
 S

L

T

A

A

C

N

I

D

N

A

H

R

C

D

E
T

Technical Standard

Systems Management:
Distributed Software Administration

DCE-RPC Interoperability (XDSA-DCE)

[This page intentionally left blank]

CAE Specification

Systems Management: Distributed Software Administration —

DCE-RPC Interoperability (XDSA-DCE)

The Open Group

 February 1997, The Open Group

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

CAE Specification

Systems Management: Distributed Software Administration — DCE-RPC Interoperability
(XDSA-DCE)

ISBN: 1-85912-137-3
Document Number: C430

Published in the U.K. by The Open Group, February 1997.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii CAE Specification

Contents

Chapter 1 Introduction... 1
 1.1 Scope and Purpose of XDSA-DCE .. 1
 1.2 Scope of the POSIX 1387.2 Standard... 1
 1.3 The POSIX 1387.2 Standard.. 2
 1.4 POSIX 1387.2 Distributed Roles... 3
 1.5 Terminology... 4
 1.6 Conformance ... 4

Chapter 2 XDSA-DCE RPC Interface Overview .. 5
 2.1 XDSA-DCE Block Diagram... 5
 2.2 XDSA-DCE Roles and Processes ... 7
 2.3 XDSA-DCE RPC Features ... 8

Chapter 3 XDSA-DCE RPC Interface Specification 15
 sw_rpc_abort_task() ... 17
 sw_rpc_agent_init() ... 18
 sw_rpc_analyze_task ()... 20
 sw_rpc_begin_session().. 22
 sw_rpc_end_session()... 24
 sw_rpc_execute_task() ... 25
 sw_rpc_get_depots()... 27
 sw_rpc_get_dsa_impact_data ()... 28
 sw_rpc_get_dsa_volume_list().. 29
 sw_rpc_get_soc_file() ... 30
 sw_rpc_get_task_status_and_log ()... 31
 sw_rpc_is_registered_depot() .. 32
 sw_rpc_register_depot()... 33
 sw_rpc_unregister_depot() .. 34

Chapter 4 XDSA-DCE RPC Type Definitions.. 35
 4.1 Type Definition Interface... 35
 4.2 Strings.. 36
 4.3 Session Context Handles... 36
 4.4 Source and Target Specification... 36
 4.5 Host Information .. 37
 4.6 Task Types .. 37
 4.7 Control Options .. 38
 4.8 Result Status .. 38
 4.9 Result Codes .. 38
 4.10 Function Results.. 39
 4.11 Software State .. 40
 4.12 Session Phase ... 40

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) iii

Contents

 4.13 Selections .. 41
 4.14 Interim Status .. 42
 4.15 File Transfer.. 42
 4.16 Disk Space Analysis ... 43

Chapter 5 XDSA-DCE RPC Type Values .. 45
 5.1 Task Types .. 46
 5.2 Selection Types .. 47
 5.3 Volume Types and States .. 48
 5.4 Software State .. 49
 5.4.1 Analysis States.. 49
 5.4.2 Execute States ... 50
 5.5 Session Phase ... 51
 5.5.1 Static Phases.. 51
 5.5.2 Analyzing Phases... 52
 5.5.3 Executing Phases.. 52
 5.6 Result Status .. 53
 5.7 Result Codes .. 54
 5.7.1 Generic RPC Result Codes... 54
 5.7.2 Get Distributions Result Codes .. 54
 5.7.3 Register Distribution Result Codes.. 55
 5.7.4 Unregister Distribution Result Codes ... 55
 5.7.5 Is Distribution Registered Result Codes ... 55
 5.7.6 Initialize Agent / Begin Session Result Codes 55
 5.7.7 End Session Result Codes .. 56
 5.7.8 Analyze Task Result Codes ... 57
 5.7.9 Execution Result Codes.. 60
 5.7.10 Abort Task Result Codes .. 62
 5.7.11 Get Status and Log Result Codes ... 62
 5.7.12 Get DSA Volumes Result Codes... 62
 5.7.13 Get DSA Impact Data Result Codes .. 62
 5.7.14 Get Software Collection File Result Codes... 62
 5.8 Options.. 63
 5.8.1 Register Options... 63
 5.8.2 Analyze and Execute Task Options ... 63
 5.8.3 Get Status and Log Options... 65
 5.8.4 Get Software Collection File Options .. 65
 5.8.5 Miscellaneous RPC Options .. 66
 5.8.6 DCE Naming Service Options .. 66
 5.8.7 DCE Security Service Options... 67

Chapter 6 XDSA-DCE Utilities... 69
 swreg .. 70
 swlist .. 73

iv CAE Specification

Contents

Chapter 7 XDSA-DCE Daemon.. 75
 swagentd .. 76

Chapter 8 XDSA-DCE Security... 81
 8.1 XDSA-DCE Security Model Overview... 81
 8.1.1 Object Types.. 81
 8.1.2 ACL Entries... 82
 8.1.3 Object Ownership.. 83
 8.1.4 Default Realm... 83
 8.1.5 Entry Types ... 83
 8.1.6 Keys .. 85
 8.1.7 Permissions ... 85
 8.1.8 Depot Registration and Access Control.. 86
 8.1.9 Secrets File... 86
 8.1.10 Access Control Checks by RPC Call .. 86
 swacl ... 88
 8.2 DCE Security Service RPC use for XDSA-DCE.................................... 92
 8.2.1 DCE Security Service RPC Server Interfaces 92
 8.2.2 DCE Security Service RPC Client Interfaces 94
 8.2.3 DCE Security Service RPC Type Values.. 95

 Glossary ... 97

 Index... 99

List of Figures

1-1 POSIX 1387.2 Distributed Roles.. 3
2-1 XDSA-DCE Model ... 5
2-2 XDSA-DCE Roles ... 7
2-3 XDSA-DCE Target and Source Sessions ... 9
2-4 XDSA-DCE Status and Log Retrieval.. 11
8-1 ACL Object Types .. 81
8-2 Template ACLs... 82

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) v

Contents

vi CAE Specification

Preface

The Open Group

The Open Group is an international open systems organisation that is leading the way in
creating the infrastructure needed for the development of network-centric computing and the
information superhighway. Formed in 1996 by the merger of the X/Open Company and the
Open Software Foundation, The Open Group is supported by most of the world’s largest user
organisations, information systems vendors and software suppliers. By combining the strengths
of open systems specifications and a proven branding scheme with collaborative technology
development and advanced research, The Open Group is well positioned to assist user
organisations, vendors and suppliers in the development and implementation of products
supporting the adoption and proliferation of open systems.

With more than 300 member companies, The Open Group helps the IT industry to advance
technologically while managing the change caused by innovation. It does this by:

• consolidating, prioritising and communicating customer requirements to vendors

• conducting research and development with industry, academia and government agencies to
deliver innovation and economy through projects associated with its Research Institute

• managing cost-effective development efforts that accelerate consistent multi-vendor
deployment of technology in response to customer requirements

• adopting, integrating and publishing industry standard specifications that provide an
essential set of blueprints for building open information systems and integrating new
technology as it becomes available

• licensing and promoting the X/Open brand that designates vendor products which conform
to X/Open Product Standards

• promoting the benefits of open systems to customers, vendors and the public.

The Open Group operates in all phases of the open systems technology lifecycle including
innovation, market adoption, product development and proliferation. Presently, it focuses on
seven strategic areas: open systems application platform development, architecture, distributed
systems management, interoperability, distributed computing environment, security, and the
information superhighway. The Open Group is also responsible for the management of the
UNIX trade mark on behalf of the industry.

The X/Open Process

This description is used to cover the whole Process developed and evolved by X/Open. It
includes the identification of requirements for open systems, development of CAE and
Preliminary Specifications through an industry consensus review and adoption procedure (in
parallel with formal standards work), and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to which a
vendor may register a product. There are currently two forms of Product Standard, namely the
Profile Definition and the Component Definition, although these will eventually be merged into
one.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) vii

Preface

The X/Open brand logo is used by vendors to demonstrate that their products conform to the
relevant Product Standard. By use of the X/Open brand they guarantee, through the X/Open
Trade Mark Licence Agreement (TMLA), to maintain their products in conformance with the
Product Standard so that the product works, will continue to work, and that any problems will
be fixed by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical literature, the main part of which is
focused on specification development and product documentation, but which also includes
Guides, Snapshots, Technical Studies, Branding and Testing documentation, industry surveys
and business titles.

There are several types of specification:

• CAE Specifications

CAE (Common Applications Environment) Specifications are the stable specifications that
form the basis for our product standards, which are used to develop X/Open branded
systems. These specifications are intended to be used widely within the industry for product
development and procurement purposes.

Anyone developing products that implement a CAE Specification can enjoy the benefits of a
single, widely supported industry standard. In addition, they can demonstrate product
compliance through the X/Open brand. CAE Specifications are published as soon as they
are developed, so enabling vendors to proceed with development of conformant products
without delay.

• Preliminary Specifications

Preliminary Specifications usually address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations. They are
published for the purpose of validation through implementation of products. A Preliminary
Specification is not a draft specification; rather, it is as stable as can be achieved, through
applying The Open Group’s rigorous development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued by formal standards
organisations, and developers are encouraged to develop products on the basis of them.
However, experience through implementation work may result in significant (possibly
upwardly incompatible) changes before its progression to becoming a CAE Specification.
While the intent is to progress Preliminary Specifications to corresponding CAE
Specifications, the ability to do so depends on consensus among Open Group members.

• Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia. For example, it
publishes the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum. It also publishes Technology Specifications relating to OSF/1, DCE,
OSF/Motif and CDE.

Technology Specifications (formerly AES Specifications) are often candidates for consensus
review, and may be adopted as CAE Specifications, in which case the relevant Technology
Specification is superseded by a CAE Specification.

viii CAE Specification

Preface

In addition, The Open Group publishes:

• Product Documentation

This includes product documentation — programmer’s guides, user manuals, and so on —
relating to the Pre-structured Technology Projects (PSTs), such as DCE and CDE. It also
includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

• Guides

These provide information that is useful in the evaluation, procurement, development or
management of open systems, particularly those that relate to the CAE Specifications. The
Open Group Guides are advisory, not normative, and should not be referenced for purposes
of specifying or claiming conformance to a Product Standard.

• Technical Studies

Technical Studies present results of analyses performed on subjects of interest in areas
relevant to The Open Group’s Technical Programme. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

• Snapshots

These provide a mechanism to disseminate information on its current direction and thinking,
in advance of possible development of a Specification, Guide or Technical Study. The
intention is to stimulate industry debate and prototyping, and solicit feedback. A Snapshot
represents the interim results of a technical activity.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new developments
and associated international standards. To distinguish between revised specifications which are
fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://www.opengroup.org/public/pubs.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the
World-Wide Web at http://www.opengroup.org/public/pubs.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) ix

Preface

This Document

This document defines a mechanism using DCE RPC for providing interoperability for the
POSIX 1387.2 standard for Software Administration. The POSIX 1387.2 standard does not
provide for interoperability. When the POSIX 1387.2 standard is taken together with this
specification’s use of the DCE RPC technology to provide interoperability between
implementations, a full distributed software administration environment is defined.

Structure

This specification is organised as follows:

• Chapter 1 provides an introduction to the XDSA-DCE specification and the POSIX 1387.2
standard. It describes the relationship between this statement and the POSIX 1387.2 standard.

• Chapter 2 provides an overview of the XDSA-DCE interface. It describes the roles, processes,
and features specified in this document.

• Chapter 3 defines the DCE RPC interfaces.

• Chapter 4 defines the DCE IDL data types used in this specification.

• Chapter 5 defines the enumerated and defined type values used in the XDSA-DCE RPC
interfaces.

• Chapter 6 defines extensions to two POSIX 1387.2 standard utilities for registering (swreg)
and listing (swlist) distributions and installed software collections.

• Chapter 7 defines the swagentd command which serves the XDSA-DCE daemon RPC
interface for local or remote software management tasks.

• Chapter 8 describes the XDSA-DCE security model, specifies the swacl command which
defines distributed management of Access Control Lists, and describes the use of the DCE
RDACL interfaces to support this command.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for filenames, keywords, type names, data structures and their
members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— variable names, for example, substitutable argument prototypes, parameters and
environment variables

— options in text

— function calls are shown as follows: name()

• Normal font is used for the names of constants and literals.

• OSF IDL code fragments are shown in helvetica bold font.

x CAE Specification

Trade Marks

Motif, OSF/1 and UNIX are registered trade marks and the ‘‘X Device’’TM and The Open
GroupTM are trade marks of The Open Group.

OMG and Object Management are registered trade marks of the Object Management Group,
Inc.

POSIX (Portable Operating System Interface) is a registered trademark of the US Institute of
Electrical and Electronic Engineers (IEEE).

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) xi

Referenced Documents

The following documents are referenced in this Specification:

DCE Directory
CAE Specification, December 1994, X/Open DCE: Directory Services (ISBN: 1-85912-078-4,
C312).

DCE RPC
CAE Specification, August 1994, X/Open DCE: Remote Procedure Call
(ISBN: 1-85912-041-5, C309).

This specification is now also ISO International Standard ISO/IEC 11578:1996, Information
technology — Open Systems Interconnection — Remote Procedure Call (RPC)

DCE Security
Preliminary Specification, April 1996, X/Open DCE: Authentication and Security Services
(ISBN: 1-85912-013-X, P315). Chapter 4: OSF Interface Definition Language (IDL) Definition.

POSIX 1387.2
IEEE Std. 1387.2-1995, Information Technology — Portable Operating System Interface
(POSIX) System Administration — Part 2: Software Administration.

xii CAE Specification

Chapter 1

Introduction

1.1 Scope and Purpose of XDSA-DCE
This document is the X/Open Distributed Software Administration (XDSA-DCE) specification.
XDSA-DCE provides a mechanism for addressing the interoperability needs of the POSIX 1387.2
standard for Software Administration.

The scope of the POSIX 1387.2 standard does not include interoperability. The XDSA-DCE
specification defines a way in which the various distributed roles communicate and transfer
data. This interface is one means to achieve interoperability between different implementations
of the POSIX 1387.2 standard.

XDSA-DCE is implemented using the X/Open Distributed Computing Environment (DCE)
remote procedure calls (RPC). The interface has no DCE run-time requirements, although it
supports the use of DCE naming and security services when operating in a DCE cell.

XDSA-DCE is designed with the intention that it will support the current and future versions of
the POSIX 1387.2 standard by only adding additional legal values and associated semantics to
the current RPC parameters, but not modifying the protocol.

1.2 Scope of the POSIX 1387.2 Standard
The scope of the POSIX 1387.2 standard for software administration includes the following:

• A standard layout for software.

This is a common exported structure for software distributions that contain the software
organized into manageable objects.

• A definition for information about installed software.

These are the definitions of the software objects, and the attributes they support.

• A standard set of commands for manipulating software.

This is the set of command definitions needed to manage the software, as well as the
behaviors associated with the software attributes.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 1

The POSIX 1387.2 Standard Introduction

1.3 The POSIX 1387.2 Standard
The referenced document POSIX 1387.2 is the IEEE POSIX Standard 1387.2-1995: Information
Technology — Portable Operating System Interface (POSIX) System Administration — Part 2:
Software Administration.

Throughout this XDSA-DCE specification, in any description of POSIX 1387.2 where a variance
with this standard arises, the referenced POSIX 1387.2 standard is the definitive specification.

2 CAE Specification

Introduction POSIX 1387.2 Distributed Roles

1.4 POSIX 1387.2 Distributed Roles
While not defining protocols for interoperability, the POSIX 1387.2 standard has defined the
distributed model by defining the distributed roles. The three key roles related to
interoperability are the manager, source and target roles shown in Figure 1-1.

control flow

data flow

software

installed

software

distribution

Role

Target

Role

Source

Role

Manager

Figure 1-1 POSIX 1387.2 Distributed Roles

The manager role is the process that interacts with the administrator. It sends requests and
receives results from the target role, and sends requests and receives data from the source role.

The target role operates on software collections (performing the administrative task). It requests
and receives the actual software files from the source role.

The source role receives requests for data or actual software files and returns the data and
software files in the software collection.

Examining the syntax of the POSIX 1387.2 standard commands, there are four main components:

• Target Selections
This is a list of target objects that the software specifications will be applied to. The target
objects are manageable software collections, identified by a host and a path.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 3

POSIX 1387.2 Distributed Roles Introduction

• Software Selections
This is a list of software specifications that identify particular software objects to be applied
to the targets.

• Command
This is the operation to apply to the software in each target. Most operations define an
analysis phase to determine if the operation will like succeed, and an execution phase that
actually perform the operation.

• Options
These are used to additionally define the previous operation.

Thus, distributed operation involves sending the software selections, command and options
from the manager to each target.

Some software commands also involve taking software from a source and transferring it
(applying it) to the target. Therefore, distributed operation also involves the target requesting
software files for the software selections it is processing from the source.

1.5 Terminology
This specification assumes some familiarity with the terminology used in the POSIX 1387.2
standard.

It also uses some terms which have specific meaning for XDSA-DCE. In particular, XDSA-DCE
uses some different terms for the same concepts described in the POSIX 1387.2 standard.

The key POSIX 1387.2 standard and XDSA-DCE terms are defined in the Glossary at the end of
this specification.

1.6 Conformance

Mandatory

An implementation is conformant to this specification if it implements at least the required
portions of this specification as defined in Chapters 1 through 6.

Options

The following aspects of XDSA-DCE are optional:

XDSA-DCE Daemon
The XDSA-DCE Daemon option is defined by Chapter 7 of this specification.

XDSA-DCE Security
The XDSA-DCE Security option is defined by Chapter 8 of this specification.

In order for an implementation to conform to any of these options, it must conform to all of the
specification defined for that option.

4 CAE Specification

Chapter 2

XDSA-DCE RPC Interface Overview

This section presents an overview of the XDSA-DCE RPC interface:

• XDSA-DCE Block Diagram

• XDSA-DCE Roles and Processes

• XDSA-DCE RPC Features.

2.1 XDSA-DCE Block Diagram
It is helpful to present a block diagram of an example implementation using the XDSA-DCE, in
order to better understand the relationship of the RPC interface to the overall architecture.

Manager

Utility

Library

Software

Object

Library

DCE RPC

RDACL IDL XDSA IDL

Daemon Agent

Figure 2-1 XDSA-DCE Model

Referring to Figure 2-1:

• The management tasks are accessible to the administrator as POSIX 1387.2 standard
command line (CLI) or graphical (GUI) user interfaces to the manager process. The manager
manages the operations on the source and target software collections through the XDSA-
DCE RPC interface.

