
Technical Standard

DRDA, Version 4, Volume 2:

Formatted Data Object Content Architecture (FD:OCA)

The Open Group

© February 2007, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners.

Technical Standard

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA)

ISBN: 1-931624-71-2
Document Number: C067

Published in the U.K. by The Open Group, February 2007.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Thames Tower
37-45 Station Road
Reading
Berkshire, RG1 1LX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

This documentation and the software to which it relates are derived in part from copyrighted
materials supplied by International Business Machines. Neither International Business Machines
nor The Open Group makes any warranty of any kind with regard to this material, including but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
The Open Group shall not be liable for errors contained herein, or for any direct or indirect,
incidental, special, or consequential damages in connection with the furnishing, performance, or
use of this material.

ii Technical Standard (2007)

Contents

Chapter 1 The DRDA Specification .. 1
1.1 The DRDA Reference .. 2
1.2 The FD:OCA Reference .. 2
1.3 The DDM Reference .. 3

Chapter 2 Introduction to FD:OCA ... 5
2.1 Why is FD:OCA Needed.. 5
2.2 What is FD:OCA.. 6
2.3 A Scenario .. 7
2.4 How to Use this Book... 8
2.4.1 Syntax Diagrams .. 8
2.4.2 Notation Conventions ... 9
2.4.3 Related Architecture .. 9
2.4.4 Industry Standards .. 9

Chapter 3 Overview of FD:OCA ... 11
3.1 Concepts ... 11
3.2 Constituents ... 12
3.2.1 Constructs ... 12
3.2.2 Data Types ... 14
3.2.3 Data Arrays ... 14
3.2.4 Definition of Terms .. 15
3.2.4.1 Partitions, Dimensions, and Extents .. 15
3.2.4.2 Subarrays.. 17
3.3 Characteristics ... 18
3.3.1 Describing Data Arrays and Data Types .. 18
3.3.2 Examples ... 18

Chapter 4 FD:OCA Specifications .. 27
4.1 Conventions Used in FD:OCA Specifications..................................... 27
4.2 FD:OCA Object Constituents .. 29
4.3 FD:OCA Descriptor Component Content ... 30
4.3.1 Descriptor Attribute Triplets .. 30
4.3.1.1 References ... 30
4.3.1.2 Simple Data Array (SDA) .. 31
4.3.1.3 Row Layout (RLO) or Nullable Row Layout 33
4.3.1.4 Group Data Array (GDA) and Nullable Group Data Array....... 35
4.3.1.5 Metadata Definition (MDD) .. 36
4.3.2 Supportive General-Purpose Triplets .. 39
4.3.2.1 Continue Preceding Triplet (CPT) .. 39
4.3.2.2 Implementation Support Data (ISD) .. 40
4.3.3 Registry of Data Types ... 41
4.3.3.1 String Data Types .. 42
4.3.3.2 Character Data Types .. 46
4.3.3.3 Numeric Data Types ... 53

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) iii

Contents

4.4 FD:OCA Data Component Content.. 74
4.5 Error Handling .. 75
4.5.1 Exception Conditions .. 75
4.5.1.1 General Syntax Exceptions .. 75
4.5.1.2 Object-Related Exceptions ... 76
4.5.1.3 Exception Reporting ... 77
4.5.2 Exception IDs .. 79

Chapter 5 Compliance .. 81
5.1 FD:OCA Version .. 81
5.2 FD:OCA Subsets .. 81
5.3 FD:OCA Compliance Rules ... 85
5.3.1 Compliance Rules for the FD:OCA Object Generator 85
5.3.2 Compliance Rules for the FD:OCA Object Receiver....................... 85
5.4 Codepoint Assignments ... 86

Glossary ... 87

Index .. 97

List of Figures

2-1 Typical FD:OCA Example... 7
3-1 Formatted Data Object .. 13
3-2 FDO Descriptor .. 13
3-3 General Array Example... 15
3-4 Partitioning a Linear String of Fields into Three Dimensions............. 16
3-5 Regular Array of Three-Digit Numeric Fields....................................... 19
3-6 Regular Array, Several Field Types ... 20
3-7 Irregular Array, All Numeric Fields .. 22
3-8 Three-Dimensional Array ... 24
4-1 Structure of a Floating Point Number... 64
4-2 Structure of a Decimal Floating Point Number 64
5-1 FD:OCA Base and Towers Concept... 81

List of Tables

4-1 Syntax Description of Structured Fields and Triplets 27
4-2 Default Rules for Character Data... 47
4-3 Exception Reporting Structure... 78
5-1 FD:OCA Codepoint Assignments ... 86

iv Technical Standard (2007)

Preface

The Open Group

The Open Group is a vendor-neutral and technology-neutral consortium, whose vision of
Boundaryless Information Flow™ will enable access to integrated information within and
between enterprises based on open standards and global interoperability. The Open Group
works with customers, suppliers, consortia, and other standards bodies. Its role is to capture,
understand, and address current and emerging requirements, establish policies, and share best
practices; to facilitate interoperability, develop consensus, and evolve and integrate
specifications and Open Source technologies; to offer a comprehensive set of services to enhance
the operational efficiency of consortia; and to operate the industry’s premier certification service,
including UNIX® certification.

Further information on The Open Group is available at www.opengroup.org.

The Open Group has over 15 years’ experience in developing and operating certification
programs and has extensive experience developing and facilitating industry adoption of test
suites used to validate conformance to an open standard or specification.

More information is available at www.opengroup.org/certification.

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on development of Technical and Product Standards and Guides, but which also
includes white papers, technical studies, branding and testing documentation, and business
titles. Full details and a catalog are available at www.opengroup.org/bookstore.

As with all live documents, Technical Standards and Specifications require revision to align with
new developments and associated international standards. To distinguish between revised
specifications which are fully backwards-compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published at www.opengroup.org/corrigenda.

This Document

The Distributed Relational Database Architecture Specification comprises three volumes:

• Distributed Relational Database Architecture (DRDA) (the DRDA Reference)

• Formatted Data Object Content Architecture (FD:OCA) (the FD:OCA Reference)

• Distributed Data Management (DDM) Architecture (the DDM Reference)

This volume, Formatted Data Object Content Architecture, describes the functions and services that
make up the Formatted Data Object Content Architecture (FD:OCA). This architecture makes it
possible to bridge the connectivity gap between environments with different data types and data
representations methods.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) v

http://www.opengroup.org
http://www.opengroup.org/certification
http://www.opengroup.org/bookstore
http://www.opengroup.org/corrigenda

Preface

The FD:OCA is embedded in the Distributed Relational Database Architecture (DRDA), which
identifies and brackets the Formatted Data Object in its syntax. DRDA describes the connectivity
between relational database managers that enables applications programs to access distributed
relational data.

This book is divided into five chapters:

• Chapter 1 introduces the DRDA specification set.

• Chapter 2 briefly states the requirements, purpose, objectives, and functions of FD:OCA.

• Chapter 3 introduces the concepts that form the basis of FD:OCA.

• Chapter 4 provides the syntax, semantics, and pragmatics of the data structures found in
FD:OCA.

• Chapter 5 describes functional subsets and towers within FD:OCA, and defines what it
means to be in compliance with the architecture.

The Glossary defines terms used within the book.

Intended Audience

This volume is intended as a reference for systems programmers and other developers who need
to develop or adapt a product or program to attach to a communications network. Specifically, it
will be used when developing implementations of the Distributed Relational Database
Architecture.

This book is a reference, not a tutorial. It is intended to complement individual product
publications, but not to describe product implementations of the architecture.

Typographic Conventions

The following typographical conventions are used throughout this document:

• Bold font is used for system elements that must be used literally, such as interface names
and defined constants.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote function names and variable values such as interface
arguments.

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• The notation [EABCD] is used to identify an error value EABCD.

• Syntax, code examples, and user input in interactive examples are shown in fixed
width font.

• Variables within syntax statements are shown in italic fixed width font.

Problem Reporting

For any problems with DRDA-based software or vendor-supplied documentation, contact the
software vendor ’s customer service department. Comments relating to this Technical Standard,
however, should be sent to the addresses provided on the copyright page.

vi Technical Standard (2007)

Trademarks

Boundaryless Information Flow™ and TOGAF™ are trademarks and Motif®, Making Standards
Work®, OSF/1®, The Open Group®, UNIX®, and the ‘‘X’’ device are registered trademarks of
The Open Group in the United States and other countries.

HP-UX® is a registered trademark of Hewlett-Packard Company.

The following are trademarks of the IBM Corporation in the United States and other countries:

AIX®

AS/400®

DATABASE 2®

DB2®

Distributed Relational Database Architecture®

DRDA®

IBM®

MVS®

Netview®

OS/2®

OS/390®

OS/400®

RISC System/6000®

SQL/DS®

System/390®

VM®

Intel® is a registered trademark of Intel Corporation.

Microsoft® and Windows NT® are registered trademarks of Microsoft Corporation.

NFS® is a registered trademark and Network File System™ is a trademark of Sun Microsystems,
Inc.

Solaris® is a registered trademark of Sun Microsystems, Inc.

VAX® is a registered trademark of Digital Equipment Corporation.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) vii

Referenced Documents

These publications provide the background for understanding DRDA.

DRDA Overview

For an overview of DRDA, read:

• DRDA, Version 4, Volume 1: Distributed Relational Database Architecture (DRDA),
published by The Open Group.

The DRDA Processing Model and Command Flows

These publications help the reader to understand the DDM documentation and what is needed
to implement the base functions required for a DRDA product:

• DRDA, Version 4, Volume 3: Distributed Data Management (DDM) Architecture,
published by The Open Group.

• Distributed Data Management Architecture General Information, GC21-9527 (IBM).

• Distributed Data Management Architecture Implementation Programmer ’s Guide, SC21-9529
(IBM).

• Character Data Representation Architecture Reference, SC09-1390 (IBM).

• Character Data Representation Architecture Registry, SC09-1391 (IBM).

Communications, Security, Accounting, and Transaction Processing

For information about distributed transaction processing, see the following:

• Guide, February 1996, Distributed Transaction Processing: Reference Model, Version 3
(ISBN: 1-85912-170-5, G504), published by The Open Group.

• CAE Specification, November 1995, Distributed Transaction Processing: The CPI-C
Specification, Version 2 (ISBN: 1-85912-135-7, C419), published by The Open Group.

• CAE Specification, February 1992, Distributed Transaction Processing: The XA
Specification (ISBN: 1-872630-24-3, C193), published by The Open Group.

• Snapshot, July 1994, Distributed Transaction Processing: The XA+ Specification, Version 2
(ISBN: 1-85912-046-6, S423), published by The Open Group.

The following publications contain background information adequate for an in-depth
understanding of DRDA’s use of TCP/IP:

• Internetworking With TCP/IP Volume I: Principles, Protocols, and Architecture, Douglas E.
Corner, Prentice Hall, Englewood Cliffs, New Jersey, 1991, SC31-6144 (IBM).

• Internetworking With TCP/IP Volume II: Implementation and Internals, Douglas E. Corner,
Prentice Hall, Englewood Cliffs, New Jersey, 1991, SC31-6145 (IBM).

• Internetworking With TCP/IP, Douglas E. Corner, SC09-1302 (IBM).

• UNIX Network Programming, W. Richard Stevens, Prentice Hall, Englewood Cliffs, New
Jersey, 1990, SC31-7193 (IBM).

viii Technical Standard (2007)

Referenced Documents

• UNIX Networking, Kochan and Wood, Hayden Books, Indiana, 1989.

• Introduction to IBM’s Transmission Control Protocol/Internet Protocol Products for OS/2, VM,
and MVS, GC31-6080 (IBM).

• Transmission Control Protocol, RFC 793, Defense Advanced Research Projects Agency
(DARPA).

Many IBM publications contain detailed discussions of SNA concepts and the LU 6.2
architecture. The following publications contain background information adequate for an in-
depth understanding of DRDA’s use of LU 6.2 functions:

• SNA Concepts and Products, GC30-3072 (IBM).

• SNA Technical Overview, GC30-3073 (IBM).

• SNA Transaction Programmer ’s Reference Manual for LU Type 6.2, GC30-3084 (IBM).

• SNA LU 6.2 Reference: Peer Protocols, SC31-6808 (IBM).

• SNA Management Services: Alert Implementation Guide, SC31-6809 (IBM).

• SNA Format and Protocol Reference Manual: Architecture Logic For LU Type 6.2 SC30-3269
(IBM).

These are publications that contain background for DRDA’s use of The Open Group OSF DCE
security. A listing of security publications is available on The Open Group website at
www.opengroup.org, under publications. Many titles are available for browsing in HTML.

• CAE Specification, December 1995, Generic Security Service API (GSS-API) Base
(ISBN: 1-85912-131-4, C441), published by The Open Group.

• CAE Specification, August 1997, DCE 1.1: Authentication and Security Services (C311),
published by The Open Group.

• The Open Group OSF DCE SIG Request For Comments 5.x, GSS-API Extensions for DCE,
available from The Open Group.

• IETF RFC 1508, Generic Security Service Application Program Interface, September 1993.

• IETF RFC 1510, The Kerberos Network Authentication Service (V5), September 1993.

The following publications contain useful information about security mechanisms:

• FIPS PUB 81, DES Modes of Operation (Cipher Block Chaining), December 1980, NIST.

• FIPS PUB 180-1, Secure Hash Standard, May 1993, NIST.

• IETF RFC 1964, The Kerberos Version 5 GSS-API Mechanism, June 1996.

The following publication contains useful information about applied cryptography:

• Applied Cryptography: Protocols, Algorithms, and Source Code in C, Schneier, Bruce, published
by Wiley, New York, c.1996, 2nd Edition.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) ix

http://www.opengroup.org

Referenced Documents

Data Definition and Exchange

The following publications describe ISO SQL, FD:OCA, and CDRA:

• DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA),
published by The Open Group (this document).

• ISO/IEC 9075: 1999, Information Technology — Database Languages — SQL

• Character Data Representation Architecture Reference, SC09-1390 (IBM).

• Character Data Representation Architecture Registry, SC09-1391 (IBM).

• Character Data Representation Architecture, Executive Overview, GC09-1392 (IBM).

Other

• ANSI/IEEE Std. 745-1985, Binary Floating Point Arithmetic.

• IEEE DRAFT Standard for Floating Point Arithmetic, P754; refer to
http://754r.ucbtest.org/drafts/754r.pdf.

• Densely Packed Decimal Encoding, Cowlishaw M.F., IEE Proceedings — Computers and
Digital Techniques, ISSN 1350-2380, Vol. 149, No. 3, pp102-104, May 2002.

• Technical Standard, October 1993, Application Response Measurement (ARM) Issue 4.0 - C
Binding (ISBN: 1-931624-35-6, C036), published by The Open Group.

• Technical Standard, October 1993, Application Response Measurement (ARM) Issue 4.0 -
Java Binding (ISBN: 1-931624-36-4, C037), published by The Open Group.

• World Wide Web Consortium (W3C); refer to www.w4.org.

x Technical Standard (2007)

http://754r.ucbtest.org/drafts/754r.pdf
http://www.w4.org

Chapter 1

The DRDA Specification

The Distributed Relational Database Architecture Specification comprises three volumes:

• Distributed Relational Database Architecture (DRDA) (the DRDA Reference)

• Formatted Data Object Content Architecture (FD:OCA) (the FD:OCA Reference)

• Distributed Data Management (DDM) Architecture (the DDM Reference)

DRDA is an open, published architecture that enables communication between applications and
database systems on disparate platforms, whether those applications and database systems are
provided by the same or different vendors and whether the platforms are the same or different
hardware/software architectures. DRDA is a combination of other architectures and the
environmental rules and process model for using them. The architectures that actually comprise
DRDA are Distributed Data Management (DDM) and Formatted Data Object Content
Architecture (FD:OCA).

The Distributed Data Management (DDM) architecture provides the overall command and reply
structure used by the distributed database. Fewer than 20 commands are required to implement
all of the distributed database functions for communication between the Application Requester
(client) and the Application Server.

The Formatted Data Object Content Architecture (FD:OCA) provides the data definition
architectural base for DRDA. Descriptors defined by DRDA provide layout and data type
information for all the information routinely exchanged between the Application Requesters and
Servers. A descriptor organization is defined by DRDA to allow dynamic definition of user data
that flows as part of command or reply data. DRDA also specifies that the descriptors only have
to flow once per answer set, regardless of the number of rows actually returned, thus
minimizing data traffic on the wire.

It is recommended that the DRDA Reference be used as the main source of information and
roadmap for implementing DRDA. This section describes the relationships among the above
three volumes and provides the details on how they are used to develop a DRDA requester
(client) or server. Overviews of DRDA and DDM are provided in this section and in more detail
in the introductory sections of their respective volumes.

It is recommended that the introductory chapter of the DDM Reference, which describes its
overall structure and basic concepts, is read either before reading the chapter in the DRDA
Reference entitled The DRDA Processing Model and Command Flows or in conjunction with it. The
rest of the DDM Reference should be used primarily as a reference when additional detail is
needed to implement the functions and flows as defined in the DRDA Reference.

DRDA can flow over either SNA or TCP/IP transport protocols and the details and differences
in doing so are provided in the third part of the DRDA Reference. It is expected that the
developer is familiar with whichever transport protocol will be supported, as that level of detail
is not provided in this documentation. Even if only implementing for TCP/IP, it is
recommended that the developer be familiar with the two-phase commit recovery model as
described in SNA LU 6.2 since that is the model used by DRDA for either of the transport
protocols.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 1

The DRDA Specification

Besides SNA and TCP/IP, DRDA also uses the following other architectures:

• Character Data Representation Architecture (CDRA)

• SNA Management Services Architecture (MSA) for problem determination support

• The Open Group Distributed Computing Environment (DCE)

For a better understanding of DRDA, the reader should have some familiarity with these
architectures; see Referenced Documents.

Finally, DRDA is based on the Structured Query Language (SQL) but is not dependent on any
particular level or dialect of it. It is not necessary to know the details of how to construct all the
SQL statements, only to recognize certain types of statements and any host variables they may
contain in order to map them to their DRDA equivalents.

1.1 The DRDA Reference

The DRDA Reference describes the necessary connection between an application and a relational
database management system in a distributed environment. It describes the responsibilities of
these participants, and specifies when the flows should occur. It describes the formats and
protocols required for distributed database management system processing. It does not describe
an Application Programming Interface (API) for distributed database management system
processing.

This reference is divided into three parts. The first part describes the database access protocols.
The second part describes the environmental support that DRDA requires, which includes
network support. The third part contains the specific network protocols and characteristics of
the environments these protocols run in, along with how these network protocols relate to
DRDA.

1.2 The FD:OCA Reference

The FD:OCA Reference describes the functions and services that make up the Formatted Data
Object Content Architecture (FD:OCA). This architecture makes it possible to bridge the
connectivity gap between environments with different data types and data representation
methods by providing constructs that describe the data being exchanged between systems.

The FD:OCA is embedded in the Distributed Relational Database Architecture, which identifies
and brackets the Formatted Data Object in its syntax. DRDA describes the connectivity between
relational database managers that enables applications programs to access distributed relational
data and uses FD:OCA to describe the data being sent to the server and/or returned to the
requester. For example, when data is being sent to the server for inserting into the database or
being returned to the requester as a result of a database query, the data type (character, integer,
floating point, and so on) and its characteristics (length, precision, byte-reversed or not, and so
on) are all described by FD:OCA.

