoutObject created has default layout values. (If the modifier argument is not NULL, the
layout values specified by the modifier overwrite the default layout values associated with the
locale). The defaults are given in Section 4.2 on page 30. Also, internal states maintained by the
layout transformation function across transformations, are set to their initial values. The internal
state values are implementation dependent and their specifications are not explicitly presented
in this document.

The attrobj argument is or may be an amalgam of many opaque objects. A locale object is just
one example of the type of object that can be attached to an attribute object. The attrobj
argument specifies a name that is usually associated with a locale category. If attrobj is null, the
created LayoutObject is associated with the current locale as set by the setlocale () function.

The modifier argument can be used to announce a set of layout values when the LayoutObject is
created. The syntax for this argument is defined in Section 4.3 on page 39.

RETURN VALUE
Upon successful completion, the m_create_layout () function returns a LayoutObject for use in
subsequent calls to m_*_layout () functions. Otherwise the m_create_layout () function returns
(LayoutObject)0 and sets errno to indicate the error.

ERRORS
The m_create_layout () function may fail if:

[EINVAL]
The modifier string has a syntax error or it contains unknown layout values.

[EBADF]
The attribute object is invalid or the locale associated with the attribute object is not
available.

[EMFILE]
{OPEN_MAX} file descriptors are currently open in the calling process.

[ENOMEM]
Insufficient storage space is available.

46 CAE Specification (1997)

Layout APIs m_destroy_layout()

NAME
m_destroy_layout — destroy a layout object

SYNOPSIS
#include <sys/layout.h>

int m_destroy_layout(const LayoutObject layoutobject);

DESCRIPTION
The m_destroy_layout () function destroys a LayoutObject by deallocating the layout object and
all the associated resources previously allocated by the m_create_layout () function.

RETURN VALUE
Upon successful completion, a value of zero is returned. Otherwise a value of −1 is returned and
errno is set to indicate the error.

ERRORS
The m_destroy_layout () function may fail if:

[EBADF]
The attribute object is erroneous.

[EFAULT]
Errors occurred while processing the request.

Portable Layout Services: Context-dependent and Directional T ext 47

m_getvalues_layout() Layout APIs

NAME
m_getvalues_layout — query layout values of a LayoutObject

SYNOPSIS
#include <sys/layout.h>

int m_getvalues_layout(const LayoutObject layout_object ,
LayoutValues values , int * index_returned);

DESCRIPTION
The m_getvalues_layout () function is used to query the current setting of layout values within a
LayoutObject.

The layout_object argument specifies a LayoutObject returned by the m_create_layout () function.

The values argument specifies the list of layout values that are to be queried. (see Type
LayoutValues on page 37). Each value element of a LayoutValueRec must point to a location
where the layout value is stored. That is, if the layout value is of type T, the argument must be
of type T*. The values are queried from the LayoutObject and represent its current state.

It is the user’s responsibility to manage the space allocation for the layout values queried. If the
layout value name has QueryValueSize ORed to it, instead of the value of the layout value, only
its size is returned. This option can be used by the caller to determine the amount of memory
needed to be allocated for the layout values queried (see QueryValueSize (G) on page 36).

RETURN VALUE
When the m_getvalues_layout () function completes without errors a zero is returned. If any
value cannot be queried, the index of the value causing the error is returned in index_returned, a
−1 value is returned and errno is set to indicate the error.

ERRORS
The m_getvalues_layout () function may fail if:

[EINVAL]
The layout value specified by index_returned is unknown or its value is invalid or the
argument layout_object is invalid. In the case of an invalid layout_object argument, the value
returned for index_returned is −1.

48 CAE Specification (1997)

Layout APIs m_setvalues_layout()

NAME
m_setvalues_layout — set layout values of a LayoutObject

SYNOPSIS
#include <sys/layout.h>

int m_setvalues_layout(LayoutObject layout_object ,
const LayoutValues values , int * index_returned);

DESCRIPTION
The m_setvalues_layout () function is used to change the layout values of a LayoutObject.

The layout_object argument specifies a LayoutObject returned by the m_create_layout ()
function.

The values argument specifies the list of layout values (see Type LayoutValues on page 37). that
are to be changed. The values are written into the LayoutObject and may affect the behaviour of
subsequent layout functions.

Note: Some layout values do alter internal states maintained by a LayoutObject.

The m_setvalues_layout () function can be implemented as a macro that evaluates the first
argument twice.

RETURN VALUE
Upon successful completion the requested layout values are set and a value of zero is returned.
Otherwise a value of −1 is returned and errno is set to indicate the error. If any value cannot be
set, none of the layout values is changed and the (zero-based) index of the first value causing the
error is returned in index_returned.

ERRORS
The m_setvalues_layout () function may fail if:

[EINVAL]
The layout value specified by index_returned is unknown or its value is invalid or the
argument layout_object is invalid.

[EMFILE]
{OPEN_MAX} file descriptors are currently open in the calling process.

APPLICATION USAGE
Do not use expressions with side effects such as auto-increment or auto-decrement within the
first argument to the m_setvalues_layout () function.

Portable Layout Services: Context-dependent and Directional T ext 49

m_transform_layout() Layout APIs

NAME
m_transform_layout — layout transformation

SYNOPSIS
#include <sys/layout.h>

int m_transform_layout(
LayoutObject layout_object ,
const char * InpBuf ,
const size_t InpSize ,
void * OutBuf ,
size_t * Outsize ,
size_t * InpToOut ,
size_t * OutToInp ,
unsigned char * Property ,
size_t * InpBufIndex
);

DESCRIPTION
This function performs layout transformations (reordering, shaping, cell determination) or it
may provide additional information needed for layout transformation (such as the expected size
of the transformed layout, the nesting level of different segments in the text and cross references
between the locations of the corresponding elements before and after the layout transformation).
Both the input text and output text are character strings.

The m_transform_layout () function transforms the input text in InpBuf according to the current
layout values in layout_object. Any layout value whose value type is LayoutTextDescriptor
describes the attributes of the InpBuf and OutBuf arguments. If the attributes are the same for
both InpBuf and OutBuf, a null transformation is performed with respect to that specific layout
value.

The InpBuf argument specifies the source text to be processed. The InpBuf may not be NULL,
unless there is a need to reset the internal state.

The InpSize argument is the number of bytes within InpBuf to be processed by the
transformation. Its value will not change after return from the transformation. InpSize set to −1
indicates that the text in InpBuf is delimited by a NULL code element. If InpSize is not set to −1,
it is possible to have some NULL elements in the input buffer. This might be used, for example,
for a ‘‘one shot’’ transformation of several strings, separated by NULLs.

Outputs of this function may be one or more of the following depending on the setting of the
arguments:

OutBuf
Any transformed data is stored in OutBuf, converted to ShapeCharset.

Outsize
The number of bytes in OutBuf.

InpToOut
A cross reference from each InpBuf code element to the transformed data. The cross
reference relates to the data in InpBuf starting with the first element that InpBufIndex points
to (and not necessarily starting from the beginning of the InpBuf).

OutToInp
A cross reference to each InpBuf code element from the transformed data. The cross
reference relates to the data in InpBuf starting with the first element that InpBufIndex points

50 CAE Specification (1997)

Layout APIs m_transform_layout()

to (and not necessarily starting from the beginning of the InpBuf).

Property
A weighted value that represents peculiar input string transformation properties with
different connotations as explained below.

If this argument is not a NULL pointer, it represents an array of values with the same
number of elements as the source substring text before the transformation. Each byte will
contain relevant ‘‘property’’ information of the corresponding element in InpBuf starting
from the element pointed by InpBufIndex. The four rightmost bits of each ‘‘property’’ byte will
contain information for bidirectional environments (when ActiveDirectional is True) and
they will mean ‘‘NestingLevels’’. The possible value from 0 to 15 represents the nesting
level of the corresponding element in the InpBuf starting from the element pointed by
InpBufIndex. If ActiveDirectional is false the content of NestingLevel bits will be ignored.
The leftmost bit of each ‘‘property’’ byte will contain a ‘‘new cell indicator’’ for composed
character environments, and will have a value of either 1 (for an element in InpBuf that is
transformed to the beginning of a new cell) or zero (for the ‘‘zero-length’’ composing
character elements, when these are grouped into the same presentation cell with a non-
composing character). Here again, each element of ‘‘property’’ pertains to the elements in
the InpBuf starting from the element pointed by InpBufIndex. (Remember that this is not
necessarily the beginning of InpBuf). If none of the transformation properties is required, the
argument Property can be NULL.

The use of ‘‘property’’ can be enhanced in the future to pertain to other possible usage in
other environments.

The InpBufIndex argument is an offset value to the location of the transformed text. When
m_transform_layout () is called, InpBufIndex contains the offset to the element in InpBuf that will
be transformed first. (Note that this is not necessarily the first element in InpBuf). At the return
from the transformation, InpBufIndex contains the offset to the first element in the InpBuf that has
not been transformed. If the entire substring has been transformed successfully, InpBufIndex will
be incremented by the amount defined by InpSize.

Each of these output arguments may be NULL to specify that no output is desired for the
specific argument, but at least one of them should be set to non-NULL to perform any significant
work.