• Operations on software objects can be implemented using the software object library. This
library manipulates the software files, and manages the meta data for the software objects
(for example, getting and setting attributes, commiting and deleting objects, loading software
files and executing software scripts). These interfaces could eventually integrate into an
object manager provided by a management framework.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 5

XDSA-DCE Block Diagram XDSA-DCE RPC Interface Overview

• The utilities library can provide interfaces to common services such as event handling,
logging, security, and access control. These interfaces can also integrate with services
provided by a management framework.

• The actual management operations are performed by software daemon and agent processes.
These may be the same process or different processes, allowing performance tuning and
eventual migration to management frameworks for the daemon (managing the host object).

• The distributed aspects of an implementation are implemented using the XDSA-DCE RPC
interface. This interface is defined in terms of DCE Interface Definition Language (IDL).
Additionally, an implementation can use the DCE supplied RDACL interfaces, implemented
by the daemon process, to manage Access Control Lists (ACLs).

6 CAE Specification

XDSA-DCE RPC Interface Overview XDSA-DCE Roles and Processes

2.2 XDSA-DCE Roles and Processes
The XDSA-DCE implements the manager role as one manager process and the source and target
roles as a set of daemon and agent processes as shown in Figure 2-2

Daemon

TargetSource

AgentAgentDaemon

Manager

data flow (files)

meta data flow

hosthost

control flow

software

installed

software

distribution

Figure 2-2 XDSA-DCE Roles

The manager retrieves software information from the source. This can be used by a command
line or graphical user interface to present software selections to the user. Then, both the GUI
and command line interface send the resolved software selections to the targets.

The target is implemented using a daemon/agent pair of processes. The daemon is always
running on each target host, and spawns an agent session for each target. The agent session can
be a separate process, or part of the daemon process. The agent session performs the software
operation, including retrieving information and files from the source.

The source is implemented as the same daemon/agent pair. The daemon is always running on
each source host and spawns an agent session for each source request. The source agent serves
information and files from the source software collection for the target agent and manager.

In this way, in relation to the POSIX 1387.2 standard software hierarchy where a host object
contains a set of distribution and installed software collections, the daemon essentially manages
the host object and each agent manages one software collection.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 7

XDSA-DCE RPC Features XDSA-DCE RPC Interface Overview

2.3 XDSA-DCE RPC Features
The XDSA-DCE RPC interfaces define parameters following the main components of the POSIX
1387.2 standard commands described above:

• Target

As described above, an agent session is defined for each target. After initiating an agent for
the target, the rest of the task addresses each agent.

• Software Selections

The software selections are communicated between the various roles as strings using the
standard software selection syntax defined by the POSIX 1387.2 standard. Using the
standard software identifier syntax is important for interoperability as it insulates the
implementations from any implementation specific software object identifiers.

• Command

The task type is the primary parameter in the RPC interface. Further, there is a separate
interface for analysis and execution. This point is important for interactive interfaces, where
results of analysis can be viewed, and analysis can be repeated, before committing to
execution. It also is necessary to support consistent multiple target success where all targets
need to pass analysis before execution is committed to for any target. If the execution phase
suspends, then it too can be retried.

• Options

The options are communicated using the standard syntax defined by the POSIX 1387.2
standard. This syntax is important for both interoperability and extensibility. This same
parameter is used to pass any additional options that can be described as name=value
strings, and is used for features beyond the POSIX 1387.2 standard definition, including
additional control options and security information.

The key roles for the source agent is to provide files and data to the manager and target agent.

• Software Files

The software files to be transferred are identified by the software specification and the file
path. An important aspect of this interface is that the target only requests the files that it
requires, allowing for target optimizations for files that are already up to date.

• Software Information

For listing software objects and attributes, applying software selections by the manager or
agent, and retrieving control scripts to be executed by the manager or agent, the same file
transfer interface is used.

While natural for control scripts, this is also important to interoperability for software object
and attribute information. Using this interface, all information is transferred in the POSIX
1387.2 standard external format (software packaging layout) via INDEX and INFO files. This
saves implementations from having to support an additional exported format in addition to
the POSIX 1387.2 standard external format and their own internal representation.

The POSIX 1387.2 standard software packaging layout is also used for transferring
information about installed software objects.

This design is also impacted by the security model. In the XDSA-DCE security model, read
access to distribution includes the permission to list all of the products in the distribution.
Thus the entire global INDEX may be transferred. However, product files are only accessible
for analysis and execution (loading) if the user has read access to the product.

8 CAE Specification

XDSA-DCE RPC Interface Overview XDSA-DCE RPC Features

In a model where products may only be listed by those with read access to the product, then
only those products with read access would be included in the global INDEX tranferred.

Both the source and target agent define sessions that maintain state from one call to the next, as
shown in Figure 2-3

Get

File

Agent

Target Daemon

Agent

Source

Session

End

Init

Agent

Session

BeginBegin

Session

Execute

Task

Task

AnalyzeAnalyze

Task

Task

Execute

Session

BeginBegin

Session

End

Session

Session

BeginBegin

SessionSession

BeginBegin

Session

Figure 2-3 XDSA-DCE Target and Source Sessions

There are a number of points in this design:

• Begin Session

The concept of a session is important primarily to reserve (read or write lock) the software
collection resource for the duration of the operation. This increases reliability of multiple
target operations, since the resources are committed before the operation begins.

For the interactive interface, the user has immediate feedback if the operation will fail due to
the target already being unavailable.

In the case of the source agent, significant overhead (such as security and database access) is
avoided for the file retrieval RPC by caching information.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 9

XDSA-DCE RPC Features XDSA-DCE RPC Interface Overview

• End Session

By maintaining the session until an explicit end session call is made, the interactive user can
query the agent for results of an operation even after the operation execution has completed.

• Initiate Agent

Having a separate interface to initiate a source or target agent allows for a number of flexible
implementations from an implementation of a separate daemon and agent, to a single
daemon process that also performs the agent tasks (the latter simply returns an RPC binding
to itself).

Some implementations may use a separate, smaller, daemon since the daemon must always
be resident in memory and memory utilization is critical for smaller systems. Also, on source
systems, a single process would require up front memory allocation for the maximum
number of source connections.

The separate daemon interface also logically maps to a different level of managed object than
the agent (the host as opposed to the software collection). Its possible to envision that the
host object may have a single daemon (part of the management framework) for disparate
managed objects, and separate agent programs for each type of object.

The XDSA-DCE RPC interface also reflects a need to not have any requirements on management
frameworks, while still allowing integration with these frameworks. This is important since
installed software collection is needed for initial install of an operating system where the
management framework may never exist, and for installed software collection and update of the
management framework itself.

• Events

Each RPC interface has a results array return parameter that contains a list of event types and
severity, and additional information that usually contains the number of occurrences of the
event.

The RPC also has return parameters for each software object that was analyzed or executed.
This contains a summary of the events that occurred on each object (results of that
operation). This information is used by XDSA-DCE to present per software object results to
the user.

While the XDSA-DCE specification is not currently integrated into an event notification
service, there is a single interface that could optionally send events to the event service while
still building the results array for manager not using that service.

• Logging

Similarly, an implementation does not require a logging service, but does not preclude the
eventual use of one either. Figure 2-4 on page 11 shows the interface for logfile retrieval
during the course of an operation (which can be displayed along with the status to the user in
a graphical user interface).

• Status

The status of the task (analysis or execution) is not implemented by events. Rather, the agent
keeps track of its progress (bytes loaded, percent complete, time to completion, etc) and
returns that to the manager when requested through the same interface as the logfile.

10 CAE Specification

XDSA-DCE RPC Interface Overview XDSA-DCE RPC Features

and Log

Get Status

and Log

Get Status

Session

End

Session

BeginBegin

Session

Execute

Task

Task

AnalyzeAnalyze

Task

Task

Execute

Session

BeginBegin

Session

Figure 2-4 XDSA-DCE Status and Log Retrieval

• Authentication

The first aspect of the XDSA-DCE security model is authentication. When operating in a
DCE cell, the DCE RPC automatically provides the information needed to authenticate the
caller. The manager user is authenticated by the target agent and source agent. The target
agent is authenticated by the source agent.

The XDSA-DCE interface also supports a mode of secure operation that does not depend on
the run-time DCE needed to maintain a DCE cell, and also supports operations across DCE
cells. While not as reliable as DCE authentication, the XDSA-DCE internal method still is
reliable (more so than ARPA/Berkeley for example) through its use of an encrypted,
configurable, "secret". Both the secret, and the caller information is communicated using the
same options parameter that is used for the POSIX 1387.2 standard and other XDSA-DCE
specific options.

• Delegation

In the distributed model described above, the target agent contacts the source agent for
software files to install or copy. Delegation allows the agent to also notify the source agent
not only of itself (the caller), but also of the manager user that is requesting the software (the
initiator).

Since run-time DCE does not support delegation directly, the RPC interface options
parameters are used to pass the initiator information in any case, in the same way that the
caller options are used for XDSA-DCE internal authentication.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 11

XDSA-DCE RPC Features XDSA-DCE RPC Interface Overview

• Authorization

The second aspect of the XDSA-DCE security model is authorization for access to particular
objects. The authorization model is fairly flexible in how it relates to the RPC interface. The
interface is responsible for communicating the information necessary to determine
authorization to an object (via caller and initiator information). The target and source agent
(by examining their ACLs, next) can then refuse a particular request (for example, creation of
a new distribution collection object) or part of a request (for example, modification of, or
access to a particular product in a list of products).

Thus, authorization (ACL) information is not communicated via the XDSA-DCE interfaces,
just the refusals of authorization in the results of those calls.

• Access Control Lists

Authorization to objects is determined by the access control lists associated with the objects.
XDSA-DCE supports a security ACL scheme that includes a set of permission types (read,
write, insert, test, control) for a set of principal (caller) types (object_owner, object_group,
user, group, host, other, any_other) on a set of object types (host, distribution, installed
software collection, product). Which permissions are needed for which objects for each task
type are listed with the descriptions of the task types.

Product level ACLs are defined for products in distributions. A distribution can contain
products for a large variety of consumers and eventual installed software collections.
Product level ACLs are not defined for products in installed software collections. Installed
products share the same filesystem, the POSIX 1387.2 standard supports different installed
software objects sharing the same filesystem installed software collection for the purpose of
different management (including security) domains, and the semantics of update and
multiple versions would be significantly complicated by product level security in installed
software collections.

• Distributed ACL Management

XDSA-DCE also provides a distributed ACL management command, swacl. This command
supports a similar syntax to the other POSIX 1387.2 standard commands (that is, options,
software selections and target selections).

The RPC interface used to implement this command are the standard RDACL interface
definitions supplied with DCE, and are not documented here. In an XDSA-DCE
implementation, the server side of RDACL interface is implemented in the daemon. The
manager then uses standard client DCE security interfaces to manage ACLs.

• Naming and Registration

Naming is used in XDSA-DCE for locating sources and targets. As with other management
framework services, XDSA-DCE is designed to be operated both with and without run-time
DCE Naming Services. Using DCE Naming Services, lists of target hosts and source hosts,
along with the RPC protocols for contacting those host’s daemons, can be retrieved.

Like some aspects of security, the use of naming is somewhat independent of the RPC
interface. For example in XDSA-DCE, the manager can resolve the location of a distribution
using naming, then pass the source information to the agent the same way it would if not
using a naming service.

Independent of run-time DCE, there is an XDSA-DCE interface to query hosts for available
(registered) distributions and installed software collections on that host. XDSA-DCE also
provides a distributed command to register distributions in the host object, swreg.
(Distributions and installed software collections are also automatically registered and

12 CAE Specification

XDSA-DCE RPC Interface Overview XDSA-DCE RPC Features

unregistered as part of the POSIX 1387.2 standard swcopy command). There are four
XDSA-DCE RPC interfaces for managing registration of distribution and installed software
collections: see sw_rpc_register_depot() on page 33, sw_rpc_unregister_depot() on page 34 and
sw_rpc_is_registered_depot() on page 32.

• Multiple and Alternate Sources

Related to naming are other features that abstract source location. There are two main
aspects to this feature: supporting access to software from more than one source in a session,
and supporting the use different sources by different agents in one task.

The latter is supported by XDSA-DCE implementation where different targets can be
configured for different sources. This can be used to support two step install (copying to the
target before installing from a local copy), hierarchical distribution, and distributed installed
software collection optimized for source proximity and performance.

The impact on the XDSA-DCE RPC is an additional option to communicate to the agent to
choose its own source. Additionally, even though XDSA-DCE does not currently support an
agent installing different products from different sources, the RPC interface does support this
since each software specification can have a different source associated with it (allowing the
manager to still perform selection).

• Disk Space Analysis

There are two additional XDSA-DCE RPC interfaces defined which support transfer of
detailed disk space analysis from the target agent to the manager. This can be used by a
manager GUI to show the impact of each software item (product or fileset) on each target
filesystem, or can be used for verbose output in a CLI manager.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 13

XDSA-DCE RPC Interface Overview

14 CAE Specification

Chapter 3

XDSA-DCE RPC Interface Specification

This chapter describes the XDSA-DCE RPC interface used for communication between the
manager, target and source roles. Target information and tasks are communicated between the
manager and targets. Source information is communicated between the source and manager.
Source information and source files are communicated between the source and target.

The XDSA-DCE RPC interface is defined in three DCE RPC interface definitions:

• the daemon interface

• the agent interface

• the type definitions interface.

Each interface definition contains a UUID line identifying the interface and version of the
interface, and interface body that contains the procedure and type definitions.

The XDSA-DCE daemon RPC interface is defined as follows:

[uuid(92F278D6-1723-11CC-9A0F-08000935358F), version(1.0)]

interface sdu_rpc_daemon
{

import "sdu_rpc_defs.idl";

/*
* The XDSA-DCE daemon interface defines the following procedures:
* sw_rpc_get_depots
* sw_rpc_register_depot
* sw_rpc_unregister_depot
* sw_rpc_is_registered_depot
* sw_rpc_agent_init
*/

/* procedure definitions */

} /* sdu_rpc_daemon */

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 15

XDSA-DCE RPC Interface Specification

The XDSA-DCE agent RPC interface is defined as follows:

[uuid(DD1933A0-B026-11CB-B03C-080009199BEB), version(1.0)]

interface sdu_rpc_agent
{

import "sdu_rpc_defs.idl";

/*
* The XDSA-DCE agent interface defines the following procedures:
* sw_rpc_begin_session
* sw_rpc_end_session
* sw_rpc_analyze_task
* sw_rpc_execute_task
* sw_rpc_abort_task
* sw_rpc_get_task_status_and_log
* sw_rpc_get_dsa_impact_data
* sw_rpc_get_dsa_volume_list
* sw_rpc_get_soc_file
*/

/* procedure definitions */

} /* sdu_rpc_agent */

The XDSA-DCE type definitions interface is defined in Chapter 4.

16 CAE Specification

XDSA-DCE RPC Interface Specification sw_rpc_abort_task()

NAME
sw_rpc_abort_task - abort task

SYNOPSIS

void sw_rpc_abort_task
(

[in] handle_t agent_binding,
[in] sw_rpc_context_t session_context,
[in] sw_rpc_options_t *control_options,
[out] sw_rpc_session_phase_t *session_state,
[in, out] sw_rpc_results_t *results

);

DESCRIPTION
This function aborts the execution of a task that has entered a suspended state. Task execution
that has suspended may be aborted using this function, or resumed via the sw_rpc_execute_task()
function.

The results of the function are returned via the results parameter, which is a structure of type
sw_rpc_results_t. This structure contains a summary_status field which indicates the overall
success of the function, and a results_list array which lists all error, warning, and informational
events that occurred during execution of the function.

The value returned in the summary_status is a mask of the following possible values:

SW_NOTE
The function was successful, but one or more informational events occurred.

SW_WARNING
The function was successful, but one or more warning events occurred.

SW_ERROR
The function was not successful, due to the occurrence of one or more error events.

The results_list field is a variable, conformant array of items which describe each event’s result
status (that is, error, warning, or note), its result code, and additional result information
indicating number of occurrences, etc.

RETURNS
No return value (void).

ERRORS
Error, warning, and informational events are indicated via the results parameter. Refer to the
Result Codes section for a description of the possible events.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 17

sw_rpc_agent_init() XDSA-DCE RPC Interface Specification

NAME
sw_rpc_agent_init - initialise agent

SYNOPSIS

void sw_rpc_agent_init
(

[in] handle_t daemon_binding,
[in] sw_rpc_options_t *control_options,
[in] sw_rpc_string_ref_t soc_path,
[in] sw_rpc_task_t task_type,
[out] sw_rpc_string_full_t *agent_string_binding,
[in, out] sw_rpc_results_t *results

);

} /* sdu_rpc_daemon */

DESCRIPTION
Tell the XDSA daemon to schedule the XDSA agent, in preparation for performing a
management task on a distribution or installed software collection. A string binding is returned
in agent_string_binding, which is then used to bind to the newly-scheduled agent in the
sw_rpc_begin_session() function.

This call exists to support a process model in which the daemon exists as a separate process and
schedules agents to do the actual tasks. For implementations that have the daemon and agent as
the same process, this call is still required to initiate the agent sesssion within the daemon
process.

An RPC binding handle is supplied in daemon_binding, which is used to establish the connection
with the daemon.

The location of the software collection is supplied in soc_path. This is supplied as an absolute
path with respect to the containing host’s filesystem.

The task that is to be performed on the software collection is indicated by task_type.

The results of the function are returned via the results parameter, which is a structure of type
sw_rpc_results_t. This structure contains a summary_status field which indicates the overall
success of the function, and a results_list array which lists all error, warning, and informational
events that occurred during execution of the function.

The value returned in the summary_status is a mask of the following possible values:

SW_NOTE
The function was successful, but one or more informational events occurred.

SW_WARNING
The function was successful, but one or more warning events occurred.

SW_ERROR
The function was not successful, due to the occurrence of one or more error events.

The results_list field is a variable, conformant array of items which describe each event’s result
status (that is, error, warning, or note), its result code, and additional result information
indicating number of occurrences, etc.

RETURNS
No return value (void).

18 CAE Specification

XDSA-DCE RPC Interface Specification sw_rpc_agent_init()

ERRORS
Error, warning, and informational events are indicated via the results parameter. Refer to the
Result Codes section for a description of the possible events.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 19

sw_rpc_analyze_task() XDSA-DCE RPC Interface Specification

NAME
sw_rpc_analyze_task - analyse task

SYNOPSIS

void sw_rpc_analyze_task
(

[in] handle_t agent_binding,
[in] sw_rpc_context_t session_context,
[in] sw_rpc_options_t *control_options,
[in, out] sw_rpc_selections_t *software_selections,
[out] sw_rpc_session_phase_t *session_state,
[in, out] sw_rpc_results_t *results

);

DESCRIPTION
This function initiates the checks that are performed prior to the actual execution of a
management task on a distribution or installed software collection. The caller must have
previously established a management session for the software collection, which is identified by
session_context. The nature of the analysis is determined by the given task, which was specified
when the session was established.

