
 SL

T

A

A

C

N

I

D

N

A

H

R

C

D

E
T

Technical Standard

Application Response Measurement (ARM)
Issue 3.0 Java Binding

[This page intentionally left blank]

/ Open Group Technical Standard

Application Response Measurement
Issue 3.0 – Java Binding

The Open Group

ii Open Group Technical Standard

© 2001, The Open Group

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior permission of the copyright owner..

Technical Standard

Application Response Measurement, Issue 3.0 – Java Binding

UK ISBN: 185912 232 9

US ISBN: 1931624 04 6

Document Number: C014

Published in the U.K. by The Open Group, September, 2002

Any comments relating to the material contained in this document may be submitted to The Open
Group at:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by electronic mail to

OGSpecs@opengroup.org

This specification has not been verified for avoidance of possible third party proprietary rights. In
implementing this specification, usual procedures to ensure the respect of possible third party
intellectual property rights should be followed.

Application Response Measurement 3.0 - Java Binding iii

/ Contents

Chapter 1 Introduction..1
1.1 What is ARM? ..1
1.2 How is ARM Used?..2
1.3 What Transactions Should be Measured?...4
1.4 The Evolution of ARM ...4
1.5 ARM 3.0 for Java Programs Overview...5

Chapter 2 Using the ARM 3.0 Java Binding...7
2.1 An Example...7

Chapter 3 Programming Options ..9
3.1 ARM Measures Transaction ..9
3.2 Application Measures Transactions...11
3.3 Selecting Which Option to Use..12

Chapter 4 Understanding the Relationships Between Transactions..13
4.1 A Typical Distributed Transaction ..13

Chapter 5 Additional Data About a Transaction...17
5.1 Data Categories ..18
5.1.1 Counters ...18
5.1.2 Gauges ..18
5.1.3 Numeric IDs ..18
5.1.4 Strings ...19
5.2 How to Provide the Additional Data...20
5.2.1 Using ArmTransactionWithMetrics..20
5.2.2 Using ArmTranReportWithMetrics ...21
5.3 Processing Multiple Values of the Same Metric...22
5.3.1 Counters ...22
5.3.2 Gauges ..22
5.3.3 Numeric IDs ..23
5.3.4 Strings ...23

Chapter 6 Creating ARM Objects..25
6.1 Overview of Java Interfaces ..25
6.2 Creating ARM Objects in an Application ..27
6.2.1 Convenience Methods..29
6.3 Creating ARM Objects in an Applet..30

Contents

iv Open Group Technical Standard

Chapter 7 Providing Descriptive Information ..33
7.1 Differences between ARM 3.0 versus ARM 1.0/2.0 ..33
7.2 Providing Descriptive Information through the Java Interfaces................................34
7.3 Providing Descriptive Information Offline or Out-of-band ..37

Chapter 8 Error Handling Philosophy...39
8.1 Errors the Application Does Not Need to Test For..39
8.2 Errors the Application Should Test For..40

Chapter 9 The ARM 3.0 Data Models..41
9.1 Summary ..41
9.1.1 Mandatory Data...41
9.1.2 Optional Data ...41
9.1.3 When to Create a New Identifier (UUID)..42
9.2 Data Model Using ArmTransaction ..43
9.3 Data Model Using ArmTranReport ...44

Chapter 10 The org.opengroup.arm3.* Packages...47
10.1 Interface list by Java Package...47
10.2 Interface List in Alphabetical Order..47
10.2.1 Method Naming Conventions ...48
10.3 org.opengroup.arm3.transaction.ArmConstants ...50
10.4 org.opengroup.arm3.transaction.ArmCorrelator...51
10.5 org.opengroup.arm3.definition.ArmDefinitionFactory ...52
10.6 org.opengroup.arm3.metric.ArmMetric..53
10.7 org.opengroup.arm3.metric.ArmMetricCounter32..54
10.8 org.opengroup.arm3.metric.ArmMetricCounter64..55
10.9 org.opengroup.arm3.metric.ArmMetricCounterFloat32 ..56
10.10 org.opengroup.arm3.definition.ArmMetricDefinition ...57
10.11 org.opengroup.arm3.metric.ArmMetricFactory..58
10.12 org.opengroup.arm3.metric.ArmMetricGauge32...59
10.13 org.opengroup.arm3.metric.ArmMetricGauge64...60
10.14 org.opengroup.arm3.metric.ArmMetricGaugeFloat32...61
10.15 org.opengroup.arm3.metric.ArmMetricGroup ...62
10.16 org.opengroup.arm3.metric.ArmMetricNumericId32..63
10.17 org.opengroup.arm3.metric.ArmMetricNumericId64..64
10.18 org.opengroup.arm3.metric.ArmMetricString32..65
10.19 org.opengroup.arm3.metric.ArmMetricString8 ..66
10.20 org.opengroup.arm3.tranreport.ArmSystem ...67
10.21 org.opengroup.arm3.tranreport.ArmSystemId ...69
10.22 org.opengroup.arm3.transaction.ArmToken ..70
10.23 org.opengroup.arm3.definition.ArmTranDefinition ..72
10.24 org.opengroup.arm3.tranreport.ArmTranReport ..73
10.25 org.opengroup.arm3.tranreport.ArmTranReportCorrelator.......................................75
10.26 org.opengroup.arm3.tranreport.ArmTranReportFactory..76
10.27 org.opengroup.arm3.tranreport.ArmTranReportWithMetrics77
10.28 org.opengroup.arm3.transaction.ArmTransaction ...79

Contents

Application Response Measurement 3.0 - Java Binding v

10.29 org.opengroup.arm3.transaction.ArmTransactionFactory...81
10.30 org.opengroup.arm3.metric.ArmTransactionWithMetrics...82
10.31 org.opengroup.arm3.definition.ArmUserDefinition...83
10.32 org.opengroup.arm3.transaction.ArmUUID ...84

Appendix A Application Instrumentation Sample..85

Appendix B Information for Implementers...89
B.1 Byte Ordering in Correlators ..89
B.2 Correlator Formats ..90
B.3 ARM Correlator Format Constraints ...91
B.4 ARM Correlator Format 1 (defined in ARM 2.0)..93
B.5 ARM Correlator Format 2 (defined in ARM 3.0)..97
B.6 ARM Correlator Format 127 (defined in ARM 3.0)... 101

Figures
Figure 1. Application – ARM Interface ...2
Figure 2. Application – ARM – Management System Interaction ...3
Figure 3. Measurement Using Start/Stop...9
Figure 4. Application Using Heartbeats...10
Figure 5. Measurement by the Application..11
Figure 6. A Common Distributed Application Architecture...13
Figure 7. An Example of a Distributed Transaction..14
Figure 8. Distributed Transactions That Appear Unrelated...15
Figure 9. A Distributed Transaction Calling Hierarchy..16
Figure 10. Providing Additional Data Using ArmTransaction and ArmMetric20
Figure 11. Providing Additional Data Using ArmTranReport..21
Figure 12. Providing Descriptive Information Through the Application Interface34
Figure 13. Providing Measurements Without Any Descriptive Information...........................35
Figure 14. Combining Ids and Handles With Descriptive Information36
Figure 15. Providing Descriptive Information Through the ARM Application Interface36
Figure 16. Providing Descriptive Information Offline..37
Figure 17. ARM 3.0 Data Model Using ArmTransaction ..44
Figure 18. ARM 3.0 Data Model Using ArmTranReport ...45

Application Response Measurement 3.0 - Java Binding vii

/ Preface

The Open Group

The Open Group is the leading vendor-neutral, international consortium for buyers and suppliers
of technology. Its mission is to cause the development of a viable global information infrastructure
that is ubiquitous, trusted, reliable, and as easy-to-use as the telephone. The essential functionality
embedded in this infrastructure is what we term the IT DialTone. The Open Group creates an
environment where all elements involved in technology development can cooperate to deliver less
costly and more flexible IT solutions.

Formed in 1996 by the merger of the X/Open Company Ltd. (founded in 1984) and the Open
Software Foundation (founded in 1988), The Open Group is supported by most of the world’s
largest user organizations, information systems vendors, and software suppliers. By combining the
strengths of open systems specifications and a proven branding scheme with collaborative
technology development and advanced research, The Open Group is well positioned to meet its
new mission, as well as to assist user organizations, vendors, and suppliers in the development
and implementation of products supporting the adoption and proliferation of systems which
conform to standard specifications.

With more than 200 member companies, The Open Group helps the IT industry to advance
technologically while managing the change caused by innovation. It does this by:

• Consolidating, prioritizing, and communicating customer requirements to vendors

• Conducting research and development with industry, academia, and government agencies
to deliver innovation and economy through projects associated with its Research Institute

• Managing cost-effective development efforts that accelerate consistent multi-vendor
deployment of technology in response to customer requirements

• Adopting, integrating, and publishing industry standard specifications that provide an
essential set of blueprints for building open information systems and integrating new
technology as it becomes available

• Licensing and promoting the Open Brand, represented by the ‘‘X’’ Device, that designates
vendor products which conform to Open Group Product Standards

• Promoting the benefits of the IT DialTone to customers, vendors, and the public

The Open Group operates in all phases of the open systems technology lifecycle including
innovation, market adoption, product development, and proliferation. Presently, it focuses on seven
strategic areas: open systems application platform development, architecture, distributed systems
management, interoperability, distributed computing environment, security, and the information

Preface

viii Open Group Technical Standard

superhighway. The Open Group is also responsible for the management of the UNIX trademark on
behalf of the industry.

Development of Product Standards

This process includes the identification of requirements for open systems and, now, the IT
DialTone, development of Technical Standards (formerly CAE and Preliminary Specifications)
through an industry consensus review and adoption procedure (in parallel with formal standards
work), and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the documentation
that records the conformance requirements (and other information) to which a vendor may register
a product.

The ‘‘X’’ Device is used by vendors to demonstrate that their products conform to the relevant
Product Standard. By use of the Open Brand they guarantee, through the Open Brand Trade Mark
License Agreement (TMLA), to maintain their products in conformance with the Product Standard
so that the product works, will continue to work, and that any problems will be fixed by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on development of Technical Standards and product documentation, but which also
includes Guides, Snapshots, Technical Studies, Branding and Testing documentation, industry
surveys, and business titles.

There are several types of specification:

• Technical Standards (formerly CAE Specifications)
The Open Group Technical Standards form the basis for our Product Standards. These
Standards are intended to be used widely within the industry for product development and
procurement purposes.
Anyone developing products that implement a Technical Standard can enjoy the benefits of
a single, widely supported industry standard. Where appropriate, they can demonstrate
product compliance through the Open Brand. Technical Standards are published as soon
as they are developed, so enabling vendors to proceed with development of conformant
products without delay.

• CAE Specifications
CAE Specifications and Developers' Specifications published prior to January 1998 have
the same status as Technical Standards (see above).

• Preliminary Specifications
Preliminary Specifications have usually addressed an emerging area of technology and
consequently are not yet supported by multiple sources of stable conformant
implementations. They are published for the purpose of validation through
implementation of products. A Preliminary Specification is as stable as can be achieved,
through applying The Open Group’s rigorous development and review procedures.
Preliminary Specifications are analogous to the trial-use standards issued by formal

Preface

Application Response Measurement 3.0 - Java Binding ix

standards organizations, and developers are encouraged to develop products on the basis
of them. However, experience through implementation work may result in significant
(possibly upwardly incompatible) changes before its progression to becoming a Technical
Standard. While the intent is to progress Preliminary Specifications to corresponding
Technical Standards, the ability to do so depends on consensus among Open Group
members..

• Consortium and Technology Specifications
The Open Group publishes specifications on behalf of industry consortia. For example, it
publishes the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum. It also publishes Technology Specifications relating to OSF/1, DCE,
OSF/Motif, and CDE.
Technology Specifications (formerly AES Specifications) are often candidates for consensus
review, and may be adopted as Technical Standards, in which case the relevant
Technology Specification is superseded by a Technical Standard..

In addition, The Open Group publishes:

• Product Documentation
This includes product documentation—programmer’s guides, user manuals, and so on —
relating to the Pre-structured Technology Projects (PSTs), such as DCE and CDE. It also
includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

• Guides
These provide information that is useful in the evaluation, procurement, development, or
management of open systems, particularly those that relate to the Technical Standards or
Preliminary Specifications. The Open Group Guides are advisory, not normative, and
should not be referenced for purposes of specifying or claiming conformance to a Product
Standard.

• Technical Studies
Technical Studies present results of analyses performed on subjects of interest in area
relevant to The Open Group’s Technical Program. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

Versions and Issues of Specifications

As with all live documents, Technical Standards and Specifications require revision to align with
new developments and associated international standards. To distinguish between revised
specifications which are fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in the
previous publication of that title, and there may also be additions/extensions. As such, both
previous and new documents are maintained as current publications.

Preface

x Open Group Technical Standard

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://www.opengroup.org/corrigenda.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the World-
Wide Web at http://www.opengroup.org/pubs.

This Document

This document is a Technical Standard (see above)

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

 command operands, command option -arguments or variable names, for example,
substitutable argument prototypes

 environment variables, which are also shown in capitals

 utility names

 external variables, such as errno

 functions; these are shown as follows: name(). Names without parentheses are C external
variables, C function family names, utility names, command operands or command option-
arguments.

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
#define construct.

• The notation [ABCD] is used to identify a return value ABCD, including if this is an error value.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font. Brackets shown in this font, [], are part of the syntax and do not indicate optional items.
In syntax the | symbol is used to separate alternatives, and ellipses (…) are used to show that
additional arguments are optional.

Application Response Measurement 3.0 - Java Binding xi

/ Referenced Documents

The following documents have been used for reference during the creation of this specification:

ARM 2.0
Technical Standard, July 1998, Systems Management: Application Response Measurement
(ARM) API (ISBN: 1 -85912-211-6), published by The Open Group.

Application Response Measurement 3.0 - Java Binding xiii

/ Acknowledgments

The Open Group gratefully acknowledges the work of the ARM Working Group, under the
sponsorship of the Computer Measurement Group (CMG) I developing the ARM 3.0 For Java
Programs, Iinterface and Package Specification, which provdes the technical source material for
this Open Group Technical Standard.

In particular, the work of Mark Johnson, Tivoli Systems, and Ron Carelli, Hewlett-Packard, is
gratefully recognized.

Application Response Measurement 3.0 - Java Binding xv

/ Trade Marks

Motif®, OSF/1®, UNIX®, and the "X Device"® are registered trademarks and IT DialTone™ and The
Open Group™ are trademarks of The Open Group in the U.S. and other countries.

Hewlett-Packard is a trademark or registered trademark of Hewlett-Packard Company in the United
States and other countries.

Java is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other
countries.

Tivoli is a trademark or registered trademark of International Business Machines Corporation in the
United States and other countries
.

Application Response Measurement 3.0 - Java Binding 1

/ Chapter 1
Introduction

1.1 What is ARM?
It is hard to imagine conducting business around the globe without computer systems, networks,
and software. People distribute and search for information, communicate with each other, and
transact business. Computers are increasingly faster, smaller, and less expensive. Networks are
increasingly faster, have more capacity, and more reliable. Software has evolved to better exploit the
technological advances and to meet demanding new requirements. The IT infrastructure has
become more complex. We have become more dependent on the business applications built on this
infrastructure because they offer more services and improved productivity.

No matter how much applications change, administrators and analysts responsible for the
applications care about the same things they have always cared about.

• Are transactions succeeding?

• If a transaction fails, what is the cause of the failure?

• What is the response time experienced by the end user?

• Which sub-transactions of the user transaction take too long?

• Where are the bottlenecks?

• How many of which transactions are being used?

• How can the application and environment be tuned to be more robust and perform better?

ARM helps answer these questions. ARM is a standard for measuring service levels of single-
system and distributed applications. ARM measures the availability and performance of
transactions (any units of work), both those visible to the users of the business application and
those visible only within the IT infrastructure, such as client/server requests to a data server.

How is ARM Used? Introduction

2 Open Group Technical Standard

1.2 How is ARM Used?
ARM is a means through which business applications and management applications cooperate to
measure the response time and status of transactions executed by the business applications.

Applications using ARM define transactions that are meaningful within the application. Typical
examples are transactions initiated by a user and transactions with servers. As shown in Figure 1,
applications on clients and/or servers call ARM when transactions start and/or stop. The agent in
turn communicates with management applications, as shown in Figure 2, which provide analysis
and reporting of the data.

The management agent collects the status and response time, and optionally other measurements
associated with the transaction. The business application, in conjunction with the agent, may also
provide information to correlate parent and child transactions. For example, a transaction that is
invoked on a client may drive a transaction on an application server, which in turn drives ten other
transactions on other application and/or data servers. The transaction on the client would be the
parent of the transaction on the application server, which in turn would be the parent of the ten
other transactions.

From the application developer’s perspective ARM is a set of interfaces that the application loads
and calls. What happens to the data after it calls the interfaces is not the developer’s concern.

ARM Interface

Used by application
developers to

instrument software

Application

Figure 1. Application – ARM Interface

From the system administrator’s perspective, ARM consists of the interfaces that applications load
and call the classes that implement these interfaces, plus programs to process the data, as shown in
Figure 2. How the data is processed is not part of the ARM standard, but it is, of course, important
to the system administrator.

Introduction How is ARM Used?

Application Response Measurement 3.0 - Java Binding 3

ARM Interface

Used by application
developers to

instrument software

Application

Application

Application

Management Agent
+

Analysis
+

Reporting

Figure 2. Application – ARM – Management System Interaction

What Transactions Should be Measured? Introduction

4 Open Group Technical Standard

1.3 What Transactions Should be Measured?
ARM is designed to measure a unit of work, such as a business transaction, or a major component
of a business transaction, that is performance sensitive. These transactions should be something
that needs to be measured, monitored, and for which corrective action can be taken if the
performance is determined to be too slow.

Some questions to ask that aid in selecting which transactions to measure are:

• What unit of work does this transaction define?

• Are the transaction counts and/or response times important?

• Who will use this information?

• If performance of this transaction is too slow, what corrective actions will be taken?

1.4 The Evolution of ARM
ARM 1.0 was developed by Tivoli™ and Hewlett-Packard™ and released in June 1996. It provides
a means to measure the response time and status of transactions. The interface is in the C
programming language.

ARM 2.0 was developed by the ARM Working Group in 1997. The ARM Working Group was a
consortium of vendors and end-users interested in promoting and advancing ARM. ARM 2.0 was
approved as a standard of The Open Group™ (see [ARM 2.0]) in July 1998, part of the IT
DialTone™ initiative. ARM 2.0 added the ability to correlate parent and child transactions, and to
collect other measurements associated with the transactions, such as the number of records
processed. The interface is in the C programming language.

