
 S

L

T

A

A

C

N

I

D

N

A

H

R

C

D

E
T

Technical Standard

CDSA/CSSM Authentication:
Human Recognition Service (HRS) API

Version 2

[This page intentionally left blank]

Open Group Technical Standard

CDSA/CSSM Authentication:

Human Recognition Service (HRS) API, Version 2

The Open Group

 June 2001, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners.

Open Group Technical Standard

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2

Document Number: C013

Published in the U.K. by The Open Group, June 2001.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii Open Group Technical Standard (2001)

Contents

Chapter 1 Overview... 1
 1.1 Purpose ... 1
 1.2 Biometric Technology .. 1
 1.3 BIRs and Templates .. 2
 1.4 API Model... 4
 1.5 FAR and FRR ... 8
 1.6 Payloads.. 8
 1.7 BIR Databases .. 9
 1.8 User Interface Considerations.. 9

Chapter 2 API Definition.. 11
 2.1 Data Structures.. 11
 2.1.1 CSSM_MODULE_EVENT ... 11
 2.1.2 CSSM_MODULE_EVENT_MASK... 11
 2.1.3 CSSM_HRS_BIR... 11
 2.1.4 CSSM_HRS_BIR_ARRAY_POPULATION... 12
 2.1.5 CSSM_HRS_BIR_AUTH_FACTORS... 12
 2.1.6 CSSM_HRS_BIR_BIOMETRIC_DATA.. 12
 2.1.7 CSSM_HRS_BIR_BIOMETRIC_DATA_FORMAT............................ 12
 2.1.8 CSSM_HRS_BIR_DATA_TYPE... 13
 2.1.9 CSSM_HRS_BIR_HANDLE .. 13
 2.1.10 CSSM_HRS_BIR_HEADER... 13
 2.1.11 CSSM_HRS_BIR_PURPOSE.. 13
 2.1.12 CSSM_HRS_BIR_VERSION .. 14
 2.1.13 CSSM_HRS_CANDIDATE .. 15
 2.1.14 CSSM_HRS_CANDIDATE_ARRAY.. 15
 2.1.15 CSSM_HRS_DB_ACCESS_TYPE ... 15
 2.1.16 CSSM_HRS_DB_CURSOR .. 15
 2.1.17 CSSM_HRS_DB_HANDLE ... 15
 2.1.18 CSSM_HRS_DBBIR_ID .. 15
 2.1.19 CSSM_HRS_FAR ... 16
 2.1.20 CSSM_HRS_FRR.. 16
 2.1.21 CSSM_HRS_GUI_BITMAP.. 16
 2.1.22 CSSM_HRS_GUI_MESSAGE.. 16
 2.1.23 CSSM_HRS_GUI_PROGRESS .. 16
 2.1.24 CSSM_HRS_GUI_RESPONSE .. 16
 2.1.25 CSSM_HRS_GUI_STATE ... 17
 2.1.26 CSSM_HRS_GUI_STATE_CALLBACK .. 17
 2.1.27 CSSM_HRS_GUI_STREAMING_CALLBACK 18
 2.1.28 CSSM_HRS_HANDLE ... 18
 2.1.29 CSSM_HRS_IDENTIFY_POPULATION .. 18
 2.1.30 CSSM_HRS_IDENTIFY_POPULATION_TYPE................................ 18

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 iii

Contents

 2.1.31 CSSM_HRS_INPUT_BIR.. 19
 2.1.32 CSSM_HRS_INPUT_BIR_FORM ... 19
 2.1.33 CSSM_HRS_POWER_MODE ... 19
 2.1.34 CSSM_HRS_QUALITY... 19
 2.1.35 CSSM_HRS_STREAM_CALLBACK ... 20
 2.2 CDSA/HRS Registry Schema .. 21
 2.2.1 Data Definitions ... 21
 2.2.1.1 CSSM_HRS_OPERATIONS_MASK ... 21
 2.2.1.2 CSSM_HRS_OPTIONS_MASK ... 21
 2.2.2 Component Schema .. 22
 2.2.2.1 Primary HRS Service Provider Relation .. 22
 2.2.2.2 Biometric Device Relation... 24
 2.3 HRS Error Codes... 25
 2.3.1 Configurable HRS Error Code Constants... 25
 2.3.2 HRS Error Values Derived from Common Error Codes.................. 25
 2.3.3 HRS-Specific Error Values.. 25
 2.4 BSP Operations.. 28
 2.4.1 Handle Operations .. 28
 HRS_FreeBIRHandle ... 29
 HRS_GetBIRFromHandle ... 30
 HRS_GetHeaderFromHandle .. 31
 2.4.2 Callback and Event Operations .. 32
 HRS_EnableEvents .. 33
 HRS_SetGUICallbacks .. 34
 HRS_CancelGUICallbacks .. 35
 HRS_SetStreamCallback ... 36
 HRS_CancelStreamCallbacks ... 37
 HRS_StreamInputOutput ... 38
 2.4.3 Biometric Operations .. 39
 HRS_Capture ... 40
 HRS_CreateTemplate ... 42
 HRS_Process .. 44
 HRS_VerifyMatch ... 45
 HRS_IdentifyMatch... 48
 HRS_Enroll .. 51
 HRS_Verify .. 53
 HRS_Identify .. 56
 HRS_Import ... 59
 HRS_SetPowerMode.. 61
 2.4.4 Database Operations... 62
 HRS_DbOpen... 63
 HRS_DbClose ... 65
 HRS_DbCreate ... 66
 HRS_DbDelete ... 67
 HRS_DbSetCursor ... 68
 HRS_DbFreeCursor ... 69
 HRS_DbStoreBIR .. 70
 HRS_DbGetBIR ... 71

iv Open Group Technical Standard (2001)

Contents

 HRS_DbGetNextBIR ... 72
 HRS_DbQueryBIR .. 73
 HRS_DbDeleteBIR .. 74

Chapter 3 HRS Service Provider Interface... 75
 3.1 HRS Function Pointer Table.. 75
 3.2 SPI Definitions ... 78

Appendix A Conformance... 79
 A.1 Status of this Appendix ... 79
 A.2 Design Concepts for Conformance... 79
 A.3 HRS-Compliant Application.. 79
 A.4 HRS-Compliant Service Providers.. 79
 A.4.1 HRS-Compliant Verification SPs .. 81
 A.4.2 HRS-Compliant Identification SPs... 81
 A.4.3 HRS-Compliant Client/Server SPs.. 82
 A.4.4 Optional Capabilities .. 83
 A.4.4.1 Optional Functions ... 83
 A.4.4.2 Optional Sub-Functions... 85

 Glossary ... 89

 Index... 91

List of Figures

1-1 Possible Implementation Strategies... 2
1-2 Biometric Identification Record (BIR) ... 3
1-3 Client/Server Implementation Using Primitive Functions 6
1-4 Client/Server Impl. Using Streaming Callback: Server-Initiated

Operation... 7
1-5 Client/Server Impl. Using Streaming Callback: Client-Initiated

Operation... 7

List of Tables

A-1 HRS-SP Conformance Requirements by Type .. 80
A-2 Function Calls Executed Locally/Remotely .. 82
A-3 Support for HRS-SP Optional Sub-Functions.. 85

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 v

Contents

vi Open Group Technical Standard (2001)

Preface

The Open Group

The Open Group is a vendor and technology-neutral consortium which ensures that multi-
vendor information technology matches the demands and needs of customers. It develops and
deploys frameworks, policies, best practices, standards, and conformance programs to pursue its
vision: the concept of making all technology as open and accessible as using a telephone.

The mission of The Open Group is to deliver assurance of conformance to open systems
standards through the testing and certification of suppliers’ products.

The Open group is committed to delivering greater business efficiency and lowering the cost and
risks associated with integrating new technology across the enterprise by bringing together
buyers and suppliers of information systems.

Membership of The Open Group is distributed across the world, and it includes some of the
world’s largest IT buyers and vendors representing both government and commercial
enterprises.

More information is available on The Open Group Web Site at http://www.opengroup.org.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on development of Technical and Product Standards and Guides, but which also
includes white papers, technical studies, branding and testing documentation, and business
titles. Full details and a catalog are available on The Open Group Web Site at
http://www.opengroup.org/pubs.

• Product Standards

A Product Standard is the name used by The Open Group for the documentation that records
the precise conformance requirements (and other information) that a supplier’s product must
satisfy. Product Standards, published separately, refer to one or more Technical Standards.

The ‘‘X’’ Device is used by suppliers to demonstrate that their products conform to the
relevant Product Standard. By use of the Open Brand they guarantee, through the Open
Brand Trademark License Agreement (TMLA), to maintain their products in conformance
with the Product Standard so that the product works, will continue to work, and that any
problems will be fixed by the supplier. The Open Group runs similar conformance schemes
involving different trademarks and license agreements for other bodies.

• Technical Standards (formerly CAE Specifications)

Open Group Technical Standards, along with standards from the formal standards bodies
and other consortia, form the basis for our Product Standards (see above). The Technical
Standards are intended to be used widely within the industry for product development and
procurement purposes.

Technical Standards are published as soon as they are developed, so enabling suppliers to
proceed with development of conformant products without delay.

Anyone developing products that implement a Technical Standard can enjoy the benefits of a
single, widely supported industry standard. Where appropriate, they can demonstrate
product compliance through the Open Brand.

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 vii

Preface

• CAE Specifications

CAE Specifications and Developers’ Specifications published prior to January 1998 have the
same status as Technical Standards (see above).

• Preliminary Specifications

Preliminary Specifications have usually addressed an emerging area of technology and
consequently are not yet supported by multiple sources of stable conformant
implementations. There is a strong preference to develop or adopt more stable specifications
as Technical Standards.

• Consortium and Technology Specifications

The Open Group has published specifications on behalf of industry consortia. For example, it
published the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum (now TMF). It also published Technology Specifications relating to
OSF/1, DCE, OSF/Motif, and CDE.

In addition, The Open Group publishes Product Documentation. This includes product
documentation—programmer’s guides, user manuals, and so on—relating to the DCE, Motif,
and CDE. It also includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

Versions and Issues of Specifications

As with all live documents, Technical Standards and Specifications require revision to align with
new developments and associated international standards. To distinguish between revised
specifications which are fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on The Open Group Web Site at http://www.opengroup.org/corrigenda.

Ordering Information

Full catalog and ordering information on all Open Group publications is available on The Open
Group Web Site at http://www.opengroup.org/pubs.

This Document

The CDSA/HRS (Common Data Security Architecture/Human Recognition Service) is a CSSM
(Common Security Services Manager) EMM (Elective Module Manager).

Version 2 (this document) includes the changes approved in The Open Group Corrigendum
U051, dated 16th March 2001, against Version 1 (Doc. No. C909).

This HRS API provides a high-level generic authentication model—one suited to use with any
form of human authentication—for operation with CDSA. Particular emphasis has been put on
designing it for performing authentication using biometric technology.

viii Open Group Technical Standard (2001)

Preface

The development of this specification has passed through several organizational groups, but
was integrated into a generic authentication API by the BioAPI Consortium; see
Acknowledgements (on page xi).

This CDSA/HRS specification is based on BioAPI Version 1.0 8 (published March 30, 2000) and
uses the EMM facilities provided in CSSM to provide a generic authentication service for CDSA.
It covers the basic functions of Enrollment, Verification , and Identification , and includes a database
interface to allow a biometric service provider (BSP) to manage the identification population for
optimum performance. It also provides primitives which allow the application to manage the
capture of samples on a client, and the functions of Enrollment, Verification , and Identification, on
a server. It is designed to support multiple authentication methods, both singularly and when
used in a combined or ‘‘layered’’ manner.

Audience

The HRS is designed for use by both application developers and biometric technology
developers.

To make the integration of the technology as straightforward as possible (thus enhancing its
commercial viability), the design approach has been to hide or encapsulate to the extent possible
the complexities of the biometric technology. This approach also serves to extend the generality
of the interface to address a larger set of potential biometric technologies and applications.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures, and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— Command operands, command option-arguments, or variable names; for example,
substitutable argument prototypes

— Environment variables, which are also shown in capitals

— Utility names

— External variables, such as errno

— Functions; these are shown as follows: name()

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header.

• Syntax, code examples, and user input in interactive examples are shown in fixed width
font.

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 ix

Trademarks

Motif, OSF/1, UNIX, and the ‘‘X Device’’ are registered trademarks and IT DialToneTM and
The Open GroupTM are trademarks of The Open Group in the U.S. and other countries.

There may be other products mentioned in the text that might be covered by trademark
protection and readers are advised to verify them independently.

x Open Group Technical Standard (2001)

Acknowledgements

The Open Group acknowledges Intel’s submission of its CDSA/HRS specification into The
Open Group’s ‘‘Fast Track’’ Company Review process, to become an Open Group Technical
Standard.

The Open Group also acknowledges the work of the BioAPI Consortium in the development of
this HRS specification. Intel were prime contributors to the BioAPI (Biological Authentication
Application Programming Interface) Consortium. Special recognition is due to John Wilson
(Intel) who chaired and did the technical editing for their Application Working Group, whose
work resulted in a BioAPI specification.

The BioAPI Consortium published several revisions of their BioAPI specification, as their work
evolved. Intel’s CDSA/HRS specification is based on BioAPI Version 1.0 8, published March 30,
2000.

Information on the BioAPI Consortium is available from their web site at http://www.bioapi.org.
The following list of BioAPI member organizations indicates the broad support for their BioAPI
work on defining a common biologically-based authentication API and associated measurement
devices and mechanisms:

Authentec
Barclays Bank
Biometric Identification, Inc.
BioNetrix
Business Integrated Technology Solutions (BITS)
Compaq *
Dialog Communications Systems AG
Digital Persona
Hewlett-Packard Company
IBM Corporation
Identix/Identicator
Image Computing Incorporated (ICI)
Infineon Technologies (formerly Siemens)
Integrated Visions, Inc.
Intel Corporation *
I/O Software, Inc.
IriScan *
ITT
J. Markowitz Consulting
Janus Associates
Kaiser Permanente
Keyware Technologies
Miros
Mytec Technologies *

National Biometrics Test Center
NIST *
NSA
OKI
Precise Biometrics
Recognition Systems
SAFLink *
Sagem-Morpho
Secugen
Sensar
Skytale
Startek
STMicroelectronics
Systemneeds, Inc.
Transaction Security
Transforming Technologies
TRW
UniSoft Corporation
Unisys *
Veridicom
Viatec Research
Visionics
Who?Vision

* Steering Committee Members

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 xi

Referenced Documents

The following documents are referenced in this Technical Standard:

CDSA/CSSM
Technical Standard, May 2000, Common Security: CDSA and CSSM, Version 2
(ISBN: 1-85912-202-7, C914), published by The Open Group.

xii Open Group Technical Standard (2001)

Chapter 1

Overview

1.1 Purpose
CDSA/HRS (Common Data Security Architecture/Human Recognition Service) is a CSSM
(Common Security Services Manager) EMM (Elective Module Manager). It is intended to
provide a high-level generic authentication model, suited to use for any form of human
authentication. Particular emphasis has been made in the design on its suitability for
authentication using biometric technology.

It covers the basic functions of Enrollment, Verification , and Identification , and includes a database
interface to allow a biometric service provider (BSP) to manage the identification population for
optimum performance.

It also provides primitives which allow the application to manage the capture of samples on a
client, and the Enrollment, Verification , and Identification , on a server.

The HRS is designed for use by both application developers and biometric technology
developers. To make the integration of the technology as straightforward and simple as possible
(thus enhancing its commercial viability), the approach taken is to hide or encapsulate to the
extent possible the complexities of the biometric technology. This approach also serves to
extend the generality of the interface to address a larger set of potential biometric technologies
and applications.

This specification is designed to support multiple authentication methods, both singularly and
when used in a combined or ‘‘layered’’ manner.

1.2 Biometric Technology
The basic model is the same for all types of biometric technology. First, the initial registration
‘‘template’’ of the user has to be constructed. This is done by collecting a number of samples
through whatever sensor is being used. Salient features are extracted from the samples, and the
results combined into the template. The construction of this initial template is called Enrollment.
The algorithms used to construct a template are usually proprietary. This initial template is then
stored by the application, and essentially takes the place of a password.

Thereafter, whenever the user needs to be authenticated, live samples are captured from the
device, processed into a usable form, and matched against the template that was enrolled earlier.
This form of biometric authentication is called Verification , since it verifies that a user is who they
say they are (that is, verifies a particular asserted identity).

Biometric technology, however, allows a new form of authentication called Identification . In this
form, a user does not have to assert an identity. Instead, the biometric service provider compares
the processed samples of the user against a specified population of templates, and decides which
ones match most closely. Depending on the match probabilities, the user’s identity could be
concluded to be that corresponding to the template with the closest match.

Figure 1-1 shows some possible implementation strategies. The various steps in the verification
and identification operations are shown in the box labeled ‘‘Biometric Service Provider’’. The
stages identified above the box refer to the primitive functions of the API:

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 1

Biometric Technology Overview

• Capture

• Process

• Match

and it shows that a BSP has degrees of freedom in the placement of function in these primitives.
There is a degree of freedom not shown in Figure 1-1; the manufacturer is free to put most, if not
all, of the BSP functionality in the sensing device itself. In fact, if the device contains a Biometric
Identification Record (BIR) database, all functions may be performed in the device.

