
 S

L

T

A

A

C

N

I

D

N

A

H

R

C

D

E
T

Technical Standard

Systems Management:
Backup Services API (XBSA)

[This page intentionally left blank]

Open Group Technical Standard

Systems Management:

Backup Services API (XBSA)

The Open Group

 April 1998, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners.

Open Group Technical Standard

Systems Management: Backup Services API (XBSA)

ISBN: 1-85912-056-3
Document Number: C425

Published in the U.K. by The Open Group, April 1998.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii Open Group Technical Standard

Contents

Chapter 1 Introduction... 1
 1.1 Objectives ... 1
 1.2 Terminology... 2
 1.3 Overview .. 3
 1.4 Deployment.. 4
 1.5 Conformance ... 4
 1.6 Future Directions .. 4

Chapter 2 Backup and Archive Architecture.. 7
 2.1 Architectural Overview... 8
 2.2 Backup and Archive Operations ... 10
 2.3 Open Backup Services API ... 12
 2.4 XBSA Applications ... 13
 2.5 XBSA Session ... 14
 2.6 XBSA Objects and Object Names .. 15
 2.6.1 Hierarchical Character Strings.. 15
 2.6.2 XBSA Object Naming.. 15
 2.7 Security ... 17
 2.8 Object Descriptors .. 18
 2.9 Object Data... 20
 2.10 Transaction Management.. 21

Chapter 3 Overview of Backup Services API... 23
 3.1 Initialization and Authentication .. 23
 3.2 Transactions ... 24
 3.3 Backup and Archive ... 26
 3.4 Restore and Retrieve .. 27
 3.5 Query... 28
 3.6 API Call Sequences... 29
 3.7 Buffers.. 31
 3.7.1 Buffer Size.. 31
 3.7.2 Private Buffer Space... 31
 3.7.3 Use of BSA_DataBlock32 in BSASendData()....................................... 32
 3.7.4 Use of BSA_DataBlock32 in BSAGetData() ... 32
 3.7.5 Shared Memory.. 33
 3.7.5.1 Shared Memory on UNIX ... 33
 3.7.5.2 Shared Memory on NT .. 34

Chapter 4 Backup Services API Definitions ... 35
 4.1 General.. 35
 4.2 Return Code Values.. 36
 4.3 XBSA Function Definitions ... 37

Systems Management: Backup Services API (XBSA) iii

Contents

 BSABeginTxn().. 38
 BSACreateObject() .. 39
 BSADeleteObject() .. 42
 BSAEndData()... 43
 BSAEndTxn() .. 44
 BSAGetData().. 45
 BSAGetEnvironment().. 46
 BSAGetLastError().. 48
 BSAGetNextQueryObject().. 49
 BSAGetObject() ... 50
 BSAInit().. 52
 BSAQueryApiVersion() .. 55
 BSAQueryObject() .. 56
 BSAQueryServiceProvider()... 58
 BSASendData() ... 59
 BSATerminate() ... 60

Chapter 5 Type Definitions and Data Structures....................................... 61
 5.1 Type Definitions .. 61
 5.2 Enumerated Types.. 62
 5.2.1 BSA_CopyType... 62
 5.2.2 BSA_ObjectStatus .. 62
 5.2.3 BSA_ObjectType... 63
 5.2.4 BSA_Vote ... 63
 5.3 Constant Values .. 64
 5.4 Data Structures.. 65
 5.4.1 BSA_ApiVersion... 65
 5.4.2 BSA_DataBlock32 .. 65
 5.4.3 BSA_ObjectDescriptor .. 67
 5.4.4 BSA_ObjectName .. 68
 5.4.5 BSA_ObjectOwner... 69
 5.4.6 BSA_QueryDescriptor .. 70
 5.4.7 BSA_SecurityToken ... 70

Appendix A Information for Backup Services Developers 71
 A.1 Networked Environments .. 71
 A.2 Storage Hints ... 72
 A.3 Object Routing... 72
 A.4 Restore Order... 73

Appendix B C Language Header File ... 75

 Glossary ... 79

 Index... 83

List of Figures

iv Open Group Technical Standard

Contents

1-1 Simplified Architecture for XBSA .. 3
2-1 Context for XBSA Interfaces.. 8
2-2 Structure of an XBSA Object Name ... 15
3-1 Creating a Backup Copy of an Object ... 26
3-2 Restoring an Object ... 27
3-3 Permitted Call Sequences - Overview... 29
3-4 Permitted Call Sequences - Transactions .. 30
5-1 BSA_DataBlock32 Buffer Layout .. 66
A-1 An Example of a Distributed Backup System.. 71

List of Tables

2-1 Object Attributes.. 19
3-1 Parameters in the BSA_DataBlock32 Structure 32
3-2 Semantics for shareId ... 33
4-1 XBSA Return Code Values ... 36
4-2 XBSA Function Calls ... 37
5-1 Type Definitions ... 61
5-2 BSA_CopyType Enumeration Values ... 62
5-3 BSA_ObjectStatus Enumeration Values.. 62
5-4 BSA_ObjectType Enumeration Values .. 63
5-5 BSA_Vote Enumeration Values.. 63
5-6 XBSA Constants and Values.. 64
5-7 BSA_ApiVersion Structure Values.. 65
5-8 BSA_DataBlock32 Structure Usage .. 66
5-9 BSA_ObjectDescriptor Structure Usage ... 67
5-10 BSA_ObjectName Structure Usage .. 68
5-11 BSA_ObjectOwner Structure Usage .. 69
5-12 BSA_QueryDescriptor Structure Usage .. 70

Systems Management: Backup Services API (XBSA) v

Contents

vi Open Group Technical Standard

Preface

The Open Group

The Open Group is the leading vendor-neutral, international consortium for buyers and
suppliers of technology. Its mission is to cause the development of a viable global information
infrastructure that is ubiquitous, trusted, reliable, and as easy-to-use as the telephone. The
essential functionality embedded in this infrastructure is what we term the IT DialTone. The
Open Group creates an environment where all elements involved in technology development
can cooperate to deliver less costly and more flexible IT solutions.

Formed in 1996 by the merger of the X/Open Company Ltd. (founded in 1984) and the Open
Software Foundation (founded in 1988), The Open Group is supported by most of the world’s
largest user organizations, information systems vendors, and software suppliers. By combining
the strengths of open systems specifications and a proven branding scheme with collaborative
technology development and advanced research, The Open Group is well positioned to meet its
new mission, as well as to assist user organizations, vendors, and suppliers in the development
and implementation of products supporting the adoption and proliferation of systems which
conform to standard specifications.

With more than 200 member companies, The Open Group helps the IT industry to advance
technologically while managing the change caused by innovation. It does this by:

• Consolidating, prioritizing, and communicating customer requirements to vendors

• Conducting research and development with industry, academia, and government agencies to
deliver innovation and economy through projects associated with its Research Institute

• Managing cost-effective development efforts that accelerate consistent multi-vendor
deployment of technology in response to customer requirements

• Adopting, integrating, and publishing industry standard specifications that provide an
essential set of blueprints for building open information systems and integrating new
technology as it becomes available

• Licensing and promoting the Open Brand, represented by the ‘‘X’’ Device, that designates
vendor products which conform to Open Group Product Standards

• Promoting the benefits of the IT DialTone to customers, vendors, and the public

The Open Group operates in all phases of the open systems technology lifecycle including
innovation, market adoption, product development, and proliferation. Presently, it focuses on
seven strategic areas: open systems application platform development, architecture, distributed
systems management, interoperability, distributed computing environment, security, and the
information superhighway. The Open Group is also responsible for the management of the
UNIX trademark on behalf of the industry.

Systems Management: Backup Services API (XBSA) vii

Preface

Development of Product Standards

This process includes the identification of requirements for open systems and, now, the IT
DialTone, development of Technical Standards (formerly CAE and Preliminary Specifications)
through an industry consensus review and adoption procedure (in parallel with formal
standards work), and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to which a
vendor may register a product.

The ‘‘X’’ Device is used by vendors to demonstrate that their products conform to the relevant
Product Standard. By use of the Open Brand they guarantee, through the Open Brand Trade
Mark License Agreement (TMLA), to maintain their products in conformance with the Product
Standard so that the product works, will continue to work, and that any problems will be fixed
by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on development of Technical Standards and product documentation, but which also
includes Guides, Snapshots, Technical Studies, Branding and Testing documentation, industry
surveys, and business titles.

There are several types of specification:

• Technical Standards (formerly CAE Specifications)

The Open Group Technical Standards form the basis for our Product Standards. These
Standards are intended to be used widely within the industry for product development and
procurement purposes.

Anyone developing products that implement a Technical Standard can enjoy the benefits of a
single, widely supported industry standard. Where appropriate, they can demonstrate
product compliance through the Open Brand. Technical Standards are published as soon as
they are developed, so enabling vendors to proceed with development of conformant
products without delay.

• CAE Specifications

CAE Specifications and Developers’ Specifications published prior to January 1998 have the
same status as Technical Standards (see above).

• Preliminary Specifications

Preliminary Specifications have usually addressed an emerging area of technology and
consequently are not yet supported by multiple sources of stable conformant
implementations. They are published for the purpose of validation through implementation
of products. A Preliminary Specification is as stable as can be achieved, through applying
The Open Group’s rigorous development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued by formal standards
organizations, and developers are encouraged to develop products on the basis of them.
However, experience through implementation work may result in significant (possibly
upwardly incompatible) changes before its progression to becoming a Technical Standard.
While the intent is to progress Preliminary Specifications to corresponding Technical
Standards, the ability to do so depends on consensus among Open Group members.

viii Open Group Technical Standard

Preface

• Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia. For example, it
publishes the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum. It also publishes Technology Specifications relating to OSF/1, DCE,
OSF/Motif, and CDE.

Technology Specifications (formerly AES Specifications) are often candidates for consensus
review, and may be adopted as Technical Standards, in which case the relevant Technology
Specification is superseded by a Technical Standard.

In addition, The Open Group publishes:

• Product Documentation

This includes product documentation—programmer’s guides, user manuals, and so on—
relating to the Pre-structured Technology Projects (PSTs), such as DCE and CDE. It also
includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

• Guides

These provide information that is useful in the evaluation, procurement, development, or
management of open systems, particularly those that relate to the Technical Standards or
Preliminary Specifications. The Open Group Guides are advisory, not normative, and should
not be referenced for purposes of specifying or claiming conformance to a Product Standard.

• Technical Studies

Technical Studies present results of analyses performed on subjects of interest in areas
relevant to The Open Group’s Technical Program. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

Versions and Issues of Specifications

As with all live documents, Technical Standards and Specifications require revision to align with
new developments and associated international standards. To distinguish between revised
specifications which are fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://www.opengroup.org/corrigenda.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the
World-Wide Web at http://www.opengroup.org/pubs.

Systems Management: Backup Services API (XBSA) ix

Preface

This Document

This Backup Services API (XBSA) document is an Open Group Technical Standard. First, it
presents an architecture for management and client applications which use the services of
underlying backup and archive software. It then specifies a Backup Services API consisting of
source procedure calls, type definitions and data structures, and return codes, to be used by
these management and client applications.

The focus of this API is on defining backup services for data movement, as opposed to
management, with an emphasis on retaining programming flexibility so as to ensure broad
applicability. The programming model used aligns with the widely accepted open/read-
write/close model.

Background information is included, which is intended to be of particular value to end users and
vendors, covering the use of this API, and consideration of the wider issues involved in backup,
archive, and restore operations.

Intended Audience

This Technical Standard is intended for three types of user:

1. Application developers who wish to write portable programs that use the backup service
operations defined in this Technical Standard. Typical applications or end-user services
would be databases, filesystems, document managers, and object managers.

2. Developers of management applications to manage the operation of backup services
defined in this Technical Standard.

3. Developers of the actual backup services packages which carry out the functions of this
Technical Standard. These services are provided to higher-level management applications
or client programs.

Structure

The structure of this Technical Standard is as follows:

• Chapter 1 is an introduction to the scope and purpose of the XBSA API.

• Chapter 2 describes a conceptual architecture for backup and archive operations, which
serves as a framework for XBSA.

• Chapter 3 gives an overview of the wider context and intended usage of the XBSA API, to
support understanding of the services it defines.

• Chapter 4 gives the definitions for the XBSA function calls, in man-page format.

• Chapter 5 gives the type definitions and data structures used in XBSA.

• Appendix A considers issues of interest to developers of underlying backup services.

• Appendix B presents a sample C Language header file.

A Glossary and Index are also provided.

x Open Group Technical Standard

Preface

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— command operands, command option-arguments or variable names, for example,
substitutable argument prototypes

— environment variables, which are also shown in capitals

— utility names

— external variables, such as errno

— functions; these are shown as follows: name(). Names without parentheses are C external
variables, C function family names, utility names, command operands or command
option-arguments.

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
#define construct.

• The notation [ABCD] is used to identify a return value ABCD, including if this is an an error
value.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font. Brackets shown in this font, [] , are part of the syntax and do not indicate optional
items. In syntax the | symbol is used to separate alternatives, and ellipses (...) are used to
show that additional arguments are optional.

Systems Management: Backup Services API (XBSA) xi

Trademarks

Motif, OSF/1, UNIX, and the ‘‘X Device’’ are registered trademarks and IT DialToneTM

and The Open GroupTM are trademarks of The Open Group in the U.S. and other countries.

xii Open Group Technical Standard

Referenced Documents

The following referenced documents are relevant to this Technical Standard:

ISO POSIX-1
ISO/IEC 9945-1: 1996, Information Technology — Portable Operating System Interface
(POSIX) — Part 1: System Application Program Interface (API) [C Language] (identical to
ANSI/IEEE Std 1003.1-1996). Incorporating ANSI/IEEE Stds 1003.1-1990, 1003.1b-1993,
1003.1c-1995 and 1003.1i-1995.

XSH, Issue 5
CAE Specification, January 1997, System Interfaces and Headers, Issue 5
(ISBN: 1-85912-181-0, C606), published by The Open Group.

Systems Management: Backup Services API (XBSA) xiii

Referenced Documents

xiv Open Group Technical Standard

Chapter 1

Introduction

This document specifies the Open Systems Backup Services Data Movement Application
Programming Interface (XBSA), which defines an interface between applications or facilities
needing data storage management for backup or archive purposes, and the underlying services
which provide these functions.

The programming interface defined in this document focuses on data movement. It is intended
that data management interfaces will be covered in a separate document in the future. First, this
document describes an overall architecture to serve as a basis for a general discussion of the
XBSA functions. Then, in the context of this architecture, it specifies an API consisting of calling
interfaces, structures and return codes. Appendices provide a glossary, additional information
for end users and vendors on the use of this Technical Standard, and a sample C language
header file.

XBSA resolves the need to standardize an API between users and applications needing backup
services, and the underlying services available on many platforms. For example, file system and
database vendors must integrate their products with popular backup products. Without the
interfaces provided in XBSA, these vendors must negotiate individually with the backup
products; with XBSA, they can use a consistent interface to interact with a variety of backup
products.

1.1 Objectives
The architecture used in defining this Open Backup Services API addresses the following
objectives. With XBSA, applications may be created to provide these functions:

• Concurrent Services
A basic service to support both the backup/restoration and the archive/retrieval of tailored
sets of data objects, including files, directories, and byte streams, for many different
applications and users operating concurrently.

• Object Searches
Facilities to support archive and backup object searches which enhance an end-user’s
chances, effort, and/or time to retrieve archived objects.

• Scalability
The ability to accommodate a large volume of large data objects for long-term storage as well
as small sets of data.

• System Configurations
The ability to accommodate a wide spectrum of systems and system configurations,
including:

— A single, standalone personal computer

— A client-server computing environment

— A widely distributed, heterogeneous (UNIX and non-UNIX) system consisting of many
clusters of workstations and main-frame computers inter-connected through
heterogeneous networks using different protocols

Systems Management: Backup Services API (XBSA) 1

Objectives Introduction

• Integrity
A high level of integrity, including:

— The consistency and atomicity of multiple operations

— The ability to shield the effect of one set of operations from another set (transaction
isolation)

The XBSA interfaces will support applications and services which meet the above objectives.

This API addresses portability issues across multiple backup products. It is not intended to
address the interoperability of clients and backup servers across arbitrary networks; this is a
responsibility of the underlying Backup Service product.

1.2 Terminology
Fundamental terms necessary to understand the architecture used in this Technical Standard are
shown below. Further definitions are described in the Glossary.

XBSA Client
Application-specific software which uses XBSA to request services from a Backup Service
on behalf of a particular application. Typically an XBSA Client is tightly bound to a user
application (such as a DBMS) or an operating system service (such as a file system) by
existing in the address space of the application/service or being packaged with this
function.

XBSA Manager
Management software which uses XBSA to manage the services provided by a Backup
Service. Typically an XBSA Manager may manage the operation of a variety of Backup
Service implementations from a variety of vendors. For full functionality, an XBSA Manager
will require additional interfaces which will be defined in a future Open Backup Services
Management API Technical Standard. In the interim, management functionality will be
achieved by implementation-specific mechanisms.

XBSA Application
An XBSA Client or an XBSA Manager.

Backup Service
Software which carries out the functions provided in XBSA. Independently-written
packages implementing the lower XBSA interfaces may be written by various vendors for a
variety of platforms. These packages provide interfaces meeting this Technical standard
which may be dynamically or statically bound to an XBSA Application.