ARM 3.0 is a new version of the standard that adds new capabilities. To date the specified interface
is for the Java™ programming language. A C version has been mostly specified, but no prototype
has been created. Java itself is evolving and there have now been at least three major versions of the
language. The version that first became widely implemented and used was developed using the
Java Development Kit (JDK) 1.1. New features were added in 1.2 and 1.3. For the most part a 1.1
program will work unchanged with a 1.2 or 1.3 JDK and programs. ARM 3.0 for Java Programs uses
the JDK 1.1 version of the standard, and should be compatible with all later levels.

Introduction ARM 3.0 for Java Programs Overview

Application Response Measurement 3.0 - Java Binding 5

1.5 ARM 3.0 for Java Programs Overview
This specification describes four Java packages, Each package is equivalent to the block titled Arm
Interface in Figure 1 and Figure 2.

• org.opengroup.arm3.transaction is the primary package that most applications use. The
application calls a method when a transaction begins and ends, and the ARM
implementation measures the response time.

• org.opengroup.arm3.tranreport is an alternative package that can be used by applications
that measure the response time of their own transactions, and report the measurements
after the fact.

• org.opengroup.arm3.metric can be used in addition to the
org.opengroup.arm3.transaction package to report additional measurements about each
transaction, such as a count of the amount of work accomplished.

• org.opengroup.arm3.definition can be used to report the binding of meta data to 16-byte
binary identifiers.

An ARM implementation contains concrete classes that implement these interfaces. An ARM
implementation may also be known as a “Management Agent” (and would be the part of the block
labeled Management Agent + Analysis + Reporting that collects data). It is expected that companies
will produce commercial ARM implementations, as was done for ARM 1.0 and ARM 2.0.

Business applications use ARM by creating objects that implement the interfaces in the packages,
and then executing methods of the objects. The implementation of the classes takes care of all
processing of the data, including moving the data outside the thread or JVM process to be analyzed
and reported. The package is similar to the current ARM 2.0 interface, and a previously proposed
ARM 3.0 interface.

Application Response Measurement 3.0 - Java Binding 7

/ Chapter 2
Using the ARM 3.0 Java Binding

2.1 An Example
An application uses ARM by creating objects that implement the ArmTransaction or
ArmTranReport interfaces, and then invoking methods on these objects. A factory interface is
provided to create the objects. The implementation of the ArmTransaction and ArmTranReport
interfaces, which wll generally be provided by software vendors, process the measurement data
transparently to the application. Here is an example:

// This snippet assumes these are already created:
ArmTransactionFactory tranFactory;
byte[] uuidBytesQueryBalance;
BankAccount myAccount;

// At initialization:
ArmUUID uuidQueryBalance;
ArmTransaction queryBalance;
uuidQueryBalance = tranFactory.newArmUUID(uuidBytesQueryBalance);
queryBalance = tranFactory.newArmTransaction(uuidQueryBalance);

// At runtime as transactions execute
queryBalance.start();

// The following line is the real job of the application
status = myAccount.queryBalance(myCredentials);

queryBalance.stop(ARM_GOOD);

Many applications need no more. For a little more work, and a great deal more value, an
application can link related transactions together. For example, a client transaction can be linked to
an application server transaction, and the application server transaction can be linked to data
server transactions. Understanding these relationships is tremendously useful for problem
diagnosis, performance tuning, and capacity modeling. It also provides the means to link
transactions to business transactions. Here is an example of an application server, which both
receives a correlation token from its parent, and passes a correlation token to its children. The
additional code to handle the correlation tokens is highlighted in boldface type.

// This snippet assumes these are already created:
ArmTransactionFactory tranFactory;
byte[] uuidBytesQueryBalance;
BankAccount myAccount;

An Example Using the ARM 3.0 Java Binding

8 Open Group Technical Standard

byte[] parentBytes; // correlation token from parent

// At initialization:
ArmUUID uuidQueryBalance;
ArmTransaction queryBalance;
uuidQueryBalance = tranFactory.newArmUUID(uuidBytesQueryBalance);
queryBalance = tranFactory.newArmTransaction(uuidQueryBalance);

// At runtime as transactions execute
ArmCorrelator parent = tranFactory.newArmCorrelator(parentBytes);
queryBalance.start(parent);
ArmCorrelator corr = queryBalance.getCorr();

// The following line is the real job of the application
status = myAccount.queryBalance(myCredentials, corr);

queryBalance.stop(ARM_GOOD);

There are other optional features, but the examples above address the bulk of the requirements for
using ARM. One feature enables applications to provide additional information about a
transaction, such as a count of the work done (files processed, for example). Another feature enables
an application to provide descriptive information about the transaction types, users, and data
types.

Application Response Measurement 3.0 - Java Binding 9

/ Chapter 3
Programming Options

The application has two options for providing measurement data. In the first, and more widely
used option, it calls an ARM transaction object just before and after a transaction executes, and the
ARM transaction object makes the measurements. In the second option it makes all the
measurements itself and reports the data some time later.

3.1 ARM Measures Transaction
Figure 3 shows the first, and most widely used, option. The object implementing ArmTransaction
measures the response time. The application crea tes an instance of ArmTransaction. Immediately
prior to starting a transaction, the application invokes start(). The ArmTransaction instance
captures and saves the timestamp. Immediately after the transaction ends, the application calls the
stop() method, passing the status as an argument. The ArmTransaction instance captures the stop
time. The difference between the stop time and the start time is the response time of the transaction.
As soon as the stop() method returns, the application is free to reuse the ArmTransaction instance.
The data will have already been copied from it to be processed.

Application

start()

ArmTransaction

stop()

Figure 3. Measurement Using Start/Stop

The application optionally provides any number of heartbeat and progress indicators using
update() between a start() and a stop(). This is shown in Figure 4. Heartbeats are useful for long-
running transactions.

ARM Measures Transaction Programming Options

10 Open Group Technical Standard

Application

start()

ArmTransaction
update()

stop()

update()

Figure 4. Application Using Heartbeats

Programming Options Application Measures Transactions

Application Response Measurement 3.0 - Java Binding 11

3.2 Application Measures Transactions
Figure 5 shows the second option. The application itself measures the response time of the
transaction. The application uses init() (or one of the variations) to identify the transaction by type
and where it executed. After the transaction completes (the delay could be short or long), it
populates an ArmTranReport object with data, and calls process() to initiate processing of the data.
As soon as the process() method returns, the application is free to reuse the ArmTranReport
instance. The data will have already been copied from it to be processed.

Application ArmTranReport
process()

init()

Figure 5. Measurement by the Application

Selecting Which Option to Use Programming Options

12 Open Group Technical Standard

3.3 Selecting Which Option to Use
In many situations the business application can use either programming option. In general, the
recommendation is to use the first option (use ArmTransaction), unless that is not practical.

There is one situation for which the application must use Option 1:

• To provide heartbeats, the application must use the update() method of ArmTransaction
between a start() and a stop(). Heartbeats are particularly valuable for long-running
transactions. An ARM implementation may process updates, such as a real-time progress
display, or check a threshold for a transaction that is taking too long.

There are two situations for which the application must use Option 2 (creating and populating
ArmTranReport):

• Option 1 (ArmTransaction) requires that inline synchronous start() and stop() calls be
used. The calls must be made at the moment the real transaction starts and stops. If they
aren’t, the timings will not be accurate. If the application finds this inconvenient or
impractical, the application must use Option 2 (ArmTranReport). ArmTranReport can be
used because the application provides both the response time and the stop time.

• If the transaction executes on system A but is reported to ARM on system B, Option 2 must
be used for all the reasons stated above. In addition, the application provides additional
information that identifies the system and JVM instance of the remote system where the
transaction ran.

Application Response Measurement 3.0 - Java Binding 13

/ Chapter 4
 Understanding the Relationships Between
Transactions

There are several solutions available that measure transaction response times on one system, such
as measuring the response time as seen by a client, or measuring how long a method on an
application server takes to complete. ARM can be used for this purpose as well. This is useful data,
but it doesn’t provide insight into how transactions on servers are related to business transactions
executed by users or other application programs. ARM provides a facility for correlating
transactions within and across systems. This section describes how this is done.

4.1 A Typical Distributed Transaction
Most modern applications consist of programs distributed across multiple systems, processes, and
threads. Figure 6 is an example.

Client
Application

Server

Application
Server

Data
Server

Data
Server

Data
Server

Figure 6. A Common Distributed Application Architecture

Figure 7 is an example transaction that runs on this application architecture. More correctly, Figure
7 shows a hierarchy of several transactions. To the user there is one transaction, but it is not
unusual for the one transaction visible to the end-user to consist of tens or even over 100 sub-
transactions.

A Typical Distributed Transaction Understanding the Relationships Between Transactions

14 Open Group Technical Standard

Submit
order

Process
order

query

query

query

verify
order

execute
order

query

query

query

query

update

update

Figure 7. An Example of a Distributed Transaction

In ARM each transaction instance is assigned a unique token, named in ARM parlance a
“correlator”. To the application a correlator appears as an opaque byte array. There actually is a
well-defined format to a correlator, and management agents and applications that understand it
can take advantage of the information in it to determine where and when a transaction executed,
which can aid enormously in problem diagnosis. Figure 8 shows the same transaction hierarchy as
Figure 7, except that the descriptive names in Figure 7 have been replaced with identifiers. The lines
are dotted instead of solid to indicate that without additional information, this would look to a
management application like thirteen unrelated transactions.

Understanding the Relationships Between Transactions A Typical Distributed Transaction

Application Response Measurement 3.0 - Java Binding 15

S1 P1 Q1

Q2

Q3

V1

E1

Q4

Q5

Q6

Q7

U2

U1

Figure 8. Distributed Transactions That Appear Unrelated

To relate the transactions together, the application components are each instrumented with ARM.
In addition, each transaction passes the correlator that identifies itself to its children. In Figure 7
and Figure 8, the Submit Order transaction passes its correlator (S1) to its child, Process Order.
Process Order passes its correlator (P1) to its five children – three queries, Verify Order, and Execute
Order. Verify Order passes its correlator (V1) to its four children, and Execute Order passes its
correlator (E1) to its two children.

The last piece in the puzzle is that each of the transactions instrumented with ARM passes its
parent correlator to the ARM instrumentation class. The ARM instrumentation class knows the
correlator of the current transaction. The correlators can be combined into a tuple of (parent
correlator, correlator). Some of the tuples in Figure 8 are (S1,P1), (P1,Q1), (P1,E1), and (E1, U1). By
putting the different tuples together, the management application can create the full calling
hierarchy using the correlators to identify the transaction instances, as shown in Figure 9.

As an example of how this information could be used, if S1 failed, it would now be possible to
determine that it failed because P1 failed, P1 failed because V1 failed, and V1 failed because Q6
failed.

Similar types of analysis could determine the source of response time problems. To analyze
response time problems, additional information is needed. It’s necessary to know if the child
transactions execute serially, in parallel, or some combination of the two. The information may also
be useful in locating unacceptable network latencies. For example, if the response time of S1 is
substantially more than the response time of P1, and it is known that there is very little processing
done on P1 that isn’t accounted for in the measured response times, it suggests that there are
unacceptable network or queuing delays between S1 and P1.

A Typical Distributed Transaction Understanding the Relationships Between Transactions

16 Open Group Technical Standard

S1 P1 Q1

Q2

Q3

V1

E1

Q4

Q5

Q6

Q7

U2

U1

(P1,Q1)

(P1,Q2)

(P1,Q3)

(P1,V1)

(P1,E1)

(V1,Q4)

V1,Q5)

(V1,Q6)

(V1,Q7)

(E1,U1)

(E1,U2)

(S1,P1)

Figure 9. A Distributed Transaction Calling Hierarchy

Application Response Measurement 3.0 - Java Binding 17

/ Chapter 5
 Additional Data About a Transaction

The identification information (transaction UUID) and measurement information (status, response
time, stop time) for any transaction measured with ARM provides a great deal of value, and there
may be no requirement to augment the information. However, there are situations in which
additional information could be useful, such as:

§ How “big” is a transaction? Knowing a backup operation took 47 seconds may not be
sufficient to know if the performance was good. Additional information, such as the
number of bytes or files backed up, provide much more meaning to the 47 seconds
measurement.

§ A transaction such as “get design drawings” may execute in less than a second for a
simple part (e.g., a bracket). For complex parts, such as an engine, it may take many
seconds to retrieve all the drawings, even if the system is performing well. Knowing the
part number in this case makes the response time meaningful.

§ The performance of a transaction will be affected by other workloads running on the same
physical or logical system. Performance management tools may capture other information
(e.g., CPU utilization) and combine it with response time measurements to plot the effect of
CPU time on response time, which could be useful for planning the capacity of a system.
However, other information that could be useful may not be available to performance
management tools (e.g., the length of a queue internal to a program). It would be helpful for
the application to provide this information.

§ If a transaction fails it can be useful to know why. The required ARM status has four
possible values: Good, Failed, Aborted, and Unknown. A detailed error code would be
useful to understand why a transaction failed or was aborted. Capturing the code along
with the other transaction information simplifies analysis by avoiding a later merge with,
for example, error messages in a log file.

ARM provides a way for applications to provide these types of data. In ARM parlance the data are
called “metrics”. The use of metrics is optional.

ARM is not intended as a general-purpose interface for recording data. It is good practice to limit
the use of metrics to data that is directly related to a transaction, and that helps to understand
measurements about the transaction.

Data Categories Additional Data About a Transaction

18 Open Group Technical Standard

5.1 Data Categories
ARM supports ten data types. The data types are grouped in four categories. The categories are
counters, gauges, numeric IDs, and strings.

5.1.1 Counters

A counter is a monotonically increasing non-negative value up to its maximum possible value, at
which point it wraps around to zero and starts again. This is the IETF (Internet Engineering Task
Force) definition of a counter.

A counter should be u sed when it makes sense to sum up the values over an interval. Examples are
bytes printed and records written. The values can also be averaged, maximums and minimums
(per transaction) can be calculated, and other kinds of statistical calculations can be performed.

ARM supports three counter types:

§ 32-bit integer: ArmMetricCounter32

§ 64-bit integer: ArmMetricCounter64

§ 32-bit floating point: ArmMetricCounterFloat32. The floating-point standard is IEEE 754
(the same as the Java language).

5.1.2 Gauges

A gauge value can go up and down, and it can be positive or negative. This is the IETF definition of
a gauge.

A gauge should be used instead of a counter when it is not meaningful to sum up the values over
an interval. An example is the amount of memory used. If one measures the amount of memory
used over 20 transactions in an interval and the average usage for each of these transactions was 15
MB, it does not make sense to say that 20*15=300 MB of memory were used over the interval. It
would make sense to say that the average was 15 MB, that the median was 12 MB, and that the
standard deviation was 8 MB. The values can be averaged, maximums and minimums per
transaction calculated, and other kinds of statistical calculations performed.

ARM supports three gauge types:

§ 32-bit integer: ArmMetricGauge32

§ 64-bit integer: ArmMetricGauge64

§ 32-bit floating point: ArmMetricGaugeFloat32. The floating-point standard is IEEE 754 (the
same as the Java language).

5.1.3 Numeric IDs

A numeric ID is a numeric value that is used as an identifier, and not as a measurement value.
Examples are message numbers and error codes.

Additional Data About a Transaction Data Categories

Application Response Measurement 3.0 - Java Binding 19

Numeric IDs are classified as non-calculable because it doesn’t make sense to perform arithmetic
with them. For example, the mean of the last seven message numbers would hardly ever provide
useful information. By using a data type of numeric ID instead of a gauge or counter, the
application indicates that arithmetic with the numbers is probably nonsensical. An agent could
create statistical summaries based on these values, such as generating a frequency histogram by
part number or error number.

ARM supports two numeric ID types:

§ 32-bit integer: ArmMetricNumericId32

§ 64-bit integer: ArmMetricNumericId64

5.1.4 Strings

A string is used in the same way that a numeric ID is used. It is an identifier, not a measurement
value. Examples are part numbers, names, and messages.

The strings are in standard 16-bit Unicode (UCS-2) characters (the same as the Java language).

ARM supports two string types:

§ Strings of 1-8 characters: ArmMetricString8

§ Strings of 1-32 characters: ArmMetricString32

How to Provide the Additional Data Additional Data About a Transaction

20 Open Group Technical Standard

5.2 How to Provide the Additional Data
The application provides the values in one of two ways, depending on how the transaction data are
measured.

5.2.1 Using ArmTransactionWithMetrics

If the application is calling ArmTransaction start() and stop(), it creates instances of subclasses of
ArmMetric (e.g., ArmMetricCounter32) and binds an instance to an ArmTransactionWithMetrics
instance using ArmMetricGroup (not shown). Each ArmMetric subclass supports the set() method.
Figure 10 shows this process. ArmTransactionWithMetrics is a subclass of ArmTransaction, and
hence, implements all the methods of ArmTransaction, in addition to some methods for
manipulating metrics.

Application

start()

ArmTransactionWithMetrics

stop()

ArmMetric

setMetricValid()
setMetricValid()

set()
set()

setMetricValid()

Figure 10. Providing Additional Data Using ArmTransaction and ArmMetric

Prior to calling start(), update(), or stop(), the application may set the value in each metric. The
ArmTransactionWithMetrics method setMetricValid() is used to indicate if the data are valid. This
is needed because the data might be valid only when stop() is executed, as an example. Figure 10
shows this process.

Additional Data About a Transaction How to Provide the Additional Data

Application Response Measurement 3.0 - Java Binding 21

5.2.2 Using ArmTranReportWithMetrics

If the application is populating ArmTranReport instances and calling the process() method, the
metric values are provided the same way, using a subclass, ArmTranReportWithMetrics. Prior to
calling process(), setMetric() methods are called, such as setMetricCounter32(). This is illustrated in
Figure 11. Whatever values are set when process() is executed are the values used for this
transaction instance. If a value no longer contains meaningful data, clearMetric() is called prior to
calling process().

Application
setMetric()

ArmTranReportWithMetricssetMetric()

process()

init()

Figure 11. Providing Additional Data Using ArmTranReport

Processing Multiple Values of the Same Metric Additional Data About a Transaction

22 Open Group Technical Standard

5.3 Processing Multiple Values of the Same Metric
Additional semantics are defined when using ArmTransactionWithMetrics in order to eliminate
ambiguity. The ambiguity arises because the metric may be valid on some or all of the start(),
update(), and stop() method calls. The following sections describe the semantics for each of the data
type categories.