Identification
User

Interface

Identification
Algorithm

Enrollment
User

Interface

Verification
User

Interface
Verification
Algorithm

Raw
Sample

Result
List

Result

Capture

Capture

Process

Process

Match

Process is a No-Op

Match

Match

Capture

Intermediate
BIR

Intermediate
BIR

Processed
BIR

Biometric Service Provider

Process
Sample

Input
Scanning

Construct
BIR

Quality
Enhancement

Feature
Extraction

Set of
BIRs

BIR

Figure 1-1 Possible Implementation Strategies

1.3 BIRs and Templates
This document uses the term template to refer to the biometric enrollment data for a user. The
template must be matched (within a specified tolerance) by sample(s) taken from the user, in
order for the user to be authenticated.

The term biometric identification record (BIR) refers to any biometric data that is returned to the
application, including raw data, intermediate data, processed sample(s) ready for verification or
identification, as well as enrollment data. Typically, the only data stored persistently by the
application is the BIR generated for enrollment (that is, the template). The structure of a BIR is
shown in Figure 1-2.

2 Open Group Technical Standard (2001)

Overview BIRs and Templates

Header

Owner

Format

ID

121 121 44

BIR
Data
Type

Header
Version

Purpose
MaskQuality Factors MaskLength

(Header + Opaque Data)

Opaque Biometric Data Signature

Figure 1-2 Biometric Identification Record (BIR)

The format of the Opaque Biometric Data is indicated by the Format field of the Header. This may
be a standard or proprietary format. The Opaque Data may be encrypted.

Values of Format Owner are assigned and registered by the International Biometric Industry
Association (IBIA), which ensures uniqueness of these values. Registered format owners then
create one or more FormatIDs (either published or proprietary), corresponding to a defined
format for the subsequent opaque biometric data, which may optionally also be registered with
the IBIA. Organizations wishing to register as a biometric data format owner can do so for a
nominal fee by contacting the IBIA as follows:

International Biometric Industry Association (IBIA)
601 Thirteenth Street, NW, Suite 370 South, Washington DC. 20005, USA
Tel: +1 202-783-7272
Fax: +1 202-783-4345
http://www.ibia.org/formats.htm

The BIR definition is compliant with NISTIR 6529, Common Biometric Exchange File Format
(CBEFF), of which it is one of the CBEFF Patron Formats.

The Signature is optional. When present, it is calculated on the Header + Biometric Data. For
standardized BIR formats, the signature will take a standard form (to be determined when the
format is standardized). For proprietary BIR formats (all that exists at the present time), the
signature can take any form that suits the BSP. For this reason, there is no C program structure
definition of the signature.

The BIR Data Type indicates whether the BIR is signed and/or encrypted.

When a service provider creates a new BIR, it returns a handle to it. Most local operations can be
performed without moving the BIR out of the service provider. [BIRs can be quite large, so this is
a performance advantage.] However, if the application needs to manage the BIR (either store it
in an application database, or send it to a server for verification/identification), it can acquire the
BIR using the handle.

Whenever an application needs to provide a BIR as input, it can be done in one of three ways:

1. By reference to its handle

2. By reference to its key value in an open database managed by the BSP

3. By supplying the BIR itself

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 3

API Model Overview

1.4 API Model
There are three principal high-level abstraction functions in the API:

1. Enroll

Samples are captured from a device, processed into a usable form from which a template is
constructed, and returned to the application.

2. Verify

One or more samples are captured, processed into a usable form, and then matched
against an input template. The results of the comparison are returned.

3. Identify

One or more samples are captured, processed into a usable form, and matched against a
set of templates. A list is returned showing how close the samples compare against the top
candidates in the set.

However, as Figure 1-1 (on page 2) shows, the processing of the biometric data from the capture
of raw samples to the matching against a template may be accomplished in many stages, with
much CPU-intensive processing. The API has been defined to allow the biometric developer the
maximum freedom in the placement of the processing involved, and allows the processing to be
shared between the client machine (which has the biometric device attached) and a server
machine. It also allows for self-contained devices, in which all the biometric processing can be
done internally. Client/server support by BSPs is optional.

There are several good reasons why processing and matching may take place on a server,
including:

• The algorithms will execute in a more secure environment.

• The Client PC may not have sufficient power to run the algorithms well.

• The user database (and the resources that it is protecting) may be on a server.

• Identification over large populations can only reasonably be done on a server.

Two methods are provided to support client/server processing:

1. Using Primitive Functions

There are four primitive functions in the API which, when used in sequence on client and
server, can accomplish the same result as the high-level abstractions:

Capture Capture is always executed on the client machine; attempting to execute
Capture on a machine without a biometric device will return function not
supported . One or more samples are acquired (either for Enrollment,
Verification , or Identification). The Capture function is allowed to perform
as much processing on the sample(s) as it sees fit, and may, in fact, for
verification or identification, complete the construction of the BIR. If
processing is incomplete, Capture returns an ‘‘intermediate’’ BIR;
indicating that the Process function needs to be called. If processing is
complete, Capture returns a ‘‘processed’’ BIR; indicating that the Process
function does not need to be called. The application specifies the
purpose for which the samples are intended, giving the BSP the
opportunity to do special processing. This purpose is recorded in the
header of the constructed BIR.

4 Open Group Technical Standard (2001)

Overview API Model

Process The ‘‘processing algorithms’’ must be available on the server, but may
also be available on the client. The Process function is intended to
provide the processing of samples necessary for the purpose of
verification or identification (not enrollment). It always takes an
‘‘intermediate’’ BIR as input, and may complete the processing of the
biometric data into ‘‘final’’ form suitable for its intended purpose. On
the client, if it completes the processing, it returns a ‘‘processed’’ BIR;
otherwise, it returns an ‘‘intermediate’’ BIR, indicating that Process needs
to be called on the server. On the server, it will always complete
processing, and always return a ‘‘processed’’ BIR. The application can
always choose to defer processing to the server machine, but may try to
save bandwidth (and server horsepower) by calling Process on the
client.1

Match Performs the actual comparison between the ‘‘processed’’ BIR and one
template (VerifyMatch), or between the ‘‘processed’’ BIR and a set of
templates (IdentifyMatch). The support for IdentifyMatch is optional, but
the supported Match functions are always available on the server, and
may be available on the client.

CreateTemplate CreateTemplate is provided to perform the processing of samples for the
construction of an enrollment template. CreateTemplate always takes an
‘‘intermediate’’ BIR as input, and constructs a template (that is, a
‘‘processed’’ BIR with the recorded purpose of either enroll_verify and/or
enroll_identify). Optionally, CreateTemplate can take an old template and
create a new template which is the adaptation of the old template using
the new biometric samples in the ‘‘intermediate’’ BIR. The BSP may
optionally allow the application to provide a ‘‘payload’’ to wrap inside
the new template; see Section 1.6 (on page 8).

1. ‘‘Processed’’ BIRs are always smaller than ‘‘intermediate’’" BIRs; by how much is technology-dependent, and also dependent on
how much processing has already been done by Capture.

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 5

API Model Overview

BIR

One or both Process calls may not be required

Application responsible
for C/S protocol

Device

Client BSP Server BSP

BioAPI
Framework

BioAPI
Framework

Authentication
Client

Application

Authentication
Server

Application

Capture MatchProcess Process

Figure 1-3 Client/Server Implementation Using Primitive Functions

2. Using a Streaming Callback

The application (on both the client and the server) is responsible for providing a streaming
interface for the BSP to use to communicate the samples and return the results. In this case,
the application does not need to use the Capture , Process and Match primitives. The Verify ,
Identify , and Enroll , functions use the streaming interface to split the BSP function between
client and server. These functions may be driven from either the client or the server. In
either case, if there are Graphical User Interface (GUI) callbacks set, the client BSP will call
them at the appropriate times to allow the client application to control the look and feel of
the user interface.

• The client/server application decides whether the authentication should be driven by
the client or the server component. The driving component first sets a Streaming
Callback interface for the BSP. This not only tells the BSP that it is going to operate in
client/server mode, but also provides the interface that it will use to initiate
communication with its partner BSP.

• The application calls the appropriate high-level function, and the BSP calls the
Streaming Callback to initiate the BSP-to-BSP protocol. (The protocol is the concern of
the BSP implementer, but it will likely start with mutual authentication and key
agreement).

• The Streaming Callback is only used by the driving BSP. Whenever it is in control, and
has a message to deliver to its partner BSP, it calls the Streaming Callback interface to
send the message, and it receives an answer on return from the callback.

• The StreamInputOutput function is used by the partner application to deliver messages
to the partner BSP, and to obtain a return message to send to the driving BSP. The
driving application delivers the return message by returning from the Streaming
Callback .

6 Open Group Technical Standard (2001)

Overview API Model

Note: A client BSP that is servicing a self-contained device may ignore the Streaming Callback
interface, and perform the requested function locally. A server BSP that is servicing a
self-contained device will use the Streaming Callback to request that the client BSP
proceeds to perform the requested function.

Identify
Verify
Enroll

Application provides a
communication channel

for the BSPs

Device

Client BSP Server BSP

BioAPI
Framework

BioAPI
Framework

Authentication
Client

Application

Authentication
Server

Application

Capture
BSP-to-BSP

protocol

Process and
Match

algorithms

Stream
InputOutput

Streaming
Callback

Figure 1-4 Client/Server Impl. Using Streaming Callback: Server-Initiated Operation

Identify
Verify
Enroll

Application provides a
communication channel

for the BSPs

Device

Client BSP Server BSP

BioAPI
Framework

BioAPI
Framework

Authentication
Client

Application

Authentication
Server

Application

BSP-to-BSP
protocol

Process and
Match

Stream
InputOutput

Streaming
Callback

Figure 1-5 Client/Server Impl. Using Streaming Callback: Client-Initiated Operation

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 7

FAR and FRR Overview

1.5 FAR and FRR
Raw biometric samples are the complex analog data streams produced by sensing devices. No
two samples from a user are likely to be identical. Templates are the digital result of processing
and compressing these samples; they are not precise representations of the user. Therefore, the
results of any matching of samples against a stored template can only be expressed in terms of
probability.

There are two possible criteria for the results of a match:

1. False Accept Rate (FAR)

2. False Reject Rate (FRR)

FAR is the probability that samples falsely match the presented template, whereas FRR is the
probability that the samples are falsely rejected (that is, should match, but do not). Depending
on the circumstances, the application may be more interested in one than the other.

The HRS functions allow the application to request a match threshold in terms of maximum
FAR value (that is, a limit on the probability of a false match) and an optional maximum FRR
value. If both are provided, the application must tell the BSP which one should take precedence.

The principal result returned is the actual FAR value achieved by the match (that is, the score). A
BSP may optionally return the actual FRR value achieved. For Identify and IdentifyMatch, these
results are contained in the Candidate array.

The returning of scores to an application can be a security weakness if appropriate steps are not
taken. This is because a ‘‘rogue’’ application can mount a ‘‘hillclimbing’’ attack by sequentially
randomly modifying a sample and retaining only the changes that produce an increase in the
returned score. In this way a synthetic image can be created to fool the biometric system.
However, allowing only discrete increments of score (FAR) to be returned to the application
eliminates this method of attack. The level of quantization required to neutralize this attack is
dependent on the type of biometric and the algorithms used.

Use of FAR/FRR values to represent match scores is done to allow a degree of normalization
and comparison between differing technologies, and to allow a commonly understood means of
setting thresholds and interpreting results. It is not intended to imply strict performance
measurement (that is, an absolute measure of FAR for a specific individual matching instance).
Furthermore, the BSP vendor is responsible for accurately mapping internal scoring structure to
the FAR values.

1.6 Payloads
No two biometric samples from a user are likely to be identical. For this reason, it is not possible
to directly use biometric samples as cryptographic keys. The HRS, however, allows a template to
be closely bound to a cryptographic key, which could be released upon successful verification.

In the Enroll and CreateTemplate functions, the application may present a ‘‘payload’’ to be carried
in the opaque data of the BIR that is being constructed. This payload is essentially wrapped
inside the biometric data by the BSP. It is released to the application on successful verification of
the template. The BSP may have a policy of only releasing the ‘‘payload’’ if the actual FAR
achieved is below a certain threshold (this threshold being recorded in the BSP’s registry entry).

The ‘‘payload’’ can be any data that is useful to the application; it does not have to be
cryptographic; and even in a cryptographic application it could be either a key label or a
wrapped key.

8 Open Group Technical Standard (2001)

Overview BIR Databases

1.7 BIR Databases
The HRS does not manage user databases; only applications do that. In most cases, the user
database may already exist (for example, a database of bank accounts, the user registry of people
who belong to a network domain, or those authorized to access a web server), and the biometric
application is simply associating a biometric template with each user in the database, in addition
to (or as a substitute for) a password. It is important that the application does maintain control
over who can access this database.

The HRS allows a BSP to manage a database of BIRs for two reasons:

1. To optimize the performance of the Identification operation over large populations

2. To provide access to the BIRs that may be stored on a self-contained sensing device

It is the responsibility of the application to make any necessary association between the BSP’s
database(s) and the user database(s). To assist in this, each entry in a BSP database has a GUID
associated with it. For security reasons, entries in a BSP database cannot be modified; only
created and deleted. New entries get new GUIDs.

Not all service providers support identification, and not all those need to support a database
interface. If the identification population is sufficiently small, it can be handled by passing an
array of BIRs across the interface.

Databases can be created by name, and a service provider may have a default database. If a
service provider supports a device that can store BIRs, then that device should be the default
database. The default database is always open when the BSP is attached, and the handle to the
open default database is always −1.

1.8 User Interface Considerations
The user interface for passwords and PINs is quite straightforward, but for biometric technology
it can be quite complex and very much technology-dependent, requiring multiple
implementation-dependent interactions with the user. Some biometric technologies present
streams of data to the user (face and voice, for example), while some require the user to validate
each sample taken (face, voice, and signature, for example). During enrollment, some
technologies verify each sample taken against the previous samples. The number of samples
taken for a particular purpose may vary from technology to technology, and finally, the user
interface is generally different for enrollment than for verification and identification.

Most biometric service providers come with a built-in user interface, and this may often be
sufficient for most purposes. The API, however, allows the application to control the ‘‘look-and-
feel’’ of this user interface by allowing the application to provide callbacks for the service
provider to use to present and gather samples.

One of the callbacks is used to present and gather samples and to indicate state changes to the
application. All service providers implementing the Application Controlled GUI option must
support this callback, though the state machines may vary considerably. The other GUI callback
is used to present streaming data to the user, in the form of a series of bitmaps. This callback is
optional, and the service provider indicates in its registry entry whether one is required. This
entry also indicates whether the user must validate samples, and whether samples are verified.

The service provider is in control of the user interface state machine, and calls the state callback
whenever there is a state change event. These state changes may be the completion of a sample,
progress on a sample, or the need to present the user with a message. On return, the application
can present the service provider with a response from the user; cancel, continue, valid sample,

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 9

User Interface Considerations Overview

invalid sample, and so on.

If the service provider needs to present a sample stream to the user, it calls the streaming
callback in parallel to the state change events. This callback will require multi-threading in both
the service provider and the application.

10 Open Group Technical Standard (2001)

Chapter 2

API Definition

2.1 Data Structures

2.1.1 CSSM_MODULE_EVENT

The following two events are added for HRS:

#define CSSM_NOTIFY_SOURCE_PRESENT (4)
#define CSSM_NOTIFY_SOURCE_REMOVED (5)

2.1.2 CSSM_MODULE_EVENT_MASK

This enumeration defines a mask with bit positions for event type. The mask is used to
enable/disable events, and to indicate what events are supported.

typedef uint32 CSSM_MODULE_EVENT_MASK;
#define CSSM_NOTIFY_INSERT_BIT (0x0001)
#define CSSM_NOTIFY_REMOVE_BIT (0x0002)
#define CSSM_NOTIFY_FAULT_BIT (0x0004)
#define CSSM_NOTIFY_SOURCE_PRESENT_BIT (0x0008)
#define CSSM_NOTIFY_SOURCE_REMOVED_BIT (0x0010)

2.1.3 CSSM_HRS_BIR

A container for biometric data. A BIR may contain raw sample data, partially processed
(intermediate) data, or completely processed data. It may be used to enroll a user (thus being
stored persistently), or may be used to verify or identify a user (thus being used transiently).