Software specifications may be specified at any level (bundles, products, subproducts, or
filesets), and are passed in the software_selections parameter. In order to receive the most detailed
result information when the call returns, the software_selections should be specified at the fileset
level. Selection information is specified using a conformant array of software selection item
structures, each of which contains the software specification string, the UUID, and the install or
copy source of the selected software object. Additionally, each software selection item structure
contains fields which are modified by the agent to indicate the expected action, error, and
warning information that was collected during task analysis.

The expected actions determined during analysis for a given selected software object are listed
in the section Analysis States.

The session_state output parameter controls whether the task can proceed to execution phase. If
the value is SW_ANALYSIS_COMPLETED_PHASE, then one or more software selections
passed analysis without errors, and they can be executed on. If no software passed analysis,
then the state returned is SW_SELECTION_PHASE. In either case, the task can also repeat the
analysis or end the session. See Section 5.5 on page 51 for all possible states.

The results of the function are returned via the results parameter, which is a structure of type
sw_rpc_results_t. This structure contains a summary_status field which indicates the overall
success of the function, and a results_list array which lists all error, warning, and informational
events that occurred during execution of the function.

The value returned in the summary_status is a mask of the following possible values:

SW_NOTE
The function was successful, but one or more informational events occurred.

SW_WARNING
The function was successful, but one or more warning events occurred.

SW_ERROR
The function was not successful for one or more software_selections , due to an occurrence of
one or more error events.

20 CAE Specification

XDSA-DCE RPC Interface Specification sw_rpc_analyze_task()

The results_list field is a variable, conformant array of items which describe each event’s result
status (that is, error, warning, or note), its result code, and additional result information
indicating number of occurrences, etc.

RETURNS
No return value (void).

ERRORS
Error, warning, and informational events are indicated via the results parameter. Refer to the
Result Codes section for a description of the possible events.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 21

sw_rpc_begin_session() XDSA-DCE RPC Interface Specification

NAME
sw_rpc_begin_session - begin session

SYNOPSIS

void sw_rpc_begin_session
(

[in] handle_t agent_binding,
[in] sw_rpc_options_t *control_options,
[in] sw_rpc_string_ref_t soc_path,
[in] sw_rpc_task_t task_type,
[out] sw_rpc_uname_attrs_t *uname_attrs,
[out] sw_rpc_context_t *session_context,
[out] sw_rpc_session_phase_t *session_state,
[in, out] sw_rpc_results_t *results

);

DESCRIPTION
This function establishes a session context with the XDSA agent for the management of a
software distribution or installed software collection.

The location of the software collection is supplied in soc_path. This is supplied as an absolute
path with respect to the containing host’s filesystem.

The task that is to be performed on the software collection is indicated by task_type.

The session may be refused if the requesting manager does not have adequate authorization to
manage the specified software collection, or if another conflicting management operation is
already in progress on the software collection. If a session context is successfully established, a
session handle is returned in session_context.

The session context is implemented using the DCE RPC context handle mechanism, enabling the
XDSA agent to maintain the session’s state across multiple RPCs. The context handle
mechanism is also used by the agent to detect communication failure and/or the unexpected
death of an XDSA manager.

The results of the function are returned via the results parameter, which is a structure of type
sw_rpc_results_t. This structure contains a summary_status field which indicates the overall
success of the function, and a results_list array which lists all error, warning, and informational
events that occurred during execution of the function.

The value returned in the summary_status is a mask of the following possible values:

SW_NOTE
The function was successful, but one or more informational events occurred.

SW_WARNING
The function was successful, but one or more warning events occurred.

SW_ERROR
The function was not successful, due to the occurrence of one or more error events.

The results_list field is a variable, conformant array of items which describe each event’s result
status (that is, error, warning, or note), its result code, and additional result information
indicating number of occurrences, etc.

RETURNS
No return value (void).

22 CAE Specification

XDSA-DCE RPC Interface Specification sw_rpc_begin_session()

ERRORS
Error, warning, and informational events are indicated via the results parameter. Refer to the
Result Codes section for a description of the possible events.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 23

sw_rpc_end_session() XDSA-DCE RPC Interface Specification

NAME
sw_rpc_end_session - end session

SYNOPSIS

void sw_rpc_end_session
(

[in] handle_t agent_binding,
[in, out] sw_rpc_context_t *session_context,
[in] sw_rpc_options_t *control_options,
[in, out] sw_rpc_results_t *results

);

DESCRIPTION
This function terminates a previously-established session for a distribution or installed software
collection. The session to be terminated is indicated in session_context. When a session is
terminated, the agent will release whatever resources and state were being maintained for it.

The results of the function are returned via the results parameter, which is a structure of type
sw_rpc_results_t. This structure contains a summary_status field which indicates the overall
success of the function, and a results_list array which lists all error, warning, and informational
events that occurred during execution of the function.

The value returned in the summary_status is a mask of the following possible values:

SW_NOTE
The function was successful, but one or more informational events occurred.

SW_WARNING
The function was successful, but one or more warning events occurred.

SW_ERROR
The function was not successful, due to the occurrence of one or more error events.

The results_list field is a variable, conformant array of items which describe each event’s result
status (that is, error, warning, or note), its result code, and additional result information
indicating number of occurrences, etc.

RETURNS
No return value (void).

ERRORS
Error, warning, and informational events are indicated via the results parameter. Refer to the
Result Codes section for a description of the possible events.

24 CAE Specification

XDSA-DCE RPC Interface Specification sw_rpc_execute_task()

NAME
sw_rpc_execute_task - execute task

SYNOPSIS

void sw_rpc_execute_task
(

[in] handle_t agent_binding,
[in] sw_rpc_context_t session_context,
[in] sw_rpc_options_t *control_options,
[in, out] sw_rpc_selections_t *software_selections,
[out] sw_rpc_session_phase_t *session_state,
[in, out] sw_rpc_results_t *results

);

DESCRIPTION
This function initiates the actual execution of a management task on a distribution or installed
software collection. This function is also used to resume the execution of a task that has entered
a suspended state.

The caller must have previously established a management session for the software collection,
which is identified by session_context. The task that is to be performed was specified when the
session was established.

Software specifications may be specified at any level (bundles, products, subproducts, or
filesets), and are passed in the software_selections parameter. In order to receive the most detailed
result information when the call returns, the software_selections should be specified at the fileset
level. Selection information is specified using a conformant array of software selection item
structures, each of which contains the software specification string, the UUID, and the install or
copy source of the selected software object. Additionally, each software selection item structure
contains fields which are modified by the agent to indicate the resulting action, error, and
warning information that was collected during task execution.

The resultant actions taken during execution for a given selected software object are listed in the
section Execution States.

The session_state output parameter controls whether the task can continue a suspended
execution phase. If the value is SW_SUSPENDED_PHASE, then sw_rpc_execute_task can be
called again to resume the execution. See Section 5.5 on page 51 for all possible states.

The results of the function are returned via the results parameter, which is a structure of type
sw_rpc_results_t. This structure contains a summary_status field which indicates the overall
success of the function, and a results_list array which lists all error, warning, and informational
events that occurred during execution of the function.

The value returned in the summary_status is a mask of the following possible values:

SW_NOTE
The function was successful, but one or more informational events occurred.

SW_WARNING
The function was successful, but one or more warning events occurred.

SW_ERROR
The function was not successful for one or more software_selections , due to an occurrence of
one or more error events.

SW_SUSPEND
Task execution was suspended due to the occurrence of a suspend event.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 25

sw_rpc_execute_task() XDSA-DCE RPC Interface Specification

The results_list field is a variable, conformant array of items which describe each event’s result
status (that is, error, warning, or note), its result code, and additional result information
indicating number of occurrences, etc.

RETURNS
No return value (void).

ERRORS
Error, warning, and informational events are indicated via the results parameter. Refer to the
Result Codes section for a description of the possible events.

26 CAE Specification

XDSA-DCE RPC Interface Specification sw_rpc_get_depots()

NAME
sw_rpc_get_depots - get list of existing distributions or installed software collections

SYNOPSIS

void sw_rpc_get_depots
(

[in] handle_t daemon_binding,
[in] sw_rpc_options_t *control_option
[in, out] sw_rpc_depot_list_t *depot_list,
[in, out] sw_rpc_results_t *results

);

DESCRIPTION
The sw_rpc_get_depots() function returns a list of software distributions or installed software
collections that are being served by a particular XDSA daemon. Whether the list contains
distributions or installed software collections is determined by the value of the level control
option. The list is returned via the depot_list parameter.

The results of the function are returned via the results parameter, which is a structure of type
sw_rpc_results_t. This structure contains a summary_status field which indicates the overall
success of the function, and a results_list array which lists all error, warning, and informational
events that occurred during execution of the function.

The value returned in the summary_status is a mask of the following possible values:

SW_NOTE
The function was successful, but one or more informational events occurred.

SW_WARNING
The function was successful, but one or more warning events occurred.

SW_ERROR
The function was not successful, due to the occurrence of one or more error events.

The results_list field is a variable, conformant array of items which describe each event’s result
status (that is, error, warning, or note), its result code, and additional result information
indicating number of occurrences, etc.

RETURNS
No return value (void).

ERRORS
Error, warning, and informational events are indicated via the results parameter. Refer to the
Result Codes section for a description of the possible events.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 27

sw_rpc_get_dsa_impact_data() XDSA-DCE RPC Interface Specification

NAME
sw_rpc_get_dsa_impact_data - get disk space analysis impact data

SYNOPSIS

void sw_rpc_get_dsa_impact_data
(

[in] handle_t agent_binding,
[in] sw_rpc_context_t session_context,
[in] sw_rpc_options_t *control_options,
[in] sw_rpc_string_ref_t filesystem,
[in, out] sw_rpc_fsvol_list_t *fsvol,
[in, out] sw_rpc_results_t *results

);

DESCRIPTION
The second Disk Space Analysis step involves requesting data showing the impact that
installing or removing the specified objects has on a given volume.

This operation is task-specific, since to do the actual calculations, the agent needs to know if the
software objects are being installed or removed, and whether or not the operation is being
performed on a distribution or installation software collection.

The results of the function are returned via the results parameter, which is a structure of type
sw_rpc_results_t. This structure contains a summary_status field which indicates the overall
success of the function, and a results_list array which lists all error, warning, and informational
events that occurred during execution of the function.

The value returned in the summary_status is a mask of the following possible values:

SW_NOTE
The function was successful, but one or more informational events occurred.

SW_WARNING
The function was successful, but one or more warning events occurred.

SW_ERROR
The function was not successful, due to the occurrence of one or more error events.

The results_list field is a variable, conformant array of items which describe each event’s result
status (that is, error, warning, or note), its result code, and additional result information
indicating number of occurrences, etc.

RETURNS
No return value (void).

ERRORS
Error, warning, and informational events are indicated via the results parameter. Refer to the
Result Codes section for a description of the possible events.

28 CAE Specification

XDSA-DCE RPC Interface Specification sw_rpc_get_dsa_volume_list()

NAME
sw_rpc_get_dsa_volume_list - get disk space analysis volume list

SYNOPSIS

void sw_rpc_get_dsa_volume_list
(

[in] handle_t agent_binding,
[in] sw_rpc_context_t session_context,
[in] sw_rpc_options_t *control_options,
[in, out] sw_rpc_volumes_list_t *volumes,
[in, out] sw_rpc_results_t *results

);

DESCRIPTION
The impact of an install or remove task is presented on a per-volume (that is, mounted
filesystem) basis. Retrieving Disk Space Analysis information is therefore a two-step process.
This call performs the first step, which is to retrieve the list of volumes that comprise the
distribution or installation software collection (ideally, but would probably be easier to just list
all of the volumes on the destination host).

The results of the function are returned via the results parameter, which is a structure of type
sw_rpc_results_t. This structure contains a summary_status field which indicates the overall
success of the function, and a results_list array which lists all error, warning, and informational
events that occurred during execution of the function.

The value returned in the summary_status is a mask of the following possible values:

SW_NOTE
The function was successful, but one or more informational events occurred.

SW_WARNING
The function was successful, but one or more warning events occurred.

SW_ERROR
The function was not successful, due to the occurrence of one or more error events.

The results_list field is a variable, conformant array of items which describe each event’s result
status (that is, error, warning, or note), its result code, and additional result information
indicating number of occurrences, etc.

RETURNS
No return value (void).

ERRORS
Error, warning, and informational events are indicated via the results parameter. Refer to the
Result Codes section for a description of the possible events.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 29

sw_rpc_get_soc_ file() XDSA-DCE RPC Interface Specification

NAME
sw_rpc_get_soc_file - get software collection file

SYNOPSIS

void sw_rpc_get_soc_file
(

[in] handle_t agent_binding,
[in] sw_rpc_context_t session_context,
[in] sw_rpc_options_t *control_options,
[in] uuid_t swobj_uuid,
[in] sw_rpc_string_ref_t swobj_spec,
[in] sw_rpc_string_ref_t file_path,
[out] sw_rpc_bytepipe_t file_contents,
[in, out] sw_rpc_results_t *results

);

} /* interface sdu_rpc_agent */

DESCRIPTION
The sw_rpc_get_soc_file() function returns the contents of a logical file contained in a distribution
or installed software collection. The session_context parameter identifies the session in which the
software collection is being managed. The swobj_uuid and swobj_spec parameters identify the
software object within the software collection that contains the requested file. The file_path
parameter is the relative pathname of the requested logical file.

A logical file can be catalog information, a control file, or a product file that would exist in a
software collection conforming to this standard. The file_path parameter is the path to the file
relative to the directory where catalog, control, or product files for the software object indicated
by swobj_uuid and swobj_spec would exist in a software collection conforming to this standard.

The results of the function are returned via the results parameter, which is a structure of type
sw_rpc_results_t. This structure contains a summary_status field which indicates the overall
success of the function, and a results_list array which lists all error, warning, and informational
events that occurred during execution of the function.

The value returned in the summary_status is a mask of the following possible values:

SW_NOTE
The function was successful, but one or more informational events occurred.

SW_WARNING
The function was successful, but one or more warning events occurred.

SW_ERROR
The function was not successful, due to the occurrence of one or more error events.

The results_list field is a variable, conformant array of items which describe each event’s result
status (that is, error, warning, or note), its result code, and additional result information
indicating number of occurrences, etc.

RETURNS
No return value (void).

ERRORS
Error, warning, and informational events are indicated via the results parameter. Refer to the
Result Codes section for a description of the possible events.

30 CAE Specification

XDSA-DCE RPC Interface Specification sw_rpc_get_task_status_and_log()

NAME
sw_rpc_get_task_status_and_log - get task status and log

SYNOPSIS

void sw_rpc_get_task_status_and_log
(

[in] handle_t agent_binding,
[in] sw_rpc_context_t session_context,
[in] sw_rpc_options_t *control_options,
[out] sw_rpc_interim_status_t *interim_status,
[out] sw_rpc_bytepipe_t log_data,
[out] sw_rpc_session_phase_t *session_state,
[in, out] sw_rpc_results_t *results

);

DESCRIPTION
This function retrieves interim status and log entries during task analysis or execution, enabling
the caller to gauge progress as these long-duration operations are performed.

The session for which status is retrieved is indicated by session_context.

The status data is returned in interim_status, which is a data structure containing fields which
indicate:

• the current sub-task being performed

• the estimated time to completion

• the total number of kbytes that will be loaded/removed in the operation

• the current number of kbytes loaded/removed so far

• the current software object being operated on.

The results of the function are returned via the results parameter, which is a structure of type
sw_rpc_results_t. This structure contains a summary_status field which indicates the overall
success of the function, and a results_list array which lists all error, warning, and informational
events that occurred during execution of the function.

The value returned in the summary_status is a mask of the following possible values:

SW_NOTE
The function was successful, but one or more informational events occurred.

SW_WARNING
The function was successful, but one or more warning events occurred.

SW_ERROR
The function was not successful, due to the occurrence of one or more error events.

The results_list field is a variable, conformant array of items which describe each event’s result
status (that is, error, warning, or note), its result code, and additional result information
indicating number of occurrences, etc.

RETURNS
No return value (void).

ERRORS
Error, warning, and informational events are indicated via the results parameter. Refer to the
Result Codes section for a description of the possible events.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 31

sw_rpc_is_registered_depot() XDSA-DCE RPC Interface Specification

NAME
sw_rpc_is_registered_depot - check distribution or installed software collection root is
registered

SYNOPSIS

void sw_rpc_is_registered_depot
(

[in] handle_t daemon_binding,
[in] sw_rpc_options_t *control_options,
[in] sw_rpc_string_ref_t depot_path,
[in, out] sw_rpc_results_t *results

);

DESCRIPTION
The sw_rpc_is_registered_depot() function checks whether a software distribution or installed
software collection is registered on the host (possibly under an alias). Whether the path to check
is a depot or root is determined by the value of the level control option.

The results of the function are returned via the results parameter, which is a structure of type
sw_rpc_results_t. This structure contains a summary_status field which indicates the overall
success of the function, and a results_list array which lists all error, warning, and informational
events that occurred during execution of the function.

The value returned in the summary_status is a mask of the following possible values:

SW_NOTE
The function was successful, but one or more informational events occurred.

SW_WARNING
The function was successful, but one or more warning events occurred.

SW_ERROR
The function was not successful, due to the occurrence of one or more error events.

The results_list field is a variable, conformant array of items which describe each event’s result
status (that is, error, warning, or note), its result code, and additional result information
indicating number of occurrences, etc.

RETURNS
No return value (void).

ERRORS
Error, warning, and informational events are indicated via the results parameter. Refer to the
Result Codes section for a description of the possible events.

32 CAE Specification

XDSA-DCE RPC Interface Specification sw_rpc_register_depot()

NAME
sw_rpc_register_depot - register distribution or installed software collection

SYNOPSIS

void sw_rpc_register_depot
(

[in] handle_t daemon_binding,
[in] sw_rpc_options_t *control_options,
[in] sw_rpc_string_ref_t depot_path,
[in, out] sw_rpc_results_t *results

);

DESCRIPTION
The sw_rpc_register_depot() function registers the software distributions or installed software
collections located in the callee’s file system at the path indicated by the depot_path parameter.
Whether the path to register is a distribution or installed software collection is determined by the
value of the level control option.

The results of the function are returned via the results parameter, which is a structure of type
sw_rpc_results_t. This structure contains a summary_status field which indicates the overall
success of the function, and a results_list array which lists all error, warning, and informational
events that occurred during execution of the function.

The value returned in the summary_status is a mask of the following possible values:

SW_NOTE
The function was successful, but one or more informational events occurred.

SW_WARNING
The function was successful, but one or more warning events occurred.

SW_ERROR
The function was not successful, due to the occurrence of one or more error events.