5.3.1 Counters

If a counter is used, its initial value must be set at the time of the start() call. The difference
between the value when the start() executes and when stop() executes (or the value in the last
update() call if no metric value is passed in stop()) is the value attributed to this transaction.
Similarly, the difference between successive update() calls, or from the start() to the first
update() call, or from the last update() to the stop() call, equals the value for the time period
between the calls.

Here are three examples of how a counter would probably be used:

• The counter is set to zero at start() and to some value at stop() (or the last update()
call). In this case, the application probably measured the value for this transaction and
provided that value in the stop() call. The application always sets the value to zero at
the start() call so the value at stop() reflects both the difference from the start()
value and the absolute value.

• The counter is x1 at start() , x2 at its stop(), x2 at the next start(), and x3 at its
stop(). In this case, the application is probably keeping a rolling counter. Perhaps this is
a server application that counts the total workload. The application simply takes a
snapshot of the counter at the start of a transaction and another snapshot at the end of the
transaction. The agent determines the difference attributed to this transaction.

• The counter is x1 at start(), x2 at stop(), x3 (not equal to x2) at the next start() , and
x4 at stop(). In this case, the application is probably keeping a rolling counter as in the
previous example. But in this case the measurement represents a value affected by other
users or transaction classes, so the value often changes from one stop() to the next
start() for the same transaction class.

5.3.2 Gauges

Gauges can be set before start(), update(), and stop() calls. This creates the potential for
different interpretations. If several values are provided for a transaction (one at start(), one at
update()(s), and one at stop()), which one(s) should be used? In order to have consistent
interpretation, the following conventions apply. Measurement agents are free to process the data in
any way within these guidelines.

• The maximum value for a transaction will be the largest valid value passed at any time
between and including the start() and stop() calls.

• The minimum value for a transaction will be the smallest valid value passed at any time
between and including the start() and stop() calls.

Additional Data About a Transaction Processing Multiple Values of the Same Metric

Application Response Measurement 3.0 - Java Binding 23

• The mean value for a transaction will be the mean of all valid values passed at any time
between and including the start() and stop() calls. All valid values will be weighted
equally each time a start(), update(), or stop() executes.

• The median value for a transaction will be the median of all valid values passed at any
time during the transaction. All valid values will be weighted equally each time a
start() , update(), or stop() executes.

• The last value for a transaction will be the last valid value passed whenever any start(),
update(), or stop() executes.

5.3.3 Numeric IDs

The last value passed when any of the start(), update() , or stop() calls are made will be the
value attributed to the transaction instance. For example, if a value is valid at start() but not
when any update() or stop() call executes, the value passed at the start() is used. If a value
is valid when start() executes and when stop() executes, the value when stop() executes is
the value for the transaction instance. This convention is identical to the String convention.

5.3.4 Strings

The last value passed when any of the start(), update() , or stop() calls are made will be the
value attributed to the transaction instance. For example, if a value is valid at start() but not
when any update() or stop() call executes, the value passed at the start() is used. If a value
is valid when start() executes and when stop() executes, the value when stop() executes is
the value for the transaction instance. This convention is identical to the Numeric ID convention.

Application Response Measurement 3.0 - Java Binding 25

/ Chapter 6
Creating ARM Objects

6.1 Overview of Java Interfaces
The ARM 3.0 for Java Programs standard defines Java interfaces. A Java interface is an abstract
specification of method signatures. Following is an example of an interface. This interface is named
ArmMetricGroup, it is part of the org.opengroup.arm3.metric package, and it defines three
method signatures: clear(int) , get(int) , and set(int,ArmMetric).

package org.opengroup.arm3.metric;
public interface ArmMetricGroup
{
 public void clear(int slot);
 public ArmMetric get(int slot);
 public void set(int slot, ArmMetric metric);
}

A program cannot create an instance (object) of an interface because there’s no code to execute.
Instead a program creates an instance of a concrete class that implements the interface. In the
following two code fragments, each of which would be in its own file, two classes are defined
(MyGroup and AnotherVendorsOne). Each class declares that it implements the ArmMetricGroup
interface (and they import all the class and interface definitions in the org.opengroup.arm3.metric
so the Java compiler can reconcile all the names). Each class includes method bodies for at least the
three methods defined in ArmMetricGroup. If it doesn’t, the Java compiler will generate an error.
Other methods may also be included. In these examples, MyGroup has one other method
(privateStuff()) and AnotherVendorsOne has two other methods (differentStuff1() and
differentStuff2()).

import org.opengroup.arm3.metric.*;
public class MyGroup
 implements ArmMetricGroup
{
 public void clear(int slot)
 { // program code goes here }
 public ArmMetric get(int slot)
 { // program code goes here }
 public void set(int slot, ArmMetric metric)
 { // program code goes here }
 private void privateStuff()
 { // program code goes here }
}

Overview of Java Interfaces Creating ARM Objects

26 Open Group Technical Standard

import org.opengroup.arm3.metric.*;
public class AnotherVendorsOne
 implements ArmMetricGroup
{
 public void clear(int slot)
 { // program code goes here }
 public ArmMetric get(int slot)
 { // program code goes here }
 public void set(int slot, ArmMetric metric)
 { // program code goes here }

private void differentStuff1()
 { // program code goes here }
private void differentStuff2()
 { // program code goes here }

}

To create an object that implements the ArmMetricGroup interface, a program could create an
instance of either MyGroup or AnotherVendorsOne. By assigning the object to a variable of type
ArmMetricGroup, this variable can be used as if ArmMetricGroup is a concrete class. In the
following code snippet, group is of type MyGroup and can execute any of the four methods of
MyGroup. g5 is of type ArmMetricGroup so it can execute only the three methods in
ArmMetricGroup. The program statement “g5.privateStuff()” would generate a compiler
error because privateStuff() is not defined in the ArmMetricGroup interface, whereas
“group.privateStuff()” does not result in a compiler error.

MyGroup group = new MyGroup();
ArmMetricGroup g5 = (ArmMetricGroup) group;
int mySlot = 4;
g5.clear(mySlot);
group.clear(mySlot);
group.privateStuff();

Creating ARM Objects Creating ARM Objects in an Application

Application Response Measurement 3.0 - Java Binding 27

6.2 Creating ARM Objects in an Application
The discussion up to now has been a short tutorial on Java interfaces and would apply to any Java
program. The remainder of this section describes how applications (not applets) create objects that
implement the ARM 3.0 for Java Programs interfaces. The next section describes how applets create
the objects.

A fundamental characteristic of ARM is that an application that uses ARM will be able to work
with any ARM implementation, whether written in-house or purchased from a vendor. Vendors
compete with each other to provide better ARM implementations. The use of Java interfaces creates
a potential problem because each vendor will have its own names for its own classes. In the
examples above, MyGroup and AnotherVendorsOne are names that are not part of the standard.
Further, a program that uses ARM should never use either name in a program because if it does,
that program is restricted to only working with the ARM implementation from that particular
vendor. But a program cannot create an instance of an object which implements an interface, such
as the ArmMetricGroup interface, without naming a specific class. It is a compiler error to code
“ArmMetricGroup g5 = new ArmMetricGroup();”. So how can a program create a concrete
class without naming the class directly?

ARM uses two mechanisms to create objects that implement the ARM interfaces. Together, these
mechanisms permit a system administrator to choose an ARM implementation regardless of the
class names of the implementation while allowing the application to work with any ARM
implementation.

1. The ARM 3.0 for Java Programs standard defines four factory interfaces, one for each
package. New objects are created by first creating an object that implements a factory
interface, then invoking methods of the factory interface. The factory methods are used
instead of using the Java “new” operator. The four factory interfaces are:

ArmDefinitionFactory
ArmMetricFactory
ArmTranReportFactory
ArmTransactionFactory

2. Using factory interfaces alone does not avoid naming the classes in each ARM
implementation, because the objects implementing the factory interfaces need to be created
by name. The application does not know the factory class names in advance (otherwise it
would only work with one ARM implementation). The application gets the names of the
factory classes through the use of the Java system properties. A system administrator
assigns the names of the factory classes to the properties before starting an application that
uses ARM.

The remainder of this section describes the process in more detail.

All JDKs implement the java.lang.System and java.util.Properties classes. These
classes contain several methods to manipulate properties. java.util.Properties is a hash
table containing properties. A property is a String and it is referenced within the hash table by a
key, which is also a String. Java programs can create instances of java.util.Properties for
their own purposes. java.lang.System creates a special instance of java.util.Properties

Creating ARM Objects in an Application Creating ARM Objects

28 Open Group Technical Standard

that is a singleton within the JVM. It provides a single place to store property values that will be
available to all programs running within the JVM.

ARM defines four property keys, one for each of the four factory classes. Each factory interface
defines a static (class) constant named “propertyKey”. The value of each constant is the same
name as the factory interface. For example, the ArmDefinitionFactory interface assigns the
value ”ArmDefinitionFactory” to its constant variable propertyKey. Each of the following
statements is in the respective factory interfaces:

public static final String propertyKey = "ArmDefinitionFactory";
public static final String propertyKey = "ArmMetricFactory";
public static final String propertyKey = "ArmTranReportFactory";
public static final String propertyKey = "ArmTransactionFactory";

During initialization of the ARM environment in a JVM, a program provided by the system
administrator will assign a class name in the system properties for each property key. For example,
the following code snippet assigns the class name "com.vendor1.arm.ArmTranFactory" to
the property key for ArmTransactionFactory. This would be repeated for the other three factory
interfaces. In this case a company with a domain name of vendor1.com presumably supplies the
ARM implementation.

Properties p = System.getProperties();
String valueTranFactoryClass = "com.vendor1.arm.ArmTranFactory";
String keyTranFactoryClass = ArmTransactionFactory.propertyKey;
p.put(keyTranFactoryClass, valueTranFactoryClass);

To create any of the ARM objects an application first creates an instance of the appropriate factory
class. It then uses the methods of the factory class to create the objects that implement the ARM
interfaces. It is common for an application to create one instance of each of the four factory classes
during initialization, and then use them to create all the other objects. However, there is no
requirement to do so – the application can create any number of instances of each factory, and can
create one whenever it needs one.

In the following code snippet, tranFactoryName is the name of the factory class (for example,
“com.vendor1.arm.ArmTranFactory”), tranFactoryClass is the factory class (all Java
classes can be represented by an instance of java.lang.Class), and tranFactory is an
instance of the factory class. tranFactory can be used to create any number of instances of
ArmTransaction. Three are created in this example, all for the same transaction UUID.

Properties p = System.getProperties();
String keyTranFactoryClass = ArmTransactionFactory.propertyKey;
String tranFactoryName = p.getProperty(keyTranFactoryClass);
Class tranFactoryClass = Class.forName(tranFactoryName);
ArmTransactionFactory tranFactory;
tranFactory = (ArmTransactionFactory) tranFactoryClass.newInstance();

byte[] bytesTranUUID; //Assume this already has a value
ArmUUID tranUUID = tranFactory.newArmUUID(bytesTranUUID);
ArmTransaction tran1 = tranFactory.newArmTransaction(tranUUID);
ArmTransaction tran2 = tranFactory.newArmTransaction(tranUUID);
ArmTransaction tran3 = tranFactory.newArmTransaction(tranUUID);

Creating ARM Objects Creating ARM Objects in an Application

Application Response Measurement 3.0 - Java Binding 29

6.2.1 Convenience Methods

ARM implementations or SDKs may (but are not required to) provide convenience routines that
hide some of these details. A suggested way to do this would be to provide class methods to create
the factories by embedding the logic from above. For example:

public class ArmFactory
{
 public static ArmDefinitionFactory createArmDefinitionFactory() {}
 public static ArmTransactionFactory createArmTransactionFactory() {}
 public static ArmTransReportFactory createArmTransReportFactory() {}
 public static ArmMetricFactory createArmMetricFactory() {}
}

Creating ARM Objects in an Applet Creating ARM Objects

30 Open Group Technical Standard

6.3 Creating ARM Objects in an Applet
The approach of using the system properties to identify the names of the concrete classes works for
Java applications but it will not work for Java applets. Applets do not have access to the system
properties, except a few that are expressly permitted. This section describes how to provide the
class names to applets.

The basic principles remain the same. The applet should not change even if the ARM
implementation changes. A system administrator should control which ARM implementation is
used by each applet. This will be the system administrator of the server from which the applet is
loaded.

The Java language permits applets to access files on the server system from which they originated,
as long as those files are in the applet’s codebase. By default the codebase is the directory that
contains the HTML file that loaded the applet. The HTML file can specify the codebase to be a
different directory using the CODEBASE tag. Classes in the applet’s unnamed package (any class
that doesn’t specify a package) are taken from the same directory as the codebase. For classes that
are members of a package, the codebase is extended by the package name. For example, if the
codebase is www.abc.com/test, the ARM package would be in directory
www.abc.com/test/org/opengroup/arm3/transaction. An applet can get the URL of the codebase
using the getCodeBase() method of the java.applet class.

ARM defines a similar mechanism for applets as for applications. The main difference is that an
application gets its properties from the system properties, whereas an applet gets its properties from
a file named arm.properties. arm.properties must reside in the codebase of the applet. An
application uses java.lang.System.getProperties() to create an instance of the
java.util.Properties class. An applet creates an instance of java.util.Properties by
loading it from the data in arm.properties. The format of each property, and the keys that
identify the four factory classes, are identical.

The following example shows how an applet would initialize its Properties object and create an
instance of ArmTransactionFactory, then use the factory to create an instance of
ArmTransaction.

// Retrieve properties file from codebase
URL urlCodeBase = getCodeBase();
URL urlArmProp = new URL(urlCodeBase.getProtocol(),

urlCodeBase.getHost(),
urlCodeBase.getPort(),
urlCodeBase.getFile()
+"arm.properties");

InputStream in = urlArmProp.openStream();
Properties armProp = new Properties();
armProp.load(in);

// Get the factory class name and create an instance
String keyTranFactoryClass = ArmTransactionFactory.propertyKey;
String tranFactoryName = armProp.getProperty(keyTranFactoryClass);
Class tranFactoryClass = Class.forName(tranFactoryName);

Creating ARM Objects Creating ARM Objects in an Applet

Application Response Measurement 3.0 - Java Binding 31

ArmTransactionFactory tranFactory;
tranFactory = (ArmTransactionFactory) tranFactoryClass.newInstance();

// Create an ArmTransaction instance
byte[] bytesTranUUID;
ArmUUID tranUUID = tranFactory.newArmUUID(bytesTranUUID);
ArmTransaction tran = tranFactory.newArmTransaction(tranUUID);

One final restriction, imposed by the Java language on applets, is that the implementation of the
interface, i.e., the concrete classes that implement the ARM interfaces, must also reside in the
applet’s codebase.

Application Response Measurement 3.0 - Java Binding 33

/

Chapter 7
 Providing Descriptive Information

7.1 Differences between ARM 3.0 versus ARM 1.0/2.0
In ARM 1.0 and 2.0, descriptive information about transactions and metrics were provided as UTF-
8 character strings through the API. The application and user names were provided with the
arm_init() call. The transaction names were provided with the arm_getid() call. In response to the
combination of the names, the ARM library provided by the management agent supplied a 32-bit
transaction ID that was unique within that system. This ID varied from system to system, and
would generally change each time a system or an ARM implementation was reinitialized. The ID
represented a dynamic binding, much like a file handle in the C programming language. These
mechanisms required substantial handshaking between the application and the agent, which in
some cases was problematic.

Two key objectives of ARM 3.0 are to improve the separation between identification and descriptive
information, and to make the programming interfaces more loosely coupled. This is accomplished
by referring to transactions, metrics, and users using unique 16-byte identifiers. Applications pass
the 16-byte identifiers to fully and precisely identify which transaction type and metrics are being
used. This also makes handling of different languages easier and intuitive.

Providing Descriptive Information through the Java Interfaces Providing Descriptive Information

34 Open Group Technical Standard

7.2 Providing Descriptive Information through the Java Interfaces
To give meaning to the 16-byte identifiers, applications have the option of providing the name(s)
and any other information, such as the format of a metric, that is associated with each 16-byte
identifier. Why this is an option will be shown below. When provided, the ArmTranDefinition,
ArmMetricDefinition, and ArmUserDefinition classes are used, as shown in Figure 12.

Application

setMetricUUID()

ArmTranDefinition
process()

ArmMetricDefinition
process()

ArmUserDefinition
process()

ArmDefinitionFactory

newArmTranDefinition()

newArmMetricDefinition()

newArmUserDefinition()

new()

setMetricUUID()

Figure 12. Providing Descriptive Information Through the Application Interface

Because using definition objects is optional, the only identification data used and available when
measurements are collected are the 16-byte identifiers. An example of this is shown in Figure 13,
where each row in the table corresponds to a transaction that has executed, and shortened
identifiers have been used for brevity.

Providing Descriptive Information Providing Descriptive Information through the Java Interfaces

Application Response Measurement 3.0 - Java Binding 35

Application Measurements

ARM ImplementationArmTransaction

ArmMetricArmMetricArmMetric

TransID

99425
99425
99425
99425

A7177
A7177
A7177

Handle

4998
4999
5211
5231

5002
5003
6732

Status

GOOD
GOOD
FAILED
GOOD

GOOD
ABORTED
GOOD

Metric1

57647
57321
99442
87311

Metric2

271
247

1442

RespTime

3.451
3.844

10.211

27.310

18.542

Transaction Measurements

Figure 13. Providing Measurements Without Any Descriptive Information

The data in Figure 13 provide the status and response time for transaction IDs “99425” and
“A7177” (shorthand for the 16-byte identifiers) and the values for metric IDs “Metric1” and
“Metric2”. To be useful, the IDs need to be translated into names that an analyst would understand.
Figure 14 is an example that provides the descriptive information needed to understand the
measurements.

The descriptive information is defined in two tables. The “TransID” field in the Transaction
Measurements table indexes a row in the TransID column of the Transaction Definitions table. This
provides the names of the application and transaction. It also provides the metric IDs. The metric
IDs index the MetricID column of the Metrics Definitions table, from which it is apparent the
metrics are named “Stock on Hand” and “Part Number” Using the information, the complete
human-understandable information shown in the “EXAMPLE” box in the upper right of Figure 14
can be derived.