2 Open Group Technical Standard

Introduction Overview

1.3 Overview
The portability of backup applications and related administration tools can be significantly
improved with the standardization of the interfaces between these packages and an underlying
backup service. Especially, if these interfaces can be managed as a system-independent,
vendor-independent and application-independent API, vendors can focus on the more
important aspects of their packages.

The approach adopted in this Open Backup Services API is therefore to define a minimal, generic
and extensible API that is able to adequately and efficiently support a wide range of backup
applications and utilities - from a simple backup utility for a standalone personal computer to a
high-function, high-performance, multi-server solution for a heterogeneous distributed
computing environment - while allowing the utmost flexibility in implementation and
customization to meet specific needs.

In its simplest form, XBSA provides an interface between XBSA Applications and Backup
Service implementations, as shown in Figure 1-1. The actual boundary between a particular
XBSA Client and the related application or service is implemented by the developer of the
application or service package.

Private Interface

XBSA Manager

Backup Service

Management XBSA Data Movement
(specified herein)

XBSA Client Application or
Service

Figure 1-1 Simplified Architecture for XBSA

Figure 1-11 illustrates the data flow between the XBSA Application and the Backup Service. All
operations are initiated by the XBSA Application.

This document defines the XBSA Data Movement API. It does not address the subject of a
Management API for Backup Services.

Some of the parameter values used in XBSA calls are dependent on the specific Backup Service
which is invoked. Consequently, while the XBSA calls and structures are generic in nature, an
XBSA Application may need to determine the actual Backup Service being invoked in order to
fully exploit all the features of the Backup Service.

Other aspects of a backup, archive, and restore (BAR) system, such as user interfaces, transfer
protocols, media formats, and API(s) for specific environments are not covered by this Technical
Standard. In the context of this Technical Standard, they are considered implementation options
for a backup application or the underlying services.

Systems Management: Backup Services API (XBSA) 3

Overview Introduction

In the same context, networking and remote support issues are not covered in this Technical
Standard.

1.4 Deployment
By default, an implementation of the XBSA Backup Service will provide an object library using a
standard name of the form libxbsa.ext, where ext is replaced by an operating system specific
extension.

The XBSA interfaces may be deployed in either of two ways. The first is as a source-level
interface, with an XBSA Application statically linking to the XBSA object library. The second
option, which is expected to be more common, is as a binary-level interface, with the XBSA
Application being dynamically linked to an XBSA object library.

The second method allows the XBSA Application the flexibility to bind to different Backup
Services at run-time. The precise mechanism by which this achieved is dependent on the
environment in which the XBSA Application is running. If the operating system provides
support for a search path for locating dynamic libraries, this mechanism may be used to support
multiple implementations simultaneously present on the same system. If this, or a similar
mechanism, is not available, the XBSA Application will only be able to access a single Backup
Service implementation using the default object library name and dynamic linking. In this case,
multiple implementations may still be supported by means of static linking.

1.5 Conformance
An implementation claiming conformance to this Technical Standard must provide all the XBSA
functions and data structures, as defined in Chapter 4 and Chapter 5.

1.6 Future Directions
The following items might be considered for potential future work activities.

• Asynchronous Calls
Future extensions to this API may include asynchronous calls (particularly for tasks that
require a long time for completion), calls to setup a separate data transfer path, and support
for processing a set of objects in a single call.

• Access Control
Future extensions may include enhanced security mechanisms, such as role-based user,
delegation of authority, catalog access rights, user group and user agent as grantee, denial
rules, audit trail, and mandatory control.

• Extended Object Data Operations
Future extensions to the Open Backup Services API may include additional object data
operations such as:

— Retrieve substring, append, and replace

— Additional object types to support different semantics

— A mechanism to set up a separate data path to allow high-performance data transfer

These extended capabilities are not needed to support a basic level of Backup Service.

4 Open Group Technical Standard

Introduction Future Directions

• Multi-party Commit Protocols
If any asynchronous update made by an XBSA Application is to be synchronized with XBSA
operations, then the Open Backup Services API would need to be extended to include a
multi-party commit protocol (for example, two-phase commit). Another possible extension
of the API is a checkpoint/restart capability to support long transactions (for example, a full
backup of a large-capacity medium or a group of media).

• Management Functionality
Future work is anticipated to define management interfaces to provide services to XBSA
Managers.

Systems Management: Backup Services API (XBSA) 5

Introduction

6 Open Group Technical Standard

Chapter 2

Backup and Archive Architecture

This chapter presents a general architecture of a backup and restore environment to serve as a
framework for discussing the Open Backup Services API functions in the next chapter.

In the course of describing this architecture, examples or scenarios will be given to illustrate the
use of the XBSA interfaces. These examples are not intended to imply the only use of XBSA. The
XBSA architecture was designed to permit a wide flexibility of use.

An overview of the general roles and responsibilities for backup and archive operations is
provided in Section 2.1 on page 8, Section 2.2 on page 10, Section 2.3 on page 12, and Section 2.4
on page 13. The remaining sections of this chapter then introduce the terminology and
descriptions of the XBSA model necessary to understand the API presented in the subsequent
chapters.

Systems Management: Backup Services API (XBSA) 7

Architectural Overview Backup and Archive Architecture

2.1 Architectural Overview
Figure 2-1 shows a high-level view of this architecture, identifying the major components and
highlighting the Open Backup Services API (XBSA). The functions provided by these
components are described in turn below.

Management XBSA Data Movement
(specified herein)

Private Interface

XBSA Manager XBSA Client Application or
Service

Administrator Role Client Role

Catalog

Application
Objects

Repository

User RegistryPrivate Management
Routines

Backup Service

Figure 2-1 Context for XBSA Interfaces

Except for the specification of the XBSA Data Movement API, there are no internal or external
interfaces specified for any of these components. For example, the user interfaces (Administrator
Role or Client Role) are defined by the application developers, and the interfaces between a
Backup Service and a particular catalog are left to the implementor of a particular Backup
Service.

Design choices which pertain to trade-offs on performance, storage consumption or availability
(reliability) are implementation decisions outside the scope of XBSA.

Any Backup Service implementation could have Private Management Routines (administrative
interfaces) which are not visible to users through the Open Backup Services API. A specific
Backup Service implementation may also have components not shown in Figure 2-1, such as an
Index Manager, a Storage Manager, a Hierarchy Manager, a Log Manager, or a Communication
Manager. Depending on the particular system configuration environment, certain system
services may be used to support some of these components.

Furthermore, not indicated in Figure 2-1, a Backup Service implementation may be either local to
a single system node or distributed across multiple system nodes.

8 Open Group Technical Standard

Backup and Archive Architecture Architectural Overview

The API Definitions defined in Chapter 4 comprise the XBSA Data Movement API. Through the
use of these functions, the XBSA Application may use the data repository functions of a
particular Backup Service.

Systems Management: Backup Services API (XBSA) 9

Backup and Archive Operations Backup and Archive Architecture

2.2 Backup and Archive Operations
Through this API, one or more data objects may be backed up (that is, a backup copy of each
object is created in the Repository controlled by the Backup Service). They can then be
subsequently restored if the original objects become corrupted or lost due to storage or system
failure, or to human error.

Similarly, one or more data objects may be archived (that is, an archive copy of each object is
created in the Repository controlled by the Backup Service). This permits long-term, often low-
usage, storage so as to reduce the storage cost. Machine-assisted management of these archived
objects is facilitated, such that they can be subsequently retrieved when they are needed again.

Backup operations are frequently repetitive and tedious. Applications may provide a facility to
support automated backup and to generate logs or reports. Thus XBSA expects that the XBSA
Application (not the Backup Service) will actually initiate and control the data transfer functions.

Although Backup/Restore functions are operationally similar to Archive/Retrieve functions,
they differ in their usage and requirements. This is primarily a user distinction relating to the
way in which the XBSA API is used, rather than reflecting any specific features within the API
itself.

The following discussion elaborates on these differences:

• Semantics
Making a backup copy provides the ability to subsequently recover an active object or a set
of active objects, for instance, in case of a system, network, or media failure, or a human
error. Therefore, a backup copy could be created shortly after a new object is created or after
an object is modified. This concept of backing up objects is application-independent.

To reduce the amount of backup data, an incremental backup may be performed which backs
up only objects which have been changed since a previous backup.

An archive copy, on the other hand, provides long-term storage for an inactive object such as
a file, which is often deleted from an application’s repository after the archive copy is made.
Therefore, an archive copy could be created when an object is classified as inactive, which is
a policy of the application. For archives, there is no concept analogous to an incremental
backup.

• Retention
The useful life of a backup copy typically depends on the subsequently created backup
copies for the same object. Usually a certain number of the most recent backup copies are
retained, and the most recent copy might be retained as long as the original object remains
active.

The retention of an archive copy is usually determined by its age, or useful life, and does not
depend on other copies of the same data object.

• Availability
The availability and integrity of an archive copy should be assured once the copy is created,
because the original application object may be (and often is) deleted. Therefore, archiving is
logically a synchronous operation which may change the state of the original object;
however, this is application dependent.

A backup copy operation, on the other hand, may often be deferred in the interests of
improving backup operation performance. This is acceptable because the original data object
is still available to the application as the primary copy.

For example, an automated backup operation may choose to skip an object which is being
updated by a (possibly long-running) application. That object will then be backed up at the

10 Open Group Technical Standard

Backup and Archive Architecture Backup and Archive Operations

next scheduled backup time. To most applications, backing up an object (as opposed to
keeping dual copies) is an asynchronous operation, which accepts the fact that there is an
inherent window of inconsistency between a backup copy and the original object. An
application or user needs to manage the risk level of this inconsistency in conjunction with
performance and cost.

The application is responsible for implementing suitable availability policies using XBSA. By
itself, XBSA does not provide availability.

• Search
The retrieval of archive objects is usually selective and task-specific (application-wise). An
archive object is often retrieved individually or in conjunction with a relatively small number
of logically related objects. The ability to search through backup storage can be particularly
useful to help a user to find the target objects to retrieve. XBSA supports queries of objects
stored in the Backup Repository.

Systems Management: Backup Services API (XBSA) 11

Open Backup Services API Backup and Archive Architecture

2.3 Open Backup Services API
Backup services are offered through a source-code Open Systems Backup Services API (XBSA)
using a synchronous call interface. The structure of the calls is system-independent and
application-independent.

The underlying part of the architecture that supports XBSA is called the Backup Service. The
users of this API are collectively called XBSA Applications, which refers to both the dedicated
management applications (XBSA Manager) and typical user applications which make use of the
Backup Service (XBSA Client).

The end-users who backup/restore their data objects (User Role) or manage the Backup Service
(Administrator Role) through XBSA use interfaces which are outside the scope of this Technical
Standard.

At any point in time, a single Backup Service may support multiple XBSA Managers and
multiple XBSA Clients, and a single XBSA Client that uses multiple processes can have
concurrent calls through XBSA to the Backup Service.

Multiple Backup Service implementations can potentially exist on a single platform. Since the
association of a particular XBSA Application to a particular Backup Service is dependent on
which library of source code interfaces is used, the static or dynamic binding of executable
modules determines which Backup Service is invoked. It should be noted that an XBSA
Application in a single process can only interact with a single Backup Service at a time.

12 Open Group Technical Standard

Backup and Archive Architecture XBSA Applications

2.4 XBSA Applications
An XBSA Client makes use of certain Backup Services for specific applications or end-user
services. Examples of these are a UNIX file system, a document management system, a database
management system (DBMS), an information retrieval (IR) system, or a cache manager.

An XBSA Manager is also an end-user application, but it is distinguished in that its primary role
is to provide management of services for an application through XBSA. This XBSA Manager may
be provided by the vendor of the Backup Service, or an independent vendor may create a more
universal manager. In either case, the Backup Service vendor could have private management
interfaces (Private Management Routines) which are not defined in this Technical Standard.

An XBSA Client interacts with specific applications to access their Application Objects which
they manage (for example, files, directories, byte streams). It then constructs suitable XBSA
Objects from the application objects for backup/archive, calls the Open Backup Services API,
reconstructs the application objects from restored/retrieved XBSA Objects, maintains a
backup/archive log for the application it interacts with, engages a scheduler to automate
deferred or periodic backup tasks, and possibly provides a customized end-user interface
(graphical or command-line) to support interactive operations.

An XBSA Client also understands the requirements of the specific application, the format and
relationships of the application objects, and the semantics of backup/archive (including
incremental backup and consistency requirements). It may handle attribute extraction, data
conversion, mappings of application objects to XBSA Objects (which do not have to be one-to-
one), object packing, compression/decompression, encryption/decryption, constraint
enforcement, and/or application-specific access control. It may itself support a distributed
environment, such as interacting with a distributed file system or supporting a remote end-user
interface via RPC calls.

The precise semantics of backup and restore for any application, and in particular the notion of
incremental backup, is application-dependent and thus must be handled by a suitable XBSA
Client. For example, the incremental backup of a file system directory (as a named set of files)
may mean the backing up of the changes to the directory since the last backup was performed.
These changes could include all the modified and newly created files in the directory, as well as
all the file deletions.

On the other hand, an incremental backup of a large, continually appended log file may mean
the backing up of all the appends added since the last backup. An incremental backup of a
database may mean the backing up of only the modified pages in the database.

Systems Management: Backup Services API (XBSA) 13

XBSA Session Backup and Archive Architecture

2.5 XBSA Session
An XBSA session is a logical connection between an XBSA Application and a Backup Service
implementation. A session begins with a call to BSAInit() and ends with a call to
BSATerminate(). Nested sessions, and multiple sessions in the same address space, are not
supported in this version of the Technical Standard.

Every XBSA session between a particular XBSA Application and Backup Service uses a
bsa_ObjectOwner, which is registered with the Backup Service and used by Backup Service to
control access to the objects it manages. This bsa_ObjectOwner is a fixed-length character
string. No specific format is required (that is, it may be a combination of a node name and
resource manager name, or a globally unique name associated with a distributed resource
manager). Different instances of an XBSA Application may or may not use the same
bsa_ObjectOwner. The bsa_ObjectOwner is authenticated for each session.

14 Open Group Technical Standard

Backup and Archive Architecture XBSA Objects and Object Names

2.6 XBSA Objects and Object Names
This Open Backup Services API uses an object-based paradigm. Every data object visible and
transferred at the XBSA interface is an XBSA Object, which is not to be confused with the
Application Object shown in Figure 2-1 on page 8. The latter is an object managed by an
application or service, and is the original source object which is to be backed up or archived.

2.6.1 Hierarchical Character Strings

A hierarchical character string has one or more components or fields, separated by a user-
specifiable delimiter character (specified in the Backup Service-dependent Environment
structure). Each component is a variable-length character string, and there is a length limit for
the entire string. However, there is no restriction on the number of components (levels) a string
can have. Two consecutive delimiters specify an empty level. A leading delimiter indicates an
empty top level.

A hierarchical character string is interpreted one component at a time starting with the first
component and ending whenever a resolution is made. For example, when comparing two
strings, interpretation ceases whenever a distinction, or relative ordering, between the strings is
determined. The delimiter character is implementation dependent and should be queried using
BSAGetEnvironment().

Hierarchical strings facilitate the aggregation and segregation of objects, and may be used
syntactically and structurally for object grouping, filtering, or selection. However, the semantics
of a hierarchical name, including any naming constraints, is totally application-dependent, and
unknown to the Backup Service.

A limited wild card capability is provided, see BSAQueryObject().

2.6.2 XBSA Object Naming

An XBSA Object has a two-part name: BSA_ObjectOwner, and BSA_ObjectName, which is
summarized in Figure 2-2.

BSA Object Name

- character string

- usually associated
with an XBSA
application

- registered and
authenticated
by Backup Services

- for XBSA enforced
access control

- provided by
XBSA application

- hierarchical
character string

- usually associated
with an end-user

- not registered and
authenticated

- for object filtering by
XBSA for performance
(and access control
enforcement by client
application)

- character string

- primary grouping
of objects within
owner’s domain

- hierarchical
character string

- unique name
within objectspace

bsa_ObjectOwner app_ObjectOwner pathNameobjectSpaceName

BSA_ObjectOwner BSA_ObjectName

- not needed for XBSA
object identification

Figure 2-2 Structure of an XBSA Object Name

Systems Management: Backup Services API (XBSA) 15

XBSA Objects and Object Names Backup and Archive Architecture

The BSA_ObjectOwner is the name of the owner of the object and consists of two parts:
bsa_ObjectOwner, and app_ObjectOwner. The BSA_ObjectName is the name assigned by the
XBSA Application. It also consists of two parts: objectSpaceName, and pathName. The details
of the data structures are defined in Chapter 5 on page 61.

As neither an app_ObjectOwner nor an objectSpaceName are required in the
BSA_ObjectDescriptor, the bsa_ObjectOwner and pathName alone can name an XBSA Object.
The BSA_ObjectName does not uniquely identify a single XBSA Object since multiple XBSA
Objects with the same name can exist within the Backup Service (as multiple copies of the
corresponding Application Object are made).

The Backup Service assigns to each XBSA Object a unique, persistent, fixed-length Object
Identifier called copyid in the type definitions (see Chapter 5 on page 61), which remains
unchanged throughout the life of the XBSA Object. This identifier must be used to retrieve an
XBSA Object, subject to the applicable access control rules.