The results_list field is a variable, conformant array of items which describe each event’s result
status (that is, error, warning, or note), its result code, and additional result information
indicating number of occurrences, etc.

RETURNS
No return value (void).

ERRORS
Error, warning, and informational events are indicated via the results parameter. Refer to the
Result Codes section for a description of the possible events.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 33

sw_rpc_unregister_depot() XDSA-DCE RPC Interface Specification

NAME
sw_rpc_unregister_depot - unregister distribution or installed software collection

SYNOPSIS

void sw_rpc_unregister_depot
(

[in] handle_t daemon_binding,
[in] sw_rpc_options_t *control_options,
[in] sw_rpc_string_ref_t depot_path,
[in, out] sw_rpc_results_t *results

);

DESCRIPTION
The sw_rpc_unregister_depot() function deletes the software distribution or installed software
collection located in the callee’s file system at the path indicated by the depot_path parameter
from the list of served distributions on the callee’s system. Whether the path to unregister is a
distribution or installed software collection is determined by the value of the level control option.

The results of the function are returned via the results parameter, which is a structure of type
sw_rpc_results_t. This structure contains a summary_status field which indicates the overall
success of the function, and a results_list array which lists all error, warning, and informational
events that occurred during execution of the function.

The value returned in the summary_status is a mask of the following possible values:

SW_NOTE
The function was successful, but one or more informational events occurred.

SW_WARNING
The function was successful, but one or more warning events occurred.

SW_ERROR
The function was not successful, due to the occurrence of one or more error events.

The results_list field is a variable, conformant array of items which describe each event’s result
status (that is, error, warning, or note), its result code, and additional result information
indicating number of occurrences, etc.

RETURNS
No return value (void).

ERRORS
Error, warning, and informational events are indicated via the results parameter. Refer to the
Result Codes section for a description of the possible events.

34 CAE Specification

Chapter 4

XDSA-DCE RPC Type Definitions

This chapter describes the DCE IDL for data types used in the XDSA-DCE RPC interface
specification. These include types for:

• Strings

• Session Context Handles

• Source and Target Specification

• Host Information

• Task Types

• Control Options

• Result Status

• Result Codes

• Function Results

• Software State

• Session State

• Selections

• Interim Status

• File Transfer

• Disk Space Analysis.

4.1 Type Definition Interface
The XDSA-DCE type definition interface is defined as follows:

[uuid(59646C2C-B027-11CB-9302-080009199BEB), version(1.0)]
interface sdu_rpc_defs
{

/* type definitions */

} /* sdu_rpc_defs */

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 35

Strings XDSA-DCE RPC Type Definitions

4.2 Strings
Strings are passed either as RPC reference pointers or as RPC full pointers. Strings that are
declared with the ptr attribute (that is, full) may be passed with a NULL value, but incur more
overhead.

/*
* String data type. The full pointer version is used in cases
* where the pointer may be NULL.
*/

typedef [ref, string] char *sw_rpc_string_ref_t;
typedef [ptr, string] char *sw_rpc_string_full_t;

4.3 Session Context Handles
A session handle is implemented as an RPC context handle, which enables the agent to associate
RPCs with a given session. The context mechanism is also used by the agent to detect when the
manager dies unexpectedly or communication with the manager is lost.

/*
* The session context type. This is implemented as an RPC context
* handle so the agent can detect the death of the RPC client.
*/

typedef [context_handle] void *sw_rpc_context_t;

4.4 Source and Target Specification
A target or source software collection is identified by the string binding to its host, combined
with its absolute path in the host’s filesystem. This string binding is the string form of the
daemon_binding parameter used to initialize an agent via the sw_rpc_agent_init () function, not a
copy of the agent_string_binding parameter returned from that function.

/*
* Constructed type for software collection descriptor type.
*/

typedef struct
{

sw_rpc_string_full_t soc_binding; /* string binding to daemon */
sw_rpc_string_full_t soc_path; /* absolute path on host */

} sw_rpc_soc_desc_t;

36 CAE Specification

XDSA-DCE RPC Type Definitions Host Information

4.5 Host Information
Host information consists of uname() style attributes that are used to determine software
compatibility.

/*
* Constructed type for passing "uname" attributes.
*/

typedef struct
{

sw_rpc_string_full_t sysname; /* uname sysname */
sw_rpc_string_full_t release; /* uname release */
sw_rpc_string_full_t version; /* uname version */
sw_rpc_string_full_t machine; /* uname machine */

} sw_rpc_uname_attrs_t;

The host information also includes information listing the available distributions or installed
software collections on the host.

/*
* Constructed type for list of distributions or installed software collections.
*/

typedef struct
{

unsigned32 max_depots;
unsigned32 num_depots;
[size_is(max_depots),

length_is(num_depots)]
sw_rpc_string_full_t depot_paths[];

} sw_rpc_depot_list_t;

4.6 Task Types
The task type determines what task the agent will perform on the software object collection
during the course of the session (corresponds to the command that was invoked). This is also
referred to as the session type .

/*
* Type for the set of defined task types.
*/

typedef unsigned32 sw_rpc_task_t;

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 37

Control Options XDSA-DCE RPC Type Definitions

4.7 Control Options
Control options affect a function’s behavior, influencing the semantics of the task performed, the
way certain events are interpreted, and the data that the function returns.

/*
* Constructed type for passing control options.
* Options are passed in "keyword=value" strings.
*/

typedef struct
{

unsigned32 num_options;
[size_is(num_options)]

sw_rpc_string_ref_t options_list[]; /* options */

} sw_rpc_options_t;

4.8 Result Status
The result status type is used in three instances:

1. to indicate the overall result of a function upon its return

2. to indicate the effect of each individual result that occurred during a function’s execution

3. to indicate the cumulative effect of the results that occurred during task analysis or
execution for each individual selected software object.

Values for this type are composed by masking together the individual NOTE, WARNING,
ERROR and SUSPEND effect values.

/*
* Mask of the possible NOTE, WARNING, ERROR or SUSPEND
* effects of one or more results.
*/

typedef unsigned32 sw_rpc_result_status_t;

4.9 Result Codes
The result code type is used to identify a result that occurred during a function’s execution.

/*
* Identifies a specific result.
*/

typedef unsigned32 sw_rpc_result_code_t;

38 CAE Specification

XDSA-DCE RPC Type Definitions Function Results

4.10 Function Results
The results of a function are returned as a structure containing an overall summary result status
field, and an array of items indicating the code, effect, and auxiliary information identifying each
specific result which occurred during the function’s execution. The auxiliary information for
each result is implemented as an integer whose meaning is specific to a the code, such as a count
on the number of times the event occurred, or a media number needed in a tape change.

#define SW_MAX_RESULTS 256

/*
* Constructed types for passing function results. The value
* assigned to max_results (by the caller) should be at least
* SW_MAX_RESULTS.
*/

typedef struct
{

sw_rpc_result_code_t result_code; /* which result */
sw_rpc_result_status_t result_status; /* effect */
unsigned32 result_info; /* auxiliary info */

} sw_rpc_result_item_t;

typedef struct
{

sw_rpc_result_status_t summary_status; /* summary of results */
unsigned32 max_results; /* max size of array */
unsigned32 num_results; /* cur size of array */
[size_is(max_results),

length_is(num_results)]
sw_rpc_result_item_t results_list[]; /* list of results */

} sw_rpc_results_t;

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 39

Software State XDSA-DCE RPC Type Definitions

4.11 Software State
This type is used to indicate the action that the agent will take (as a result of task analysis), or
did take (as a result of task execution), for each selected software object.

It is passed back to the manager in the selections array when an analyze, execute or abort task
function returns.

/*
* Type for the possible predicted state, or resultant
* state for each software object.
*/

typedef unsigned32 sw_rpc_swobj_state_t;

4.12 Session Phase
This type is used to indicate the current phase of the session. A session’s phase is modified (that
is. ‘‘transitioned’’) via the analyze, execute, and abort task functions. Session phase also
determines which functions may be called at a particular point in time.

During analysis and execution, the session phase indicates the current sub-phase being
performed, which can be retrieved via the get status and log function.

/*
* Type describing the current state of a session.
*/

typedef unsigned32 sw_rpc_session_phase_t;

40 CAE Specification

XDSA-DCE RPC Type Definitions Selections

4.13 Selections
These types are used to indicate the software object selections that are passed to an analyze,
execute, or abort task function, and to return result data for each software object. A software
object is identified by its software specification, uuid, and the source where the software object
may be found.

Software object selections are differentiated as either explicit, or due to a dependency
relationship.

Result data consists of the predicted (analysis) or resultant (execution) state, and an indicator of
the cumulative effect of the results that occurred during task analysis or execution, for each
individual selected software object.

/*
* Constructed types for passing software selections. The
* swobj_state and result_status are output fields set by
* the agent after task analysis or execution has completed.
*/

typedef struct
{

uuid_t swobj_uuid; /* uuid (not used) */
sw_rpc_string_ref_t swobj_spec; /* software spec */
sw_rpc_soc_desc_t soc_desc; /* source path */
unsigned32 selection_type; /* explicit vs dependency */
sw_rpc_swobj_state_t swobj_state; /* swobj state */
sw_rpc_result_status_t result_status; /* cumulative status */

} sw_rpc_selection_item_t;

typedef struct
{

unsigned32 num_selections;
[size_is(num_selections)]

sw_rpc_selection_item_t selections_list[]; /* selections */

} sw_rpc_selections_t;

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 41

Interim Status XDSA-DCE RPC Type Definitions

4.14 Interim Status
This type is used to indicate the intermediate status of a task’s execution.

Interim status is returned by the sw_rpc_get_task_status_and_log () function.

/*
* Constructed type for retrieving interim status data.
*/

typedef struct
{

sw_rpc_string_full_t current_swobj; /* current swobj */
unsigned32 time_elapsed; /* time elapsed thus far */
unsigned32 time_to_completion; /* estimated time */
unsigned32 kbytes_done; /* kbytes done so far */
unsigned32 kbytes_total; /* total kbytes estimated */
unsigned32 files_done; /* files done so far */
unsigned32 files_total; /* total files estimated */
unsigned32 percent_done; /* percentage to completion */

} sw_rpc_interim_status_t;

4.15 File Transfer
This type is used for the transfer of file contents, such as the files that comprise the software
catalog, a software object’s actual files, and the log file data for a session.

/*
* General "pipe of bytes" typedef, used in transferring logfile
* entries and file contents.
*/

typedef pipe byte sw_rpc_bytepipe_t;

42 CAE Specification

XDSA-DCE RPC Type Definitions Disk Space Analysis

4.16 Disk Space Analysis
These types are used to transfer the data generated by performing disk space analysis. Data is
gathered on a per-volume as well as a per-fileset basis.

/*
* This is used for RPC transport of disk space analysis results
* from the agent to the manager.
*/

typedef struct
{

/* Volume attributes. */

sw_rpc_string_full_t filesystem; /* filesystem */
unsigned32 type; /* type of file system */||
long minfree; /* percent for this volume */
long blocks; /* total 1K available */
long free_blocks; /* 1K before operation */

/*
* Volume status.
* All block sizes are normalized to 1024 bytes/block
*/

unsigned32 state; /* file system use */
unsigned32 num_files; /* number of files to load on this volume */
long current_blocks; /* current for all selected filesets */
long needed_blocks; /* net for all selected filesets */
long till_full; /* blocks available to absolute limit */
long till_warn; /* blocks available to minfree threshold */

} sw_rpc_volume_t;

typedef struct
{

unsigned32 max_volumes; /* max size of array */
unsigned32 num_volumes; /* cur size of array */
[size_is(max_volumes),

length_is(num_volumes)]
sw_rpc_volume_t volumes[]; /* list of volumes */

} sw_rpc_volumes_list_t;

/*
* This is the per volume / per fileset information
*/

typedef struct
{

sw_rpc_string_full_t swobj_spec; /* software spec */
uuid_t swobj_uuid; /* uuid (not used) */
unsigned32 fileset_index; /* index (not used) */
unsigned32 num_files; /* Effect of fileset */
unsigned32 current_blocks;
unsigned32 needed_blocks;

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 43

Disk Space Analysis XDSA-DCE RPC Type Definitions

} sw_rpc_fsvol_t;

typedef struct
{

unsigned32 max_fsvol; /* max size of array */
unsigned32 num_fsvol; /* cur size of array */
[size_is(max_fsvol),

length_is(num_fsvol)]
sw_rpc_fsvol_t fsvol[]; /* list of fsvol entries */

} sw_rpc_fsvol_list_t;

44 CAE Specification

Chapter 5

XDSA-DCE RPC Type Values

This chapter summarizes the values that each of the enumerated or defined types used in the
XDSA-DCE RPC interfaces can take. These types include:

• Task Types

• Selection Types

• Volume Types

• Result Status

• Fileset State

• Session Phase

• Result Codes.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 45

Task Types XDSA-DCE RPC Type Values

5.1 Task Types
The task type determines what task the agent will perform on the software collection during the
course of the session (corresponds to the POSIX 1387.2 standard command that was invoked).
This is also referred to as the session type . It applies to the task_type paramenter of
sw_rpc_agent_init () and sw_rpc_begin_session().

SW_UNDEFINED_TASK[0]
This is an undefined task (used internally for initialization).

SW_READ_TASK[1]
The task involves reading files from a source distribution. Note that this task type does not
map directly onto an command, but rather the source role.

SW_LIST_TASK[2]
The task involves reading the database information from an installed software collection.

SW_DLIST_TASK[3]
The task involves reading the database information from a distribution.

SW_INSTALL_TASK[4]
The task involves installing software objects to an installed software collection.

SW_COPY_TASK[5]
The task involves copying software objects to a distribution.

SW_REMOVE_TASK[6]
The task involves removing software objects from an installed software collection.

SW_DREMOVE_TASK[7]
The task involves removing software objects from a distribution.

SW_VERIFY_TASK[8]
The task involves verifying software objects in an installed software collection.

SW_DVERIFY_TASK[9]
The task involves verifying software objects in a distribution.

SW_CONFIGURE_TASK[10]
The task involves configuring software objects in an installed software collection.

SW_UNCONFIGURE_TASK[11]
The task involves unconfiguring software objects in an installed software collection.

SW_MODIFY_TASK[12]
The task involves modifying the catalog information in a installed software collection.

SW_DMODIFY_TASK[13]
The task involves modifying the catalog information in a distribution.

46 CAE Specification

XDSA-DCE RPC Type Values Selection Types

5.2 Selection Types
This designates whether the software selection passed from the manager to the agent was
explicitly selected by the user, or is a dependency automatically included when the
autoselect_dependencies option is set to TRUE.

It applies to the selection_type member of the software_selections parameter for
sw_rpc_analyze_task () and sw_rpc_execute_task().

SW_SELECTED[0]
The software selection was explicitly selected.

SW_DEPENDENCY_SELECTED[1]
The software selection was automatically selected to resolve dependencies.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 47

Volume Types and States XDSA-DCE RPC Type Values

5.3 Volume Types and States
The volume type designates whether the affected volume is a local file system, remote file system,
or read-only file system. This applies to the type member of the volumes parameter for
sw_rpc_dsa_volume_list ().

SW_VOL_NORMAL[0]
The file system is a local writable file system.

SW_VOL_NFS[1]
The file system is a remote writable file system.

SW_VOL_READONLY[2]
The file system is a local or remote read only file system.

The volume state designates the summary of the disk space impact on a volume. This applies to
the state member of the volumes parameter for sw_rpc_dsa_volume_list ():

SW_VOL_NOT_USED[0]
Disk space analysis determines the file system is not affected.

SW_VOL_USED[1]
Disk space analysis determines the file system will be affected, but will still have space
available to non- superusers.

SW_VOL_WARN[2]
Disk space analysis determines the file system will be affected, will still have free space, but
will not have space available to non-superusers.

SW_VOL_FULL[3]
Disk space analysis determines the file system would be affected beyond its capacity.

48 CAE Specification

XDSA-DCE RPC Type Values Software State

5.4 Software State
For task analysis, the software state indicates the action that the agent will take on this software
selection. For task execution, the software state indicates the action that the agent did take on
this software selection by describing the state the selection ended up in.

It applies to the swobj_state member of the software_selections paramenter of
sw_rpc_analyze_task () and sw_rpc_execute_task().

5.4.1 Analysis States

SW_NOT_YET_STATE[8]
The software object has not been analyzed yet.

SW_INSTALLED_STATE[4]
The software object will be a new install.

SW_AVAILABLE_STATE[3]
The software object will be a new copy.

SW_REINSTALLED_STATE[9]
The software object will be a reinstall or recopy.

SW_UPDATED_STATE[10]
The software object will be an update.

SW_DOWNDATED_STATE[11]
The software object will be a downdate.

SW_NEW_VERSION_STATE[12]
The software object will create a new (multiple) version.

SW_REMOVED_STATE[6]
The software object will be removed.

SW_CONFIGURED_STATE[5]
The software object will be configured.

SW_RECONFIGURED_STATE[13]
The software object will be reconfigured.

SW_UNCONFIGURED_STATE[14]
The software object will be unconfigured.

SW_TRANSIENT_STATE[1]
The software object is in the transient state (for verify).

SW_CORRUPT_STATE[2]
The software object is in the corrupt state (for verify).

SW_NON_EXISTENT_STATE[7]
The software object does not exist.

SW_SKIPPED_IN_ANALYSIS_STATE[16]
The software object will be skipped as per defined behavior (for example, reinstall=false) or
due to an error (for example, checkinstall error).

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 49

Software State XDSA-DCE RPC Type Values

5.4.2 Execute States

The execute states are either the current state of the software object on the distribution or
installed software collection, or are a state that reflects its failure.

SW_NOT_YET_STATE[0]
The software object has not been processed yet.

SW_INSTALLED_STATE[4]
The software object resulted in an INSTALLED state.

SW_AVAILABLE_STATE[3]
The software object resulted in an AVAILABLE state.

SW_REMOVED_STATE[6]
The software object resulted in a REMOVED state.

SW_CONFIGURED_STATE[5]
The software object resulted in a CONFIGURED state.

SW_TRANSIENT_STATE[1]
The software object resulted in a TRANSIENT state.

SW_CORRUPT_STATE[2]
The software object resulted in a CORRUPT state.

SW_NON_EXISTENT_STATE[7]
The software object does not exist.

SW_SKIPPED_IN_ANALYSIS_STATE[16]
The software object was determined to be skipped in analysis.

SW_SKIPPED_IN_EXECUTION_STATE[15]
The software object has been skipped before processing this software object, possibly due to
an error in related software.

50 CAE Specification

XDSA-DCE RPC Type Values Session Phase

5.5 Session Phase
This is the current phase or state of the task, which is used to determine which RPC functions
can be called, as well as what phase the agent is in. These are all target role phases or states,
with the exception of the SW_SOURCE_PHASE (source role only).