The layout object maintains a directional state that keeps track of directional changes, based on
the last segment transformed. The directional state is maintained across calls to the layout
transformation functions and allows stream data to be processed with the layout functions. The
directional state is reset to its initial state whenever any of the layout values TypeOfText,
Orientation or ImplicitAlg is modified by means of a call to m_setvalues_layout. ()

The layout_object argument specifies a LayoutObject returned by the m_create_layout () function.

The OutBuf argument contains the transformed data. This argument can be specified as a NULL
pointer to indicate that no transformed data is required.

The encoding of the OutBuf argument depends on the ShapeCharset layout value defined in
layout_object. If the ActiveShapeEditing layout value is not set (False), the encoding of OutBuf is
guaranteed to be the same as the codeset of the locale associated with the LayoutObject defined
by layout_object.

On input, the OutSize argument specifies the size of the output buffer in number of bytes. The
output buffer should be large enough to contain the transformed result; otherwise, only a partial
transformation is performed. If the ActiveShapeEditing layout value is set (True) the OutBuf
should be allocated to contain at least the InpSize multiplied by ShapeCharsetSize.

Portable Layout Services: Context-dependent and Directional T ext 51

m_transform_layout() Layout APIs

On return, the OutSize argument is modified to the actual number of bytes placed in OutBuf.

When the OutSize argument is specified as zero, the function calculates the size of an output
buffer large enough to contain the transformed text, and the result is returned in this field. The
content of the buffers specified by InpBuf and OutBuf, and the value of InpBufIndex, remain
unchanged. If OutSize = NULL, the [EINVAL] error condition should be returned.

If the InpToOut argument is not a NULL pointer, it points to an array of values with the same
number of bytes in InpBuf starting with the one pointed by InpBufIndex and up to the end of the
substring in the buffer. On output, the nth value in InpToOut corresponds to the nth byte in
InpBuf. This value is the index (in units of bytes) in OutBuf that identifies the transformed
ShapeCharset element of the nth byte in InpBuf. In the case of multibyte encoding, the index
points (for each of the bytes of a code element in the InpBuf) to the first byte of the transformed
code element in the OutBuf.

InpToOut may be specified as NULL if no index array from InpBuf to OutBuf is desired.

If the OutToInp argument is not a NULL pointer, it points to an array of values with the same
number of bytes as contained in OutBuf. On output, the nth value in OutToInp corresponds to the
nth byte in OutBuf. This value is the index in InpBuf, starting with the byte pointed to by
InpBufIndex, that identifies the logical code element of the nth byte in OutBuf. In the case of
multibyte encoding, the index will point for each of the bytes of a transformed code element in
the OutBuf to the first byte of the code element in the InpBuf.

OutToInp may be specified as NULL if no index array from OutBuf to InpBuf is desired.

To perform shaping of a text string without reordering of code elements, the layout_object should
be set with input and output layout value TypeOfText set to TEXT_VISUAL and both in and out
of Orientation set to the same value.

RETURN VALUE
If successful, the m_transform_layout () function returns zero. If unsuccessful, the returned value
is −1 and the errno is set to indicate the source of error. When the size of OutBuf is not large
enough to contain the entire transformed text, the input text state at the end of the uncompleted
transformation is saved internally and the error condition [E2BIG] is returned in errno.

ERRORS
The m_transform_layout () function may fail if:

[EILSEQ]
Transformation stopped due to an input code element that cannot be shaped or is invalid.
The InpBufIndex argument is set to indicate the code element causing the error. The suspect
code element is either a valid code element but cannot be shaped into the ShapeCharset
layout value, or is an invalid code element not defined by the codeset of the locale of
layout_object. The mbtowc() and wctomb() functions, when used in the same locale as the
LayoutObject, can be used to determine if the code element is valid.

[E2BIG]
The output buffer is full and the source text is not entirely processed.

[EINVAL]
Transformation stopped due to an incomplete composite sequence at the end of the input
buffer, or OutSize contains NULL.

[ERANGE]
More than 15 embedding levels are in source text or InpBuf contain unbalanced directional
layout information (push/pop) or an incomplete composite sequence has been detected in
the input buffer at the beginning of the string pointed to by InpBufIndex.

52 CAE Specification (1997)

Layout APIs m_transform_layout()

Note: An incomplete composite sequence at the end of the input buffer is not always
detectable. Sometimes, the fact that the sequence is incomplete will only be
detected when additional character elements belonging to the composite sequence
are found at the beginning of the next input buffer.

[EBADF]
The layout values are set to a meaningless combination or the layout object is not valid.

APPLICATION USAGE
A LayoutObject will have a meaningful combination of default layout values. Whoever chooses
to change the default layout values is responsible for making sure that the combination of layout
values is meaningful. Otherwise, the result of m_transform_layout () might be unpredictable or
implementation-specific with errno set to [EBADF].

Portable Layout Services: Context-dependent and Directional T ext 53

m_wtransform_layout() Layout APIs

NAME
m_wtransform_layout — layout transformation for wide character strings

SYNOPSIS
#include <sys/layout.h>

int m_wtransform_layout (
LayoutObject layout_object ,
const wchar_t * InpBuf ,
const size_t InpSize ,
void * OutBuf ,
size_t * Outsize ,
size_t * InpToOut ,
size_t * OutToInp ,
unsigned char * Property ,
size_t * InpBufIndex
);

DESCRIPTION
This function performs layout transformations (reordering and shaping, cell determination) or it
may provide additional information needed for layout transformation (such as the expected size
of the transformed layout, the nesting level of different segments in the text and cross references
between the locations of the corresponding elements before and after the layout transformation).
Both the input text and output text are wide character strings.

The m_wtransform_layout () function transforms the input text in InpBuf according to the current
layout values in layout_object. Any layout value whose value type is LayoutTextDescriptor
describes the attributes of the InpBuf and OutBuf. If the attributes are the same for both InpBuf
and OutBuf, a null transformation is performed with respect to that specific layout value.

The InpBuf argument specifies the source text to be processed. The InpBuf may not be NULL,
unless there is a need to reset the internal state.

The InpSize is the number of characters within InpBuf to be processed by the transformation. Its
value will not change after return from the transformation. InpSize set to −1 indicates that the
text in InpBuf is delimited by a NULL code element. If InpSize is not set to −1, it is possible to
have some NULL elements in the input buffer. This might be used, for example, for a ‘‘one
shot’’ transformation of several strings, separated by NULLs.

Outputs of this function may be one or more of the following depending on the setting of the
arguments:

OutBuf
Any transformed data is stored in OutBuf, converted to ShapeCharset.

Outsize
The number of wide characters in OutBuf.

InpToOut
A cross reference from each InpBuf code element to the transformed data. The cross
reference relates to the data in InpBuf starting with the first element that InpBufIndex points
to (and not necessarily starting from the beginning of the InpBuf).

OutToInp
A cross reference to each InpBuf code element from the transformed data. The cross
reference relates to the data in InpBuf starting with the first element that InpBufIndex points
to (and not necessarily starting from the beginning of the InpBuf).

54 CAE Specification (1997)

Layout APIs m_wtransform_layout()

Property
A weighted value that represents peculiar input string transformation properties with
different connotations as explained below.

If this argument is not a NULL pointer, it represents an array of values with the same
number of elements as the source substring text before the transformation. Each byte will
contain relevant ‘‘property’’ information of the corresponding element in InpBuf starting
from the element pointed by InpBufIndex. The four rightmost bits of each ‘‘property’’ byte will
contain information for bidirectional environments (when ActiveDirectional is True) and
they will mean ‘‘NestingLevels’’. The possible value from 0 to 15 represents the nesting
level of the corresponding element in the InpBuf starting from the element pointed by
InpBufIndex. If ActiveDirectional is false the content of NestingLevel bits will be ignored.
The leftmost bit of each ‘‘property’’ byte will contain a ‘‘new cell indicator’’ for composed
character environments, and will have a value of either 1 (for an element in InpBuf that is
transformed to the beginning of a new cell) or zero (for the ‘‘zero-length’’ composing
character elements, when these are grouped into the same presentation cell with a non-
composing character). Here again, each element of ‘‘property’’ pertains to the elements in
the InpBuf starting from the element pointed by InpBufIndex. (Remember that this is not
necessarily the beginning of InpBuf). If none of the transformation properties is required, the
argument Property can be NULL.

The use of ‘‘property’’ can be enhanced in the future to pertain to other possible usage in
other environments.

The InpBufIndex argument is an offset value to the location of the transformed text. When
m_wtransform_layout () is called, InpBufIndex contains the offset to the element in InpBuf that will
be transformed first. (Note that this is not necessarily the first element in InpBuf.) At the return
from the transformation, InpBufIndex contains the offset to the first element in the InpBuf that has
not been transformed. If the entire substring has been transformed successfully, InpBufIndex will
be incremented by the amount defined by InpSize.

Each of these output arguments may be NULL to specify that no output is desired for the
specific argument, but at least one of them should be set to non-NULL to perform any significant
work.

In addition to the possible outputs above the layout_object maintains a directional state across
calls to the transform functions. The directional state is reset to its initial state whenever any of
the layout values TypeOfText, Orientation or ImplicitAlg is modified by means of a call to
m_setvalues_layout ().