16 Open Group Technical Standard

Backup and Archive Architecture Security

2.7 Security
Adequate security is a major requirement for any backup system. Authentication and access
control may be administered via an underlying infrastructure. In those cases where it is not, a
simple, but extensible, handle-based access model is supported by the Open Backup Services
API, where the Backup Service provides session authentication and access control services for
stored objects.

To support authentication, a registry of each authorized bsa_ObjectOwner and associated
authorities may be maintained by the Backup Service. At the beginning of each XBSA session,
the bsa_ObjectOwner may be verified against this registry, typically (though not necessarily) by
means of a BSA_SecurityToken (for example, a password or a key). If the caller is authenticated,
a unique handle is issued by the Backup Service to the XBSA Application for use during the
session. The verification of the bsa_ObjectOwner may be performed internal to the Backup
Service, or it may rely on the services of an external authentication system.

If the XBSA Client wants to alter this registry, communicate with the authentication system
directly, or establish a new security token, the XBSA Client has to use a private API that has been
provided by the Backup Service or by the authentication system. Such an API is not part of this
Technical Standard.

The XBSA Application must then use the handle issued by the Backup Service in every
subsequent API call during the session to identify itself as well as the particular session. This
architecture allows an XBSA Application and a Backup Service to use a third-party authenticator
(for example, Kerberos, which issues a similar validating token). The choice and operation of a
particular validation system is implementation dependent.

An XBSA Application may also supply an app_ObjectOwner (for example, an end-user id)
when initializing a session. If given, this name will not be authenticated by the Backup Service
against the registry, but will be used for checking object ownership and access rules when
objects are accessed during the session. If the app_ObjectOwner is not given, all objects owned
by the bsa_ObjectOwner may be accessed.

Every XBSA Object is created by a BSA_ObjectOwner. As shown in Figure 2-2, a
BSA_ObjectOwner consists of a bsa_ObjectOwner and app_ObjectOwner pair. The
bsa_ObjectOwner possesses all access rights to the object.

The authentication of XBSA Application sessions as well as access control at that level are
handled by the Backup Service. An XBSA Application, responsible for its own security domain,
in turn handles the authentication and access control at the application level, possibly with the
aid of the respective Application. The Backup Service provides object filtering support (utilizing
the app_ObjectOwner provided by an XBSA Application to check object ownership and access
rules) to reduce the amount of information that the XBSA Application has to retrieve, and
thereby improving the overall retrieval performance.

Systems Management: Backup Services API (XBSA) 17

Object Descriptors Backup and Archive Architecture

2.8 Object Descriptors
An XBSA Object has a BSA_ObjectDescriptor, containing cataloging information and optional
application specific object metadata. Cataloging information is capable of interpretation and
searching by XBSA. Application-specific object metadata is not interpretable by XBSA but may
be retrieved and interpreted by an application. Using an object’s objectName or its assigned
copyId identifier, the corresponding BSA_ObjectDescriptor and/or object data can be retrieved
through the Open Backup Services API.

For the intended storage purpose (that is, backup or archive), each XBSA Object is a copy of
certain application object(s). To preserve the semantics of the use of each copy within the
BSA_ObjectDescriptor, each XBSA Object has a copyType of either backup or archive, which is
recognized by the Backup Service so that the two types of objects can be managed differently
and accessed separately.

Furthermore, each XBSA Object has an objectStatus of either most-recent or not-most-recent.
The significance of an XBSA Object’s status is implementation defined. For example, an
implementation might implement a policy that for backup copies, only the latest copy of an
existing application object is active, whereas all archive copies are considered active.

In addition, to capture an application object’s type information, the corresponding XBSA Object
may have a resourceType (for example, "DOS filesystem") and a possibly resource-specific
BSA_ObjectType (for example, BSA_ObjectType_FILE).

A BSA_ObjectDescriptor consists of a collection of object attributes. To be able to define an
attribute, the appropriate attribute data type must be used in each XBSA Application and
Backup Service implementation. The basic data types used for XBSA Object attributes are:

• Fixed-length character strings

• Hierarchical character strings (with a specified delimiter, and a length limit on the overall
string)

• Enumerations

• Integers (with a specified range limit)

• Date-time (in a standard CTM structure) format and precision, for example,
yyyymmddhhmmss.ss)

A particular Backup Service implementation may keep index(s) on some or all of these attributes
to enhance search performance

18 Open Group Technical Standard

Backup and Archive Architecture Object Descriptors

The attributes are shown in the following table:

Attribute Data Type Searchable?
objectOwner yes
(consisting of two parts)
bsa_ObjectOwner [fixed-length character string]
app_ObjectOwner [hierarchical character string]
objectName yes
(consisting of two parts)
objectSpaceName [fixed-length character string]
pathName [hierarchical character string]
createTime [date-time] no
copyType [enumeration] yes
copyId 64-bit unsigned integer no
restoreOrder 64-bit unsigned integer no
resourceType [fixed-length character string] no
objectType [enumeration] yes
objectStatus [enumeration] yes
objectDescription [fixed-length character string] no
estimatedSize [64-bit unsigned integer] no
objectInfo [fixed-length byte string] no

Table 2-1 Object Attributes

An XBSA Application may search for a particular XBSA Object within a certain search scope (for
example, among objects belonging to an owner) by qualifying the search on the value of the
appropriate searchable attributes. For character strings, a substring match (prefix, infix or suffix)
is also supported.

On the other hand, non-searchable, application-specific attributes may be provided by an XBSA
Application for storage in the BSA_ObjectDescriptor, but they are not interpreted by the
Backup Service. They are stored in the XBSA Object attributes objectInfo, resourceType, and
objectDescription.

Through this objectInfo attribute, application-specific metadata may be stored in the catalog so
that this metadata can be efficiently retrieved without retrieving the actual object data stored in
the repository.

Furthermore, this objectInfo attribute can also be used by an XBSA Application to maintain
inter-object relationships and dependencies.

For more information on the BSA_ObjectDescriptor structure, see Section 5.4.3 on page 67.

Systems Management: Backup Services API (XBSA) 19

Object Data Backup and Archive Architecture

2.9 Object Data
Object data contains the actual data entity that is archived or backed up by an XBSA
Application. The Open Backup Services API supports only one type of object data, namely, a
variable-length, unstructured and uninterpreted byte-string with a very large size limit.

To a particular XBSA Client, however, the XBSA Object Data can contain an internal structure
that reflects the data of the Application Object or Objects that the XBSA Clients archived or
backed up. In this context the XBSA Object Data can contain for example one of the following: a
UNIX file system, a UNIX directory, a DOS file, a document, a disk image, a data stream, or a
memory dump.

Through the Open Backup Services API, object data can be stored, retrieved, or deleted, but not
searched or modified. Since object data may be stored on slow (or off-line) media, it is generally
not advisable for an XBSA Application to store metadata in object data, especially information
that could influence a data-retrieval decision.

However, the metadata of an XBSA Object which is stored in the catalog may be replicated in its
object data to facilitate media interchange (interoperability). This is an XBSA Application
implementation decision.

The mapping from the repository to physical storage media is a Backup Service implementation
decision. A particular Backup Service implementation should accommodate different types of
storage media, including disk, automated library, and shelf media. All opportunities for
optimization or design trade-off are considered Backup Service implementation options. These
include device exploitation, hierarchy management, object packing and placement, and
redundancy.

20 Open Group Technical Standard

Backup and Archive Architecture Transaction Management

2.10 Transaction Management
A backup task usually involves many updates to the catalog and repository. To protect their
integrity and assure consistency between an Object Descriptor and the corresponding object
data, and to provide atomicity for storing a group of objects, the concept of a transaction is used.
Either all the operations within a transaction are correctly performed or none is performed.

Nested transactions are not permitted. One or more non-overlapping transactions may occur
within any active session between an XBSA Application and a Backup Service. To define a
transaction, an XBSA Application must begin a transaction before performing XBSA operations,
and end the transaction after the appropriate XBSA calls have been made. Special XBSA calls are
provided to begin and end transactions.The effect of a transaction is not visible until it is
committed.

If a transaction is aborted by an XBSA Application, or if there is an error or failure encountered
in the midst of a transaction, the transaction will be rolled back (that is, the effect of the
transaction will be not be visible). It should be noted a rolled-back transaction may still have
some observable effects. For instance, accumulated tape movement involved in the transaction
may not be rewound. In such a case, no information relating to the data written to tape will be
stored, and thus any information stored during the transaction will not be retrievable. In the case
of a large, aborted transaction, considerable wastage of tape is possible.

The following XBSA calls are not affected by transaction management and take effect
immediately without the possibility of being rolled back:

• BSAQueryApiVersion()
• BSAQueryServiceProvider()
• BSAGetEnvironment()
• BSAGetLastError()
• BSAGetObject()
• BSAQueryObject()
• BSAGetNextQueryObject()

All XBSA backup and restore operations are required to be contained within transactions.
Although XBSA restore operations are in a transaction, it does not provide any useful
functionality to the XBSA Application. Transactions are constrained to be uni-directional, that is,
it is not permitted to mix backup and restore operations in the same transaction.

Systems Management: Backup Services API (XBSA) 21

Backup and Archive Architecture

22 Open Group Technical Standard

Chapter 3

Overview of Backup Services API

The Open Backup Services API is a set of procedures which may be called up, available in a
dynamic or static library provided by a vendor implementing a Backup Service. For the rest of
this Technical Standard, the terms API or XBSA refer to this Open Backup Services API.

A synchronous interface in the C language is defined. If an application needs asynchronous
behavior, it can be achieved by using its process or thread mechanisms.

The following sections in this chapter give a brief overview of the API calls and their intended
usage. A detailed specification of the procedures comprising the API is given in the manual-page
definitions in Chapter 4.

Chapter 5 defines the data type definitions and data structures used in the API.

3.1 Initialization and Authentication
It is necessary for an XBSA Application to set up a session with the Backup Service by invoking
the BSAInit() call, in order to use these services. The procedures BSAQueryApiVersion() and
BSAQueryServiceProvider() may be invoked prior to calling BSAInit() to determine the current
version of the API used by the Backup Service and a string describing the provider of the Backup
Service, respectively. The BSAInit() call authenticates the caller, sets up a session with the
Backup Service and sets up an environment for the caller to be used in subsequent calls. A
session set up by a BSAInit() call is terminated by a BSATerminate() call, which will release any
resources acquired during the setting up of the session. Nested sessions, and concurrent
sessions in the same address space are not permitted.

BSAInit() may authenticate the caller using a security token; the exact definition and use of this
security token is implementation dependent. If a NULL security token is provided, the Backup
Service can use a default, implementation-dependent security mechanism. In addition to those
environmental parameters defined in this Technical Standard, there may also be additional,
implementation dependent environmental parameters to the BSAInit() call.

A potential failure to authenticate the XBSA Client will cause the BSAInit() call to return
BSA_RC_AUTHENTICATION_FAILURE. The XBSA Client will have to communicate with the
security subsystem that is being used by the Backup Service to resolve this failure. The XBSA
itself does not provide details about the reason of the authentication failure, or the means for
correcting the authentication failure.

Systems Management: Backup Services API (XBSA) 23

Transactions Overview of Backup Services API

3.2 Transactions
Within each session, an XBSA Application can make a sequence of calls (for example, to backup
some objects, to query the set of objects it has backed up, or to restore objects). These calls must
be grouped into a transaction by invoking BSABeginTxn() at the beginning of the group of calls
and invoking BSAEndTxn() at the end. The latter either commits the transaction or aborts it.

If a transaction is aborted either by a BSAEndTxn() or BSATerminate() call, then the effect of all
the calls made within the transaction is nullified. If a transaction is committed, then the effect of
all the calls within the transaction is made permanent.

Within a single session, transactions cannot be nested and cannot overlap. Transactions are
categorized into the following types:

• Object modification transactions - in which objects may be created or deleted.

• Object retrieval transactions - in which objects may only be queried or retrieved. (This type of
transaction provides no functional benefit for the calling XBSA Application, and is only
included for completeness.)

The type of a transaction is established by the first create/delete/retrieve operation performed.
Attempts to mix operations in a transaction will result in a
BSA_RC_INVALID_CALL_SEQUENCE error. The permissible call sequences are defined later in
this chapter.

The following example illustrates the call pattern that may be used by a caller who, in one
transaction, loops through a list of object names to backup each object.

if ((rc = BSAInit(bsaHandlePtr, tokenPtr,
userNamePtr, environmentPtr)) != BSA_RC_SUCCESS) {

<error processing>;
}

if ((rc = BSABeginTxn(bsaHandle)) != BSA_RC_SUCCESS) {
<error processing>;

}

<loop through all object names> {
if ((rc = BSACreateObject(bsaHandle, objectDescriptorPtr,

dataBlkPtr)) != BSA_RC_SUCCESS) {
<error processing>;

}

<loop through all data for one object> {
if ((rc = BSASendData(bsaHandle,

dataBlkPtr)) != BSA_RC_SUCCESS) {
<error processing>;

}

} /* loop through all data for one object */

if ((rc = BSAEndData(bsaHandle)) != BSA_RC_SUCCESS) {
<error processing>;

}
} /* loop through all object names */

if ((rc = BSAEndTxn(bsaHandle,BSA_COMMIT)) != BSA_RC_SUCCESS) {
<error processing>;

}

24 Open Group Technical Standard

Overview of Backup Services API Transactions

if ((rc = BSATerminate(bsaHandle)) != BSA_RC_SUCCESS) {
<error processing>;

}

In this example, the data for each of the backup copy objects may be buffered by the API before
sending it to the Backup Service.

Systems Management: Backup Services API (XBSA) 25

Backup and Archive Overview of Backup Services API

3.3 Backup and Archive
An XBSA Application can create an XBSA object (either a backup copy or an archive copy) using
the BSACreateObject() call, and pass the object’s data in buffers using a sequence of
BSASendData() calls ended by a BSAEndData() call.

The ability to pass data in buffers allows an XBSA Application to use any buffering technique
that is appropriate to ensure consistency or to improve performance. When data is passed in
buffers, all the data for one object must be passed, in the proper sequence, before any other
operation is started.

A scenario for creating a backup copy of an object is shown in Figure 3-1.

BSAQueryApiVersion

BSAInit

BSABeginTxn

BSACreateObject

End of Data?

BSASendData

BSAEndData

BSAEndTxn

BSATerminate

Ensure that application has a compatible version

Set up a session with Backup Services

Start a transaction

Create a backup copy object

Write the data for the file

End the transaction

Terminate the session

yes

no

Figure 3-1 Creating a Backup Copy of an Object

26 Open Group Technical Standard

Overview of Backup Services API Restore and Retrieve

3.4 Restore and Retrieve
The Restore and Retrieve interface is similar to the Backup and Archive interface, except that the
data flow is reversed. The BSAGetData() call is used instead of the BSASendData() call. Data
directed to standard output may be piped to a filter or command.

The BSAGetObject() call is used to restore (from a backup copy) or retrieve (from an archive
copy) objects. The BSAGetData() call is used to get data for the object in buffers, and the
BSAEndData() call is to signal the end of getting data for the object. A scenario for restoring an
object is shown in Figure 3-2.

BSAQueryApiVersion

BSAInit

BSABeginTxn

BSAQueryObject

More Data?

BSAGetData Read the data for the file

End the transaction

Terminate the session

yes

no

BSAEndData

BSAEndTxn

BSATerminate

BSAGetObject

See if backup copy exists ...

... and get attributes

Figure 3-2 Restoring an Object

It should be noted that the use of transactions for restore and retrieval operations does not
provide any functional benefit to the calling XBSA Application.

Systems Management: Backup Services API (XBSA) 27

Query Overview of Backup Services API

3.5 Query
An XBSA Application may query the Backup Service for XBSA Objects that have been created.
The BSAQueryObject() call is used to query the Backup Service for objects. Since retention of
objects is a function of the Backup Service’s implementation there is no guarantee that the call to
BSAQueryObject() will return an object descriptor.

The query is based on a subset of the Object Descriptor attributes, contained in a Query
Descriptor. The result of a query can return Object Descriptors, but never XBSA Object Data. If
the result is multiple Object Descriptors, the query result is retrieved one Object Descriptor at a
time by using a succession of BSAGetNextQueryObject() calls.

The XBSA Application can retrieve the XBSA Object Data by using the BSAGetObject() call with
the copyId from one of the object descriptors returned by the query.

For details of the BSA_QueryDescriptor structure, see Section 5.4.6 on page 70.

28 Open Group Technical Standard

Overview of Backup Services API API Call Sequences

3.6 API Call Sequences
The permitted API call sequences are shown in the following diagrams. Any violation of these
sequences will result in a bad call sequence error.

In the call sequence diagrams, the following conventions are used:

• States have arbitrary names.

• Function names have been shortened by dropping the "BSA" prefix.

• States from which BSAEndTxn(BSA_COMMIT) can be called successfully are indicated by a
double box and named using bold font. Attempts to call BSAEndTxn(BSA_COMMIT) from
any other state will return a BSA_RC_TRANSACTION_ABORTED error.

QueryApiVersion()
QueryServiceProvider()

GetEnvironment()
GetLastError()
QueryApiVersion()
QueryServiceProvider()

GetEnvironment()
GetLastError()
QueryApiVersion()
QueryServiceProvider()

Transaction

(See next figure for details)

Initialized

Not
Initialized

Init() Terminate()

EndTxn()BeginTxn()

Terminate()

Figure 3-3 Permitted Call Sequences - Overview

Leaving the "Transaction" state with other than a successful call of BSAEndTxn(BSA_COMMIT)
will cause the transaction to be aborted. If the transaction was creating or deleting an object, that
object will not be created or deleted. Apart from this, a transaction does not have any other side
effect. In particular, the state of the storage media is not restored to the state just before the start
of the aborted transaction.