The opaque biometric data is of variable length, and may be followed by a signature. The
signature itself may not be a fixed length, depending on which signature standard is employed.
The signature is calculated on the combined Header and BiometricData .

typedef struct cssm_hrs_bir {
CSSM_HRS_BIR_HEADER Header;
CSSM_HRS_BIR_BIOMETRIC_DATA_PTR BiometricData;

/* Length indicated in header. */
CSSM_DATA_PTR Signature;

/* NULL if no signature; length is inherent in this type. */
} CSSM_HRS_BIR, *CSSM_HRS_BIR_PTR;

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 11

Data Structures API Definition

2.1.4 CSSM_HRS_BIR_ARRAY_POPULATION

An array of BIRs, generally used during identification operations (as input to Identify or
Identify_Match).

typedef struct cssm_hrs_bir_array_population {
uint32 NumberOfMembers;
CSSM_HRS_BIR_PTR *Members;

/* A pointer to an array of BIR pointers. */
} CSSM_HRS_BIR_ARRAY_POPULATION, *CSSM_HRS_BIR_ARRAY_POPULATION_PTR;

2.1.5 CSSM_HRS_BIR_AUTH_FACTORS

A mask that describes the set of authentication factors supported by an authentication service.

typedef uint32 CSSM_HRS_BIR_AUTH_FACTORS;
#define CSSM_HRS_FACTOR_MULTIPLE (0x00000001)
#define CSSM_HRS_FACTOR_FACIAL_FEATURES (0x00000002)
#define CSSM_HRS_FACTOR_VOICE (0x00000004)
#define CSSM_HRS_FACTOR_FINGERPRINT (0x00000008)
#define CSSM_HRS_FACTOR_IRIS (0x00000010)
#define CSSM_HRS_FACTOR_RETINA (0x00000020)
#define CSSM_HRS_FACTOR_HAND_GEOMETRY (0x00000040)
#define CSSM_HRS_FACTOR_SIGNATURE_DYNAMICS (0x00000080)
#define CSSM_HRS_FACTOR_KEYSTOKE_DYNAMICS (0x00000100)
#define CSSM_HRS_FACTOR_LIP_MOVEMENT (0x00000200)
#define CSSM_HRS_FACTOR_THERMAL_FACE_IMAGE (0x00000400)
#define CSSM_HRS_FACTOR_THERMAL_HAND_IMAGE (0x00000800)
#define CSSM_HRS_FACTOR_GAIT (0x00001000)
#define CSSM_HRS_FACTOR_PASSWORD (0x80000000)

Note: All integer values in the BIR header are little-endian.

2.1.6 CSSM_HRS_BIR_BIOMETRIC_DATA

This comprises the opaque data block within a BIR containing the biometric sample(s) or
template(s).

typedef uint8 CSSM_HRS_BIR_BIOMETRIC_DATA, \
*CSSM_HRS_BIR_BIOMETRIC_DATA_PTR;

Note: The format of this data is specified by the format field
(CSSM_HRS_BIR_BIOMETRIC_DATA_FORMAT) in the BIR header; see Section 1.3 (on page
2).

2.1.7 CSSM_HRS_BIR_BIOMETRIC_DATA_FORMAT

Defines the format of the data contained within the opaque data block,
CSSM_HRS_BIR_BIOMETRIC_DATA.

typedef struct cssm_hrs_bir_biometric_data_format {
uint16 FormatOwner;
uint16 FormatID;

} CSSM_HRS_BIR_BIOMETRIC_DATA_FORMAT, \
*CSSM_HRS_BIR_BIOMETRIC_DATA_FORMAT_PTR;

12 Open Group Technical Standard (2001)

API Definition Data Structures

Notes:

1. FormatOwner values are assigned and registered by the International Biometric Industry
Association (IBIA). FormatID is assigned by the Format Owner and may optionally be
registered by the IBIA. Contact information for the IBIA is located in Section 1.3 (on page
2).

2. All integer values in the BIR header are little-endian.

2.1.8 CSSM_HRS_BIR_DATA_TYPE

Mask bits that may be OR’ed together to indicate the type of opaque data in the BIR (Raw OR
Intermediate, OR Processed, OR Encrypted, OR Signed.)

typedef uint8 CSSM_HRS_BIR_DATA_TYPE;

#define CSSM_HRS_BIR_DATA_TYPE_RAW (0x01)
#define CSSM_HRS_BIR_DATA_TYPE_INTERMEDIATE (0x02)
#define CSSM_HRS_BIR_DATA_TYPE_PROCESSED (0x04)
#define CSSM_HRS_BIR_DATA_TYPE_ENCRYPTED (0x10)
#define CSSM_HRS_BIR_DATA_TYPE_SIGNED (0x20)

Note: All integer values in the BIR header are little-endian.

2.1.9 CSSM_HRS_BIR_HANDLE

A handle to refer to BIR data that exists in the service provider.

typedef sint32 CSSM_HRS_BIR_HANDLE, *CSSM_HRS_BIR_HANDLE_PTR;
#define CSSM_HRS_INVALID_BIR_HANDLE (-1)
#define CSSM_HRS_UNSUPPORTED_BIR_HANDLE (-2)

Note: All integer values in the BIR header are little-endian.

2.1.10 CSSM_HRS_BIR_HEADER

typedef struct cssm_hrs_bir_header {
uint32 Length; /* Length of Header + Opaque Data */
CSSM_HRS_BIR_VERSION HeaderVersion;
CSSM_HRS_BIR_DATA_TYPE Type;
CSSM_HRS_BIR_BIOMETRIC_DATA_FORMAT Format;
CSSM_HRS_QUALITY Quality;
CSSM_HRS_BIR_PURPOSE Purpose;
CSSM_HRS_BIR_AUTH_FACTORS FactorsMask;

} CSSM_HRS_BIR_HEADER, *CSSM_HRS_BIR_HEADER_PTR;

2.1.11 CSSM_HRS_BIR_PURPOSE

A value which defines the purpose(s) or use(s) for which the BIR is intended (when used as an
input) or suitable (when used as an output or within the BIR header).

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 13

Data Structures API Definition

typedef uint8 CSSM_HRS_BIR_PURPOSE;

#define CSSM_HRS_PURPOSE_VERIFY (1)
#define CSSM_HRS_PURPOSE_IDENTIFY (2)
#define CSSM_HRS_PURPOSE_ENROLL (3)
#define CSSM_HRS_PURPOSE_ENROLL_FOR_VERIFICATION_ONLY (4)
#define CSSM_HRS_PURPOSE_ENROLL_FOR_IDENTIFICATION_ONLY (5)
#define CSSM_HRS_PURPOSE_AUDIT (6)

Notes:

1. All integer values in the BIR header are little-endian.

2. The Purpose value is utilized in two ways.

First, it is used as an input parameter to allow the application to indicate to the BSP the
purpose for which the resulting data is intended, thus allowing the BSP to perform the
appropriate capturing and/or processing to create the proper BIR for this purpose.

Second, it is used within the BIR header to indicate to the application (or to the BSP
during subsequent operations) what purposes the BIR is suitable for.

For example, some BSPs use different BIR formats depending on whether the data is to be
used for verification or identification, the latter generally including additional
information to enhance speed or accuracy. Similarly, many BSPs use different data
formats depending on whether the data is to be used as a sample for immediate
verification or as a reference template for future matching (that is, enrollment.)

Restrictions on the use of BIR data of a particular purpose include:

• All purposes are valid in the BIR header.

• Purposes of Verify and Identify are only valid as input to the Capture function.

• Purposes of Enroll , Enroll_for_Verification_Only , and Enroll_for_Identification_Only are
only valid as input to the Capture , Enroll , and Import functions.

• The Audit purpose is not valid as input to any function, but is only used in the BIR
header.

• The Process and Create_Template functions do not have Purpose as an input parameter,
but read the Purpose field from the BIR header of the input Captured_BIR .

• The Process function may accept as input any intermediate BIR with a Purpose
including Verify or Identify , and will output only BIRs with a Purpose of Verify and/or
Identify .

• The Create_Template function may accept as input any intermediate BIR with a Purpose
including Enroll , Enroll_for_Verification_Only , and/or Enroll_for_Identification , and will
output only BIRs with a Purpose including that of the input BIR.

• If a BIR is suitable for enrollment for either subsequent verification or identification,
then the Enroll Purposeistobeusedin

2.1.12 CSSM_HRS_BIR_VERSION

This data type is used to represent the version of a BIR header. The first version has a value of 1.

typedef uint8 CSSM_HRS_BIR_VERSION, *CSSM_HRS_BIR_VERSION_PTR;

Note: All integer values in the BIR header are little-endian.

14 Open Group Technical Standard (2001)

API Definition Data Structures

2.1.13 CSSM_HRS_CANDIDATE

One of a set of candidates returned by Identify or IdentifyMatch, indicating a successful match.

typedef struct cssm_hrs_candidate {
CSSM_HRS_IDENTIFY_POPULATION_TYPE Type;
union {

CSSM_GUID_PTR BIRInDataBase;
uint32 *BIRInArray;

} BIR;
CSSM_HRS_FAR FARAchieved;
CSSM_HRS_FRR FRRAchieved;

} CSSM_HRS_CANDIDATE, *CSSM_HRS_CANDIDATE_PTR;

2.1.14 CSSM_HRS_CANDIDATE_ARRAY

An array of candidates returned by Identify or IdentifyMatch.

typedef CSSM_HRS_CANDIDATE_PTR CSSM_HRS_CANDIDATE_ARRAY, \
*CSSM_HRS_CANDIDATE_ARRAY_PTR;

2.1.15 CSSM_HRS_DB_ACCESS_TYPE

This bitmask describes a user’s desired level of access to a database. The BSP may use the mask
to determine what lock to obtain on a database.

typedef uint32 CSSM_HRS_DB_ACCESS_TYPE, *CSSM_HRS_DB_ACCESS_TYPE_PTR;

#define CSSM_HRS_DB_ACCESS_READ (0x1)
#define CSSM_HRS_DB_ACCESS_WRITE (0x2)

2.1.16 CSSM_HRS_DB_CURSOR

A handle to a record in an open BIR database. The internal state for the handle includes the open
database handle and also the position of a record in that open database. All cursors to an open
database are freed when the database is closed.

typedef uint32 CSSM_HRS_DB_CURSOR, *CSSM_HRS_DB_CURSOR_PTR;

2.1.17 CSSM_HRS_DB_HANDLE

A handle to an open BIR database.

typedef sint32 CSSM_HRS_DB_HANDLE, *CSSM_HRS_DB_HANDLE_PTR;
#define CSSM_HRS_DB_DEFAULT_DB_HANDLE (-1)
#define CSSM_HRS_DB_INVALID_HANDLE (-2)

2.1.18 CSSM_HRS_DBBIR_ID

A structure providing the handle to a database managed by the BSP, and the ID of a BIR in that
database.

typedef struct cssm_hrs_dbbir_id {
CSSM_HRS_DB_HANDLE DbHandle;
CSSM_GUID KeyValue;

} CSSM_HRS_DBBIR_ID, *CSSM_HRS_DBBIR_ID_PTR;

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 15

Data Structures API Definition

2.1.19 CSSM_HRS_FAR

A 32-bit integer value (N) that indicates a probable False Accept Rate of N/(231−1). The larger
the value, the worse the result.

typedef sint32 CSSM_HRS_FAR, *CSSM_HRS_FAR_PTR;
#define CSSM_HRS_FAR_NOT_SET (-1)

FAR is used within BioAPI as a means of setting thresholds and returning scores; see Section 1.5
(on page 8).

2.1.20 CSSM_HRS_FRR

A 32-bit integer value (N) that indicates a probable False Reject Rate of N/(231−1). The larger the
value, the worse the result.

typedef sint32 CSSM_HRS_FRR, *CSSM_HRS_FRR_PTR;
#define CSSM_HRS_FRR_NOT_SET (-1)
#define CSSM_HRS_FRR_NOT_SUPPORTED (-2)

FRR is used within CDSA/HRS as an optional/alternate means of setting thresholds and
returning scores; see Section 1.5 (on page 8).

2.1.21 CSSM_HRS_GUI_BITMAP

typedef struct cssm_hrs_gui_bitmap {
uint32 Width;
uint32 Height;
CSSM_DATA_PTR Bitmap;

} CSSM_HRS_GUI_BITMAP, *CSSM_HRS_GUI_BITMAP_PTR;

2.1.22 CSSM_HRS_GUI_MESSAGE

typedef uint32 CSSM_HRS_GUI_MESSAGE, *CSSM_HRS_GUI_MESSAGE_PTR;

2.1.23 CSSM_HRS_GUI_PROGRESS

typedef uint8 CSSM_HRS_GUI_PROGRESS, *CSSM_HRS_GUI_PROGRESS_PTR;

2.1.24 CSSM_HRS_GUI_RESPONSE

typedef uint8 CSSM_HRS_GUI_RESPONSE;
#define CSSM_HRS_CAPTURE_SAMPLE (1)
#define CSSM_HRS_CANCEL (2)
#define CSSM_HRS_CONTINUE (3)
#define CSSM_HRS_VALID_SAMPLE (4)
#define CSSM_HRS_INVALID_SAMPLE (5)

16 Open Group Technical Standard (2001)

API Definition Data Structures

2.1.25 CSSM_HRS_GUI_STATE

A mask that indicates GUI state, and also what other parameter values are provided in the GUI
State Callback.

typedef uint32 CSSM_HRS_GUI_STATE;

#define CSSM_HRS_SAMPLE_AVAILABLE (0x0001)
#define CSSM_HRS_MESSAGE_PROVIDED (0x0002)
#define CSSM_HRS_PROGRESS_PROVIDED (0x0004)

2.1.26 CSSM_HRS_GUI_STATE_CALLBACK

A Callback function that an application supplies to allow the service provider to indicate GUI
state information to the application, and to receive responses back.

typedef CSSM_RETURN (CSSMAPI *CSSM_HRS_GUI_STATE_CALLBACK)
(void *GuiStateCallbackCtx,
CSSM_HRS_GUI_STATE GuiState,
CSSM_HRS_GUI_RESPONSE Response,
CSSM_HRS_GUI_MESSAGE Message,
CSSM_HRS_GUI_PROGRESS Progress,
CSSM_HRS_GUI_BITMAP_PTR SampleBuffer);

Parameters

GuiStateCallbackCtx (input)
A generic pointer to context information that was provided by the original requester and is
being returned to its originator.

GuiState (input)
An indication of the current state of the service provider with respect to the GUI, plus an
indication of what others parameters are available.

Response (output)
The response from the application back to the service provider on return from the Callback .

Message (input/optional)
The number of a message to display to the user. Message numbers are service provider-
dependent. GuiState indicates whether a message is provided; if not, the parameter is
NULL.

Progress (input/optional)
A value that indicates (as a percentage) the amount of progress in the development of a
Sample/BIR. The value may be used to display a progress bar. Not all service providers
support a progress indication. GuiState indicates whether a sample progress value is
provided in the call; if not, the parameter is NULL.

SampleBuffer (input/optional)
The current sample buffer for the application to display. GuiState indicates whether a
sample buffer is provided; if not, the parameter is NULL.

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 17

Data Structures API Definition

2.1.27 CSSM_HRS_GUI_STREAMING_CALLBACK

A Callback function that an application supplies to allow the service provider to stream data in
the form of a sequence of bitmaps.

typedef CSSM_RETURN (CSSMAPI *CSSM_HRS_GUI_STREAMING_CALLBACK)
(void *GuiStreamingCallbackCtx,
CSSM_HRS_GUI_BITMAP_PTR Bitmap);

Parameters

GuiStreamingCallbackCtx (input)
A generic pointer to context information that was provided by the original requester and is
being returned to its originator.

Bitmap (input)
A pointer to the bitmap to be displayed.

2.1.28 CSSM_HRS_HANDLE

typedef CSSM_MODULE_HANDLE CSSM_HRS_HANDLE; /* HRS Module Handle */

This data structure represents the HRS module handle. The handle value is a unique pairing
between an HRS module and an application that has attached that module. HRS handles can be
returned to an application as a result of the CSSM_ModuleAttach() function.

2.1.29 CSSM_HRS_IDENTIFY_POPULATION

A structure used to identify the set of BIRs to be used as input to an Identify or Identify_Match
operation.

typedef struct cssm_hrs_identify_population {
CSSM_HRS_IDENTIFY_POPULATION_TYPE Type;
union {

CSSM_HRS_DB_HANDLE_PTR BIRDataBase;
CSSM_HRS_BIR_ARRAY_POPULATION_PTR BIRArray;

} BIRs;
} CSSM_HRS_IDENTIFY_POPULATION, *CSSM_HRS_IDENTIFY_POPULATION_PTR;

2.1.30 CSSM_HRS_IDENTIFY_POPULATION_TYPE

A value indicating the method of BIR input to an Identify or Identify_Match operation, whether
via a passed-in array or a pointer to a database.

typedef uint8 CSSM_HRS_IDENTIFY_POPULATION_TYPE;

#define CSSM_HRS_DB_TYPE (1)
#define CSSM_HRS_ARRAY_TYPE (2)

18 Open Group Technical Standard (2001)

API Definition Data Structures

2.1.31 CSSM_HRS_INPUT_BIR

A structure used to input a BIR to the API. Such input can be in one of three forms:

1. A BIR Handle

2. A key to a BIR in a database managed by the BSP. If the DbHandle is zero, the default
database is assumed. (A DbHandle is returned when a database is opened).

3. An actual BIR

typedef struct cssm_hrs_input_bir {
CSSM_HRS_INPUT_BIR_FORM Form;
union {

CSSM_HRS_DBBIR_ID_PTR BIRinDb;
CSSM_HRS_BIR_HANDLE_PTR BIRinBSP;
CSSM_HRS_BIR_PTR BIR;

} InputBIR;
} CSSM_HRS_INPUT_BIR, *CSSM_HRS_INPUT_BIR_PTR;

2.1.32 CSSM_HRS_INPUT_BIR_FORM

typedef uint8 CSSM_HRS_INPUT_BIR_FORM;
#define CSSM_HRS_DATABASE_ID_INPUT (1)
#define CSSM_HRS_BIR_HANDLE_INPUT (2)
#define CSSM_HRS_FULLBIR_INPUT (3)

2.1.33 CSSM_HRS_POWER_MODE

An enumeration that specifies the types of power modes the system will try to use.

typedef uint32 CSSM_HRS_POWER_MODE;
/* All functions available */
#define CSSM_HRS_POWER_NORMAL (1)
/* Able to detect (for example) insertion/fingeron/person */
/* present type of events */
#define CSSM_HRS_POWER_DETECT (2)
/* Minimum mode. all functions off */
#define CSSM_HRS_POWER_SLEEP (3)

2.1.34 CSSM_HRS_QUALITY

A value indicating the quality of the biometric data in a BIR.

typedef sint8 CSSM_HRS_QUALITY;

Note: All integer values in the BIR header are little-endian.