Providing Descriptive Information through the Java Interfaces Providing Descriptive Information

36 Open Group Technical Standard

TransID

A7177
A9441
ABCA4
99425

Application Name

Order Manager
Order Manager
Inventory Control
Inventory Control

Transaction Name

Create Order
Process Shipping
Query Part #
Update Part #

Metric1 ID

24680
44553
44553

Metric2 ID

12345

33333

MetricID

12345
24680
33333
44553
98765

Metric Name

Customer Name
Count of Boxes
Stock on Hand
Part Number
Account Number

Format

String
Counter 32
Gauge 32
Numeric ID 64
Numeric ID 64

TransID

99425
99425
99425
99425
A7177

Handle

4998
4999
5211
5231
5002

Status

GOOD
GOOD
FAILED
GOOD
GOOD

Metric1

57647
57321
99442
87311

Metric2

271
247

1442

RespTime

3.451
3.844

10.211
27.310

Transaction Definitions

Metric Definitions

Transaction Measurements

EXAMPLE

Application = Inventory Control
Transaction = Update Part #
Handle = 4998
Status = GOOD
Response Time = 3.451 seconds
Part Number = 57647
Stock on Hand = 271

Figure 14. Combining Ids and Handles With Descriptive Information

These tables could be created from the information in ArmTranDefinition and ArmMetricDefinition.
Figure 15 shows this process. The measurement data and descriptive information is kept separate
until the reporting step. This is true even if the data all flows through the same ARM
implementation. The data are treated as logically separate and not combined until it is time to
report on the data.

Application

Measurements

Reporting
classes

ArmTransaction

ArmMetricArmMetricArmMetric

Definitions

ArmTranDefinition

ArmMetricDefinition
ARM

Implementation

Figure 15. Providing Descriptive Information Through the ARM Application Interface

Providing Descriptive Information Providing Descriptive Information Offline or Out-of-band

Application Response Measurement 3.0 - Java Binding 37

7.3 Providing Descriptive Information Offline or Out-of-band
Because the descriptive information is not combined with the measurement data until the data are
reported, there is no requirement to flow the definitional data through the application interfaces.
Providing facilities to flow the descriptive information data through the application interfaces is
offered as a possibly convenient option to the application. However, there are applications that,
because of their structure, do not really have an initialization stage that can be used to provide the
definitional data at runtime. For these types of applications, or any application preferring to use an
offline method, the information can be imported in an offline batch mode. The applications provide
only the measurement information and the UUIDs through the application interfaces.

This alternative is shown in Figure 16. The “Arm Implementation” in the “Offline batch job” block
will be implementation specific. The org.opengroup.arm3.application interfaces could be used.
Other implementations might provide a script to load a text file containing the data, or to store the
data in a CIM implementation, from which it could be extracted.

Offline batch job

Application Measurements

Reporting
classes

ArmTranDefinition

ArmMetricDefinition

ArmTransaction

ArmMetricArmMetricArmMetric

Definitions
Application

Install & Setup

ARM
Implementation

ARM
Implementation

Figure 16. Providing Descriptive Information Offline

Application Response Measurement 3.0 - Java Binding 39

/

Chapter 8
Error Handling Philosophy

It is inevitable that errors will occur when using the ARM interface. The error handling philosophy
of the ARM standard can be summed up as the following: “Programmers and system administrators
need to know about errors; programs do not.” The practical effect of this philosophy is that applications
do not need to check for errors, except when creating factory classes, when exceptions could be
thrown.

An application that contains programming errors, or that receives invalid data, could generate
invalid measurement data. This is a problem that programmers and system administrators should
correct. But at runtime there’s nothing an application can do about it, so the ARM interface takes
the approach of being as unobtrusive as possible, and permitting the application logic to flow
normally. Programmers testing programs, and system administrators managing systems using
ARM, should check for error reports from ARM implementations.

Any method that creates an ARM object, or a copy of an ARM object, will always return a valid non-
null object of that type. If invalid data is provided, the data within that object may be incorrect or
meaningless. However, the object will be syntactically correct, that is, it will be a valid Java object,
and any of its methods can be invoked without causing an exception.

8.1 Errors the Application Does Not Need to Test For
None of the interfaces in the four packages that comprise the standard define exceptions, and none
throw exceptions, except those that are so pervasive in Java classes that they do not have to be
declared. Exceptions that do not have to be declared are those that are subclasses of java.lang.Error
or java.lang.RuntimeException. Such exceptions can be thrown by practically any method. One
RuntimeException that is often encountered is ArrayIndexOutOfBoundsException. Examples of
exceptions that do have to be declared are IOExceptions.

Here are some examples of errors in the use of the ARM interface that are not exceptions:

• The application passes a null pointer when a non-null pointer is required.

• The application passes an invalid format ID or status value.

• The application passes an incorrectly formed correlator (which it may have received from
the program that called it, in which case the problem is in the program or system that called
it).

• When using ArmTransaction, two start() methods are executed consecutively without an
intervening stop() or reset(), or an update() method is executed without a start() first being
executed.

Errors the Application Should Test For Error Handling Philosophy

40 Open Group Technical Standard

ARM has two principles for handling this type of error:

• The programmer (during program development) and/or the system administrator (after the
application has been deployed into production) need to be aware of them so the problem
can be corrected.

• An application running in production does not need to be aware of them because there’s
nothing the application can do about them. If there’s a programming error that sets invalid
data, the program will continue to set the invalid data. Telling the program that an error
occurred provides no value and just clutters up the program. The program could write an
error message to a log, but a drawback to doing so is that a system administrator would
have to look in many places to find all the possible errors, because each application might
write the data in a different place.

The recommended approach is for the ARM implementation to have a mechanism for providing
programmers and/or system administrators with error notification. For example, the ARM
implementation could write the data to a log file and/or create and send an error event to an event
console. During development and testing, the programmer would inspect the log file for errors.
During production a system administrator would do the same. In this way a system administrator
will have one place to look for errors for all applications using ARM.

The content, format, and delivery mechanism for error notifications is not part of this standard. It is
implementation dependent. A good implementation will provide sufficient detail to not only detect
that a problem occurred, but to also isolate and resolve the problem.

8.2 Errors the Application Should Test For
There is one situation in which the application needs to test for errors. This situation is when the
application is creating factory classes. When doing so, there are three exceptions, all thrown by the
static methods of java.lang.Class, that the application should be prepared to catch. They most
likely indicate that the ARM environment has not been initialized correctly. For example, an ARM
implementation may not be in the class path, or the java.lang.properties file may contain
invalid class names. These exceptions are:

• java.lang.ClassNotFoundException signals that a class to be loaded could not be
found. It is thrown by Class.forName() .

• java.lang.IllegalAccessException signals that a class or initializer is not
accessible. It is thrown by Class.newInstance().

• java.lang.InstantiationException signals an attempt to instantiate an interface
or an abstract class. It is thrown by Class.newInstance().

Application Response Measurement 3.0 - Java Binding 41

/ Chapter 9
The ARM 3.0 Data Models

9.1 Summary

9.1.1 Mandatory Data

ARM requires the following mandatory identification data:

§ A 16-byte transaction ID uniquely identifies the type of transaction. Examples are “Query
Balance”, “Purchase Product”, and “Backup Data”. The recommended format for the 16-
byte ID is the Universally Unique Identifiers (UUID) standard, originally created as part of
DCE 1.1.

The transaction ID is optionally associated to two character strings, the name of the
transaction and the name of the application.

ARM requires the following mandatory measurement data. All transaction measurements include
these three values.

§ The status of a transaction can take one of four values: Good, Failed, Aborted, and
Unknown.

§ The response time of a transaction, measured in nanoseconds. (Although nanoseconds is
overkill for any current application, an 8-byte long value is used, so even when measuring
in nanoseconds, this will hold a value of 292 years. The alternative, a 4-byte integer value,
would have limited the interface forever to millisecond granularity.)

§ The timestamp when the transaction stops, from which, when combined with the response
time, the start timestamp can be calculated.

9.1.2 Optional Data

ARM defines the following optional identification data.

§ A UUID of a user definition. The user definition contains a character string of a user name.
There are no restrictions or implied assumptions on what constitutes a “user name”. Other
parameters might be added to the user definition later.

§ A unit of work token, called a correlator, that is intended to uniquely identify an instance of
a transaction across any JVM on any system. It is used, in conjunction with the parent
correlator described next, to show the relationship between transaction instances.

Summary The ARM 3.0 Data Models

42 Open Group Technical Standard

§ A unit of work token, called the parent correlator, which indicates the transaction instance
that spawned this transaction.

§ An 8-byte transaction handle, combined with the transaction ID, uniquely identifies an
instance of a transaction within one JVM. Handles were fundamental to the handshaking
in ARM 1.0 and ARM 2.0. In ARM 3.0 for Java, they are not needed for handshaking at all.
Their purpose is to provide a field in the correlator to differentiate between instances. They
can also be useful for problem diagnosis. Applications can ignore the field.

§ Zero to seven UUIDs of metric definitions. A metric definition defines the name and format
of data values (named “metrics” in ARM), either numeric or string, that represent other
interesting data related to a transaction instance. Some examples are the number of record
processed, an error code, and a measure of congestion when the transaction is invoked.

ARM defines the following optional measurement data.

§ Zero to seven data values, either numeric or string, for the metrics described above.

9.1.3 When to Create a New Identifier (UUID)

A UUID is assigned for three definition types: transaction, user, and metric. This raises an obvious
question – when should a UUID be reused versus when should a new UUID be created? The rule is
very simple. Each definition contains one or more attributes in addition to the UUID. If any of these
attributes change, a new (and by definition unique) UUID should be generated. The application
developer should assume that ARM implementations use UUIDs as data keys.

For example, say a metric definition has three attributes, the UUID, the format of the metric, and the
name of the metric. Assume the values are UUID=5732 (of course, this would really be a 16-byte
value), format=Counter32, name=”Bytes Transferred on Connection”. This triplet (5732, Counter32,
“Bytes Transferred on Connection”) is registered with an ARM implementation. Anytime the ARM
implementation sees UUID 5732, it knows how to store and report the data.

The application designer decides that a 32-bit counter is not sufficiently large and changes it to a
64-bit counter, and also changes the name to “Bytes Transferred on Session”. If the application does
not change the UUID, and instead registers the triplet (5732, Counter64, “Bytes Transferred on
Session”) the results are unpredictable. There would probably be versions using both triplet
combinations deployed simultaneously. There would be conflicts in data tables and reports at the
least.

The correct procedure is to generate a new UUID, and register a triplet such as (987654, Counter64,
“Bytes Transferred on Session”). The original (5732, Counter32, “Bytes Transferred on
Connection”) triplet remains registered as well. The results are now predictable and there should be
no conflicts.

The ARM 3.0 Data Models Data Model Using ArmTransaction

Application Response Measurement 3.0 - Java Binding 43

9.2 Data Model Using ArmTransaction
Figure 17 shows the data model when using ArmTransaction. To avoid clutter in the diagrams
ArmUUID and ArmCorrelator are not shown as separate classes.

If metrics are not used, only ArmTransaction needs to be used. If metrics are used, the
ArmTransaction object contains Java references to the ArmMetric objects. Only ArmTransaction
must be used. All others are optional.

• ArmTransaction. ArmTransaction is the only interface that must be used. An
application typically might create a pool of ArmTransaction instances. When a
transaction executes the application uses the paired methods start() and stop() to
indicate the beginning and end of the transaction. This is analogous to ARM 1.0/2.0. The
measurements for all transaction instances are status, response time, and time of day when
stopped. Optionally the application can also provide data to correlate parent and child
transactions and the UUID of a user definition. The ARM implementation maintains a
unique handle. If metrics are used, substitute ArmTransactionWithMetrics.

• ArmTransactionWithMetrics. ArmTransactionWithMetrics is a subclass of
ArmTransaction. If metrics are used (see the following descriptions of ArmMetric and
ArmMetricGroup), ArmTransactionWithMetrics is used instead of
ArmTransaction.

• ArmMetric (and its ten subclasses, such as ArmMetricCounter32). The application can
optionally augment the basic and correlation data with other data, called metrics. A metric
is a numeric or string value. It may represent a counter, such as the number of files
processed, a gauge, such as the queue length when the transaction executes, or information
such as an error number or the name of a file that was processed. An application creates
ArmMetric instances and associates them to one or more
ArmTransactionWithMetrics instances. When ArmTransactionWithMetrics
methods are processed the values in the ArmMetric instances are captured and
considered part of the data for the transaction.

A benefit of this approach is that the same ArmMetric object can be shared by many
instances of the same transaction or different transactions. Updating the value in one place
(the ArmMetric object) effectively propagates it to many ArmTransactionWithMetrics
objects, though the data is only captured when a start(), update(), or stop() call is made.

• ArmMetricGroup. ArmMetricGroup serves as a notational convenience, grouping one to
seven metrics into a set. If an ArmTransactionWithMetrics uses metrics, references to
each metric are grouped together in an ArmMetricGroup , which is passed to the
ArmTransactionWithMetrics when it is created. The
ArmTransactionWithMetrics extracts the references from the ArmMetricGroup and
binds to them directly. After this point in time the ArmMetricGroup is not needed any
more.

• ArmUserDefinition, ArmTranDefinition, and ArmMetricDefinition. The use of these
classes is optional. The use was described in the preceding section.

Data Model Using ArmTranReport The ARM 3.0 Data Models

44 Open Group Technical Standard

ArmTransaction

UUID of ArmTranDefinition
Status
Response time
Stop time
Transaction handle
Current correlator
Parent correlator
UUID of ArmUserDefinition

1 0..n

0,1 0..n

ArmMetric

Value

0..n

0..7
ArmMetricGroup

0..1

0..n0..7

0..n
ArmMetricDefinition

ArmTranDefinition

UUID
Metric name
Format

UUID
Application name
Transaction name
UUID of ArmMetricDefinition(s)[7]

0..7

0..n

ArmUserDefinition

UUID
User name

ArmTransactionWithMetrics

subclasses

Figure 17. ARM 3.0 Data Model Using ArmTransaction

Logically, all the associations shown are equivalent. ArmMetric is an abstract class. The real
classes are subclasses, such as ArmMetricCounter32 . The reason the association from
ArmTransaction to ArmMetric in the second figure is a solid line is that it is a direct reference
between Java objects. The dashed lines to/from ArmMetricGroup indicate that these are direct
Java references, but they are transient, because the information is extracted and stored in
ArmTransaction. The other associations are shown as dotted lines because it is the value of the
UUID attributes that connects them. A further diagrammatic convention is the use of arrows to
show that the associations are one-way in each case.

9.3 Data Model Using ArmTranReport
Figure 17 and Figure 18 summarize the data model. The model is based on the DMTF/CIM
Distributed Application Performance schema. To avoid clutter in the diagrams ArmUUID and
ArmCorrelator are not shown as separate classes.

Figure 18 shows the data model when using ArmTranReport. Each ArmTranReport instance is
a standalone object with no dependencies on any other object. Its association to other objects is
indirectly through the UUID of the ArmTranDefinition and optionally an
ArmUserDefinition . The dotted lines in the figures are meant to indicate that this is not a direct
Java reference.

• ArmTranReport, ArmTranReportWithMetrics. ArmTranReport and
ArmTranReportWithMetrics, its subclass, contain the information about a completed
transaction. Typically an application might create one ArmTranReport instance for each
type of transaction that it executes, or a pool of them if it is multi-threaded. When a
transaction completes, the application extracts one of the records, populates it, then calls

The ARM 3.0 Data Models Data Model Using ArmTranReport

Application Response Measurement 3.0 - Java Binding 45

process(). As soon as process() returns the application can reuse the
ArmTranReport instance.

• ArmUserDefinition. ArmUserDefinition is provided as a convenience to the
application. ArmUserDefinition maps a UUID to a user name. Other properties may be
added in the future.

• ArmTranDefinition. ArmTranDefinition is provided as a convenience to the
application. It maps a UUID to the application and transaction names, and to zero to seven
UUIDs of metric definitions. Other properties may be added in the future.

• ArmMetricDefinition. ArmMetricDefinition is provided as a convenience to the
application. ArmMetricDefinition maps a UUID to a name and to the format of a
metric. Other properties may be added in the future.

ArmTranReport

ArmMetricDefinition

ArmTranDefinition

UUID
Metric name
Format

UUID of ArmTranDefinition
Status
Response time
Stop time
Transaction handle
Current correlator
Parent correlator
UUID of ArmUserDefinition

UUID
Application name
Transaction name
UUID(s) of ArmMetricDefinition[7]

1

0..7

0..n

0..n

ArmUserDefinition

UUID
User name

0,1

0..n

ArmTranReportWithMetrics

Metric value(s)[7]
Metric format(s)[7]

subclasses

ArmSystem

Agent version
Agent instance
Agent vendor

ArmSystemId

ID (e.g., network address)
ID format

0..n 0..1

0..n

1

Figure 18. ARM 3.0 Data Model Using ArmTranReport

Application Response Measurement 3.0 - Java Binding 47

/ Chapter 10
The org.opengroup.arm3.* Packages

10.1 Interface list by Java Package
The following table lists all the interfaces, arranged by package name, and by alphabetical order
within the package. Most applications will use only the transaction package and can ignore the
other packages, which address specialized requirements.

There is one factory interface for each package. Use this factory interface to create instances of the
other interfaces.

org.opengroup.arm3.
transaction

org.opengroup.arm3.
tranreport

org.opengroup.arm3.
metric

org.opengroup.arm3.
definition

ArmConstants
ArmCorrelator
ArmToken
ArmTransaction
ArmTransactionFactory
ArmUUID

ArmSystem
ArmSystemId
ArmTranReport
ArmTranReportCorrelator
ArmTranReportFactory
ArmTranReportWithMetrics

ArmMetric
ArmMetricCounter32
ArmMetricCounter64
ArmMetricCounterFloat32
ArmMetricFactory
ArmMetricGauge32
ArmMetricGauge64
ArmMetricGaugeFloat32
ArmMetricGroup
ArmMetricNumericId32
ArmMetricNumericId64
ArmMetricString32
ArmMetricString8
ArmTransactionWithMetrics

ArmDefinitionFactory
ArmMetricDefinition
ArmTranDefinition
ArmUserDefinition

10.2 Interface List in Alphabetical Order
The following table lists in alphabetical order all the interfaces that comprise the standard, and lists
the Java package in which they can be found. To create instances of the class, use the appropriate
method of the factory class for the package.