Systems Management: Backup Services API (XBSA) 29

API Call Sequences Overview of Backup Services API

GetEnvironment()
GetLastError()

QueryApiVersion()
QueryServiceProvider()

TRANSACTION
Can be called at any time

i.e., from any of the enclosed states

SendData()

GetData()

GetData()

QueryObject()
GetNextQueryObject()

Getting Object
Without Query

Getting
Object

Got Object
Without Query

Querying
Objects

Creating
Object

Beginning
Transaction

EndData()

DeleteObject()

DeleteObject()

QueryObject()

CreateObject()

EndData()
GetObject()

GetObject()

GetObject()

EndData()

EndTxn() Terminate()

QueryObject()

Modifying
Objects

BeginTxn()

Figure 3-4 Permitted Call Sequences - Transactions

Since getting or querying an object does not alter the state of the object, leaving the transaction
has no side effects.

30 Open Group Technical Standard

Overview of Backup Services API Buffers

3.7 Buffers
All buffers that are used by the XBSA are allocated by the XBSA Application. The Backup Service
fills data into the buffers, but never allocates any memory that is passed back to the XBSA
Application. This simplifies buffer allocation and deletion since the XBSA Application is solely
responsible.

However, to allow the Backup Service to influence how buffers should be allocated, and to
provide the Backup Service with the ability to reserve private sections in certain buffers, several
conventions are used in the XBSA.

3.7.1 Buffer Size

For function calls that specify the size of the buffer as a separate parameter, XBSA uses the
following convention to allow the Backup Service to signal that a buffer is not large enough and
provide the XBSA Application with the means to discover what the correct size should be.

The parameter that specifies the size is a pointer, so that the Backup Service can alter the
parameter. The size is always in bytes. If the size is adequate and a valid buffer is given, the
Backup Service will copy the requested data into the buffer and set the actual size in the size
parameter.

If the size is inadequate, the Backup Service will not copy the data into the buffer. It will set the
size parameter to the actual size of the data to be copied and return from the function call with
BSA_RC_BUFFER_TOO_SMALL. This allows the XBSA Application to allocate a buffer of
adequate size and to call the function again.

The functions that use this convention are BSAGetEnvironment() and BSAQueryServiceProvider().

3.7.2 Private Buffer Space

For function calls that use the BSA_DataBlock32 structure, a convention has been adopted that
allows the Backup Service to reserve certain portions of the buffer for its own use. There are two
areas that can be reserved by the Backup Service:

• Header
A contiguous area starting at offset 0 (that is, the start of the buffer)

• Trailer
A contiguous area that ends at the end of the buffer (that is, the tail of the buffer)

The area reserved for the XBSA Application is the:

• Data Segment
A contiguous area that lies in between the Header and Trailer

To make this preference known to the XBSA Application, the Backup Service sets certain
parameters in the BSA_DataBlock32 structure when a data transfer is initiated. Specifically,
when the XBSA Application issues either the BSACreateObject() call or the BSAGetObject() call,
the BSA_DataBlock32 structure is not used for passing data but for passing the Backup Service’s
preference. The parameters that must be set by the Backup Service, and their meaning, are given
in Table 3-1.

Systems Management: Backup Services API (XBSA) 31

Buffers Overview of Backup Services API

The Backup Service has no restrictions on the buffer length.
No trailer portion is required.

bufferLen == 0

The Backup Service accepts buffers that are at least
bufferLen bytes in length (minimum length). It also
accepts larger buffers.

For a BSASendData() call, the Backup Service
accepts a trailer that is as least as large as:
trailerBytes >= (bufferLen - numBytes - headerBytes)

For a BSAGetData call, the Backup Service returns
a trailer that is not larger than:
trailerBytes <= (bufferLen - numBytes - headerBytes)

bufferLen != 0

The Backup Service has no restrictions on the length of
the data portion of the buffer.

numBytes == 0

The Backup Service accepts (for a BSASendData() call),
or returns (for a BSAGetData() call), a data segment
that does not exceed numBytes bytes.

numBytes != 0

The Backup Service only accepts or returns buffers with
no header.

headerBytes == 0

The length of the header portion of buffers accepted
or returned by the Backup Service is headerBytes bytes.

headerBytes != 0

bufferPtr Not used

Table 3-1 Parameters in the BSA_DataBlock32 Structure

Subsequent calls to BSAGetData() or BSASendData() must adhere to the preferences that were
specified by the Backup Service. The relationship between the areas, and their mapping to the
fields of the BSA_DataBlock32 structure is described in Section 5.4.2 on page 65.

The Backup Service can write anything into the header and trailer area of the actual buffer, as
specified by the bufferPtr parameter in the BSA_DataBlock32 structure.

3.7.3 Use of BSA_DataBlock32 in BSASendData()

For BSASendData(), all parameters in the BSA_DataBlock32 structure must be set by the XBSA
Application and adhere to the Backup Service preferences or the function will fail with a
BSA_RC_INVALID_DATABLOCK error. The Backup Service is not allowed to change any of the
parameters.

3.7.4 Use of BSA_DataBlock32 in BSAGetData()

For BSAGetData(), all parameters in the BSA_DataBlock32 structure must be set by the XBSA
Application and adhere to the Backup Service preferences or the function will fail with a
BSA_RC_INVALID_DATABLOCK error. The Backup Service must change the following
parameter:

• numBytes
Set the actual number of bytes copied into the data segment.

The Backup Service is not allowed to change any of the other parameters.

32 Open Group Technical Standard

Overview of Backup Services API Buffers

3.7.5 Shared Memory

The BSA_DataBlock32 structure contains fields that allow the use of shared memory blocks for
passing data between an XBSA Application and a Backup Service.

The shareId specifies an identifier that can be used by the Backup Service to map the memory in
which the buffer resides into its address space. A special typedef, BSA_ShareId, is used to define
the shareId field using a type appropriate for the operating environment. For UNIX systems, this
is based on the shared memory semantics defined in the Single UNIX Specification, System
Interfaces and Headers, Issue 5 (see reference XSH, Issue 5) and the shareId is the shmid
identifier obtained by calling the shmget() function. For NT systems, it is a file handle which will
allow the Backup Service to map the file in memory.

The shareOffset specifies where in shared memory the buffer starts.

The semantics for the shareId are given in Table 3-2.

This buffer is not available in shared memory. The shareOffset field is
undefined. The bufferPtr is a true pointer in the address space of the
client.

shareId == -1

The Backup Service may map this buffer into its memory by using the
appropriate operating system services. The shareOffset becomes an
offset into the shared memory. The bufferPtr is a true pointer in the
address space of the client.

Note that the Backup Service is not forced to map the buffer into its
address space. It can copy the buffer in the address space of the XBSA
Client.

shareId != -1

Table 3-2 Semantics for shareId

Since the client may be using multiple buffers, it is not guaranteed that only one shareId is used
in the object data transfers. It is guaranteed, however, that a shareId itself will not change
during a session. In other words, the XBSA Client is not allowed to re-map a shareId within a
session once it has been made available to the Backup Service. In this way the Backup Service
can keep a simple lookup table to see whether the shareId is currently mapped in its address
space.

The following two sections describe how shared memory buffers are used in the UNIX and
Microsoft Windows NT operating systems.

3.7.5.1 Shared Memory on UNIX

For UNIX, the scenario for shared memory is as follows:

• The client performs either a BSACreateObject() or BSAGetObject() call to start the transfer and
receives the buffer parameters.

• The client allocates a buffer in shared memory, thereby receiving a shared memory identifier.
The client fills the buffer with data, if necessary.

• The client calls BSASendData() or BSAGetData() with the buffer parameters and the identifier
of the shared memory block it previously allocated.

• The library implementation forwards the information to a different process, which will have
to map the shared memory into its address space. This process can use shmctl() to retrieve
the size of the shared memory segment, and use shmat() to attach the memory to its address

Systems Management: Backup Services API (XBSA) 33

Buffers Overview of Backup Services API

space. Once attached, it uses the shareOffset to locate the actual buffer, and from there the
normal BSA_DataBlock32 rules apply.

3.7.5.2 Shared Memory on NT

For NT, the scenario for shared memory is as follows:

• The client performs either a BSACreateObject() or BSAGetObject() call to start the transfer and
receives the buffer parameters.

• The client allocates a buffer in shared memory, thereby receiving a file handle. The shared
memory is set up by creating a file-mapping object using CreateFileMapping (), and mapping
it the client’s address space with MapViewOfFile(). The client fills the buffer with data, if
necessary.

• The client calls BSASendData() or BSAGetData() with the buffer parameters and the file
handle of the file it used for mapping the shared memory.

• The library implementation forwards the information, including the process ID of the client,
to a different process. This process will have to duplicate the handle using OpenProcess() and
DuplicateHandle (), and map the file in its address space with MapViewOfFile(). Once
mapped, it uses the shareOffset to locate the actual buffer, and from there the normal
BSA_DataBlock32 rules apply.

For details of the interfaces, refer to the Microsoft Windows NT documentation.

34 Open Group Technical Standard

Chapter 4

Backup Services API Definitions

4.1 General
This Open Backup Services (XBSA) document specifies an Applications Programming Interface
(API), which provides an interface between applications or facilities needing data storage
management for backup or archive purposes, and the underlying services which provide these
functions.

The approach adopted in XBSA is to define a minimal, generic API that is able to adequately and
efficiently support a wide range of backup applications and utilities. The API addresses
portability issues across multiple backup products. It is not intended to address the
interoperability of clients and backup servers across arbitrary networks; this is a responsibility of
the underlying Backup Service product.

The following man pages describe the function calls used in the XBSA API. Many of the
parameter values used in the XBSA calls are dependent on the specific Backup Service invoked
from a particular vendor. Consequently, while some XBSA calls and structures are generic, any
particular XBSA Application may need to determine the actual Backup Service being invoked in
order to correctly use XBSA.

This chapter contains the C language definitions for all the Open Backup Services API
procedures. Chapter 5 gives the data type definitions used in the API.

In the descriptions in these man-pages:

(I) indicates input

(O) indicates output

(I/O) indicates input and output

In many cases, the actual input parameter is a pointer to a data structure. In these cases the
terms ‘‘I’’, ‘‘O’’ and ‘‘I/O’’ refer to changes in the value of the data structure rather than to
changes in the value of the pointer itself.

Systems Management: Backup Services API (XBSA) 35

Return Code Values Backup Services API Definitions

4.2 Return Code Values
The following XBSA Return Code Values table lists the possible return codes for the XBSA
function calls. Each individual manual page lists precisely which return codes are valid for each
interface.

The return code [BSA_RC_SUCCESS] is returned on successful completion by all XBSA
interfaces.

Return Code Value Meaning

System detected error, operation aborted.[BSA_RC_ABORT_SYSTEM_ERROR] 0x03

Access to the requested object is not
possible.

[BSA_RC_ACCESS_FAILURE] 0x4D

There was an authentication failure.[BSA_RC_AUTHENTICATION_FAILURE] 0x04

The supplied buffer is too small to contain
the data, as specified by the accompanying
size parameter.

[BSA_RC_BUFFER_TOO_SMALL] 0x4E

The sequence of API calls is incorrect.[BSA_RC_INVALID_CALL_SEQUENCE] 0x05

The copyId field contained an
unrecognized value.

[BSA_RC_INVALID_COPYID] 0x4F

The BSA_DataBlock32 parameter
contained an inconsistent value.

[BSA_RC_INVALID_DATABLOCK] 0x34

An entry in the environment structure is
invalid or missing.

[BSA_RC_INVALID_ENV] 0x50

The handle used to associate this call with
a previous BSAInit() call is invalid.

[BSA_RC_INVALID_HANDLE] 0x06

The BSA_ObjectDescriptor was invalid.[BSA_RC_INVALID_OBJECTDESCRIPTOR] 0x51

The BSA_QueryDescriptor was invalid.[BSA_RC_INVALID_QUERYDESCRIPTOR] 0x53

The value specified for vote is invalid.[BSA_RC_INVALID_VOTE] 0x0B

No object matched the specified predicate.[BSA_RC_NO_MATCH] 0x11

No more data is available.[BSA_RC_NO_MORE_DATA] 0x12

A NULL pointer was encounterered in one
of the arguments

[BSA_RC_NULL_ARGUMENT] 0x55

There is no copy of the requested object.[BSA_RC_OBJECT_NOT_FOUND] 0x1A

The function succeeded.[BSA_RC_SUCCESS] 0x00

The transaction was aborted.[BSA_RC_TRANSACTION_ABORTED] 0x20

The Backup Service implementation does
not support the specified version of the
interface.

[BSA_RC_VERSION_NOT_SUPPORTED] 0x4B

Table 4-1 XBSA Return Code Values

36 Open Group Technical Standard

Backup Services API Definitions XBSA Function Definitions

4.3 XBSA Function Definitions
The Backup Services function definitions are presented in the remainder of this Chapter.

Function Call Operation
BSABeginTxn() begin an API transaction
BSACreateObject() create a BSA object (either a backup or an archive copy)
BSADeleteObject() delete a BSA object
BSAEndData() end a BSAGetData() or BSASendData() sequence
BSAEndTxn() end a transaction
BSAGetData() get a byte stream of data using buffers
BSAGetEnvironment() retrieve the current environment for the session
BSAGetLastError() retrieve the error code for the last system error
BSAGetNextQueryObject() get the next object relating to a previous query
BSAGetObject() get an object
BSAInit() initialize the environment and set up a session
BSAQueryApiVersion() query for the current version of the API
BSAQueryObject() query about object copies
BSAQueryServiceProvider() query the name of the Backup Service implementation
BSASendData() send a byte stream of data in a buffer
BSATerminate() terminate a session

Table 4-2 XBSA Function Calls

Systems Management: Backup Services API (XBSA) 37

BSABeginTxn() Backup Services API Definitions

NAME
BSABeginTxn — begin an API transaction

SYNOPSIS
#include <xbsa.h>

int BSABeginTxn(long bsaHandle)

DESCRIPTION
The BSABeginTxn() call indicates to Backup Service the beginning of one or more actions that
will be executed as an atomic unit, that is, all the actions will succeed or none will succeed. An
action can be assumed to be either a single API call or a series of API calls that are made for a
particular purpose.

For example, a BSACreateObject() call followed by a number of BSASendData() calls and
terminated by a BSAEndData() call can be considered to be a single action.

In normal use, a BSABeginTxn() call is always coupled with a subsequent BSAEndTxn() call. If
BSATerminate() is called during a transaction, the transaction will be aborted.

Nested transactions are not supported.

PARAMETERS

long bsaHandle (I)
This parameter is the handle that associates this call with a previous BSAInit() call.

RETURN VALUE
The following return codes are returned by this function:

[BSA_RC_ABORT_SYSTEM_ERROR]
System detected error, operation aborted.

[BSA_RC_INVALID_CALL_SEQUENCE]
The sequence of API calls is incorrect. Nested transactions are not supported.

[BSA_RC_INVALID_HANDLE]
The handle used to associate this call with a previous BSAInit() call is invalid.

[BSA_RC_SUCCESS]
The function succeeded.

38 Open Group Technical Standard

Backup Services API Definitions BSACreateObject()

NAME
BSACreateObject — create a BSA object (either a backup or an archive copy)

SYNOPSIS
#include <xbsa.h>

int BSACreateObject(long bsaHandle,
BSA_ObjectDescriptor *objectDescriptorPtr,
BSA_DataBlock32 *dataBlockPtr)

DESCRIPTION
The BSACreateObject() call creates an an object within the Backup Service. All objects created are
owned by the bsa_ObjectOwner creating the object. For backup and archive copy objects,
duplicate BSA_ObjectNames are allowed.

The BSACreateObject() call is used to create an object when the object’s data is passed in memory
buffers. The dataBlockPtr parameter in the BSACreateObject() call allows the caller to obtain
information about the buffer structure required by the Backup Service.

The object’s data is passed through one or more BSASendData() calls. If there is no data to be
sent, then a BSAEndData() call must be used to indicate completion of the object. The
BSASendData() and BSAEndData() calls must follow the BSACreateObject() call and must be in
the same transaction.

PARAMETERS

long bsaHandle (I)
This parameter is the handle that associates this call with a previous BSAInit() call.

BSA_ObjectDescriptor *objectDescriptorPtr (I/O)
This parameter is used to pass object attributes, including its name, copy type, and so on.

BSA_DataBlock32 *dataBlockPtr (O)
This parameter points to a structure that is used to obtain the details of the required buffer
structure.

EXTENDED DESCRIPTION
Within the object descriptor, all fields must contain valid values. Enumerations must contain
one of their enumerated values. Strings must be null-terminated. All other fields must be in the
range of valid values for that field.

The following fields in the object descriptor are optional: objectOwner, objectDescription, and
objectInfo. The optional value for either field of objectOwner and the field objectDescription is
the empty string. The optional value for objectInfo is all zeros. If the bsa_ObjectOwner is
empty it will default to the value specified in BSAInit().

The following fields in the object descriptor are mandatory: objectName, copyType,
estimatedSize, resourceType, and objectType. For objectName this means that the pathName
must contain a non-empty string. For copyType and objectType the enumeration value "ANY"
is not allowed.