The performance of biometrics varies with the quality of the biometric data. Since a universally
accepted definition for this quality does not exist, HRS has elected to provide the following
structure with the goal of framing the effect of quality on usage of the BSP (as envisioned by the
BSP vendor). The scores as reported by the BSP are based on the purpose (BIR_PURPOSE)
indicted by the application (for example, capture for enrollment/verify, capture for
enrollment/identify, capture for verify, and so on). Additionally, the demands upon the
biometric vary based on the actual customer application and/or environment (that is, a
particular application usage may require higher-quality samples than would normally be
required by less demanding applications).

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 19

Data Structures API Definition

Quality measurements are reported as an integral value in the range 0-100, except as follows:

• Value of −1: CSSM_HRS_QUALITY was not set by the BSP (reference BSP vendor’s
documentation for explanation).

• Value of −2: CSSM_HRS_QUALITY is not supported by the BSP.

There are two objectives in providing CSSM_HRS_QUALITY feedback to the application:

1. The primary objective is to have the BSP inform the application how suitable the biometric
sample is for the purpose (CSSM_HRS_PURPOSE) specified by the application (as framed
by the BSP vendor based on the use scenario intended by the BSP vendor).

2. The secondary objective is to provide the application with relative results (for example,
current sample is better/worse than previous sample).

Quality scores in the range 0-100 have the following interpretation:

0-25 UNACCEPTABLE: The biometric data cannot be used for the purpose specified by
the application (CSSM_HRS_PURPOSE). The biometric data must be replaced
with a new sample.

26-50 MARGINAL: The biometric data will provide poor performance for the purpose
specified by the application (CSSM_HRS_PURPOSE) and in most application
environments will compromise the intent of the application. The biometric data
should be replaced with a new sample.

51-75 ADEQUATE: The biometric data will provide good performance in most
application environments based on the purpose specified by the application
(CSSM_HRS_PURPOSE). The application should attempt to obtain higher quality
data if the application developer anticipates demanding usage.

76-100 EXCELLENT: The biometric data will provide good performance for the purpose
specified by the application (CSSM_HRS_BIR_PURPOSE). The application may
want to attempt to obtain better samples if the sample quality
(CSSM_HRS_QUALITY) is in the lower portion of the range (for example, 76, 77,
. . .) when convenient (for example, during enrollment).

2.1.35 CSSM_HRS_STREAM_CALLBACK

typedef CSSM_RETURN (CSSMAPI *CSSM_HRS_STREAM_CALLBACK)
(void *StreamCallbackCtx,
CSSM_DATA_PTR OutMessage,
CSSM_DATA_PTR InMessage);

A Callback function that an application supplies to allow the service provider to stream data in
the form of a sequence of protocol data units (messages).

Parameters

StreamCallbackCtx (input)
A generic pointer to context information that was provided by the original requester and is
being returned to its originator.

OutMessage (input)
A pointer to a protocol data unit to be sent to the communication partner.

InMessage (output/optional)
A pointer to a protocol data unit to be received back from the communicating partner.

20 Open Group Technical Standard (2001)

API Definition CDSA/HRS Registry Schema

2.2 CDSA/HRS Registry Schema
The various components of the CDSA/HRS implementation are represented by records in MDS.

The following sections define the information that should be kept for each component type.

2.2.1 Data Definitions

2.2.1.1 CSSM_HRS_OPERATIONS_MASK

A mask that indicates what operations are supported by the HRS service provider.

typedef uint32 CSSM_HRS_OPERATIONS_MASK;

#define CSSM_HRS_CAPTURE (0x0001)
#define CSSM_HRS_CREATETEMPLATE (0x0002)
#define CSSM_HRS_PROCESS (0x0004)
#define CSSM_HRS_VERIFYMATCH (0x0008)
#define CSSM_HRS_IDENTIFYMATCH (0x0010)
#define CSSM_HRS_ENROLL (0x0020)
#define CSSM_HRS_VERIFY (0x0040)
#define CSSM_HRS_IDENTIFY (0x0080)
#define CSSM_HRS_IMPORT (0x0100)
#define CSSM_HRS_SETPOWERMODE (0x0200)
#define CSSM_HRS_DATABASEOPERATIONS (0x0400)

2.2.1.2 CSSM_HRS_OPTIONS_MASK

A mask that indicates what options are supported by the HRS Service Provider. Note that
optional functions are identified within the CSSM_HRS_OPERATIONS_MASK and not repeated
here.

typedef uint32 CSSM_HRS_OPTIONS_MASK;

#define CSSM_HRS_RAW (0x00000001)
/* If set, indicates that the BSP supports the return of

raw/audit data. */
#define CSSM_HRS_QUALITY_RAW (0x00000002)

/* If set, BSP supports the return of a quality value
(in the BIR header) for raw biometric data. */

#define CSSM_HRS_QUALITY_INTERMEDIATE (0x00000004)
/* If set, BSP supports the return of a quality value

(in the BIR header) for intermediate biometric data. */
#define CSSM_HRS_QUALITY_PROCESSED (0x00000008)

/* If set, BSP supports the return of quality value
(in the BIR header) for processed biometric data. */

#define CSSM_HRS_APP_GUI (0x00000010)
/* If set, indicates that the BSP supports application

control of the GUI. */
#define CSSM_HRS_STREAMINGDATA (0x00000020)

/* If set, indicates that the BSP provides GUI
streaming data. */

#define CSSM_HRS_USERVALIDATESSAMPLES (0x00000040)
/* If set, user must validate each sample. */

#define CSSM_HRS_VERIFYSAMPLES (0x00000080)
/* If set, BSP verifies each sample. */

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 21

CDSA/HRS Registry Schema API Definition

#define CSSM_HRS_SOURCEPRESENT (0x00000100)
/* If set, BSP supports detection of source presence. */

#define CSSM_HRS_PAYLOAD (0x00001000)
/* If set, indicates that the BSP supports payload

carry (accepts payload during enroll/process and
returns payload upon successful verify). */

#define CSSM_HRS_BIR_SIGN (0x00002000)
/* If set, BSP returns signed BIRs. */

#define CSSM_HRS_BIR_ENCRYPT (0x00004000)
/* If set, BSP returns encrypted BIRs. */

#define CSSM_HRS_FRR_SUPPORTED (0x00010000)
/* If set, indicates BSP supports the return of

actual FRR during matching operations (Verify,
VerifyMatch, Identify, IdentifyMatch). */

#define CSSM_HRS_ADAPTATION (0x00020000)
/* If set, BSP supports BIR adaptation (return

of Verify or VerifyMatch operation). */
#define CSSM_HRS_BINNING (0x00040000)

/* If set, BSP supports binning (parameter used
in Identify and IdentifyMatch operations). */

#define CSSM_HRS_DEFAULTDATABASE (0x00080000)
/* If set, BSP supports a default database. */

#define CSSM_HRS_LOCAL_BSP (0x01000000)
/* If set, BSP can operate in standalone mode. */

#define CSSM_HRS_CLIENT_BSP (0x02000000)
/* If set, BSP can operate as a Client

(that is, can Capture). */
#define CSSM_HRS_SERVER_BSP (0x04000000)

/* If set, BSP can operate as a Server. */
#define CSSM_HRS_STREAMINGCALLBACK (0x08000000)

/* If set, BSP supports streaming callbacks and
StreamInputOutput. */

#define CSSM_HRS_PROGRESS (0x10000000)
/* If set, BSP supports the return of progress. */

#define CSSM_HRS_SELFCONTAINEDDEVICE (0x20000000)
/* If set, BSP is supporting a self-contained

device. */

2.2.2 Component Schema

2.2.2.1 Primary HRS Service Provider Relation

The service provider schema describes capabilities of an HRS service provider module.

22 Open Group Technical Standard (2001)

API Definition CDSA/HRS Registry Schema

__
Field Name Field Data Type Comment__

ModuleID STRING GUID uniquely identifying HRS SP.__
SSID UINT32 4-byte Subservice ID of attached sensor device.__
ModuleName STRING Filename of HRS Module .__

HRS SP product version string
(in dotted high/low format; e.g., 2.0).

ProductVersion STRING

__
Vendor STRING Service provider vendor name in ASCII text.__

Highest compatible HRS Spec Version
(in dotted high/low format; e.g., 2.0).

HRSSpecVersion STRING

__
An array of 2-byte integer pairs, each pair
specifying a supported biometric data format
(CSSM_HRS_BIR_BIOMETRIC_DATA_FORMAT).

SupportedFormats MULTIUINT32

__
A mask which indicates what forms of
authentication are supported
(CSSM_HRS_BIR_AUTH_FACTORS).

FactorsMask UINT32

__
Operations supported by service provider
(CSSM_HRS_OPERATIONS_MASK).

Operations UINT32

__
Options supported by the BSP
(CSSM_HRS_OPTIONS_MASK).

Options UINT32

__
Threshold setting (minimum FAR value) used to
determine when to release a payload
(CSSM_HRS_FAR).

PayloadPolicy UINT32

__
MaxPayloadSize UINT32 Maximum size in bytes of a payload.__

Default timeout value (in milliseconds) used by
a BSP for verify operations when no timeout is
set by the application.

DefaultVerifyTimeout SINT32

__
Default timeout value (in milliseconds) used by
a BSP for identify operations when no timeout is
set by the application.

DefaultIdentifyTimeout SINT32

__
Default timeout value (in milliseconds) used by
a BSP for capture operations when no timeout is
set by the application.

DefaultCaptureTimeout SINT32

__
Default timeout value (in milliseconds) used by
a BSP for enroll operations when no timeout is
set by the application.

DefaultEnrollTimeout SINT32

__
Maximum size of a BSP owned (internal)
database.
If NULL, no BSP database exists.

MAXBSPDBsize UINT32

__
Largest population supported by Identify
function.
Unlimited = FFFFFFFF

MaxIdentify UINT32

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 23

CDSA/HRS Registry Schema API Definition

2.2.2.2 Biometric Device Relation

The information in the biometric device registry entry is updated each time a biometric device is
attached to or removed from the service provider.
__

Field Name Field Data Type CommentLL LL LL LL__
GUID (in string format) uniquely identifying
service provider module.

ModuleID STRING

__
SSID UINT32 4-byte device ID.__

BIR Formats supported by BSP+device
(CSSM_HRS_BIR_BIOMETRIC_DATA_FORMAT).

SupportedFormats MULTIUINT32

__
A CSSM_HRS_MODULE_EVENT_MASK
indicating which types of events are supported.

SupportedEvents UINT32

__
DeviceVendor STRING Unicode text name of device vendor.__
DeviceDescription STRING Unicode text description of the biometric device.__
DeviceSerialNumber STRING Serial Number of biometric device.__

Device hardware version string
(in dotted high/low format; e.g., 2.0).

DeviceHardwareVersion STRING

__
Device Firmware version string
(in dotted high/low format; e.g., 2.0).

DeviceFirmwareVersion STRING

__
An indication of whether the device has been
authenticated.

AuthenticatedDevice BOOL

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

24 Open Group Technical Standard (2001)

API Definition HRS Error Codes

2.3 HRS Error Codes

2.3.1 Configurable HRS Error Code Constants

The following constant can be configured on a per-platform basis:

#define CSSM_HRS_BASE_ERROR \
(CSSM_AC_BASE_ERROR + CSSM_ERRCODE_MODULE_EXTENT)

#define CSSM_HRS_PRIVATE_ERROR \
(CSSM_HRS_BASE_ERROR + CSSM_ERROR_CUSTOM_OFFSET)

2.3.2 HRS Error Values Derived from Common Error Codes

#define CSSMERR_HRS_INTERNAL_ERROR \
(CSSM_HRS_BASE_ERROR+CSSM_ERRCODE_INTERNAL_ERROR)

#define CSSMERR_HRS_MEMORY_ERROR \
(CSSM_HRS_BASE_ERROR+CSSM_ERRCODE_MEMORY_ERROR)

#define CSSMERR_HRS_INVALID_POINTER \
(CSSM_HRS_BASE_ERROR+CSSM_ERRCODE_INVALID_POINTER)

#define CSSMERR_HRS_INVALID_INPUT_POINTER \
(CSSM_HRS_BASE_ERROR+CSSM_ERRCODE_INVALID_INPUT_POINTER)

#define CSSMERR_HRS_INVALID_OUTPUT_POINTER \
(CSSM_HRS_BASE_ERROR+CSSM_ERRCODE_INVALID_OUTPUT_POINTER)

#define CSSMERR_HRS_FUNCTION_NOT_IMPLEMENTED \
(CSSM_HRS_BASE_ERROR+CSSM_ERRCODE_FUNCTION_NOT_IMPLEMENTED)

#define CSSMERR_HRS_OS_ACCESS_DENIED \
(CSSM_HRS_BASE_ERROR+CSSM_ERRCODE_OS_ACCESS_DENIED)

#define CSSMERR_HRS_FUNCTION_FAILED \
(CSSM_HRS_BASE_ERROR+CSSM_ERRCODE_FUNCTION_FAILED)

#define CSSMERR_HRS_INVALID_DATA \
(CSSM_HRS_BASE_ERROR+CSSM_ERRCODE_INVALID_DATA)

#define CSSMERR_HRS_INVALID_DB_HANDLE \
(CSSM_HRS_BASE_ERROR+CSSM_ERRCODE_INVALID_DB_HANDLE)

2.3.3 HRS-Specific Error Values

#define CSSM_HRS_BASE_HRS_ERROR \
(CSSM_HRS_BASE_ERROR+CSSM_ERRCODE_COMMON_EXTENT)

#define CSSMERR_HRS_UNABLE_TO_CAPTURE (CSSM_HRS_BASE_HRS_ERROR+1)
/* The BSP is unable to capture raw samples from the device. */

#define CSSMERR_HRS_TOO_MANY_HANDLES (CSSM_HRS_BASE_HRS_ERROR+2)
/* The BSP has no more space to allocate BIR handles. */

#define CSSMERR_HRS_TIMEOUT_EXPIRED (CSSM_HRS_BASE_HRS_ERROR+3)
/* The Function has been terminated because the timeout

value has expired. */

#define CSSMERR_HRS_INVALID_BIR (CSSM_HRS_BASE_HRS_ERROR+4)
/* The input BIR is invalid for the purpose required. */

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 25

HRS Error Codes API Definition

#define CSSMERR_HRS_BIR_SIGNATURE_FAILURE (CSSM_HRS_BASE_HRS_ERROR+5)
/* The BSP could not validate the signature on the BIR. */

#define CSSMERR_HRS_UNABLE_TO_WRAP_PAYLOAD (CSSM_HRS_BASE_HRS_ERROR+6)
/* The BSP is unable to include the payload in the new BIR. */

#define CSSMERR_HRS_NO_INPUT_BIRS (CSSM_HRS_BASE_HRS_ERROR+8)
/* The identify population is NULL. */

#define CSSMERR_HRS_UNSUPPORTED_FORMAT (CSSM_HRS_BASE_HRS_ERROR+9)
/* The BSP does not support the data form for the

Import function. */

#define CSSMERR_HRS_UNABLE_TO_IMPORT (CSSM_HRS_BASE_HRS_ERROR+10)
/* The BSP was unable to construct a BIR from the input data. */

#define CSSMERR_HRS_FUNCTION_NOT_SUPPORTED \
(CSSM_HRS_BASE_HRS_ERROR+12)
/* The BSP does not support this operation. */

#define CSSMERR_HRS_INCONSISTENT_PURPOSE (CSSM_HRS_BASE_HRS_ERROR+13)
/* The purpose recorded in the BIR, and the requested

purpose, are inconsistent with the function being
performed. */

#define CSSMERR_HRS_BIR_NOT_FULLY_PROCESSED \
(CSSM_HRS_BASE_HRS_ERROR+14)
/* The function requires a fully-processed BIR. */

#define CSSMERR_HRS_PURPOSE_NOT_SUPPORTED (CSSM_HRS_BASE_HRS_ERROR+15)
/* The BSP does not support the requested purpose. */

#define CSSMERR_HRS_INVALID_HANDLE (CSSM_HRS_BASE_HRS_ERROR+16)
/* No BIR exists with the requested handle. */

#define CSSMERR_HRS_UNABLE_TO_OPEN_DATABASE \
(CSSM_HRS_BASE_HRS_ERROR+256)
/* BSP is unable to open the specified database. */

#define CSSMERR_HRS_DATABASE_IS_LOCKED (CSSM_HRS_BASE_HRS_ERROR+257)
/* The database cannot be opened for the access

requested because it is locked. */

#define CSSMERR_HRS_DATABASE_DOES_NOT_EXIST \
(CSSM_HRS_BASE_HRS_ERROR+258)
/* The specified database name does not exist. */

#define CSSMERR_HRS_DATABASE_ALREADY_EXISTS \
(CSSM_HRS_BASE_HRS_ERROR+259)
/* Create failed because the database already exists. */

#define CSSMERR_HRS_INVALID_DATABASE_NAME (CSSM_HRS_BASE_HRS_ERROR+260)
/* The database name is invalid. */

#define CSSMERR_HRS_RECORD_NOT_FOUND (CSSM_HRS_BASE_HRS_ERROR+261)
/* No record exists with the requested key. */

#define CSSMERR_HRS_CURSOR_IS_INVALID (CSSM_HRS_BASE_HRS_ERROR+262)
/* The specified cursor is invalid. */

26 Open Group Technical Standard (2001)

API Definition HRS Error Codes

#define CSSMERR_HRS_DATABASE_IS_OPEN (CSSM_HRS_BASE_HRS_ERROR+263)
/* The database is already open. */

#define CSSMERR_HRS_INVALID_ACCESS_REQUEST \
(CSSM_HRS_BASE_HRS_ERROR+264)
/* The access type is unrecognized. */

#define CSSMERR_HRS_END_OF_DATABASE (CSSM_HRS_BASE_HRS_ERROR+265)
/* End of database has been reached. */

#define CSSMERR_HRS_UNABLE_TO_CREATE_DATABASE \
(CSSM_HRS_BASE_BSP_ERROR+266)
/* BSP cannot create database. */

#define CSSMERR_HRS_UNABLE_TO_CLOSE_DATABASE \
(CSSM_HRS_BASE_BSP_ERROR+267)
/* BSP cannot close database. */

#define CSSMERR_HRS_UNABLE_TO_DELETE_DATABASE \
(CSSM_HRS_BASE_BSP_ERROR+268)
/* BSP cannot delete database. */

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 27

BSP Operations API Definition

2.4 BSP Operations

2.4.1 Handle Operations

This section gives the definitions for the BSP Handle operations.