It applies to the session_state parameter of sw_rpc_analyze_task (), sw_rpc_execute_task(),
sw_rpc_abort_task () and sw_rpc_get_task_status_and_log ().

5.5.1 Static Phases

These are the states that the target session can be in between RPC calls.

SW_INITIAL_PHASE[0]
This is the state the agent is in before a source or target session has begun. The function
sw_rpc_begin_session() is allowed from this state.

SW_SOURCE_PHASE[18]
The agent is initialized to this state if the sw_rpc_begin_session() call for an SW_READ_TASK
type was successful. The function sw_rpc_get_soc_file() is allowed from this state.

SW_SELECTION_PHASE[1]
The agent is initialized to this state if the sw_rpc_begin_session() call for a task type besides
SW_READ_TASK was successful. If a global error occurs during task analysis, then the
session will return from this state. The following functions:

sw_rpc_analyze_task ()
sw_rpc_get_soc_file()
sw_rpc_get_status_and_log ()
sw_rpc_end_session()

are allowed from this state.

SW_ANALYSIS_COMPLETED_PHASE[2]
Task analysis has completed without a global error, and task execution is now possible. The
following functions:

sw_rpc_execute_task()
sw_rpc_get_dsa_volume_list ()
sw_rpc_get_dsa_impact_data ()
sw_rpc_get_status_and_log ()
sw_rpc_end_session()

are allowed from this state.

SW_SUSPENDED_PHASE[3]
The task execution has been suspended. The functions sw_rpc_get_status_and_log () ,
sw_rpc_execute_task() and sw_rpc_abort_task () are allowed from this state.

SW_READY_FOR_REBOOT_PHASE[4]
The agent has completed execution of an SW_INSTALL_TASK and the agent is waiting for a
confirmation to reboot. The functions sw_rpc_get_status_and_log () and sw_rpc_end_session()
are allowed from this state.

SW_ABORTED_PHASE[5]
The agent entered the suspended state and was instructed to abort the task. The functions
sw_rpc_get_status_and_log () and sw_rpc_end_session() are allowed from this state.

SW_COMPLETED_PHASE[6]
The task execution has completed. The functions sw_rpc_get_status_and_log () and
sw_rpc_end_session() are allowed from this state.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 51

Session Phase XDSA-DCE RPC Type Values

5.5.2 Analyzing Phases

These are the phases that the target session can be in during an analyze task call. They are only
used for display purposes, and can be retrieved via sw_rpc_get_status_and_log () function.

SW_ANALYZING_PHASE[7]
Task analysis is in progress.

SW_ANALYZING_TARGET_PHASE[8]
The target checks are being done.

SW_ANALYZING_SOFTWARE_PHASE[9]
The software selections are being checked.

SW_ANALYZING_SCRIPTS_PHASE[10]
The check or verify scripts are being executed.

SW_ANALYZING_FILES_PHASE[11]
The files are being checked.

5.5.3 Executing Phases

These are the states that the target session can be in during an analyze task call. They are only
used for display purposes, and can be retrieved via sw_rpc_get_status_and_log () function.

SW_EXECUTING_PHASE[12]
Task execution is in progress.

SW_EXECUTING_PRESCRIPT_PHASE[13]
A preinstall or preremove script is being executed.

SW_EXECUTING_FILES_PHASE[14]
The files are being loaded or removed.

SW_EXECUTING_POSTSCRIPT_PHASE[15]
A postinstall or postremove script is being executed.

SW_EXECUTING_CONFIGURE_PHASE[16]
A configure or unconfigure script is being executed.

SW_EXECUTING_KERNEL_BUILD_PHASE[17]
A kernel build command is being executed.

52 CAE Specification

XDSA-DCE RPC Type Values Result Status

5.6 Result Status
Result status is used in three instances:

1. to indicate the overall result of a function upon its return

2. to indicate the ‘‘effect’’ of each individual result code (event) that occurred during a
function’s execution

3. to indicate the cumulative effect of the results that occurred during task analysis or
execution for each individual selected software object.

It applies to the result_status and summary_status members of the results parameter for all calls. It
also applies to the result_status member of the selections parameter for sw_rpc_analyze_task () and
sw_rpc_execute_task().

SW_NOTE[0001]
This event was interpreted as informational only.

SW_WARNING[0002]
This event was interpreted as a warning.

SW_ERROR[0004]
This event was interpreted as an error.

SW_SUSPEND[0008]
This event caused a suspend of the task.

The result status (severity of a result code) can change based on the control options for the task
(for example, a ‘‘dependency not met’’ result code can be an ERROR or a WARNING depending
on the enforce_dependencies control options).

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 53

Result Codes XDSA-DCE RPC Type Values

5.7 Result Codes
Result codes exist for each type of event that can occur during an agent task. The results array
returned from each RPC function is a list of (result code, result status, result info) tuples. Thus,
the results array summarizes the events that occurred during the RPC function.

It applies to the result_code member of the results paramenter for all calls.

Listed below are the result codes that can be returned for each function, their associated result
status values, and the meaning of the auxiliary info (if other than number of occurrences of this
event).

5.7.1 Generic RPC Result Codes

SW_ILLEGAL_STATE_TRANSITION[1]
The agent is in the wrong state to accept this call.
ERROR: always.
The result_info contains the current state.

SW_BAD_SESSION_CONTEXT[2]
The session context sent does not identify a valid session.
ERROR: always.

SW_ILLEGAL_OPTION[3] An illegal or unrecognized option was sent.
ERROR: always.
The result_info contains the number of options.

SW_ACCESS_DENIED[4]
The user has insufficient privilege to perform the requested operation.
ERROR: always.

SW_MEMORY_ERROR[5]
The agent had a memory allocation error (for example, out of swap).
ERROR: always.

SW_RESOURCE_ERROR[6]
The agent had a resource allocation error such a maximum number of processes, number of
files open, etc.
ERROR: always.

SW_INTERNAL_ERROR[7]
The agent had an internal implementation error.
ERROR: always.

5.7.2 Get Distributions Result Codes

SW_MORE_DATA[20]
More distributions are registered than fit in the structure passed to this call.
WARNING: always.
The result_info contains the number of registered distributions.

54 CAE Specification

XDSA-DCE RPC Type Values Result Codes

5.7.3 Register Distribution Result Codes

SW_ALREADY_REGISTERED[22]
Distribution to register is already registered (possibly under a different filesystem
pathname).
NOTE: always.

SW_SOC_DOES_NOT_EXIST[31]
The requested target or source (distribution or installed software collection) does not exist.
ERROR: always.

5.7.4 Unregister Distribution Result Codes

SW_NOT_REGISTERED[23]
Distribution to unregister is not registered.
ERROR: always.

5.7.5 Is Distribution Registered Result Codes

SW_NOT_REGISTERED[23]
The distribution or installed software collection specified is not registered.
ERROR: always.

5.7.6 Initialize Agent / Begin Session Result Codes

SW_AGENT_INITIALIZATION_FAILED[10]
Failed to initialize an agent.
ERROR: always.

SW_SERVICE_NOT_AVAILABLE[11]
The daemon is in the process of an orderly shutdown and not accepting requests for new
sessions.
ERROR: always.

SW_OTHER_SESSIONS_IN_PROGRESS[12]
There are other sessions in progress that may affect the results of this task.
WARNING: always.

SW_CONNECTION_LIMIT_EXCEEDED[30]
The limit of existing connections to this source software collection has already been reached.
ERROR: always.

SW_SOC_DOES_NOT_EXIST[31]
The requested target or source (distribution or installed software collection) does not exist.
ERROR: unless install or copy task.

SW_SOC_IS_CORRUPT[32]
The software collection exists, but the information is corrupt. It needs to be fixed or
removed.
ERROR: always.

SW_SOC_CREATED[34]
The target software collection did not previously exist and was created.
NOTE: always.

SW_CONFLICTING_SESSION_IN_PROGRESS[35]
The software collection is already locked by another session. A read or write lock on the
software collection was denied.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 55

Result Codes XDSA-DCE RPC Type Values

WARNING: if a list task read lock was attempted.
ERROR: otherwise.

SW_SOC_LOCK_FAILURE[36]
Cannot lock onto the target due to an external error (for example, lock file not creatable).
ERROR: always.

SW_SOC_IS_READ_ONLY[37]
The software collection is located on a read-only filesystem.
ERROR: install, copy and remove tasks.
NOTE: otherwise.

SW_SOC_IS_REMOTE[38]
The software collection is located on a remote filesystem (for example, NFS).
ERROR: if allow_remote_filesystem_writes option is false for install, copy and remove.
NOTE: otherwise.

SW_SOC_INCORRECT_MEDIA_TYPE[39]
The software collection is not the correct media type for the requested task, for example, the
software collection is tape and the task is a distribution copy or remove.
ERROR: always.

SW_SOC_IS_SERIAL[40]
The distribution software collection is in serial format.
NOTE: always.

SW_SOC_INCORRECT_MEDIA_TYPE[41]
The software collection is not the correct type (distribution or installed software collection)
for the task. For example, it is an installed software collection and the task was for a
distribution.
ERROR: always.

SW_CANNOT_OPEN_LOGFILE[42]
Cannot open the software collection logfile.
ERROR: always.

SW_SOC_AMBIGUOUS_TYPE[49]
The software collection is of the wrong type (distribution or installed software) for the
operation.
ERROR: always.

5.7.7 End Session Result Codes

SW_TERMINATION_DELAYED[50]
The agent is currently analyzing or executing a task and will terminate the session once
completed.
NOTE: always.
The result_info contains the current state.

SW_CANNOT_INITIATE_REBOOT[51]
The agent failed to initiate the reboot operation of an install task. It must be manually
executed.
WARNING: always.

56 CAE Specification

XDSA-DCE RPC Type Values Result Codes

5.7.8 Analyze Task Result Codes

SW_EXREQUISITE_EXCLUDE[56]
One or more filesets were excluded automatically as software identified as exrequisites was
also specified to be selected.
NOTE: always.

SW_CHECK_SCRIPT_EXCLUDE[57]
One or more checkinstall or checkremove scripts have caused the software to be unselected
and excluded from further processing.
NOTE: always.

SW_CONFIGURE_EXCLUDE[58]
One or more configure or unconfigure scripts have caused the software to be unselected and
excluded from further processing.
NOTE: always.

SW_SELECTION_IS_CORRUPT[59]
The software selection was found, but its state was corrupt or transient .
ERROR: always.

SW_SOURCE_ACCESS_ERROR[60]
Generic failure contacting or retrieving information from the source.
ERROR: always.

SW_SOURCE_NOT_FIRST_MEDIA[61]
The source does not have a media number of 1 (needed for retrieval of the INDEX).
ERROR: always.

SW_SELECTION_NOT_FOUND[62]
One or more software selections can not be found.
ERROR: install or copy.
NOTE: otherwise.
The result_info contains the number of filesets.

SW_SELECTION_NOT_FOUND_RELATED[63]
One or more software selections can not be found as specified, but the same product tag
exists.
ERROR: install or copy.
NOTE: otherwise.
The result_info contains the number of filesets.

SW_SELECTION_NOT_FOUND_AMBIG[64]
One or more software selections can not be unambiguously determined.
ERROR: install or copy.
NOTE: otherwise.
The result_info contains the number of filesets.

SW_FILESYSTEMS_NOT_MOUNTED[65]
One or more filesystems in the filesystem table are not mounted.
ERROR: If mount_all_filesystems option is true.
WARNING: If mount_all_filesystems option is false.
The result_info contains the number of unmounted filesystems.

SW_FILESYSTEMS_MORE_MOUNTED[66]
One or more filesystems mounted are not in filesystem table.
WARNING: always.
The result_info contains the number of extra filesystems mounted.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 57

Result Codes XDSA-DCE RPC Type Values

SW_HIGHER_REVISION_INSTALLED[67]
One or more filesets have a higher revision already installed.
ERROR: If allow_downdate option is false.
WARNING: If allow_downdate option is true.
The result_info contains the number of filesets.

SW_NEW_MULTIPLE_VERSION[68]
One or more products would create a new version in an installed software collection.
ERROR: If allow_multiple_versions option is false.
NOTE: If allow_multiple_versions option is true.
The result_info contains the number of products.

SW_EXISTING_MULTIPLE_VERSION[69]
The task is operating on an existing multiple version of one or more products.
ERROR: If trying to install two versions into one location at the same time.
WARNING: If allow_multiple_versions option is false.
NOTE: If allow_multiple_versions option is true.
The result_info contains the number of products.

SW_DEPENDENCY_NOT_MET[70]
One or more dependencies can not be met.
ERROR: If enforce_dependencies option is true.
WARNING: If enforce_dependencies option is false.
The result_info contains the number of filesets.

SW_NOT_COMPATIBLE[71]
One or more products are incompatible for this target.
ERROR: If allow_incompatible option is false.
WARNING: If allow_incompatible option is true.
The result_info contains the number of products.

SW_CHECK_SCRIPT_WARNING[72]
One or more checkinstall, checkremove or verify scripts had a warning.
WARNING: always.
The result_info contains the number of filesets.

SW_CHECK_SCRIPT_ERROR[73]
One or more checkinstall, checkremove or verify scripts failed.
ERROR: always.
The result_info contains the number of filesets.

SW_DSA_INTO_MINFREE[74]
DSA shows that the space requirements encroach into minfree, but not over the absolute
limit on one or more volumes.
ERROR: If enforce_dsa option is true.
WARNING: If enforce_dsa option is false.
The result_info contains the number of volumes that are beyond minfree.

SW_DSA_OVER_LIMIT[75]
DSA shows that the space requirements are over the absolute limit on one or more volumes.
ERROR: If enforce_dsa option is true.
WARNING: If enforce_dsa option is false.
The result_info contains the number of volumes that are beyond minfree.

SW_DSA_FAILED_TO_RUN[76]
DSA had an internal error and failed to run.
ERROR: If enforce_dsa option is true.

58 CAE Specification

XDSA-DCE RPC Type Values Result Codes

WARNING: If enforce_dsa option is false.

SW_SAME_REVISION_INSTALLED[77]
One or more filesets have the same revision and are being reinstalled or recopied because
the reinstall or recopy option is true.
NOTE: always.
The result_info contains the number of filesets.

SW_ALREADY_CONFIGURED[78]
One or more filesets are already configured.
NOTE: If reconfigure option is true.
NOTE: If reconfigure option is false.
The result_info contains the number of filesets.

SW_SKIPPED_PRODUCT_ERROR[79]
One or more filesets will be skipped because of another error within their product.
NOTE: always.
The result_info contains the number of filesets.

SW_SKIPPED_GLOBAL_ERROR[80]
One or more filesets will be skipped because of a global error (such as DSA failure) within
the analyze phase.
NOTE: always.
The result_info contains the number of filesets.

SW_FILE_IS_REMOTE[81]
One or more files would be created or removed on a remote filesystem.
WARNING: if write_remote_files option is false.
NOTE: if write_remote_files option is true.
The result_info contains the number of files.

SW_FILE_IS_READ_ONLY[82]
One or more files will not be attempted to be created or removed over a read only filesystem
mount.
WARNING: always.
The result_info contains the number of files.

SW_FILE_NOT_REMOVABLE[83]
One or more files will not be able to be removed (text busy, or non empty directories).
WARNING: always.
The result_info contains the number of files.

SW_FILE_WARNING[84]
One or more files had warnings (for example, for verify).
WARNING: always.
The result_info contains the number of files.

SW_FILE_ERROR[85]
One or more files had errors (for example, for verify).
ERROR: always.
The result_info contains the number of files.

SW_NOT_LOCATABLE[86]
One or more filesets are not locatable and have been specified with an alternate location.
ERROR: if the enforce_locatable option is true.
WARNING: if the enforce_locatable option is false.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 59

Result Codes XDSA-DCE RPC Type Values

SW_SAME_REVISION_SKIPPED[87]
One or more filesets have the same revision and are not being reinstalled or recopied
because the reinstall or recopy option is false.
NOTE: always.

5.7.9 Execution Result Codes

SW_SELECTION_NOT_FOUND[62]
One or more software selections can not be found.
ERROR: install or copy.
NOTE: otherwise.
The result_info contains the number of filesets.

SW_FILE_IS_REMOTE[81]
One or more files were skipped (or written if write_remote_files option is false) over a remote
filesystem.
WARNING: If write_remote_files option is false for install, copy and remove.
NOTE: If allow_remote_filesystem_writes option is true.
The result_info contains the number of files.

SW_FILE_IS_READ_ONLY[82]
One or more files were skipped over a read only filesystem mount.
WARNING: for install, copy and remove.
The result_info contains the number of files.

SW_FILE_NOT_REMOVABLE[83]
One or more files that were not be able to be removed (for remove or update).
WARNING: always.
The result_info contains the number of files.

SW_FILE_WARNING[84]
One or more files had other load or remove warnings.
WARNING: always.
The result_info contains the number of files.

SW_FILE_ERROR[85]
One or more files that had other load or remove errors.
ERROR: always.
The result_info contains the number of files.

SW_SELECTION_SKIPPED_IN_ANALYSIS[90]
One or more selections have already been determined to be skipped in analysis.
NOTE: always.
The result_info contains the number of filesets.

SW_SELECTION_NOT_ANALYZED[91]
One or more software selection were found, but were not analyzed.
ERROR: always.
The result_info contains the number of filesets.

SW_WRONG_MEDIA_SET[92]
The agent failed to reopen access to physical source media, new media’s software collection
uuid does not match original media’s software collection uuid, or a new or old software
collection uuid is invalid format or invalid value.
ERROR: always.

60 CAE Specification

XDSA-DCE RPC Type Values Result Codes

SW_NEED_MEDIA_CHANGE[93]
The agent has suspended for a media change.
NOTE: always.
SUSPEND: always.
The result_info contains the number of the needed media.

SW_CURRENT_MEDIA[94]
The agent currently is accessing this media number (for example, in the drive).
NOTE: always.
The result_info contains the number of the current media.

SW_PRE_SCRIPT_WARNING[95]
One or more preinstall or preremove scripts had a warning.
WARNING: always.
The result_info contains the number of filesets.

SW_PRE_SCRIPT_ERROR[96]
One or more preinstall or preremove scripts failed.
ERROR: always.
SUSPEND: if a kernel preinstall script.
The result_info contains the number of filesets.

SW_FILESET_WARNING[97]
One or more filesets had warnings.
WARNING: always.
The result_info contains the number of filesets.

SW_FILESET_ERROR[98]
One or more filesets had an error.
ERROR: always.
SUSPEND: if a kernel fileset had an error.
The result_info contains the number of filesets.

SW_POST_SCRIPT_WARNING[99]
One or more postinstall or postremove scripts had a warning.
WARNING: always.
The result_info contains the number of filesets.