The estimatedSize must contain a non-zero estimate if the XBSA Client intends to create a non-
empty XBSA Object (that is, there will be XBSA Object Data). This size is in bytes. Although the
actual XBSA Object Data may be more or less than the estimate, the Backup Service may return a
failure if the XBSA Object Data is orders of magnitude larger than the estimatedSize. If the
estimatedSize is zero, this call must be followed by an BSAEndData() without calling
BSASendData() in between. The estimatedSize can be used by the Backup Service as a hint, for
example to select the storage medium or storage device.

Systems Management: Backup Services API (XBSA) 39

BSACreateObject() Backup Services API Definitions

The Backup Service may return several values to the BSA Application through the
objectDescriptorPtr for a newly created XBSA Object. The Backup Service returns either all or
none of these values.

The copyId attribute is a persistent, fixed-length Object Identifier which remains unchanged
throughout the life of the object.

It is the responsibility of the Backup Service to assign copyId values to objects. When objects are
deleted, their copyIds are returned to the pool of available identifiers, but the Backup Service
must choose an assignment policy that prevents their immediate reuse.

If the copyId field is non-zero, the Backup Service returned values for the copyId, createTime,
restoreOrder, and objectStatus fields. If the copyId field is zero, the values for the createTime,
restoreOrder, and objectStatus fields are undefined. The calling BSA Application must call
BSAQueryObject() to obtain an updated object descriptor.

Note: If the returned copyId is zero and the XBSA Client uses BSAQueryObject() to retrieve
an updated BSA_ObjectDescriptor for the newly created object, the Backup Service
cannot guarantee that the ObjectDesriptor returned by BSAQueryObject() is for the
object created by this call to BSACreateObject().

The behavior of returning a copyId value of zero is permitted for backwards
compatibility with existing implementations. This behavior is deprecated and it is
not intended that it should be used in new implementations.

The createTime field is in UTC. The restoreOrder field is optional and can have the value zero,
which means that the Backup Service did not specify a restore order.

The dataBlockPtr structure does not point to an actual buffer. All values in the dataBlockptr
should be zero, and will be overwritten. The structure is used by the Backup Service to provide
the BSA Application with the Backup Service’s preference for the structure of the data blocks
that will be used to pass the object’s data. The BSA Application should examine the values
returned in order to determine the buffer structure that it should create. The significance of the
returned values is as follows:

The Backup Service has no restrictions on the buffer length.
No trailer portion is required.

bufferLen == 0

The Backup Service accepts buffers that are at least
bufferLen bytes in length (minimum length).

The length of the trailer portion of buffers is:
trailerBytes >= (bufferLen - numBytes - headerBytes)

bufferLen != 0

The Backup Service has no restrictions on the length of
the data portion of the buffer.

numBytes == 0

The maximum length of the data portion of buffers
accepted by the Backup Service must not exceed
numBytes bytes.

numBytes != 0

The Backup Service only accepts buffers with no header
portion.

headerBytes == 0

The length of the header portion of buffers accepted
by the Backup Service is headerBytes bytes.

headerBytes != 0

bufferPtr Not used

The values returned by the Backup Service must conform to the relationships defined in Section
5.4.2 on page 65.

40 Open Group Technical Standard

Backup Services API Definitions BSACreateObject()

The values returned by the call to BSACreateObject() remain in effect for the duration of the data
transfer of the object being created, that is, until the next BSAEndData() call.

It is the responsibility of the XBSA Client to provide this guarantee, if so desired. For example,
the XBSA Client could use a unique identifier in the objectDescription field of the
BSA_ObjectDescriptor for such a purpose.

RETURN VALUE
The following return codes are returned by this function:

[BSA_RC_ABORT_SYSTEM_ERROR]
System detected error, operation aborted.

[BSA_RC_ACCESS_FAILURE]
Cannot create object with given descriptor.

[BSA_RC_INVALID_CALL_SEQUENCE]
The sequence of API calls is incorrect.

[BSA_RC_INVALID_DATABLOCK]
The BSA_DataBlock32 parameter contained an inconsistent value.

[BSA_RC_INVALID_HANDLE]
The handle used to associate this call with a previous BSAInit() call is invalid.

[BSA_RC_INVALID_OBJECTDESCRIPTOR]
The BSA_ObjectDescriptor was invalid.

[BSA_RC_NULL_ARGUMENT]
A NULL pointer was encounterered in one of the arguments

[BSA_RC_SUCCESS]
The function succeeded.

Systems Management: Backup Services API (XBSA) 41

BSADeleteObject() Backup Services API Definitions

NAME
BSADeleteObject — delete a BSA object

SYNOPSIS
#include <xbsa.h>

int BSADeleteObject(long bsaHandle, BSA_UInt64 copyId)

DESCRIPTION
The BSADeleteObject() call deletes an XBSA object from the Backup Service. The value for copyId
can be obtained from a previous BSAQueryObject() call. The copyId value is unique within the
Backup Service. A bsa_ObjectOwner can only delete objects that it owns.

It is not possible to create and then delete the same object within a single transaction.

PARAMETERS

long bsaHandle (I)
This parameter is the handle that associates this call with a previous BSAInit() call.

BSA_UInt64 copyId (I)
This parameter is the unique id of the object to be deleted. The value(s) for a specific object
can be obtained through a BSAQueryObject() call.

RETURN VALUE
The following return codes are returned by this function:

[BSA_RC_ABORT_SYSTEM_ERROR]
System detected error, operation aborted.

[BSA_RC_ACCESS_FAILURE]
Cannot delete object with given copyId.

[BSA_RC_INVALID_CALL_SEQUENCE]
The sequence of API calls is incorrect.

[BSA_RC_INVALID_COPYID]
The copyId field cannot be zero.

[BSA_RC_INVALID_HANDLE]
The handle used to associate this call with a previous BSAInit() call is invalid.

[BSA_RC_OBJECT_NOT_FOUND]
The given copyId does not exist.

[BSA_RC_SUCCESS]
The function succeeded.

42 Open Group Technical Standard

Backup Services API Definitions BSAEndData()

NAME
BSAEndData — end a BSAGetData() or BSASendData() sequence

SYNOPSIS
#include <xbsa.h>

int BSAEndData(long bsaHandle)

DESCRIPTION
The caller issues BSAEndData() after a call to BSACreateObject() followed by zero or more
BSASendData() calls, or after a call to BSAGetObject() followed by zero or more BSAGetData()
calls to signify the end of data. When used with BSAGetObject() or BSAGetData() calls,
BSAEndData() will not transfer any more data for the object to the caller. When used with
BSACreateObject() or BSASendData() calls, BSAEndData() tells the Backup Service that the caller
has finished sending data for a particular object. BSAEndData() signifies the end of data for the
immediately preceding BSACreateObject(), BSAGetObject(), BSAGetData(), or BSASendData().

It is also required after a call to BSAGetObject() or BSACreateObject() if the object is empty.

PARAMETERS

long bsaHandle (I)
This parameter is the handle that associates this call with a previous BSAInit() call.

RETURN VALUE
The following return codes are returned by this function:

[BSA_RC_ABORT_SYSTEM_ERROR]
System detected error, operation aborted.

[BSA_RC_INVALID_CALL_SEQUENCE]
The sequence of API calls is incorrect.

[BSA_RC_INVALID_HANDLE]
The handle used to associate this call with a previous BSAInit() call is invalid.

[BSA_RC_SUCCESS]
The function succeeded.

Systems Management: Backup Services API (XBSA) 43

BSAEndTxn() Backup Services API Definitions

NAME
BSAEndTxn — end a transaction

SYNOPSIS
#include <xbsa.h>

int BSAEndTxn(long bsaHandle, BSA_Vote vote)

DESCRIPTION
BSAEndTxn() is coupled with BSABeginTxn() to identify the API call or set of API calls that are
to be treated as a transaction. The caller must specify as a parameter to the BSAEndTxn() call
whether or not the transaction is to be committed.

The [BSA_RC_TRANSACTION_ABORTED] error can only be returned when a vote of
BSA_Vote_COMMIT has been specified but an error has occurred which causes the transaction
to be aborted.

PARAMETERS

long bsaHandle (I)
This parameter is the handle that associates this call with a previous BSAInit() call.

BSA_Vote vote (I)
This parameter indicates whether or not the caller wants to commit all the actions done
between the previous BSABeginTxn() call and this call.

RETURN VALUE
The following return codes are returned by this function:

[BSA_RC_ABORT_SYSTEM_ERROR]
System detected error, operation aborted.

[BSA_RC_INVALID_CALL_SEQUENCE]
There is no corresponding BSABeginTxn().

[BSA_RC_INVALID_HANDLE]
The handle used to associate this call with a previous BSAInit() call is invalid.

[BSA_RC_INVALID_VOTE]
The value specified for vote is invalid.

[BSA_RC_SUCCESS]
The function succeeded.

[BSA_RC_TRANSACTION_ABORTED]
The transaction was aborted.

44 Open Group Technical Standard

Backup Services API Definitions BSAGetData()

NAME
BSAGetData — get a byte stream of data using buffers

SYNOPSIS
#include <xbsa.h>

int BSAGetData(long bsaHandle, BSA_DataBlock32 *dataBlockPtr)

DESCRIPTION
BSAGetData() allows the caller to request a buffer full of XBSA Object Data from the Backup
Service. This call is used after a BSAGetObject() call or after other BSAGetData() calls.

PARAMETERS

long bsaHandle (I)
This parameter is the handle that associates this call with a previous BSAInit() call.

BSA_DataBlock32 *dataBlockPtr (I/O)
This parameter points to a structure that includes both a pointer to the buffer for the data
that is to be received and the size of the buffer. Further, the API will return, in this structure,
the number of bytes of data that have been sent to the caller for this call.

EXTENDED DESCRIPTION
The Backup Service overwrites the numBytes field to provide the actual values used. The
Backup Service may not modify any other fields. The BSA Application may only use the data
portion of the buffer, in which the object data is contained.

RETURN VALUE
The following return codes are returned by this function:

[BSA_RC_ABORT_SYSTEM_ERROR]
System detected error, operation aborted.

[BSA_RC_INVALID_CALL_SEQUENCE]
The sequence of API calls is incorrect.

[BSA_RC_INVALID_DATABLOCK]
The BSA_DataBlock32 parameter contained an inconsistent value.

[BSA_RC_INVALID_HANDLE]
The handle used to associate this call with a previous BSAInit() call is invalid.

[BSA_RC_NO_MORE_DATA]
There is no more data.

[BSA_RC_NULL_ARGUMENT]
A NULL pointer was encounterered in one of the arguments

[BSA_RC_SUCCESS]
The function succeeded.

Systems Management: Backup Services API (XBSA) 45

BSAGetEnvironment() Backup Services API Definitions

NAME
BSAGetEnvironment — retrieve the current environment for the session

SYNOPSIS
#include <xbsa.h>

int BSAGetEnvironment(long bsaHandle, BSA_UInt32 *sizePtr,
char **environmentPtr)

DESCRIPTION
The BSAGetEnvironment() call returns the (keyword, value) pairs that are currently defined in
the environment for the session. This call is used to retrieve environment variables from the
Backup Service environment.

PARAMETERS

long bsaHandle (I)
This parameter is the handle that associates this call with a previous BSAInit() call. It
identifies the session.

BSA_UInt32 *sizePtr (I/O)
This parameter contains the size of the environment buffer in bytes.

char **environmentPtr (O)
This parameter is a pointer to an array of character pointers to the environment variables
strings for the session. Each string consists of a keyword followed by an "=" followed by a
null-terminated value. The array of pointers is terminated by a NULL pointer.

EXTENDED DESCRIPTION
If a buffer too small error is encountered, the required size is returned in the sizePtr parameter. If
the sizePtr parameter is set to zero, this will force a buffer too small error, thus providing a
mechanism to query the required size.

The following environment variables, to be returned by the Backup Service implementation, are
defined as part of this Technical Standard.

Variable Name Description Format

The delimiter used in
hierarchical character
strings (default "/")

A single character drawn from the
POSIX.1 portable filename character set

for example, ":"

BSA_DELIMITER

Identifies the BSA
implementation. This
is the same string
that is returned by the
BSAQueryServiceProvider()
function call.

A hierarchical character string with at
least 3 fields as follows:
CompanyName/ProductName/ProductVersion[/...]
Additional, delimiter-separated,
implementation-specific fields
are permitted

for example, IBM/ADSM/2.1.3

BSA_SERVICE_PROVIDER

Additional private variables are allowed. The BSAGetEnvironment() call only returns
environment variables that are meaningful to the Backup Service. This allows the XBSA
Application to discover which variables that it specified when it called BSAInit() were
interpreted by the Backup Service.

46 Open Group Technical Standard

Backup Services API Definitions BSAGetEnvironment()

RETURN VALUE
The following return codes are returned by this function:

[BSA_RC_ABORT_SYSTEM_ERROR]
System detected error, operation aborted.

[BSA_RC_BUFFER_TOO_SMALL]
The size of the data buffer is invalid.

[BSA_RC_INVALID_HANDLE]
The handle used to associate this call with a previous BSAInit() call is invalid.

[BSA_RC_NULL_ARGUMENT]
A NULL pointer was encounterered in one of the arguments

[BSA_RC_SUCCESS]
The function succeeded.

Systems Management: Backup Services API (XBSA) 47

BSAGetLastError() Backup Services API Definitions

NAME
BSAGetLastError — return the last system error code

SYNOPSIS
#include <xbsa.h>

int BSAGetLastError(BSA_UInt32 *sizePtr, char *errorCodePtr)

DESCRIPTION
The BSAGetLastError() call returns a textual description of the last error encountered by the
Backup Service implementation. It is used to return platform-specific information describing the
underlying cause of the failure of the most recent XBSA call, for example, a network failure.

PARAMETERS

BSA_UInt32 sizePtr (I/O)
This parameter contains the size of the error buffer in bytes.

char *errorPtr (O)
This parameter points to a data area that contains a text string describing the last error
encountered.

EXTENDED DESCRIPTION
If the Backup Service sets the sizePtr parameter to zero, the Backup Service is unable to return a
string describing the last error. This indicates that the Backup Service has no record of what
error occurred.

If a [BSA_RC_BUFFER_TOO_SMALL] error is encountered, the required size is returned in the
sizePtr parameter. If the XBSA Application sets the sizePtr parameter to zero, this will force a
[BSA_RC_BUFFER_TOO_SMALL] error, thus providing a mechanism to query the required size.

RETURN VALUE
The following return codes are returned by this function:

[BSA_RC_BUFFER_TOO_SMALL]
The size of the data buffer is invalid.

[BSA_RC_INVALID_CALL_SEQUENCE]
The sequence of API calls is incorrect.

[BSA_RC_INVALID_HANDLE]
The handle used to associate this call with a previous BSAInit() call is invalid.

[BSA_RC_NULL_ARGUMENT]
A NULL pointer was encounterered in one of the arguments

[BSA_RC_SUCCESS]
The function succeeded.

48 Open Group Technical Standard

Backup Services API Definitions BSAGetNextQueryObject()

NAME
BSAGetNextQueryObject — get the next object relating to a previous query

SYNOPSIS
#include <xbsa.h>

int BSAGetNextQueryObject(long bsaHandle,
BSA_ObjectDescriptor *objectDescriptorPtr)

DESCRIPTION
The BSAGetNextQueryObject() call returns the next object descriptor in response to a previous
query. Successive calls to BSAGetNextQueryObject() will return these object descriptors.

PARAMETERS

long bsaHandle (I)
This parameter is the handle that associates this call with a previous BSAInit() call.

BSA_ObjectDescriptor *objectDescriptorPtr (O)
This parameter points to an object descriptor structure that will be filled with the values for
each object returned in turn.

RETURN VALUE
The following return codes are returned by this function:

[BSA_RC_ABORT_SYSTEM_ERROR]
System detected error, operation aborted.

[BSA_RC_INVALID_CALL_SEQUENCE]
The sequence of API calls is incorrect.

[BSA_RC_INVALID_HANDLE]
The handle used to associate this call with a previous BSAInit() call is invalid.

[BSA_RC_NO_MORE_DATA]
There is no more data.

[BSA_RC_NULL_ARGUMENT]
A NULL pointer was encounterered in one of the arguments

[BSA_RC_SUCCESS]
The function succeeded.

Systems Management: Backup Services API (XBSA) 49

BSAGetObject() Backup Services API Definitions

NAME
BSAGetObject — get an object

SYNOPSIS
#include <xbsa.h>

int BSAGetObject(long bsaHandle,
BSA_ObjectDescriptor *objectDescriptorPtr,
BSA_DataBlock32 *dataBlockPtr)

DESCRIPTION
BSAGetObject() retrieves the BSA_ObjectDescriptor for the XBSA Object identified by the
copyId and prepares the Backup Service to retrieve the XBSA Object Data.

The dataBlockPtr parameter in the BSAGetObject() call allows the caller to obtain information
about the buffer structure required by the Backup Service. The caller obtains the object’s data
through subsequent BSAGetData() calls. The caller must terminate receipt of the data by using
the BSAEndData() call.

PARAMETERS

long bsaHandle (I)
This parameter is the handle that associates this call with a previous BSAInit() call.

BSA_ObjectDescriptor *objectDescriptorPtr (I)
This parameter is a pointer to a data area used to pass the XBSA Object’s copyId to the
Backup Service.