28 Open Group Technical Standard (2001)

API Definition HRS_FreeBIRHandle

NAME
CSSM_HRS_FreeBIRHandle, HRS_FreeBIRHandle

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_FreeBIRHandle
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_BIR_HANDLE Handle);

SPI

CSSM_RETURN CSSMHRI HRS_FreeBIRHandle
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_BIR_HANDLE Handle);

DESCRIPTION
Frees the memory and resources associated with the specified BIR Handle. The associated BIR is
no longer referenceable through that handle. If necessary, the application must make the BIR
persistent either in an HRS-managed database or an application-managed database before
freeing the handle.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

Handle (input)
The BIR Handle to be freed.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
See HRS Error Codes in Section 2.3 (on page 25).

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 29

HRS_GetBIRFromHandle API Definition

NAME
CSSM_HRS_GetBIRFromHandle, HRS_GetBIRFromHandle

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_GetBIRFromHandle
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_BIR_HANDLE Handle,
CSSM_HRS_BIR_PTR *BIR);

SPI

CSSM_RETURN CSSMHRI HRS_GetBIRFromHandle
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_BIR_HANDLE Handle,
CSSM_HRS_BIR_PTR *BIR);

DESCRIPTION
Retrieves the BIR associated with a BIR handle. The handle is invalidated. The HRS service
provider allocates the storage for both the retrieved BIR structure and its data members, using
the application’s memory allocation callback function.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

Handle (input)
The handle of the BIR to be retrieved.

BIR (output)
The retrieved BIR.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
See HRS Error Codes in Section 2.3 (on page 25).

30 Open Group Technical Standard (2001)

API Definition HRS_GetHeaderFromHandle

NAME
CSSM_HRS_GetHeaderFromHandle, HRS_GetHeaderFromHandle

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_GetHeaderFromHandle
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_BIR_HANDLE Handle,
CSSM_HRS_BIR_HEADER_PTR Header);

SPI

CSSM_RETURN CSSMHRI HRS_GetHeaderFromHandle
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_BIR_HANDLE Handle,
CSSM_HRS_BIR_HEADER_PTR Header);

DESCRIPTION
Retrieves the BIR header identified by Handle . The BIR Handle is not freed by the HRS service
provider.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

Handle (input)
The handle of the BIR whose header is to be retrieved.

Header (output)
The header of the specified BIR.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
See HRS Error Codes in Section 2.3 (on page 25).

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 31

HRS_GetHeaderFromHandle API Definition

2.4.2 Callback and Event Operations

This section gives the definitions for the BSP Callback and Event operations.

32 Open Group Technical Standard (2001)

API Definition HRS_EnableEvents

NAME
CSSM_HRS_EnableEvents, HRS_EnableEvents

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_EnableEvents
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_MODULE_EVENT_MASK *Events);

SPI

CSSM_RETURN CSSMHRI HRS_EnableEvents
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_MODULE_EVENT_MASK *Events);

DESCRIPTION
This function enables the events (indicated by the Events mask) from the attached HRS service
provider in the current process. All other events from this HRS service provider are disabled for
this process.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

Events (input)
A pointer to a mask indicating which events to enable.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
See HRS Error Codes in Section 2.3 (on page 25).

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 33

HRS_SetGUICallbacks API Definition

NAME
CSSM_HRS_SetGUICallbacks, HRS_SetGUICallbacks

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_SetGUICallbacks
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_GUI_STREAMING_CALLBACK GuiStreamingCallback,
void *GuiStreamingCallbackCtx,
CSSM_HRS_GUI_STATE_CALLBACK GuiStateCallback,
void *GuiStateCallbackCtx);

SPI

CSSM_RETURN CSSMHRI HRS_SetGUICallbacks
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_GUI_STREAMING_CALLBACK GuiStreamingCallback,
void *GuiStreamingCallbackCtx,
CSSM_HRS_GUI_STATE_CALLBACK GuiStateCallback,
void *GuiStateCallbackCtx);

DESCRIPTION
This function allows the application to establish callbacks so that the application may control the
‘‘look-and-feel’’ of the biometric user interface.

Note that not all HRS service providers provide streaming data.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

GuiStreamingCallback (input)
A pointer to an application callback to deal with the presentation of biometric streaming
data.

GuiStreamingCallbackCtx (input)
A generic pointer to context information provided by the application that will be presented
on the callback.

GuiStateCallback (input)
A pointer to an application callback to deal with GUI state changes.

GuiStateCallbackCtx (input)
A generic pointer to context information provided by the application that will be presented
on the callback.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
See HRS Error Codes in Section 2.3 (on page 25).

34 Open Group Technical Standard (2001)

API Definition HRS_CancelGUICallbacks

NAME
CSSM_HRS_CancelGUICallbacks, HRS_CancelGUICallbacks

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_CancelGUICallbacks
(CSSM_HRS_HANDLE ModuleHandle);

SPI

CSSM_RETURN CSSMHRI HRS_CancelGUICallbacks
(CSSM_HRS_HANDLE ModuleHandle);

DESCRIPTION
This function cancels GUICallbacks if they have been set. A GUICallback should be canceled
before the service provider is detached.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
See HRS Error Codes in Section 2.3 (on page 25).

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 35

HRS_SetStreamCallback API Definition

NAME
CSSM_HRS_SetStreamCallback, HRS_SetStreamCallback

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_SetStreamCallback
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_STREAM_CALLBACK StreamCallback,
void *StreamCallbackCtx);

SPI

CSSM_RETURN CSSMHRI HRS_SetStreamCallback
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_STREAM_CALLBACK StreamCallback,
void *StreamCallbackCtx);

DESCRIPTION
This function allows the application to establish a callback for client/server communication. The
callback allows the HRS service provider to send a protocol message to its partner service
provider, and to receive a protocol message in exchange.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

StreamCallback (input)
A pointer to an application callback to deal with the client/server transmission of protocol
data units between HRS service providers.

StreamCallbackCtx (input)
A generic pointer to context information provided by the application that will be presented
on the callback.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
See HRS Error Codes in Section 2.3 (on page 25).

36 Open Group Technical Standard (2001)

API Definition HRS_CancelStreamCallbacks

NAME
CSSM_HRS_CancelStreamCallbacks, HRS_CancelStreamCallbacks

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_CancelStreamCallbacks
(CSSM_HRS_HANDLE ModuleHandle);

SPI

CSSM_RETURN CSSMHRI HRS_CancelStreamCallbacks
(CSSM_HRS_HANDLE ModuleHandle);

DESCRIPTION
This function cancels the StreamCallback if it has been set. A StreamCallback should be canceled
before the service provider is detached.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
See HRS Error Codes in Section 2.3 (on page 25).

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 37

HRS_StreamInputOutput API Definition

NAME
CSSM_HRS_StreamInputOutput, HRS_StreamInputOutput

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_StreamInputOutput
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_DATA_PTR InMessage,
CSSM_DATA_PTR OutMessage);

SPI

CSSM_RETURN CSSMHRI HRS_StreamInputOutput
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_DATA_PTR InMessage,
CSSM_DATA_PTR OutMessage);

DESCRIPTION
This function allows the application to pass a protocol data unit into the HRS service provider
from the partner HRS service provider, and to obtain a response message to return to the
partner; see Section 1.4 (on page 4).

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

InMessage (input)
InMessage contains a protocol data unit from the partner HRS service provider.

OutMessage (output)
OutMessage contains a protocol data unit to be sent back to the partner HRS service
provider. If the parameter is NULL, there is no message to return.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
See HRS Error Codes in Section 2.3 (on page 25).

38 Open Group Technical Standard (2001)

API Definition HRS_StreamInputOutput

2.4.3 Biometric Operations

This section gives the definitions for the BSP Biometric operations.

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 39

HRS_Capture API Definition

NAME
CSSM_HRS_Capture, HRS_Capture

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_Capture
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_BIR_PURPOSE Purpose,
CSSM_HRS_BIR_HANDLE_PTR CapturedBIR,
sint32 Timeout,
CSSM_HRS_BIR_HANDLE_PTR AuditData);

SPI

CSSM_RETURN CSSMHRI HRS_Capture
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_BIR_PURPOSE Purpose,
CSSM_HRS_BIR_HANDLE_PTR CapturedBIR,
sint32 Timeout,
CSSM_HRS_BIR_HANDLE_PTR AuditData);

DESCRIPTION
This function captures samples for the purpose specified, and returns either an ‘‘intermediate’’
type BIR (if the Process function needs to be called), or a ‘‘processed’’ BIR (if not). The Purpose is
recorded in the header of the CapturedBIR . If AuditData is non-NULL, a BIR of type ‘‘raw’’ may
be returned. The function returns handles to whatever data is collected, and all local operations
can be completed through use of the handles.

If the application needs to acquire the data either to store it in a database or to send it to a server,
the application can retrieve the data with the HRS_GetBIRFromHandle() function.

The application may request control of the GUI ‘‘look-and-feel’’ by providing a GUI callback
pointer in HRS_SetGUICallbacks().

Capture serializes use of the device. If two or more applications are racing for the device, the
losers will wait until the timeout expires. This serialization takes place in all functions that
capture data.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

Purpose (input)
A value indicating the purpose of the biometric data capture.

CapturedBIR (output)
A handle to a BIR containing captured data. This data is either an ‘‘intermediate’’ type BIR
(which can only be used by either the Process or CreateTemplate functions, depending on the
purpose), or a ‘‘processed’’ BIR (which can be used directly by VerifyMatch or IdentifyMatch ,
depending on the purpose).

Timeout (input)
An integer specifying the timeout value (in milliseconds) for the operation. If this timeout is
reached, the function returns an error, and no results. This value can be any positive

40 Open Group Technical Standard (2001)

API Definition HRS_Capture

number. A −1 value means the service provider’s default timeout value will be used.

AuditData (output/optional)
A handle to a BIR containing raw biometric data. This data may be used to provide human-
identifiable data of the person at the device. If the pointer is NULL on input, no audit data is
collected. Not all BSPs support the collection of audit data. A service provider may return a
handle value of CSSM_HRS_UNSUPPORTED_BIR_HANDLE indicating not supported, or
a value of CSSM_HRS_INVALID_BIR_HANDLE indicating no audit data is available.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
CSSMERR_HRS_PURPOSE_NOT_SUPPORTED
CSSMERR_HRS_TIMEOUT_EXPIRED
CSSMERR_HRS_TOO_MANY_HANDLES
CSSMERR_HRS_UNABLE_TO_CAPTURE

See HRS Error Codes in Section 2.3 (on page 25).

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 41

HRS_CreateTemplate API Definition

NAME
CSSM_HRS_CreateTemplate, HRS_CreateTemplate

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_CreateTemplate
(CSSM_HRS_HANDLE ModuleHandle,
const CSSM_HRS_INPUT_BIR *CapturedBIR,
const CSSM_HRS_INPUT_BIR *StoredTemplate,
CSSM_HRS_BIR_HANDLE_PTR NewTemplate,
const CSSM_DATA *Payload);

SPI

CSSM_RETURN CSSMHRI HRS_CreateTemplate
(CSSM_HRS_HANDLE ModuleHandle,
const CSSM_HRS_INPUT_BIR *CapturedBIR,
const CSSM_HRS_INPUT_BIR *StoredTemplate,
CSSM_HRS_BIR_HANDLE_PTR NewTemplate,
const CSSM_DATA *Payload);

DESCRIPTION
This function takes a BIR containing raw biometric data for the purpose of creating a new
enrollment template. A new BIR is constructed from the CapturedBIR , and (optionally) it may
perform an adaptation based on an existing StoredTemplate. The old StoredTemplate remains
unchanged. If the StoredTemplate contains a payload, the payload is not copied into the
NewTemplate. If the NewTemplate needs a payload, then that Payload must be presented as an
argument to the function.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

CapturedBIR (input)
The captured BIR or its handle.

StoredTemplate (input/optional)
Optionally, the template to be adapted, or its key in a database, or its handle.

NewTemplate (output)
A handle to a newly created template that is derived from the CapturedBIR and (optionally)
the StoredTemplate.

Payload (input/optional)
A pointer to data that will be wrapped inside the newly created template. This parameter is
ignored, if NULL.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

42 Open Group Technical Standard (2001)

API Definition HRS_CreateTemplate

ERRORS
CSSMERR_HRS_BIR_SIGNATURE_FAILURE
CSSMERR_HRS_INCONSISTENT_PURPOSE
CSSMERR_HRS_INVALID_BIR
CSSMERR_HRS_PURPOSE_NOT_SUPPORTED
CSSMERR_HRS_RECORD_NOT_FOUND
CSSMERR_HRS_TOO_MANY_HANDLES
CSSMERR_HRS_UNABLE_TO_WRAP_PAYLOAD

See HRS Error Codes in Section 2.3 (on page 25).

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 43

HRS_Process API Definition

NAME
CSSM_HRS_Process, HRS_Process

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_Process
(CSSM_HRS_HANDLE ModuleHandle,
const CSSM_HRS_INPUT_BIR *CapturedBIR,
CSSM_HRS_BIR_HANDLE_PTR ProcessedBIR);

SPI

CSSM_RETURN CSSMHRI HRS_Process
(CSSM_HRS_HANDLE ModuleHandle,
const CSSM_HRS_INPUT_BIR *CapturedBIR,
CSSM_HRS_BIR_HANDLE_PTR ProcessedBIR);

DESCRIPTION
This function processes the intermediate data captured via a call to HRS_Capture() for the
purpose of either verification or identification. If the processing capability is in the attached
service provider, a ‘‘processed’’ BIR is returned; otherwise, ProcessedBIR is set to NULL.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

CapturedBIR (input)
The captured BIR or its handle.

ProcessedBIR (output)
A handle for the newly constructed ‘‘processed’’ BIR, NULL.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
CSSMERR_HRS_BIR_SIGNATURE_FAILURE
CSSMERR_HRS_INCONSISTENT_PURPOSE
CSSMERR_HRS_INVALID_BIR
CSSMERR_HRS_PURPOSE_NOT_SUPPORTED
CSSMERR_HRS_RECORD_NOT_FOUND
CSSMERR_HRS_TOO_MANY_HANDLES
CSSMERR_HRS_UNABLE_TO_WRAP_PAYLOAD

See HRS Error Codes in Section 2.3 (on page 25).

44 Open Group Technical Standard (2001)

API Definition HRS_VerifyMatch

NAME
CSSM_HRS_VerifyMatch, HRS_VerifyMatch

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_VerifyMatch
(CSSM_HRS_HANDLE ModuleHandle,
const CSSM_HRS_FAR *MaxFARRequested,
const CSSM_HRS_FRR *MaxFRRRequested,
const CSSM_BOOL *FARPrecedence,
const CSSM_HRS_INPUT_BIR *ProcessedBIR,
const CSSM_HRS_INPUT_BIR *StoredTemplate,
CSSM_HRS_BIR_HANDLE *AdaptedBIR,
CSSM_BOOL *Result,
CSSM_HRS_FAR_PTR FARAchieved,
CSSM_HRS_FRR_PTR FRRAchieved,
CSSM_DATA_PTR *Payload);

SPI

CSSM_RETURN CSSMHRI HRS_VerifyMatch
(CSSM_HRS_HANDLE ModuleHandle,
const CSSM_HRS_FAR *MaxFARRequested,
const CSSM_HRS_FRR *MaxFRRRequested,
const CSSM_BOOL *FARPrecedence,
const CSSM_HRS_INPUT_BIR *ProcessedBIR,
const CSSM_HRS_INPUT_BIR *StoredTemplate,
CSSM_HRS_BIR_HANDLE *AdaptedBIR,
CSSM_BOOL *Result,
CSSM_HRS_FAR_PTR FARAchieved,
CSSM_HRS_FRR_PTR FRRAchieved,
CSSM_DATA_PTR *Payload);

DESCRIPTION
This function performs a verification (1-to-1) match between two BIRs—the ProcessedBIR and the
StoredTemplate. The ProcessedBIR is the ‘‘processed’’ BIR constructed specifically for this
verification. The StoredTemplate was created at enrollment. The application must request a
maximum FAR value for a successful match, and may also (optionally) request a maximum FRR
for a successful match. If a maximum FRR value is provided, the application must also indicate
(via the FARPrecedence parameter) which one takes precedence. The Boolean Result indicates
whether verification was successful or not, and the FARAchieved is a FAR value indicating how
closely the BIRs actually matched.