Class Name (alphabetically) Java Package
ArmConstants

org.opengroup.arm3.transaction
ArmCorrelator org.opengroup.arm3.transaction

Interface List in Alphabetical Order Packages

48 Open Group Technical Standard

Class Name (alphabetically) Java Package
ArmDefinitionFactory

org.opengroup.arm3.definition

ArmMetric
org.opengroup.arm3.metric

ArmMetricCounter32 org.opengroup.arm3.metric
ArmMetricCounter64 org.opengroup.arm3.metric
ArmMetricCounterFloat32 org.opengroup.arm3.metric
ArmMetricDefinition org.opengroup.arm3.definition
ArmMetricFactory

org.opengroup.arm3.metric

ArmMetricGauge32 org.opengroup.arm3.metric
ArmMetricGauge64 org.opengroup.arm3.metric
ArmMetricGaugeFloat32 org.opengroup.arm3.metric
ArmMetricGroup org.opengroup.arm3.metric
ArmMetricNumericId32 org.opengroup.arm3.metric
ArmMetricNumericId64 org.opengroup.arm3.metric
ArmMetricString32 org.opengroup.arm3.metric
ArmMetricString8 org.opengroup.arm3.metric
ArmSystem org.opengroup.arm3.tranreport
ArmSystemId org.opengroup.arm3.tranreport
ArmToken org.opengroup.arm3.transaction
ArmTranDefinition org.opengroup.arm3.definition
ArmTranReport org.opengroup.arm3.tranreport
ArmTranReportCorrelator org.opengroup.arm3.tranreport

ArmTranReportFactory

org.opengroup.arm3.tranreport

ArmTranReportWithMetrics org.opengroup.arm3.tranreport
ArmTransaction org.opengroup.arm3.transaction
ArmTransactionFactory

org.opengroup.arm3.transaction

ArmTransactionWithMetrics org.opengroup.arm3.metric
ArmUserDefinition org.opengroup.arm3.definition
ArmUUID org.opengroup.arm3.transaction

10.2.1 Method Naming Conventions

Every attempt has been made to adhere to the naming conventions commonly used in Java
programs. Here is a list of a few to be aware of.

Packages Interface List in Alphabetical Order

Application Response Measurement 3.0 - Java Binding 49

• get() or getSomething() returns a primitive value or a reference to an object or array. If
it is a reference, the object (or array) to which it refers is treated as immutable. Treating the
object or array as immutable means the ARM implementation will not change the data in
the object or array. Some object types are entirely immutable, including String, ArmToken
and its subclasses (ArmCorrelator, ArmSystemId, ArmUUID), and ArmSystem.
Some object types will not be changed by the ARM implementation, but could be changed
by the application (an array or an object that implements ArmMetric).

• set() or setSomething() sets a primitive value or a reference to an object or array.

• copySomething(destination) copies the actual data to a byte array. It does not
merely copy the reference.

• isSomething() returns a boolean.

• newSomething() creates a Something object and returns a reference to it.

org.opengroup.arm3.transaction.ArmConstants Packages

50 Open Group Technical Standard

10.3 org.opengroup.arm3.transaction.ArmConstants
Defines some commonly used constants by several classes in the various packages.

Note that the slots are numbered from one to seven to remain consistent with previous versions of
ARM. This is different than the way that Java arrays are indexed. The first element in a Java array is
numbered zero, not one.

public interface ArmConstants {
// No Public Constructors
// Constants

public static final int ARM_ABORT; // Valid status value for ArmTranReport
 // and ArmTransaction (=1)
public static final int ARM_FAILED; // Valid status value for ArmTranReport
 // and ArmTransaction (=2)
public static final int ARM_GOOD; // Valid status value for ArmTranReport
 // and ArmTransaction (=0)
public static final int ARM_INVALID; // Status value used when application
 // passes an invalid value (=-1)
public static final int ARM_UNKNOWN; // Valid status value for ArmTranReport
 // and ArmTransaction (=3)
public static final int CORR_FORMAT_UNKNOWN; // Correlator format for a correlator that was
 // created from erroneous data (=127)
public static final int CORR_MAX_LENGTH; // Maximum length of a correlator
 // (currently = 168 bytes)
public static final int CORR_MIN_LENGTH; // Minimum length of a correlator
 // (currently = 4 bytes)
public static final int NAME_MAX_LENGTH; // Maximum length of a name in
 // characters (currently = 128 characters)
public static final int SLOTS; // Number of metric slots (currently = 7)
public static final int SLOT_MAX; // Maximum value of a metric slot (currently = 7)
public static final int SLOT_MIN; // Minimum value of a metric slot (currently = 1)
public static final int UUID_LENGTH; // Length of all UUIDs (16 bytes)

// No Instance Methods
}

Packages org.opengroup.arm3.transaction.ArmCorrelator

Application Response Measurement 3.0 - Java Binding 51

10.4 org.opengroup.arm3.transaction.ArmCorrelator
Implements a correlation token passed from a calling transaction to a called transaction. A
correlator contains a two-byte length field, a one-byte format ID, a one-byte flag field, plus it may
contain other data that is used to uniquely identify an instance of a transaction. All correlators
must adhere to the constraints described in Table 1. ARM Correlator Format Constraints on page
91. As long as the correlator byte array is created by a standards-compilant ARM implementation,
these constraints will be satisfied. Applications do not need to understand correlator formats.

The use of correlators is described in the “Understanding the Relationships Between Transactions”
section of this document (Chapter 4 on page 13).

equals(Object obj), a method inherited from java.lang.Object , returns true if the internal
data is byte-for-byte identical in two objects. For example, a.equals(b) returns true if and only if:

• Both a and b implement ArmCorrelator

• The inherited methods a.getBytes() and b.getBytes() would return byte arrays of
identical lengths and contents.

public interface ArmCorrelator extends ArmToken {
// No Public Constructors
// Public Instance Methods (in addition to those defined in ArmToken)
// (Implementations should also override equals() and hashCode() from java.lang.Object.)

public byte getFlags();
public byte getFormat();

}

org.opengroup.arm3.definition.ArmDefinitionFactory Packages

52 Open Group Technical Standard

10.5 org.opengroup.arm3.definition.ArmDefinitionFactory
Provides methods to create instances of optional classes for defining metadata about transactions,
metrics, and users, plus the UUID-to-name mappings. The format parameter of
newArmMetricDefinition must be one of the constants defined in ArmMetricDefinition.

See the discussion in the “Creating ARM Objects” section of this document (Chapter 6 on Page25)
for a description of how to use this interface.

If a null value is passed as the value of any of the parameters, an object is returned that contains
dummy data for the null parameter. For example, a null ArmUUID parameter might result in
creating an object in which the UUID value contains sixteen bytes of zeros or is replaced with a
UUID that is used in error situations. Different ARM implementations may handle the situation in
different ways, but in all cases, they will return an object that is syntactically correct, that is, any of
its methods can be invoked without causing an exception.

public interface ArmDefinitionFactory {
// Public Constants

public static final String propertyKey;
// Public Instance Methods

public ArmMetricDefinition newArmMetricDefinition(ArmUUID uuid, int format, String name);
public ArmTranDefinition newArmTranDefinition(ArmUUID uuid, String tranName, String
applName);
public ArmUserDefinition newArmUserDefinition(ArmUUID uuid, String name);

}

Packages org.opengroup.arm3.metric.ArmMetric

Application Response Measurement 3.0 - Java Binding 53

10.6 org.opengroup.arm3.metric.ArmMetric
This abstract interface is a superclass for all the metric interfaces. At present there are no public
behaviors.

Objects that implement a subclass of ArmMetric are used with ArmTransactionWithMetrics.
They are bound to ArmTransactionWithMetrics when the ArmTransactionWithMetrics
instance is created. Each ArmMetric instance can be bound to any number of
ArmTransactionWithMetrics instances. Setting the value of the ArmMetric instance
effectively sets the value for all the ArmTransactionWithMetrics instances to which it is
bound.

public interface ArmMetric extends Object {
// No Public Constructors
// No Public Instance Methods
}

org.opengroup.arm3.metric.ArmMetricCounter32 Packages

54 Open Group Technical Standard

10.7 org.opengroup.arm3.metric.ArmMetricCounter32
Implements a 32-bit integer counter. It is the same as ARM 2.0 metric type=1 (ARM_Counter32).

The use of this class is described in the “Additional Data About a Transaction” section of this
document (Chapter 5 on page 17).

public interface ArmMetricCounter32 extends ArmMetric {
// No Public Constructors
// Public Instance Methods

public int get();
public void set(int value);

}

Packages org.opengroup.arm3.metric.ArmMetricCounter64

Application Response Measurement 3.0 - Java Binding 55

10.8 org.opengroup.arm3.metric.ArmMetricCounter64
Implements a 64-bit integer counter. It is the same as ARM 2.0 metric type=2 (ARM_Counter64).

The use of this class is described in the “Additional Data About a Transaction” section of this
document (Chapter 5 on page 17).

public interface ArmMetricCounter64 extends ArmMetric {

// No Public Constructors
// Public Instance Methods

public long get();
public void set(long value);

}

org.opengroup.arm3.metric.ArmMetricCounterFloat32 Packages

56 Open Group Technical Standard

10.9 org.opengroup.arm3.metric.ArmMetricCounterFloat32
Implements a 32-bit floating-point counter. It is roughly equivalent to the ARM 2.0 metric type=3
(ARM_CntrDivr32). Instead of providing two integer values that can be divided to produce a
floating-point value, which is what was done in ARM 2.0, a floating-point value is provided
directly. This was not done in ARM 2.0 because ARM would have to support multiple floating
point formats, depending on the programming language and/or machine architecture.

The use of this class is described in the “Additional Data About a Transaction” section of this
document (Chapter 5 on page 17).

public interface ArmMetricCounterFloat32 extends ArmMetric {

// No Public Constructors
// Public Instance Methods

public float get();
public void set(float value);

}

Packages org.opengroup.arm3.definition.ArmMetricDefinition

Application Response Measurement 3.0 - Java Binding 57

10.10 org.opengroup.arm3.definition.ArmMetricDefinition
Each instance of this class represents a metric definition. A metric definition associates a 16-byte
UUID with:

• a data format (one of the ten supported formats)
• a name of up to 128 characters.

The UUID, name, and format are input parameters to the ArmDefinitionFactory method
newArmMetricDefinition(). The format must be one of the constants defined in this class (e.g.,
METRIC_COUNTER32). After the factory crea tes the metric definition object, the application should
call process() to register the data.

The use of this class is described in the “Providing Descriptive Information” section of this
document (Chapter 7 on page 33).

The observant reader may notice that there are no set() methods, and therefore wonder why
process() should need to be called at all. The reason is that this allows flexibility for the future. If
additional properties are added, and it isn’t desirable or practical to initialize them in the factory
method, set() methods for the new properties could be added and invoked prior to invoking
process() .

public interface ArmMetricDefinition {
// No Public Constructors
// Constants (all returned by getFormat()

public static final int METRIC_COUNTER32; // Matches ARM 2.0 value (=1)
public static final int METRIC_COUNTER64; // Matches ARM 2.0 value (=2)
public static final int METRIC_COUNTER_FLOAT32; // Matches ARM 2.0 value (=3)
public static final int METRIC_GAUGE32; // Matches ARM 2.0 value (=4)
public static final int METRIC_GAUGE64; // Matches ARM 2.0 value (=5)
public static final int METRIC_GAUGE_FLOAT32; // Matches ARM 2.0 value (=6)
public static final int METRIC_NUMERIC_ID32; // Matches ARM 2.0 value (=7)
public static final int METRIC_NUMERIC_ID64; // Matches ARM 2.0 value (=8)
public static final int METRIC_STRING32; // Matches ARM 2.0 value (=10)
public static final int METRIC_STRING8; // Matches ARM 2.0 value (=9)

// Public Instance Methods
public int getFormat();
public ArmUUID getUUID();
public String getName();
public void process();

}

org.opengroup.arm3.metric.ArmMetricFactory Packages

58 Open Group Technical Standard

10.11 org.opengroup.arm3.metric.ArmMetricFactory
Provides methods to create instances of the classes in the org.opengroup.arm3.metric package,
except ArmMetricDefinition, in the org.opengroup.arm3.definition package.

See the discussion in the “Creating ARM Objects” section of this document (Chapter 6 on Page25)
for a description of how to use this interface.

If a null value is passed as a parameter to newArmTransactionWithMetrics(), an object is
returned that contains dummy data for the invalid parameter. For example, if the array at “byte[]
uuidBytes“ is less than 16 bytes long, the UUID value might be padded with zeros or replaced
with a UUID that is used in error situations. Different ARM implementations may handle the
situation in different ways, but in all cases, they will return an object that is syntactically correct,
that is, any of its methods can be invoked without causing an exception.

public interface ArmMetricFactory {
// Public Constants

public static final String propertyKey;
// Public Instance Methods

public ArmMetricCounter32 newArmMetricCounter32();
public ArmMetricCounter64 newArmMetricCounter64();
public ArmMetricCounterFloat32 newArmMetricCounterFloat32();
public ArmMetricGauge32 newArmMetricGauge32();
public ArmMetricGauge64 newArmMetricGauge64();
public ArmMetricGaugeFloat32 newArmMetricGaugeFloat32();
public ArmMetricGroup newArmMetricGroup();
public ArmMetricNumericId32 newArmMetricNumericId32();
public ArmMetricNumericId64 newArmMetricNumericId64();
public ArmMetricString32 newArmMetricString32();
public ArmMetricString8 newArmMetricString8();
public ArmTransactionWithMetrics newArmTransactionWithMetrics(ArmUUID tranUUID,
ArmMetricGroup group);

}

Packages org.opengroup.arm3.metric.ArmMetricGauge32

Application Response Measurement 3.0 - Java Binding 59

10.12 org.opengroup.arm3.metric.ArmMetricGauge32
Implements a 32-bit integer gauge. It is the same as ARM 2.0 metric type=4 (ARM_Gauge32).

The use of this class is described in the “Additional Data About a Transaction” section of this
document (Chapter 5 on page 17).

public interface ArmMetricGauge32 extends ArmMetric {

// No Public Constructors
// Public Instance Methods

public int get();
public void set(int value);

}

org.opengroup.arm3.metric.ArmMetricGauge64 Packages

60 Open Group Technical Standard

10.13 org.opengroup.arm3.metric.ArmMetricGauge64
Implements a 64-bit integer gauge. It is the same as ARM 2.0 metric type=5 (ARM_Gauge64).

The use of this class is described in the “Additional Data About a Transaction” section of this
document (Chapter 5 on page 17).

public interface ArmMetricGauge64 extends ArmMetric {
// No Public Constructors
// Public Instance Methods

public long get();
public void set(long value);

}

Packages org.opengroup.arm3.metric.ArmMetricGaugeFloat32

Application Response Measurement 3.0 - Java Binding 61

10.14 org.opengroup.arm3.metric.ArmMetricGaugeFloat32
Implements a 32-bit floating-point gauge. It is roughly equivalent to the ARM 2.0 metric type=6
(ARM_GaugeDivr32). Instead of providing two integer values that can be divided to produce a
floating-point value, which is what was done in ARM 2.0, a floating-point value is provided
directly. This was not done in ARM 2.0 because ARM would have to support multiple floating
point formats, depending on the programming language and/or machine architecture.

The use of this class is described in the “Additional Data About a Transaction” section of this
document (Chapter 5 on page 17).

public interface ArmMetricGaugeFloat32 extends ArmMetric {
// No Public Constructors
// Public Instance Methods

public float get();
public void set(float value);

}

org.opengroup.arm3.metric.ArmMetricGroup Packages

62 Open Group Technical Standard

10.15 org.opengroup.arm3.metric.ArmMetricGroup
ArmMetricGroup is used to bind objects that implement a subclass of ArmMetric to an
ArmTransactionWithMetrics instance when an ArmTransactionWithMetrics is created.
ArmMetricGroup is a notational convenience. Using it consolidates all the ArmMetric bindings
in one parameter passed to the newArmTransactionWithMetrics() method of
ArmMetricFactory. The binding is done when ArmTransactionWithMetrics is created for
performance reasons (so no object creation and/or binding needs to be done while transactions are
being measured). After the newArmTransactionWithMetrics() method finishes executing the
ArmMetricGroup is no longer needed. It can be reused or garbage collected.

slot must have a value between ArmConstants.SLOT_MIN and ArmConstants.SLOT_MAX,
inclusive (which are currently equated to 1 and 7, respectively). To remain consistent with ARM 2.0,
any ArmMetric subclass except ArmMetricString32 can be assigned to slots 1-6 and only
ArmMetricString32 can be assigned to slot 7.

• set(slot, ArmMetric) binds an ArmMetric instance to one of the seven slots.
set(slot, null) is equivalent to clear(slot).

• clear(slot) sets the value for the slot to null.

• get(slot) returns the current value for the slot. This value may be null.

The use of this class is described in the “ ” section of this document (Section 0 on page 45).

public interface ArmMetricGroup extends Object {
// No Public Constructors
// Public Instance Methods

public void clear(int slot);
public ArmMetric get(int slot);
public void set(int slot, ArmMetric metric);

}

Packages org.opengroup.arm3.metric.ArmMetricNumericId32

Application Response Measurement 3.0 - Java Binding 63

10.16 org.opengroup.arm3.metric.ArmMetricNumericId32
Implements a 32-bit integer numeric ID. It is the same as ARM 2.0 metric type=7
(ARM_NumericID32).

The use of this class is described in the “Additional Data About a Transaction” section of this
document (Chapter 5 on page 17).

public interface ArmMetricNumericId32 extends ArmMetric {
// No Public Constructors
// Public Instance Methods

public int get();
public void set(int value);

}

org.opengroup.arm3.metric.ArmMetricNumericId64 Packages

64 Open Group Technical Standard

10.17 org.opengroup.arm3.metric.ArmMetricNumericId64
Implements a 64-bit integer numeric ID. It is the same as ARM 2.0 metric type=8
(ARM_NumericID64).

The use of this class is described in the “Additional Data About a Transaction” section of this
document (Chapter 5 on page 17).

public interface ArmMetricNumericId64 extends ArmMetric {

// No Public Constructors
// Public Instance Methods

public long get();
public void set(long value);

}

Packages org.opengroup.arm3.metric.ArmMetricString32

Application Response Measurement 3.0 - Java Binding 65

10.18 org.opengroup.arm3.metric.ArmMetricString32
Implements a String of 1 to 32 characters. It is similar to the ARM 2.0 metric type=10
(ARM_String32), with two differences.

• The characters are in the Java standard UCS-2 format, whereas ARM 2.0 characters are in
UTF-8 format.