The layout_object argument specifies a layout_object returned by the m_create_layout () function.

The OutBuf argument contains the transformed data. This argument can be specified as a NULL
pointer to indicate that no transformed data is required.

The encoding of the OutBuf argument depends on the ShapeCharset layout value defined in
layout_object. If the ActiveShapeEditing layout value is not set (False), the encoding of OutBuf is
guaranteed to be the same as the codeset of the locale associated with the attribute object
indicated during the creation of the Layout Object.

On input, the OutSize argument specifies the size of the output buffer in number of wide
characters. The output buffer should be large enough to contain the transformed result;
otherwise, only a partial transformation is performed. If the ActiveShapeEditing layout value is
set (True) the OutBuf should be allocated to contain at least the InpSize multiplied by
ShapeCharsetSize.

Portable Layout Services: Context-dependent and Directional T ext 55

m_wtransform_layout() Layout APIs

On return, the OutSize argument is modified to the actual number of code elements in OutBuf.

When the OutSize argument is specified as zero, the function calculates the size of an output
buffer large enough to contain the transformed text, and the result is returned in this field. The
content of the buffers specified by InpBuf and OutBuf, and the value of InpBufIndex, remain
unchanged. If OutSize = NULL, the [EINVAL] error condition should be returned.

If the InpToOut argument is not a NULL pointer, it points to an array of values with the same
number of wide characters in InpBuf starting with the one pointed by InpBufIndex and up to the
end of the substring in the buffer. On output, the nth value in InpToOut corresponds to the nth
wide character in InpBuf. This value is the index (in units of wide characters) in OutBuf that
identifies the transformed ShapeCharset element of the nth wide character in InpBuf.

InpToOut may be specified as NULL if no index array from InpBuf to OutBuf is desired.

If the OutToInp argument is not a NULL pointer, it points to an array of values with the same
number of wide characters as contained in OutBuf. On output the nth value in OutToInp
corresponds to the nth wide character in OutBuf. This value is the index in InpBuf, starting with
the wide character pointed to by InpBufIndex, that identifies the logical code element of the nth
wide character in OutBuf.

OutToInp may be specified as NULL if no index array from OutBuf to InpBuf is desired.

To perform shaping of a text string without reordering of code elements, the layout_object should
be set with input and output layout value TypeOfText set to TEXT_VISUAL and both in and out
of Orientation set to the same value.

RETURN VALUE
If successful, the m_wtransform_layout () function returns a zero. If unsuccessful, the returned
value is −1 and the errno is set to indicate the source of error. When the size of OutBuf is not
large enough to contain the entire transformed text, the input text state at the end of the
uncompleted transformation is saved internally and the error condition [E2BIG] is returned in
errno.

ERRORS
The m_wtransform_layout () function may fail if:

[EILSEQ]
Transformation stopped due to an input code element that cannot be shaped or is invalid.
The InfBufIndex argument is set to indicate the code element causing the error. The suspect
code element is either a valid code element but cannot be shaped into the ShapeCharset
layout value or is an invalid code element not defined by codeset of the locale of
layout_object. The mbtowc() and wctomb() functions, when used in the same locale as the
layoutobject, can be used to determine if the code element is valid.

[E2BIG]
The output buffer is full and the source text is not entirely processed.

[EINVAL]
Transformation stopped due to an incomplete composite sequence at the end of the input
buffer, or OutSize contains NULL.

[ERANGE]
More than 15 embedding levels are in source text or InpBuf contain unbalanced directional
layout information (push/pop) or an incomplete composite sequence has been detected in
the input buffer at the beginning of the string pointed to by InpBufIndex.

Note: An incomplete composite sequence at the end of the input buffer is not always
detectable. Sometimes, the fact that the sequence is incomplete will only be

56 CAE Specification (1997)

Layout APIs m_wtransform_layout()

detected when additional character elements belonging to the composite sequence
are found at the beginning of the next input buffer.

[EBADF]
The layout values are set to a meaningless combination or the layout object is not valid.

APPLICATION USAGE
A LayoutObject will have a meaningful combination of default layout values. Whoever chooses
to change the default layout values is responsible for making sure that the combination of layout
values is meaningful. Otherwise, the result of m_transform_layout () might be unpredictable or
implementation-specific with errno set to [EBADF].

EXAMPLES
The following example illustrates what the different arguments of m_wtransform_layout () look
like when a string in InpBuf is shaped and reordered into OutBuf. Upper-case letters in the
example represent left-to-right letters while lower-case letters represent right-to-left letters.
xyz represents the shapes of cde.

Position: 0123456789
InpBuf: AB cde 12Z

Position: 0123456789
OutBuf: AB 12 zyxZ

Position: 0123456789
InpToOut: 0128765349

Position: 0123456789
OutToInp: 0127865439

Position: 0123456789
Property.NestLevel: 0001111220
Property.CelBdry: 1111111111

The values (encoded in binary) returned in the Property argument define the directionality of
each code element in the source text as defined by the type of algorithm used within the
layout_object. While the algorithm may be implementation dependent the resulting values and
levels are defined such as to allow a single method to be used in determining the directionality
of the source text. The base rules are:

• Odd levels are always RTL.

• Even levels are always LTR.

• The Orientation layout value setting determines the initial level (0 or 1) used.

Within a Property array each increment in the level indicates the corresponding code elements
should be presented in the opposite direction. Callers of this function should realise that the
Property values for certain code elements is dependent on the context of the given character and
the layout values: Orientation and ImplicitAlg. Callers should not assume that a given code
element always have the same Property value in all cases.

Portable Layout Services: Context-dependent and Directional T ext 57

m_wtransform_layout() Layout APIs

Example of Possible Presentation Algorithm

The following is an example of a standard presentation algorithm that handles nesting correctly.
The goal of the algorithm is ultimately to return to a zero nest level.

Note: More efficient algorithms do exist; the following is provided for clarity rather than for
efficiency.

1. Search for the highest nest level in the string.

2. Reverse all surrounding code elements of the same level. Reduce the nest level of these
code elements by 1.

3. Repeat 1 and 2 until all code elements are of level 0.

The following shows the progression of the example from above:

Position: 0123456789 0123456789 0123456789
InpBuf: AB cde 12Z AB cde 21Z AB 12 edcZ
Property.NestLevel: 0001111220 0001111110 0000000000
Property.CellBdry: 1111111111 1111111111 1111111111

58 CAE Specification (1997)

Layout APIs Notes

5.1 Notes
1. Using the InpBufIndex content and analysing the content of errno, in the case that an

exceptional transformation event has occurred, the application can take steps to correct the
reason for the exceptional events, such as enlarging the size of the OutBuf if [E2BIG] was
returned, and it has the latitude to choose between different possible ulterior actions:

— reset the value of InpBufIndex to the value it had before the transformation was called,
and restart the whole transformation again with the original contents of InpBuf either
unaltered or refreshed

or:

— leave the value of InpBufIndex unaltered and let the m_transform_layout () function
perform the transformation again from the point it has been interrupted.

Naturally the content of OutBuf will vary according to the option chosen and the caller to
the m_transform_layout () function will be aware of it and use it as suitable.

2. The ‘‘front’’ component of the layout value ShapeContextSize will be used for Thai in
order to determine the maximum number of character elements needed before the first
character element pointed to by InpBufIndex in order to correctly determine the cell group
for the character elements at the beginning of the transformed substring.

3. In Thai there is a possibility that though a sequence of character elements is correctly
composing a Thai composite element, there is an additional composing character
immediately following them that belongs to the same cell. Because this condition can be
detected when processing the transformation of the subsequent substring where the
‘‘additional’’ composing element will be the first one, the [EINVAL] error value will not be
set at the end of processing Thai substrings that end with a valid combination (that can
potentially be incomplete after all).

4. An example of possible use of MODE_EDIT for shaping based on locale specific
assumptions is for scripts that have various shapes — initial, middle, isolated, final, and so
on — and the shape of a character depends on its connecting ability to its neighbouring
characters, if present. Assume that InpBuf contains newly keyed in data and the
m_*transform_layout () function is used to shape this data in order to present it on the
screen. If the value of CheckMode is MODE_EDIT, the last character entered (to which
InpBufIndex points) will be shaped as if it is followed by another connect-to-the-right letter
(as it happens in most of the cases) causing the transformation to use initial or middle
shapes. If CheckMode were not set to MODE_EDIT such text would be transformed into
isolated or final shapes (which may need to be reshaped to initial or middle shape once the
next connect-to-the right letter belonging to the same word will be keyed in).

The MODE_EDIT checking is also useful for scripts where determination of display cells is
needed. Specifically where composite sequences may span display cell boundary.

5. The SaraAm character from Thai can be shaped such that it affects the preceding character
(that is, in some cases, the SaraAm is split at output; part of it is composed with the
preceding consonant, and part of it is composed as a separate cell). Below is an example
that shows how the transform function would behave in the case of this character.