The FD:OCA Reference is presented in three parts:

• Overview material to give the reader a feel for FD:OCA.

This material can be skimmed.

• Example material that shows how the FD:OCA mechanisms are used.

This should be read for understanding.

2 Technical Standard (2007)

The DRDA Specification TheFD:OCA Reference

• References to the detailed FD:OCA descriptions.

A few of these topics should be read up-front to gain experience with the style of
presentation and the content of the first several triplets. The rest can be read when the
level of detail presented in that chapter is required. This is reference material.

1.3 The DDM Reference

The DDM Reference describes the architected commands, parameters, objects, and messages of
the DDM data stream. This data stream accomplishes the data interchange between the various
pieces of the DDM model.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 3

The DRDA Specification

4 Technical Standard (2007)

Chapter 2

Introduction to FD:OCA

This chapter:

• Outlines the requirements for FD:OCA

• Describes how FD:OCA meets these requirements

• Illustrates the applicability of FD:OCA with an example

• Explains how to use this volume

2.1 Why is FD:OCA Needed

In the world of distributed and network computing, it is necessary to interchange electronic
objects of various kinds, with and among like and unlike environments. This includes
interchange with host computers, where the traditional files and databases are kept—the
information assets of an enterprise. It also implies the increased need to interchange extracts
from these databases.

When documents and objects of all kinds can be sent to and managed at a host as well as in
dedicated outboard systems, the need to tap the central databases directly increases.
Professionals who enter information into or extract information from a database also want to use
their workstation’s accuracy and flexibility for the electronic communication of such
information.

However, the data found in databases or files is not immediately suited for free interchange
between independent products, because typically it is not architected but has an implied
structure and meaning. Since every data file and the related application programs can have their
own convention about data representation and meaning, a common implicit architecture does
not exist. The syntax and semantics of such data is only known to the programs familiar with the
data, because of convention or independent communication, not because of architected control
information accompanying the data.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 5

What is FD:OCA Introduction to FD:OCA

2.2 What is FD:OCA

Formatted Data Object Content Architecture (FD:OCA) is designed to solve the above problems.
FD:OCA can be viewed as a language that makes it possible to express the present format and
meaning, as far as relevant, of any given data item. Format and meaning here refer to those
aspects that are relevant for a program in a given environment, namely the data type and its
representation. FD:OCA constructs can express such properties and can attach them to the data.
The communication gap between products or environments with different data types and data
representation methods is bridged using FD:OCA.

The term formatted data was coined when electronic text processing began. At that time, the
major distinction between text and traditional data processing data was that text data was
unformatted, while the latter had a fixed and strict format. In this document, we use the term
formatted data for traditional data-processing-type data, and for any data that has an
unarchitected but known format and meaning, and needs a corresponding description.

Typically, formatted data comes from, or is intended for, databases and files. Interchange of
formatted data may be part of interchanging electronic mixed-object documents. But it may also
occur as a process in itself — for instance when exporting or importing files, or when passing
parameters from one application program to another, in the same or a different node of a
network. (For the remainder of this document, the term database is used to mean small or large
data collections, with or without internal structure and interdependences; in other words, simple
files are always included when we talk about databases.)

6 Technical Standard (2007)

Introduction to FD:OCA A Scenario

2.3 A Scenario

Figure 2-1 illustrates how a user, with the aid of an editor program, would manipulate a report
containing various references to variables. The variables come from a database and accompany
the report as a tabular resource, along with a description, called FD:OCA Descriptor.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Document-Proper

Monthly Highlight Report

Project XYZ PM Cost Rev.

120
135

255

1139
1306

2445

40.5
46.5

87.0

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1.6
0.7

708.1

As shown in Fig. 4, the
new revenue of 87.0 M$
compares favorably with

Last
Month’s
Highlight
Report

Preparing the new
Monthly Highlight
Report

Mgmt.
Info.
Database

Resource Values

405
1306
2306

:

465
1365
2366

:

870
2671
4662

:

80

60

Fig. 4

FD:OCA Resource
Descriptor

Figure 2-1 Typical FD:OCA Example

The editor program understands the references to the variables and their descriptions, and
resolves the references. It performs the conversion into presentable form, if necessary, and
inserts the values into their proper places. The report, with its tabular resource, could be passed
to a supporting editor program in another environment, and still be processed in the same way.

If the tabular resource changes, maybe because a new extract from the database is being
obtained, the report would reflect this change, showing the new values in all places where they
are referenced.

The tabular resource may also change if it is obtained from a different database, perhaps with
different data types and different data representations. The FD:OCA Descriptor accompanying
the resource data ensures that the data values are still treated correspondingly in the report.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 7

How to Use this Book Introduction to FD:OCA

2.4 How to Use this Book

2.4.1 Syntax Diagrams

Throughout this volume, the syntax for FD:OCA is shown in tables using the following format:

Data (Definition of Structure)

Offset Type Name Range Meaning M/O DEF EXC

(The field’s offset,
data type, or both)

(Name of
field if
applicable)

(Range of
valid
values if
applicable)

(Meaning
or
purpose
of the data
element)

(M or O) (Y or N) (Syntax
Exceptions)

Certain fields may be denoted as reserved. A reserved field is a parameter that has no functional
definition at the current time, but may be defined at some time in the future. All bytes in a
reserved field should have a value of zero. Additional columns appear to the right of the
Meaning column. These columns are:

M/O Mandatory or optional.

DEF Y means that the field defaults to a value specified by FD:OCA.

N means that there is no default.

EXC The possible syntax exceptions are specified.

See Section 4.5.1.1 for further details.

The syntax includes six basic data types:

CODE Architected constant

CHAR Character string

BITS Bit string

UBIN Unsigned binary

SBIN Signed binary

UNDF Undefined type.

Refer to Section 4.1 for a detailed description of the syntax.

The following is an example of FD:OCA syntax for Row Layout (RLO):

8 Technical Standard (2007)

Introduction to FD:OCA How to Use this Book

Syntax

Offset Type Name Range Meaning M/O DEF EXC

0 UBIN LENGTH 6 - 255 Length of triplet M N X’02’

1 CODE TYPEID 71 M N X’44’Triplet type ID:
Row-Layout

2 CODE ID 1 - 255 O N X’00’Construct
identity

A repeating group in the following format:

0 CODE LLID 1 - 255 M N X’24’Lower-level
identifier

1 UBIN CNTELE 1 - 255 O Y X’02’Count of
elements taken

2 UBIN REPFAC 0 - 255 Repetition factor M N X’04’

2.4.2 Notation Conventions

Throughout this volume, the following notation conventions apply:

• Bytes are numbered from left to right beginning with byte 0, which is considered the high-
order byte position. For example, a three-byte field would consist of byte 0, byte 1, and
byte 2.

• Each byte is composed of eight bits.

• Bits in a single byte are numbered from left to right beginning with bit 0, the most
significant bit, and continuing through bit 7, the least significant bit.

• When bits from multiple consecutive bytes are considered together, the first byte, byte 0,
contains bits 0 to 7, and byte n contains bits (n × 8) to ((n × 8) + 7).

• A negative number is expressed by the two’s-complement form of its positive number. The
two’s-complement of a number is obtained by first inverting every bit of the number and
then adding one to the inverted number.

2.4.3 Related Architecture

Character Data Representation Architecture (CDRA) defines a set of identifiers, services, supporting
resources, and conventions to achieve consistent representation, processing, and interchange of
graphic character data. (Graphic character data is not to be confused with the graphic data type,
which is used to represent double-byte data in some programming languages.)

2.4.4 Industry Standards

FD:OCA supports data types defined by the following industry standards:

• ANSI/IEEE Std. 745-1985, Binary Floating Point Arithmetic.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 9

Introduction to FD:OCA

10 Technical Standard (2007)

Chapter 3

Overview of FD:OCA

This chapter:

• Describes the concept of FD:OCA

• Provides a description of the FD:OCA constituents and characteristics

3.1 Concepts

FD:OCA enables the description of data from databases and traditional application programs,
called formatted data, so that it can be interchanged within or across environments. Such data
typically has an implicit structure and meaning; FD:OCA is used to explicitly attach the
information needed to understand the data.

A Formatted Data Object (FDO) consists of two components: a descriptor and a value.

• The descriptor describes the object. It expresses what format and structure the object value
has; that is, what data type and representation is used for the individual parts, and how
they together make up the value. This may include information on how several individual
items are grouped together into arrays of data, or how sequences of fields and
substructures make up records and files.

• The second part of a Formatted Data Object, the value, contains the described data. Except
for the constructs defining where the value begins and ends, there are no further
architectural constructs intermixed with the data. The data items occur as they have been
read from the database or as they would be recorded in the database.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 11

Constituents Overview of FD:OCA

3.2 Constituents

This section describes the general constituents of a Formatted Data Object (FDO)—its constructs,
the data types being supported, and the data structure being viewed as generalized arrays. It
also defines some terms used throughout this document.

3.2.1 Constructs

Depending on the interchange purpose, the Formatted Data Objects are embedded in architected
constructs of another higher-level architecture, such as the Distributed Relational Database
Architecture (DRDA). The embedding architecture identifies and brackets a Formatted Data
Object and its components (as appropriate) in their syntax.

The discussion here uses a generic format to suggest how the embedding architecture might
convey where a Formatted Data Object and its components begin and end.

The generic format assumes that the descriptor and data (or value) components are each built
from one or more Structured Fields (SF). A Structured Field is a self-identifying construct,
beginning with an Introducer that delimits its scope and identifies the nature of its contents. The
Introducer is followed by the contents proper. Depending on the component size, just one
Structured Field will normally suffice; additional Structured Fields are used to carry segments of
a component that is too big for a single Structured Field.

Other constructs, such as Begin and End indicators, may be necessary to bracket the Descriptor
and Data Structured Fields.

Thus, a Formatted Data Object in this generic format may consist of these elements:

• Begin indicator

• One or more FDO-Descriptor Structured Fields

• One or more FDO-Data Structured Fields

• End indicator

Figure 3-1 shows the structure of a typical Formatted Data Object. FD:OCA is concerned with
the contents of the Descriptor and Data Structured Fields. The Structured Field Introducers or
any bracketing constructs may be different in different surrounding architectures; they are not
addressed by FD:OCA.

12 Technical Standard (2007)

Overview of FD:OCA Constituents

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .
additional Descriptor Structured Fields

additional Data Structured Fields

FDO Descriptor Introducer

Descriptor Content

FDO Data Introducer

Data Values

Begin Indicator

End Indicator

Figure 3-1 Formatted Data Object

The Descriptor component contains the FD:OCA constructs describing the Data component.
These constructs are called Attributes or Attribute Triplets. Like Structured Fields, they are self-
identifying constructs. Each has a length field and a type field forming the Introducer for the last
part, the attribute proper. The term triplet refers to the fact that these constructs consist of three
pieces: a length field, a type field, and parameter data.

FDO Descriptor Introducer

LT

LT

LT

.

.

.

.

.

.

.

Attributes

Figure 3-2 FDO Descriptor

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 13

Constituents Overview of FD:OCA

Figure 3-2 shows how the Attribute constructs are carried in a Descriptor Structured Field. Each
Attribute has an Introducer, labeled LT, for Length and Type. One or more Attributes be needed.
The attribute contents together carry the information necessary to describe the format and
meaning of the Data component.

3.2.2 Data Types

FD:OCA supports the following data types and representation methods:

1. Bit and byte strings; that is, strings without additional semantics, in fixed and variable-
length forms.

2. Character strings in fixed and variable-length forms, with Coded Character Set
parameters supplying the semantics.

3. Numeric data that can describe integer numbers and then appear in various
representations and lengths as either:

— Decimal numbers in zoned or packed format

— Signed or unsigned binary numbers

Numeric data that can describe numbers with fractional parts in the notations:

— Decimal or binary fixed point

— System/390 hexadecimal floating point

— IEEE binary floating point

— VAX binary floating point

This numeric data can also appear in various representations and lengths.

3.2.3 Data Arrays

The data arrangements described through FD:OCA cover a broad spectrum. They include single
fields and numbers as well as tabular arrays and collections of records from traditional
databases. These seemingly different arrangements are treated by FD:OCA as variations of a
single general concept, as explained below. Conceptually, each FD:OCA object is a multi-
dimensional, more or less regular array of individual elements, with individual formats that
may or may not be identical.

As an illustration, consider a file with several records of different lengths and different field
layouts, as shown in Figure 3-3 (on page 15). Such a situation could be treated in FD:OCA as a
two-dimensional irregular array. The FD:OCA Descriptor for this structure would have
individual descriptions for most of the individual fields, and would then describe each record
layout, one after the other, referencing the field descriptions. The last three records, having an
identical layout, would share a description.

14 Technical Standard (2007)

Overview of FD:OCA Constituents

FIELDA1

FIELDA1

FIELDA1 FIELDA2

FIELDA2

FIELDA2

FIELDX FIELDY

FIELDA FIELDB

FIELD1 FIELD3FIELD2 RECORD 1

RECORD 2

RECORD 3

RECORD 4

RECORD 5

RECORD 6

Highest
Dimension

Second Highest Dimension

Figure 3-3 General Array Example

Variations of this concept with less diversity and overhead would be used to describe more
regular data arrangements, such as files with records of fixed-length and uniform layout, or
rectangular matrices with fields of identical format.

Those objects that are actually single fields with no array-like substructure would be treated as
trivial arrays with just one element.

The next section of this chapter introduces and defines some specific terms related to arrays; the
subsequent sections then use examples to show how this concept of describing a general array is
applied to specific cases.

3.2.4 Definition of Terms

FD:OCA is concerned with describing certain interchange objects carried in a sequential, linear
data stream, and hence with objects that are themselves just linear sequences of bits carrying
encoded information. The contents of an object are not physically arranged in some rectangular
fashion. Therefore, discussing dimensions of arrays in this context requires some imagination
and deserves a definition.

3.2.4.1 Partitions, Dimensions, and Extents

As illustrated in Figure 3-4 (on page 16), a linear string of fields may be thought of as being
partitioned in a hierarchical way. A first level of partitioning divides the string into a certain
number of partitions. On the next level, some or all of these partitions are further divided into
sub-partitions, which in turn may be further divided into sub-sub-partitions on the third level,
and so on.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 15

Constituents Overview of FD:OCA

ggg lllkkkjjjiiihhh

ggg lllkkkjjjiiihhh

lllkkkjjjiiiggg hhh

a ee ggg lllkkkjjjiiihhhcccbbb dddd fff

a eebbb ccc dddd fff

a bbb ccc dddd ee fff

a eebbb ccc dddd fff

a

ee
ggg

lll

kkk
jjj

iii
hhh

ccc

bbb

dddd

fff

Second
Highest
Dimension

Third
Highest
Dimension

Highest
Dimension

First Level of Partitioning

Second Level of Partitioning

Third Level of Partitioning

Figure 3-4 Partitioning a Linear String of Fields into Three Dimensions

Each of these levels of partitioning is called a dimension. The first level of partitioning is called
the highest dimension, the second is called the next-highest or second-highest dimension, the
last one is called the lowest dimension. If n levels of partitioning are defined, the string is
sometimes called an n-dimensional array.

As suggested in the figure, a string of fields partitioned this way can be thought of as being
arranged in space in a three-dimensional style, hence the term dimension.

In this example, the partitions of any particular level are treated alike; they are divided into the
same number of sub-partitions: namely two on the first level, three on the second, and again two
on the third level. If all partitions of a particular level are divided into the same number of sub-
partitions, then this number is called the extent of the dimension. The extents of the three
dimensions in the example are 2, 3, and 2, respectively.

If partitions on one level are subdivided in different ways, the number of sub-partitions of any
given partition is called a local extent. A dimension then has an extent of k, if all its local extents
are equal to k.

Arrays in which all dimensions have well-defined extents are called regular arrays.

In this book, the dimensions of regular arrays are sometimes referred to by sequence numbers.
For example, the highest dimension of a three-dimensional regular array is called Dimension 3;
the next highest is Dimension 2, and Dimension 1 is the lowest dimension.

16 Technical Standard (2007)

Overview of FD:OCA Constituents

3.2.4.2 Subarrays

For regular arrays, all dimensions have well-defined extents. Each individual item of a regular n-
dimensional array is characterized by n location numbers, expressing where that item is located
relative to each of the n dimensions.

In a regular two-dimensional array, the highest-level partitions are also called rows. Each one is
a subarray consisting of all those items that have a particular location number in the high
dimension.

A subarray of a regular two-dimensional array that consists of all items located at a particular
position in the low dimension is called a column.

For a regular three-dimensional array, a subarray consisting of all those items located at a
particular position in one of the dimensions is called a plane.

For a regular n-dimensional array, a subarray consisting of all those items located at a particular
position in one of the dimensions is called a slice. Planes are special cases of slices of three-
dimensional arrays, as rows or columns are the slices of two-dimensional arrays.

The dimensionality of an array, the number of dimensions it has, depends on the viewpoint. For
certain discussions it may be useful to disregard some dimensions. Thus an n-dimensional array
may also be viewed as a one-dimensional array or vector of certain entities, known to have a
(n−1) dimension structure, or as a two-dimensional arrangement of certain (n−2)-dimensional
arrays, and so on.

An array may even be viewed simultaneously in several logical directions. For each of the
dimensions of a regular array, the array may be viewed as a sequence of slices, each of which is
characterized as being located in a particular position in that dimension. If the dimension has an
extent of k, then the array can be viewed as a sequence of k slices defined by that dimension. If
another dimension has an extent of m, then the array can also be seen as a sequence of m slices
defined by and in the direction of that dimension.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 17

Characteristics Overview of FD:OCA

3.3 Characteristics

This section illustrates the characteristics of the architecture by means of some simple examples
of Formatted Data Objects.

3.3.1 Describing Data Arrays and Data Types

Figure 3-1 and the subsequent discussions indicated how the FD:OCA Descriptor describes an
FD:OCA object. The Descriptor contains self-identifying constructs called attribute triplets. The
attribute triplets describe the structure and properties of the Formatted Data Object values.
Several triplets may occur.

Using short labels, called local identifiers (LIDs), triplets may refer to other triplets, which in
turn may refer to yet further triplets, and so on.

The examples that follow show how the attribute triplets are used to express information on
data types and structure.

3.3.2 Examples

This section illustrates the typical usage of the attribute triplets. These examples demonstrate
the essential purpose of the architecture constructs.

For readability, the examples ignore details like codepoints and length field values and rather try
to convey those through symbolic descriptions and graphical methods. For instance, logically
existing boundaries between fields of a record are suggested through blank spaces, which would
typically not exist in a real database record. Also, numbers in the examples are always printable
and therefore readable. Thus, the examples should not be taken too literally. They are meant to
convey the FD:OCA concepts.

In addition to the graphical representation, the examples are also shown using an abstract
syntax notation, offering a more program-oriented point of view.

Among the attribute triplets to be discussed are:

Simple Data Array
Used to describe Formatted Data Object values that are either single items or regular arrays
of several such items, each having the same type and format. Type and format are also
described in this construct.