• The limit of 32 in ARM 2.0 is a byte limit (a character in UTF-8 is represented as 1, 2, or 3
bytes). The limit in the ARM 3.0 Java bindings is a character limit. UCS-2 characters are two
bytes in length, so a string of 32 characters will be 64 bytes long.

The use of this class is described in the “Additional Data About a Transaction” section of this
document (Chapter 5 on page 17).

public interface ArmMetricString32 extends ArmMetric {

// No Public Constructors
// Public Instance Methods

public String get();
public void set(String s);

}

org.opengroup.arm3.metric.ArmMetricString8 Packages

66 Open Group Technical Standard

10.19 org.opengroup.arm3.metric.ArmMetricString8
Implements a String of 1 to 8 characters. It is similar to the ARM 2.0 metric type=9 (ARM_String8),
with two differences.

• The characters are in the Java standard UCS-2 format, whereas ARM 2.0 characters are in
UTF-8 format.

• The limit of 8 in ARM 2.0 is a byte limit (a character in UTF-8 is represented as 1, 2, or 3
bytes). The limit in the ARM 3.0 Java bindings is a character limit. UCS-2 characters are two
bytes in length, so a string of 8 characters will be 16 bytes long.

The use of this class is described in the “Additional Data About a Transaction” section of this
document (Chapter 5 on page 17).

public interface ArmMetricString8 extends ArmMetric {

// No Public Constructors
// Public Instance Methods

public String get();
public void set(String s);

}

Packages org.opengroup.arm3.tranreport.ArmSystem

Application Response Measurement 3.0 - Java Binding 67

10.20 org.opengroup.arm3.tranreport.ArmSystem
ArmSystem is used when ArmTranReport is used to report data about transactions that executed
on a different system. In this case the ArmSystem should contain the fields of the system on which
the transaction executed. When transactions are reported on the same system on which they are
measured, the application does not have to use ArmSystem. The ARM implementation will
provide all the fields (probably as part of its initialization setup, possibly with the input of a system
administrator).

Within one JVM a transaction instance is distinguished from all other instances by the combination
of the transaction UUID and the transaction handle (a 64-bit integer). Although there is a theoretical
potential for duplicate handles, it should be easy for an ARM implementation to prevent them
occurring during the lifetime of interest of a transaction record. By themselves the transaction UUID
and handle will not prevent conflicts between multiple JVMs on the same system, or between JVMs
on different systems. Because correlating transactions needs to work across systems, more fields are
needed to disambiguate all the transaction instances and records.

Five fields in ArmSystem are provided for this purpose. The combination of all five plus the
transaction UUID and handle greatly lessens the potential for collisions.

• System ID. The system ID is the network name or address of the system, as it would be sent
in a data frame across a network in network byte order. This and the System ID format field
are encapsulated in an ArmSystemId object.

• System ID format. The format of the system ID, such as an SNA address or a hostname.
This and the System ID field are encapsulated in an ArmSystemId object.

• Instance . There could be several JVMs running on the same system, all sharing the same
system ID, especially if the system ID does not contain a distinguishing identifier such as a
port number. This 2 -byte field can be set by an administrator to a unique value for each JVM
to disambiguate between them.

• Vendor ID. Different organizations will provide ARM implementations, and each ARM
implementation may have unique capabilities. It could be useful for an analysis program to
know that a correlator was generated by an ARM implementation provided by a certain
vendor, and at a certain version level. This could help the analysis program know where to
look for additional information, for example.

In order to minimize the possibility of two vendors using the same vendor ID, the value
should be taken from the list of enterprise identifiers from the Internet Assigned Numbers
Authority (IANA). This list was created for vendors who have SNMP agents. Although the
ARM specification does not require or endorse SNMP, it's likely that many of the
organizations that will create an ARM agent will have at least one enterprise ID assigned.
The list of enterprise IDs can be found at:

 ftp://ftp.isi.edu/in-notes/iana/assignments/enterprise-numbers.

For organizations that don't have an enterprise identifier assigned by the IANA, the values
between 32768-65535 are reserved for agent developers to use. There are no semantics
associated with these ids. It is expected that most agent developers will have a formally

org.opengroup.arm3.tranreport.ArmSystem Packages

68 Open Group Technical Standard

assigned vendor id, and it will be an unusual situation where another id is needed, but this
provides a solution. There is a risk that two different agent developers will choose the
same id, but this risk is deemed acceptably small.

• Agent Version. The Agent Version is used to distinguish between different versions of an
agent, and will be most useful when the capabilities and/or interfaces of an agent change
from one release to another. It will also be useful to distinguish between different agents
from the same vendor. Each vendor is responsible for avoiding having multiple agents
with different capabilities using the same Vendor ID + Agent Version values.

The fields are set using the newArmSystem() method of ArmTranReportFactory or the
getArmSystem() method of ArmTranReportCorrelator. There are no set() methods for the
individual fields. The object is immutable.

public interface ArmSystem {
// No Public Constructors
// Public Instance Methods

public short getAgentVersion();
public short getInstance();
public ArmSystemId getSystemId();
public short getVendorId();

}

Packages org.opengroup.arm3.tranreport.ArmSystemId

Application Response Measurement 3.0 - Java Binding 69

10.21 org.opengroup.arm3.tranreport.ArmSystemId
Encapsulates the network addressing information for a system. It is used within correlation tokens
and as input to ArmSystem.

• System ID. The system ID is the network name or address of the system, as it would be sent
in a data frame across a network in network byte order, or a UUID that can be mapped to
the network name or address.

• System ID format. The format of the system ID, such as an SNA address or a hostname.

equals(Object obj), a method inherited from java.lang.Object , returns true if the internal
data is byte-for-byte identical in two objects. For example, a.equals(b) returns true if and only if:

• Both a and b implement ArmSystemId

• The inherited methods a.getBytes() and b.getBytes() would return byte arrays of
identical lengths and contents

• a.getFormat() and b.getFormat() would return identical values.

The fields are set using the newArmSystemId() method of ArmTranReportFactory or the
getArmSystemId() method of ArmSystem. There are no set() methods for the individual
fields. The object is immutable.

public interface ArmSystemId extends ArmToken {
// public constants

public static final short FORMAT_HOSTNAME;
public static final short FORMAT_IPV4;
public static final short FORMAT_IPV4PORT;
public static final short FORMAT_IPV6;
public static final short FORMAT_IPV6PORT;
public static final short FORMAT_SNA;
public static final short FORMAT_UUID;
public static final short FORMAT_X25;

// No Public Constructors
// Public Instance Methods (in addition to those defined by ArmToken)
// (Implementations should also override equals() and hashCode() from java.lang.Object.)

public short getFormat();
}

org.opengroup.arm3.transaction.ArmToken Packages

70 Open Group Technical Standard

10.22 org.opengroup.arm3.transaction.ArmToken
This abstract interface is a superclass for other classes that consist of a byte array data token, plus
optionally other data. Subclasses include ArmCorrelator, ArmSystemId, and ArmUUID.

This abstract interface is a superclass of ArmCorrelator, ArmSystemId, and ArmUUID,
expressing the common part of their interfaces. ArmToken is abstract in the sense that any
ArmToken object returned by any method in this specification satisfies one of the subclass
interfaces. Objects of these identify particular entities. These objects contain a byte array data token,
plus optionally other identifying data, which together comprise the value of the object.

To make it possible to compare the values of these tokens, and to use these tokens as hashkeys (so
that the user can associate data with a particular token), this specification requires that any class
implementing any of these types override the java.lang.Object methods equals(Object)
and hashCode(). The behavior of these methods must be the following.

a.equals(b) returns true if the ArmToken objects a and b have the same value (internal data is
byte-for-byte identical in two objects). That is, a.equals(b) is true if and only if:

• a and b implement the same interface ArmCorrelator, ArmSystemId, or ArmUUID.

• a.getBytes() and b.getBytes() would return byte arrays of identical lengths and
contents.

• If a subclass of ArmToken defines other data values (specifically, ArmSystemId defines a
short field named format), these other data values are all identical.

If a.equals(b)==true, a.hashCode() and b.hashCode() will return the same value. The
hashCode() value is implementation-dependent. In other words, hashcode values are not
necessarily portable. A hashcode generated on one system by one implementation may not equal a
hashcode value generated on another system by a different implementation, even if
a.equals(b)==true .

copyBytes(byte[] dest) copies the token’s byte array into the destination byte array, which
must have a length greater than or equal to the token’s byte array.

copyBytes(byte[] dest, int offset) copies the token’s byte array into the destination
byte array at the specified offset. The destination array must be large enough to hold the byte array
value, that is, dest.length-offset >= token.getLength() .

getBytes() returns a newly allocated byte array initialized to the value of the token’s byte array.

getLength() returns the size of the byte array part of the value.

public abstract interface ArmToken extends Object {
// No Public Constructors
// Public Instance Methods
// (Subclasses should also override equals() and hashCode() from java.lang.Object.)

public boolean copyBytes (byte[] dest);
public boolean copyBytes (byte[] dest, int offset);
public byte[] getBytes();
public int getLength();

Packages org.opengroup.arm3.transaction.ArmToken

Application Response Measurement 3.0 - Java Binding 71

}

org.opengroup.arm3.definition.ArmTranDefinition Packages

72 Open Group Technical Standard

10.23 org.opengroup.arm3.definition.ArmTranDefinition
Each instance of this class represents a transaction definition. A transaction definition associates a
16-byte universally unique ID with:

• an application name of up to 128 characters (ApplName)
• a transaction name of up to 128 characters (TranName)
• zero to seven metric definition IDs (also 16-byte universally unique IDs).

The UUID and names are input parameters to the ArmDefinitionFactory method
newArmTranDefinition(). After the factory creates the metric definition object, the application
may use setMetricUUID() to assign metric UUIDs to any of the seven slots. After setting any
metric definitions, the application should call process() to register the data.

The use of this class is described in the “Providing Descriptive Information” section of this
document (Chapter 7 on page 33).

After process() is called, the object should be treated as being immutable. ARM implementations
may enforce this by doing nothing when setMetricUUID() is executed after process() has
been executed. This is because the mapping of the UUID to the names and metric UUIDs needs to be
unique, as described in Section 9.1.3. Any change to any value requires a new UUID, which can
only be set with newArmTranDefinition().

public interface ArmTranDefinition {
// No Public Constructors
// Public Instance Methods

public String getApplName ();
public ArmUUID getMetricUUID(int slot);
public ArmUUID getUUID();
public String getTranName ();
public void process();
public void setMetricUUID(int slot, ArmUUID uuid);

}

Packages org.opengroup.arm3.tranreport.ArmTranReport

Application Response Measurement 3.0 - Java Binding 73

10.24 org.opengroup.arm3.tranreport.ArmTranReport
Applications use ArmTranReport to report the results of a transaction that completed previously.
The application would have measured the response time. The transaction could have executed on
the local system or on a remote system. If it executes on a remote system, ArmSystem is used to
provide the addressing information for the remote system and the JVM instance on it. If the
application uses metrics, the subclass ArmTranReportWithMetrics should be used. It has all
the behaviors of ArmTranReport plus the metric behaviors.

The fundamental rule for correct usage of ArmTranReport is to execute a pair of methods for each
transaction instance, one from the “init” family, init() or initGenCorr(), and one of the
process() methods. The reason this rule must be followed is that the handle, which
distinguishes transaction instances from each other, and all other identity information, is set when
one of the “init” methods is executed. Executing two process() methods in a row will result in a
duplicate transaction handle, and conflicting data when it is processed, such as in a reporting
application.

The “init” methods establish the identity of a transaction. The identity includes the transaction
UUID, the transaction handle, the parent correlator (if any), and the five fields in ArmSystem.

• init() requires the transaction UUID. Optionally the ArmSystem and/or parent
correlator can be provided. If no ArmSystem is provided, the ARM implementation uses
the default for the local system. init() generates a new transaction handle and stores it
internal to the ArmTranReport object.

Because an ArmTranReportCorrelator contains the transaction UUID, ArmSystem,
and transaction handle, it can be used as an input parameter instead of the transaction
UUID and ArmSystem. In this case, a new transaction handle is not generated. The handle
in the ArmTranReportCorrelator is used.

• initGenCorr() is identical to init() except that it also generates a correlator and
returns a reference to it. The application can use the ArmToken methods copyBytes() to
copy its data into an existing byte array, or the getBytes() method to create a new array,
populated with the data. The program needs the byte array values if it is going to send it to
a partner program, like a server, so the transactions can be linked together.

The process() method reports the measurement data, and a user UUID if there is one. It is
executed once per measured transaction. It should not be executed again until one of the “init”
family of methods is executed. The status value of must be one of ARM_ABORT , ARM_FAILED,
ARM_GOOD, or ARM_UNKNOWN (all defined in ArmConstants). The response time is the time in
nanoseconds. The stop time format is the same as the Java system clock returned from
java.lang.System.currentTimeMillis().

To correlate transactions using ArmTranReport , if there are child transactions, initGenCorr()
is executed prior to the transaction being executed. This is necessary because the correlator is
passed to any child transactions, and therefore it must be available before the child transactions are
invoked. process() is executed after the execution completes, when the status and response time
are known.

org.opengroup.arm3.tranreport.ArmTranReport Packages

74 Open Group Technical Standard

The get() methods can be used to see the data within an object. Ordinarily an application would
have no need to use them. getCorr(), getParentCorr(), getTranUUID(), getUserUUID() ,
and initGenCorr() will return immutable objects.

getTranHandle() will return a positive number. Otherwise there are no specified semantics on
how one is generated, as long as it is unique for a combination of the transaction UUID plus the
ArmSystem parameters that are in the correlator (which the application need not be concerned
with).

public interface ArmTranReport {
// No Public Constructors
// Public Instance Methods

public ArmTranReportCorrelator getCorr();
public ArmCorrelator getParentCorr();
public long getResponseTime();
public int getStatus ();
public long getStopTime();
public long getTranHandle();
public ArmUUID getTranUUID();
public ArmUUID getUserUUID();
public void init(ArmUUID tranUUID);
public void init(ArmUUID tranUUID, ArmSystem sys);
public void init(ArmUUID tranUUID, ArmSystem sys, ArmCorrelator parentCorr);
public void init(ArmUUID tranUUID, ArmCorrelator parentCorr);
public void init(ArmTranReportCorrelator corr); // Uses uuid, handle, and

 // ArmSystem values in corr
public void init(ArmTranReportCorrelator corr, ArmCorrelator parentCorr);
 // Uses uuid, handle, and ArmSystem
 // values in corr
public ArmTranReportCorrelator initGenCorr(ArmUUID tranUUID);
public ArmTranReportCorrelator initGenCorr(ArmUUID tranUUID, ArmSystem sys);
public ArmTranReportCorrelator initGenCorr(ArmUUID tranUUID, ArmSystem sys, ArmCorrelator
parentCorr);
public ArmTranReportCorrelator initGenCorr(ArmUUID tranUUID, ArmCorrelator parentCorr);
public void process(int status, long respTime);
public void process(int status, long respTime , long stopTime);
public void process(int status, long respTime , long stopTime, ArmUUID userUUID);

}

Packages org.opengroup.arm3.tranreport.ArmTranReportCorrelator

Application Response Measurement 3.0 - Java Binding 75

10.25 org.opengroup.arm3.tranreport.ArmTranReportCorrelator
Represents a particular correlator format. A correlator of this format contains the following fields.
The ARM Format=2 correlator (described in Table 3. ARM Correlator Format 2 on page 97) is an
example of a correlator format with these fields. The methods are accessor methods that return these
values.

• A sixteen-byte UUID representing the transaction UUID. It is the same parameter as the
tranUUID parameter passed to the init() method of ArmTranReport.

• An eight-byte long representing the transaction handle. It is the same value returned by the
getTranHandle() method of ArmTranReport.

• The parameters contained within ArmSystem.

If using ArmTranReportCorrelator , care must be taken that the correlator byte array passed to
the ArmTranReportFactory method newArmTranReportCorrelator() is a correlator that
contains this data. The surest way to insure this is to provide a correlator in format 2, described in
Table 3. ARM Correlator Format 2 on page 97. If the ARM implementation does not recognize the
data it is passed, newArmTranReportCorrelator() will return an object that contains dummy
data (such as all zeros for most of the data fields.) This object is syntactically correct, that is, any of
its methods can be invoked without causing an exception, though the data in the correlator may be
meaningless and may not be unique. This is more than a hypothetical distinction, because the
correlator format 1 defined by the ARM 2.0 specification (see Table 2. ARM Correlator Format 1 on
page 93) is not of this format. Using ArmTransaction avoids this complication.

As a subclass of ArmCorrelator , all the behaviors of ArmCorrelator apply.

public interface ArmTranReportCorrelator extends ArmCorrelator {
// No Public Constructors
// Public Instance Methods

public ArmSystem getArmSystem();
public long getTranHandle();
public ArmUUID getTranUUID();

}

org.opengroup.arm3.tranreport.ArmTranReportFactory Packages

76 Open Group Technical Standard

10.26 org.opengroup.arm3.tranreport.ArmTranReportFactory
Provides methods to create instances of the classes in the org.opengroup.arm3.tranreport
package.

See the discussion in the “Creating ARM Objects” section of this document (Chapter 6 on Page25)
for a description of how to use this interface.

If a null value is passed as the value of any of the parameters, or the parameters are otherwise
invalid (such as an offset that extends beyond the end of an array), an object is returned that
contains dummy data for the invalid parameter. For example, a null “byte[] corrBytes“
parameter might result in creating an object with a correlator that contains mostly zeros. Different
ARM implementations may handle the situation in different ways, but in all cases, they will return
an object that is syntactically correct, that is, any of its methods can be invoked without causing an
exception.

public interface ArmTranReportFactory {
// Public Constants

public static final String propertyKey;
// Public Instance Methods

public ArmSystem newArmSystem(); // Uses the default values for the local system
public ArmSystem newArmSystem(ArmSystemId sysid, short instance, short vendorId , short
agentVer);
public ArmSystemId newArmSystemId(short format, byte[] idBytes);
public ArmSystemId newArmSystemId(short format, byte[] idBytes, int offset);
public ArmSystemId newArmSystemId(short format, byte[] idBytes, int offset, int length);
public ArmTranReport newArmTranReport();
public ArmTranReportCorrelator newArmTranReportCorrelator(byte[] corrBytes);
public ArmTranReportCorrelator newArmTranReportCorrelator (byte[] corrBytes, int offset);
public ArmTranReportWithMetrics newArmTranReportWithMetrics();

}

Packages org.opengroup.arm3.tranreport.ArmTranReportWithMetrics

Application Response Measurement 3.0 - Java Binding 77

10.27 org.opengroup.arm3.tranreport.ArmTranReportWithMetrics
ArmTranReport does not support the use of metrics. ArmTranReportWithMetrics is a
subclass of ArmTranReport that adds the metric support.