BSA_DataBlock32 *dataBlockPtr (O)
This parameter points to a structure that is used to obtain the details of the required buffer
structure.

EXTENDED DESCRIPTION

It is mandatory that the copyId field in the BSA_ObjectDescriptor structure is set as this is the
only field that is checked. A copyId value of zero cannot identify a valid object. BSAGetObject()
matches the copyId field for equality.

The dataBlockPtr structure does not point to an actual buffer. All values in the dataBlockptr
should be zero, and will be overwritten. The structure is used by the Backup Service to provide
the XBSA Application with the Service’s preference for the structure of the data blocks that will
be used to pass the object’s data. The XBSA Application should examine the values returned in
order to determine the buffer structure that it should create. The significance of the returned
values is as follows:

50 Open Group Technical Standard

Backup Services API Definitions BSAGetObject()

The Backup Service has no restrictions on the buffer length.
No trailer portion is required.

bufferLen == 0

The Backup Service accepts buffers that are at least
bufferLen bytes in length (minimum length).

The length of the trailer portion of buffers is:
trailerBytes >= (bufferLen - numBytes - headerBytes)

bufferLen != 0

The Backup Service has no restrictions on the length of
the data portion of the buffer.

numBytes == 0

The minimum length of the data portion of buffers
accepted by the Backup Service must be
numBytes bytes. If the Backup Service provides a
larger data portion, the Backup Service may take
advantage of it.

numBytes != 0

The Backup Service only accepts buffers with no header
portion.

headerBytes == 0

The length of the header portion of buffers accepted
by the Backup Service is headerBytes bytes.

headerBytes != 0

bufferPtr Not used

The values returned by the Backup Service must conform to the relationships defined in Section
5.4.2 on page 65.

The values returned by the call to BSAGetObject() remain in effect for the duration of the data
transfer of the object being created, that is, until the next BSAEndData() call.

RETURN VALUE
The following return codes are returned by this function:

[BSA_RC_ABORT_SYSTEM_ERROR]
System detected error, operation aborted.

[BSA_RC_ACCESS_FAILURE]
Access to the requested object is not possible. Cannot retrieve object with given copyId.

[BSA_RC_INVALID_CALL_SEQUENCE]
The sequence of API calls is incorrect.

[BSA_RC_INVALID_COPYID]
The copyId cannot be zero.

[BSA_RC_INVALID_HANDLE]
The handle used to associate this call with a previous BSAInit() call is invalid.

[BSA_RC_NULL_ARGUMENT]
A NULL pointer was encounterered in one of the arguments

[BSA_RC_OBJECT_NOT_FOUND]
The given copyId does not exist.

[BSA_RC_SUCCESS]
The function succeeded.

Systems Management: Backup Services API (XBSA) 51

BSAInit() Backup Services API Definitions

NAME
BSAInit — initialize the environment and set up a session

SYNOPSIS
#include <xbsa.h>

int BSAInit(long *bsaHandlePtr, BSA_SecurityToken *tokenPtr,
BSA_ObjectOwner *objectOwnerPtr, char **environmentPtr)

DESCRIPTION
The BSAInit() call authenticates the XBSA Application, sets up a session with the Backup
Service and an environment for subsequent API calls for the caller. Nested sessions, and
concurrent sessions in the same address space are not supported.

PARAMETERS

long *bsaHandlePtr (O)
This parameter is used to return the handle that identifies this session and must be used for
subsequent API calls using this session.

BSA_SecurityToken *tokenPtr (I)
If a Backup Service implementation provides its own authentication and access control, this
parameter points to a security token that is to be used to authenticate the XBSA Application.
The authentication is valid for the session and all calls using the returned session handle
will be assumed to be made by the same XBSA Application.

If a NULL security token pointer is provided, the Backup Service can use a default,
implementation-dependent security mechanism.

If this call returns [BSA_RC_AUTHENTICATION_FAILURE] the XBSA Application should
consult an implementation dependent security API to resolve the failure. The XBSA
Application can use BSAQueryServiceProvider() to determine whether and what security API
to use.

BSA_ObjectOwner *objectOwnerPtr (I)
This parameter points to a structure used to specify both the bsa_ObjectOwner and the
app_ObjectOwner. Only the bsa_ObjectOwner field is mandatory and must be specified
using a non-empty null-terminated string. The app_ObjectOwner is optional and can be the
empty string. The BSA_ObjectOwner established when the session is created is used in
subsequent authorization checking. If the BSA_ObjectOwner.bsa_ObjectOwner field for
any of the XBSA calls used in this session is empty, it will default to the value specified in
this call.

char **environmentPtr (I)
This parameter points to a structure that contains the new environment variables (keyword,
value) pairs, for the session. The environment consists of a pointer to an array of strings.
Each string consists of a keyword followed by an "=" and followed by a null-terminated
value. The array of pointers is terminated by a NULL pointer.

EXTENDED DESCRIPTION
The following environment variables, to be provided by the XBSA Client, are defined as part of
this Technical Standard.

52 Open Group Technical Standard

Backup Services API Definitions BSAInit()

Variable Name Description Format

Mandatory. Specifies
the version of the
specification that
the calling XBSA
Application requires.

A string containing 3
numeric elements,
(version, issue, level)
separated by periods.
For example, "1.1.0",
identifies this document.
See BSAQueryAPIVersion().

for example, 1.1.3

BSA_API_VERSION

Optional. Identifies a
specific host system on
which the Backup Service
is running. If this
variable is not provided,
an implementation-defined
default host will be
selected.

A string containing an
implementation-defined
host name. (Normally,
this will depend on the
underlying operating
system environment.)

for example, backup.xyz.com

BSA_SERVICE_HOST

Additional private variables are allowed as long as they are agreed upon by the XBSA
Application and Backup Service. Variables defined by the XBSA Application but not interpreted
by the Backup Service are silently ignored and not added to the Backup Service’s environment
variables. Variables required by the Backup Service and not specified by the client may result in
a [BSA_RC_INVALID_ENV] error during a BSAInit() call. The BSAGetEnvironment() call only
returns environment variables that are meaningful to the Backup Service. This allows the XBSA
Application to discover which variables that it specified when calling BSAInit() were interpreted
by the Backup Service. Since the XBSA Application is in control, it can always abort a session if it
disagrees with the Backup Service about the environment.

When an XBSA Application connects to a Backup Service, it can make an initial call to
BSAQueryApiVersion() to determine the highest version of the specification supported. If the
client supports that version, it should specify it when calling BSAInit(). If the client does not
support that version, or did not call BSAQueryApiVersion(), the XBSA Application should specify
the version it requires. If a version not supported error is encounterered, and the BSA
Application supports other versions, it may retry the call to BSAInit() specifying a different
version.

All XBSA Application must set the BSA_API_VERSION environment variable in the
environment structure used for the BSAInit() call. XBSA Applications that do not set this
variable are assumed to be version 0.1.X clients by the Backup Service. The Backup Service will
either reject such XBSA Application or provide a 0.1.X compatible API.

RETURN VALUE
The following return codes are returned by this function:

[BSA_RC_ABORT_SYSTEM_ERROR]
System detected error, operation aborted.

[BSA_RC_AUTHENTICATION_FAILURE]
There was an authentication failure. The BSA_SecurityToken or the BSA_ObjectOwner is
invalid.

[BSA_RC_INVALID_CALL_SEQUENCE]
The sequence of API calls is incorrect. Nested sessions are not supported.

[BSA_RC_INVALID_ENV]
An entry in the environment structure is invalid or missing.

Systems Management: Backup Services API (XBSA) 53

BSAInit() Backup Services API Definitions

[BSA_RC_NULL_ARGUMENT]
A NULL pointer was encounterered in one of the arguments

[BSA_RC_SUCCESS]
The function succeeded.

[BSA_RC_VERSION_NOT_SUPPORTED]
The Backup Service implementation does not support the specified version of the interface.

54 Open Group Technical Standard

Backup Services API Definitions BSAQueryApiVersion()

NAME
BSAQueryApiVersion — query for the current version of the API

SYNOPSIS
#include <xbsa.h>

int BSAQueryApiVersion(BSA_ApiVersion *apiVersionPtr)

DESCRIPTION
The BSAQueryApiVersion() call is used to determine the current version of the XBSA. The
version information consists of the issue, version within the issue, and level within the version.
If the Backup Services implementation supports more than one version, the latest version
information will be returned.

PARAMETERS

BSA_ApiVersion *apiVersionPtr (O)
This parameter is a pointer to a structure that is to be used to return the current issue,
version, and level, of the API.

RETURN VALUE
The following return codes are returned by this function:

[BSA_RC_ABORT_SYSTEM_ERROR]
System detected error, operation aborted.

[BSA_RC_NULL_ARGUMENT]
A NULL apiVersion pointer was encountered.

[BSA_RC_SUCCESS]
The function succeeded.

Systems Management: Backup Services API (XBSA) 55

BSAQueryObject() Backup Services API Definitions

NAME
BSAQueryObject — query about object copies

SYNOPSIS
#include <xbsa.h>

int BSAQueryObject(long bsaHandle,
BSA_QueryDescriptor *queryDescriptorPtr,
BSA_ObjectDescriptor *objectDescriptorPtr)

DESCRIPTION
The BSAQueryObject() call initiates a request for information on object copies (for example,
backup or archive) from a Backup Service. The results of the query will be determined by the
search conditions specified in the queryDescriptor. The object descriptor for the first object
satisfying the query search conditions is returned in the BSA_ObjectDescriptor (referenced by
the BSA_ObjectDescriptorPtr parameter). The application can obtain the other object descriptors
by successive calls to BSAGetNextQueryObject().

PARAMETERS

long bsaHandle (I)
This parameter is the handle that associates this call with a previous BSAInit() call.

BSA_QueryDescriptor *queryDescriptorPtr (I)
This parameter is a pointer to a structure that contains the search conditions for the query.

BSA_ObjectDescriptor *objectDescriptorPtr (O)
This parameter is a pointer to a structure that is used to return the Object descriptor for the
first object that satisfies the search condition specified in the query.

EXTENDED DESCRIPTION
This function may only be used as part of a retrieval transaction.

A limited wild-card capability is available as follows:

Data Type Wild-card Options
"*" matches 0 or more characters
"?" matches exactly one character
"*" matches a literal "*"
"\?" matches a literal "?"
"\\" matches a literal "\"

string

time zero value = any time
enumerations ANY value matches any value
BSA_ObjectOwner defaults to value specified at session initialization

The following examples illustrate wild-card string matching:

would match all objects
for this server

BSA_ObjectName.pathName = /server/*

would match all levels
of rootdbs

BSA_ObjectName.pathName = /server/rootdbs/*

would match all levels
whose name is exactly
4 characters long

BSA_ObjectName.pathName = /server/????

56 Open Group Technical Standard

Backup Services API Definitions BSAQueryObject()

String matching is performed without any interpretation of the string contents. There is no
implied knowledge of the structure of the string contents.

RETURN VALUE
The following return codes are returned by this function:

[BSA_RC_ABORT_SYSTEM_ERROR]
System detected error, operation aborted.

[BSA_RC_ACCESS_FAILURE]
Access to the requested object descriptor is not permitted.

[BSA_RC_INVALID_CALL_SEQUENCE]
The sequence of API calls is incorrect.

[BSA_RC_INVALID_HANDLE]
The handle used to associate this call with a previous BSAInit() call is invalid.

[BSA_RC_INVALID_QUERYDESCRIPTOR]
The BSA_QueryDescriptor was invalid.

[BSA_RC_NO_MATCH]
No objects matched the given query.

[BSA_RC_NULL_ARGUMENT]
A NULL pointer was encounterered in one of the arguments

[BSA_RC_SUCCESS]
The function succeeded.

Systems Management: Backup Services API (XBSA) 57

BSAQueryServiceProvider() Backup Services API Definitions

NAME
BSAQueryServiceProvider — retrieve a string identifying the Backup Service provider

SYNOPSIS
#include <xbsa.h>

int BSAQueryServiceProvider(BSA_UInt32 *sizePtr, char *delimiter,
char *providerPtr)

DESCRIPTION
The BSAQueryServiceProvider() call returns a hierarchical string identifying the Backup Service
provider. The content of the string is implementation dependent.

PARAMETERS

BSA_UInt32 *sizePtr (I/O)
This parameter contains the size of the provider buffer in bytes.

char *delimiter (O)
This parameter points to the character that is used to delimit fields in the provider
hierarchical string.

char *providerPtr (O)
This parameter points to a data area that contains an implementation-dependent
hierarchical string which conveys information identifying the Backup Service provider.

EXTENDED DESCRIPTION
The format of the provider string is the same as that of the BSA_SERVICE_PROVIDER
environment variable (see BSAGetEnvironment()). The delimiter character is returned in the
delimiter parameter.

If a [BSA_RC_BUFFER_TOO_SMALL] error is encountered, the required size is returned in the
sizePtr parameter. If the XBSA Application sets the sizePtr parameter to zero, this will force a
[BSA_RC_BUFFER_TOO_SMALL] error, thus providing a mechanism to query the required size.

RETURN VALUE
The following return codes are returned by this function:

[BSA_RC_ABORT_SYSTEM_ERROR]
System detected error, operation aborted.

[BSA_RC_BUFFER_TOO_SMALL]
The size of the data buffer is invalid.

[BSA_RC_NULL_ARGUMENT]
A NULL pointer was encounterered in one of the arguments

[BSA_RC_SUCCESS]
The function succeeded.

58 Open Group Technical Standard

Backup Services API Definitions BSASendData()

NAME
BSASendData — send a byte stream of data in a buffer

SYNOPSIS
#include <xbsa.h>

int BSASendData(long bsaHandle, BSA_DataBlock32 *dataBlockPtr)

DESCRIPTION
BSASendData() sends a byte stream of data to a Backup Service in a buffer. The calling
application can pass any data for storage in the XBSA system. BSASendData() can be called
multiple times, in case the byte stream of data to be sent is large. This call may be used only after
a BSACreateObject() or another BSASendData() call.

PARAMETERS

long bsaHandle (I)
This parameter is the handle that associates this call with a previous BSAInit() call.

BSA_DataBlock32 *dataBlockPtr (I)
This parameter points to a structure that includes both a pointer to the buffer from which
the data is to be sent, as well as the size of the buffer.

EXTENDED DESCRIPTION
The Backup Service may not overwrite any of the fields in the BSA_DataBlock32 structure. The
Backup Service may write into the header and trailer portions of the buffer.

RETURN VALUE
The following return codes are returned by this function:

[BSA_RC_ABORT_SYSTEM_ERROR]
System detected error, operation aborted.

[BSA_RC_INVALID_CALL_SEQUENCE]
The sequence of API calls is incorrect.

[BSA_RC_INVALID_DATABLOCK]
The BSA_DataBlock32 parameter contained an inconsistent value.

[BSA_RC_INVALID_HANDLE]
The handle used to associate this call with a previous BSAInit() call is invalid.

[BSA_RC_NULL_ARGUMENT]
A NULL pointer was encounterered in one of the arguments

[BSA_RC_SUCCESS]
The function succeeded.

Systems Management: Backup Services API (XBSA) 59

BSATerminate() Backup Services API Definitions

NAME
BSATerminate — terminate a session

SYNOPSIS
#include <xbsa.h>

int BSATerminate(long bsaHandle)

DESCRIPTION
The BSATerminate() call terminates the session with the Backup Service that was set up by a
previous BSAInit() call and is associated with the bsaHandle. It also releases any resources
acquired to set up the environment for the session. The Backup Service should allow a grace
period before deallocating devices or rewinding tapes. If BSATerminate() is called within a
transaction, the transaction will be aborted.

PARAMETERS

long bsaHandle (I)
This parameter is the handle that associates this call with a previous BSAInit() call.

RETURN VALUE
The following return codes are returned by this function:

[BSA_RC_ABORT_SYSTEM_ERROR]
System detected error, operation aborted.

[BSA_RC_INVALID_HANDLE]
The handle used to associate this call with a previous BSAInit() call is invalid.

[BSA_RC_SUCCESS]
The function succeeded.

60 Open Group Technical Standard

Chapter 5

Type Definitions and Data Structures

This chapter describes the type definitions and data structures used in the XBSA interface. They
are defined in a C Language Header File <xbsa.h>. A sample file is contained in Appendix B.

5.1 Type Definitions
The following type definitions are provided for use within the XBSA interfaces.

Data Type Type Name Example Type Definition
16-bit Integer BSA_Int16 typedef short BSA_Int16;

32-bit Integer BSA_Int32 typedef int BSA_Int32;

64-bit Integer BSA_Int64 typedef struct {

BSA_Int32 left;

BSA_Int32 right;

} BSA_Int64;

/* or a single simple type if the target
* platform supports a simple type that
* yields a 64 bit quantity
*/

16-bit Unsigned Integer BSA_UInt16 typedef unsigned short BSA_UInt16;

32-bit Unsigned Integer BSA_UInt32 typedef unsigned int BSA_UInt32;

64-bit Unsigned Integer BSA_UInt 64 typedef struct {

BSA_UInt32 left;

BSA_UInt32 right;

} BSA_UInt64;

/* or a single simple type if the target
* platform supports a simple type that
* yields a 64 bit quantity
*/

Shared Memory
Buffer reference

BSA_ShareId <operating system dependent>

Table 5-1 Type Definitions

The 3rd column in the table above is not mandatory. The type definitions must be true to the
what the type name specifies.