The service provider may optionally return the corresponding FRR that was achieved, through
the FRRAchieved return parameter.

By setting the AdaptedBIR pointer to non-NULL, the application can request that a BIR be
constructed by adapting the StoredTemplate using the ProcessedBIR . A new handle is returned to
the AdaptedBIR . If the StoredTemplate contains a Payload , the Payload may be returned upon
successful verification if the FARAchieved is sufficiently stringent. This is controlled by the policy
of the service provider.

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 45

HRS_VerifyMatch API Definition

If the match is successful, an attempt may be made to adapt the StoredTemplate with information
taken from the ProcessedBIR . (Not all service providers perform adaptation.) The resulting
AdaptedBIR should now be considered an optimal enrollment template, and be saved in the
enrollment database. It is up to the application whether or not it uses or discards this data. It is
important to note that adaptation may not occur in all cases.

In the event of an adaptation, this function stores the handle to the new BIR in the memory
pointed to by the AdaptedBIR parameter.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

MaxFARRequested (input)
The requested FAR criterion for successful verification.

MaxFRRRequested (input/optional)
The requested FRR criterion for successful verification. A NULL pointer indicates that this
criterion is not provided.

FARPrecedence (input)
If both criteria are provided, this parameter indicates which takes precedence: CSSM_TRUE
for FAR, CSSM_FALSE for FRR.

ProcessedBIR (input)
The BIR to be verified, or its handle.

StoredTemplate (input)
The BIR to be verified against, or its key in a database, or its handle.

AdaptedBIR (output/optional)
A pointer to the handle of the adapted BIR. This parameter can be NULL if an Adapted BIR
is not desired. Not all service providers support the adaptation of BIRs. The function may
return a handle value of CSSM_HRS_UNSUPPORTED_BIR_HANDLE to indicate that
adaptation is not supported, or a value of CSSM_HRS_INVALID_BIR_HANDLE to indicate
that adaptation was not possible.

Result (output)
A pointer to a Boolean value indicating (CSSM_TRUE/CSSM_FALSE) whether the BIRs
matched or not according to the specified criteria.

FARAchieved (output)
A pointer to an FAR value indicating the closeness of the match.

FRRAchieved (output/optional)
A pointer to an FRR value indicating the closeness of the match.

Payload (output/optional)
If the StoredTemplate contains a payload, it is returned in an allocated CSSM_DATA structure
if the FARAchieved satisfies the policy of the service provider.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

46 Open Group Technical Standard (2001)

API Definition HRS_VerifyMatch

ERRORS
CSSMERR_HRS_ADAPTATION_NOT_SUPPORTED
CSSMERR_HRS_BIR_NOT_FULLY_PROCESSED
CSSMERR_HRS_BIR_SIGNATURE_FAILURE
CSSMERR_HRS_INCONSISTENT_PURPOSE

See HRS Error Codes in Section 2.3 (on page 25).

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 47

HRS_IdentifyMatch API Definition

NAME
CSSM_HRS_IdentifyMatch, HRS_IdentifyMatch

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_IdentifyMatch
(CSSM_HRS_HANDLE ModuleHandle,
const CSSM_HRS_FAR *MaxFARRequested,
const CSSM_HRS_FRR *MaxFRRRequested,
const CSSM_BOOL *FARPrecedence,
const CSSM_HRS_INPUT_BIR *ProcessedBIR,
const CSSM_HRS_IDENTIFY_POPULATION *Population,
CSSM_BOOL Binning,
uint32 MaxNumberOfResults,
uint32 *NumberOfResults,
CSSM_HRS_CANDIDATE_ARRAY_PTR *Candidates,
sint32 Timeout);

SPI

CSSM_RETURN CSSMHRI HRS_IdentifyMatch
(CSSM_HRS_HANDLE ModuleHandle,
const CSSM_HRS_FAR *MaxFARRequested,
const CSSM_HRS_FRR *MaxFRRRequested,
const CSSM_BOOL *FARPrecedence,
const CSSM_HRS_INPUT_BIR *ProcessedBIR,
const CSSM_HRS_IDENTIFY_POPULATION *Population,
CSSM_BOOL Binning,
uint32 MaxNumberOfResults,
uint32 *NumberOfResults,
CSSM_HRS_CANDIDATE_ARRAY_PTR *Candidates,
sint32 Timeout);

DESCRIPTION
This function performs an identification (1-to-many) match between a ProcessedBIR and a set of
stored BIRs. The ProcessedBIR is the ‘‘processed’’ BIR captured specifically for this identification.
The population that the match takes place against can be presented in one of three ways:

1. In a database identified by an open database handle

2. Input in an array of BIRs

3. In the ‘‘default’’ database of the BSP (possibly stored in the biometric device)

The application must request a maximum FAR value criterion for a successful match, and may
also (optionally) request a maximum FRR criterion for a successful match. If a maximum FRR
value is provided, the application must also indicate, via the FARPrecedence parameter, which
criteria takes precedence. The FARAchieved and, optionally, the FRRAchieved are returned for
each result in the Candidate array.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

48 Open Group Technical Standard (2001)

API Definition HRS_IdentifyMatch

MaxFARRequested (input)
The requested FAR criterion for successful verification.

MaxFRRRequested (input/optional)
The requested FRR criterion for successful verification. A NULL pointer indicates that this
criterion is not provided.

FARPrecedence (input)
If both criteria are provided, this parameter indicates which takes precedence: CSSM_TRUE
for FAR, CSSM_FALSE for FRR.

ProcessedBIR (input)
The BIR to be identified.

Population (input)
The population of BIRs against which the Identify match is performed.

Binning (input)
A Boolean indicating whether Binning is on or off. Binning is a search-optimization
technique that the service provider may employ. It is based on searching the population
according to the intrinsic characteristics of the biometric data. While it may improve the
speed of the Match operation, it may also increase the probability of missing a candidate.

MaxNumberOfResults (input)
Specifies the maximum number of match candidates to be returned as a result of the 1:N
match. A value of zero is a request for all candidates.

NumberOfResults (output)
Specifies the number of candidates returned in the Candidates array as a result of the 1:N
match.

Candidates (output)
A pointer to an array of CSSM_HRS_CANDIDATE_PTRs corresponding to the BIRs
identified as a result of the match process (that is, indices associated with BIRs found to
exceed the match threshold). This list is in rank order, with the highest scoring record being
first. If no matches are found, this pointer will be set to NULL. If the Population was
presented in a database, the IDs are database IDs; if the set was presented in an in-memory
array, the IDs are indexes into the array.

Timeout (input)
An integer specifying the timeout value (in milliseconds) for the operation. If this timeout is
reached, the function returns an error, and no candidate list. This value can be any positive
number. A −1 value means the service provider’s default timeout value will be used.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
CSSMERR_HRS_BIR_NOT_FULLY_PROCESSED
CSSMERR_HRS_BIR_SIGNATURE_FAILURE
CSSMERR_HRS_FUNCTION_NOT_SUPPORTED
CSSMERR_HRS_INCONSISTENT_PURPOSE
CSSMERR_HRS_NO_INPUT_BIRS
CSSMERR_HRS_RECORD_NOT_FOUND
CSSMERR_HRS_TIMEOUT_EXPIRED

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 49

HRS_IdentifyMatch API Definition

See HRS Error Codes in Section 2.3 (on page 25).

NOTES
Not all service providers support 1:N identification.

Depending on the service provider and the location and size of the database to be searched, this
operation can take a significant amount of time to perform

The number of match candidates found by the service provider is dependent on the actual FAR
used.

50 Open Group Technical Standard (2001)

API Definition HRS_Enroll

NAME
CSSM_HRS_Enroll, HRS_Enroll

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_Enroll
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_BIR_PURPOSE Purpose,
const CSSM_HRS_INPUT_BIR *StoredTemplate,
CSSM_HRS_BIR_HANDLE_PTR NewTemplate,
const CSSM_DATA *Payload,
sint32 Timeout
CSSM_HRS_BIR_HANDLE_PTR AuditData);

SPI

CSSM_RETURN CSSMHRI HRS_Enroll
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_BIR_PURPOSE Purpose,
const CSSM_HRS_INPUT_BIR *StoredTemplate,
CSSM_HRS_BIR_HANDLE_PTR NewTemplate,
const CSSM_DATA *Payload,
sint32 Timeout
CSSM_HRS_BIR_HANDLE_PTR AuditData);

DESCRIPTION
This function captures biometric data from the attached device for the purpose of creating a
ProcessedBIR for the purpose of enrollment. The Enroll function may be split between client and
server if a streaming callback has been set. Either the client or the server can initiate the
operation.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

Purpose (input)
A value indicating the desired purpose of Enrollment.

StoredTemplate (input/optional)
Optionally, the BIR to be adapted, or its key in a database, or its handle.

NewTemplate (output)
A handle to a newly created template that is derived from the new raw samples and
(optionally) the StoredTemplate.

Payload (input/optional)
A pointer to data that will be wrapped inside the newly created template. This parameter is
ignored, if NULL.

Timeout (input)
An integer specifying the timeout value (in milliseconds) for the operation. If this timeout is
reached, the function returns an error, and no results. This value can be any positive
number. A −1 value means the BSP’s default timeout value will be used.

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 51

HRS_Enroll API Definition

AuditData (output/optional)
A handle to a BIR containing biometric audit data. This data may be used to provide
human-identifiable data of the person at the device. If the pointer is NULL on input, no
audit data is collected. Not all HRS service providers support the collection of audit data.
An HRS service provider may return a handle value of
CSSM_HRS_UNSUPPORTED_BIR_HANDLE to indicate AuditData is not supported, or a
value of CSSM_HRS_INVALID_BIR_HANDLE to indicate that no audit data is available.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
CSSMERR_HRS_PURPOSE_NOT_SUPPORTED
CSSMERR_HRS_RECORD_NOT_FOUND
CSSMERR_HRS_TIMEOUT_EXPIRED
CSSMERR_HRS_TOO_MANY_HANDLES
CSSMERR_HRS_UNABLE_TO_CAPTURE
CSSMERR_HRS_UNABLE_TO_WRAP_PAYLOAD

See HRS Error Codes in Section 2.3 (on page 25).

52 Open Group Technical Standard (2001)

API Definition HRS_Verify

NAME
CSSM_HRS_Verify, HRS_Verify

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_Verify
(CSSM_HRS_HANDLE ModuleHandle,
const CSSM_HRS_FAR *MaxFARRequested,
const CSSM_HRS_FRR *MaxFRRRequested,
const CSSM_BOOL *FARPrecedence,
const CSSM_HRS_INPUT_BIR *StoredTemplate,
CSSM_HRS_BIR_HANDLE_PTR AdaptedBIR,
CSSM_BOOL *Result,
CSSM_HRS_FAR_PTR FARAchieved,
CSSM_HRS_FRR_PTR FRRAchieved,
CSSM_DATA_PTR *Payload,
sint32 Timeout,
CSSM_HRS_BIR_HANDLE_PTR AuditData);

SPI

CSSM_RETURN CSSMHRI HRS_Verify
(CSSM_HRS_HANDLE ModuleHandle,
const CSSM_HRS_FAR *MaxFARRequested,
const CSSM_HRS_FRR *MaxFRRRequested,
const CSSM_BOOL *FARPrecedence,
const CSSM_HRS_INPUT_BIR *StoredTemplate,
CSSM_HRS_BIR_HANDLE_PTR AdaptedBIR,
CSSM_BOOL *Result,
CSSM_HRS_FAR_PTR FARAchieved,
CSSM_HRS_FRR_PTR FRRAchieved,
CSSM_DATA_PTR *Payload,
sint32 Timeout,
CSSM_HRS_BIR_HANDLE_PTR AuditData);

DESCRIPTION
This function captures biometric data from the attached device, and compares it against the
StoredTemplate. The application must request a maximum FAR value criterion for a successful
match, and may also (optionally) request a maximum FRR criterion for a successful match. If a
maximum FRR value is provided, the application must also indicate via the FARPrecedence
parameter, which criteria takes precedence. The Boolean Result indicates whether verification
was successful or not, and the FARAchieved is a FAR value indicating how closely the BIRs
actually matched.

The service provider may optionally return the corresponding FRR that was achieved through
the FRRAchieved return parameter.

If the StoredTemplate contains a payload, the Payload may be returned upon successful
verification. Optionally, a new AdaptedBIR may be constructed.

The Verify function may be split between client and server if a streaming callback has been set.
Either the client or the server can initiate the operation.

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 53

HRS_Verify API Definition

If the match is successful, an attempt may be made to adapt the StoredTemplate with information
taken from the ProcessedBIR . (Not all service providers perform adaptation.) The resulting
AdaptedBIR should now be considered an optimal enrollment, and be saved in the enrollment
database. It is up to the application whether or not it uses or discards this data. It is important to
note that adaptation may not occur in all cases.

In the event of an adaptation, this function stores the handle to the new BIR in the memory
pointed to by the AdaptedBIR parameter.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

MaxFARRequested (input)
The requested FAR criterion for successful verification.

MaxFRRRequested (input/optional)
The requested FRR criterion for successful verification. A NULL pointer indicates that this
criterion is not provided.

FARPrecedence (input)
If both criteria are provided, this parameter indicates which takes precedence: CSSM_TRUE
for FAR, CSSM_FALSE for FRR.

StoredTemplate (input)
The BIR to be verified against, or its key in a database, or its handle.

AdaptedBIR (output/optional)
A pointer to the handle of the adapted BIR. This parameter can be NULL if an adapted BIR
is not desired. Not all HRS service providers support the adaptation of BIRs. The function
may return a handle value of CSSM_HRS_UNSUPPORTED_BIR_HANDLE to indicate that
adaptation is not supported, or a value of CSSM_HRS_INVALID_BIR_HANDLE to indicate
that adaptation was not possible.

Result (output)
A pointer to a Boolean value indicating (CSSM_TRUE/CSSM_FALSE) whether the BIRs
matched or not, according to the specified criteria.

FARAchieved (output)
A pointer to an FAR value indicating the closeness of the match.

FRRAchieved (output/optional)
A pointer to an FRR value indicating the closeness of the match.

Payload (output/optional)
If the StoredTemplate contains a payload, it is returned in an allocated CSSM_DATA structure
if the FARAchieved satisfies the policy of the service provider.

Timeout (input)
An integer specifying the timeout value (in milliseconds) for the operation. If this timeout is
reached, the function returns an error, and no results. This value can be any positive
number. A −1 value means the service provider’s default timeout value will be used.

AuditData (output/optional)
A handle to a BIR containing raw biometric data. This data may be used to provide human-
identifiable data of the person at the device. If the pointer is NULL on input, no audit data is
collected. Not all service providers support the collection of audit data. An HRS service

54 Open Group Technical Standard (2001)

API Definition HRS_Verify

provider may return a handle value of CSSM_HRS_UNSUPPORTED_BIR_HANDLE to
indicate AuditData is not supported, or a value of CSSM_HRS_INVALID_BIR_HANDLE to
indicate that no audit data is available.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
CSSMERR_HRS_BIR_SIGNATURE_FAILURE
CSSMERR_HRS_INCONSISTENT_PURPOSE
CSSMERR_HRS_RECORD_NOT_FOUND
CSSMERR_HRS_TIMEOUT_EXPIRED
CSSMERR_HRS_TOO_MANY_HANDLES
CSSMERR_HRS_UNABLE_TO_CAPTURE

See HRS Error Codes in Section 2.3 (on page 25).

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 55

HRS_Identify API Definition

NAME
CSSM_HRS_Identify, HRS_Identify

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_Identify
(CSSM_HRS_HANDLE ModuleHandle,
const CSSM_HRS_FAR *MaxFARRequested,
const CSSM_HRS_FRR *MaxFRRRequested,
const CSSM_BOOL *FARPrecedence,
const CSSM_HRS_IDENTIFY_POPULATION *Population,
CSSM_BOOL Binning,
uint32 MaxNumberOfResults,
uint32 *NumberOfResults,
CSSM_HRS_CANDIDATE_ARRAY_PTR *Candidates,
sint32 Timeout,
CSSM_HRS_BIR_HANDLE_PTR AuditData);

SPI

CSSM_RETURN CSSMHRI HRS_Identify
(CSSM_HRS_HANDLE ModuleHandle,
const CSSM_HRS_FAR *MaxFARRequested,
const CSSM_HRS_FRR *MaxFRRRequested,
const CSSM_BOOL *FARPrecedence,
const CSSM_HRS_IDENTIFY_POPULATION *Population,
CSSM_BOOL Binning,
uint32 MaxNumberOfResults,
uint32 *NumberOfResults,
CSSM_HRS_CANDIDATE_ARRAY_PTR *Candidates,
sint32 Timeout,
CSSM_HRS_BIR_HANDLE_PTR AuditData);

DESCRIPTION
This function captures biometric data from the attached device, and compares it against the
Population. The application must request a maximum FAR value criterion for a successful
match, and may also (optionally) request a maximum FRR criterion for a successful match. If a
maximum FRR value is provided, the application must also indicate via the FARPrecedence
parameter, which criteria takes precedence.