The use of metrics is described in the “Additional Data About a Transaction” section of this
document (Chapter 5 on page 17).

The metrics are used in addition to ArmTranReport semantics. The values are set or cleared prior
to executing the ArmTranReport process() method. They can be executed before or after one of
the “init” family of methods is executed. Note that unlike ArmTransactionWithMetrics,
ArmTranReportWithMetrics does not use separate ArmMetric objects to contain the metric
values. The values are set directly into the ArmTranReportWithMetrics object.

Metrics are assigned to one of seven slots, which are numbered from 1 to 7. In a Java program, these
fixed indexes (the slots) are rather clumsy. This isn’t the best way to do it. However, backwards
compatibility with previous versions of ARM requires them. The analysis and reporting programs
that support ARM metrics would require major overhauls if a different data model is used, and this
is unacceptable. ARM 2.0 defined a C language interface, and metrics were provided at fixed offsets
into a buffer, and the metric definitions were done the same way. This explains why some aspects
of the metric interface look and feel like a procedural interface, rather than an object-oriented
interface.

An application using metrics needs to take care to use the same slot indexes that are used for the
definitions. If the metric definition states that there is a 64-bit gauge in slot 5, the application is
obliged to only store 64-bit gauge data in that slot using setMetricGauge64(5, value) , for
example. Storing different data should not cause a runtime error but it will cause an error when the
data are reported.

There are 23 methods, but it’s easier to think of them as five method types.

• clearMetric(slot) indicates that the data in the slot has no meaning at this time.

• getMetricType(slot) returns one of the ten constants defined in
ArmMetricDefinition , which indicates the format of the data in the slot.

• isMetricSet(slot) indicates if the data in the slot has meaning at this time.

• The ten getMetricXYZ(slot) methods, where “XYZ” is replaced with one of the ten
metric types, returns the current value, whether it is valid or not. If the format part of the
method name (e.g., “Counter32”) does not match the format part used to set the data, the
returned data is unpredictable. For example, if setMetricString8(1,“Update”) set a
string value in slot 1, and getMetricCounter32(1) requests an integer value, the
returned data value is unpredictable. Such a request, even though it is invalid, will not
cause a runtime error or an exception to be thrown. Similarly, unpredictable data will be
returned, and no exception thrown, if isMetricSet(slot)==false for the specified
slot.

• The ten setMetricXYZ(slot, value) methods, where “XYZ” is replaced with one of
the ten metric types, sets the current value and marks the data as valid.

public interface ArmTranReportWithMetrics extends ArmTranReport {

org.opengroup.arm3.tranreport.ArmTranReportWithMetrics Packages

78 Open Group Technical Standard

// No Public Constructors
// Public Instance Methods

public void clearMetric(int slot);
public int getMetricCounter32(int slot) ;
public long getMetricCounter64(int slot) ;
public float getMetricCounterFloat32(int slot) ;
public int getMetricGauge32(int slot) ;
public long getMetricGauge64(int slot) ;
public float getMetricGaugeFloat32(int slot) ;
public int getMetricNumericId32(int slot) ;
public long getMetricNumericId64(int slot) ;
public String getMetricString32(int slot) ;
public String getMetricString8(int slot);
public int getMetricType(int slot);
public boolean isMetricSet(int slot);
public void setMetricCounter32(int slot, int value);
public void setMetricCounter64(int slot, long value);
public void setMetricCounterFloat32(int slot, float value);
public void setMetricGauge32(int slot, int value);
public void setMetricGauge64(int slot, long value);
public void setMetricGaugeFloat32(int slot , float value);
public void setMetricNumericId32(int slot, int value);
public void setMetricNumericId64(int slot, long value);
public void setMetricString32(int slot, String value);
public void setMetricString8(int slot , String value);

}

Packages org.opengroup.arm3.transaction.ArmTransaction

Application Response Measurement 3.0 - Java Binding 79

10.28 org.opengroup.arm3.transaction.ArmTransaction
For most applications, ArmTransaction is the most important of all the ARM classes, and the
most widely used. Instances of ArmTransaction represent transactions when they execute. The
application creates as many instances as it needs. This will typically be at least as many as the
number of transactions that can be executing simultaneously. An application may create a pool of
ArmTransaction objects, take one from the pool to use when a transaction starts, and put it back
in the pool after the transaction ends for later reuse. Another strategy is to create one per thread.

start(), update(), and stop() are used to indicate that transactions are starting, continuing to
execute, or ending, respectively. The status value of stop()must be one of ARM_ABORT,
ARM_FAILED, ARM_GOOD, or ARM_UNKNOWN (all defined in ArmConstants).

After start() executes the object should not be reused for a different transaction instance until
either stop() or reset() are used. As soon as stop(), or reset() complete, the object can be
reused. There is no need to save any of the internal state from the previous transaction. The state
will have already been captured. If two start() methods are executed without an intervening
stop(), the first start() is ignored. The ARM implementation may also report the error to a
system administrator in some out-of-band way that is implementation-specific, but it will not report
the error back to the application.

There are four versions of start(), depending on whether a user UUID and/or a parent correlator
is provided.

Each instance of a transaction needs to have a unique identifier in case a correlator is generated for
it. The ARM specification defines internal formats that should make the correlator unique.
Applications need not be concerned with the contents of a correlator.

There are several optional features.

• getCorr() returns a reference to the correlator for the current transaction. It will return a
newly created immutable object. It can be executed anytime after start() is executed until the
next start() or reset() is executed, and it will return an object with the same value each
time.

• If metrics are provided, the subclass ArmTransactionWithMetrics, in the
org.opengroup.arm3.metrics package, should be used. See its description for details.

• If no transaction is currently executing, i.e., there has been no start() since the last stop(),
getResponseTime() returns the response time of the last completed transaction. If a
transaction is currently executing, i.e., there has been no stop() since the last start(),
getResponseTime() returns the elapsed time since the current transaction started.

Except for getCorr() , applications will normally not use any of the get() methods. getCorr(),
getParentCorr(), getTranUUID(), and getUserUUID() will return newly created
immutable objects.

getTranHandle() will return a positive number. Otherwise there are no specified semantics on
how one is generated, as long as it is unique for a combination of the transaction UUID plus the
ArmSystem parameters that are in the correlator (which the application need not be concerned
with).

org.opengroup.arm3.transaction.ArmTransaction Packages

80 Open Group Technical Standard

public interface ArmTransaction {
// No Public Constructors
// Public Instance Methods

public ArmCorrelator getCorr();
public ArmCorrelator getParentCorr();
public long getRespTime();
public int getStatus ();
public long getStopTime();
public long getTranHandle();
public ArmUUID getTranUUID();
public ArmUUID getUserUUID();
public void reset();
public void start();
public void start(ArmCorrelator parentCorr);
public void start(ArmUUID userUUID);
public void start(ArmUUID userUUID, ArmCorrelator parentCorr);
public long stop(int status);
public synchronized void update();

}

Packages org.opengroup.arm3.transaction.ArmTransactionFactory

Application Response Measurement 3.0 - Java Binding 81

10.29 org.opengroup.arm3.transaction.ArmTransactionFactory
This class is used to create instances of the classes in the org.opengroup.arm3.transaction
package.

See the discussion in the “Creating ARM Objects” section of this document (Chapter 6 on Page25)
for a description of how to use this interface.

No length field is passed to newArmUUID() because all UUIDs are the same length (16 bytes).

No length field is passed to newArmCorrelator() because ARM requires that the length of the
correlator be found in the first two bytes of the byte array (either at corrBytes or corrBytes+offset).
For more details, see Table 1. ARM Correlator Format Constraints on page 91.

If a null value is passed as the value of any of the parameters, or the parameters are otherwise
invalid (such as an offset that extends beyond the end of an array), an object is returned that
contains dummy data for the invalid parameter. For example, a null “byte[] corrBytes“
parameter might result in creating an object with a correlator in format 127 (see Table 4. ARM
Correlator Format 127 on page 101.) In another example, if the array at “byte[] uuidBytes“ is
less than 16 bytes long, the UUID value might be padded with zeros or replaced with a UUID that is
used in error situations. Different ARM implementations may handle the situation in different
ways, but in all cases, they will return an object that is syntactically correct, that is, any of its
methods can be invoked without causing an exception, even if the data may be at least partially
meaningless.

public interface ArmTransactionFactory {
// Public Constants

public static final String propertyKey;
// Public Instance Methods

public ArmCorrelator newArmCorrelator(byte[] corrBytes);
public ArmCorrelator newArmCorrelator(byte[] corrBytes, int offset);
public ArmTransaction newArmTransaction(ArmUUID tranUUID);
public ArmUUID newArmUUID (byte[] uuidBytes);
public ArmUUID newArmUUID (byte[] uuidBytes , int offset);

}

org.opengroup.arm3.metric.ArmTransactionWithMetrics Packages

82 Open Group Technical Standard

10.30 org.opengroup.arm3.metric.ArmTransactionWithMetrics
This subclass of ArmTransaction is used if the application wishes to use metrics. All the
ArmTransaction rules for using start(), stop(), etc., apply to
ArmTransactionWithMetrics . It extends ArmTransaction by adding methods to manipulate
metrics.

• If metrics are provided the ArmMetric subclass objects are bound to an
ArmTransactionWithMetrics object when the ArmTransactionWithMetrics is
created. This is done by specifying ArmMetricGroup in the
newArmTransactionWithMetrics() method of ArmMetricFactory. The
ArmMetricGroup instance is not used after the ArmTransactionWithMetrics instance
has been created.

• The value that getMetric(slot) returns depends on the value in ArmMetricGroup for
that slot when ArmTransactionWithMetrics is created. If the get(slot) method of
ArmMetricGroup would have returned a reference to an object that implements a subclass of
ArmMetric, this reference value is returned. If get(slot) would have returned null, null
is returned.

• setMetricValid(slot) is used to indicate if an ArmMetric subclass assigned to a slot is
valid when any of a start(), update(), or stop() call is made. If the valid flag is set
then the metric values are processed.

• isMetricValid(slot) indicates if an ArmMetric subclass assigned to a slot is valid.

public interface ArmTransactionWithMetrics extends ArmTransaction {
// No Public Constructors
// Public Instance Methods

public ArmMetric getMetric(int slot);
public boolean isMetricValid(int slot);
public void setMetricValid(int slot, boolean value);

}

Packages org.opengroup.arm3.definition.ArmUserDefinition

Application Response Measurement 3.0 - Java Binding 83

10.31 org.opengroup.arm3.definition.ArmUserDefinition
Each instance of this class represents a user definition. A user definition associates a 16-byte
universally unique ID with:

• An user name of up to 128 characters

The UUID and names are input parameters to the ArmDefinitionFactory method
newArmUserDefinition(). After the factory creates the metric definition object, the application
should call process() to register the data.

The use of this class is described in the “Providing Descriptive Information” section of this
document (Chapter 7 on page 33).

The observant reader may notice that there are no set() methods, and therefore wonder why
process() should need to be called at all. The reason is that this allows flexibility for the future. If
additional properties are added, and it isn’t desirable or practical to initialize them in the factory
method, set() methods for the new properties could be added and invoked prior to invoking
process() .

public interface ArmUserDefinition {
// No Public Constructors
// Public Instance Methods

public ArmUUID getUUID();
public String getName();
public void process();

}

org.opengroup.arm3.transaction.ArmUUID Packages

84 Open Group Technical Standard

10.32 org.opengroup.arm3.transaction.ArmUUID
Implements a 16-byte UUID. UUIDs are used to identify transaction class definitions, user
definitions, and metric definitions.

equals(Object obj), a method inherited from java.lang.Object , returns true if the internal
data is byte-for-byte identical in two objects. For example, a.equals(b) returns true if and only if:

• Both a and b implement ArmUUID

• The inherited methods a.getBytes() and b.getBytes() would return byte arrays of
identical lengths and contents

public interface ArmUUID extends ArmToken {
// No Public Constructors
// No Public Instance Methods (see ArmToken for applicable methods)
// (Implementations should override equals() and hashCode() from java.lang.Object.)
}

Application Response Measurement 3.0 - Java Binding 85

/ Appendix A
Application Instrumentation Sample

package org.opengroup.arm3.samples.test;

import java.lang.Math;
import java.net.*;
import java.util.*;
import org.opengroup.arm3.transaction.*;

//--
//
// ProducerTranCorrUser
//
// This is a dummy program that does no actual work. To simulate a
// transaction executing, its thread sleeps for a randomly generated
// period of time.
//
//--
public class ProducerTranCorrUser
 implements Runnable
{
 private int numTrans;
 private long msecBtwTrans;
 private long sleepTime;
 private Random random;

 private final byte[] uuidTranClientBytes
 = {1,1,1,1,1,1,1,1,11,11,11,11,11,11,11,11};
 private final byte[] uuidTranAppServerBytes
 = {2,2,2,2,2,2,2,2,22,22,22,22,22,22,22,22};
 private final byte[] uuidTranDataServerBytes
 = {3,3,3,3,3,3,3,3,33,33,33,33,33,33,33,33};
 private final byte[] uuidUserBytes
 = {0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30};
 private ArmUUID uuidTranClient,
 uuidTranAppServer,
 uuidTranDataServer,
 uuidUser;

 private ArmTransactionFactory tranFactory;
 private ArmTransaction tranClient, tranAppServer, tranDataServer;

 //---
 // Constructor
 //---

 Application Instrumentation Sample

86 Open Group Technical Standard

 public ProducerTranCorrUser()
 {
 }

 //---
 // init()
 //---
 public void init (int numTrans, long msecBtwTrans)
 throws Exception
 {
 this.numTrans = numTrans;
 this.msecBtwTrans = msecBtwTrans;

 Properties p = System.getProperties();
 String keyTranFactoryClass = ArmTransactionFactory.propertyKey;
 String tranFactoryName = p.getProperty(keyTranFactoryClass);
 Class tranFactoryClass;
 try
 { tranFactoryClass = Class.forName(tranFactoryName);
 }
 catch (ClassNotFoundException e)
 { throw new ClassNotFoundException("Can't find class '" + tranFactoryName +
"'");
 }
 try
 { tranFactory = (ArmTransactionFactory) tranFactoryClass.newInstance();
 }
 catch (IllegalAccessException e1)
 { throw new IllegalAccessException("creating instance of '" +
 tranFactoryName + "'");
 }
 catch (InstantiationException e2)
 { throw new InstantiationException("creating instance of '" +
 tranFactoryName + "'");
 }

 uuidTranClient = tranFactory.newArmUUID(uuidTranClientBytes);
 uuidTranAppServer = tranFactory.newArmUUID(uuidTranAppServerBytes);
 uuidTranDataServer = tranFactory.newArmUUID(uuidTranDataServerBytes);
 uuidUser = tranFactory.newArmUUID(uuidUserBytes);

 tranClient = tranFactory.newArmTransaction(uuidTranClient);
 tranAppServer = tranFactory.newArmTransaction(uuidTranAppServer);
 tranDataServer = tranFactory.newArmTransaction(uuidTranDataServer);

 random = new Random(System.currentTimeMillis()); // Initialize with a double
 }

 //---
 // nextExponential()
 //---
 private long nextExponential(long mu)
 { return (long) (-mu*Math.log(1-random.nextDouble()));
 //use 1-x to get range (0,1] rather than [0,1)
 }

Application Instrumentation Sample

Application Response Measurement 3.0 - Java Binding 87

 //---
 // run()
 //---
 public void run()
 {
 // Each iteration executes three transactions.
 // - The first requests a correlator.
 // - The second passes the correlator from the first as a parent correlator
and
 // requests a correlator.
 // - The third passes the correlator from the second as a parent correlator.
 for (int i = 0; i<numTrans; ++i)
 {
 ArmCorrelator clientCorr, appServerCorr;

 tranClient.start(uuidUser);
 clientCorr = tranClient.getCorr();
 simulateTran();

 tranAppServer.start(uuidUser, clientCorr);
 appServerCorr = tranAppServer.getCorr();
 simulateTran();

 tranDataServer.start(appServerCorr);
 simulateTran();

 tranDataServer.stop(ArmConstants.ARM_GOOD);
 tranAppServer.stop(ArmConstants.ARM_GOOD);
 tranClient.stop(ArmConstants.ARM_GOOD);
 }
 }

 //---
 // simulateTran()
 //---
 private void simulateTran()
 {
 // Calculate how long the next transaction will be
 sleepTime = nextExponential(msecBtwTrans);
 try
 { Thread.sleep(sleepTime);
 }
 catch (InterruptedException e)
 {
 }
 }

}//-->ProducerTranCorrUser

Application Response Measurement 3.0 - Java Binding 89

/ Appendix B
Information for Implementers

This appendix contains information useful to creators of ARM implementations, and analysis and
reporting programs that process ARM data. Applications using ARM to measure transactions do
not use any of this information.

B.1 Byte Ordering in Correlators
Correlators are passed from application to application. The transfer may occur within a single
system or a single JVM, or it may occur across a network. The recipient and sender of a correlator
may run on different machines with different architectures, and the conventions for ordering bytes
in data fields, such as integers and arrays, may be different.

If all the programs that touch a correlator were written in Java, the JVM would ensure that the same
ordering conventions are followed. Although this is a specification for Java programs, this may not
be true. This is the second version of ARM that uses correlators. ARM 2.0 is a C language interface.
An ARM 3.0 for C Programs standard will probably be specified soon, as well. Each program will
use the version of the standard that makes most sense for it, and for which suitable measurement
tools are available. It is unwise to constrain this choice because of the choice made by an
application on a different system.

Recognizing this fact, ARM is designed expressly to permit correlators to be exchanged between
any application using ARM and any ARM implementation, regardless of how it is written. An
application using ARM 3.0 for Java Programs may receive a (parent) correlator from an application
using ARM 2.0 (for C programs), and it may send its correlator to an application using ARM 3.0 for
C Programs. To permit these types of exchanges, ARM specifies the ordering of bytes within the
correlator.