Portable Layout Services: Context-dependent and Directional T ext 59

Notes Layout APIs

Let assume ’a’ is a consonant and ’b’ is a SaraAm character in the input buffer:

Inp Buf: | a | b | c | | d |

And, actual screen will look as follows:

| b1| | c2| | d2|
| a | b2| c1| | d1| <-- baseline symbol/consonant
| | | | | d3|

The results of a transform would be expected to behave as follows:

Position: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Inp Buf: | a | b | c | | d |
Inp BufIndex: 0
Out Buf: | a | b1| b2| c1| c2| | d1| d2| d3|
InpToOut: | 1 | 3 | 4 | 6 | 7 |
OutToInp: | 1 | 2 | 2 | 3 | 3 | 4 | 5 | 5 | 5 |
Property.CellBdry: | 1 | 1 | 1 | 1 | 1 |
Property.NestLevel: | 0 | 0 | 0 | 0 | 0 |
InputBufIndex return: 10

Note that the Property display cell boundary (Property.CelBdry) information says that the
SaraAm character is in its own display cell. Yet it’s shape actually affects the preceding
display cell. But also note that the InpToOut index for the SaraAm (’b’) character points to
the 3rd position in the output buffer, while the indication that "part" of "b" in the form of
"b1" appears in the same cell as "a" is reflected in the second position of OutToInp. Thus
determination of the display cell boundary within the output buffer requires analysis of
both the Property display cell information (that relates to the input buffer), as well as the
OutToInp and the InpToOut buffer.

60 CAE Specification (1997)

Appendix A

Implementation Example

OP This appendix contains examples of possible uses of the layout transformation APIs in Motif 2.0.
Example A-1 is an internationalised program ("hello world") that has been modified in such a
way that using modifiers it can be localised in a BIDI environment at run time. Example A-2 on
page 65 and Example A-3 on page 66 show possible usages of the layout APIs to perform the
transformations that are depicted in Figure 1-1 on page 2. Example A-2 handles conversion from
storage (implicit in this case) to type XmString (ISO/IEC 6429 standard controls). Example A-3
handles conversions from type XmString to the display (visual) buffer. In Example A-2 and
Example A-3 four controls are used:

<RTL> Right-to-left explicit control.

<LTR> Left-to-right explicit control.

<push> Start reverse global direction.

<pop> End push.

Example A-1 Internationalised Motif Program to Support Layout APIs

/*
* The following is an example of an internationalised Motif hello
* world program that has been modified to support Bidirectional text.
* The layout values are passed via a modifier string thus allowing
* the internationalised program to be localised at run time.
*/

#include <stdio.h>

#include <Xm/Xm.h>
#include <Xm/Form.h>
#include <Xm/PushB.h>
#include <locale.h>
#include <sys/layout.h>

static void helloworld_button_activate();

Display *display;
XtAppContext app_context;
LayoutObject plh;
char *inp;

/*
* Define layoutModifier resource to allow localisation
* of the text being passed to hello world.
*/

#define XtNlayoutModifier "layoutModifier"
#define XtCLayoutModifier "LayoutModifier"
char *lo_modifier;
static XtResource lo_resources[] = {

Portable Layout Services: Context-dependent and Directional T ext 61

Implementation Example

{ XtNlayoutModifier, XtCLayoutModifier, XmRString, sizeof(String),
0, XmRString, (String) NULL}

};

/*
* Main program
*/

int main(argc, argv)
unsigned int argc;
char **argv;
{

/*
* Declare the variables to contain the two widget ids.
*/

Widget toplevel, bulletin, pushb;
Arg arglist[3] ;
int n;

if (argc > 1)
inp = argv[1];
else {
fprintf(stderr,"Incorrect number of arguments0);
exit(0);
}

XtSetLanguageProc(NULL,NULL,NULL);

XtToolkitInitialize();

app_context = XtCreateApplicationContext();

display = XtOpenDisplay(app_context, NULL, argv[0],
"helloworldclass",

NULL, 0, &argc, argv);
if (display == NULL) {
fprintf(stderr, "%s: Can’t open display0, argv[0]);
exit(1);
}

n = 0;
XtSetArg(arglist[n], XmNallowShellResize, True); n++;
toplevel = XtAppCreateShell(argv[0], NULL,

applicationShellWidgetClass,
display, arglist, n);

/* Set up the lo_modifier */
XtGetApplicationResources(toplevel, &lo_modifier, lo_resources,

XtNumber(lo_resources), NULL, 0);

XtSetArg (arglist[0], XmNwidth, 200);
XtSetArg (arglist[1], XmNheight, 100);
bulletin = XmCreateBulletinBoard(toplevel, "bulletin", arglist, 2);

62 CAE Specification (1997)

Implementation Example

XtManageChild(bulletin);

XtSetArg (arglist[0], XmNlabelString,
XmStringCreateLtoR("Press Button...",

XmSTRING_DEFAULT_CHARSET));
pushb = XmCreatePushButtonGadget(bulletin, "push", arglist, 1);
XtAddCallback (pushb, XmNactivateCallback,

helloworld_button_activate,NULL);
XtManageChild(pushb);

/*
* Realise the top-level widget. This will
* cause the entire "managed"
* widget hierarchy to be displayed.
*/

XtRealizeWidget(toplevel);

/*
* Loop and process events.
*/

XtAppMainLoop(app_context);

/* UNREACHABLE */
return (0);

}

BooleanValue reorder_or_shaping(plh)
LayoutObject plh;
{

size_t index = 0;
LayoutValueRec lo_values[3];
int rc = 0;
BooleanValue directional;
BooleanValue shaping;

lo_values[0].name = ActiveShapeEditing ;
lo_values[0].value = (LayoutValue) &shaping ;
lo_values[1].name = ActiveDirectional ;
lo_values[1].value = (LayoutValue) &directional ;
lo_values[2].name = 0;

rc = m_getvalues_layout(plh, lo_values, &index);
if (rc)
{

perror("m_getvalues_layout");
exit(1);

}

return (shaping || directional);
}

Portable Layout Services: Context-dependent and Directional T ext 63

Implementation Example

static void helloworld_button_activate(widget, tag,
callback_data)

Widget widget;
char *tag;
XmAnyCallbackStruct *callback_data;

{
Arg arglist[2];

static int call_count = 0;
char *label;
size_t inpsize, label_size;
size_t index = 0;
int rc = 0;
int mask = 0;

call_count += 1 ;
switch (call_count)
{
case 1:

plh = m_create_layout(NULL, lo_modifier);

if (! reorder_or_shaping(plh))
{
XtSetArg(arglist[0], XmNlabelString,

XmStringCreateLocalized(inp));
}

else
{

inpsize = strlen(inp);
label = (char *)malloc(inpsize+1);
memset(label, 0, inpsize+1);
rc = m_transform_layout(plh, inp, inpsize,

label, &label_size, NULL, NULL, NULL, &index);
if (rc)
{

perror("m_transform_layout");
exit(1);

}

XtSetArg(arglist[0], XmNlabelString,
XmStringCreateLocalized(label));

free(label);
}
m_destroy_layout(plh);
XtSetArg(arglist[1], XmNx, 11);
XtSetValues(widget, arglist, 2);
break ;

case 2:
exit(0);
break ;

}
}

64 CAE Specification (1997)

Implementation Example

Example A-2 Storage to Explicit Controls

#include <sys/layout.h>
#include <errno.h>
#include <locale.h>

main
{

LayoutObject plh;
int rc=0;
LayoutValues layout;
LayoutTextDescriptor descr;
int index;
char *inpbuff="AB cde 123Z";
char *outbuff;
size_t inpsize;
size_t outsize;
size_t index=0;

/* Create layout object */
plh = m_create_layout(NULL, NULL);

/* Set the internal "in" and "out" values of the TypeOfText */
/* descriptor to initiate the "implicit" to "explicit" */
/* transformation, with character shaping and national numerals */

layout=malloc(2*sizeof(LayoutValueRec));
descr=malloc(sizeof(LayoutTextDescriptorRec));

layout[0].name=TypeOfText;
layout[0].value=(caddr_t)descr;
layout[1].name=0;

descr->in=TEXT_IMPLICIT;
descr->out=TEXT_EXPLICIT;

rc = m_setvalues_layout(plh,layout,&index);
if (rc)
{

perror("m_setvalues_layout : ");
exit(0);

}

/* Set the input buffer size */

inpsize = strlen(inpbuff);

/* Now, allocate an outbuff large enough to contain the original
buffer plus the embedded escapes */

outbuff = (char *)malloc(inpsize*sizeof(char)*2);

Portable Layout Services: Context-dependent and Directional T ext 65

Implementation Example

rc = m_transform_layout(plh, inpbuff, inpsize, outbuff, &outsize,
NULL, NULL, NULL, &index);

if (rc)
{

perror("m_transform_layout : ");
exit(0);

}

free(layout);
free(descr);

/* Free layout object */

rc = m_destroy_layout(plh);
if (rc)

perror("m_destroy_layout : ");
}

The output of m_transform_layout () is the original string with some embedded escapes:

inpbuff: AB cde 123Z

Because the original orientation is LTR, the level 1 segment has an RTL orientation.

outbuf: <LTR>AB <Push><RTL>cde <LTR>123<Pop><LTR>Z

Example A-3 Explicit to Visual Buffer

The next program segment converts the explicit buffer to a visual buffer:

main
{

LayoutObject plh;
int rc=0;
LayoutValues layout;
LayoutTextDescriptor descr;
int index;
char *inpbuff="<LTR>AB <Push><RTL>cde <LTR>123<Pop><LTR>Z";
char *outbuff;
size_t inpsize;
size_t outsize;
size_t index=0;
size_t query_size;

/* Create layout object */

plh = m_create_layout(NULL, NULL);

layout=malloc(2*sizeof(LayoutValueRec));
descr=malloc(sizeof(LayoutTextDescriptorRec));

/* Overwrite some of the locale default text descriptor settings.
/* But beforehand, query values of shapecharset.