SW_POST_SCRIPT_ERROR[100]
One or more postinstall or postremove scripts failed.
ERROR: always.
SUSPEND: if a kernel postinstall script.
The result_info contains the number of filesets.

SW_POSTKERNEL_WARNING[101]
The kernel build script had a warning.
WARNING: always.

SW_POSTKERNEL_ERROR[102]
The kernel build script failed.
ERROR: always
SUSPEND: always.

SW_CONFIGURE_WARNING[103]
One or more configure or unconfigure scripts had a warning.
WARNING: always.
The result_info contains the number of filesets.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 61

Result Codes XDSA-DCE RPC Type Values

SW_CONFIGURE_ERROR[104]
One or more configure or unconfigure scripts failed.
ERROR: always.
The result_info contains the number of filesets.

SW_DATABASE_UPDATE_ERROR[105]
An update to the installed software collection catalog or distribution catalog failed.
ERROR: always.

5.7.10 Abort Task Result Codes

There are no additional result codes for this function.

5.7.11 Get Status and Log Result Codes

There are no additional result codes for this function.

5.7.12 Get DSA Volumes Result Codes

SW_MORE_VOLUMES_AVAILABLE[110]
There are more volumes than were allocated to return.
WARNING: always.
The result_info contains the total number of volumes available.

5.7.13 Get DSA Impact Data Result Codes

SW_FILESET_NOT_COMPUTED[111]
One or more filesets requested for disk space has not be computed.
WARNING: always.
The result_info contains the number of filesets.

5.7.14 Get Software Collection File Result Codes

SW_ACCESS_DENIED[4]
The user has insufficient privilege to perform the requested operation.
ERROR: always.

SW_SELECTION_NOT_FOUND[62]
The software selection can not be found.
ERROR: always.

SW_IO_ERROR[8]
Failed getting the file due to I/O error.
ERROR: always.

SW_SOURCE_ACCESS_ERROR[60]
Generic source access failure.
ERROR: always.

SW_CANNOT_COMPRESS[112]
Request for compressed file is refused due to no support or lack of cpu resources. Re-
request the file without compression.
ERROR: always.

SW_FILE_NOT_FOUND[113]
File is missing from remote software collection.
ERROR: always.

62 CAE Specification

XDSA-DCE RPC Type Values Result Codes

5.8 Options
Options are passed as name=value strings in the control_options parameter of each RPC call. This
section describes the POSIX 1387.2 standard as well as the XDSA-DCE options that the XDSA-
DCE implementation currently recognizes.

The RPC interface is designed to be extensible for implementation specific extensions. If a server
(daemon or agent) gets an option it does not recognize however, the call fails (see result codes).
The caller can retry the call with a different set of options, for example only using the options
defined in the standard.

5.8.1 Register Options

These are passed in the sw_rpc_get_depots(), sw_register_depot(), sw_unregister_depot() and
sw_rpc_is_depot_registered() functions.

The POSIX 1387.2 standard options that are passed via the RPC include he following (with the
default values when used with these functions):

installed_software_catalog=

level=depot

5.8.2 Analyze and Execute Task Options

These are passed in the sw_rpc_analyze_task () function for the appropriate commands (the
commands to which they apply). Each call to analyze task resets these options (so that different
analysis behavior can be effected. Only the loglevel option affects execute task.

The POSIX 1387.2 standard options that are passed via the RPC include the following (with their
default values):

allow_downdate=false

allow_incompatible=false

allow_multiple_versions=false

autoreboot=false

autorecover=false

autoselect_dependencies=true

autoselect_dependents=false

check_contents=true

check_permissions=true

check_requisites=true

check_scripts=true

check_volatile=false

compress_files=false

compression_type=implementation_defined_value

defer_configure=false

enforce_dependencies=true

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 63

Options XDSA-DCE RPC Type Values

enforce_locatable=true

enforce_scripts=true

enforce_dsa=true

files=

installed_software_catalog=implementation_de fined_value

loglevel=1

reconfigure=false

recopy=false

reinstall=false

uncompress_files=false

The rest of the POSIX 1387.2 standard options are resolved in the context of the manager (for
example for source and target selection).

XDSA-DCE supports additional options to control the behavior of the analyze and execute
operations.

attributes=
Defines the list of attributes supplied via the POSIX 1387.2 standard -a option. The value is
a space separated list of attribute=value pairs. Since the list is space separated, any value
containing whitespace needs to be quoted.

Applies to swmodify.

catalog=
Defines the path to the catalog file or directory supplied via the POSIX 1387.2 standard -c
option.

Applies to swmodify, swinstall and swconfig.

use_alternate_source=false
Empowers each target agent to use its own configured alternate source, instead of the one
specified by the user. If false, each target agent will use the same source, namely the source
specified by the user and validated by the command.

Applies to swcopy and swinstall.

register_new_depot=true
Register a newly created distribution with the local host object. This action allows other
XDSA-DCE commands to automatically ‘‘see’’ this distribution. If set to false, a new
distribution will not be automatically registered. (It can be registered later with the swreg
command.)

Applies to swcopy.

register_new_root=true
Register a newly created installed software collection with the local host object. This action
allows other XDSA-DCE commands to automatically ‘‘see’’ this installed software
collection. If set to false, a new installed software collection will not be automatically
registered. (It can be automatically registered later with the swreg command).

Applies to swinstall.

64 CAE Specification

XDSA-DCE RPC Type Values Options

mount_all_filesystems=true
Attempt to automatically mount all filesystems in the filesystem table at the beginning of
the analysis phase, to ensure that all listed filesystems are mounted before proceeding. This
policy helps to ensure that files which may be on unmounted filesystems are available. If
set to false, the mount operation is not attempted, and no check of the current mounts is
performed.

Applies to swcopy, swinstall, swconfig, swverify and swremove.

reinstall_files=false
Causes all the files in a fileset to always be re-installed, even when the file already exists at
the target and is identical to the new file. If set to false, files that have the same checksum
(see next option), size and timestamp will not be re-installed. This check enhances
performance on slow networks or slow discs.

Applies to swcopy and swinstall.

reinstall_files_use_cksum=true
When the reinstall_files option is set to false, this option causes the checksums of the new
and old file to be compared to determine if the new file should replace the old one. If set to
false, the checksums are not computed, and files are (not) reinstalled based only on their
size and timestamp.

Applies to swcopy and swinstall.

5.8.3 Get Status and Log Options

These are passed in the sw_rpc_get_task_status_and_log () function.

get_interim_status=true
Used to designate getting interim status.

get_log_data=true
Used to designate getting log data.

reset_log_offset=true
Used to get the log data from the beginning, as opposed to only from the offset last
retrieved.

5.8.4 Get Software Collection File Options

These options are passed in the sw_rpc_get_soc_file() function:

soc_control_file=true
Used to designate whether the file requested is a regular file or a control file.

The POSIX 1387.2 standard options that are passed via the RPC include the following:

compress_files=false
When set to true, the file is compressed before transfer.

compression_type=implementation_defined_value
Identifies the compression type, if compression is used.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 65

Options XDSA-DCE RPC Type Values

5.8.5 Miscellaneous RPC Options

XDSA-DCE defines other options related to the RPC listed here:

rpc_binding_info=ncadg_ip_udp:[2121]
Defines the protocol sequences and endpoints which should be used to contact the daemon
when DCE naming is not being used. This is not passed through an RPC but used to
contact the remote daemon.

Applies to all commands.

rpc_timeout=5
Relative length of the communications timeout. Higher values mean longer times; you may
need a higher value for a slow or busy network. Also passed through the RPC and used by
the target when contacting the source.

Applies to all commands.

polling_interval=2
Defines the polling interval used by interactive (GUI) sessions. It specifies how often each
target agent will be polled to obtain status information about the task being performed.
When operating across wide-area networks, the polling interval can be increased to reduce
network overhead.

Applies to all commands.

5.8.6 DCE Naming Service Options

These options are used to define the interface to DCE naming. They are not passed via the RPC,
but used to find daemons when DCE naming is used.

use_dce_directory_service=false
When set to false, there is no requirement for DCE naming. When set to true, naming
features for the commands are supported. These features include retrieving target and
source daemons, including the rpc binding to those daemons.

dce_server_group=/.:/subsys/XDSA_DCE/server_group
The default group name in the DCE namespace where the daemon registers its server name.
This allows all target servers to be found easily. This option only applies when DCE
naming services are available.

dce_depot_group=/.:/subsys/XDSA_DCE/depot_group
The default group name in the DCE namespace where the daemon registers its server name
if it is serving one or more distributions. This allows all source servers to be found easily.
This option only applies when DCE naming services are available.

dce_server_register=/.:/hosts/%s/XDSA_DCE
The default location in the DCE namespace for the daemon to register itself. The ‘‘%s’’ is
replaced by the local hostname. This option only applies when DCE naming services are
available.

66 CAE Specification

XDSA-DCE RPC Type Values Options

5.8.7 DCE Security Service Options

These options are used to define the interface to DCE security. The authentication_service and
protection_level are not passed via the RPC, and are configurable by the user. The others are
automatically generated and are communicated to the target and source daemons and agents.

authentication_service=internal
When set to internal , there is no requirement for DCE security service. The internal security
mechanism is used. When set to dce_secret, DCE security service is used.

protection_level=none
This is the protection level for DCE data protection (none, connect , call , pkt , pkt_integ ,
pkt_privacy). The manager specifies the protection level for any particular session. The
daemon and agent can be configured for what minimum level of protection they will accept.

internal_authn_user=
This is how the user part of the caller information (principals) is passed across the RPC
when XDSA-DCE internal security is used.

internal_authn_group=
This is how the group part of the caller information (principals) is passed across the RPC
when XDSA-DCE internal security is used.

internal_authn_realm=
This is how the realm part of the caller information (principals) is passed across the RPC
when XDSA-DCE internal security is used.

internal_authn_secret=
This is the encrypted secret used for XDSA-DCE internal security authentication. For the
daemon or agent to accept a request, they must have previously been configured for this
secret.

initiator_user=
These are used to support delegation for both internal and DCE security modes. This is
how the user part of the initiator information is passed from the target agent to the source
agent (the initiator being the manager user).

initiator_group=
These are used to support delegation for both internal and DCE security modes. This is
how the group part of the initiator information is passed from the target agent to the source
agent (the initiator being the manager user).

initiator_realm=
These are used to support delegation for both internal and DCE security modes. This is
how the realm part of the initiator information is passed from the target agent to the source
agent (the initiator being the manager user).

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 67

XDSA-DCE RPC Type Values

68 CAE Specification

Chapter 6

XDSA-DCE Utilities

As XDSA-DCE is an extension to the POSIX 1387.2 standard, This XDSA-DCE specification
assumes the definition for all utilities defined in that standard. Additionally, XDSA-DCE
requires one new utility (swreg), and extensions to one existing POSIX 1387.2 standard utility
(swlist):

• swreg — register or unregister distributions and installed software collections

• swlist — list registered distributions and installed software collections.

This chapter describes these new and extended utilities.

If DCE Naming Services are used, these utilities are also used to register and list registered hosts
serving distributions and installed software collections.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 69

swreg XDSA-DCE Utilities

NAME
swreg — register or unregister distributions and installed software collections

SYNOPSIS

swreg [-u] -l level [-f object_file] [-t target_file] [-x
option=value] [-X option_file] [objects_to_register] [@
target_selections]

DESCRIPTION
The swreg utility controls the visibility of distributions and installed software collections to
users who are performing software management tasks.

By default, the swcopy utility registers newly created distributions and the swinstall utility
registers newly created alternate installed software collections. By default, the swpackage
utility does not register newly created distributions. The swremove utility unregisters a
distribution or installed software collection if the distribution or installed software collection is
empty.

The user invokes swreg to explicitly register or unregister a distribution or installed software
collection when the automatic behaviors of swcopy, swinstall, swpackage and swremove do
not suffice. For example:

• making a CD-ROM or other removable media available as a registered distribution

• registering a distribution created directly by swpackage

• unregistering a distribution without removing it with swremove.

When using DCE Naming Services (see referenced document DCE Directory), swreg also
registers the name of the host serving the distribution or installed software collection in the
appropriate XDSA-DCE group if not already done previously for other distributions or installed
software collections.

OPTIONS
The swreg utility supports the following options:

-f object_file
Read the list of distribution or installed software collection objects to register or unregister
from object_file instead of (or in addition to) the command line.

-l level
Specify the level of the object to register or unregister. Exactly one level must be specified.
The supported levels are:

— installed software collection
The object to be registered is a root.

— distribution
The object to be registered is a depot.

-t target_file
Read the list of target hosts on which to register the distribution or installed software
collection objects from target_file instead of (or in addition to) the command line.

-u
Causes swreg to unregister the specified objects instead of registering them.

-x option=value
Set the session option to value and override the default value (or a value in an alternate
option_file specified with the -X option). Multiple -x options can be specified.

70 CAE Specification

XDSA-DCE Utilities swreg

-X option_file
Read the session options and behaviors from option_file .

OPERANDS
The swreg utility supports the following syntax for each object_to_register . Each path specifies a
distribution or installed software collection to be registered or unregistered:

path

The swreg utility supports the following syntax for each target_selection:

host

EXTERNAL INFLUENCES
The swreg utility supports the following extended options:

distribution_target_directory=implementation_defined_value
Defines the location of the distribution object to register if no objects are specified and the
level is distribution .

installed_software_catalog=implementation_de fined_value
Specifies the installed software collection catalog that is associated with each installed
software collection path to be registered, if different than the implementation default.

level=
Defines the default level of objects to register. The valid levels are root and depot .

logfile=implementation_defined_value
This is the default command log file for the swreg command.

loglevel=1
Controls the amount of output sent by the utility to log files.

objects_to_register=
Defines the default objects to register or unregister. There is no supplied default (see
distribution_target_directory above). If there is more than one object, they must be separated
by spaces.

rpc_binding_info=ncadg_ip_udp:[2121]
Defines the protocol sequence and endpoint which should be used to contact the daemon.

rpc_timeout=5
Relative length of the communications timeout.

select_local=true
If no target_selections are specified, select the local host as the target of the command.

targets=
Defines the default target hosts on which to register or unregister the specified distributions
or installed software collections.

There is no supplied default (see select_local above). If there is more than target selection,
they must be separated by spaces.

verbose=1
Controls the amount of output sent by the utility to stdout and stderr, but not to logfiles.

EXTERNAL EFFECTS

stdout
The swreg utility writes events with a status of SW_NOTE to stdout if permitted by the
value of the verbose option.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 71

swreg XDSA-DCE Utilities

stderr
The swreg utility writes events with a status of SW_WARNING or SW_ERROR to stderr.

logging
The swreg utility logs summary events at the host where the command was invoked. It
logs events about each register or unregister operation to the daemon logfile associated
with each target_selection .

EXTENDED DESCRIPTION
The swreg utility contacts the daemon on the host targets specified, providing the distribution or
installed software collection paths to register or unregister to each daemon. The daemon
performs the following checks for each distribution or installed software collection:

• If attempting to register a distribution or installed software collection does not exist, generate
an event:

(SW_ERROR: SW_SOC_DOES_NOT_EXIST)

• If attempting to register a distribution or installed software collection that is already
registered, issue an event:

(SW_NOTE: SW_ALREADY_REGISTERED)

• If attempting to unregister a distribution or installed software collection that is not
registered, issue an event:

(SW_ERROR: SW_NOT_REGISTERED)

If these checks succeed, the daemon then registers the distribution or installed software
collection in a local ‘‘host catalog’’. The format of the host catalog is undefined.

If the use_dce_directory_service option is set to TRUE, then the daemon also registers its server
name in the appropriate XDSA-DCE group if not already done previously for other distributions
or installed software collections. If a installed software collection was registered, then the
daemon uses the group name defined by the dce_server_group option to register its server name.
If a distribution was registered, then the daemon uses the group name defined by the
dce_depot_group option.

EXIT VALUES
The swreg utility returns one of the following exit codes:

0 The objects_to_register were successfully (un)registered.

1 The register or unregister operation failed on all target_selections .

2 The register or unregister operation failed on some target_selections .

CONSEQUENCES OF ERRORS
If there are any errors, then the register or unregister action fails.

72 CAE Specification

XDSA-DCE Utilities swlist

NAME
swlist — list registered distributions and installed software collections

SYNOPSIS

swlist -l level [@ target_selections]

DESCRIPTION
XDSA-DCE extends the POSIX 1387.2 standard swlist utility to also list registered distributions
and installed software collections on local or remote hosts.

If using DCE Naming Services (see referenced document DCE Directory), swlist can also be
used to list hosts with installed software collections or hosts with distributions that have been
registered in the DCE namespace.

OPTIONS
XDSA-DCE extends the swlist utility to support the following options:

-l level
Specify the level of the object to list. In addition to the levels supported in the POSIX 1387.2
standard, the following levels are supported:

root
list registered installed software collections on a host

depot
list registered distributions on a host.

If DCE Naming Service is being used, the following additional levels are supported:

host
list registered hosts containing installed software collections

host_with_depots
list registered hosts containing distributions.

OPERANDS
The list utility supports the following syntax for each target_selection when listing registered
installed software collections or distributions:

[host][:][path]

EXTERNAL INFLUENCES
XDSA-DCE extends the swlist utility supports the following extended options:

level=
Defines the default level of objects to list. Additional valid levels are installed software
collection , distribution , host and host_with_depots .

EXTERNAL EFFECTS

stdout
The swreg utility displays a list of registered installed software collection or distribution
paths for all target selections.

The output has one distribution or installed software collection path per line. Blank lines
may exist and white space may precede and/of follow the path. On any line containing a #
character, all characters that follow the # character up to but excluding the next <newline>
character are ignored.

In the cases where the installed_software_catalog is also listed, it is listed on the same line as
the path, separated by white space.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 73

swlist XDSA-DCE Utilities

EXTENDED DESCRIPTION
If the level is distribution or installed software collection , the swreg utility contacts the daemon on
the host from each target selection. The daemon returns a list of registered distributions or
installed software collections for each host target selection.

If the target selection includes a path, then that only that path is listed and only if it is registered.

When listing registered installed software collections, the value of the installed_software_catalog
for each installed software collection is listed on the same line as the path for the installed
software collection, separated by white space, if that value is different than the value of the
default installed_software_catalog option provided to swlist.

If the level is host or host_with_depot , the swreg utility contacts the DCE Naming Service and lists
the hosts registered in the group name specified by the dce_server_group or dce_depot_group
option respectively.

EXIT VALUES

0 The list operation succeeded for all targets

1 The list operation failed on all target_selections

2 The list operation failed on some target_selections .

CONSEQUENCES OF ERRORS
None.