All correlator fields, and the correlator itself, are sent in network byte order. Network byte order is a
standard described as follows. The most significant bit is the first bit sent, and the least significant
bit is the last bit sent. For example, a 32-bit integer field would be sent with the most significant byte
first, and the least significant byte would be the fourth byte sent. Within each byte

Byte 0 Byte 1 Byte 2 Byte 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bit 0 is the most
significant bit

 Bit 31 is the least
significant bit

Correlator Formats Information for Implementers

90 Open Group Technical Standard

B.2 Correlator Formats
ARM specifies formatting constraints that all correlators must adhere to. In addition, ARM defines
three specific correlator formats. Other formats may be added in the future.

The three defined correlator formats are listed here, and each is described in detail in the following
sections.

• In the ARM 2.0 correlator format, the transaction ID and handle are 32-bit integers. The
correlator format byte has a value of ‘1’.

• ARM 3.0 adds a new correlator format that is the same as the ARM 2.0 correlator format
except that the transaction ID is a 16-byte UUID and the handle is a 64-bit integer. The
correlator format byte has a value of ‘2’.

• ARM 3.0 adds a new correlator format that is used by an ARM implementation when it is
asked to create a correlator but it cannot recognize the data. One likely scenario of this type
is when the ArmTransactionFactory method newArmCorrelator() is executed and
the byte array parameter is null or the offset value is incorrect, such as extending past the
end of the array. Another likely scenario is when the byte array passed to
newArmCorrelator() contains an invalid length in the first two bytes, such as zero. The
correlator format byte has a value of ‘127’.

ARM also specifies a range of correlator format IDs that are available for implementers of ARM to
use for proprietary formats. The range is (in unsigned integer notation) 128:255 or (in signed integer
notation) –128:–1 or (in hexadecimal notation) x’80’-x’FF’. There is a potential for collisions if two
implementers use the same format value. To lessen the probability that this will occur, this
specification lists known va lues, though the specification does not limit how vendors may use the
values in this range. One known value is used at this time:

• 128 (unsigned), –128 (signed), or x’80’ (hexadecimal) is used by Hewlett-Packard.

Information for Implementers ARM Correlator Format Constraints

Application Response Measurement 3.0 - Java Binding 91

B.3 ARM Correlator Format Constraints
These constraints apply to all formats.

Table 1. ARM Correlator Format Constraints

Position Length Contents

Bytes 0:1 2 bytes Length of the correlator, including these two bytes.

Valid lengths are 4 <= length <= 168.

• Lengths shorter than 4 bytes are not permitted because all
correlators must have the four bytes defined in this table.

• Lengths longer than 168 bytes are not permitted because
they would overflow a buffer in the ARM 2.0 C API call
arm_start().

Byte 2 1 byte Correlator format

The range 0:127 (unsigned) is reserved by the standard.

The range 128:255 (unsigned) is available for use by ARM
implementers.

Byte 3 1 byte Flags

All eight bit flags are reserved by the standard.

Two flags are defined in positions 0:1 (the highest order bits), as in
ab000000, where a and b are bit flags.

a = 1 if a trace of this transaction is requested by the agent that
generated the correlator. This is transparent to the applications.

b = 1 if the application indicates that this transaction is of particular
importance, such as a test transaction, and therefore worthy of being
traced. This was a function in ARM 2.0 that was removed in ARM
3.0.

There are no requirements for how these flags are handled, if at all.
The usage scenario that led to their creation was to enable a trace of
selected transactions throughout an enterprise. A selective trace
would yield much useful information without being a significant
burden on the systems processing the transaction.

For example, a client could be experiencing response time problems.
The agent on the client could turn on the trace flag (bit 0) in the
correlators that it generates. When this correlator is passed, as the
parent correlator, to the ARM implementation on the server, the
ARM implementation could turn on the trace flag in the correlators
that it generates. The process could continue recursively. What has

ARM Correlator Format Constraints Information for Implementers

92 Open Group Technical Standard

Position Length Contents

resulted is a trace of all the transactions associated with the client
experiencing the response time problem, but only those transactions.
If there are 1,000 clients in the enterprise running this application,
0.1% of all transactions are traced, which is a minimal load on the
systems. The value of a surgical trace like this was considered great
enough to justify including it in the standard.

Information for Implementers ARM Correlator Format 1 (defined in ARM 2.0)

Application Response Measurement 3.0 - Java Binding 93

B.4 ARM Correlator Format 1 (defined in ARM 2.0)

Table 2. ARM Correlator Format 1

Position Length Contents

Bytes 0:1 2 bytes Length of the correlator, including these two bytes.

Byte 2 1 byte Correlator format = 1

Byte 3 1 byte Flags

See the description in Table 1. ARM Correlator Format Constraints
on page 91.

Bytes 4:5 2 bytes Format of the address field (signed 16-bit).

The following formats are defined:

0 = reserved

1 = IP version 4 (4 bytes)

2 = IP version 4 plus a port number (6 bytes)

3 = IP version 6 (16 bytes)

4 = IP version 6 plus a port number (18 bytes)

5 = SNA (IBM’s System Network Architecture) (16 bytes)

6 = X.25 (16 bytes)

7 = hostname (variable length)

8:32767 = reserved

-32768:-1 = undefined and available for agent implementers to
use. There are no semantics associated with the address format.
It will be an unusual situation where a new format is needed,
but this provides a solution if this is needed. The preferred
approach is to get a new format defined that is in the 0-32767
range. There is a risk that two different agent developers will
choose the same id, but this risk is deemed small.

Note that this field was originally designated as an unsigned field.
Because Java does not support an unsigned 16-bit integer, but only a
signed 16-bit integer (“short”), the definition has been changed to a
signed 16-bit integer. This does not restrict the range in any way. It
changes the notation. The original specification assigned the range
of available and unreserved formats to be 32768-65535. The
equivalent signed range is –32768 to –1 (all the negative values).

ARM Correlator Format 1 (defined in ARM 2.0) Information for Implementers

94 Open Group Technical Standard

Position Length Contents

Bytes 6:7 2 Vendor ID (signed 16-bit)

The vendor ID is a way to identify who built the agent. Combining
this information with the Agent Version field will provide a way for
a management application to know what kind of agent generated a
correlator. A management application may contain specialized
functions or logic that only works with the agents from a particular
vendor and/or supporting particular functions or interfaces. By
putting these two fields in the correlator, a management application
has a way to know whether the agent that generated the correlator
has some of these specialized capabilities.

In order to minimize the possibility of two vendors using the same
vendor ID, the value should be taken from the list of enterprise
identifiers from the Internet Assigned Numbers Authority (IANA).
This list was created for vendors who have SNMP agents. Although
the ARM API specification does not require or endorse SNMP, it's
likely that most or all the organizations that will create an ARM
agent will have at least one enterprise ID assigned. The list of
enterprise IDs can be found at:

ftp://ftp.isi.edu/in-notes/iana/assignments/enterprise-
numbers

For organizations that don't have an enterprise identifier assigned
by the IANA, the negative values are free for agent developers to use.
There are no semantics associated with these ids. It is expected that
most or all agent developers will have a formally assigned vendor id,
and it will be an unusual situation where another id is needed, but
this provides a solution if this is needed. There is a risk that two
different agent developers will choose the same id, but this risk is
deemed small.

Note that this field was originally designated as an unsigned field.
Because Java does not support an unsigned 16-bit integer, but only a
signed 16-bit integer (“short”), the definition has been changed to a
signed 16-bit integer. This does not restrict the range in any way. It
changes the notation. The original specification assigned the range
of available and unreserved formats to be 32768-65535. The
equivalent signed range is –32768 to –1 (all the negative values).

Bytes 8:9 2 Agent version (signed 16-bit)

The Agent Version is used to distinguish between different versions
of an agent, and will be most useful when the capabilities and/or
interfaces of an agent change from one release to another. It will also
be useful to distinguish between different agents from the same
vendor. Each vendor is responsible for avoiding having multiple

Information for Implementers ARM Correlator Format 1 (defined in ARM 2.0)

Application Response Measurement 3.0 - Java Binding 95

Position Length Contents

agents with different capabilities using the same Agent Version
value.

Note that this field was originally designated as an unsigned field.
Because Java does not support an unsigned 16-bit integer, but only a
signed 16-bit integer (“short”), the definition has been changed to a
signed 16-bit integer. This does not restrict the range in any way.

Bytes 10:11 2 Agent instance (signed 16-bit)

There are several scen arios in which it is possible for multiple agents
(ARM implementations) to be running simultaneously on the same
system, each generating handles independently of all the others. To
avoid duplicate correlators, each agent should be assigned a unique
value, a value that does not conflict with any other agent running on
the system.

Note that this field was originally designated as an unsigned field.
Because Java does not support an unsigned 16-bit integer, but only a
signed 16-bit integer (“short”), the definition has been changed to a
signed 16-bit integer. This does not restrict the range in any way.

Bytes 12:15 4 Transaction handle (32-bit integer)

In ARM 2.0, this is the start_handle returned from an
arm_start() call.

Bytes 16:19 4 Transaction ID (32-bit integer)

In ARM 2.0, this is the tran_id returned from an arm_getid()
call.

Bytes 20:21 2 Length of the system ID field (signed 16-bit)

Note that this field was originally designated as an unsigned field.
Because Java does not support an unsigned 16-bit integer, but only a
signed 16-bit integer (“short”), the definition has been changed to a
signed 16-bit integer. This does not restrict the range in a meaningful
range because the maximum size of the field is 146 bytes.

Bytes 22:167 varies from
1-146 bytes

System ID (byte array)

This is the network address or hostname of the system on which the
transaction executed, or a proxy that contains the actual
information. The format used here must match the format defined in
Bytes 4:5. When the length varies, the length of the system ID field
determines how long the field is.

The following formats are defined:

0 = reserved

ARM Correlator Format 1 (defined in ARM 2.0) Information for Implementers

96 Open Group Technical Standard

Position Length Contents

1 = IP version 4 (4 bytes)
Bytes 0:3 = 4-byte IP address

2 = IP version 4 plus a port number (6 bytes)
Bytes 0:3 = 4-byte IP address
Bytes 4:5 = 2-byte IP port number

3 = IP version 6 (16 bytes)
Bytes 0:15 = 16-byte IPv6 address

4 = IP version 6 plus a port number (18 bytes)
Bytes 0:15 = 16-byte IPv6 address
Bytes 16:17 = 2-byte IP port number

5 = SNA (IBM’s System Network Architecture) (16 bytes)
Bytes 0:7 = 8-byte EBCDIC-encoded network ID
Bytes 8:15 = 8-byte EBCDIC-encoded network accessible unit

(control point or LU)

6 = X.25 (16 bytes)
Bytes 0:15 = The X.25 network address, also referred to as an

X.121 address. This is up to sixteen ASCII
character digits ranging from 0:9. The length
is known from the “Length of the System ID
field” in Bytes 20:21.

7 = hostname (variable length)
Bytes 0:?? The length is known from the “Length of the
System ID field” in Bytes 20:21.

Information for Implementers ARM Correlator Format 2 (defined in ARM 3.0)

Application Response Measurement 3.0 - Java Binding 97

B.5 ARM Correlator Format 2 (defined in ARM 3.0)

Table 3. ARM Correlator Format 2

Position Length Contents

Bytes 0:1 2 bytes Length of the correlator, including these two bytes.

Byte 2 1 byte Correlator format = 2

Byte 3 1 byte Flags

See the description in Table 1. ARM Correlator Format Constraints
on page 91.

Bytes 4:5 2 bytes Format of the address field (signed 16-bit).

The following formats are defined:

0 = reserved

1 = IP version 4 (4 bytes)

2 = IP version 4 plus a port number (6 bytes)

3 = IP version 6 (16 bytes)

4 = IP version 6 plus a port number (18 bytes)

5 = SNA (IBM’s System Network Architecture) (16 bytes)

6 = X.25 (16 bytes)

7 = hostname (variable length)

8:32767 = reserved

-32768:-1 = undefined and available for agent implementers to
use. There are no semantics associated with the address format.
It will be an unusual situation where a new format is needed,
but this provides a solution if this is needed. The preferred
approach is to get a new format defined that is in the 0-32767
range. There is a risk that two different agent developers will
choose the same id, but this risk is deemed small.

Note that this field was originally designated as an unsigned field.
Because Java does not support an unsigned 16-bit integer, but only a
signed 16-bit integer (“short”), the definition has been changed to a
signed 16-bit integer. This does not restrict the range in any way. It
changes the notation. The original specification assigned the range
of available and unreserved formats to be 32768-65535. The
equivalent signed range is –32768 to –1 (all the negative values).

ARM Correlator Format 2 (defined in ARM 3.0) Information for Implementers

98 Open Group Technical Standard

Position Length Contents

Bytes 6:7 2 Vendor ID (signed 16-bit)

The vendor ID is a way to identify who built the agent. Combining
this information with the Agent Version field will provide a way for
a management application to know what kind of agent generated a
correlator. A management application may contain specialized
functions or logic that only works with the agents from a particular
vendor and/or supporting particular functions or interfaces. By
putting these two fields in the correlator, a management application
has a way to know whether the agent that generated the correlator
has some of these specialized capabilities.

In order to minimize the possibility of two vendors using the same
vendor ID, the value should be taken from the list of enterprise
identifiers from the Internet Assigned Numbers Authority (IANA).
This list was created for vendors who have SNMP agents. Although
the ARM API specification does not require or endorse SNMP, it's
likely that most or all the organizations that will create an ARM
agent will have at least one enterprise ID assigned. The list of
enterprise IDs can be found at:

ftp://ftp.isi.edu/in-notes/iana/assignments/enterprise-
numbers

For organizations that don't have an enterprise identifier assigned
by the IANA, the negative values are free for agent developers to use.
There are no semantics associated with these ids. It is expected that
most or all agent developers will have a formally assigned vendor id,
and it will be an unusual situation where another id is needed, but
this provides a solution if this is needed. There is a risk that two
different agent developers will choose the same id, but this risk is
deemed small.

Note that this field was originally designated as an unsigned field.
Because Java does not support an unsigned 16-bit integer, but only a
signed 16-bit integer (“short”), the definition has been changed to a
signed 16-bit integer. This does not restrict the range in any way. It
changes the notation. The original specification assigned the range
of available and unreserved formats to be 32768-65535. The
equivalent signed range is –32768 to –1 (all the negative values).

Bytes 8:9 2 Agent version (signed 16-bit)

The Agent Version is used to distinguish between different versions
of an agent, and will be most useful when the capabilities and/or
interfaces of an agent change from one release to another. It will also
be useful to distinguish between different agents from the same
vendor. Each vendor is responsible for avoiding having multiple

Information for Implementers ARM Correlator Format 2 (defined in ARM 3.0)

Application Response Measurement 3.0 - Java Binding 99

Position Length Contents

agents with different capabilities using the same Agent Version
value.

Note that this field was originally designated as an unsigned field.
Because Java does not support an unsigned 16-bit integer, but only a
signed 16-bit integer (“short”), the definition has been changed to a
signed 16-bit integer. This does not restrict the range in any way.

Bytes 10:11 2 Agent instance (signed 16-bit)

There are several scenarios in which it is possible for multiple agents
(ARM implementations) to be running simultaneously on the same
system, each generating handles independently of all the others. To
avoid duplicate correlators, each agent should be assigned a unique
value, a value that does not conflict with any other agent running on
the system.

Note that this field was originally designated as an unsigned field.
Because Java does not support an unsigned 16-bit integer, but only a
signed 16-bit integer (“short”), the definition has been changed to a
signed 16-bit integer. This does not restrict the range in any way.

Bytes 12:19 8 Transaction handle (64-bit integer)

The format of the handle is determined by the ARM implementation.
There are no assumed semantics because it is used as an identifier.
The requirement is that it be unique within the system ID plus agent
instance, for the longest possible expected lifetime of a transaction
record.

ARM implementations may find it advantageous to use a format that
is not simply a rolling counter, but is based on some other structure.
For example, an SDK (software developers kit) used to test the ARM
3.0 for Java Programs specification used a format that combined 44
bits from the Java system clock with a 20-bit rolling counter. This
provided the time of day when a transaction executed, as well as the
uniqueness required by the standard.

Bytes 20:35 16 Transaction UUID (16-byte UUID)

Bytes 36:37 2 Length of the system ID field (signed 16-bit)

Note that this field was originally designated as an unsigned field.
Because Java does not support an unsigned 16-bit integer, but only a
signed 16-bit integer (“short”), the definition has been changed to a
signed 16-bit integer. This does not restrict the range in a meaningful
range because the maximum size of the field is 146 bytes.

Bytes 38:167 varies from System ID (byte array)

ARM Correlator Format 2 (defined in ARM 3.0) Information for Implementers

100 Open Group Technical Standard

Position Length Contents

1-130 bytes This is the network address or hostname of the system on which the
transaction executed, or a proxy that contains the actual
information. The format used here must match the format defined in
Bytes 4:5. When the length varies, the length of the system ID field
determines how long the field is.

The following formats are defined:

0 = reserved

1 = IP version 4 (4 bytes)
Bytes 0:3 = 4-byte IP address

2 = IP version 4 plus a port number (6 bytes)
Bytes 0:3 = 4-byte IP address
Bytes 4:5 = 2-byte IP port number

3 = IP version 6 (16 bytes)
Bytes 0:15 = 16-byte IPv6 address

4 = IP version 6 plus a port number (18 bytes)
Bytes 0:15 = 16-byte IPv6 address
Bytes 16:17 = 2-byte IP port number

5 = SNA (IBM’s System Network Architecture) (16 bytes)
Bytes 0:7 = 8-byte EBCDIC-encoded network ID
Bytes 8:15 = 8-byte EBCDIC-encoded network accessible unit

(control point or LU)

6 = X.25 (16 bytes)
Bytes 0:15 = The X.25 network address, also referred to as an

X.121 address. This is up to sixteen ASCII
character digits ranging from 0:9. The length
is known from the “Length of the System ID
field” in Bytes 20:21.

7 = hostname (variable length)
Bytes 0:?? The length is known from the “Length of the
System ID field” in Bytes 20:21.

Information for Implementers ARM Correlator Format 127 (defined in ARM 3.0)

Application Response Measurement 3.0 - Java Binding 101

B.6 ARM Correlator Format 127 (defined in ARM 3.0)

Table 4. ARM Correlator Format 127

Position Length Contents

Bytes 0:1 2 bytes Length of the correlator, including these two bytes.

Byte 2 1 byte Correlator format = 127

Byte 3 1 byte Flags

See the description in Table 1. ARM Correlator Format Constraints
on page 91.

Bytes 4:167 varies from
0-164 bytes

Data

There are no constraints on what may be in this field.

	c014cov.pdf
	Page 1

	blank.pdf
	Page 1