Row Layout
Used to describe irregular arrays, in which the elements are not all of the same data type.
Typically, several of these triplets are needed. They may refer to each other and to Simple
Data Array triplets.

Group Data Array
An alternative way of describing fields and structures, with override options for data type
information.

Metadata Definition
A means to tag data descriptions with information specific to certain classes of applications.

18 Technical Standard (2007)

Overview of FD:OCA Characteristics

FDO Descriptor Introducer

LT

Identity
Field_type
Type_parms
Extent/Dim
Extent/Dim

SDA

B1
32

3
4

11

FDO Data Introducer

123

765

123

765

756

274

457

234

111

000

711

070

776

278

477

238

456

234

456

734

711

070

117

000

476

237

456

734

008

111

711

070

234

856

486

238

800

181

118

000

234

456

476

838

Figure 3-5 Regular Array of Three-Digit Numeric Fields

Begin FDO ’OBJECTA’

FDO Descriptor

SDA ID = X’B1’
Field_type = X’32’, Type_parms = 3, Extent/Dim = 4,
Extent/Dim = 11

FDO Data

123 756 111 776 456 711 476 008 234 800 234
765 274 000 278 234 070 237 111 856 181 456
123 457 711 477 456 117 456 711 486 118 476
765 234 070 238 734 000 734 070 238 000 838

End FDO

Figure 3-5 shows a 4-by-11 array of three-digit numbers. The Simple Data Array (SDA) triplet is
the only triplet here. It says that the data type is some kind of numeric, and that there are several
dimensions. A first Extent/Dim (Extent-per-Dimension) entry describes the extent of the highest
dimension as being 4. The next entry says that the second dimension has an extent of 11. And an
entry called Type Parameters expresses that the numbers have a length of 3 digits. This is a
particularly short descriptor, needing only one attribute triplet, due to the fact that the data is
very regular.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 19

Characteristics Overview of FD:OCA

FDO Descriptor Introducer

LT

Identity
Field_type
Type_parms

SDA

B1
32

3

LT

Identity
Field_type
Type_parms
Extent/Dim

SDA

B2
10

500
9 LT

Identity
Low_lvl_id
Elem_taken
Rep_factor

RLO

A2
A1

0
2

LT

Identity
Low_lvl_id
Elem_taken
Rep_factor
Low_lvl_id
Elem_taken
Rep_factor
Low_lvl_id
Elem_taken
Rep_factor

RLO

A1
B1

0
4

B2
4
1

B2
10

2

FDO Data Introducer

123

765

456

234

111

000

476

238

TEX2

TEX5

TEXXXXXXXX

TEXXXXXXXX

XXXXXXXXXT

XXXXXXXXXT

Figure 3-6 Regular Array, Several Field Types

Begin FDO ’OBJECTB’

FDO Descriptor

SDA ID = X’B1’
Field_type = X’32’, Type_parms = 3

SDA ID = X’B2’
Field_type = X’10’, Type_parms = 500,
Extent/Dim = 9

RLO ID = X’A1’
Low_lvl_id = X’B1’, Elem_taken = 0, Rep_factor = 4,
Low_lvl_id = X’B2’, Elem_taken = 4, Rep_factor = 1,
Low_lvl_id = X’B2’, Elem_taken = 10, Rep_factor = 2

RLO ID = X’A2’

20 Technical Standard (2007)

Overview of FD:OCA Characteristics

Low_lvl_id = X’A1’, Elem_taken = 0, Rep_factor = 2

FDO Data

123 456 111 476 TEX2 TEXXXXXXXX XXXXXXXXXT
765 234 000 238 TEX5 TEXXXXXXXX XXXXXXXXXT

End FDO

Figure 3-6 also has a regular array, but with fields of different data types and different lengths.
This example needs two Row Layout (RLO) triplets and two SDAs. One of the RLOs, labeled
X’A1’, is a layout description for the rows of this two-row table. Through a sequence of
descriptive entries, it describes the fields making up a row.

A first group of entries expresses that the row starts with a numeric field, described through
SDA X’B1’, and that this field type is repeated 4 times. A parameter called Elem_taken occurs, but
is not used in this group.

A next group of three entries refers to X’B2’, describing a character string. Here, the Elem_taken
entry is used. It is an overriding length specification, and says that the length needed here is 4,
regardless of what X’B2’ specifies. The repeating factor 1 says that this field occurs just once.

The last group of entries refers to the same X’B2’ and expresses that two fields of this type occur.

While the SDA labeled X’B1’ could describe a whole simple data array (as its name suggests), it
serves here as just a single numeric field description. SDA X’B2’, on the other hand, describes a
slightly more complex structure: a one-dimensional array or string, made up of 9 characters. As
with X’B2’ above this specification may be overridden when referring to this description.

The other RLO, X’A2’, refers to X’A1’ and says that the description X’A1’ is also used for this
row. Essentially, X’A2’ defines how the array is arranged in its highest dimension.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 21

Characteristics Overview of FD:OCA

FDO Descriptor Introducer

LT

Identity
Field_type
Type_parms
Extent/Dim

SDA

B1
32

4
7

LT

Identity
Low_lvl_id
Elem_taken
Rep_factor
Low_lvl_id
Elem_taken
Rep_factor
Low_lvl_id
Elem_taken
Rep_factor

RLO

A1
B1

8
1

B1
5
1

B1
7
3

FDO Data Introducer

7745

2371

2375

6814

5437

1229

1257

1237

1237

5681

1947

1278

2947

1247

2345

2345

5681

2345

1234

1237

1235

1257

1537

4237

5681

5681

5681

5481

1947

3947

4947

5947

6234

1234

Figure 3-7 Irregular Array, All Numeric Fields

Begin FDO ’OBJECTC’

FDO Descriptor

SDA ID = X’B1’
Field_type = X’32’, Type_parms = 4, Extent/Dim. = 7

RLO ID = X’A1’
Low_lvl_id = X’B1’, Elem_taken = 8, Rep_factor = 1,
Low_lvl_id = X’B1’, Elem_taken = 5, Rep_factor = 1,
Low_lvl_id = X’B1’, Elem_taken = 7, Rep_factor = 3

FDO Data

7745 1229 1947 2345 1235 5681 3947 1234
2371 1257 1278 5681 1257
2375 1237 2947 2345 1537 5681 4947
6814 1237 1247 1234 4237 5481 5947
5437 5681 2345 1237 5681 1947 6234

End FDO

22 Technical Standard (2007)

Overview of FD:OCA Characteristics

In Figure 3-7 we have an irregular array, but with only one data type. The data type, described
through X’B1’, is a four-digit numeric type. Actually, it is a one-dimensional array of seven four-
digit numbers. The only RLO, labeled X’A1’, describes how a two-dimensional array is
arranged in its highest dimension by stacking one-dimensional arrays. The first group of entries
refers to X’B1’, and gives an overriding Elem_taken value of 8. This number overrides the 7
shown in X’B1’ and describes a row of 8 four-digit numbers. The repetition factor says this type
of row occurs just once. The next group of entries also refers to X’B1’, this time with an
overriding count of 5, since the second row has only five numbers. The last group refers to X’B1’
with an overriding value of 7, which in this case means 0, because 7 is the number shown as
highest extent in X’B1’. It then has a repetition factor of 3, so that it describes three rows.

Thus, this example describes an irregular array of five rows, all of which consist of some number
of four-digit numbers. The first row has 8, the second row has 5, and the last three rows have 7
numbers each. Two attribute triplets were needed here.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 23

Characteristics Overview of FD:OCA

FDO Descriptor Introducer

LT

Identity
Field_type
Type_parms
Extent/Dim

SDA

B1
10

500
3

LT

Identity
Low_lvl_id
Elem_taken
Rep_factor

RLO

A4
B1

0
2

LT

Identity
Low_lvl_id
Elem_taken
Rep_factor

RLO

A6
A4

0
3

LT

Identity
Low_lvl_id
Elem_taken
Rep_factor
Low_lvl_id
Elem_taken
Rep_factor
Low_lvl_id
Elem_taken
Rep_factor

RLO

A5
A1

0
1

A2
0
1

A3
0
1

LT

Identity
Low_lvl_id
Elem_taken
Rep_factor
Low_lvl_id
Elem_taken
Rep_factor

RLO

A1
B1

1
1

B1
0
1

LT

Identity
Low_lvl_id
Elem_taken
Rep_factor
Low_lvl_id
Elem_taken
Rep_factor

RLO

A2
B1

0
1

B1
4
1

LT

Identity
Low_lvl_id
Elem_taken
Rep_factor
Low_lvl_id
Elem_taken
Rep_factor

RLO

A3
B1

2
1

B1
0
1

LT

Identity
Low_lvl_id
Elem_taken
Rep_factor
Low_lvl_id
Elem_taken
Rep_factor

RLO

A7
A5

0
1

A6
0
1

FDO Data Introducer

a

ggg

bbb

hhh

ccc

iii

dddd

jjj

ee

kkk

fff

lll

Figure 3-8 Three-Dimensional Array

24 Technical Standard (2007)

Overview of FD:OCA Characteristics

Begin FDO ’OBJECTE’

FDO Descriptor

SDA ID = X’B1’
Field_type = X’10’, Type_parms = 500,
Extent/Dim = 3

RLO ID = X’A1’
Low_lvl_id = X’B1’, Elem_taken = 1, Rep_factor = 1,
Low_lvl_id = X’B1’, Elem_taken = 0, Rep_factor = 1

RLO ID = X’A2’
Low_lvl_id = X’B1’, Elem_taken = 0, Rep_factor = 1,
Low_lvl_id = X’B1’, Elem_taken = 4, Rep_factor = 1

RLO ID = X’A3’
Low_lvl_id = X’B1’, Elem_taken = 2, Rep_factor = 1,
Low_lvl_id = X’B1’, Elem_taken = 0, Rep_factor = 1

RLO ID = X’A4’
Low_lvl_id = X’B1’, Elem_taken = 0, Rep_factor = 2

RLO ID = X’A5’
Low_lvl_id = X’A1’, Elem_taken = 0, Rep_factor = 1,
Low_lvl_id = X’A2’= 0, Rep_factor = 1,
Low_lvl_id = X’A3’, Elem_taken = 0, Rep_factor = 1

RLO ID = X’A6’
Low_lvl_id = X’A4’, Elem_taken = 0, Rep_factor = 3

RLO ID = X’A7’
Low_lvl_id = X’A5’, Elem_taken = 0, Rep_factor = 1,
Low_lvl_id = X’A6’, Elem_taken = 0, Rep_factor = 1

FDO Data

a bbb ccc dddd ee fff
ggg hhh iii jjj kkk lll

End FDO

Figure 3-8 describes the three-dimensional array discussed earlier with Figure 3-4 (on page 16).
The SDA triplet labeled X’B1’ describes a string of 3 characters as a one-dimensional array
having an extent of 3. The triplets labeled X’A1’, X’A2’, and X’A3’, refer to X’B1’. By using the
overriding Elem_taken parameter, they describe individual rows of two character strings each,
with different string lengths. They describe the rows that make up the upper plane in Figure 3-4
(on page 16). Triplet X’A4’ refers to X’B1’ without overriding its extent but with a repetition
factor of 2. It thus describes a row of two character strings of length 3 each. The RLO triplet
labeled X’A5’ refers to X’A1’, X’A2’, and X’A3’, and provides a description of the upper plane in
Figure 3-4 (on page 16). The lower plane is represented by X’A6’, calling for three rows of style
X’A4’. The X’A7’ triplet puts the two planes together.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 25

Overview of FD:OCA

26 Technical Standard (2007)

Chapter 4

FD:OCA Specifications

This chapter:

• Introduces the conventions used in FD:OCA

• Describes the constituents of an FD:OCA object

• Describes the syntax and semantics of the FD:OCA constructs

• Provides definitions for exception conditions

4.1 Conventions Used in FD:OCA Specifications

This section describes the syntax conventions used in the FD:OCA specifications.

The syntax of each FD:OCA construct is described with the aid of a table, as illustrated in Table
4-1 (on page 27). The semantics associated with the parameters and parameter values appear
below the figure.

Syntax

Table 4-1 Syntax Description of Structured Fields and Triplets

Offset Type Name Range Meaning M/O DEF EXC

A repeating group in the following format:

In the table:

• Offset refers to the position, indexed on zero, of a parameter within the construct.

• Type denotes the syntax of the parameter. Types are:

— CODE refers to a parameter for which each valid value has a distinct meaning.

— CHAR means that the parameter provides a name.

— BITS means bit string and refers to a parameter composed of collections of small
numbers, usually one, of consecutive bits; each collection of consecutive bits is
interpreted as a code, in the sense described above for CODE.

— UBIN refers to a numeric parameter that can be interpreted arithmetically. It is a one
or two byte unsigned binary number.

— SBIN refers to a numeric parameter that can be interpreted arithmetically. It is a
signed binary number of length one, two, four, six, or eight bytes.

— UNDF means undefined and refers to a parameter for which there is no syntactic or
semantic definition, or to a parameter string composed of several parameters with
the syntax for each parameter specified below the table.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 27

Conventions Used in FD:OCA Specifications FD:OCA Specifications

• Name is the name used in this architecture specification to refer to the parameter.

• Range specifies the valid range of values for a parameter. If no value is specified in the
syntax table, the valid entries are listed in the parameter description.

• Meaning gives a short description of the parameter. A reserved field is a parameter that
has no functional definition at the current time. Its value must be zero.

• M/O refers to whether this parameter in the structured field must be specified:

— O means that the parameter specification is optional.

— M means that the parameter specification is mandatory.

When a positional parameter is optional and its value range does not include a value of all-
zero bits, then a value of all-zero bits is permissible and is interpreted as parameter not
specified. In this case the default value is used. If one or more positional parameters at the
end of a construct are optional, then they may also be left off.

• DEF refers to the existence of an architecture-defined default for the parameter:

— N means that there is no default value.

— Y means that there is a default value and it is given below the table.

• EXC indicates what syntax exceptions are to be expected for any particular parameter. The
value shown is a two-digit hexadecimal number, to be read as eight bit-flags. The eight bits
from left to right correspond to general exception conditions with exception identifiers 1
through 8; for example, an 07 means that exceptions with identifiers 6, 7, and 8 may be
detected, but not those with identifiers 1, 2, 3, 4, and 5. See Section 4.5.1.1 for a definition of
the exception categories and their identifiers.

A repeating group of one or more parameters can be specified at the end of a construct.
Descriptive material indicates what, if any, restrictions apply to the number of times the
repeating group can appear in the construct.

Except for the last, each occurrence of a repeating group must consist of all parameter
specifications belonging to this group, independent of whether the parameter is optional or
mandatory. Only in the last repeating group, trailing optional parameters may be left off.

The Offset specification of a repeating group is reset to 0.

Unless stated otherwise, items in a sequence of bits or bytes are addressed starting with 0 for the
leftmost or low-addressed bit or byte. Item 1 is adjacent to and to the right of item 0, and so on.
The leftmost bit in a byte or sequence of bytes is sometimes also called the high-order bit. The
rightmost bit is also called the low-order bit.

28 Technical Standard (2007)

FD:OCA Specifications FD:OCA Object Constituents

4.2 FD:OCA Object Constituents

Each FD:OCA object has a Descriptor and an optional Data part. Depending on the interchange
purpose, the Formatted Data Objects are embedded in the architected constructs of another
higher-level architecture, such as the Distributed Relational Database Architecture (DRDA). The
embedding architecture identifies and brackets a Formatted Data Object and its components, as
appropriate in its syntax.

The discussion here uses a generic format to suggest how the embedding architecture might
convey where a Formatted Data Object and its components begin and end.

The generic format assumes that both the Descriptor and the Data component are each built
from one or more Structured Fields (SF). A Structured Field is a self-identifying construct,
beginning with an Introducer, that delimits its scope and identifies the nature of its contents. The
Introducer is followed by the contents proper. Depending on the component size, just one
Structured Field will normally suffice; additional Structured Fields serve to carry segments of a
component that is too big for a single Structured Field. The Descriptor consists of one or more
Descriptor Structured Fields, and the Data part consists of zero or more Data Structured Fields.

The Descriptor Structured Fields describe the structure and appearance of the object through the
attribute triplets.

The actual data of the object appears in the Data Structured Fields. The Data Structured Field
content is pure data without any additional, architecturally prescribed, constructs.

The complete sequence of Descriptor Structured Fields of an object is called the Descriptor. The
sequence of all Data Structured Fields is called the Data part or the value of that object.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 29

FD:OCA Descriptor Component Content FD:OCA Specifications

4.3 FD:OCA Descriptor Component Content

The FD:OCA Descriptor contains the information that defines a Formatted Data Object (FDO) as
a sequence of attribute triplets. The attribute triplets describe the structure and properties of the
FDO values.

Generally, an attribute triplet consists of three parts: a one byte length field, a one-byte type
field, and up to 253 bytes of parameter data.

Syntax

Offset Type Name Range Meaning M/O DEF EXC

0 UBIN LENGTH 2 - 255 Length of triplet M N X’02’

1 CODE TYPEID Triplet type ID M N X’44’

2 - n Parameter data

Semantics

Length of triplet specifies the length in bytes of the triplet, including this one byte length field.

Triplet Type ID is a one byte code identifying the triplet type.

Parameter data consists of one or more parameters. The number of parameters, the length, and
the structure of each parameter in the triplet is dependent on the triplet type.

4.3.1 Descriptor Attribute Triplets

Several different kinds of attribute triplets are available to describe the structure and properties
of a Formatted Data Object. In a simple case, the description may consist of just a single
attribute triplet; more typically, though, several attribute triplets together form the description.
In such cases, a major triplet refers to lower-level triplets, which in turn may refer to yet lower-
level triplets, and so on. The major attribute triplet is identifiable by the fact that it is not
referenced by any other triplets. Only one attribute description may exist; in other words, no
more than one major or unreferenced attribute triplet may occur.

4.3.1.1 References

To establish a connection between them, attribute triplets refer to other attribute triplets inside
the same FD:OCA object through the concept of a Local Identifier (LID). For this purpose, the
attribute triplets carry a one byte field called Identity. This makes it possible to refer from one
triplet to another by specifying the identity of the intended triplet. Thus, from within an
attribute triplet, other attribute triplets in the same object can be referred to by a one-byte label
called LID.

All LID references must follow this position rule: A referenced LID must have been defined in
the object to the left of (or prior to) the reference. If more than one triplet in the Descriptor
contains the referenced LID, then the reference resolves to the one occurring nearest to and prior
to the reference.

The LID assigned to the referencing triplet as well as all LID definitions succeeding this triplet in
the object are not in the scope of this LID reference.

30 Technical Standard (2007)

FD:OCA Specifications FD:OCA Descriptor Component Content

4.3.1.2 Simple Data Array (SDA)

A Simple Data Array triplet is used to describe those parts of FD:OCA object values that are
either single items or linear or rectangular arrays of several such items, each having the same
format.