For 64 bit architectures, and architectures that support 64 bit quantities as a simple type, the
BSA_UInt64 type may not be a structure.

Systems Management: Backup Services API (XBSA) 61

Enumerated Types Type Definitions and Data Structures

5.2 Enumerated Types
The following enumerated type definitions are provided for use within the XBSA interfaces. For
enumerations used in queries, the value 1 is reserved for use as a wild-card (ANY) value.

5.2.1 BSA_CopyType

The BSA_CopyType enumeration describes the type of the operation used to create the object. It
is defined as follows:

typedef enum {
BSA_CopyType_ANY = 1,
BSA_CopyType_ARCHIVE = 2,
BSA_CopyType_BACKUP = 3

} BSA_CopyType;

The meaning of the enumeration values is as follows:

Constant Value Definition
Used for matching any copy type (for example, ‘‘backup’’ or
‘‘archive’’ in the copy type field of structures for selecting query
results).

ANY 1

Specifies that the copy type should be ‘‘archive’’.ARCHIVE 2

Specifies that the copy type should be ‘‘backup’’.BACKUP 3

Table 5-2 BSA_CopyType Enumeration Values

5.2.2 BSA_ObjectStatus

The BSA_ObjectStatus enumeration describes the current status of the object. It is defined as
follows:

typedef enum {
BSA_ObjectStatus_ANY = 1,
BSA_ObjectStatus_MOST_RECENT = 2,
BSA_ObjectStatus_NOT_MOST_RECENT = 3

} BSA_ObjectStatus;

The meaning of the enumeration values is as follows:

Constant Value Definition
Provides a wild card function. Can only be used in
queries.

ANY 1

Indicates that this is the most recent backup copy
of an object.

MOST_RECENT 2

Indicates that this is not the most recent backup
copy, or that the object itself no longer exists.

NOT_MOST_RECENT 3

Table 5-3 BSA_ObjectStatus Enumeration Values

62 Open Group Technical Standard

Type Definitions and Data Structures Enumerated Types

5.2.3 BSA_ObjectType

The BSA_ObjectType enumeration describes the original data type of the object. It is defined as
follows:

typedef enum {
BSA_ObjectType_ANY = 1,
BSA_ObjectType_FILE = 2,
BSA_ObjectType_DIRECTORY = 3,
BSA_ObjectType_OTHER = 4

} BSA_ObjectType;

The meaning of the enumeration values is as follows:

Constant Value Definition
Used for matching any object type (for example, ‘‘file’’ or
directory") value in the object type field of structures for
selecting query results.

ANY 1

Used by the application to indicate that the type of application
object is a ‘‘file’’ or single object.

FILE 2

Used by the application to indicate that the type of application
object is a ‘‘directory’’ or container of objects.

DIRECTORY 3

Used by the application to indicate that the type of application
object is neither a ‘‘file’’ nor a ‘‘directory’’.

OTHER 4

Table 5-4 BSA_ObjectType Enumeration Values

5.2.4 BSA_Vote

The BSA_Vote enumeration describes whether or not the transaction is to be committed. It is
defined as follows:

typedef enum {
BSA_Vote_COMMIT = 1,
BSA_Vote_ABORT = 2

} BSA_Vote;

The meaning of the enumeration values is as follows:

Constant Value Definition
The transaction is to be committed.COMMIT 1

The transaction is to be aborted.ABORT 2

Table 5-5 BSA_Vote Enumeration Values

Systems Management: Backup Services API (XBSA) 63

Constant Values Type Definitions and Data Structures

5.3 Constant Values
The following constants are defined for use in the XBSA interfaces:

Constant Value Definition
[BSA_ANY] 1 General-purpose enumeration wild-card value
[BSA_MAX_APPOBJECT_OWNER] 64 Max end-user object owner length
[BSA_MAX_BSAOBJECT_OWNER] 64 Max BSA object owner length
[BSA_MAX_DESCRIPTION] 100 Description field
[BSA_MAX_OBJECTSPACENAME] 1024 Max ObjectSpace name length
[BSA_MAX_OBJECTINFO 256 Max object info size
[BSA_MAX_PATHNAME] 1024 Max path name length
[BSA_MAX_RESOURCETYPE] 31 Max resource mgr name length
[BSA_MAX_TOKEN_SIZE] 64 Max size of a security token

Table 5-6 XBSA Constants and Values

64 Open Group Technical Standard

Type Definitions and Data Structures Data Structures

5.4 Data Structures

5.4.1 BSA_ApiVersion

The BSA_ApiVersion structure describes the version of the API that is implemented. It is
defined as follows:

typedef struct {
BSA_UInt16 issue;
BSA_UInt16 version;
BSA_UInt16 level;

} BSA_ApiVersion;

The usage of the structure fields is defined as follows:

issue Issue Number of the XBSA Specification

version Version Number of the XBSA Specification

level Implementation-defined version number

For implementations of the XBSA Preliminary Specification (Document Number P424), the
values of the BSA_ApiVersion structure were implementation-dependent. For implementations
of the XBSA Technical Standard (this document — C425), the values should be 1,1,X:

Published Document Issue Version Level
Preliminary Specification (P424) * * *
Technical Standard (C425) 1 1 X

* = implementation-dependent

Table 5-7 BSA_ApiVersion Structure Values

5.4.2 BSA_DataBlock32

The BSA_DataBlock32 structure is used to pass data between an XBSA Application and the
Backup Service. It is defined as follows:

typedef struct {
BSA_UInt32 bufferLen;
BSA_UInt32 numBytes;
BSA_UInt32 headerBytes;
BSA_ShareId shareId;
BSA_UInt32 shareOffset;
void *bufferPtr

} BSA_DataBlock32;

Systems Management: Backup Services API (XBSA) 65

Data Structures Type Definitions and Data Structures

The usage of the structure fields is defined as follows:

Field Name Definition
bufferLen Length of the allocated buffer

Actual number of bytes read from or written to the buffer,
or the minimum number of bytes needed

numBytes

Number of bytes used at start of buffer for header
information (offset to data portion of buffer)

headerBytes

shareId Value used to identify a shared memory block.
shareOffset Specifies the offset of the buffer in the shared memory block.
bufferPtr Pointer to the buffer

Table 5-8 BSA_DataBlock32 Structure Usage

The values assigned to the various structure fields would always obey the following
relationships:

bufferLen >= headerBytes + numBytes
trailerBytes == (bufferLen - numBytes - headerBytes)

The layout of the buffer is as follows:

bufferPtr

bufferPtr
+ headerbytes

bufferPtr
+ headerBytes

+ numBytes

header trailerdata

headerBytes numBytes

bufferLen

Figure 5-1 BSA_DataBlock32 Buffer Layout

The header and trailer portions of the buffer are reserved for the use of the Backup Service, and
should not be modified by the XBSA Application. The XBSA Application should only write to
the data portion of the buffer, which is the only portion used for transferring application data.

The sizes for the header and trailer portions of the buffer that are required by the Backup Service
are obtained by calling BSACreateObject() or BSAGetObject().

66 Open Group Technical Standard

Type Definitions and Data Structures Data Structures

5.4.3 BSA_ObjectDescriptor

The BSA_ObjectDescriptor structure is used to describe an object. It is defined as follows:

#include <time.h>

typedef struct {
BSA_UInt32 rsv1;
BSA_ObjectOwner objectOwner;
BSA_ObjectName objectName;
struct tm createTime;
BSA_CopyType copyType;
BSA_UInt64 copyId;
BSA_UInt64 restoreOrder;
char rsv2[31];
char rsv3[31];
BSA_UInt64 estimatedSize;
char resourceType[BSA_MAX_RESOURCETYPE];
BSA_ObjectType objectType;
BSA_ObjectStatus objectStatus;
char rsv4[31];
char objectDescription[MAX_RC_OBJECTDESCRIPTION];
unsigned char objectInfo[BSA_MAX_OBJECTINFO];

} BSA_ObjectDescriptor;

Some of the fields in this structure are supplied by the XBSA Application (Direction = in), and
some by the Backup Service (Direction = out). Some fields are optional.

The usage of the structure fields is defined as follows:

Field Name Definition Supplied By Status
rsv1 reserved field - -
objectOwner Owner of the object client optional
objectName Object name client mandatory
createTime Create time service mandatory
copyType Copy type: archive or backup client mandatory
copyId Unique object identifier service mandatory

Provides hints to the XBSA Application
that allow it to optimize the order of
object retrieval requests

restoreOrder service optional

rsv2 reserved field - -
rsv3 reserved field - -

Estimated object size in bytes, may be up
to (2ˆ64 - 1) bits

estimatedSize client mandatory

resourceType for example, UNIX file system client mandatory
objectType for example, file, directory, database client mandatory
objectStatus Most recent / Not most recent service mandatory
rsv4 reserved field - -
objectDescription Descriptive label for the object client optional
objectInfo Application-specific information client optional

Table 5-9 BSA_ObjectDescriptor Structure Usage

Systems Management: Backup Services API (XBSA) 67

Data Structures Type Definitions and Data Structures

All values in a BSA_ObjectDescriptor must be valid before the BSA_ObjectDescriptor as a
whole is valid. For enumerations valid values exclude the enumeration "ANY". For strings valid
values are null-terminated.

The optional string value is the empty string. The optional restoreOrder value is zero. The
optional objectInfo value is all zeros (that is, a zero-filled field).

The mandatory objectName must have a non-empty string in the pathName field. The
mandatory createTime must be a valid time in UTC. The mandatory copyId must be non-zero.
The mandatory resourceType must have a non-empty string value.

5.4.4 BSA_ObjectName

The BSA_ObjectName structure is the name assigned by an XBSA Application to an XBSA
Object. It is defined as follows:

typedef struct {
char objectSpaceName[BSA_MAX_OBJECTSPACENAME];
char pathName[BSA_MAX_PATHNAME];

} BSA_ObjectName;

The usage of the structure fields is defined as follows:

Field Name Definition
objectSpaceName Highest-level name qualifier
pathName Object name within objectspace

Table 5-10 BSA_ObjectName Structure Usage

An objectSpaceName is an optionally defined, fixed-length character string. It identifies a logical
space, called an Object space, in which the object belongs. For example, an Object space may be
used to identify a storage volume (for example, a disk partition, or a floppy disk), or a database
in the XBSA Application’s domain.

The concept of an Object space is used to provide a primary grouping of XBSA Objects, which
may be used for object search by a user and/or for object management by the Backup Service.
Additional groupings are provided by Filespec and by object attributes. Examples of an
objectSpaceName are C: Drive and VolumeLabel=XYZ.

A pathName is a hierarchical character string that identifies an XBSA Object within an
ObjectSpace.

An example of a pathName for the backup copy of a UNIX file may be its original path name
and file name, for example, /documents/opengroup/backup.proposal.

The value of the delimiter used to separate name components can be obtained by calling
BSAGetEnvironment().

68 Open Group Technical Standard

Type Definitions and Data Structures Data Structures

5.4.5 BSA_ObjectOwner

The BSA_ObjectOwner structure is the name of the owner of an object. It is defined as follows:

typedef struct {
char bsa_ObjectOwner[BSA_MAX_BSAOBJECT_OWNER];
char app_ObjectOwner[BSA_MAX_APPOBJECT_OWNER];

} BSA_ObjectOwner;

The usage of the structure fields is defined as follows:

Field Name Definition
bsa_ObjectOwner this is the name that the Backup Service authenticates
app_ObjectOwner this is the name defined by the application

Table 5-11 BSA_ObjectOwner Structure Usage

The bsa_ObjectOwner identifies an XBSA Application (for example, an XBSA Application
associated with a UNIX file system located at a certain node).

An app_ObjectOwner is an optional name, such as an actual end-user name, provided by the
respective XBSA Application, so that the Backup Service can provide assistance to support
application-specific access control by optimizing access for the given app_ObjectOwner.

The app_ObjectOwner may have multiple components defined in the application, such as a
group name and a user id. In general, it is a hierarchical character string. An app_ObjectOwner is
not registered with the Backup Service. Its registration and authentication is the XBSA
Application’s responsibility. Examples of a typical app_ObjectOwner are Smith,
AccountingDept.Clerk1 and * (unspecified).

Systems Management: Backup Services API (XBSA) 69

Data Structures Type Definitions and Data Structures

5.4.6 BSA_QueryDescriptor

The BSA_QueryDescriptor structure is used to query the repository in order to locate objects. It
is defined as follows:

#include <time.h>;
typedef struct {

BSA_ObjectOwner objectOwner;
BSA_ObjectName objectName;
struct tm rsv1;
struct tm rsv2;
struct tm rsv3;
struct tm rsv4;
BSA_CopyType copyType;
char rsv5[31];
char rsv6[31];
char rsv7[31];
BSA_ObjectType objectType;
BSA_ObjectStatus objectStatus;
char rsv8[100];

} BSA_QueryDescriptor;

The usage of the structure fields is defined as follows:

Field Name Definition
objectOwner Owner of the object
objectName Object name
rsv1 reserved field
rsv2 reserved field
rsv3 reserved field
rsv4 reserved field
copyType Copy type: archive or backup
rsv5 reserved field
rsv6 reserved field
rsv7 reserved field
objectType for example, file, directory, database
objectStatus Most recent / Not most recent
rsv8 reserved field

Table 5-12 BSA_QueryDescriptor Structure Usage

5.4.7 BSA_SecurityToken

The BSA_SecurityToken structure contains an application-specific security token. It is defined
as follows:

typedef char BSA_SecurityToken[BSA_MAX_TOKEN_SIZE];

70 Open Group Technical Standard

Appendix A

Information for Backup Services Developers

This appendix is not a normative part of the specification.

A.1 Networked Environments
As an implementation example, a specific Backup Service may be provided for a standalone
system as a local XBSA subsystem, which supports the Open Systems Backup Services API
directly. Alternatively, as an example for a distributed environment, the Backup Service may be
provided by one or more BSA Server(s) on a network, and a BSA Client implementation may
reside on each Client system, supporting the Open Systems Backup Services API and
communicating with the XBSA Server(s) using a suitable communication facility and protocol —
see Figure A-1.

The architecture supports heterogeneous networks and any suitable communication protocol.

Other Server System Other Client System

Client System

User
Interface

Backup
Services API

Server System

Communication
Manager

XBSA Library

Communication
Manager

BSA
Services

(stub)

Network

XBSA
Client

Resource Manager

BSA Server

Backup
Service

Figure A-1 An Example of a Distributed Backup System

Systems Management: Backup Services API (XBSA) 71

Storage Hints Information for Backup Services Developers

A.2 Storage Hints
Although not defined in the specification, the objectSpaceName field in the BSA_ObjectName
structure may be used to obtain hints on how to store the object’s data.

A.3 Object Routing
Backup Service implementations may assume that process environment variables can be passed
via the shell or command interpreter to the XBSA Client, and from there to the Backup Service to
aid the Backup Service in selecting the appropriate backup medium for a session. There are a
couple of hidden assumptions behind this - that the program called by the user is the XBSA
Client that connects to the Backup Service and that the program is called in such a way that the
environment variables can be set by the Backup Service itself. Another flaw in this approach is
the presumption that the user is willing or knowledgeable enough to set these variables properly
for each backup or restore event in the case that the Client is not invoked by the Backup Service.
A third flaw is that all of this knowledge is non-transferable from one XBSA and Backup Service
implementation to another. Together, these impose a significant experience or training
requirement on the user.

The same problems hold if the user is expected to pass command line arguments to the XBSA
Client. The Backup Service should not rely on these mechanisms to transfer routing information
through the XBSA Client. Instead, the Backup Service should determine how to route XBSA
Object Data by inspecting each XBSA Object individually. Several solutions are possible:

Round-Robin Solution
One possible, but inadequate, solution is for the Backup Service or XBSA implementation to
simply route objects to the next-available device. This allows for parallel backups, but at
the cost of poor sequencing of objects on backup media and of poor predictability.

Session-Guessing Solutions
A second solution is for the XBSA implementation to try to guess which set of objects
belong together and send these to one set of devices, while another set of objects grouped
together would be sent to a different set of devices. This takes care of the predictability
problem and sequencing problem, but only if the guess is correct.

Some proposed session identification schemes have been based on either timing of backup
events, the process ids of the XBSA Clients, or BSAInit/BSATerminate function call pairs. In
all of these cases, the XBSA implementation has to make possibly false assumptions about
the Client’s behavior. For example, if a database administrator starts a database backup at
the same time that a system administrator starts a filesystem backup, then a timing-based
session guess will combine these completely separate events into a single session.
BSAInit/Terminate pairs are also unreliable because a single user request may be
distributed across several processes, each of which is required to call BSAInit() to get
started.

Object Descriptor Solution
A third mechanism for routing objects is to actually use the metadata passed through XBSA
to choose the set of devices or media to which an object should be written. The XBSA
implementation or Backup Service can parse the BSA_ObjectDescriptor passed in the
BSACreateObject() call. Whether it intelligently uses the contents or simply compares each
field with a device mapping provided by the user, this general scheme provides great
flexibility. For example, all objects created with a particular resourceType could be sent to
the same medium. The Backup Service could allow the administrator to create a
configuration file that lists groups of resourceType values and maps them to a particular

72 Open Group Technical Standard

Information for Backup Services Developers Object Routing

group of devices or media; a newly created object would then cause the Backup Service to
scan the configuration file for this resourceType to find the right backup device or medium
to use.