66 CAE Specification (1997)

Implementation Example

*/
layout[0].name = ShapeCharset|QueryValueSize;
layout[0].value = &query_size;

m_getvalues_layout(plh, layout, &index);

layout[0].name = ShapeCharset;
layout[0].value = (char *)malloc(query_size);

rc = m_getvalues_layout(plh, layout, &index);
if (rc)
{

perror("m_getvalues_layout : ");
exit(0);

}

layout[0].name=TypeOfText|TextShaping|Numerals;
layout[0].value=(caddr_t)descr;
layout[1].name=0;

descr->in=TEXT_EXPLICIT|TEXT_NOMINAL|NUMERALS_NOMINAL;
descr->out=TEXT_VISUAL|TEXT_SHAPED|NUMERALS_NATIONAL;

rc = m_setvalues_layout(plh,layout,&index);
if (rc)
{

perror("m_setvalues_layout : ");
exit(0);

}

/* Set the input buffer size and Allocate the output arrays */

inpsize = strlen(inpbuff);

outbuff = (char *)malloc(inpsize*sizeof(char));

rc = m_transform_layout(plh, inpbuff, inpsize, outbuff, &outsize,
NULL, NULL, NULL, &index);

if (rc)
{

perror("m_transform_layout : ");
exit(0);

}

/* user defined function that prints the output arrays to the user */

free(layout);
free(descr);
free(outbuff);

/* Free layout object */

rc = m_destroy_layout(plh);

Portable Layout Services: Context-dependent and Directional T ext 67

Implementation Example

if (rc)
perror("m_destroy_layout : ");

}

The output of the transform function is:

AB 456 zyxZ

where 456 are the national numbers for 123, and zyx are the national letters for edc.

68 CAE Specification (1997)

Appendix B

LO_LTYPE Locale Category

OP This appendix describes the LO_LTYPE category, which is in many respects an extension to the
existing LC_CTYPE locale category.

LO_LTYPE can be implemented as part of the layout object, or its keywords may be added in the
future to the existing locale categories.

The keywords define character classifications, mappings and character attributes. These are
used by some of the reordering and shaping algorithms embedded in the m_transform_layout ()
and m_wtransform_layout () functions. In the following descriptions there are references to lists
of such characters in appropriate standards. These lists are quoted for illustration only and do
not imply dependence on a specific encoding scheme.

B.1 Character Classifications Related to Directionality
left_to_right

Left-to-right directionality. For example the letters A, B, C, D ... Z have a left-to-right
directionality.

right_to_left
Right-to-left directionality. For example the letters of the Hebrew alphabet have a right-to-
left directionality.

num_terminator
Numeric terminator required by the directional algorithms. For example in complex-text
languages, the dollar sign or plus sign could be identified by the directional algorithm as
numeral terminators.

num_separator
Separators of numerals of the portable character set (but not of national numerals). The
term numerals of the portable character set is used to indicate numbers represented with the
digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, which are part of the POSIX portable character set. An example
of num_separator is the period, which can be used to separate numbers represented with
Arabic digits (0, 1, 2 ... 9), but is not used with Hindi numbers (to avoid confusion with the
value zero represented in Hindic digits by a period).

common_num_separator
Numbers separators both for the numerals of the portable character set and for national
numerals. For example, a colon can be identified by a directional algorithm as a number
separator both for Arabic numbers as well as for Hindi numbers.

segment_separator
Characters to be identified by a directional algorithm as segment separator characters. A
segment is a portion of text, in general shorter than one line, embedded within a wider text
that has a different directionality.

block_separator
Characters to be identified by a directional algorithm as block separator characters. A block
is a larger part of text (one or more paragraphs) with a distinct directionality that may differ
from the directionality of other parts of text in a document.

Portable Layout Services: Context-dependent and Directional T ext 69

Character Classifications of Control Characters LO_LTYPE Locale Category

B.2 Character Classifications of Control Characters
direction_control

Characters to be classified as direction control characters, such as those listed in the
ISO/IEC 10646 standard. Examples of direction control are: Start Directed String (SDS) and
Start Reversed String (SRS).

sym_swap_layout
Characters to be classified as symmetrical swap layout characters, such as those listed in the
ISO/IEC 10646 standard. Examples of symmetrical swap layout characters are INHIBIT
SYMMETRIC SWAPPING and ACTIVATE SYMMETRIC SWAPPING.

char_shape_selector
Characters to be classified as character shaping selectors, such as those listed in the ISO/IEC
10646 standard. Examples of character shaping selectors are INHIBIT ARABIC FORM
SHAPING and ACTIVATE ARABIC FORM SHAPING.

num_shape_selector
Characters classified as numeric shaping selectors, such as those listed in the ISO/IEC 10646
standard. Examples of numeric shaping selectors are NATIONAL DIGIT SHAPES and
NOMINAL DIGIT SHAPES.

B.3 Character Classifications of National Numbers
national_number

Characters to be classified as national numbers. Examples are Hindi numerals used in
Arabic countries in Arabic script, Thai numerals used in Thai script, Chinese numerals used
in Chinese vertical script, Bengali numerals used in Bengali script.

B.4 Character Classifications of Composite Graphic Symbols
non_spacing

Characters to form composite graphic symbols, such as a character representing a diacritical
mark in the ISO/IEC 6429 standard, or tone-marks, upper-vowels and lower-vowels in
Thai.

70 CAE Specification (1997)

LO_LTYPE Locale Category Mapping Keywords

B.5 Mapping Keywords
tosymmetric

This operand consists of character pairs, separated by semicolons. The characters in each
pair are separated by a comma, and the pair is surrounded by parentheses. The first
character of each pair is to be swapped with the second one. Symmetric characters are
listed in the ISO/IEC 10646 standard. Examples are RIGHT and LEFT PARENTHESIS,
GREATER THAN and LESS THAN signs, and so on.

tonational
This maps to national digits. The operand consists of character pairs, separated by
semicolons. The characters in each pair are separated by a comma, and the pair is
surrounded by parentheses. The first character in the pair represents a nominal digit, while
the second represents a national digit. A nominal digit is one that belongs to the set of
digits in the portable character set.

todigit
This operand consists of character pairs, separated by semicolons. The characters in each
pair are separated by a comma and the pair is surrounded by parentheses. The first
character in the pair represents a national digit, while the second represents a nominal digit.

Portable Layout Services: Context-dependent and Directional T ext 71

Character Classification Related to Character Connectivity LO_LTYPE Locale Category

B.6 Character Classification Related to Character Connectivity
Normal_connect

Characters that connect both to the left and to the right. This applies, for example, to many
Arabic characters.

R_connect
Characters that connect only to characters to their right and not to the left. In Arabic, for
example, this includes characters like the reh, dal, waw, all the lamalefs, and the alef
maksoura.

No_connect
Characters that do not connect to the characters neither to their left nor to their right and
cannot be overridden. For example, all the Latin characters, the box characters and the
punctuation marks.

No_connect-space
These are neither left nor right connectors, but they may be overridden if a neighbouring
character needs to be expanded. For example, in Arabic these are the space, RSP and tail.

Vowel_connect
All the connectable vowels. Vowels do not influence connectivity, but they need special
consideration in scripts such as Arabic.

Special1
Characters that need special handling. In Arabic, the Lam character when followed by Alef
will form the ligature LamAlef, provided that no character of a class different than the
Vowel class falls in between.

Special2
Characters that need special handling. In Arabic, the Alef character when preceded by Lam
will form the ligature LamAlef.

Special3
Characters that need special handling. In Arabic, Seen, Sheen, Sad and Dad when displayed
on two cells.

Special3 may differ for scripts of different languages.

72 CAE Specification (1997)

Appendix C

Dynamic Pluggable Interface

OP This appendix defines the interface between the locale-independent and locale-dependent layer
of Layout Services.

The locale-independent module is a library containing the interfaces defined in this document.
These interfaces are implemented as wrapper functions which access the actual locale-specific
implementation through function pointers. In addition, this locale-independent layout services
library also contains the platform-specific implementation for dynamic loading of the locale-
dependent module.

Each locale will have a locale-dependent module containing the implementation of the locale-
sensitive functions. The locale-dependent module could be implemented as part of the locale-
independent layout services library, or it could be implemented as a separate dynamic loadable
object to be loaded in during runtime. This proposal will only concentrate on defining the
dynamic loadable object approach.

The advantages to separate the implementation into locale-dependent and locale-independent
modules are:

1. Each locale-dependent module could be highly tuned for a specific language to yield
maixmum performance.

2. A client can switch to a different Layout Services support dynamically during runtime.

3. A single application can have a different Layout Services support for each window.

C.1 Operating System Requirement
In order to implement the dynamic loadable object approach, the underlying operating system
must support the dynamic linking feature. This feature could be provided via the following two
interfaces:

• an interface to load in a shared object library dynamically

• an interface to access a function within the share object library via a specified symbol.