Syntax

Offset Type Name Range Meaning M/O DEF EXC

0 UBIN LENGTH 4 - 254 Length of triplet M N X’02’

1 CODE TYPEID X’70’ M N X’44’Triplet type ID:
Simple Data
Array

2 CODE ID 1 - 255 Construct identity O N X’00’

3 CODE FTYPE Field type M N X’06’

4 - 11 UNDF TPARM Type parameters O Y X’02’

A repeating group in the following format:

0 - 1 UBIN EXTENT 0 - 32767 O N X’44’Extent per
dimension

Semantics

This triplet is a declarative for the attributes of parts of an FD:OCA object value with uniform
structure. It is used for single items, such as single numbers, or for values that are vectors or
rectangular, or more-dimensional arrays of single items of identical format, all having the same
field length, field type, and type parameter (for example, being binary numbers of a certain
length).

ID provides for a local name which allows this triplet to be referenced from other triplets.

FTYPE describes the data type of one field. Valid entries for this parameter depend on the
supported FD:OCA subset and can be found under the SDA description for this specific subset
in Section 5.2 (on page 81). See Section 4.3.3 for detailed data type descriptions.

TPARM provides additional information regarding the field type. Valid contents depend on the
field type. See Section 4.3.3 for more details. A typical parameter is the field length of the single
items making up the array described. The default is as specified in the data type definition.

The repeating group may occur zero, one, or more times. It contains the following parameter:

EXTENT: This repeatable entry is used, if necessary, to describe the structure and size of arrays
of data. Each entry defines an array dimension and expresses how many addressable entities
exist in that dimension. Indexed access to elements or parts of data arrays is defined with
reference to these dimension specifications.

A series of Extent-per-Dimension entries can be viewed as partitioning the described FD:OCA
object value, or part thereof, into hierarchically nested partitions. The first entry expresses into
how many pieces of equal length the whole described entity is to be partitioned; the next entry,
if present, says for each of those pieces into how many sub-pieces of equal length it is
partitioned, and so on.

The last Extent-per-Dimension entry expresses how many items of described data type and
length comprise the lowest hierarchical partition. If no Extent-per-Dimension entry is specified,
then a single item is being described.

A parameter value of zero means that the extent for this dimension is not explicitly specified and
must therefore be derived from the values. A zero can only be specified for the first occurrence

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 31

FD:OCA Descriptor Component Content FD:OCA Specifications

of this parameter in a triplet which is not referenced from another attribute triplet. Only the
extent of the highest dimension may use implicit specification through the values; otherwise an
exception condition with exception-id 10 occurs. For all invalid values of zero for this parameter,
a value of 1 is assumed.

The implicit specification of the extent cannot be used for data types that do not consume any
value space, such as a fixed-length character string of zero length. In this case, and exception
condition with exception ID 10 occurs. When the parameter value is not specified, the
specification of the repeating entry may be provided outside of the descriptor as allowed by
DRDA. Refer to the DRDA Reference on input variable arrays for a description of how extents
are provided as part of the data and not part of the descriptor specification.

32 Technical Standard (2007)

FD:OCA Specifications FD:OCA Descriptor Component Content

4.3.1.3 Row Layout (RLO) or Nullable Row Layout

The Row Layout triplet is used to describe a row containing fields of different types, or to
describe a table containing rows of different types, or to describe multi-dimensional entities of
this nature.

Syntax

Offset Type Name Range Meaning M/O DEF EXC

0 UBIN LENGTH 6 - 255 Length of triplet M N X’02’

1 CODE TYPEID X’72’ or X’73’ M N X’44’Triplet type ID:
Row-Layout

2 CODE ID 1 - 255 Construct identity O N X’00’

A repeating group in the following format:

0 CODE LLID 1 - 255 M N X’24’Lower level
identifier

1 UBIN CNTELE 1 - 255 O Y X’02’Count of
elements taken

2 UBIN REPFAC 0 - 255 Repetition factor M N X’04’

Semantics

In reference to Figure 3-4 (on page 16), a Row Layout Triplet defines how an FD:OCA object or a
partition thereof is in itself thought to be partitioned, by describing how many pieces of what
data type it consists of. Typically, it is only used when those pieces or sub-partitions are of
different types, since otherwise an SDA construct can be used instead. It implicitly defines a
local extent.

ID provides a local name, allowing this triplet to be referenced from other attribute triplets.

The repeating group may occur one or more times. It contains the following parameters.

LLID specifies the local name of another lower-level Row Layout construct, or of a Simple Data
Array construct, or of a Group Data Array construct. Note that the description of complex data
structures is done through nesting appropriate Row Layout, Simple Data Array, and Group Data
Array constructs. An exception condition with exception-id 09 exists if the referenced triplet is
not an SDA or RLO or GDA. In such a case, the value is determined as described for the general
exception condition category with exception-id 3; see Section 4.5.1 (on page 75).

CNTELE is an overriding local extent for the next lower level. It defines how long the lower-
level row, or table, or sub-array in higher dimensions, should actually be, measured in number
of partitions of the lower level. If the lower level has fewer partitions than requested here, then
the last partition specification is treated as if it were repeated enough times to fill this
specification. If it has more, then the excessive specifications are ignored.

This parameter is designed to minimize the number of different lower-level constructs required
to describe variable-length records.

The default is the number of partitions of the lower level. If the lower level is an SDA, as
opposed to RLO and GDA, then the number of partitions overridden by this parameter is the
extent of its highest dimension. If no highest dimension exists, because the SDA describes a
single zero-dimensional field, then this parameter is ignored.

If the referenced lower-level structure is a group described by a Group Data Array construct,
then the parameter specification applies to each element of the described group, defining an
overriding local extent for each of them. For zero-dimensional SDAs in the GDA, this parameter

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 33

FD:OCA Descriptor Component Content FD:OCA Specifications

is ignored.

REPFAC specifies how often the above field, row, table, or group definition is to be repeated
through repetition of the repeating group, before the description of the next field, row, table, or
group begins.

A parameter value of zero means that the number of partitions is not explicitly specified and
must therefore be derived from the values. A zero can only be specified for the last occurrence of
this parameter in a triplet which is not referenced from another attribute triplet; only the last
group of partitions in the highest dimension may use implicit specification for its number of
occurrences through the values; otherwise, an exception condition with exception-id 10 occurs.
For all invalid values of zero for this parameter, a value of 1 is assumed.

The implicit specification of the number of partitions cannot be used with data types that do not
consume any value space, such as a fixed-length character string of zero length. In this case, an
exception condition with exception-id 10 occurs.

The total number of partitions of the entity described by this RLO triplet depends on what
Repetition Factors are specified in each repeating parameter group, and on how many repeating
groups occur, and on what they refer to. The total number of partitions in the described entity,
the local extent of the entity, is the weighted sum of the Repetition Factors in its repeating
groups. The weight for a Repetition Factor is 1, if the referenced entity is an RLO or SDA. If the
referenced entity is a GDA, then the weight is the group size (that is, the number of elements
making up the group). In other words, the Repetition Factors for entities other than GDAs are
simply added, and those specified for GDAs are first multiplied with the size of the group, and
then added.

TYPE is either X’72’ or X’73’; the two variants are identical, except that type X’73’ additionally
introduces a null indicator for the row layout. In this case, as with nullable data types for fields,
a null indicator byte precedes the row, indicating in its high-order bit whether the group is
present or missing. B’0’ indicates presence; B’1’ indicates absence.

34 Technical Standard (2007)

FD:OCA Specifications FD:OCA Descriptor Component Content

4.3.1.4 Group Data Array (GDA) and Nullable Group Data Array

The Group Data Array triplet allows the definition of a group, which is a sequence of data field
or array descriptions, optionally with modified data type specifications.

Syntax

Offset Type Name Range Meaning M/O DEF EXC

0 UBIN LENGTH 4 - 255 Length of triplet M N X’02’

1 CODE TYPEID M N X’44’X’75’ or
X’76’

Triplet type ID:
Group Data
Array

2 CODE ID 1 - 255 Construct identity O N X’00’

A repeating group in the following format:

0 CODE REFID 1 - 255 M N X’26’Array reference
identity

1 - 2 UNDF TPARM O N X’00’Type parameter
specification

Semantics

This triplet constitutes a sequence of fields or arrays that can be referred to as a unit called
group. In contrast to the Row Layout triplet (RLO), the described group does not form a higher-
dimension entity. It remains a sequence of separate fields or arrays in the order referenced here.

If a Simple Data Array triplet is referenced from this triplet, then bytes 6 and 7 of the Type
Parameters are replaced with the specified parameter value. For a description of Type
Parameters, see Section 4.3.3 (on page 41).

TYPE is either X’75’ or X’76’; the two variants are identical, except that type X’76’ additionally
introduces a null indicator for the whole group. In this case, as with nullable data types for
fields, a null indicator byte precedes the group, indicating in its high-order bit whether the
group is present or missing. B’0’ indicates presence; B’1’ indicates absence.

ID provides a local name, allowing this triplet to be referenced from other attribute triplets. The
effect of referencing this triplet is the same, with the possible exception of the type parameter
overriding, as when referencing individually all the constructs referenced here.

The repeating group may occur one or more times. It contains the following parameters.

REFID specifies the local name of a Row Layout construct, of a Simple Data Array construct, or
of another Group Data Array construct. The referenced construct becomes part of the described
structure in the position determined by the occurrence of the repeating group.

An exception condition with exception-id 09 exists if the referenced triplet is not an SDA, RLO,
or GDA. In such a case, the value is determined as described for the general exception condition
category with exception-id 3; see Section 4.5.1 (on page 75).

TPARM is an overriding specification for bytes 10 - 11 of the referenced Simple Data Array
(SDA) triplet. It replaces the seventh and eighth byte of the Type Parameters in the referenced
SDA, which typically is a field length. See Section 4.3.3 for what contents are valid depending on
the field type of the SDA. A parameter value of zero does not override any bytes.

This parameter is ignored if the referenced triplet is not an SDA.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 35

FD:OCA Descriptor Component Content FD:OCA Specifications

4.3.1.5 Metadata Definition (MDD)

This triplet can precede SDA, GDA, RLO, or other MDD triplets, in order to provide the data
structures with additional, application-specific attribute information through the use of
metadata. Metadata consists of a metadata type, and optionally a metadata value. It can be
attached to a data structure, like a tag, by placing it prior to the triplet describing the data
structure. One or more MDD triplets may tag an attribute triplet. If a triplet to be tagged already
has tags, then the additional tag is placed prior to the existing tags.

Syntax

Offset Type Name Range Meaning M/O DEF EXC

0 UBIN LENGTH 5 - 252 Length of triplet M N X’02’

1 CODE TYPEID X’78’ M N X’44’Triplet type ID:
Metadata
Definition

2 CODE ID X’00’ Construct identity O N X’00’

3 CODE CLASS Application class M N X’02’

4 CODE SUBTYP Meta Data type M N X’02’

5 CODE REFTYP O Y X’22’Meta Data
reference type

6 UNDF REFID O N X’20’Meta Data
reference

A repeating group in the following format:

0 UBIN CRITDIM 1 - 255 Criteria dimension O Y X’02’

1 - 2 UBIN LOWLIM 0 - 32767 Low index limit O Y X’02’

3 - 4 UBIN HIGHLIM 0 - 32767 High index limit O Y X’26’

Semantics

ID is an unused parameter; it may contain a value of all-zero bits. The field exists only for the
sake of syntactical uniformity with related constructs.

CLASS and SUBTYP: The following list shows the recognized application classes, along with a
generic description of the valid metadata types available in each class:

X´00´ - X´04´ Reserved.

X´05´ Relational database data Allowed metadata types and their meaning are defined
by the Distributed Relational Database Architecture (DRDA).

X´06´ - X´FF´ Reserved.

REFTYP: This field specifies in what way the following parameter provides the described
metadata value. Valid entries and their meanings are:

X´00´ No attribute parameter is provided. This is the default.

X´01´ An immediate constant is provided as a metadata value. For the DRDA CLASS
X’05’, the described metadata value references a DRDA early descriptor.

X´02´ An immediate constant is provided as a metadata value. For the DRDA CLASS
X’05’, the described metadata value references a DRDA late descriptor.

36 Technical Standard (2007)

FD:OCA Specifications FD:OCA Descriptor Component Content

X´03´ - X´FF´ Reserved.

REFID: The content of this field is dependent on the REFTYP parameter.

REFTYP Field Content.

X´00´ Reserved.

X´01´ An unsigned one-byte binary number specifying an immediate constant.

X´02´ - X´FF´ Reserved.

The repeating group may occur zero, one, or more times. It is used to specify Subsetting Criteria
for the tagged data if not all of the tagged data are to be annotated with the metadata, but only a
particular subarray or an individual field.

Each group defines a criterion being associated with a specified dimension of the tagged data,
by providing a low and a high index position limit. If no criterion is given for a dimension, then
all positions in that dimension qualify. At most one criterion may be specified per dimension. If
more than one specification occurs, an exception condition with exception-id 03 is given.

The repeating group parameters are:

CRITDIM: This parameter defines for which dimension the subsequent limit criteria are to be
observed; 1 denotes the highest dimension, 2 the second highest, and so on. An exception
condition with exception-id 07 arises if the specified number is greater than the number of
dimensions present in the tagged data structure.

LOWLIM, HIGHLIM: If a field of the tagged data structure has, in the specified dimension, a
position equal to or higher than the Low Index Limit and equal to or lower than the High Index
Limit, then it is eligible for annotation.

A special rule applies if one or the other limit is specified as 0. If the Low Index Limit is 0, then it
is treated as if it were equal to the High Index Limit. If the High Index Limit is 0, then it is
treated as if it were equal to the highest existing position in this dimension (that is, the extent of
the dimension).

If both are specified as 0, an exception condition with exception-id 03 is given.

Note: The above discussed dimensions are relative to the described data structure, which in turn may
be part of a higher-level structure and thus may exist within higher-level dimensions. For
example, if an RLO is tagged that describes a row, then it has only one dimension, and this is
referred to by using 1 for denoting the highest and only dimension of this data structure. This
does not preclude the RLO from being used and referenced by another, higher-level RLO that
causes this row to become part of a two-dimensional structure.

Mapping of Metadata to the Data Being Annotated:

The metadata and the data being annotated with metadata may each be single items, or more or
less regular arrays made from several items, perhaps with several dimensions.

If both are single items, then obviously the single metadata item is tagging the single data item.

If the metadata, or the tagged data, or both, are arrays, regular or not, then the mapping is done
according to the following rule:

• The metadata is viewed, along the direction of its highest dimension, as a vector of n slices,
n being 1 or more.

• The tagged data is viewed as a vector or sequence of m slices, along the direction of its
highest dimension or, depending on the metadata type, along the direction of its second
highest dimension; m may be 1 or more.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 37

FD:OCA Descriptor Component Content FD:OCA Specifications

• Assignment of metadata structures to the tagged data structures is now done component-
wise: the first slice of metadata to the first slice of the tagged data, the second slice of the
metadata to the second slice of the tagged data, and so on. If n exceeds m, then the
excessive metadata items are ignored; if n is less than m, then the trailing tagged data slices
do not get any metadata slices assigned to them.

38 Technical Standard (2007)

FD:OCA Specifications FD:OCA Descriptor Component Content

4.3.2 Supportive General-Purpose Triplets

This section describes supportive general-purpose triplets.

4.3.2.1 Continue Preceding Triplet (CPT)

This triplet logically continues the contents of a preceding triplet.

Syntax

Offset Type Name Range Meaning M/O DEF EXC

0 UBIN LENGTH 4 - 255 Length of triplet M N X’02’

1 CODE TYPEID X’7F’ M N X’64’Triplet type ID:
Continue
Preceding Triplet

2 UNDF RES X’00’ Reserved M N X’02’

3 - 254 UNDF CONTENT Continued contents M N X’26’

Semantics

The primary purpose of this triplet is to allow for a sequence of specifications or immediate data
longer than coverable by a one-byte length field. It logically continues the specification of a
physically preceding triplet. It must immediately follow the continued triplet.

All triplets which contain a repeating group at the end, if not otherwise indicated, can be
continued with the CPT triplet.

A sequence of two or more Continue Preceding Triplet constructs may be used if necessary.

An exception condition with exception-id 13 exists if this triplet follows a triplet of a type other
than those listed above.

RES is a reserved parameter and must contain a value of all-zero bits.

CONTENT contains an integral number of occurrences of the repeating group of the continued
triplet. This parameter is interpreted as a logical continuation of a preceding triplet.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 39

FD:OCA Descriptor Component Content FD:OCA Specifications

4.3.2.2 Implementation Support Data (ISD)

The Implementation Support Data triplet carries data which determines the required FD:OCA
support for the Formatted Data Object.

Syntax

Offset Type Name Range Meaning M/O DEF EXC

0 UBIN LENGTH 5 - 6 Length of triplet M N X’02’

1 CODE TYPE X’7E’ M N X’44’Triplet type ID:
Implementation
Support Data

2 CODE ID X’00’ Construct identity O N X’00’

3 - 4 CODE SUBSET Subset M N X’06’

5 CODE VERSION X’01’ O Y X’02’Architecture
version

Semantics

ID is an unused parameter; it may contain a value of all-zero bits. The field exists only for the
sake of syntactical uniformness among related constructs.

SUBSET identifies the highest architecture subset support required for this object. Valid entries
and their meanings are:

X´0000´ FD:OCA Subset 0000 Base must be supported.

X´0100´ FD:OCA Subset 0100 Tower for DRDA support must be supported.

See Section 5.2 for a definition of these subsets. An exception condition with exception-id 12
exists if an undefined subset is indicated, and the subset is assumed to be not supported.

VERSION identifies the version of the architecture used for the object. The value must be one.
The default value is architecture version one. An exception condition with exception-id 12 exists
if a version other than one is indicated. In such a case, version one is assumed.

The ISD triplet is required for all subsets of the architecture except the DRDA function set,
Subset X’0100’, and the ISD triplet must occur as the first triplet in the Descriptor. If an ISD
occurs anywhere else in the Descriptor, it is ignored and an exception condition with exception-
id 13 is raised.

If the ISD triplet is not specified, the DRDA support subset X’0100’ is the default.

40 Technical Standard (2007)

FD:OCA Specifications FD:OCA Descriptor Component Content

4.3.3 Registry of Data Types

This section formally describes the syntax and semantics of all FD:OCA registered data types
and can be used by other architectures for reference purposes. The terms used below are defined
as:

Field Type
Contains the hexadecimal codepoint to be used in the one-byte Field Type entry. In general
there are two codepoints: one for a non-nullable type and one for a nullable type. A nullable
field is prefixed with a null-indicator, which expresses whether or not the subsequent field
has a value or actually is undefined. The null indicator is one byte long, precedes the field
value immediately, and indicates in its high-order bit whether a value follows or not. If the
high-order bit is B’1’, then no value exists; if it is B’0’, then a well-defined value is follows.

Parameters
As and when applicable, provide further qualification of the data type to be specified in the
eight-byte Type Parameters field. Byte 0 refers to the leftmost byte of that field, byte 1 to the
second-leftmost, and so on. All bytes not explicitly described are reserved and must have a
value of all-zero bits.