74 CAE Specification

Chapter 7

XDSA-DCE Daemon

This chapter describes the XDSA-DCE daemon and agent processes. This is performed using the
swagentd command. It is specified in reference manual page (man-page) format.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 75

swagentd XDSA-DCE Daemon

NAME
swagentd — serve local or remote software management tasks

SYNOPSIS

swagentd [-k] [-n] [-r] [-x option=value] [-X option_file]

DESCRIPTION
The roles of target and source systems require one or two processes known as the daemon
swagentd and agent swagent. The swagentd serves the daemon XDSA-DCE RPC interface
while the swagent serves the agent XDSA-DCE interface.

Whether the daemon and agent are separate processes is implementation defined, and relates to
whether the operating system supports multi-tasking (in which case swagentd and swagent
may be separate processes) or not (in which case a swagent session may be part of the swagentd
process).

For most purposes, the distinction between the daemon and agent is invisible to the user and
they can be viewed as a single process. Each distributed POSIX 1387.2 standard command
interacts with the swagentd daemon and possibly a swagent session to perform its requested
tasks.

The swagentd() daemon must be running before a system is available as a target or source
system. This can be done either manually or in a system start-up script. A swagent session is
initiated by swagentd to perform specific software management tasks. If the swagent session is
a separate process, it is never invoked by the user, only by swagentd.

OPTIONS
The swagentd daemon supports the following options to control its behavior:

-k The kill option stops the currently running daemon. Stopping the daemon will not stop any
swagent sessions currently performing management tasks (such as installing or removing
software), but will cause any subsequent management requests to this host to be refused.

-n The no fork option runs the daemon as a synchronous process rather than the default
behavior of forking to run it asynchronously. This is intended for running the daemon from
other utilities that schedule processes, such as init.

-r The restart option stops any currently running daemon, and then restarts a new daemon.
This operation is required whenever modifying default options that apply to the daemon,
since defaults are only processed on startup.

-x option=value
Set the option to value and override the default value (or a value in an option_file specified
with the -X option). Multiple -x options can be specified.

-X option_file
Read the session options and behaviors from option_file .

OPERANDS
The swagentd daemon does not support any operands.

76 CAE Specification

XDSA-DCE Daemon swagentd

EXTERNAL INFLUENCES

Extended Options

The daemon supports the following extended options:

agent=implementation_defined_value
The location of the swagent program invoked by the swagentd daemon if the
implementation requires a separate agent program.

logfile=implementation_defined_value
This is the default log file for the swagentd daemon.

max_agents=-1
The maximum number of agent sessions that are permitted to run simultaneously. The
value of -1 means that there is no limit.

rpc_binding_info=ncadg_ip_udp:[2121] ncacn_ip_tcp:[2121]
This defines the protocol sequences and endpoints which may be used to contact the
swagentd process (the protocols and endpoints that the swagentd process is listening on).
This value should be consistent among all XDSA-DCE hosts that work together.

The swagent session supports the following options. These options apply only to the agent. If a
command prefix is used with these options, that command prefix must be ‘‘swagent’’.

alternate_source=
If the swinstall or swcopy manager has set use_alternate_source=true, the target agent
consults and uses the configured value of its own alternate_source option to determine the
source that it will use in the install or copy operation.

The agent’s value for alternate_source is specified using the host:path syntax. If the host
portion is not specified, then the local host is used. If the path portion is not specified, then
the path sent by the command is used. If there is no configured value at all for
alternate_source , the agent will apply the manager-supplied path to its own local host.

compress_cmd=implementation_defined_value
Defines the command called by the source agent to compress files before transmission.

postkernel_cmd=implementation_defined_value
Defines the default script called by the agent for kernel building after kernel filesets have
been loaded in the case where the product containing those filesets has not defined a value
for its postkernel attribute.

mount_cmd=implementation_defined_value
Defines the command called by the agent to mount all filesystems if the
mount_all_filesystems option is set to TRUE.

reboot_cmd=implementation_defined_value
Defines the command called by the agent to reboot the system after all filesets have been
loaded, if any of the filesets were filesets requiring reboot.

rpc_binding_info=ncadg_ip_udp:[2121]
This defines the protocol sequence and endpoint used when the agent attempts to contact
an alternate source distribution (as specified by the alternate_source option).

uncompress_cmd=implementation_defined_value
Defines the command called by the target agent to uncompress files after transmission. This
command processes files which were stored on the media in a compressed format.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 77

swagentd XDSA-DCE Daemon

The swagent (target software collection) log files cannot be relocated. They always exist relative
to the installed software collection or distribution target path (for example,
/var/adm/sw/swagent.log for the installed software collection ‘‘/’’, and
/var/spool/sw/swagent.log for the distribution /var/spool/sw).

Environment Variables

The POSIX 1387.2 standard environment variables affecting the operation of swagentd process
(and swagent session) include:

LANG
LC_ALL
LC_TYPE
LC_MESSAGES
LC_TIME
TZ

The swagent session sets the POSIX 1387.2 standard environment variables for use by the
control scripts being executed on behalf of the SD commands:

SW_CATALOG
SW_CONTROL_DIRECTORY
SW_CONTROL_TAG
SW_LOCATION
SW_PATH
SW_ROOT_DIRECTORY
SW_SESSION_OPTIONS
SW_SOFTWARE_SPEC

EXTERNAL EFFECTS

stdout
The swagentd daemon does not write to stdout.

stderr
The swreg utility writes events with a status of SW_WARNING or SW_ERROR to stderr for
any errors or warnings during startup. After startup, all errors and warnings only are
written to the daemon and agent log files.

logging
The swagentd daemon logs all events from the daemon XDSA-DCE RPC interfaces in the
logfile location defined by the logfile option.

When operating on installed software collections or distributions, the swagent target
session logs messages to a logfile relative to the installed software collection or distribution
path. The swagent source session logs messages to the same logfile location, except when
the source is a serial media or a read-only media. In this case, the location of the source
logfile is implementation defined.

78 CAE Specification

XDSA-DCE Daemon swagentd

EXTENDED DESCRIPTION
After initialization, the swagentd daemon listens for daemon RPC requests and processes them
as it receives them.

An agent session is started when the daemon gets the RPC sw_rpc_agent_init () (which spawns
an swagent process if needed), followed by the agent RPC sw_rpc_begin_session(). That agent
session listens for requests until it gets the RPC sw_rpc_end_session(), which ends the session
(and stops the swagent process if needed).

EXIT VALUES
When the -n option is not specified, the swagentd returns:

0 The daemon is successfully initialized and is now running in the background.

1 Initialization failed and the daemon terminated.

When the -n option is specified, the swagentd returns:

0 The daemon successfully initialized and then successfully shutdown.

1 Initialization failed or the daemon unsuccessfully terminated.

CONSEQUENCES OF ERRORS
If there is an initialization error, the daemon terminates.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 79

XDSA-DCE Daemon

80 CAE Specification

Chapter 8

XDSA-DCE Security

This chapter presents an overview of Access Control Lists (ACLs) for XDSA-DCE objects, the
definition of the distributed utility for managing ACLs, and associated the RPC interface
definitions used to implement the utility. It contains the following sections:

• an overview of the XDSA-DCE security model

• the swacl utility

• the DCE Security Service RPCs used to manage the XDSA-DCE ACLs.

8.1 XDSA-DCE Security Model Overview
Along with the traditional POSIX standard file access permissions, certain XDSA-DCE software
objects are protected by ACLs. When any management task attempts to create, read or write
these objects, the principal (user) executing that task is checked against the ACL protecting that
object.

In the distributed model defined by XDSA-DCE, the daemon and agent processes perform these
checks using the principal, group, and realm information passed with each RPC. It is possible
for each implementation to have its own implementation of access control (enforced by the
daemon and agent). However, by supporting XDSA-DCE ACLs, interoperable distributed
management of ACLs is possible.

8.1.1 Object Types

ACLs are supported on hosts, installed software collections, distributions and products in
distributions.

Host ACL

Host

Root ACL

Root

Depot ACL

Depot

Product ACL

Product

Figure 8-1 ACL Object Types

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 81

XDSA-DCE Security Model Overview XDSA-DCE Security

The host ACL protects the host object, primarily for registering and listing registered
distributions and installed software collections.

The root ACL protects the installed software collection objects, for installing, listing and
otherwise managing installed software.

The depot ACL protects the distribution objects, for creating new products in the distribution, as
well as listing the products in the distribution.

The product ACL protects individual products in the distribution, for serving those products to
target agent copy and install tasks, as well as managing those products within the distribution.

There are also template ACLs used for the initial ACLs when creating new distributions, products
within distributions and installed software collections

Host

Global Soc Template Global Product Template

Depot

Product Template

Figure 8-2 Template ACLs

The global_soc_template ACL is used as the initial root or depot ACL when a new installed
software collection or distribution is created.

The global_product_template ACL is used for the initial product_template ACL when a new
distribution is created.

The product_template ACL is used for the initial product ACL when a new product in a
distribution is created.

8.1.2 ACL Entries

Each entry in an ACL has the following form:

entry_type[:key]:permissions

For example:

user:steve@newdist:crwit

An ACL can contain multiple entries. The output of a list operation for an ACL (using swacl) is
in the following format:

82 CAE Specification

XDSA-DCE Security XDSA-DCE Security Model Overview

#
swacl <object_type> Access Control List
#
For <host|depot>: [<host>][:][<directory>]
#
Date: <date_string>
#
Object Ownership: User= <user_name>
Group= <group_name>
Realm= <host_name>
#
default_realm=<host_name>
<entry_type>:[<key>:]<permissions>
<entry_type>:[<key>:]<permissions>
<entry_type>:[<key>:]<permissions>

This output can be saved into a file, modified, and then used as input to redefine an ACL using
the swacl -F option.

8.1.3 Object Ownership

An owner is also associated with every object, as defined by the user name, group and
hostname. The owner is the user who created the object. When using swacl to list an ACL, the
owner is printed as a comment in the header.

8.1.4 Default Realm

An ACL defines a default realm for an object. The realm is currently defined as the name of the
host system on which the object resides. When using swacl to view an ACL, the default realm is
printed as a comment in the header.

When DCE Security Services are used (set by the authentication_service option), the realm is the
DCE cell.

8.1.5 Entry Types

The following entry_types are supported:

object_owner
Permissions for the object’s owner, who’s identity is listed in the comment header.

Example:

object_owner:crwit.

object_group
Permissions for members of the object’s group, who’s identity is listed in the comment
header.

Example:

object_group:crwit.

user
Permissions for a named user. This type of ACL entry must include a key that identifies
that user. The format for user can be:

user:user_name:permissions

or:

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 83

XDSA-DCE Security Model Overview XDSA-DCE Security

user:user_name@hostname:permissions

Example:

user:rml:crwit.

group
Permissions for a named group. This type of ACL entry must include a key that identifies
that group. The format for group can be:

group:group_name:permissions

or:

group:group_name@hostname:permissions.

Example:

group:adm:crwit.

host
Permissions for a target agent from the specified host system. Agents require product level
read access via either a host, other, or any_other entry type in order to copy or install
products from distributions. This type of ACL entry must include a key containing a
hostname of a system.

Example:

host:newdist:-r--t.

other
Permissions for others who are not otherwise named by a more specific entry type. The
format for other can be:

other:permissions

for others on the local host (only one such entry allowed) or:

other:@hostname:permissions

for others at remote hosts (only one such entry per remote host allowed).

Example:

other:@newdist:-r--t.

any_other
Permissions for all other users and hosts that do not match a more specific entry in the ACL.

Example:

any_other:-r--t.

The order of the above entry types is significant. Except for group entry types, permissions to an
object for a user or host are determined by a match to a single ACL.

The user or host is checked against entries of each type in the order shown in the above list until
the match is found. If a match is found with an entry type of group , then a union of permissions
for all group entries that match the users primary and secondary groups are included.

84 CAE Specification

XDSA-DCE Security XDSA-DCE Security Model Overview

8.1.6 Keys

A key is required for user, group and host entry types. A key is optional for other entry types,
and specifies the hostname to which the entry applies. Only one other entry type may exist
without a key, and this entry applies to users at the default realm (host) of the ACL.

A hostname in a key will be listed in its Internet address format (dot notation) if swacl cannot
resolve the address using the local lookup mechanism (for example DNS, NIS, or /etc/hosts). A
hostname within an ACL entry must be resolvable when used with the swacl -M and -D options.
Unresolvable hostname values are accepted in files provided with the swacl -F option.

8.1.7 Permissions

Permissions are represented as the single character abbreviations indicated below. Some
permissions either apply only to, or have different meaning for, certain types of objects, as
detailed below.

The following permissions may be granted:

c(ontrol)
Grants permission to modify the ACL using swacl.

r(ead)
Grants permission to read this object.

On host, distribution, or installed software collection objects, read permission allows swlist
operations. On products within distributions, read permission allows product files to be
read for swinstall, swcopy and swlist operations.

w(rite)
Grants permission to modify the object.

On a installed software collection object (for example, installed installed software collection
filesystem), this grants permission to modify the products and product files installed into
the installed software collection object. On a distribution object, this grants permission to
remove an empty distribution. It does not grant permission to modify the products
contained within it; write permission is required on each product object in the distribution.
On a host object, write permission grants permission to unregister distributions.

i(nsert)
Grants permission to insert objects into this object.

On a host object, grants permission to create (insert) a new software distribution or installed
software collection object, and to register these objects. On a distribution object, grants
permission to create (insert) a new product object.

t(est)
Grants permission to list the ACL.

a(ll)
A wildcard which grants all of the above permissions.

It is expanded by swacl to crwit.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 85

XDSA-DCE Security Model Overview XDSA-DCE Security

8.1.8 Depot Registration and Access Control

Because the distribution can be stored on a file system, anyone could build something which
included a ‘‘Trojan Horse’’ (that is, something unrecognized as a threat but which could inflict
damage), thereby exposing any system that installed products from it to a security breach. To
protect systems from such a situation, a distribution must be registered (either through swcopy
or swreg) before software may be installed or copied from it.

8.1.9 Secrets File

If the authentication_service option is set to internal (DCE Security Services are not being used), an
encrypted secret password is sent with each RPC call as a proof of trustworthyness in place of
authentication.

Note: This proof does not provide the level of DCE Security Service authentication, but does
provide an additional level of trust.

Each manager and daemon host maintains a secrets file that contains a set of realm/secret pairs.
The realm can be the NIS domain name, internet name, or network address of a manager host,
and the secret is the unencrypted password associated with that realm.

The manager searches the secrets file for its realm, and encrypts the secret associated with that
realm using crypt(3), prepending the salt used to the encrypted secret. It communicates that
encrypted secret to the daemon or agent in the internal_authn_secret option for XDSA-DCE RPC
calls. The daemon or agent serving the RPC call then searches its secrets file for an entry for the
manager realm communicated via the internal_authn_realm option, encrypts the secret associated
with that realm. If the encrypted secrets do not match, the call is not authenticated and it fails.

Each host can define a ‘‘default’’ secret that is used if there is not an entry specific to the realm
requested, as shown in the following example implementation secrets file:

default quicksilver
argo.finesoft.com zztop!
15.25.34.122 soundgarden

8.1.10 Access Control Checks by RPC Call

Access to software objects is protected as part of various RPC calls. These checks are as follows:

• sw_rpc_get_depots()
The user must have read permission on the host.

• sw_rpc_register_depot()
The user must have insert permission on the host.

• sw_rpc_unregister_depot()
The user must have write permission on the host.

• sw_rpc_is_registered_depot()
The user must have read permission on the host.

• sw_rpc_begin_session()
If the task is SW_READ_TASK, the distribution must be registered and the user must have
read permission on the distribution. If the SW_READ_TASK task is being made by a target
agent instead of a manager, then the user (manager initiator of the task) is passed via
delegation, and the target host also must have read permission on the distribution.

If the task is SW_LIST_TASK or SW_DLIST_TASK, the user must have read permission on the
installed software collection or distribution respectively.

86 CAE Specification

XDSA-DCE Security XDSA-DCE Security Model Overview

If the task is SW_INSTALL_TASK or SW_COPY_TASK and the installed software collection
or distribution does not exist, the user must have insert permission on the host.

If the task is SW_INSTALL_TASK, SW_REMOVE_TASK, SW_VERIFY_TASK,
SW_CONFIGURE_TASK, or SW_MODIFY_TASK, the user must have write permission on
the installed software collection.

These checks may alternatively be done by sw_rpc_agent_init () before initiating an agent
session.

• sw_rpc_analyze_task ()
If the task is SW_COPY_TASK, and the product does not exist, the user must have insert
permission on the distribution. If the product does exist, the user must have write permission
on the product.

If the task is SW_DREMOVE_TASK or SW_DMODIFY_TASK, the user must have write
permission on the product.

If the task is SW_DVERIFY_TASK, the user must have read permission on the product.

• sw_rpc_get_soc_file()
For any task, if the file requested is the catalog INDEX file, the user must have read
permission on the distribution or installed software collection. If the request is being made
by a target agent instead of a manager, then the user is passed via delegation, and the target
host also must have read permission.

For any task, for files other than the catalog INDEX, the user must have read permission on
the product containing the file. If the request is being made by a target agent instead of a
manager, then the user is passed via delegation, and the target host also must have read
permission.

As a special case, the local super-user is granted access to any local object and is granted access to
modify any local ACL.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 87

swacl XDSA-DCE Security

NAME
swacl - view or modify software Access Control Lists (ACLs)

SYNOPSIS

swacl -l level [-D acl_entry | -F acl_entry | -M acl_file] [-f
software_file] [-t target_file] [-x option=value] [-X option_file]
[software_selections] [@ target_selections]

DESCRIPTION
The swacl command displays or modifies the Access Control Lists (ACLs) which:

• protect the specified target_selections (software distributions or installed software collections)

• protect the specified software_selections on each of the specified target_selections (software
distributions only).

All installed software collections, software distributions, and products in software distributions
are protected by ACLs. The commands permit or prevent specific operations based on whether
the ACLs on these objects permit the operation. The swacl command is used to view, edit, and
manage these ACLs. The ACL must exist and the user must have the appropriate permission
(granted by the ACL itself) in order to modify it.

ACLs offer a greater degree of selectivity than standard file permissions. ACLs allow an object’s
owner (that is, the user who created the object) or the local superuser to define specific read,
write, or modify permissions to a specific list of users, groups, or combinations thereof.

OPTIONS
When none of the -M, -D, or -F options are specified, swacl prints the requested ACLs to the
standard output.

The swacl command supports the following options:

-D acl_entry
Deletes an existing entry from the ACL associated with the specified objects. (For this
option, the permission field of the ACL entry is not required.) Multiple -D options can be
specified.

-f software_file
Read the list of software_selections from software_file instead of (or in addition to) the
command line.

-F acl_file
Assigns the ACL contained in acl_file to the object. All existing entries are removed and
replaced by the entries in the file.Only the ACL’s entries are replaced; none of the
information contained in the comment portion (lines with the prefix ‘‘#’’) of an ACL listing
is modified with this option. The acl_file is usually the edited output of a swacl list
operation.