The function returns a number of candidates from the population that match according to the
specified criteria, and the FARAchieved and, optionally, the FRRAchieved are returned for each
result in the Candidate array.

The Identify function may be split between client and server if a streaming callback has been set.
Either the client or the server can initiate the operation.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

MaxFARRequested (input)
The requested FAR criterion for successful identification.

56 Open Group Technical Standard (2001)

API Definition HRS_Identify

MaxFRRRequested (input/optional)
The requested FRR criterion for successful identification. A NULL pointer indicates that this
criterion is not provided.

FARPrecedence (input)
If both criteria are provided, this parameter indicates which takes precedence: CSSM_TRUE
for FAR, CSSM_FALSE for FRR.

Population (input)
The population of Templates against which the Identify match is performed.

Binning (input)
A boolean value indicating whether Binning is on or off. Binning is a search optimization
technique that the BSP may employ. It is based on searching the population according to the
intrinsic characteristics of the biometric data. While it may improve the speed of the Match
operation, it may also increase the probability of missing a candidate.

MaxNumberOfResults (input)
Specifies the maximum number of match candidates to be returned as a result of the 1:N
match. A value of zero is a request for all candidates.

NumberOfResults (output)
Specifies the number of candidates returned in the Candidates array as a result of the 1:N
match.

Candidates (output)
A pointer to an array of CSSM_HRS_CANDIDATE_PTRs corresponding to the BIRs
identified as a result of the match process (that is, indices associated with BIRs found to
exceed the match threshold). This list is in rank order, with the highest scoring record being
first. If no matches are found, this pointer will be set to NULL. If the Population was
presented in a database, the IDs are database IDs; if the set was presented in an in-memory
array, the IDs are indexes into the array.

Timeout (input)
An integer specifying the timeout value (in milliseconds) for the operation. If this timeout is
reached, the function returns an error, and no results. This value can be any positive
number. A −1 value means the service provider’s default timeout value will be used.

AuditData (output/optional)
A handle to a BIR containing raw biometric data. This data may be used to provide human-
identifiable data of the person at the device. If the pointer is NULL on input, no audit data is
collected. Not all HRS service providers support the collection of audit data. A BSP may
return a handle value of CSSM_HRS_UNSUPPORTED_BIR_HANDLE to indicate
AuditData is not supported, or a value of CSSM_HRS_INVALID_BIR_HANDLE to indicate
that no audit data is available.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
CSSMERR_HRS_BIR_SIGNATURE_FAILURE
CSSMERR_HRS_FUNCTION_NOT_SUPPORTED
CSSMERR_HRS_INCONSISTENT_PURPOSE
CSSMERR_HRS_NO_INPUT_BIRS
CSSMERR_HRS_RECORD_NOT_FOUND
CSSMERR_HRS_TIMEOUT_EXPIRED

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 57

HRS_Identify API Definition

CSSMERR_HRS_TOO_MANY_HANDLES
CSSMERR_HRS_UNABLE_TO_CAPTURE

See HRS Error Codes in Section 2.3 (on page 25).

NOTES
Not all service providers support 1:N identification. See your service provider’s programming
manual for more details.

Depending on the service provider and the location and size of the database to be searched, this
operation can take a significant amount of time to perform. Check your service provider’s
manual for recommended Timeout values.

The number of match candidates found by the service provider is dependent on the actual FAR
used.

58 Open Group Technical Standard (2001)

API Definition HRS_Import

NAME
CSSM_HRS_Import, HRS_Import

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_Import
(CSSM_HRS_HANDLE ModuleHandle,
const CSSM_DATA *InputData,
CSSM_HRS_BIR_BIOMETRIC_DATA_FORMAT InputFormat,
CSSM_HRS_BIR_PURPOSE Purpose,
CSSM_HRS_BIR_HANDLE_PTR ConstructedBIR);

SPI

CSSM_RETURN CSSMHRI HRS_Import
(CSSM_HRS_HANDLE ModuleHandle,
const CSSM_DATA *InputData,
CSSM_HRS_BIR_BIOMETRIC_DATA_FORMAT InputFormat,
CSSM_HRS_BIR_PURPOSE Purpose,
CSSM_HRS_BIR_HANDLE_PTR ConstructedBIR);

DESCRIPTION
This function imports non-realtime raw biometric data to construct a BIR for the purpose
specified. InputData identifies the memory buffer containing the raw biometric data, while
InputFormat identifies the form of the raw biometric data.

The function returns a handle to the ConstructedBIR.

If the application needs to acquire the BIR either to store it in a database or to send it to a server,
the application can retrieve the data with the HRS_GetBIRFromHandle() function, or store it
directly using HRS_DbStoreBIR().

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

InputData (input)
A pointer to image/stream data to import into a ProcessedBIR . The image/stream conforms
to the standard identified by InputFormat .

InputFormat (input)
The format of the InputData .

Purpose (input)
A value indicating the Enroll purpose.

ConstructedBIR (output)
A handle to a BIR constructed from the imported biometric data. This BIR may be either an
Intermediate or Processed BIR (as indicated in the header).

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 59

HRS_Import API Definition

ERRORS
CSSMERR_HRS_FUNCTION_NOT_SUPPORTED
CSSMERR_HRS_PURPOSE_NOT_SUPPORTED
CSSMERR_HRS_TOO_MANY_HANDLES
CSSMERR_HRS_UNABLE_TO_IMPORT
CSSMERR_HRS_UNSUPPORTED_FORMAT

See HRS Error Codes in Section 2.3 (on page 25).

60 Open Group Technical Standard (2001)

API Definition HRS_SetPowerMode

NAME
CSSM_HRS_SetPowerMode, HRS_SetPowerMode

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_SetPowerMode
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_POWER_MODE PowerMode);

SPI

CSSM_RETURN CSSMHRI HRS_SetPowerMode
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_POWER_MODE PowerMode);

DESCRIPTION
This function sets the device to the requested power mode if the device supports it.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

PowerMode (input)
A 32-bit value indicting the power mode to set the device to.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
CSSMERR_HRS_FUNCTION_NOT_SUPPORTED

See HRS Error Codes in Section 2.3 (on page 25).

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 61

HRS_SetPowerMode API Definition

2.4.4 Database Operations

This section gives the definitions for the BSP Database operations.

62 Open Group Technical Standard (2001)

API Definition HRS_DbOpen

NAME
CSSM_HRS_DbOpen, HRS_DbOpen

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_DbOpen
(CSSM_HRS_HANDLE ModuleHandle,
const uint8 *DbName,
CSSM_HRS_DB_ACCESS_TYPE AccessRequest,
CSSM_HRS_DB_HANDLE_PTR DbHandle,
CSSM_HRS_DB_CURSOR_PTR Cursor);

SPI

CSSM_RETURN CSSMHRI HRS_DbOpen
(CSSM_HRS_HANDLE ModuleHandle,
const uint8 *DbName,
CSSM_HRS_DB_ACCESS_TYPE AccessRequest,
CSSM_HRS_DB_HANDLE_PTR DbHandle,
CSSM_HRS_DB_CURSOR_PTR Cursor);

DESCRIPTION
This function opens the data store with the specified name under the specified access mode. A
database Cursor is set to point to the first record in the database.

Note that the default database (if any) is always open.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

DbName (input)
A pointer to the null-terminated string containing the name of the database.

AccessRequest (input)
An indicator of the requested access mode for the database, such as read or write.

DbHandle (output)
The handle to the opened data store. The value will be set to
CSSM_HRS_DB_INVALID_HANDLE if the function fails.

Cursor (output)
A handle that can be used to iterate through the database.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 63

HRS_DbOpen API Definition

ERRORS
CSSMERR_HRS_DATABASE_DOES_NOT_EXIST
CSSMERR_HRS_DATABASE_IS_LOCKED
CSSMERR_HRS_INVALID_ACCESS_REQUEST
CSSMERR_HRS_INVALID_DATABASE_NAME
CSSMERR_HRS_UNABLE_TO_OPEN_DATABASE

See HRS Error Codes in Section 2.3 (on page 25).

64 Open Group Technical Standard (2001)

API Definition HRS_DbClose

NAME
CSSM_HRS_DbClose, HRS_DbClose

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_DbClose
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_DB_HANDLE DbHandle);

SPI

CSSM_RETURN CSSMHRI HRS_DbClose
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_DB_HANDLE DbHandle);

DESCRIPTION
This function closes an open database. All cursors currently set to the database are freed. The
default database cannot be closed.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

DbHandle (input)
The DB handle for an open database managed by the service provider. This specifies the
open database to be closed.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
See HRS Error Codes in Section 2.3 (on page 25).

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 65

HRS_DbCreate API Definition

NAME
CSSM_HRS_DbCreate, HRS_DbCreate

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_DbCreate
(CSSM_HRS_HANDLE ModuleHandle,
const uint8 *DbName,
CSSM_HRS_DB_ACCESS_TYPE AccessRequest,
CSSM_HRS_DB_HANDLE_PTR DbHandle);

SPI

CSSM_RETURN CSSMHRI HRS_DbCreate
(CSSM_HRS_HANDLE ModuleHandle,
const uint8 *DbName,
CSSM_HRS_DB_ACCESS_TYPE AccessRequest,
CSSM_HRS_DB_HANDLE_PTR DbHandle);

DESCRIPTION
This function creates and opens a new database. The name of the new database is specified by
the input parameter DbName. The newly created database is opened under the specified access
mode.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

DbName (input)
A pointer to the null-terminated string containing the name of the new database.

AccessRequest (input)
An indicator of the requested access mode for the database, such as read or write.

DbHandle (output)
The handle to the newly created and open data store. The value will be set to
CSSM_HRS_DB_INVALID_HANDLE if the function fails.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
CSSMERR_HRS_DATABASE_ALREADY_EXISTS
CSSMERR_HRS_INVALID_ACCESS_REQUEST
CSSMERR_HRS_INVALID_DATABASE_NAME

See HRS Error Codes in Section 2.3 (on page 25).

66 Open Group Technical Standard (2001)

API Definition HRS_DbDelete

NAME
CSSM_HRS_DbDelete, HRS_DbDelete

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_DbDelete
(CSSM_HRS_HANDLE ModuleHandle,
const uint8 *DbName);

SPI

CSSM_RETURN CSSMHRI HRS_DbDelete
(CSSM_HRS_HANDLE ModuleHandle,
const uint8 *DbName);

DESCRIPTION
This function deletes all records from the specified database and removes all state information
associated with that database.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

DbName (input)
A pointer to the null-terminated string containing the name of the database to be deleted.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
CSSMERR_HRS_DATABASE_IS_OPEN
CSSMERR_HRS_INVALID_DATABASE_NAME

See HRS Error Codes in Section 2.3 (on page 25).

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 67

HRS_DbSetCursor API Definition

NAME
CSSM_HRS_DbSetCursor, HRS_DbSetCursor

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_DbSetCursor
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_DB_HANDLE DbHandle,
const CSSM_GUID *KeyValue,
CSSM_HRS_DB_CURSOR_PTR Cursor);

SPI

CSSM_RETURN CSSMHRI HRS_DbSetCursor
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_DB_HANDLE DbHandle,
const CSSM_GUID *KeyValue,
CSSM_HRS_DB_CURSOR_PTR Cursor);

DESCRIPTION
The Cursor is set to point to the record indicated by the KeyValue in the database identified by the
DbHandle. A NULL value will set the cursor to the first record in the database.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

DbHandle (input)
A handle to the open database.

KeyValue (input)
The key into the database of the BIR to which the Cursor is to be set.

Cursor (output)
A handle that can be used to iterate through the database from the retrieved record.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
CSSMERR_HRS_RECORD_NOT_FOUND

See HRS Error Codes in Section 2.3 (on page 25).

68 Open Group Technical Standard (2001)

API Definition HRS_DbFreeCursor

NAME
CSSM_HRS_DbFreeCursor, HRS_DbFreeCursor

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_DbFreeCursor
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_DB_CURSOR_PTR Cursor);

SPI

CSSM_RETURN CSSMHRI HRS_DbFreeCursor
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_DB_CURSOR_PTR Cursor);

DESCRIPTION
Frees memory and resources associated with the specified Cursor.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

Cursor (input)
The database Cursor to be freed.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
CSSMERR_HRS_CURSOR_IS_INVALID

See HRS Error Codes in Section 2.3 (on page 25).

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 69

HRS_DbStoreBIR API Definition

NAME
CSSM_HRS_DbStoreBIR, HRS_DbStoreBIR

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_DbStoreBIR
(CSSM_HRS_HANDLE ModuleHandle,
const CSSM_HRS_INPUT_BIR *BIRToStore,
CSSM_HRS_DB_HANDLE DbHandle,
CSSM_GUID_PTR Guid);

SPI

CSSM_RETURN CSSMHRI HRS_DbStoreBIR
(CSSM_HRS_HANDLE ModuleHandle,
const CSSM_HRS_INPUT_BIR *BIRToStore,
CSSM_HRS_DB_HANDLE DbHandle,
CSSM_GUID_PTR Guid);

DESCRIPTION
The BIR identified by the BIRToStore parameter is stored in the open database identified by the
DbHandle parameter. If the BIRToStore is identified by a BIR Handle, the input BIR Handle is
freed. If the BIRToStore is identified by a database key value, the BIR is copied to the open
database.

A new GUID is assigned to the new BIR in the database, and this GUID can be used as a key
value to access the BIR later.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

BIRToStore (input)
The BIR to be stored in the open database (either the BIR, or its handle, or the index to it in
another open database).

DbHandle (input)
The handle to the open database.

Guid (output)
A GUID that uniquely identifies the new BIR in the database. This GUID cannot be changed.
To associate a different BIR with the user, it is necessary to delete the old one, store a new
one in the database, and then replace the old GUID with the new one in the application
account database.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
See HRS Error Codes in Section 2.3 (on page 25).

70 Open Group Technical Standard (2001)

API Definition HRS_DbGetBIR

NAME
CSSM_HRS_DbGetBIR, HRS_DbGetBIR

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_DbGetBIR
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_DB_HANDLE DbHandle,
const CSSM_GUID *KeyValue,
CSSM_HRS_BIR_HANDLE_PTR RetrievedBIR,
CSSM_HRS_DB_CURSOR_PTR Cursor);

SPI

CSSM_RETURN CSSMHRI HRS_DbGetBIR
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_DB_HANDLE DbHandle,
const CSSM_GUID *KeyValue,
CSSM_HRS_BIR_HANDLE_PTR RetrievedBIR,
CSSM_HRS_DB_CURSOR_PTR Cursor);

DESCRIPTION
The BIR identified by the KeyValue parameter in the open database identified by the DbHandle
parameter is retrieved.

The BIR is copied into the service provider’s storage and a handle to it is returned. The Cursor is
set to point to the next record, or the first record in the database if the retrieved BIR is the last.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

DbHandle (input)
The handle to the open database.

KeyValue (input)
The key into the database of the BIR to retrieve.

RetrievedBIR (output)
A handle to the retrieved BIR.

Cursor (output)
A handle that can be used to iterate through the database from the retrieved record.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
CSSMERR_HRS_RECORD_NOT_FOUND

See HRS Error Codes in Section 2.3 (on page 25).

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 71

HRS_DbGetNextBIR API Definition

NAME
CSSM_HRS_DbGetNextBIR, HRS_DbGetNextBIR

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_DbGetNextBIR
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_DB_CURSOR_PTR Cursor,
CSSM_HRS_BIR_HANDLE_PTR RetrievedBIR,
CSSM_GUID_PTR Guid);

SPI

CSSM_RETURN CSSMHRI HRS_DbGetNextBIR
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_DB_CURSOR_PTR Cursor,
CSSM_HRS_BIR_HANDLE_PTR RetrievedBIR,
CSSM_GUID_PTR Guid);

DESCRIPTION
The BIR identified by the Cursor parameter is retrieved. The BIR is copied into the service
provider’s storage, a handle to it is returned, and a pointer to the GUID that uniquely identifies
the BIR in the database is returned. The Cursor is updated to the next record in the database, or
to the first when the end of the database is reached.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

Cursor (input/output)
A handle indicating which record to retrieve.

RetrievedBIR (output)
A handle to the retrieved BIR.

Guid (output)
The GUID that uniquely identifies the retrieved BIR in the database.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
CSSMERR_HRS_CURSOR_IS_INVALID
CSSMERR_HRS_END_OF_DATABASE

See HRS Error Codes in Section 2.3 (on page 25).

72 Open Group Technical Standard (2001)

API Definition HRS_DbQueryBIR

NAME
CSSM_HRS_DbQueryBIR, HRS_DbQueryBIR

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_DbQueryBIR
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_DB_HANDLE DbHandle,
const CSSM_HRS_INPUT_BIR *BIRToQuery,
CSSM_GUID_PTR Guid);

SPI

CSSM_RETURN CSSMHRI HRS_DbQueryBIR
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_DB_HANDLE DbHandle,
const CSSM_HRS_INPUT_BIR *BIRToQuery,
CSSM_GUID_PTR Guid);

DESCRIPTION
If the BIR identified by the BIRToQuery parameter is in the open database identified by the
DbHandle parameter, a pointer to its GUID is returned. Otherwise,
CSSMERR_HRS_RECORD_NOT_FOUND is returned.