This solution does not address grouping of objects into larger entities. The Backup Service
has to make these decisions based on the call sequence and routing. It is up to the Backup
Service to group objects, if possible, for performance considerations.

Disadvantages of this approach are that devices cannot be preallocated and media cannot
be premounted as the decision of where to put an object is made in the BSACreateObject()
call, and that ad-hoc backups may require special steps by the user to temporarily
reconfigure the object routing.

Advantages are that the base configuration can be created once, with only occasional
maintenance, and routing is extremely predictable. All fields in the BSA_ObjectDescriptor
could be used. The routing of backup objects then becomes dependent on the
configurability of the storage manager and the accuracy and completeness of the
BSA_ObjectDescriptor created by the Backup Client. Either the Backup Service, XBSA
implementation, or XBSA Client can then be modified or upgraded without affecting the
others’ ability to function.

A.4 Restore Order
The restoreOrder field in the BSA_ObjectDescriptor is assigned by the Backup Service at the
time the XBSA Object is created. Restore order values provide a hint to the XBSA Client as to
which sequence of BSAGetObject() calls would make most efficient use of the Backup Service’s
resources. The XBSA Client is free to ignore these values and the Backup Service has no
obligation to completely optimize its assignment of restoreOrder. Multiple objects with the
same restoreOrder indicate that the Backup Service has no preference for which of them gets
processed first. If the XBSA implementation or the Backup Service do not know how to provide
these hints, then the restoreOrder should be left with the value 0/0. Restore order is assigned at
object creation time.

To make best use of the restore order suggested for a group of objects, the XBSA Client should
call BSAQueryObject() and BSAGetNextQueryObject() for as many of the objects to be restored as
possible. It should, within the requirements imposed by the application, restore the objects in
ascending restoreOrder sequence. The restoreOrder.left is the primary sort key, and
restoreOrder.right is the secondary sort key. If N objects are to be restored at the same time,
then the first N objects in ascending sort order should be the ones chosen by the Client.

The values for restoreOrder can be determined in several ways, based on several criteria. One
possible mechanism for selecting values is to use dates - assign the restoreOrder.left to the
current year, and restoreOrder.right to the number of seconds since midnight, January 1, of the
current year. A restore would then sort objects by the time at which they were backed up.

Another method might be to assign each device or medium a unique integer, which gets inserted
into the restoreOrder.right for every object that is backed up on that device or medium, and put
the position of that object on the device or medium in the restoreOrder.left. A restore could
then read the first object on each medium first, then move on to the second object on each
medium, and so on. If there are as many devices as there are media, then parallel operations
would be quite efficient.

Systems Management: Backup Services API (XBSA) 73

Information for Backup Services Developers

74 Open Group Technical Standard

Appendix B

C Language Header File

/* xbsa.h
*
* This is a sample C header file describing the XBSA.
*
* This appendix is not a normative part of the
* specification and is provided for illustrative
* purposes only.
*
* Implementations must ensure that the sizes of integer
* datatypes match their names, not necessarily the typedefs
* presented in this example.
*
*/

#ifndef _XBSA_
#define _XBSA_

#include <time.h>

/* BSA_Int16
*/

typedef short BSA_Int16;

/* BSA_Int32
*/

typedef int BSA_Int32;

/* BSA_Int64
*/

typedef struct { /* defined as two 32-bit integers */
BSA_Int32 left;
BSA_Int32 right;

} BSA_Int64;

/* BSA_UInt16
*/

typedef unsigned short BSA_UInt16;

/* BSA_UInt32
*/

typedef unsigned int BSA_UInt32;

/* BSA_UInt64
*/

typedef struct { /* defined as two unsigned 32-bit integers*/
BSA_UInt32 left;
BSA_UInt32 right;

} BSA_UInt64;

/* BSA_ShareId
*/

typedef BSA_ShareId /* operating system dependent*/

Systems Management: Backup Services API (XBSA) 75

C Language Header File

/* Constants used
*
* Maximum string lengths (lower bound), including trailing null
*/

#define BSA_MAX_APPOBJECT_OWNER 64
#define BSA_MAX_BSAOBJECT_OWNER 64
#define BSA_MAX_DESCRIPTION 100
#define BSA_MAX_OBJECTSPACENAME 1024
#define BSA_MAX_OBJECTINFO 256
#define BSA_MAX_PATHNAME 1024
#define BSA_MAX_RESOURCETYPE 31
#define BSA_MAX_TOKEN_SIZE 64

/* Other constants */

#define BSA_ANY 1

/*
* Return Codes Used
*/

#define BSA_RC_ABORT_SYSTEM_ERROR 0x03
#define BSA_RC_ACCESS_FAILURE 0x4D
#define BSA_RC_AUTHENTICATION_FAILURE 0x04
#define BSA_RC_BUFFER_TOO_SMALL 0x4E
#define BSA_RC_INVALID_CALL_SEQUENCE 0x05
#define BSA_RC_INVALID_COPYID 0x4F
#define BSA_RC_INVALID_DATABLOCK 0x34
#define BSA_RC_INVALID_ENV 0x50
#define BSA_RC_INVALID_HANDLE 0x06
#define BSA_RC_INVALID_OBJECTDESCRIPTOR 0x51
#define BSA_RC_INVALID_QUERYDESCRIPTOR 0x53
#define BSA_RC_INVALID_VOTE 0x0B
#define BSA_RC_NO_MATCH 0x11
#define BSA_RC_NO_MORE_DATA 0x12
#define BSA_RC_NULL_ARGUMENT 0x55
#define BSA_RC_OBJECT_NOT_FOUND 0x1A
#define BSA_RC_SUCCESS 0x00
#define BSA_RC_TRANSACTION_ABORTED 0x20
#define BSA_RC_VERSION_NOT_SUPPORTED 0x4B

typedef enum {
BSA_CopyType_ANY = 1,
BSA_CopyType_ARCHIVE = 2,
BSA_CopyType_BACKUP = 3

} BSA_CopyType;

typedef enum {
BSA_ObjectStatus_ANY = 1,
BSA_ObjectStatus_MOST_RECENT = 2,
BSA_ObjectStatus_NOT_MOST_RECENT = 3

} BSA_ObjectStatus;

typedef enum {
BSA_ObjectType_ANY = 1,
BSA_ObjectType_FILE = 2,
BSA_ObjectType_DIRECTORY = 3,
BASBSA_ObjectType_OTHER = 4

} BSA_ObjectType;

76 Open Group Technical Standard

C Language Header File

typedef enum {
BSA_Vote_COMMIT = 1,
BSA_Vote_ABORT = 2

} BSA_Vote;

typedef struct {
BSA_UInt16 issue;
BSA_UInt16 version;
BSA_UInt16 level;

} BSA_ApiVersion;

typedef struct {
BSA_UInt32 bufferLen;
BSA_UInt32 numBytes;
BSA_UInt32 headerBytes;
BSA_ShareId shareId;
BSA_UInt32 shareOffset;
void *bufferPtr;

} BSA_DataBlock32;

typedef struct {
char objectSpaceName[BSA_MAX_OBJECTSPACENAME];
char pathName[BSA_MAX_PATHNAME];

} BSA_ObjectName;

typedef struct {
char bsa_ObjectOwner{BSA_MAX_BSAOBJECT_OWNER];
char app_ObjectOwner[BSA_MAX_APPOBJECT_OWNER];

} BSA_ObjectOwner;

typedef struct {
BSA_UInt32 rsv1;
BSA_ObjectOwner objectOwner;
BSA_ObjectName objectName;
struct tm createTime;
BSA_CopyType copyType;
BSA_UInt64 copyId;
BSA_UInt64 restoreOrder;
char rsv2[31];
char rsv3[31];
BSA_UInt64 estimatedSize;
char resourceType[BSA_MAX_RESOURCETYPE];
BSA_ObjectType objectType;
BSA_ObjectStatus objectStatus;
char *rsv4[31];
char objectDescription[BSA_MAX_DESCRIPTION];
unsigned char objectInfo[BSA_MAX_OBJECTINFO];

} BSA_ObjectDescriptor;

typedef struct {
BSA_ObjectOwner objectOwner;
BSA_ObjectName objectName;
struct tm rsv1;
struct tm rsv2;
struct tm rsv3;
struct tm rsv4;
BSA_CopyType copyType;
char rsv5[31];
char rsv6[31];

Systems Management: Backup Services API (XBSA) 77

C Language Header File

char rsv7[31];
BSA_ObjectType objectType;
BSA_ObjectStatus objectStatus;
char rsv8[100];

} BSA_QueryDescriptor;

typedef BSA_SecurityToken char[BSA_MAX_TOKEN_SIZE];

/* Function Prototypes
*/

int BSABeginTxn (long);

int BSACreateObject(long, BSA_ObjectDescriptor *, BSA_DataBlock32 *);

int BSADeleteObject(long, BSA_UInt64);

int BSAEndData(long);

int BSAEndTxn(long, BSA_Vote);

int BSAGetData(long, BSA_DataBlock32 *);

int BSAGetEnvironment(long, BSA_ObjectOwner *, char **);

int BSAGetLastError(BSA_UInt32 *, int *);

int BSAGetNextQueryObject(long, BSA_ObjectDescriptor *);

int BSAGetObject(long, BSA_ObjectDescriptor *, BSA_DataBlock32 *);

int BSAInit(long *, BSA_SecurityToken *, BSA_ObjectOwner *, char **);

int BSAQueryApiVersion(BSA_ApiVersion *);

int BSAQueryObject(long, BSA_QueryDescriptor *, BSA_ObjectDescriptor *);

int BSAQueryServiceProvider(BSA_UInt32 *, char *, char *);

int BSASendData(long, BSA_DataBlock32 *);

int BSATerminate(long);

#endif

78 Open Group Technical Standard

Glossary

active object
An object that is accessed frequently (as defined by an administration policy) by the application
or service.

application object
The objects managed by an application or service (for example, file systems, documents) which
will be backed-up or archived using the Open Backup Services API.

app_ObjectOwner
An optionally-supplied name, which is combined with an bsaObjectOwner to make the
ObjectOwner which identifies a user of XBSA to a Backup Service. Used for access control.

archive
A copy of an Application Object generally made for long-term, low-usage storage purposes.
Typically the Application Object is deleted from the application’s repository after the copy is
made.

backup
A copy of an Application Object generally made for the purpose of recovery in the event of
system failure or human error. Typically the Application Object is retained in the application’s
repository after the copy is made.

backup service
An implementation of the lower level of XBSA which responds to XBSA Managers or XBSA
Clients requesting services.

bsa_ObjectOwner
The name of the application or service which is using XBSA, and which has been registered with
a particular Backup Service.

Catalog
Storage used by the Backup Service to hold object cataloging information (metadata).

Copy Id
A unique integer identifying a particular instance of a stored object.

Copy Type
An XBSA Object attribute with values of BSACopyType_BACKUP or BSACopyType_ARCHIVE.

handle
An identifier issued to an application or service by the Backup Service when a particular session
is initiated and authenticated.

hierarchical character string
A variable-length character string containing delimited fields which are successively examined
using a search pattern. Used to establish access rules, searches, and so on.

inactive object
An object that is accessed infrequently (as defined by an administration policy) by the
application or service.

incremental backup
An application-specific behavior causing selective backup of objects to occur according to an
applied rule.

Systems Management: Backup Services API (XBSA) 79

Glossary

object descriptor
A collection of object attributes, containing metadata of an XBSA object. Stored in an XBSA
Catalog and associated with an individual Blob.

object type
An XBSA Object attribute, assigned by the using application or service. An enumerated integer
value (see Section 5.2.3 on page 63).

ObjectName
The name assigned by the XBSA User to an XBSA Object that is unique within the XBSA User’s
domain, consisting of two parts: objectSpaceName and pathName.

ObjectOwner
The name of the owner of an XBSA Object, consisting of two parts: bsa_ObjectOwner and
app_ObjectOwner.

Objectspace
The name of a logical space in the user’s domain where an object resides.

objectSpaceName
A variable-length string that identifies an Objectspace; examples are: C:Drive, VolumeLabel=XYZ.

pathName
A hierarchical string that further identifies an XBSA object within an Objectspace. Example:
/documents/xopen/backup.proposal.

restore
The operation of obtaining a copy of a currently active object from the Backup Service, and
placing this copy back into the application’s domain to correct a system or human failure.

Retention Period
An indication of how long a backup object is to be kept.

retrieve
The operation of obtaining a copy of a currently inactive object from the Backup Service, and
placing this copy back into the application’s domain so that the data may be accessed.

Status
An XBSA Object attribute with values of BSAObjectStatus_MOST_RECENT or
BSAObjectStatus_NOT_MOST_RECENT.

XBSA
The Open Backup Services API (this document).

XBSA application
An XBSA Client or XBSA Manager.

XBSA client
Application-specific software which uses XBSA to request services from the Backup Service on
behalf of a particular application. Typically this XBSA Client is tightly bound to a user
application (such as a DBMS) or an operating system service (such as a file system) by existing in
the address space of the application/service or being packaged with this function.

XBSA manager
Management software which uses XBSA to manage the services provided in Backup Services.
Typically this XBSA Manager may manage the operation of a variety of Backup Service
implementations from a variety of vendors.

80 Open Group Technical Standard

Glossary

XBSA object
An object as viewed through the XBSA interfaces. Has a two-part name: ObjectOwner and
ObjectName.

Repository
Storage used by the Backup Services to hold the (uninterpreted) data making up an object which
is managed.

XBSA session
A logical connection between an XBSA Application and a Backup Service, delimited by calls to
BSAInit() and BSATerminate().

Systems Management: Backup Services API (XBSA) 81

Glossary

82 Open Group Technical Standard

Index

active object ...79
administrator role...8, 12
application object ...13, 79
app_ObjectOwner ..79
archive ..1, 10, 26, 79
atomicity ...2
authentication..23
availability ..10-11
backup ..1, 10, 26, 79
backup service ..2, 12, 79
binding..4
BSABeginTxn()..38
BSACreateObject()...39
BSADeleteObject() ...42
BSAEndData()...43
BSAEndTxn()...44
BSAGetData() ...45
BSAGetEnvironment() ..46
BSAGetLastError()...48
BSAGetNextQueryObject()....................................49
BSAGetObject() ..50
BSAInit() ..52
BSAQueryApiVersion() ..55
BSAQueryObject() ...56
BSAQueryServiceProvider()..................................58
BSASendData() ...59
BSATerminate()...60
BSA_DataBlock32 structure32
bsa_ObjectOwner ...79
buffer allocation ..31

buffer size ...31
private buffer space..31

calling interfaces ...1
Catalog..79
client role ..8
communication manager ..8
concurrent services...1
conformance ..4
constant values..64
constants...64
Copy Id ...79
Copy Type..79
data ..20
data flow...3
data movement ...1
data movement API for XBSA3

data structures ..23, 65
BSA_ApiVersion ...65
BSA_DataBlock32...66
BSA_ObjectDescriptor...67
BSA_ObjectName...68
BSA_ObjectOwner ...69
BSA_QueryDescriptor...70
BSA_SecurityToken..70

data type definitions ..23
deployment ..4
descriptors..18
distributed system..8
enumerated type

BSA_CopyType...62
BSA_ObjectStatus...62
BSA_ObjectType ...63
BSA_Vote..63

environment...8
environments...3
flexibility of use...7
function calls..35
function calls list ...37
future directions..4

access control...4
asynchronous calls ...4
extended object data operations..........................4
management functionality5
multi-party commit protocols5

handle..79
hierarchical character string...................................79
hierarchy manager..8
implementation options ..3
inactive object..79
inconsistency of backup copy................................11
incremental backup10, 13, 79
index manager...8
initialization...23
integrity ..2, 10
library..23
log manager ...8
management API for XBSA3
media format ...3
model...7
names ..15
networking...4
NT ..34

Systems Management: Backup Services API (XBSA) 83

Index

object attributes...19
object data ..20
object descriptor..80
object descriptors..18
object library ..4
object name structure ..16
object names ..15
object searches...1
object type ..80
ObjectName ...80
ObjectOwner..80
Objectspace ..80
objectSpaceName ...80
parameter values ..3
pathName...80
performance...10
permitted call sequences

overview...29
transactions..30

policy...11
portability...2
private management routines..................................8
procedures..23
query for objects..28
remote support..4
Repository ..81
responsibilities ..7
restoration ..1
restore ...10, 27, 80
retention..10
Retention Period ...80
retrieval...1
retrieve..27, 80
return codes ...1, 36
roles ...7
scalability..1
search for restore ..11
security..17
session ...14
Status...80
storage manager..8
structure of object name..16
structures..1, 23
synchronous interface..23
system configurations..1
transaction isolation...2
transaction management...21
transactions ..24
transfer protocols..3
type definitions ...23, 61
user interface ...3

user role ..12
XBSA..80
XBSA application ..2-3, 80
XBSA applications ..12-13
XBSA Architecture ...1, 3, 8
XBSA client ..2, 12, 80
XBSA constant values..64
XBSA data movement API..3
XBSA function calls..37
XBSA management API ..3
XBSA manager ..2, 80
XBSA model...7
XBSA object..81
XBSA objects ..15
XBSA return code values ..36
XBSA session ...14, 81

84 Open Group Technical Standard

	c425cov.pdf
	Page 1

	blank.pdf
	Page 1