Depending on the type, particular portions of the Type Parameter field are used to control
the syntax and the semantics of the type. The type parameter Mode located in Byte 5, for
example, is used to specify syntactic variants of some types. Thus for variable-length data
types a mode bit controls the interpretation of the length field that precedes the data value.
A B’0’ defines that a non-zero field length value indicates the space reserved for data and
that all space is transmitted whether it contains valid data or not. A B’1’ shows that a non-
zero field length value indicates the maximum value for the length field. Only enough space
to contain each data value is transmitted.

Default
Specifies a default value for the Type Parameters field, including any reserved parts.

Syntax
Describes the inner structure of the value. For complex structures the value is represented
by a sequence of characters, each character representing one byte of the value with the
following meaning:

L Length field.

b Value byte.

N Null-byte (all-zero bits).

LLbb...bb would therefore represent a two-byte length field followed by several value bytes.

Semantics
Contains the interpretation rules for the value components defined in Syntax.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 41

FD:OCA Descriptor Component Content FD:OCA Specifications

4.3.3.1 String Data Types

Byte String, Fixed Length, Field Type X’01’

Byte String, Fixed Length, Nullable, Field Type X’81’

Parameters Bytes 0-5 Reserved.

Bytes 6-7 Field Length

format: signed binary integer
units: bytes
value: 0 - 32767

Default X’0000000000000001’

Syntax byte string

Semantics None.

42 Technical Standard (2007)

FD:OCA Specifications FD:OCA Descriptor Component Content

Byte String, Variable Length, Field Type X’02’

Byte String, Variable Length, Nullable, Field Type X’82’

Parameters Bytes 0-4 Reserved.

Byte 5 Mode

format: bit string
value: X’00’ - X’01’

Bytes 6-7 Field Length

format: signed binary integer
units: bytes
value: 0 - 32767

Default X’0000000000000000’

Syntax LLbbb...bb is a two-byte signed binary integer followed by zero or more value
bytes as defined below.

If Field Length = 0:
Length of bbb...bb is LL.

If Field Length > 0:
LL must be ≤ Field Length.

If mode-bit 7 is B´1´:
Length of bbb...bb is LL, and Field Length expresses the maximum value
allowed for LL.

If mode-bit 7 is B´0´:
Length of bbb...bb is Field Length.

Semantics The leftmost LL bytes of bbb...bb are the value.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 43

FD:OCA Descriptor Component Content FD:OCA Specifications

Null-Terminated Byte String, Field Type X’03’

Null-Terminated Byte String, Nullable, Field Type X’83’

Parameters Bytes 0-4 Reserved

Byte 5 Mode

format: bit string
value: X’00’ - X’01’

Bytes 6-7 Field Length

format: signed binary integer
units: bytes
value: 0 - 32767

Default X’0000000000000000’

Syntax bbb...bbN is zero or more non-zero bytes, followed by a byte of all-zero bits.

If Field Length k = 0:
The first occurrence, from left to right, of a byte with all-zero bits defines the
actual length of the field.

If Field Length has a value k > 0 then

If mode-bit 7 is B´1´:
k is an upper limit for the number of value bytes; the leftmost all-zero
byte defines the end of the field.

If mode-bit 7 is B´0´:
The field is k+1 bytes long, but an all-zero byte may occur earlier.

Semantics Value is the leftmost string of non-zero bytes; it may be empty.

44 Technical Standard (2007)

FD:OCA Specifications FD:OCA Descriptor Component Content

Short Byte String, Field Type X’07’

Short Byte String, Nullable, Field Type X’87’

Parameters Bytes 0-4 Reserved.

Byte 5 Mode

format: bit string
value: X’00’ - X’01’

Bytes 6-7 Field Length

format: signed binary integer
units: bytes
value: 0 - 255

Default X’0000000000000000’

Syntax Lbbb...bb is a one-byte unsigned binary integer followed by zero or more value
bytes as defined below.

If Field Length = 0:
Length of bbb...bb is L.

If Field Length > 0:
L must be ≤ Field Length.

If Mode-Bit 7 is B´1´:
Length of bbb...bb is L, and Field Length expresses the maximum value
allowed for L.

If Mode-Bit 7 is B´0´:
Length of bbb...bb is Field Length.

Semantics The leftmost L bytes of bbb...bb are the value.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 45

FD:OCA Descriptor Component Content FD:OCA Specifications

4.3.3.2 Character Data Types

Character data implies that bit patterns are interpreted as strings of symbols, such as numeric
digits, punctuation symbols, ideagrams, and so on. These symbols could, for example, come
from a Cyrillic alphabet, or could be mathematical symbols, or perhaps be a mixture of Japanese
Kanji and Latin alphabet characters. Thus, for a correct interpretation the reader needs to know
which set of graphic characters is employed. Secondly, given the set of graphic characters, the
reader needs to know what code page maps the characters to electronic bit patterns. Finally, if
more than one code page and set of graphic characters occurs, the method must be known by
which a switch from one code page and set of graphic characters to the next is indicated.

The first two of these essential parameters are sometimes represented through identifiers called:

1. Graphic Character Set Global Identifier (GCSGID)

2. Code Page Global Identifier (CPGID)

Products typically encode and combine them into a pair of two-byte binary numbers, called
Coded Graphic Character Set Global Identifier (CGCSGID) or GCID for short.

The Character Data Representation Architecture (CDRA) defines the third essential parameter,
the Encoding Scheme Identifier, abbreviated ESID. CDRA also defines how the ESID, together
with one or more pairs of GCSGID and CPGID and other coding-related information, allows an
unambiguous interpretation of the many character-string encoding methods that are in common
use around the world.

The combination of ESID and the other associated identifiers can be referred to by a short name,
a 16-bit identifier called Coded Character Set Identifier (CCSID). CDRA defines how a CCSID
points to a detailed and long-form description of the above discussed parameters. CDRA also
has registered a great number of very common combinations of ESID and GCSGID/CPGID
pairs, and then has assigned a CCSID to each of them.

FD:OCA uses the 16-bit CCSID in its Character Data Type parameters. Normally, this will be a
registered CCSID, and therefore the implied ESID and GCSGID/CPGID pairs are known. In the
less frequent cases of non-registered CCSIDs, the CCSID-Resource construct carries the actual
information, and is referenced through the CCSID value in the type parameters.

For migration purposes, FD:OCA in its current version also supports the traditional CGCSGID
concept, but only in the simple form, where a single CGCSGID is needed to describe a character
string. Strings requiring more than one character set and code page must be described through
the CCSID method.

Coexistence of CCSIDs and CGCSGIDs is possible through the following convention. A four-
byte long area is reserved in all the type parameters, for the character-string encoding
information. This area either carries a CGCSGID, which is a pair of two-byte binary numbers, or
16 bits of zeros followed by a CCSID, which is a 16-bit identifier. Thus, a CCSID in FD:OCA type
parameters is always preceded by 16 bits of zeros. The subsequent character data type
descriptions will not specifically mention CGCSGIDs, but wherever a CCSID is placed, a
CGCSGID would also fit and is allowed.

46 Technical Standard (2007)

FD:OCA Specifications FD:OCA Descriptor Component Content

Common Default Rules for Character Data

The subsequent diagrams define several variants of character data. If some or all of the relevant
type parameters are left unspecified, then the following default rules apply:

Table 4-2 Default Rules for Character Data

Byte 0-3 If byte 4 is X’01’ or unspecified, the default is X’000001F4’; that
is, CCSID X’01F4’.

If byte 4 is X’02’, the default is X’0000112C’; that is, CCSID
X’112C’.

Byte 4 The default will be derived from byte 0-3. It is the number of
bytes per character codepoint expressed as an eight-bit unsigned
binary number, if all characters are encoded with the same
number of bytes, else it is X’01’.

Byte 5 The default is X’00’.

Byte 6-7 (normal form) For the fixed-length types the default is X’0001’.

For the variable-length types and null-terminated types the
default is X’0000’.

Byte 6-9 (long form) For the fixed-length types the default is X’00000001’.

For the variable-length types and null-terminated types the
default is X’00000000’.

Byte 6-13 (very long form) For the fixed-length types the default is X’0000000000000001’.

For the variable-length types the default is X’0000000000000000’.

If the value in bytes 0-3 consists of all one-bits, then the environment carrying the FD:OCA
object may determine the actual CCSID. Any value existing already in byte 4 is ignored in this
case. If the environment cannot determine a valid CCSID, then the FD:OCA-defined defaults are
used.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 47

FD:OCA Descriptor Component Content FD:OCA Specifications

Character String, Fixed Length, Field Type X’10’

Character String, Fixed Length, Nullable, Field Type X’90’

Parameters Bytes 0-3 CCSID

Byte 4 Character-Length Identifier

format: unsigned binary integer
units: bytes
value: 1 for SBCS and mixed SBCS/DBCS

2 for DBCS

Byte 5 Reserved.

Bytes 6-7 Field Length

format: signed binary integer
units: characters for DBCS; else bytes
value: 0 - 32767 for SBCS and mixed

SBCS/DBCS

0 - 16383 for DBCS

Default See Table 4-2 (on page 47).

Syntax Byte string

Semantics CCSID defines semantics.

48 Technical Standard (2007)

FD:OCA Specifications FD:OCA Descriptor Component Content

Character String, Variable Length, Field Type X’11’

Character String, Variable Length, Nullable, Field Type X’91’

Parameters Bytes 0-3 CCSID

Byte 4 Character-Length Identifier

format: unsigned binary integer
units: bytes
value: 1 for SBCS and mixed SBCS/DBCS

2 for DBCS

Byte 5 Mode

format: bit string
value: X’00’ - X’01’

Bytes 6-7 Field Length

format: signed binary integer
units: characters for DBCS; else bytes
value: 0 - 32767 for SBCS and mixed

SBCS/DBCS

0 - 16383 for DBCS

Default See Table 4-2 (on page 47).

Syntax LLbbb...bb is a two-byte signed binary integer followed by zero or more value
bytes as defined below.

If Field Length = 0:
Length of bbb...bb is LL times Character-Length Identifier.

If Field Length > 0:
LL must be ≤ Field Length.

If mode-bit 7 is B´1´:
Length of bbb...bb is LL times Character-Length Identifier; Field Length
expresses the maximum value allowed for LL.

If mode-bit 7 is B´0´:
Length of bbb...bb is Field Length times Character-Length Identifier.

Semantics Value follows the LL bytes, unless LL is zero.

The length of the value in bytes is LL times Character-Length Identifier.

The CCSID defines the semantics of the LL characters.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 49

FD:OCA Descriptor Component Content FD:OCA Specifications

Null-Terminated Character String, Field Type X’14’

Null-Terminated Character String, Nullable, Field Type X’94’

Parameters Bytes 0-3 CCSID

Byte 4 Character-Length Identifier

format: unsigned binary integer
units: bytes
value: 1 for SBCS and mixed SBCS/DBCS

2 for DBCS

Byte 5 Mode

format: bit string
value: X’00’ - X’01’

Bytes 6-7 Field Length

format: signed binary integer
units: characters for DBCS; else bytes
value: 0 - 32767 for SBCS and mixed

SBCS/DBCS

0 - 16383 for DBCS

Default See Table 4-2 (on page 47).

Syntax bbb...bbN is zero or more value bytes, as defined below, followed by a byte of all-
zero bits.

If Field Length k= 0:
The first occurrence, from left to right, of a byte with all-zero bits defines the
length of the field.

If Field Length has a value k > 0 and m is k times Character Length Identifier, then:

If mode-bit 7 is B´1´:
m is an upper limit for the number of value bytes; the leftmost all-zero
byte defines the actual end of the field;

If mode-bit 7 is B´0´:
The field is m+1 bytes long, but an all-zero byte may occur earlier.

Semantics Value is the leftmost string of non-zero bytes; it may be empty.

The CCSID defines the semantics of the value bytes.

50 Technical Standard (2007)

FD:OCA Specifications FD:OCA Descriptor Component Content

Short Character String, Variable Length, Field Type X’19’

Short Character String, Variable Length, Nullable, Field Type X’99’

Parameters Bytes 0-3 CCSID

Byte 4 Character-Length Identifier

format: unsigned binary integer
units: bytes
value: 1 for SBCS and mixed SBCS/DBCS

2 for DBCS

Byte 5 Mode

format: bit string
value: X’00’ - X’01’

Bytes 6-7 Field Length

format: signed binary integer
units: characters for DBCS; else bytes
value: 0 - 255 for SBCS and mixed

SBCS/DBCS

0 - 127 for DBCS

Default See Table 4-2 (on page 47).

Syntax Lbbb...bb is a one-byte unsigned binary integer followed by zero or more value
bytes as defined below.

If Field Length = 0:
Length of bbb...bb is L times Character Length Identifier.

If Field Length > 0:
L must be ≤ Field Length.

If mode-bit 7 is B´1´:
Length of bbb...bb is L times Character-Length Identifier; Field Length
expresses the maximum value allowed for L.

If mode-bit 7 is B´0´:
Length of bbb...bb is Field Length times Character-Length Identifier.

Semantics Value follows the L byte, unless L is zero.

The length of the value in bytes is L times Character-Length Identifier.

The CCSID defines the semantics of the L characters.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 51

FD:OCA Descriptor Component Content FD:OCA Specifications

Numeric Character Strings

A certain subset of the data type Character Data, called Numeric Character Strings, is defined
below. Values of this type may be useful to bridge the gap between text and numeric data. While
they are character strings, they may be converted into numbers.

Numeric character strings are values of the type Character Data, with the following syntax
restrictions and semantics.

The allowed sequence of characters is:

SI ... IDF ... FX

where:

S is an optional arithmetic character Plus Sign or Typographic Minus Sign. If it
occurs, it is the first character.

I ... I is a sequence of the numeric decimal characters One, Two, Three, Four, Five, Six,
Seven, Eight, Nine, Zero.

D is a single optional punctuation character Comma, Colon or Period. This character
is restricted to 0 or 1 occurrences.

F ... F is a sequence of the numeric decimal characters One, Two, Three, Four, Five, Six,
Seven, Eight, Nine, Zero.

X is an optional component appropriate for representation of floating point numbers.
It consists of the following components:

*BB**ZE ... E

where:

* must occur and must be the special character Asterisk.
BB must occur and is one of the following sequences of decimal

characters: Two, One Zero, One Six.
** must occur and must be a sequence of two Asterisk characters.
Z is an optional arithmetic character Plus Sign or Typographic Minus

Sign.
E ... E must occur and is a sequence of the numeric decimal characters One,

Two, Three, Four, Five, Six, Seven, Eight, Nine, Zero.

The occurrence of I ... I and F ... F is optional, but at least one character must occur. If F ... F
occurs, D must also occur.

Semantics

For a string SIIIIDFFFF*BB**ZEE the value is the following decimal number: S(IIII plus 0.FFFF)
multiplied by BB to the power of Z(EE). Missing IIII or FFFF is equivalent to a value of 0 for
either of these components.

In other words, simple decimal numbers in the form of character strings are recognized, as well
as character strings representing decimal numbers in a so-called scientific notation, with a base
and exponent value; three different bases, namely 2, 10, and 16, may be used.

52 Technical Standard (2007)

FD:OCA Specifications FD:OCA Descriptor Component Content

4.3.3.3 Numeric Data Types

This section describes integer data types, fixed point data types, and floating point data types.

Integer Data Types

This section describes integer data types.

Unsigned Binary Integer, Field Type X’22’

Unsigned Binary Integer, Nullable, Field Type X’A2’

Parameters Bytes 0-5 Reserved.

Bytes 6-7 Field Length

format: signed binary integer
units: bytes
value: 1, 2, 4, 8

Default X’0000000000000004’

Semantics If the field consists of n bits, bn|...|b2|b1, then its value is sum (bi × 2 i−1).

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 53

FD:OCA Descriptor Component Content FD:OCA Specifications

Signed Binary Integer, Field Type X’23’

Signed Binary Integer, Nullable, Field Type X’A3’

Parameters Bytes 0-5 Reserved.

Bytes 6-7 Field Length

format: signed binary integer
units: bytes
value: 1, 2, 4, 8

Default X’0000000000000004’

Syntax The first bit is the sign bit (B’0’ = positive; B’1’ = negative).

Semantics Positive numbers are in true binary notation; negative numbers are in two’s
complement notation.

54 Technical Standard (2007)

FD:OCA Specifications FD:OCA Descriptor Component Content

PC(8087) Signed Binary Integer, Field Type X’24’

PC(8087) Signed Binary Integer, Nullable, Field Type X’A4’

Parameters Bytes 0-5 Reserved.

Bytes 6-7 Field Length

format: signed binary integer
units: bytes
value: 1, 2, 4, 8

Default X’0000000000000004’

Syntax SBn| ... |B0

The first bit (S) is the sign bit (B’0’ = positive; B’1’ = negative). The bits following
the sign bit (Bn...B0) represent a binary number.

The data occurs in the data stream in byte reversed order; that is, the sign is
located in the highest addressed, or the rightmost byte, preceded by the byte
containing bits Bn−1. The leftmost byte is the byte containing bit B0.

Semantics Positive numbers are in true binary notation; negative numbers are in two’s
complement notation.

Zero is represented with all bits zero (S = positive).

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 55

FD:OCA Descriptor Component Content FD:OCA Specifications

Boolean Data Types

This section describes boolean data types.

Boolean, Field Type X’25’

Boolean, Nullable, Field Type X’A5’

Parameters Bytes 0-5 Reserved.

Bytes 6-7 Field Length

format: unsigned binary integer
units: bytes
value: 2

Default X’0000’

Syntax Byte string

Semantics X’0000’ means FALSE.
Any other value (X’0001’ - X’FFFF’) means TRUE.

56 Technical Standard (2007)

FD:OCA Specifications FD:OCA Descriptor Component Content

Fixed Point Data Types

This section describes fixed point data types.

Decimal Fixed Point, Field Type X’30’

Decimal Fixed Point, Nullable, Field Type X’B0’

Parameters Bytes 0-4 Reserved.

Byte 5 Mode

format: bit string
value: X’00’ - X’01’

Byte 6 Field Length

format: signed binary integer
units: digits
value: 1 - 31

Byte 7 Number of Fractional Digits

format: signed binary integer
units: digits
value: −128 to +127

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 57

FD:OCA Descriptor Component Content FD:OCA Specifications

Default X’0000000000000802’

Syntax There are two variants, a signed and an unsigned version, depending on the
Mode flag:

Mode X´00´:
Every half-byte contains a binary encoded decimal digit; the last half-byte
contains the sign DD|DD|...|DS, where D represents a digit, and S the sign.

Mode X´01´:
Every half-byte contains a binary encoded decimal digit, including the last
one. A positive sign is implied. DD|DD|...|DD

A leading unused half-byte must contain zero.

The encoding of digits and signs is as follows:

Encoding Digits Sign

B’0000’ ’zero’ Invalid
B’0001’ ’one’ Invalid
B’0010’ ’two’ Invalid
B’0011’ ’three’ Invalid
B’0100’ ’four’ Invalid
B’0101’ ’five’ Invalid
B’0110’ ’six’ Invalid
B’0111’ ’seven’ Invalid
B’1000’ ’eight’ Invalid
B’1001’ ’nine’ Invalid
B’1010’ Invalid ’plus sign’
B’1011’ Invalid ’minus sign’
B’1100’ Invalid ’plus sign’
B’1101’ Invalid ’minus sign’
B’1110’ Invalid ’plus sign’
B’1111’ Invalid ’plus sign’

Semantics Let the stored value be val, then the semantics are val × 10− (number of fractional

digits).