Portable Layout Services: Context-dependent and Directional T ext 73

Design Dynamic Pluggable Interface

C.2 Design
Every locale-dependent module must implement a function called _LayoutObjectInit (). This is
the entry point from locale-independent module to locale-dependent module to create and
initialize LayoutObject.

Following is an example of how a locale-dependent module implements only the default Layout
Services Support:

#include <sys/layout.h>

LayoutObject
_LayoutObjectInit(locale_name)

char *locale_name;
{

return(_LayoutObjectDefaultInit(locale_name));
}

The locale-independent module has a built-in default implementation of the locale-dependent
methods which can provide at least ‘‘C’’ locale support.

The naming of the libraries for locale-independent and locale-dependent modules are
implementation-dependent. Following is an example for the location and naming of the
libraries. The locale-independent module is /usr/lib/liblayout.so. The locale-dependent module
is $LOCPATH/<locale>.layout.so.<version number>.

74 CAE Specification (1997)

Dynamic Pluggable Interface Data Structure

C.3 Data Structure
typedef struct _LayoutObject *LayoutObj;

/* Private name of Layout Object */
typedef struct _LayoutObject *LayoutObject;

/* Public name of Layout Object */

typedef struct {
LayoutObject (*create)(

#if NeedFunctionPrototypes
LayoutObj, AttrObj, LayoutValues

#endif
);

int (*destroy)(
#if NeedFunctionPrototypes

LayoutObj
#endif

);

int (*getvalues)(
#if NeedFunctionPrototypes

LayoutObj, LayoutValues, int *
#endif

);

int (*setvalues)(
#if NeedFunctionPrototypes

LayoutObj, LayoutValues, int *
#endif

);

int (*transform)(
#if NeedFunctionPrototypes

LayoutObj, const char *, size_t *, void *,
size_t *, size_t *, size_t *, unsigned char *, size_t *

#endif
);

int (*wcstransform)(
#if NeedFunctionPrototypes

LayoutObj, const wchar_t *, size_t *, void *,
size_t *, size_t *, size_t *, unsigned char *, size_t *

#endif
);

} LayoutMethodsRec, *LayoutMethods;

typedef struct {
char *locale_name;

LayoutTextDescriptor orientation;
LayoutTextDescriptor context;

Portable Layout Services: Context-dependent and Directional T ext 75

Data Structure Dynamic Pluggable Interface

LayoutTextDescriptor type_of_text;
LayoutTextDescriptor implicit_alg;
LayoutTextDescriptor swapping;
LayoutTextDescriptor numerals;
LayoutTextDescriptor text_shaping;
BooleanValue active_dir;
BooleanValue active_shape_editing;
char *shape_charset;
int shape_charset_size;
unsigned long in_out_text_descr_mask;
unsigned long in_only_text_descr;
unsigned long out_only_text_descr;
LayouDesc check_mode;
LayoutEditSize shape_context_size;

} LayoutCoreRec, *LayoutCore;

typedef struct _LayoutObject {
LayoutMethods methods; /* methods of this CTL Object */
LayoutCoreReccore; /* data of this CTL Object */
void *private_data; /* Private data of locale-dependent object */

} LayoutObjectRec;

76 CAE Specification (1997)

Dynamic Pluggable Interface Calling Sequence

C.4 Calling Sequence
1. Within m_create_layout (), _LayoutObjectGetHandle() is called to retrieve a LayoutObject for

the specified locale by loading in the locale-dependent module.

2. In order to avoid the same locale-dependent module to be reloaded, a list of loaded locales
is searched.

3. If the specified locale is found in the list, _LayoutObjectInit () will be called to create a new
LayoutObject via the pointer within the locale-specific object.

4. Otherwise, _GetLayoutInitFunc() will be called to load in the locale-dependent module and
return a function pointer to _LayoutObjectInit () for the specified locale. This function
pointer will be added to a list to be reused for the same locale in the future as in step 2.

5. If the locale-dependent module cannot be loaded for the specified locale,
_LayoutObjectGetHandle() will return NULL.

6. The actual creation and initialization of the LayoutObject is done within each locale-
dependent implementation of _LayoutObjectInit ().

Portable Layout Services: Context-dependent and Directional T ext 77

Sample Code Dynamic Pluggable Interface

C.5 Sample Code
/* Following is part of the locale-independent module */

#define CTLObjectRelease 1

static LayoutMethodsRec _DefaultLayoutMethods = {
_LSDefaultCreate,
_LSDefaultDestroy,
_LSDefaultGetValues,
_LSDefaultSetValues,
_LSDefaultTransform,
_LSDefaultWCSTransform,

};

};
typedef struct _InitFuncListRec *InitFuncList;

typedef struct _InitFuncListRec {
void *func /* function pointer to _LayoutObjectInit() */
char *locale_name; /* locale of _LayoutObjectInit() */
InitFuncList next; /* Pointer to next element of the list */

} InitFuncListRec;

/*
* Entry point of to create and initialize the default layout object.
*
*/

LayoutObject
_LayoutObjectDefaultInit(locale_name)

char *locale_name;
{

LayoutObj layout_obj;

/* Allocate layout_obj. */
/* Initialize layout_obj->methods and layout_obj->core */
/* Return layout_obj. */

}

/*
* Search if a layout object of the requested locale is created.
* If not, create one and add it to the list.
*/

static LayoutObject
_DoGetObjHandle (locale_name)

char *locale_name;
{

LayoutObj layout_obj;

/*
* Look up a list of existing loaded locale specific objects.
* If the locale specific object is already loaded for the specified
* locale, call _LayoutObjectInit() to create the layout object

78 CAE Specification (1997)

Dynamic Pluggable Interface Sample Code

* via the pointer within the locale object.
*/

/*
* If the locale specific object is not loaded for the specified
* locale, then call _GetLayoutInitFunc() to load the
* locale-specific object.
*/

/*
* If _GetLayoutInitFunc() returns is not NULL, then add
* the new object to the list and call _LayoutObjectInit() to
* create layout_obj. Then return layout_obj when its done.
* Otherwise, return NULL.
*/

}

/*
* Get LayoutObj of current locale.
* If that failed, try it with C locale.
*/

LayoutObj
_LayoutObjectGetHandle (locale_name)

char *locale_name;
{

LayoutObj layout_obj;

/* Default locale_name to C if it is not set. */
/*

* Use _DoGetObjHandle() to retrieve layout_obj
* base on locale_name and return layout_obj.
*/

}

/*
* Do actual loading of the load-dependent object.
* Then return the function pointer to _LayoutObjectInit.
*/

static void *
_GetLayoutInitFunc(locale_name)

char *locale_name;
{

/* If locale_name is NULL, then return NULL. */
/*

* Otherwise, dynamically load in the locale specific
* module. Then return the function pointer to _LayoutObjectInit.
*/

}

Portable Layout Services: Context-dependent and Directional T ext 79

Common Naming for Layout Values Dynamic Pluggable Interface

C.6 Common Naming for Layout Values
#define AllTextDescriptors 0x0000007f

#define Orientation 1L
#define Context (1L<<1)
#define TypeOfText (1L<<2)
#define ImplicitAlg (1L<<3)
#define Swapping (1L<<4)
#define Numerals (1L<<5)
#define TextShaping (1L<<6)

#define ActiveDirectional (1L<<16)
#define ActiveShapeEditing (1L<<17)
#define ShapeCharset (1L<<18)
#define ShapeCharsetSize (1L<<19)
#define ShapeContextSize (1L<<20)
#define InOutTextDescrMask (1L<<21)
#define InOnlyTextDescr (1L<<22)
#define OutOnlyTextDescr (1L<<23)
#define CheckMode (1L<<24)
#define QueryValueSize (1L<<25)

/* Possible values for Orientation */
#define ORIENTATION_LTR 0x00000001
#define ORIENTATION_RTL 0x00000002
#define ORIENTATION_TTBRL 0x00000003
#define ORIENTATION_TTBLR 0x00000004
#define ORIENTATION_CONTEXTUAL 0x00000005

/* Possible values for Context */
#define CONTEXT_LTR 0x00000010
#define CONTEXT_RTL 0x00000020

/* Possible values for TypeOfText */
#define TEXT_IMPLICIT 0x00000100
#define TEXT_EXPLICIT 0x00000200
#define TEXT_VISUAL 0x00000300

/* Possible values for ImplicitAlg */
#define ALGOR_BASIC 0x00001000
#define ALGOR_IMPLICIT 0x00002000

/* Possible values for Swapping */
#define SWAPPING_NO 0x00010000
#define SWAPPING_YES 0x00020000

/* Possible values for Numerals */
#define NUMERALS_NOMINAL 0x00100000
#define NUMERALS_NATIONAL 0x00200000
#define NUMERALS_CONTEXTUAL 0x00300000