If the replacement ACL contains no syntax errors and the user has control permission on the
ACL (or is the local super user), the replacement succeeds.

-l level
Defines which level of ACLs to view/modify. The supported levels are:

host
View/modify the ACL protecting the host systems identified by the target_selections .

depot
View/modify the ACL protecting the software distributions identified by the
target_selections .

88 CAE Specification

XDSA-DCE Security swacl

root
View/modify the ACL protecting the installed software collection filesystems
identified by the target_selections .

product
View/modify the ACL protecting the software product identified by he
software_selection. Applies only to products in distributions, not installed products in
installed software collections.

product_template
View/modify the template ACL used to initialize the ACLs of future products added to
the software distributions identified by the target_selections .

global_soc_template
View/modify the template ACL used to initialize the ACLs of future software
distributions or installed software collections added to the hosts identified by the
target_selections .

global_product_template
View/modify the template ACL used to initialize the product_template ACLs of future
software distributions added to the hosts identified by the target_selections .

-M acl_entry
Adds a new ACL entry or changes the permissions of an existing entry. Multiple -M
options can be specified.

-x option=value
Set the session option to value and override the default value (or a value in an alternate
option_file specified with the -X option). Multiple -x options can be specified.

-X option_file
Read the session options and behaviors from option_file .

-t target_file
Read the list of target_selections from file instead of (or in addition to) the command line.

Only one of the -M, -D, or -F options can be specified for an invocation of swacl. For example,
the -M and -D options cannot be specified together.

OPERANDS
When used with the -l product level, the swacl command allows the POSIX 1387.2 standard
software specification syntax for each software_selection in order to specify one or more products.
If the software selection refers to a bundle, then all products contained in that bundle are
included. If the software selection refers to a subproduct or fileset, then the containing product
is included.

The swacl command supports the following syntax for each target_selection :

[host][:][/directory]

The ‘‘:’’ (colon) is required if both a host and directory are specified.

EXTERNAL INFLUENCES
The swacl utility supports the following extended options:

distribution_target_directory=implementation_defined_value
Defines the default location of the target distribution.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 89

swacl XDSA-DCE Security

level=
Defines the level of ACLs to view/modify. The supported levels are: host , depot , root ,
product , product_template , global_soc_template or global_product_template . See also the
discussion of the -l option above.

rpc_binding_info=ncadg_ip_udp:[2121]
Defines the protocol sequence and endpoint which will be used to contact swagentd.

rpc_timeout=5
Relative length of the communications timeout.

select_local=true
If no target_selections are specified, select the local host (if the level is host , global_soc_template
or global_product_template), the target directory ‘‘/’’ on the local host (if the level is root), or
the default distribution_target_directory of the local host (if the level is depot , product or
product_template) as the target_selection for the command.

software=
Defines the default of software_selections . There is no supplied default.

targets=
Defines the default target_selections . There is no supplied default (see select_local above). If
there is more than target selection, they must be separated by spaces.

EXTERNAL EFFECTS

stdout
The swacl command prints ACL information to stdout when the user requests an ACL
listing.

stderr
The swacl command writes events with a status of SW_WARNING or SW_ERROR to
stderr.

logging
The swacl command does not log summary events. The daemon managing the ACLs logs
events about each ACL which is modified, as well as any events associated with looking up
an ACL, to the daemon logfile on each target host.

EXTENDED DESCRIPTION
The swacl utility contacts the daemon on the host targets specified. This is done using the DCE
Security Service interfaces which interact indirectly with the RDACL interfaces served by the
daemon.

In order to lookup an ACL or ACL entry, the full ACL is retrieved from the daemon. In order to
replace a full ACL with the -F option, the new ACL is sent. In order to modify (change or add)
and ACL entry, the full ACL is retrieved, the ACL is modified, then the full ACL is replaced.

When modifying a product ACL specified by a software_selection , the target distribution
containing the product is opened as is done for other POSIX 1387.2 standard commands. The
software_selections are then resolved against the distribution. Any problems resolving the
software_selection generate the same events as other POSIX 1387.2 standard management
commands:

• If the selection is not found, generate an event:
(SW_ERROR: SW_SELECTION_NOT_FOUND)

• If a unique version can not be identified, generate an event:
(SW_ERROR: SW_SELECTION_NOT_FOUND_AMBIG)

90 CAE Specification

XDSA-DCE Security swacl

EXIT VALUES
The swacl command returns:

0 The software_selections and/or target_selections were successfully displayed or modified.

1 The display or modify operation failed on all target_selections .

2 The display or modify operation failed on some target_selections .

CONSEQUENCES OF ERRORS
If there are any errors, then the display or modification of ACLs fails.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 91

DCE Security Service RPC use for XDSA-DCE XDSA-DCE Security

8.2 DCE Security Service RPC use for XDSA-DCE
XDSA-DCE implements the distributed interface to ACL management by:

• providing the server support for the ACL manager by implementing the DCE RDACL
interface in the XDSA-DCE daemon

• using the client support provided by DCE Security Service RPC calls to implement the
manager utility, swacl

• defining the allowable values for the parameters of these interfaces.

8.2.1 DCE Security Service RPC Server Interfaces

When implementing an ACL manager, the program needs to implement the entire RDACL
interface.

The definition of each of these calls can be found in DCE Security Service documentation.

void rdacl_lookup(
[in] handle_t h,
[in] sec_acl_component_name_t component_name,
[in] uuid_t *manager_type,
[in] sec_acl_type_t sec_acl_type,
[out] error_status_t *st

);

void rdacl_replace(
[in] handle_t h,
[in] sec_acl_component_name_t component_name,
[in] uuid_t *manager_type,
[in] sec_acl_type_t sec_acl_type,
[in] sec_acl_list_t *sec_acl_list,
[out] error_status_t *st

);

boolean32 rdacl_test_access(
[in] handle_t h,
[in] sec_acl_component_name_t component_name,
[in] uuid_t *manager_type,
[in] sec_acl_permset_t desired_permset,
[out] error_status_t *st

);

boolean32 rdacl_test_access_on_behalf(
[in] handle_t h,
[in] sec_acl_component_name_t component_name,
[in] uuid_t *manager_type,
[in] sec_id_pac_t *subject,
[in] sec_acl_permset_t desired_permset,
[out] error_status_t *st

);

void rdacl_get_manager_types(
[in] handle_t h,
[in] sec_acl_component_name_t component_name,
[in] sec_acl_type_t sec_acl_type,
[in] unsigned32 size_avail,
[out] unsigned32 *size_used,
[out] unsigned32 *num_types,

92 CAE Specification

XDSA-DCE Security DCE Security Service RPC use for XDSA-DCE

[out] uuid_t manager_types[],
[out] error_status_t *st

);

void rdacl_get_mgr_types_semantics(
[in] handle_t h,
[in] sec_acl_component_name_t component_name,
[in] sec_acl_type_t sec_acl_type,
[in] unsigned32 size_avail,
[out] unsigned32 *size_used,
[out] unsigned32 *num_types,
[out] uuid_t manager_types[],
[out] sec_acl_posix_semantics_t posix_semantics[],
[out] error_status_t *st

);

void rdacl_get_printstring(
[in] handle_t h,
[in] uuid_t *manager_type,
[in] unsigned32 size_avail,
[out] uuid_t *manager_type_chain,
[out] sec_acl_printstring_t *manager_info,
[out] boolean32 *tokenize,
[out] unsigned32 *total_num_printstrings,
[out] unsigned32 *size_used,
[out] sec_acl_printstring_t printstrings[],
[out] error_status_t *st

);

void rdacl_get_referral(
[in] handle_t h,
[in] sec_acl_component_name_t component_name,
[in] uuid_t *manager_type,
[in] sec_acl_type_t sec_acl_type,
[out] sec_acl_tower_set_t *towers,
[out] error_status_t *st

);

void rdacl_get_access(
[in] handle_t h,
[in] sec_acl_component_name_t component_name,
[in] uuid_t *manager_type,
[out] sec_acl_permset_t *net_rights,
[out] error_status_t *st

);

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 93

DCE Security Service RPC use for XDSA-DCE XDSA-DCE Security

8.2.2 DCE Security Service RPC Client Interfaces

The ‘‘manager swacl’’ uses DCE client Security Service interfaces which in turn call the RDACL
server interfaces.

The definition of each of these calls can be found in DCE Security Service documentation.

void sec_acl_bind_to_addr(
[in] idl_char *site_addr,
[in] sec_acl_component_name_t component_name,
[out] sec_acl_handle_t *h,
[out] error_status_t *status

);

void sec_acl_get_manager_types(
[in] sec_acl_handle_t h,
[in] sec_acl_type_t sec_acl_type,
[in] unsigned32 size_avail,
[out] unsigned32 *size_used,
[out] unsigned32 *num_types,
[out] uuid_t manager_types[],
[out] error_status_t *st

);

void sec_acl_lookup(
[in] sec_acl_handle_t h,
[in] uuid_t *manager_type,
[in] sec_acl_type_t sec_acl_type,
[out] sec_acl_list_t *sec_acl_list,
[out] error_status_t *st

);

void sec_acl_replace(
[in] sec_acl_handle_t h,
[in] uuid_t *manager_type,
[in] sec_acl_type_t sec_acl_type,
[in] sec_acl_list_t *sec_acl_list,
[out] error_status_t *st

);

94 CAE Specification

XDSA-DCE Security DCE Security Service RPC use for XDSA-DCE

8.2.3 DCE Security Service RPC Type Values

This section lists the supported values for parameters of the client and server RPC calls.

Component Naming

The component_name (with type sec_acl_component_name_t) identifies the name of the target
object with which an ACL is associated. If the authentication_service option is set to dce-secret, the
component name uses the following syntax:

_key

The acl_key is a string representing the type of object the acl is associated with, and if needed, a
installed software collection or distribution path and a software specification of a product. The
following defines are used:

SW_SEC_HOST host
SW_SEC_ROOT root
SW_SEC_DEPOT depot
SW_SEC_PRODUCT product

The acl_key is constructed as follows, depending on the level of the ACL specified by the -l
option to swacl:

host SW_SEC_HOST
global_soc_template SW_SEC_HOST
global_product_template SW_SEC_HOST
root SW_SEC_ROOT ’:’ root_path [’:’ root_catalog]
depot SW_SEC_DEPOT ’:’ depot_path
product_template SW_SEC_DEPOT ’:’ depot_path
product SW_SEC_PRODUCT ’:’ depot_path ’:’ product_catalog

The root_path variable is the pathname to the installed software collection. The depot_path is the
pathname to the distribution. The root_catalog is the added if an installed_software_catalog option
was set to a value other than the default. The product_catalog is the control_directory attribute of
the product.

If the authentication_service option is set to internal , the acl_key in component name is preceded by
the principal and internal secret information needed to authenticate the user before accessing the
ACL. This information is provide in this manner because the DCE Security Service interfaces do
not provide a way (such as options for the XDSA-DCE interface) to pass this additional
information:

username.groupname[.othergroups]@realm;encrypted_secret,acl_key

The username is the name of the user. The groupname is the current primary group of the user.
The othergroups is a dot-separated (‘‘.’’) list of secondary groups the user belongs to. The realm
is the NIS domain name, internet name, or network address of the manager. The encrypted_secret
is a concatenation of the 2-character salt used by the manager to encrypt its secret and the
encrypted secret itself. The manager and daemon encrypt using crypt(3), and the daemon uses
the salt provided in the first two characters of the encrypted_secret.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 95

DCE Security Service RPC use for XDSA-DCE XDSA-DCE Security

ACL Types

The sec_acl_type parameter (with type of sec_acl_type_t) also depends on the level of the ACL
specified with the -l option to swacl. The values are DCE type values:

host sec_acl_type_object
root sec_acl_type_object
depot sec_acl_type_object
product sec_acl_type_object
product_template sec_acl_type_default_object
global_soc_template sec_acl_type_default_container
global_product_template sec_acl_type_default_object

Additionally, for use with lookup, the owner of the object is designated by the DCE type value:

owner sec_acl_type_unspecified_3

ACL Permissions

The supported ACL permissions for the perms member (of type sec_acl_permset_t) of the
sec_acl_entries array include the XDSA-DCE permissions and the corresponding DCE type
values:

r(ead) sec_acl_perm_read
w(rite) sec_acl_perm_write
i(nsert) sec_acl_perm_insert
t(est) sec_acl_perm_test
c(ontrol) sec_acl_perm_control

ACL Entry Types

The supported ACL entry types for the entry_type member (of type sec_acl_entry_type_t) of the
entry_info member of the all_entries array include the XDSA-DCE entry types and the
corresponding DCE type values:

object_owner sec_acl_e_type_user_obj
object_group sec_acl_e_type_group_obj
user sec_acl_e_type_user
group sec_acl_e_type_group
other sec_acl_e_type_other
user:@realm sec_acl_e_type_foreign_user
group:@realm sec_acl_e_type_foreign_group
other:@realm sec_acl_e_type_foreign_other
host sec_acl_e_type_user
any_other sec_acl_e_type_any_other

96 CAE Specification

Glossary

This specification assumes familiarity with the terminology used in the POSIX 1387.2 standard.
Some key POSIX 1387.2 terms are included here along with terms unique to XDSA-DCE.

ACL
Acronym for Access Control List.

catalog
The meta-data describing the software objects in a software collection. Each software collection
has a catalog.

control file
A control script, or in the case of the exported form of a software collection (see software
packaging layout), an "INDEX" or "INFO" file describing the software objects in the software
collection.

control script
A file associated with a software object that is executed by a POSIX 1387.2 standard command at
some point in the operation.

depot
Keyword used in the interface coding for the POSIX 1387.2 term ‘‘distribution’’.

distribution
A software collection containing software available for distribution or installation. A distribution
can be on a removable media or a file system, and can be in a serial or filesystem format.

files
Files must be grouped into software filesets before they can be managed.

host
The system that contains software managed by the POSIX 1387.2 standard utilities. The host
contains software collections.

installed software
A software collection containing installed software. This software may also be configured
(activated, or ready for use) or act as a file server to another installation.

root
Keyword used in the interface coding for POSIX 1387.2 term ‘‘installed software collection’’.

SOC
XDSA-DCE acronym for POSIX 1387.2 term ‘‘software collection’’.

software collection
A grouping of software objects to be managed. POSIX 1387.2 standard commands apply tasks to
software objects within software collections. Distributions are software collections of available
software. Installed software collections contain software installed and ready for use or file
serving to another installation.

software object
A software product or fileset that contains files and control files, as well as descriptive and
behavioral attributes. (There are also grouping of products and filesets called bundles and
subproducts respectively). Software objects are managed by the POSIX 1387.2 standard
commands within the context of software collections.

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 97

Glossary

software packaging layout
Describes the layout of the software files in a distribution, as well as the syntax of the files
describing the attributes of the software in the distribution. This is an exported form of a
software collection. INDEX files contain the attributes of the software objects. INFO files
contain the attributes of the software file and control file objects.

software product
A group of related software. Products contain filesets and control scripts.

software fileset
A set of software files and control scripts. This is the smallest manageable object.

software selections
The set of software objects that are applied to each software collection in the course of executing
a command.

source
A software collection on a particular host. The source of a command is the collection from
which the software objects are retrieved.

target
A software collection on a particular host. The target of a command is the collection to which
the software objects are applied (for example, for installing software) or otherwise operated on
(for example, verified, removed).

target selections
The set of software collections that the software selections are applied to in the course of
executing a command.

XDSA-DCE
Acronym for identifying this specification, derived from its subject matter which addresses
Distributed Software Administration in an environment which uses DCE RPC technology to
provide interoperability between implementations.

98 CAE Specification

Index

1387.2 ...1-2
1387.2 distributed roles..3
Access Control Lists...81
ACL ...81, 97
agent RPC interface..16
catalog ...97
conformance

mandatory..4
options ..4

control file ..97
control script..97
daemon ...75
daemon RPC interface ...15
DCE naming service...69
DCE RPC ..1
DCE security service..81, 92
depot..97
distributed roles ..3
distribution ..97
files...97
host ..97
IDL...6, 35
installed software ...97
Interface Definition Language6
interoperability..1
management framework...5
naming ..1
options ..4, 63

analyze and execute ...63
DCE naming service ..66
DCE security service..67
get SOC file ..65
get status and log..65
miscellaneous RPC...66
register ..63

POSIX 1387.2 ..1-2
result codes values ...54
results status values ...53
root...97
RPC..1, 5
RPC features ..8

access control lists ..12
authentication ...11
authorization ...12
begin session..9
command..8

delegation...11
disk space analysis ...13
distributed ACL management...........................12
end session...10
events ..10
initiate agent..10
logging..10
multiple and alternate sources13
naming and registration......................................12
options ..8
software files..8
software information ...8
software selections ...8
status ...10
target ...8

RPC interface
agent..16
daemon...15

RPC type definition..35
RPC type values..45
security ...1, 81
security model...81
selection values ...47
session phase

analyzing phase values52
execute phase values ...52
static phase values ...51

SOC..97
Software Administration standard.........................1
software collection ...97
software fileset ..98
software object ..97
software packaging layout98
software product ..98
software selections ...98
software state values

analysis ...49
execute ..50

source ..98
swacl..81, 88
swagentd ..76
swlist ...69, 73
swreg ...69-70
sw_rpc_abort_task()..17
sw_rpc_agent_init()...18
sw_rpc_analyze_task() ...20

Systems Management: Distributed Software Administration — DCE-RPC Interoperability (XDSA-DCE) 99

Index

sw_rpc_begin_session()..22
sw_rpc_end_session() ...24
sw_rpc_execute_task()..25
sw_rpc_get_depots() ...27
sw_rpc_get_dsa_impact_data()28
sw_rpc_get_dsa_volume_list()29
sw_rpc_get_soc_file()..30
sw_rpc_get_task_status_and_log()......................31
sw_rpc_is_registered_depot()32
sw_rpc_register_depot()...33
sw_rpc_unregister_depot()....................................34
target ...98
target selections ..98
task values..46
terminology..4
type

disk space analysis ...43
file transfer ...42
function results ...39
host information ...37
interim status...42
options ..38
result code..38
result status..38
selection..41
session context handle...36
session phase...40
software state ..40
source and target ..36
string ...36
task ..37

type definition interface ..35
type value

result codes ..54
results status..53
selection..47
session phase...51
software state ..49
task ..46
volume state ..48
volume type...48

volume state values ...48
volume type values ..48
XDSA-DCE...98
XDSA-DCE daemon...75
XDSA-DCE model ..5
XDSA-DCE roles...7
XDSA-DCE security ...81

100 CAE Specification

	c430cov.pdf
	Page 1

	blank.pdf
	Page 1