58 Technical Standard (2007)

FD:OCA Specifications FD:OCA Descriptor Component Content

Unsigned Binary Fixed Point, Field Type X’34’

Unsigned Binary Fixed Point, Nullable, Field Type X’B4’

Parameters Bytes 0-4 Reserved.

Byte 5 Mode

format: bit string
value: X’00’ - X’02’

Byte 6 Field Length

format: signed binary integer
units: depending on the Mode flag:

Mode X´00´: bytes

Mode X´01´: bytes

Mode X´02´: decimal digits
value: depending on the Mode flag:

Mode X´00´: 2, 4, 8

Mode X´01´: 2, 4, 8

Mode X´02´: 1 to 18

Byte 7 Number of Fractional Digits

format: signed binary integer
units: digits
value: −128 to +127

Default X’0000000000000400’

Syntax unsigned binary integer

Note: If the Field Length is specified in decimal digits (Mode X’02’), the actual size of
the binary integer is for:

1 - 4 digits 2 bytes
5 - 9 digits 4 bytes
10 - 18 digits 8 bytes

Semantics Let the stored value be val, then the semantics are, depending on the Mode flag:

Mode X´00´: val × 2− (number of fractional digits)

Mode X´01´: val × 10− (number of fractional digits)

Mode X´02´: val × 10− (number of fractional digits)

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 59

FD:OCA Descriptor Component Content FD:OCA Specifications

Signed Binary Fixed Point, Field Type X’31’

Signed Binary Fixed Point, Nullable, Field Type X’B1’

Parameters Bytes 0-4 Reserved.

Byte 5 Mode

format: bit string
value: X’00’ - X’02’

Byte 6 Field Length

format: signed binary integer
units: depending on the Mode flag:

Mode X´00´: bytes
Mode X´01´: bytes
Mode X´02´: decimal digits

value: depending on the Mode flag:

Mode X´00´: 2, 4, 8
Mode X´01´: 2, 4, 8
Mode X´02´: 1 to 18

Byte 7 Number of Fractional Digits

format: signed binary integer
units: digits
value: −128 to +127

Default X’0000000000000400’

Syntax signed binary integer

Note: If the Field Length is specified in decimal digits (Mode X’02’), the actual size of
the binary integer is for:

1 - 4 digits 2 bytes
5 - 9 digits 4 bytes
10 - 18 digits 8 bytes

Semantics Let the stored value be val, then the semantics are, depending on the Mode flag:

Mode X´00´: val × 2− (number of fractional digits)

Mode X´01´: val × 10− (number of fractional digits)

Mode X´02´: val × 10− (number of fractional digits)

60 Technical Standard (2007)

FD:OCA Specifications FD:OCA Descriptor Component Content

Fixed Point Numeric Character String, Field Type X’32’

Fixed Point Numeric Character String, Nullable, Field Type X’B2’

Parameters Bytes 0-3 CCSID

Byte 4 Digit Length Indicator

format: unsigned binary integer
units: bytes
value: 1 - 2

Byte 5 Mode

format: bit string
value: X’00’ - X’02’

Byte 6 Field Length

format: signed binary integer
units: digits
value: 1 - 31

Byte 7 Number of Fractional Digits

format: unsigned binary integer
units: digits
value: 1 - 31

Default X’02B901F401000800’

Syntax A string of numeric characters, 0 through 9, along with an optional sign byte, not
counted in the field length, containing a +, −, or space character. The presence
and position of the sign byte is indicated through the Mode flag, as follows:

Mode X´00´: The sign byte precedes the string.
Mode X´01´: The sign byte follows the string.
Mode X´02´: No sign byte is present.

The number of fractional digits must be ≤ Field Length.

Semantics The sequence of digits represents a value val. val is a positive decimal integer if
the sign byte is + or space character or missing. val is a negative decimal integer
if the sign byte is −.

The semantics of value val are val × 10−(number of fractional digits).

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 61

FD:OCA Descriptor Component Content FD:OCA Specifications

Zoned Decimal Fixed Point, Field Type X’33’

Zoned Decimal Fixed Point, Nullable, Field Type X’B3’

Parameters Bytes 0-4 Reserved.

Byte 5 Mode

format: bit string
value: X’00’ - X’01’

Byte 6 Field Length

format: signed binary integer
units: digits
value: 1 - 31

Byte 7 Number of Fractional Digits

format: unsigned binary integer
units: digits
value: 1 - 31

Default X’0000000000000800’

Syntax Every byte contains a left half-byte, called zone (Z), and a right half-byte which is
a binary encoded decimal digit (D).

The zone of the last or the first byte, depending on the Mode, is an arithmetic
sign:

Mode X´00´: Left nibble of last byte is the sign.
Mode X´01´: Left nibble of first byte is the sign.

The encoding of digits and signs is as follows:

Encoding Digits Sign

B’0000’ ’zero’ Invalid
B’0001’ ’one’ Invalid
B’0010’ ’two’ Invalid
B’0011’ ’three’ Invalid
B’0100’ ’four’ Invalid
B’0101’ ’five’ Invalid
B’0110’ ’six’ Invalid
B’0111’ ’seven’ Invalid
B’1000’ ’eight’ Invalid
B’1001’ ’nine’ Invalid
B’1010’ Invalid ’plus sign’
B’1011’ Invalid ’minus sign’
B’1100’ Invalid ’plus sign’
B’1101’ Invalid ’minus sign’
B’1110’ Invalid ’plus sign’
B’1111’ Invalid ’plus sign’

The encoding of the zone is B’1111’ (X’F’).

Number of fractional digits must be ≤ Field Length.

Semantics If val is a positive or negative integer as represented by the decimal digits DD...D
and the sign S, then the value is val × 10−(number of fractional digits).

62 Technical Standard (2007)

FD:OCA Specifications FD:OCA Descriptor Component Content

COBOL/2 Zoned Decimal Fixed Point, Nullable, Field Type X’35’

COBOL/2 Zoned Decimal Fixed Point, Nullable, Field Type X’B5’

Parameters Bytes 0-4 Reserved.

Byte 5 Mode

format: bit string
value: X’00’ - X’01’

Byte 6 Field Length

format: signed binary integer
units: digits
value: 1 - 31

Byte 7 Number of Fractional Digits

format: unsigned binary integer
units: digits
value: 1 - 31

Default X’0000000000000800’

Syntax Every byte contains a left half-byte, called zone (Z), and a right half-byte which is
a binary encoded decimal digit (D).

The zone of the last or the first byte, depending on the Mode, is an arithmetic
sign:

Mode X´00´: Left nibble of last byte is the sign.
Mode X´01´: Left nibble of first byte is the sign.

The encoding of digits and signs is as follows:

Encoding Digits Sign

B’0000’ ’zero’ ’plus sign’
B’0001’ ’one’ ’plus sign’
B’0010’ ’two’ ’plus sign’
B’0011 ’three’ ’plus sign’
B’0100 ’four’ ’minus sign’
B’0101 ’five’ ’minus sign’
B’0110 ’six’ ’minus sign’
B’0111 ’seven’ ’minus sign’
B’1000 ’eight’ ’plus sign’
B’1001 ’nine’ ’plus sign’
B’1010 Invalid ’plus sign’
B’1011 Invalid ’plus sign’
B’1100 Invalid ’minus sign’
B’1101 Invalid ’minus sign’
B’1110 Invalid ’minus sign’
B’1111 Invalid ’minus sign’

The encoding of the zone is B’0011’ (X’3’).

Number of fractional digits must be ≤ Field Length.

Semantics If val is a positive or negative integer as represented by the decimal digits DD...D
and the sign S, then the value is val × 10−(number of fractional digits).

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 63

FD:OCA Descriptor Component Content FD:OCA Specifications

Floating Point Data Types

Floating point numbers are a subset of the rational numbers.

Common terms to describe the syntax and semantics of hexadecimal and binary floating point
numbers are:

• Syntactical Definitions for Hexadecimal and Binary Floating Point Numbers

Figure 4-1 shows the value structure of the floating point data types discussed here:

sign characteristic fraction

Figure 4-1 Structure of a Floating Point Number

sign (S)
Usually the leftmost value bit.

B’0’ = positive value

B’1’ = negative value

characteristic (e)
Unsigned binary or decimal integer, used to determine the exponent.

fraction
Binary, decimal, or hexadecimal number that determines the significand.

• Semantic Definitions for Hexadecimal and Binary Floating Point Numbers

base (B)
Specifies number system and base for the exponentiation.

bias
The number which adjusts the characteristic to get the exponent.

exponent (E)
Characteristic minus bias, E = e − bias.

significand (M)
Derived from the fraction by interpreting the fraction in the number system given by
the base. The exact rules are type-specific.

The above components constitute the semantic value of a floating point number as:

(−1)S × M × BE

Common terms to describe the syntax and semantics of decimal floating point numbers are:

• Syntactical Definitions for Decimal Floating Point Numbers

Figure 4-2 shows the value structure of the decimal floating point data type:

sign combination field exponent continuation coefficient continuation

Figure 4-2 Structure of a Decimal Floating Point Number

64 Technical Standard (2007)

FD:OCA Specifications FD:OCA Descriptor Component Content

sign
The leftmost value bit, indicating the sign of a finite number or of Infinity
B’0’ - positive value
B’1’ - negative value

combination field
A 5-bit field which encodes the two most significant bits (MSBs) of the exponent
(which may only take the values 0 through 2) and the most significant digit of the
coefficient (4 bits, which may only take the values 0 through 9).

When any of the first four bits of the field is 0, the whole encoding describes a finite
number. When all of the first four bits are 1, the whole encoding describes a special
value (an Infinity or NaN).

Combination Exponent Most Significant Coefficient Most Significant
Field Bits (MSBs - 2 bits) Digit (MSD - 4 bits)

(5-bits) Type values: ’00’B, ’01’B, ’10’B values: 0-9

a b c d e Finite a b 0 c d e
1 1 c d e Finite c d 1 0 0 e
1 1 1 1 0 Infinity - - - - - -
1 1 1 1 1 NaN - - - - - -

exponent continuation
(Also known as following exponent.) The remaining, less significant bits of the
exponent. The most significant of these bits is on the left (is placed first). The number
of bits in the exponent continuation depends on the format of the decimal float.

When the number is a NaN or an Infinity, the first two bits of the exponent
continuation field are used as follows:

Exponent Continuation Field
Combination Most Significant Bits

Field [Note: "-" means not defined.] Value

1 1 1 1 0 - - Infinity
1 1 1 1 1 0 - quiet NaN
1 1 1 1 1 1 - signaling NaN

coefficient continuation
(Also known as trailing significand.) The remaining, less significant digits of the
coefficient. The coefficient continuation is a multiple of 10 bits (multiple depending on
the format of the decimal float), and the most significant group is on the left (is placed
first).

Each 10-bit group (dectet) represents three decimal digits (see
http://754r.ucbtest.org/drafts/754r.pdf or Densely Packed Decimal Encoding by M.F.
Cowlishaw (see Referenced Documents).

• Semantic Definitions for Decimal Floating Point Numbers

base Specifies number system and base for the exponentiation. For decimal floating point,
the base is 10.

encoded exponent
An unsigned binary integer formed by appending the exponent continuation bits as a
suffix to the two exponent bits from the combination field.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 65

http://754r.ucbtest.org/drafts/754r.pdf

FD:OCA Descriptor Component Content FD:OCA Specifications

bias The number which adjusts the encoded exponent to get the exponent.

exponent
Encoded exponent minus bias.

coefficient
An unsigned integer formed by appending the decoded continuation digits as a suffix
to the digit derived from the combination field. The value of the coefficient is the sum
of the values of its digits, each multiplied by the appropriate power of ten. That is, if
there are n digits in the coefficient which are labeled dn, dn−1, ..., d1, d0, where dn is the
most significant, the value is SUM(dj x 10j), where j takes the values 0 through n.

The above components constitute the semantic value of a decimal floating point number as:

(−1)sign x coefficient x 10exponent

66 Technical Standard (2007)

FD:OCA Specifications FD:OCA Descriptor Component Content

Hexadecimal Floating Point, Field Type X’40’

Hexadecimal Floating Point, Nullable, Field Type X’C0’

Parameters Bytes 0-5 Reserved.

Bytes 6-7 Field Length

format: signed binary integer
units: bytes
value: 4, 8, 16

Default X’0000000000000008’

Syntax
Structure: Depending on the Field Length, several formats are possible:

format length charact. fraction

short 4 bytes 7 bits 6 hex
long 8 bytes 7 bits 14 hex
extended 16 bytes 7 bits 28 hex

For extended format see Note below.

Semantics For fraction h1|...|hn, the significand is 0.h1|...|hn.

Base: 16
bias : Depending on the format, this is:

format bias

short 64
long 64
extended 64

Normalized numbers:
0 < characteristic ≤ maximum and h1 ≠ 0

Denormalized numbers:
characteristic = 0 , and fraction ≠ 0

Maximum characteristic:
127

Sign: Bit is B’0’ for positive values, and B’1’ for negative values.
Value of zero:

characteristic = 0 and fraction = 0, sign=B’0’ or B’1’
Note: For the extended form, the content of the ninth byte is ignored and the

remaining seven bytes are thought of as following the eighth byte.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 67

FD:OCA Descriptor Component Content FD:OCA Specifications

Decimal Floating Point, Field Type X’42’

Decimal Floating Point, Nullable, Field Type X’C2’

Parameters Bytes 0-5 Reserved.

Bytes 6-7 Field Length

format: signed binary integer
units: bytes
value: 8, 16

Default X’0000000000000008’

Syntax Depending on the Field Length, several formats are possible:

syntax long extended
--
total length 8 bytes 16 bytes
sign field 1 bit 1 bit
combination 5 bits 5 bits
exponent continuation 8 bits 12 bits
coefficient continuation 50 bits 110 bits
total bits 64 bits 128 bits

Semantics Depending on the Field Length, the semantic values are:

Base: 10
Significand:

The significand is the coefficient.
Limits and bias:

syntax long extended
--
bias 398 6176
total exponent length 10 bits 14 bits
maximum exponent (emax) 384 6144
minimum exponent (emin) -383 -6143
total coefficient length 16 digits 34 digits

Sign: Bit is B’0’ for positive values, and B’1’ for negative values.
Value of zero:

Sign bit is B’0’ or B’1’, combination field is B’00000’, B’01000’, or
B’10000’, and the coefficient is 0.
The exponent continuation can be any value.
There are emax + -emin + 1 representations of a signed zero.

68 Technical Standard (2007)

FD:OCA Specifications FD:OCA Descriptor Component Content

Binary Floating Point (IEEE et al.1), Field Type X’47’ and X’48’

Binary Floating Point (IEEE et al.2), Nullable, Field Type X’C7’ and X’C8’

Parameters Bytes 0-1 Reserved.

Bytes 2-3 Bias indicator

format: unsigned binary integer
value: 0 or 1

Bytes 4-5 Reserved.

Bytes 6-7 Field Length

format: signed binary integer
units: bytes
value: 4, 8, 16

IEEE ANSI/IEEE Std. 745-1985, Binary Floating Point Arithmetic. See also Note.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 69

FD:OCA Descriptor Component Content FD:OCA Specifications

Default X’0000000000000004’

Syntax
Structure:

Depending on the Field Length, several formats are possible:

format length charact. fraction

short 4 bytes 8 bits 23 bits
long 8 bytes 11 bits 52 bits
extended 16 bytes 15 bits 112 bits

Types X´47´ and X´C7´:
The data occurs in the data stream in byte-reversed order; that is, the
rightmost byte has the lowest address, and the leftmost has the highest
address.

Types X´48´ and X´C8´:
Byte addresses increase from left to right.

Semantics
Base: 2
Significand:

For the fraction b1|...|bn, the significand depends on the characteristic:

IF the characteristic is not zero
THEN the significand is 1.b1|...|bn;
ELSE it is 0.b1|...|bn.

Maximum characteristic and bias:
Depending on format and bias indicator, these are:

bias indicator 0 bias indicator 1
format max.char. bias max.char. bias
--
short 254 127 255 128
long 2046 1023 2047 1024
extended 32766 16383 32767 16384

Sign: Bit is B’0’ for positive values, and B’1’ for negative values.
Value of zero:

characteristic = 0 and fraction = 0, sign=B’0’ or B’1’
Note: These types cover a class of several representations of binary floating

point numbers. The IEEE Binary Floating Point Numbers are the subset
with bias indicator 0 and short or long format. Types X’47’ and X’C7’
indicate byte-reversed storage; hence they cover the PC variants of these
numbers, while types X’48’ and X’C8’ are for System/390-style data
streams.

70 Technical Standard (2007)

FD:OCA Specifications FD:OCA Descriptor Component Content

VAX Binary Floating Point, Field Type X’49’

VAX Binary Floating Point, Nullable, Field Type X’C9’

Parameters Bytes 0-4 Reserved.

Byte 5 Mode

format: bit string
value: X’00’ - X’01’

Bytes 6-7 Field Length

format: signed binary integer
units: bytes
value: 4, 8, 16

Default X’0000000000000004’

Syntax
Structure: Depending on the Field Length and the Mode, several formats are

possible:

format length charact. fraction mode
--
short 4 bytes 8 bits 23 bits X’00’(F-float)
long wide 8 bytes 8 bits 55 bits X’01’(D-float)
long 8 bytes 11 bits 52 bits X’00’(G-float)
extended 16 bytes 15 bits 112 bits X’00’(H-float)

The data occurs in the data stream in byte-pairs with the leftmost byte-pair at the
lowest address, and the rightmost at the highest address. The order of bytes
within each byte-pair is reversed.

Semantics
Base: 2
Significand:

For the fraction b1|...|bn, the significand depends on the
characteristic:

IF the characteristic is not zero
THEN the significand is 0.1|b1|...|bn;
ELSE it is 0.0|b1|...|bn.

Maximum characteristic and bias:
Depending on the format, these are:

format max.char. bias

short 255 128
long wide 255 128
long 2047 1024
extended 32767 16384

Sign: Bit is B’0’ for positive values, and B’1’ for negative values.
Value of zero:

characteristic = 0 and sign = B’0’
Reserved: characteristic = 0 and sign = B’1’

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 71

FD:OCA Descriptor Component Content FD:OCA Specifications

Generalized Byte String, Field Type X’50’

Generalized Byte String, Nullable, Field Type X’D0’

Parameters Bytes 0-5 Reserved.

Bytes 6-7 Field Length

format: signed binary integer
units: bytes
value: 8

Default X’0000000000000004’

Syntax MLLLLLLLLb..b
A mode byte M followed by a signed binary integer LLLLLLLL and a sequence
of bytes.

MLLLLLLLL is also known as the header.

The mode specifies the placement and meaning of the sequence of bytes; e.g., the
sequence of bytes can be the value of the Generalized Byte String, or it can be just
a reference to the actual value.

The Field Length gives the length of the signed binary integer LLLLLLLL, and it
is always 8.

The signed binary integer LLLLLLLL provides the length of the value of
Generalized Byte String in bytes.

Semantics For more information on the mode, length, and value, see the DRDA Reference,
Data Format (DF Rules).