/* Possible values for TextShaping */

80 CAE Specification (1997)

Dynamic Pluggable Interface Common Naming for Layout Values

#define TEXT_SHAPED 0x01000000
#define TEXT_NOMINAL 0x02000000
#define TEXT_SHFORM1 0x03000000
#define TEXT_SHFORM2 0x04000000
#define TEXT_SHFORM3 0x05000000
#define TEXT_SHFORM4 0x06000000

/* Possible values for CheckMode */
#define MODE_STREAM 0x00000001
#define MODE_EDIT 0x00000002

#define MaskAllTextDescriptors 0x0fffffff
#define MaskOrientation 0x0000000f
#define MaskContext 0x000000f0
#define MaskTypeOfText 0x00000f00
#define MaskImplicitAlg 0x0000f000
#define MaskSwapping 0x000f0000
#define MaskNumerals 0x00f00000
#define MaskTextShaping 0x0f000000

/* Mask for the Property parament of m_*transform() */
#define NESTLEVEL_MASK 0x0f
#define DISPLAYCELL_MASK 0x10

Portable Layout Services: Context-dependent and Directional T ext 81

Dynamic Pluggable Interface

82 CAE Specification (1997)

Glossary

Some of the terms defined below are from The American National Dictionary for Information
Processing, by the Computer and Business Equipment Manufacturers Association, 1977. These
terms are identified by the acronym ANSI following their definitions.

algorithm
A finite set of well-defined rules for the solution of a problem in a finite number of steps.
For example, a full statement of an arithmetic procedure for evaluating sin x to a stated
precision. (ANSI)

Arabic country
Any of the countries in which Arabic script is the predominant writing system. The
countries include Algeria, Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Libya, Morocco,
Oman, Qatar, Saudi Arabia, Sudan, Syria, Tunisia, United Arab Emirates, and Yemen.

Arabic numerals
The characters 1, 2, 3, 4, 5, 6, 7, 8, 9, and 0. Contrast with Hindi numerals. See also numbers
on page 87.

Arabic script
A cursive script used in Arabic countries. Other writing systems such as Latin, Japanese, and
Hebrew have a cursive handwritten form, but usually are typeset or printed in discrete
letter form. Arabic script has only the cursive form.

Note: Arabic script is also used for Urdu (which is spoken in Pakistan, Bangladesh, and
India), Farsi (or Persian, which is spoken in Iran, Iraq, and Afghanistan) and other
languages that are not Arabic.

ascender
The parts of certain letters, such as b, d or f, which rise above the top edge of other letters
such as a, c and e. Contrast with descender on page 84.

ASMO
Arab Standards and Metrology Organization.

AttrObject
AttrObject is a generic object which can be a container of many opaque objects. A locale is
an example of the type of object that can be attached to the AttrObject. AttrObject is an
object type other than an array type that can hold values that represent the locale-specific
information necessary for all locale categories.

base shape
The form of an Arabic character that identifies it without specifying its presentation shape.
See also presentation shape on page 88 and shape determination on page 88.

bidirectional languages
Languages such as Arabic, Hebrew and Yiddish whose general flow of text proceeds
horizontally from right to left, but numbers, English and other left-to-right language text
such as addresses, acronyms and quotations are written from left to right.

Portable Layout Services: Context-dependent and Directional T ext 83

Glossary

cell
A group of character elements that belong to the same composed character. Also called
display cell.

character elements
The components of a composed character such as a ‘‘Thai Character’’, namely base line
consonants, upper vowels, lower vowels, base line vowels, tone marks, diacritics, and so on.

charset
An encoding with a uniform, state-independent mapping from character to code points.
Usually (but not necessarily), the code points are related to adequate presentation glyphs,
that when presented use associated fonts.

complex-text languages
A collective name used to designate those languages that have different layouts for
processing the text and for presenting it. The complex-text languages include the
bidirectional languages (such as Arabic, Farsi, Urdu, Hebrew, Yiddish), and Asian
languages such as Thai, Lao, Korean and the Indian ones. Because they are dealt with
separately, the languages that use mainly an ideographic script, such as Chinese and
Japanese, are excluded from this definition.

composed character
A collection of character elements in some scripts, such as Thai or Lao, whose presentation
forms compose a glyph that occupies a definite space called a presentation cell. Also called
combined character.

composing character element
A character element, such as a Thai tone mark, a Thai upper or lower vowel or diacritic, that
together with the non-composing character element and possibly other composing-
character elements forms a composed character. Sometimes called a composing character
or a combining character. In a string of character elements it follows the non-composing
character element. When presented the composing character element does not occupy,
normally, a separate presentation cell, and it shares the same cell with a non-composing
character element and possibly with other composing character elements.

composite sequence
A sequence of graphic characters consisting of a non-composing character followed by one
or more composing characters.

control character
A character that denotes the start, modification, or end of a control function. A control
character can be recorded for use in a subsequent action, and it can have a graphic
representation.

cursive script
Script whose adjacent characters might touch or be connected to each other. Arabic, Farsi
and Urdu scripts are always cursive, while Latin script is cursive only in handwriting.

data entry
The method of entering data into a computer system for processing, usually in a field-
oriented environment where the entry is governed by a program.

descender
The part of the character that extends from the baseline to the bottom of the character cell.
Examples of letters with descenders are g, j, p, q, y and Q. Contrast with ascender on page
83.

84 CAE Specification (1997)

Glossary

deshaping
The opposite of shaping; the transformation of an Arabic language text to a layout used for
processing. The different shapes of the same character are folded into a single, basic shape.

diacritic
Modifying mark of a character. For example, the accent marks in Latin scripts (acute, tilde
and ogonek), the vowel marks in Hebrew, and the consonant pronunciations in Thai and
Lao.

display cell
The group of character elements that form a composed character.

enable (national languages)
To design a product for economical and easy adaptation to any culture, convention or
language of the user.

encoding scheme
A set of specific definitions that describe the philosophy used to represent character data.
The number of bits, the number of bytes, the allowable ranges of bytes, the maximum
number of characters, and the meanings assigned to some generic and specific bit patterns,
are some examples of specifications found in such a definition.

ECMA
(European Computer Manufacturers Association) A not for profit organisation formed by
European computer vendors to promulgate standards applicable to the functional design
and use of data processing equipments.

explicit algorithm
In a bidirectional text, an algorithm that identifies segments of different directionality, or
other peculiarities of characters (such as shaping). The algorithm uses explicit control
sequences (directional and other) embedded in the text. See also implicit algorithm on
page 86.

field attributes
The data description governing the presentation and handling of data in the associated data
field. For example, direction (left-to-right, right-to-left) is a field attribute important in
bidirectional applications.

folding
The substitution of one graphic character for another. Folding generally maps a larger
character set into a subset, and may result in some loss of information. For example, folding
allows printing of upper-case graphic characters when lower-case characters are not
available.

global orientation
The predominant orientation of a bidirectional text. For example, an Arabic text with a
right-to-left global orientation may have some left-to-right English names embedded in it.

glyph
A member of a set of symbols that represent data. Glyphs can be letters, digits, punctuation
marks, or other symbols.

graphic character
A member of a set of symbols that represent data. Graphic characters can be letters, digits,
punctuation marks, or other symbols. Synonymous with glyph.

graphic symbol
The visual representation of a graphic character or of a composite sequence.

Portable Layout Services: Context-dependent and Directional T ext 85

Glossary

A graphic symbol for a composite sequence generally consists of the combination of the
graphic symbols of each character in the sequence.

Hangul
The Korean alphabet that consist of fourteen basic consonants and ten basic vowels.
Hangul was created by a team of scholars in the 15th century at the behest of King Sejong.
See also JAMO.

Hanja
The Korean term for characters derived from Chinese.

Hindi numerals
A set of numerals used in many Arabic countries instead of or in addition to the ‘‘Arabic’’
ones. Hindi numeral shapes are:

which correspond to the Arabic numeral shapes of 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. Contrast with
Arabic numerals on page 83.

ideographic language
A written language in which each character represents a thing or an idea. An example of
such a language is Chinese. Contrast with phonetic language on page 87.

implicit algorithm
An algorithm that recognises directional segments based on the implicit characteristics of
the characters. Segments are inverted accordingly. Bidirectional text transformed using an
implicit algorithm is stored in logical order. See also explicit algorithm on page 85 and
logical order (or logical sequence) on page 87.

JAMO
A set of consonants and vowels used in Korean Hangul. The word JAMO (or jamo) is
derived from ja, which means consonant, and mo, which means vowel. See also Hangul.

language layer
A keyboard may have several language layers. For example, the Hebrew keyboard may
have three layers: Hebrew, English and APL, with each layer supporting up to three shifts
(lower-case, upper-case and alternate shifts).

Latin alphabet
An alphabet comprising the letters a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y,
and z in upper-case and lower-case, with or without accents and ligatures. Contrast with
non-Latin-based alphabet on page 87.

layout
In this document layout stands for the layout of a text: the direction of the segments and the
shape of the characters.

LayoutObject
An opaque object containing all the data and methods necessary to perform the layout
operations on context-dependent or directional characters. In particular it contains a set of
layout values.

layout transformation
A transformation between the layout of a text as processed and the layout of text when
presented. A layout transformation may involve determination of embedded directional
segments, segment inversion, character shaping, or character deshaping.