72 Technical Standard (2007)

FD:OCA Specifications FD:OCA Descriptor Component Content

Generalized Character String, Field Type X’51’

Generalized Character String, Nullable, Field Type X’D1’

Parameters Bytes 0-3 CCSID.

Byte 4 Character Length Identifier

format: unsigned binary integer
units: bytes
value: 1 for SBCS and mixed SBCS/DBCS

2 for DBCS

Byte 5 Reserved

Bytes 6-7 Field Length

format: signed binary integer
units: bytes
value: 8

Default X’000001F401000004’ for char length ID = 1
X’0000112C02000004’ for char length ID = 2

Syntax MLLLLLLLLb..b
A mode byte M followed by a signed binary integer LLLLLLLL and a sequence
of bytes.

MLLLLLLLL is also known as the header.

The mode specifies the placement and meaning of the sequence of bytes; e.g., the
sequence of bytes can be the value of the Generalized Character String, or it can
be just a reference to the actual value.

The Field Length gives the length of the signed binary integer LLLLLLLL, and it
is always 8.

The signed binary integer LLLLLLLL provides the length of the value of
Generalized Character String in characters.

Semantics The length of the value in bytes is LLLLLLLL times the Character Length
Identifier.

The CCSID defines the semantics of the LLLLLLLL characters in the value.

For more information on the mode, length, and value, see the DRDA Reference,
Data Format (DF Rules).

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 73

FD:OCA Data Component Content FD:OCA Specifications

4.4 FD:OCA Data Component Content

The FD:OCA data component contains the value or sequence of values of a Formatted Data
Object. The surrounding architecture may partition the data in one or more Data Structured
Fields on a byte boundary.

There is no architecture regulated meaning connected with this data other than that expressed in
the Descriptor.

74 Technical Standard (2007)

FD:OCA Specifications Error Handling

4.5 Error Handling

This section outlines the error situations that may occur when parsing an FD:OCA Descriptor
and how they are reported.

4.5.1 Exception Conditions

The information found in an FD:OCA descriptor or data part may be erroneous or invalid. Such
a situation is called an exception condition. FD:OCA defines distinct identifiers, called
exception-ids, for various exception conditions.

Exception conditions may be of syntactical nature; for instance, when a triplet appears in a form
different from what is prescribed in this document. Or they may be of semantic nature, such as
when a Decimal Fixed Point number is specified, but the field contains invalid digits. Some
exception conditions may be associated with an individual triplet; others may pertain to a whole
object, not any particular part of it.

Consequently, the description of exception conditions and their exception-ids is found in two
different places in this document:

• The triplet-specific exception conditions and their exception-ids are defined in the text for
each individual triplet specification.

• Certain common exception conditions (general syntax exceptions) can occur in any of the
triplets. The possibilities for such errors are indicated in the syntax diagram of each triplet.
Their definition and exception-ids are presented below, followed by the exception
definitions and exception-ids for object-related errors.

In most cases, the definition spells out that the value of the affected object is undefined and thus
can normally not be used; for some exception conditions, alternate or substitute values are
prescribed. In any case, a product that accepts an FD:OCA object must detect any existing
exception conditions in the object and handle them as specified here.

4.5.1.1 General Syntax Exceptions

The syntax description of each triplet indicates, in the column labeled EXC, what general syntax
errors may be expected for any particular triplet parameter.

These general syntax exception categories are indicated in the following way:

Code

Position Exception Condition Category Binary Hexadecimal

Bit 0 - - Reserved - - not used in FD:OCA B’10000000’ X’80’

Bit 1 Construct type code ID not recognized B’01000000’ X’40’

Bit 2 State or sequence violation B’00100000’ X’20’

Bit 3 - - Reserved - - not used in FD:OCA B’00010000’ X’10’

Bit 4 - - Reserved - - not used in FD:OCA B’00001000’ X’08’

Bit 5 Missing mandatory parameter or parameter group B’00000100’ X’04’

Bit 6 Parameter value not acceptable B’00000010’ X’02’

Bit 7 - - Reserved - - not used in FD:OCA B’00000001’ X’01’

None. None. B’00000000’ X’00’

The general syntax exception conditions are described by category as follows:

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 75

Error Handling FD:OCA Specifications

Exception-id 02
Construct type ID not recognized

An unknown construct type was detected; the construct cannot be identified. The value of
the complete object is undefined.

Exception-id 03
State or sequence violation

A specification was found that is invalid under the particular circumstances or in the
particular position, where it was found. A typical example is a reference to another
construct that does not exist.

If this error exists in an attribute triplet, then the affected and any subsequent parts of the
object are undefined.

Exception-id 06
Missing mandatory parameter or parameter group

A parameter or group of parameters is missing, although it is mandatory under the current
circumstances.

If this error exists in an attribute triplet, then the affected and any subsequent parts of the
object are undefined.

Exception-id 07
Parameter value not acceptable

A parameter value was found to be less than the prescribed minimum or more than the
allowed maximum, or impossible in the current context.

If this error exists in an attribute triplet and if no default value for this parameter is defined,
then the affected and any subsequent parts of the object are undefined.

If this error exists in an attribute triplet, but a default value for this parameter is defined,
then this default value will be used.

The column labeled EXC of each triplet’s syntax description has an eight-bit hexadecimal value,
indicating what exception categories are to be expected for each operand of the triplet. If the first
or leftmost bit of this value is a one, then exception condition with exception-id 1 is expected;
the second leftmost bit corresponds to exception-id 2; the third to exception-id 3; and so on.
Thus, a value of X’26’ indicates that exception conditions with exception-ids 3, 6, and 7 are
possible, and need to be checked.

4.5.1.2 Object-Related Exceptions

The following object-related exception conditions can be received:

Exception-id 80
Descriptor missing

If the FD:OCA object contains only values without attribute triplets, this exception
condition exists. The value of the object is undefined.

Exception-id 84
Referenced object not found

If the object refers to another object that cannot be located, this exception condition exists.
The value of the referenced object is undefined.

76 Technical Standard (2007)

FD:OCA Specifications Error Handling

Exception-id 85
Attribute/Value mismatch

If the described value does not have the characteristics claimed by its attributes, this
exception condition exists. In this case, the affected and any subsequent parts of the object
are undefined.

Exception-id 86
More than one major attribute

If more than one major attribute exists within a Formatted Data Object, this exception
condition exists. In such a case, the value of the Formatted Data Object is undefined. For a
discussion on major attributes, see Section 4.3 (on page 30).

4.5.1.3 Exception Reporting

If an exception condition has been detected, there may or may not be a need to communicate the
error. If the exception condition needs to be communicated, FD:OCA defines in what form it is
communicated.

In principle an exception condition will be described by its identifier and by pointers to the
descriptor and data parts where the error has been detected. For this purpose, FD:OCA defines a
block of 16 bytes called an exception reporting structure. Each exception reporting structure
refers to a single triplet and the data described with the triplet. It can refer to a triplet where an
exception condition has been detected, or a triplet which references, directly or indirectly, a
triplet where an exception condition has been detected. If more than one exception reporting
structure is used, the sequence of these structures should correspond to the relative sequence of
the referenced triplets in the descriptor. FD:OCA considers the complete logical descriptor and
the complete data as a physical string and ignores all bytes used for the Structured Field
Introducers. FD:OCA assumes that the receiver of this exception description has the ability to
select appropriate bytes from this object for an error analysis, if necessary. An exception
reporting structure contains the following information:

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 77

Error Handling FD:OCA Specifications

Table 4-3 Exception Reporting Structure

Byte 0 If bytes 4-7 reference a triplet where an exception condition has
been detected, this byte contains the FD:OCA-defined exception-
id.

If bytes 4-7 reference a triplet where a new exception condition
has not been detected, but which references, directly or
indirectly, a triplet where an exception condition has been
detected, this byte contains all-zero bits.

Byte 1 Bit 7 of this byte tells whether a single exception reporting
structure or a sequence of structures is used. Bit 7 of this byte is
set to B’0’ for the last or only exception reporting structure, and
it is set to B’1’ if additional structures follow.

All other bits are not in use and must have a value of B’0’.

Bytes 2-3 Reserved, and must have all-zero bits.

Bytes 4-7 Specify the offset, with an unsigned binary integer, of the triplet
where the error has been detected. For this purpose the complete
logical descriptor is considered as a single physical string,
independent of how the descriptor is represented by the
implementing product. All Structured Field Introducer bytes are
ignored.

If no offset can be specified, the bytes must have all-one bits.

Bytes 8-9 Contain the offset, an unsigned binary integer, of the parameter
in the logical triplet where the error has been detected. The offset
is relative to the beginning of the triplet, except if the error has
been detected in a CPT. In this case the offset is relative to the
beginning of the continued triplet.

If no offset can be specified, the bytes must have all-one bits.

Bytes 10-11 Reserved, and must have all-zero bits.

Bytes 12-15 The data portion described by the triplet referenced in bytes 4-7
is pointed to from this entry. Bytes 12-15 specify the offset,
through an unsigned binary integer, of the affected data. For this
purpose the complete data is considered as a single physical
string, independently of how the data is represented by the
implementing product. All Structured Field Introducer bytes are
ignored.

If no offset can be specified, the bytes must have all-one bits.

78 Technical Standard (2007)

FD:OCA Specifications Error Handling

4.5.2 Exception IDs

The following is a list of all exception-ids that are used within the architecture:

• General Syntax Exceptions

02 Construct type code not recognized.

03 State or sequence violation.

A specification is invalid in the particular context or position, such as a reference
with a triplet identifier that does not exist.

06 Missing mandatory parameter or parameter group.

07 Parameter value not acceptable.

A parameter value is outside the permitted value range or is impossible in the
current context.

• Triplet-Specific Exceptions

09 Reference to or from an invalid triplet type.

10 Dimension error.

More values than dimensions occur or the dimension specification is incorrect
(for example, negative or zero).

12 Source value outside target range.

It can therefore be predicted that the target value will be undefined.

13 Triplet occurs too often or at the wrong position.

• Object-Related Exceptions

80 The FD:OCA object contains values only.

84 The referenced object cannot be located.

85 The described value does not have the characteristics described by its attributes.

86 More than one major attribute is specified in the FD:OCA object.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 79

FD:OCA Specifications

80 Technical Standard (2007)

Chapter 5

Compliance

This chapter:

• Identifies the FD:OCA subsets

• Outlines the FD:OCA compliance rules

• Shows the codepoint assignments for the FD:OCA attribute triplets

5.1 FD:OCA Version

The architecture described in this document is FD:OCA Version 1.

5.2 FD:OCA Subsets

The descriptive facilities of FD:OCA are divided into a base set and towers. The towers in turn
may be subdivided into nested subset levels, as illustrated in Figure 5-1 (on page 81). Products
supporting FD:OCA must support all the functions of the base set, and may support some or all
of the facilities of a tower. To support a tower with subsets, a product must select a tower and a
subset level in that tower. The product must then support all the facilities of the selected tower
subset and of any lower-level subsets, in addition to the facilities of the base set.

and Subset

Additional Tower

DRDA
Support Tower

BASE

Figure 5-1 FD:OCA Base and Towers Concept

The following section defines the base set and any towers. For each functional subset, the valid
constructs, parameter values, and combinations thereof are listed.

• FD:OCA Subset 0000, Base

— Attribute Triplets:

— Group Data Array (GDA) and Nullable Group Data Array

— Row Layout (RLO)

— Simple Data Array (SDA)

— Field Types:

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 81

FD:OCA Subsets Compliance

— Binary Floating Point (IEEE et al.), Field Type ’47’

— Bias Indicator 0

— Binary Floating Point (IEEE et al.), Nullable, Field Type ’C7’

— Bias Indicator 0

— Binary Floating Point (IEEE et al.), Field Type ’48’

— Bias Indicator 0

— Binary Floating Point (IEEE et al.), Nullable, Field Type ’C8’

— Bias Indicator 0

— Byte String, Fixed Length, Field Type ’01’

— Byte String, Fixed Length, Nullable, Field Type ’81’

— Byte String, Variable Length, Field Type ’02’

— Mode ’01’

— Byte String, Variable Length, Nullable, Field Type ’82’

— Mode ’01’

— Character String, Fixed Length, Field Type ’10’

— Character String, Fixed Length, Nullable, Field Type ’90’

— Character String, Variable Length, Field Type ’11’

— Mode ’01’

— Character String, Variable Length, Nullable, Field Type ’91’

— Mode ’01’

— COBOL/2 Zoned Decimal Fixed Point, Field Type ’35’

— Mode ’00’

— COBOL/2 Zoned Decimal Fixed Point, Nullable, Field Type ’B5’

— Mode ’00’

— Decimal Fixed Point, Field Type ’30’

— Mode ’00’

— Scale between 0 and Field length

— Decimal Fixed Point, Nullable, Field Type ’B0’

— Mode ’00’

— Scale between 0 and Field length

— Fixed Point Numeric Character String, Field Type ’32’

— Character size: 1 byte

— Mode ’00’

— Fixed Point Numeric Character String, Nullable, Field Type ’B2’

82 Technical Standard (2007)

Compliance FD:OCASubsets

— Character size: 1 byte

— Mode ’00’

— Hexadecimal Floating Point, Field Type ’40’

— Hexadecimal Floating Point, Nullable, Field Type ’C0’

— Null-Terminated Byte String, Field Type ’03’

— Mode ’01’

— Null-Terminated Byte String, Nullable, Field Type ’83’

— Mode ’01’

— Null-Terminated Character String, Field Type ’14’

— Null-Terminated Character String, Nullable, Field Type ’94’

— PC(8087) Signed Binary Integer, Field Type ’24’

— 1, 2, or 4 byte length

— PC(8087) Signed Binary Integer, Nullable, Field Type ’A4’

— 1, 2, or 4 byte length

— Short Byte String, Field Type ’07’

— Mode ’01’

— Short Byte String, Nullable, Field Type ’87’

— Mode ’01’

— Short Character String, Variable Length, Field Type ’19’

— Mode ’01’

— Short Character String, Variable Length, Nullable, Field Type ’99’

— Mode ’01’

— Signed Binary Fixed Point, Field Type ’31’

— Signed Binary Fixed Point, Nullable, Field Type ’B1’

— Signed Binary Integer, Field Type ’23’

— 1, 2, or 4 byte length

— Signed Binary Integer, Nullable, Field Type ’A3’

— 1, 2, or 4 byte length

— Unsigned Binary Fixed Point, Field Type ’34’

— Unsigned Binary Fixed Point, Nullable, Field Type ’B4’

— Unsigned Binary Integer, Field Type ’22’

— 1, 2, or 4 byte length

— Unsigned Binary Integer, Nullable, Field Type ’A2’

— 1, 2, or 4 byte length

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 83

FD:OCA Subsets Compliance

— Zoned Decimal Fixed Point, Field Type ’33’

— Mode ’00’

— Zoned Decimal Fixed Point, Nullable, Field Type ’B3’

— Mode ’00’

— Auxiliary Triplets:

— Implementation Support Data (ISD)

— Subset ’0000’

— Continue Preceding Triplet (CPT)

• FD:OCA Subset 0100, DRDA Support Tower

— All constructs, parameters, and parameter values of the base subset, plus:

— Attribute Triplets:

— Metadata Definition (MDD)

— Application Class 5

— Simple Data Array (SDA)

— Field Types:

— VAX Binary Floating Point, Field Type ’49’

— VAX Binary Floating Point, Nullable, Field Type ’C9’

— Generalized Byte String and Generalized Character String

— Auxiliary Triplets:

— Implementation Support Data (ISD)

— Subset ’0100’

84 Technical Standard (2007)

Compliance FD:OCACompliance Rules

5.3 FD:OCA Compliance Rules

This section defines the compliance rules that apply for the generator and the receiver of an
FD:OCA object.

5.3.1 Compliance Rules for the FD:OCA Object Generator

The generator of a Formatted Data Object may elect any of the functional subsets defined above,
and must then describe the object with the facilities available in that subset.

The generator is said to comply with an FD:OCA subset if and only if all the used constructs and
their parameter values are from the elected subset and none of their syntax rules are violated.
The syntax rules for all constructs and their parameters are spelled out in Chapter 4 (on page
27).

5.3.2 Compliance Rules for the FD:OCA Object Receiver

The object receiver may or may not be capable of handling a particular FD:OCA tower, or all the
functions of a particular subset level in a tower. An object found to contain constructs and/or
parameter values beyond the functional capabilities of the receiving product may just be ignored
by the receiving product.

If the embedding environment or architecture explicitly says what tower and subset level the
object uses, and if this conflicts with the tower and subset level supported by the receiver, then
the receiver may ignore the object without inspecting it.

The same is true if the object is part of a group of objects, such as all those carried in a particular
document, and the embedding environment or architecture indicates the FD:OCA tower and the
maximum subset level required for the group. If this conflicts with the receiver ’s functional
capabilities, then all objects in the group may be ignored without inspection.

If, however, the object is known to use only such parameter values and constructs that belong to
the FD:OCA tower and subset level supported by the receiver, then the receiver must correctly
interpret the object and understand its semantics, as defined in Chapter 4 (on page 27).

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 85

Codepoint Assignments Compliance

5.4 Codepoint Assignments

The table shown in Table 5-1 provides an overview of all FD:OCA triplets and their associated
triplet type identifiers.

Table 5-1 FD:OCA Codepoint Assignments

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F
SDA RLO GDA GDA MDD ISD CPT

The triplet type identifier is represented by its hexadecimal value shown in the first row of the
table. The second row contains the associated triplet acronyms in the corresponding columns.

86 Technical Standard (2007)

Glossary

Some of the terms and definitions that appear in this glossary have been taken from other source
documents. Definitions reprinted from the American National Dictionary for Information Processing
Systems are identified by the symbol (ANDIPS) following the definition. Definitions reprinted
from working documents, draft proposals, or draft international standards of ISO Technical
Committee 97, Subcommittee 1 (Vocabulary) are identified by the symbol (TC97) following the
definition. Definitions reprinted from a published section of the ISO Vocabulary-Information
Processing or from a published section of the ISO Vocabulary-Office Machines are identified by the
symbol (ISO) following the definition.

The following definitions are provided as supporting information only, and are not intended to
be used as a substitute for the semantics described in the body of this reference.

ANSI
American National Standards Institute. An organization consisting of producers,
consumers, and general interest groups, that establishes the procedures by which accredited
organizations create and maintain voluntary industry standards in the United States. It is
the United States constituent body of the International Standards Organization (ISO).

application
The use to which an information system is put.

application program
A program written for or by a user that applies to the user’s work.

array
The conceptual model used to describe formatted data. An array describes a string of data
fields in terms of dimensions. See also dimension.

attribute
A property or characteristic of one or more entities.

attribute triplets
The part of a descriptor that defines the structure and representation of the data fields.
(TC97)

base-and-towers concept
A conceptual illustration of an architecture which shows the architecture as a base with
optional tower(s). The base and the towers represent different degrees of function achieved
by the architecture.

base support level
Within the base-and-towers concept, the lowest permissible degree of function achieved by
an architecture. This is represented by a base with no towers. Synonymous with mandatory
support level.

BITS
A data type for architecture syntax, indicating one or more bytes to be interpreted as bit
string information.