86 CAE Specification (1997)

Glossary

layout value
A set of text attributes and processing indicators needed by the layout transformation
functions. See also text attribute on page 89.

ligature
A graphic character consisting of two or more characters joined together. For example,
joining A and E forms the ligature Æ. Ligatures are very common and important in Arabic.

logical order (or logical sequence)
A bidirectional text is said to be stored in logical order if the data elements in each segment
are sequenced physically in keystroke order (order of entry): that is the order they would be
read from a screen or spoken aloud. The segments presented with an opposite
directionality to the global orientation, need to be inverted to be stored in logical order.

lower case
The small alphabetic characters, whether accented or not, as distinguished from the capital
alphabetic characters. The concept of case also applies to alphabets such as Cyrillic and
Greek, but not to Arabic, Hebrew, Thai and some other languages. Examples of lower-case
letters are a, b and c. Contrast with upper case on page 89.

monocasing
The translation of alphabetic characters from one case (usually lower case) to their
equivalents in another case (usually upper case).

national numbers
Numbers as written in a text of a language that has its own glyphs for digits. As an
example, a Thai text may have numbers represented by national numbers called Thai
numerals. Note that the national numbers in the Arabic languages are the Hindi numerals
and not the Arabic numerals. See also Hindi numerals on page 86 and Arabic numerals on
page 83.

nesting
The situation in which a directional segment is embedded within another directional
segment. It is possible to have more than one level of nesting. A left-to-right number can be
nested, for example, within a right-to-left Hebrew text, which itself is nested within a left-
to-right English text.

non-composing character element
A character element such as a Thai consonant around which all the other character elements
are composed. Sometimes called a non-composing character or a non-combining character.
In a string of character elements it is the first element of a composed character. When
presented the non-composing character element occupies, alone or with composing
elements a presentation cell.

non-Latin-based alphabet
An alphabet that is not a Latin alphabet. Examples are Greek and Arabic alphabets.
Contrast with Latin alphabet on page 86.

numbers
Numbers express either quantity (cardinal) or order (ordinal). Many cultures have different
forms for cardinal and ordinal numbers. For example in French the cardinal number five is
cinq, but the ordinal fifth is cinquième or 5eme or 5è. Numbers are written with symbols usually
referred to as numerals. See Arabic numerals on page 83 and Hindi numerals on page 86.

phonetic language
A written language in which one or more characters represent a sound. Examples of
phonetic languages are English, Greek and Russian. Contrast with ideographic language

Portable Layout Services: Context-dependent and Directional T ext 87

Glossary

on page 86.

physical order (or physical sequence)
A bidirectional text is said to be stored in physical order if each data element of each segment
of the text is stored in the same physical sequence that is presented.

presentation
Printing or displaying.

presentation form
In the presentation of some scripts, a form of a graphic symbol representing a character that
depends on the position of the character relative to other characters.

presentation layout
The layout of text when presented on a screen or on a printer. See also layout on page 86.

presentation shape
The shape of a character such as an Arabic character when presented to the user. See also
base shape on page 83 and shape determination.

processing layout
The layout of text when processed.

push mode
An operating mode for entering text in reversed orientation where the cursor remains
stationary while new characters are typed, and the beginning of the text is pushed as in a
pocket calculator. It is also called calculator mode.

right-to-left mode
An input mode of a bidirectional text in which the cursor moves to the left after the entry of
each character.

segment
A contiguous portion of text with one directionality that may or may not be embedded in an
other portion of text which has a different directionality. For instance, in a bidirectional text,
a left-to-right segment such as a number can be embedded in a text that has a right-to-left
directionality.

ShapeCharset
The charset used to shape text (ShapeCharset is not necessarily identical to the encoding of
the text before the shaping).

shape determination
A process that decides which of the several (up to four) shapes an Arabic character is to be
used in current context. The shapes are initial, middle, final, and isolated. For each
character, the decision is based on the linking capabilities of current and surrounding
characters. See also base shape on page 83 and presentation shape.

shaping
The process of presenting a cursive script text with characters properly shaped as initial,
middle, final or isolated shape, according to their context. See shape determination and
cursive script on page 84.

symmetrical swapping
The process of exchanging some characters (such as { or <) with their symmetric twin
character (such as } or > respectively). The symmetrical swapping may be performed
during the inversion of segments of a bidirectional text.

88 CAE Specification (1997)

Glossary

text-type (or TypeOfText)
Text-type is used to indicate which reordering approach (visual, implicit or explicit) applies
to a given bidirectional text. See also implicit algorithm on page 86, explicit algorithm on
page 85 and visual data.

text attribute
Text attributes such as text-type, compliance to symmetrical swapping, numerals shape or
character shaping, describe the complex text being transformed. The text attributes are
used by the layout transformation function. See also layout transformation on page 86 and
layout value on page 87.

upper case
The capital alphabetic characters, whether accented or not, as distinguished from the small
alphabetic characters. The concept of case also applies to alphabets such as Cyrillic and
Greek, but not to Arabic, Hebrew, Thai and some other languages. Examples of capital
letters are A, B and C. Contrast with lower case on page 87.

visual data
Visual data is composed of data elements that are sequenced in the same order that they are
presented on a screen or printer.

Portable Layout Services: Context-dependent and Directional T ext 89

Glossary

90 CAE Specification (1997)

Index

AttrObject ..83
LayoutObject ..86
ActiveDirectional..34
ActiveShapeEditing ...34
algorithm..83
approach...3
Arabic ..7
Arabic country...83
Arabic numerals..83
Arabic script...83
ascender..83
ASMO..83
AttrObject...29
base shape ..83
bidirectional...1, 7, 9

data entry ...16
language ...5, 7
script..5
text ...11

bidirectional languages ...83
bidirectionality ..11
category

LO_LTYPE..69
cell ..84
character classification

character connectivity ...72
composite graphic symbols................................70
control characters ...70
directionality ...69
national number ...70

character elements..84
charset ...84
CheckMode..36
common user access...17
complex-text language ..5

conclusions ..26
complex-text languages ..84
composed character ...84
composing character element84
composite

graphic ..70
composite sequence ...84
Context..30
control character ...84

character classification ..70
cursive script ...84

data entry ...84
data type...28

AttrObject...29
LayoutEditSize..38
LayoutObject ...29
LayoutTextDescriptor..38
LayoutValues...37

descender..84
descriptor ...28, 30

ActiveDirectional ...34
ActiveShapeEditing ...34
CheckMode..36
Context ...30
ImplicitAlg...32
InOnlyTextDescr...36
InOutTextDescrMask...35
Numerals..33
Orientation...30
OutOnlyTextDescr ...36
QueryValueSize...36
ShapeCharset...35
ShapeCharsetSize ...35
ShapeContextSize...35
Swapping ...32
TextShaping ...33
TypeOfText ..31

deshaping...85
diacritic ...85
directionality..11

character classification ..69
display cell ...85
ECMA..85
enable (national languages)....................................85
encoding scheme ..85
example ..2, 61
explicit algorithm ...85
field attributes ...85
folding...85
function...27
global orientation..85
glyph..85
graphic character ..85
graphic symbol..85
Hangul ..23, 86
Hanja ...86
header file...29

Portable Layout Services: Context-dependent and Directional T ext 91

Index

Hebrew ...9
Hindi numerals ...86
ideographic language ..86
implementation example ..61
implicit algorithm...86
ImplicitAlg ...32
InOnlyTextDescr ...36
InOutTextDescrMask...35
interface

dynamic pluggable...73
locale-specific layer..73

interface overview..27
JAMO ..86
Korean...23
language layer ...86
Latin alphabet..86
layout ..86
layout transformation..6, 86
layout value ...29-30, 87

data types ...37
LayoutEditSize ..38
LayoutObject ...29
LayoutTextDescriptor..38
LayoutValues...37
ligature..87
logical order (or logical sequence)87
lower case...87
LO_LTYPE..69
mapping keyword..71
monocasing..87
m_create_layout() ..46
m_destroy_layout() ...47
m_getvalues_layout() ...48
m_setvalues_layout()..49
m_transform_layout()...50
m_wtransform_layout() ...54
national number

character classification ..70
national numbers ...11, 16, 87
nesting...87
non-composing character element........................87
non-Latin-based alphabet87
Normal_connect ...72
No_connect ..72
No_connect-space ..72
numbers..87
Numerals..33
opaque data ...27
Orientation...30
OutOnlyTextDescr..36

overview
complex-text language..5
interface ..27

phonetic language ..87
physical order (or physical sequence)..................88
POSIX locale model..1
presentation ...88
presentation form ...88
presentation layout ..88
presentation shape ...88
processing layout..88
push mode..88
QueryValueSize...36
right-to-left mode ...88
R_connect ...72
segment...88
shape determination ..88
ShapeCharset...35, 88
ShapeCharsetSize ...35
ShapeContextSize ...35
shaping ...11, 14, 88
Special1 ...72
Special2 ...72
Special3 ...72
Swapping..32
symmetrical swapping ..88
text attribute ..89
text-type (or TypeOfText)89
TextShaping ...33
Thai ..18
transformation...3

layout ..6
TypeOfText...31
upper case ..89
visual data..89
Vowel_connect ..72

92 CAE Specification (1997)

	c616cov.pdf
	Page 1

	blank.pdf
	Page 1