CCSID
Coded Character Set Identifier. A 16-bit number identifying a specific set of encoding
scheme identifier, character set identifier(s), code page identifier(s), and other relevant
information that uniquely identifies the coded graphic character representation used.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 87

Glossary

CDRA
Character Data Representation Architecture. An open IBM architecture (see the documents
about data definition and exchange in Referenced Documents) that defines a set of
identifiers, services, and conventions to achieve a consistent representation, processing, and
interchange of graphic character data.

CGCSGID
Coded Graphic Character Set Global Identifier. A four-byte binary or a ten-digit decimal
identifier consisting of the concatenation of a GCSGID and a CPGID. It identifies the
codepoint assignments in a code page of a specific graphic character set, from among all the
graphic characters that may be assigned in a code page.

CHAR
A data type for architecture syntax, indicating one or more bytes to be interpreted as
character information.

character
A member of a set of elements used for the organization, control, or representation of data.
A character can be a graphic character or a control character. (ISO) See also graphic
character.

character code
An element of a code page or a site in a code table to which a character can be assigned. The
element is associated with a binary value. The assignment of a character to an element of a
code page determines the binary value that will be used to represent each occurrence of the
character in a character string.

character identifier
The unique name for a graphic character.

character set
A finite set of different graphic or control characters that is complete for a given purpose;
for example, the character set in ISO Standard 646, 7-bit Coded Character Set for Information
Processing Interchange.

character string
A sequence of characters.

CODE
A data type for architecture syntax, indicating an architected constant to be interpreted as
defined by the architecture.

coded graphic character
A graphic character that has been assigned one or more codepoints within a code page.

coded graphic character set
A set of graphic characters with their assigned codepoints.

code page
A set of assignments, each of which assigns a codepoint to a character. Each code page has a
unique name or identifier. Within a given code page, a codepoint is assigned to one
character. More than one character set can be assigned codepoints from the same code page.
See also codepoint.

codepoint
A unique bit pattern that can serve as an element of a code page or a site in a code table, to
which a character can be assigned. The element is associated with a binary value. The
assignment of a character to an element of a code page determines the binary value that will
be used to represent each occurrence of the character in a character string. Code points are

88 Technical Standard (2007)

Glossary

either one byte or two bytes in length.

column
A sub-array consisting of all elements that have an identical position within the low
dimension of a regular two-dimensional array.

CPGID
Code Page Global Identifier. A unique code page identifier that can be expressed as either a
two-byte binary or a five-digit decimal value.

database
A collection of data fundamental to a system. An organized collection of user information
that can be methodically created, updated, or retrieved. The database organization is
usually defined and tailored to meet the specific needs of the user.

data element
A unit of data that is considered indivisible in a particular environment.

data stream
A continuous stream of data that has a defined format. An example of a defined format is a
structured field.

data type
A classification of data into different types having some bearing on proper handling of that
data. Floating point, Integer, Binary, and Character string are some examples.

DBCS
Double-Byte Character Set. A character set, such as a set of Japanese ideographs, that
requires two bytes to identify each character.

default
An alternate value, attribute, or option that is assumed when none has been specified and
one is needed to continue processing. An example of defaults is default drawing attributes.

dimension
Each successive level of partitioning. Defining dimensions allows the addressing of specific
parts of an array. See also partitioning and array.

document
A machine-readable collection of one or more objects which represent a composition, a
work, or a collection of data.

A publication or other written material.

document component
A set of related structured fields which are bounded by begin and end structured fields.
Examples are object, page, and overlay.

document content architecture
A family of architectures that define the syntax and semantics of the document components
that are allowed to appear in document content architecture data streams. See also
document component and structured field.

document editing
A method used to create or modify a document.

document element
A self-identifying, variable-length, bounded record, which may have a content portion that
provides control information, data, or both. An application or device does not have to
understand control information or data to parse a data stream when all of the records in the

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 89

Glossary

data stream are document elements. Synonymous with structured field.

DRDA
Distributed Relational Database Architecture. A protocol that allows applications to access
data from remote databases.

EBCDIC
Extended Binary-Coded Decimal Interchange Code. A coded character set consisting of
eight-bit coded characters.

element
A bar or space in a bar code character or a bar code symbol.

A structured field in a document content architecture data stream.

In FD:OCA, each of the data fields in an array.

A basic member of a mathematical or logical class or set.

Encoding Scheme
A set of specific definitions that describe the philosophy used to represent character data.
The number of bits, the number of bytes, the allowable ranges of bytes, the maximum
number of characters, and the meanings assigned to some generic and specific bit patterns
are some examples of specifications to be found in such a definition.

ESID
Encoding Scheme Identifier. A number assigned to uniquely identify a particular encoding
scheme specification.

exception
One of the following:

1. An invalid or unsupported data-stream construct.

2. In IPDS, a condition requiring host notification.

3. In IPDS, a condition that requires the host to resend data.

exception action
Action taken when an exception is detected.

exception condition
The condition that exists when a product encounters an invalid or unsupported construct.

extent
One of the characteristics of a dimension. If all partitions of a dimension have the same
number of sub-partitions, then this number is called the extent of the next lower dimension.
See also local extent.

factoring
The movement of a parameter value from one state to a higher-level state. This permits the
parameter value to apply to all of the lower-level states unless specifically overridden at the
lower level.

FDO
See formatted data object.

FD:OCA
Formatted Data Object Content Architecture. An architected collection of constructs used to
interchange formatted data.

90 Technical Standard (2007)

Glossary

formatted data
Data whose implied syntax and semantics are represented by architected controls that
accompany the data.

formatted data object (FDO)
An object that contains formatted data. See also object.

function set
A collection of architecture constructs and associated values. Function sets may be defined
across or within subsets.

GCID
Another name for CGCSGID. See CGCSGID.

GCGID
Graphic Character Global Identifier. An eight-byte alphanumeric character string, used to
identify a specific graphic character. It is from four to eight bytes in length.

GCSGID
Graphic Character Set Global Identifier. A unique graphic character set identifier that can be
expressed as either a two-byte binary or a five-digit decimal value.

GID
See global identifier.

Global Identifier (GID)
One of the following:

• A Code Page Global ID (CPGID)

• A Graphic Character Global Identifier (GCGID)

• A Font Global Identifier (FGID)

• A Graphic Character Set Global Identifier (GCSGID)

In MO:DCA, an encoded graphic character string which, when qualified by the associated
CGCSGID, provides a reference name for a document element.

graphic character
A member of a set of symbols which represent data. Graphic characters may be letters,
digits, punctuation marks, or other symbols. See also character.

graphic character identifier
The unique name for a graphic character in a font, or in a graphic character set. See also
character identifier.

hexadecimal
A number system with a base of sixteen. The decimal digits 0 through 9 and characters A
through F are used to represent hexadecimal digits. The hexadecimal digits A through F
correspond to the decimal numbers 10 through 15, respectively. An example of a
hexadecimal number is X’1B’, which is equal to the decimal number 27.

ID
Identifier.

IEC
International Electrotechnical Commission; an international standards writing body.

IEEE
Institute of Electrical and Electronics Engineers; a US standards writing body.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 91

Glossary

IPDS
Intelligent Printer Data Stream. An architected host-to-printer data stream that contains
both data and controls defining how the data is to be presented.

ISO
International Standards Organization; an international standards writing body.

ISO/IEC
The prefix used for standards that are produced jointly by ISO and IEC.

Kanji
A graphic character set for symbols used in Japanese ideographic alphabets.

LID
See local identifier.

local extent
The number of sub-partitions within any given partition.

local identifier (LID)
An identifier that is mapped by the environment to a named resource.

location
A site within a data stream. A location is specified in terms of an offset in the number of
structured fields from the beginning of a data stream, or in the number of bytes from
another location within the data stream.

lowercase
Pertaining to small letters as distinguished from capital letters, Examples of small letters are
a, b, and g. Contrast with uppercase.

mandatory support level
Within the base-and-towers concept, the lowest permissible degree of function achieved by
an architecture. This is represented by a base with no towers. Synonymous with base
support level.

Meaning
A table heading for architecture syntax. The entries under this heading convey the meaning
or purpose of a construct. They may be long names, descriptions, or brief statements of
function.

MO:DCA
Mixed Object Document Content Architecture. An architected, device-independent data
stream for interchanging documents.

Name
A table heading for architecture syntax. The entries under this heading are short names that
give a general indication of the contents of the construct.

nibble
A bit-pattern consisting of four bit.

object
A collection of structured fields. The first structured field provides a begin-object function
and the last structured field provides an end-object function. The object may contain one or
more other structured fields whose content consists of one or more data elements of a
particular data type. An object may be assigned a name, which may be used to reference the
object. Examples of objects are text, font, graphics, image, and formatted data objects.

92 Technical Standard (2007)

Glossary

object data
A collection of related data elements that have been bundled together. Examples of data
elements are graphic characters, image data elements, and drawing orders.

Offset
A table heading for architecture syntax. The entries under this heading indicate the numeric
displacement into a construct. The offset is measured in bytes and starts with byte zero.
Individual bits may be expressed as displacements within bytes.

parameter
A variable that is given a constant value for a specified application and which may denote
the application. (TC97) (ANDIPS)

partition
A conceptual subdivision of a string of data fields. A partition can be further divided into
sub-partitions. See also dimension.

partitioning
A method used to place parts of a control into two or more segments or structured fields.
Partitioning may cause difficulties for a receiver if one of the segments or structured fields is
not received or is received out of order.

In FD:OCA, a conceptual division of a string of data fields into substrings. Each substring is
called a partition. See also partition.

plane
A two-dimensional sub-array consisting of all elements that have an identical position
within a given dimension of a regular three-dimensional array.

pragmatics
The part of a construct’s description that describes the usage of the construct.

PTOCA
Presentation Text Object Content Architecture. An architected collection of constructs used
to interchange and present presentation text data.

Range
A table heading for architecture syntax. The entries under this heading give numeric ranges
applicable to a construct. The ranges may be expressed in binary, decimal, or hexadecimal.
The range may consist of a single value.

regular array
An array in which all partitions of any dimension have the same number of sub-partitions.
The individual elements of a regular array may or may not have identical format and
length. See also array.

repeating group
A group of parameter specifications that may be repeated.

resource
An object that is referenced by a data stream or by another object to provide data or
information. Resource objects may be stored in libraries. For example, in MO:DCA they
may be contained within a resource group in the data stream. In IPDS, resources are
downloaded to and stored by a printer. Examples of resources are fonts, overlays, and page
segments.

row
A sub-array consisting of all elements that have an identical position within the high
dimension of a regular two-dimensional array.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 93

Glossary

SBCS
Single-Byte Character Set. A character set that requires one byte to identify each character.

SBIN
A data type for architecture syntax, indicating one or more bytes to be interpreted as a
signed binary number, with the sign bit in the high-order position of the leftmost byte.

semantics
The part of a construct’s description that describes the function of the construct.

slice
A sub-array consisting of all elements that have an identical position within any given
dimension of a regular n-dimensional array.

structured field
A self-identifying, variable-length, bounded record, which may have a content portion that
provides control information, data, or both. Synonymous with document element.

structured field introducer
In MO:DCA, the header component of a structured field which provides information that is
common for all structured fields. Examples of information that is common for all structured
fields are length, function type, and set type. Examples of structured field function types are
begin, end, data, and descriptor. Examples of structured field set types are presentation text,
image, graphics, and page.

subset
Within the base-and-towers concept, a portion of architecture represented by a particular
level in a tower or by a base. See also subsetting tower.

subsetting tower
Within the base-and-towers concept, a tower representing an aspect of function achieved by
an architecture. A tower is independent of any other towers. A tower may be subdivided
into subsets. A subset contains all the function of any subsets below it in the tower. See also
subset.

syntax
The part of a construct’s description that describes the structure of the construct.

tag
In FD:OCA, a special attribute triplet that can be attached to attribute triplets to provide
them with additional information. In DRDA for example, an FD:OCA Metadata Definition
triplet can express that a particular character field is actually a timestamp.

triplet
A three-part self-defining variable-length parameter consisting of a length byte, an identifier
byte, and one or more parameter-value bytes. An example of the use of triplets is in a
PTOCA Presentation Text Descriptor structured field to identify initial text conditions for
modal control sequences.

triplet identifier
A one-byte type identifier for a triplet.

Type
A table heading for architecture syntax. The entries under this heading indicate the types of
data present in a construct. The data type will be one of the following: BITS, CHAR, CODE,
SBIN, UBIN, UNDF. See also these terms.

94 Technical Standard (2007)

Glossary

UBIN
A data type for architecture syntax, indicating one or more bytes to be interpreted as an
unsigned binary number.

UNDF
A data type for architecture syntax, indicating one or more bytes that are undefined by the
architecture.

uppercase
Pertaining to capital letters. Examples of capital letters are A, B, and C. Contrast with
lowercase.

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 95

Glossary

96 Technical Standard (2007)

Index

ANSI ...87
application ...87
application program ..87
array ...87
attribute ..87
attribute triplets ..87
attribute triplets references30
base support level...87
base-and-towers concept.......................................87
BITS ..87
boolean data types..56
CCSID ...87
CDRA ...88
CGCSGID ..88
CHAR ...88
character ...88
character code ...88
character data types..46-47
character identifier ...88
character set...88
character string ...88
character strings..52
characteristics ..18
CODE ...88
code page...88
coded graphic character ..88
coded graphic character set88
codepoint ...88
codepoint assignments ..86
column ...89
compliance rules ...85

object generator ..85
object receiver ...85

constituents ...12
constructs ...12
continue preceding triplet39
conventions used..27
CPGID ..89
CPT ...39
data arrays ...14
data component content ..74
data element ..89
data stream ..89
data type ..89
data types...................14, 41-42, 46-47, 53, 56-57, 64
database ...89
DBCS ..89

default ..89
describing data arrays ...18
describing data types ...18
descriptor attribute triplets30
descriptor component content..............................30
dimension ..89
dimensions ..15
document ...89
document component ..89
document content architecture.............................89
document editing ...89
document element..89
DRDA ...90
EBCDIC ..90
element ...90
Encoding Scheme ...90
error handling ...75
ESID ..90
exception ..90
exception action ..90
exception condition..90
exception conditions ..75
exception reporting ..77
exception-ids ...79
extent ..90
extents ..15
factoring ...90
FD:OCA ...90
FD:OCA characteristics ...18
FD:OCA compliance rules85
FD:OCA concepts ...11
FD:OCA constituents ...12
FD:OCA constructs ..12
FD:OCA data arrays...14
FD:OCA data component content........................74
FD:OCA data types ..14
FD:OCA description ..6
FD:OCA descriptor ..30
FD:OCA dimensions ..15
FD:OCA example ...7
FD:OCA examples..18
FD:OCA extents..15
FD:OCA motivation ...5
FD:OCA object constituents..................................29
FD:OCA partitions ...15
FD:OCA scenario..7
FD:OCA subarrays ...17
FD:OCA subsets ...81

DRDA, Version 4, Volume 2: Formatted Data Object Content Architecture (FD:OCA) 97

Index

FD:OCA terms ..15
FD:OCA version ...81
FDO ..90
fixed point data types ..57
floating point data types64
formatted data ..91
formatted data object (FDO)91
function set ..91
GCGID ...91
GCID ..91
GCSGID ...91
GDA ..35
general purpose triplets...39
general syntax exceptions75
GID ...91
Global Identifier (GID) ..91
graphic character ..91
graphic character identifier...................................91
group data array...35
hexadecimal ...91
ID ..91
IEC ..91
IEEE ..91
implementation support data...............................40
industry standards ...9
integer data types ...53
IPDS ..92
ISD ..40
ISO ..92
ISO/IEC ...92
Kanji ...92
LID ..92
local extent...92
local identifier (LID)...92
location ...92
lowercase ...92
mandatory support level.......................................92
MDD ...36
Meaning ...92
metadata definition ..36
MO:DCA ..92
Name ..92
nibble ..92
notation conventions..9
nullable group data array......................................35
numeric character strings......................................52
numeric data types...53
object ..92
object constituents ..29
object data..93
object-related exceptions76
Offset ..93

parameter ...93
partition ...93
partitioning ..93
partitions ..15
plane ...93
pragmatics ...93
PTOCA ...93
Range ..93
registry of data types ...41
regular array..93
repeating group ..93
resource ..93
RLO ...33
row..93
row layout ...33
SBCS ...94
SBIN ..94
SDA ..31
semantics ...94
simple data array..31
slice ...94
string data types ...42
structured field..94
structured field introducer94
subarrays ...17
subset ..94
subsetting tower ...94
syntax ...94
syntax diagrams..8
syntax exceptions ...75
tag ...94
terms ...15
triplet ..30, 39, 94
triplet identifier...94
Type ..94
UBIN ...95
UNDF ...95
uppercase ...95

98 Technical Standard (2007)

	Contents
	Preface
	1 The DRDA Specification
	1.1 The DRDA Reference
	1.2 The FD:OCA Reference
	1.3 The DDM Reference

	2 Introduction to FD:OCA
	2.1 Why is FD:OCA Needed
	2.2 What is FD:OCA
	2.3 A Scenario
	2.4 How to Use this Book
	2.4.1 Syntax Diagrams
	2.4.2 Notation Conventions
	2.4.3 Related Architecture
	2.4.4 Industry Standards

	3 Overview of FD:OCA
	3.1 Concepts
	3.2 Constituents
	3.2.1 Constructs
	3.2.2 Data Types
	3.2.3 Data Arrays
	3.2.4 Definition of Terms
	3.2.4.1 Partitions, Dimensions, and Extents
	3.2.4.2 Subarrays

	3.3 Characteristics
	3.3.1 Describing Data Arrays and Data Types
	3.3.2 Examples

	4 FD:OCA Specifications
	4.1 Conventions Used in FD:OCA Specifications
	4.2 FD:OCA Object Constituents
	4.3 FD:OCA Descriptor Component Content
	4.3.1 Descriptor Attribute Triplets
	4.3.1.1 References
	4.3.1.2 Simple Data Array (SDA)
	4.3.1.3 Row Layout (RLO) or Nullable Row Layout
	4.3.1.4 Group Data Array (GDA) and Nullable Group Data Array
	4.3.1.5 Metadata Definition (MDD)

	4.3.2 Supportive General-Purpose Triplets
	4.3.2.1 Continue Preceding Triplet (CPT)
	4.3.2.2 Implementation Support Data (ISD)

	4.3.3 Registry of Data Types
	4.3.3.1 String Data Types
	4.3.3.2 Character Data Types
	4.3.3.3 Numeric Data Types

	4.4 FD:OCA Data Component Content
	4.5 Error Handling
	4.5.1 Exception Conditions
	4.5.1.1 General Syntax Exceptions
	4.5.1.2 Object-Related Exceptions
	4.5.1.3 Exception Reporting

	4.5.2 Exception IDs

	5 Compliance
	5.1 FD:OCA Version
	5.2 FD:OCA Subsets
	5.3 FD:OCA Compliance Rules
	5.3.1 Compliance Rules for the FD:OCA Object Generator
	5.3.2 Compliance Rules for the FD:OCA Object Receiver

	5.4 Codepoint Assignments

	Glossary