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

DbHandle (input)
The handle to the open database.

BIRToQuery (input)
The BIR to be queried in the open database (either the BIR, or its handle, or the key to it in
another open database).

Guid (output)
The GUID that uniquely identifies the BIR in the database.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
CSSMERR_HRS_RECORD_NOT_FOUND

See HRS Error Codes in Section 2.3 (on page 25).

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 73

HRS_DbDeleteBIR API Definition

NAME
CSSM_HRS_DbDeleteBIR, HRS_DbDeleteBIR

SYNOPSIS

API

CSSM_RETURN CSSMAPI CSSM_HRS_DbDeleteBIR
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_DB_HANDLE DbHandle,
const CSSM_GUID *KeyValue);

SPI

CSSM_RETURN CSSMHRI HRS_DbDeleteBIR
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_DB_HANDLE DbHandle,
const CSSM_GUID *KeyValue);

DESCRIPTION
The BIR identified by the KeyValue parameter in the open database identified by the DbHandle
parameter is deleted from the database.

If there is a cursor set to the deleted BIR, then the cursor is moved to the next sequential BIR (or
set to the start of the database if there are no more records).

PARAMETERS
The parameter definitions are the same for the API and the SPI.

ModuleHandle (input)
The handle of the attached HRS service provider.

DbHandle (input)
The handle to the open database.

KeyValue (input)
The GUID of the BIR to be deleted.

RETURN VALUE
A CSSM_RETURN value indicating success or specifying a particular error condition. The value
CSSM_OK indicates success. All other values represent an error condition.

ERRORS
CSSMERR_HRS_END_OF_DATABASE
CSSMERR_HRS_RECORD_NOT_FOUND

See HRS Error Codes in Section 2.3 (on page 25).

74 Open Group Technical Standard (2001)

Chapter 3

HRS Service Provider Interface

3.1 HRS Function Pointer Table
This structure defines the function table for all the HRS functions that a service provider can
return to the CSSM Framework on CSSM_ModuleAttach().

The CSSM Framework uses these pointers to dispatch corresponding application programming
interface functions to the HRS Service Provider for processing.

#define CSSMHRI CSSMAPI
typedef struct cssm_spi_hrs_funcs {

CSSM_RETURN (CSSMAPI *FreeBIRHandle)
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_BIR_HANDLE Handle);

CSSM_RETURN (CSSMAPI *GetBIRFromHandle)
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_BIR_HANDLE Handle,
CSSM_HRS_BIR_PTR *BIR);

CSSM_RETURN (CSSMAPI *GetHeaderFromHandle)
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_BIR_HANDLE Handle,
CSSM_HRS_BIR_HEADER_PTR Header);

CSSM_RETURN (CSSMAPI *EnableEvents)
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_MODULE_EVENT_MASK *Events);

CSSM_RETURN (CSSMAPI *SetGUICallbacks)
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_GUI_STREAMING_CALLBACK GuiStreamingCallback,
void *GuiStreamingCallbackCtx,
CSSM_HRS_GUI_STATE_CALLBACK GuiStateCallback,
void *GuiStateCallbackCtx);

CSSM_RETURN (CSSMAPI *CancelGUICallbacks)
(CSSM_HRS_HANDLE ModuleHandle);

CSSM_RETURN (CSSMAPI *SetStreamCallback)
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_STREAM_CALLBACK StreamCallback,
void *StreamCallbackCtx);

CSSM_RETURN (CSSMAPI *CancelStreamCallbacks)
(CSSM_HRS_HANDLE ModuleHandle);

CSSM_RETURN (CSSMAPI *StreamInputOutput)
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_DATA_PTR InMessage,
CSSM_DATA_PTR OutMessage);

CSSM_RETURN (CSSMAPI *Capture)
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_BIR_PURPOSE Purpose,
CSSM_HRS_BIR_HANDLE_PTR CapturedBIR,
sint32 Timeout,

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 75

HRS Function Pointer Table HRS Service Provider Interface

CSSM_HRS_BIR_HANDLE_PTR AuditData);
CSSM_RETURN (CSSMAPI *CreateTemplate)

(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_BIR_PURPOSE Purpose,
const CSSM_HRS_INPUT_BIR *CapturedBIR,
const CSSM_HRS_INPUT_BIR *StoredTemplate,
CSSM_HRS_BIR_HANDLE_PTR NewTemplate,
const CSSM_DATA *Payload);

CSSM_RETURN (CSSMAPI *Process)
(CSSM_HRS_HANDLE ModuleHandle,
const CSSM_HRS_INPUT_BIR *CapturedBIR,
CSSM_HRS_BIR_HANDLE_PTR ProcessedBIR);

CSSM_RETURN (CSSMAPI *VerifyMatch)
(CSSM_HRS_HANDLE ModuleHandle,
const CSSM_HRS_FAR *MaxFARRequested,
const CSSM_HRS_FRR *MaxFRRRequested,
const CSSM_BOOL *FARPrecedence,
const CSSM_HRS_INPUT_BIR *ProcessedBIR,
const CSSM_HRS_INPUT_BIR *StoredTemplate,
CSSM_HRS_BIR_HANDLE *AdaptedBIR,
CSSM_BOOL *Result,
CSSM_HRS_FAR_PTR FARAchieved,
CSSM_HRS_FRR_PTR FRRAchieved,
CSSM_DATA_PTR *Payload);

CSSM_RETURN (CSSMAPI *IdentifyMatch)
(CSSM_HRS_HANDLE ModuleHandle,
const CSSM_HRS_FAR *MaxFARRequested,
const CSSM_HRS_FRR *MaxFRRRequested,
const CSSM_BOOL *FARPrecedence,
const CSSM_HRS_INPUT_BIR *ProcessedBIR,
const CSSM_HRS_IDENTIFY_POPULATION *Population,
CSSM_BOOL Binning,
uint32 MaxNumberOfResults,
uint32 *NumberOfResults,
CSSM_HRS_CANDIDATE_ARRAY_PTR *Candidates,
sint32 Timeout);

CSSM_RETURN (CSSMAPI *Enroll)
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_BIR_PURPOSE Purpose,
const CSSM_HRS_INPUT_BIR *StoredTemplate,
CSSM_HRS_BIR_HANDLE_PTR NewTemplate,
const CSSM_DATA *Payload,
sint32 Timeout,
CSSM_HRS_BIR_HANDLE_PTR AuditData);

CSSM_RETURN (CSSMAPI *Verify)
(CSSM_HRS_HANDLE ModuleHandle,
const CSSM_HRS_FAR *MaxFARRequested,
const CSSM_HRS_FRR *MaxFRRRequested,
const CSSM_BOOL *FARPrecedence,
const CSSM_HRS_INPUT_BIR *StoredTemplate,
CSSM_HRS_BIR_HANDLE_PTR AdaptedBIR,
CSSM_BOOL *Result,

76 Open Group Technical Standard (2001)

HRS Service Provider Interface HRS Function Pointer Table

CSSM_HRS_FAR_PTR FARAchieved,
CSSM_HRS_FRR_PTR FRRAchieved,
CSSM_DATA_PTR *Payload,
sint32 Timeout,
CSSM_HRS_BIR_HANDLE_PTR AuditData);

CSSM_RETURN (CSSMAPI *Identify)
(CSSM_HRS_HANDLE ModuleHandle,
const CSSM_HRS_FAR *MaxFARRequested,
const CSSM_HRS_FRR *MaxFRRRequested,
const CSSM_BOOL *FARPrecedence,
const CSSM_HRS_IDENTIFY_POPULATION *Population,
CSSM_BOOL Binning,
uint32 MaxNumberOfResults,
uint32 *NumberOfResults,
CSSM_HRS_CANDIDATE_ARRAY_PTR *Candidates,
sint32 Timeout,
CSSM_HRS_BIR_HANDLE_PTR AuditData);

CSSM_RETURN (CSSMAPI *Import)
(CSSM_HRS_HANDLE ModuleHandle,
const CSSM_DATA *InputData,
CSSM_HRS_BIR_BIOMETRIC_DATA_FORMAT InputFormat,
CSSM_HRS_BIR_PURPOSE Purpose,
CSSM_HRS_BIR_HANDLE_PTR ConstructedBIR);

CSSM_RETURN (CSSMAPI *SetPowerMode)
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_POWER_MODE PowerMode);

CSSM_RETURN (CSMAPI *DbOpen)
(CSSM_HRS_HANDLE ModuleHandle,
const uint8 *DbName,
CSSM_HRS_DB_ACCESS_TYPE AccessRequest,
CSSM_HRS_DB_HANDLE_PTR DbHandle,
CSSM_HRS_DB_CURSOR_PTR Cursor);

CSSM_RETURN (CSSMAPI *DbClose)
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_DB_HANDLE_PTR DbHandle);

CSSM_RETURN (HRS *DbCreate)
(CSSM_HRS_HANDLE ModuleHandle,
const uint8 *DbName,
CSSM_HRS_DB_ACCESS_TYPE AccessRequest,
CSSM_HRS_DB_HANDLE_PTR DbHandle);

CSSM_RETURN (CSSMAPI *DbDelete)
(CSSM_HRS_HANDLE ModuleHandle,
const uint8 *DbName);

CSSM_RETURN (CSSMAPI *DbSetCursor)
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_DB_HANDLE DbHandle,
const CSSM_GUID *KeyValue,
CSSM_HRS_DB_CURSOR_PTR Cursor);

CSSM_RETURN (CSSMAPI *DbFreeCursor)
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_DB_CURSOR_PTR Cursor);

CSSM_RETURN (CSSMAPI *DbStoreBIR)

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 77

HRS Function Pointer Table HRS Service Provider Interface

(CSSM_HRS_HANDLE ModuleHandle,
const CSSM_HRS_INPUT_BIR *BIRToStore,
CSSM_HRS_DB_HANDLE DbHandle,
CSSM_GUID_PTR Guid);

CSSM_RETURN (CSSMAPI *DbGetBIR)
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_DB_HANDLE DbHandle,
const CSSM_GUID *KeyValue,
CSSM_HRS_BIR_HANDLE_PTR RetrievedBIR,
CSSM_HRS_DB_CURSOR_PTR Cursor);

CSSM_RETURN (CSSMAPI *DbGetNextBIR)
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_DB_CURSOR_PTR Cursor,
CSSM_HRS_BIR_HANDLE_PTR RetrievedBIR,
CSSM_GUID_PTR Guid);

CSSM_RETURN (CSSMAPI *DbQueryBIR)
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_DB_HANDLE DbHandle,
const CSSM_HRS_INPUT_BIR *BIRToQuery,
CSSM_GUID_PTR Guid);

CSSM_RETURN (CSSMAPI *DbDeleteBIR)
(CSSM_HRS_HANDLE ModuleHandle,
CSSM_HRS_DB_HANDLE DbHandle,
const CSSM_GUID *KeyValue);

} CSSM_SPI_HRS_FUNCS, *CSSM_SPI_HRS_FUNCS_PTR;

3.2 SPI Definitions
To avoid unnecessary duplication of function call definitions, the SPI function call definitions are
included with their corresponding API function call definitions in Chapter 2 (on page 11).

78 Open Group Technical Standard (2001)

Appendix A

Conformance

A.1 Status of this Appendix
Claims to conformance on any aspect of the entities identified in this Technical Standard can
only be made in relation to associated Open Group definitions of products , as specified in
associated Open Group Product Standards and their related Conformance Statement Questionnaires.

In this regard, the content of this Appendix is advisory only, for guidance purposes as to the
intentions of the HRS API designers.

A.2 Design Concepts for Conformance
Conformance to the HRS specification is envisioned as falling into the following two categories:

1. An HRS-compliant application

2. An HRS-compliant service provider

A.3 HRS-Compliant Application
It is envisioned that to claim compliance as an HRS application, a software application should,
for each HRS function call utilized, perform that operation consistent with the specification. That
is, all input parameters should be present and valid.

All HRS function calls should be available. It is not intended that there should be a minimum set
of functions that might be called.

A.4 HRS-Compliant Service Providers
It is envisioned that to claim compliance as an HRS service provider, a service provider should
implement mandatory functions for their category, defined below, in accordance with the SPI
defined in Chapter 3 (on page 75).

Service Providers are categorized as either Verification SPs or Identification SPs. In addition, an
HRS-SP may be categorized as a monolithic or explicit client/server SP. A monolithic HRS-SP is
fully loaded on a single platform. A client/server HRS-SP has components installed on two or
more platforms. These components (client and server) may communicate with each other using
the streaming callbacks provided by the client/server application.

HRS-SPs should accept all valid input parameters and return valid outputs. Optional capabilities
and returns are not required to claim conformance. However, any optional functions or
parameters that are implemented should be implemented in accordance with the specification
requirements.

Additionally, all HRS-SPs should provide all required module registry entries. Entries to the
module registry should be performed upon installation.

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 79

HRS-Compliant Service Providers Conformance

HRS-SPs should possess a valid and unique GUID, which may be self-generated.

Biometric data generated by the HRS-SP should conform to the data structures defined in
Section 2.1 (on page 11). HRS-SPs may only return CSSM_HRS_BIR data containing a registered
FormatOwner with an associated valid FormatType.

All BSPs should support all Handle operations; see Section 2.4.1 (on page 28). Database
operations (see Section 2.4.4 (on page 62)) are optional.

The following table is a summary of HRS-SP conformance requirements by type. Details are
provided in the following sections.

__
Function Verification SP Identification SP__

Handle Functions
HRS_FreeBIRHandle X X
HRS_GetBIRFromHandle X X
HRS_GetHeaderFromHandle X X__
Callback and Event Functions
HRS_EnableEvents
HRS_SetGUICallbacks
HRS_SetStreamCallback
HRS_StreamInputOutput__
Biometric Functions
HRS_Capture
HRS_CreateTemplate
HRS_Process
HRS_VerifyMatch
HRS_IdentifyMatch
HRS_Enroll X X
HRS_Verify X X
HRS_Identify X
HRS_Import
HRS_SetPowerMode__
Database Functions
HRS_DbOpen
HRS_DbClose
HRS_DbCreate
HRS_DbDelete
HRS_DbSetCursor
HRS_DbFreeCursor
HRS_DbStoreBIR
HRS_DbGetBIR
HRS_DbGetNextBIR
HRS_DbQueryBIR
HRS_DbDeleteBIR__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table A-1 HRS-SP Conformance Requirements by Type

80 Open Group Technical Standard (2001)

Conformance HRS-Compliant Service Providers

A.4.1 HRS-Compliant Verification SPs

Verification SPs are those which are capable of performing 1:1 matching (or authentication), but
not 1:N identification matching.

Note: 1:few matching may be supported as a series of 1:1 calls.

An HRS-compliant Verification SP should support the following biometric functions:

HRS_Enroll() Only Purpose flags indicating Enroll for Verification should be accepted. If
another purpose is set, an error condition should be set as a CSSM_RETURN.
Acceptance of Payload is optional.

Client/server implementations of this function are optional.

HRS_Verify() Client/server implementations of this function are optional.

Only the nearest, better supported RequestedFAR should be supported;
however, the SP should return that supported value (ActualFAR).

Return of payload is required only if one is contained within the input
StoredTemplate and if the score sufficiently exceeds the ActualFAR .

Return of AdaptedBIR is optional. Return of raw data (AuditData) is optional.

As a default, all SPs should provide any GUI associated with the capture
portion of the Verify operation. However, support for application control of
the GUI is optional.

A.4.2 HRS-Compliant Identification SPs

Identification BSPs are those which are capable of performing both 1:N identification matching
as well as 1:1 matching (or authentication). An HRS-compliant Identification BSP should support
the following biometric functions:

HRS_Enroll() Purpose flags indicating either Enroll for Verification or Enroll for Identification
should be accepted.

Acceptance of Payload is optional.

Client/server implementations of this function are optional.

HRS_Verify() Client/server implementations of this function are optional.

Only the nearest, better supported RequestedFAR should be supported;
however, the BSP should return that supported value (ActualFAR).

Return of payload is required only if one is contained within the input
StoredTemplate and if the score sufficiently exceeds the ActualFAR .

Return of AdaptedBIR is optional. Return of raw data (AuditData) is optional.

As a default, all SPs should provide any GUI associated with the capture
portion of the Verify operation. However, support for application control of
the GUI is optional.

HRS_Identify() Client/server implementations of this function are optional.

Only the nearest, better supported RequestedFAR should be supported;
however, the BSP should return that supported value (ActualFAR).

Support of binning is optional.

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 81

HRS-Compliant Service Providers Conformance

Return of matching Candidates is required; however, the SP may return values
for the ActualFAR field as next nearest step/increment.

As a default, all SPs should provide any GUI associated with the capture
portion of the Identify operation. However, support for application control of
the GUI is optional.

A.4.3 HRS-Compliant Client/Server SPs

An HRS-SP instantiation may be wholly installable and loaded onto a single platform. This is
referred to as a ‘‘Local’’ HRS-SP. However, an SP may be instantiated and loadable as separate
client/server components which operate and communicate together. This is referred to as a
‘‘Distributed’’ HRS-SP.

If an HRS-SP is constructed such that it is installed and operates in a distributed fashion across a
network or other communications channel, with direct communication between the distributed
HRS components, it is considered to be a Distributed (Client/Server) HRS service provider. This
does not include a Local service provider that can be installed in whole on both a client and a
server platform, where communication between the client and the server is always at the
application layer and the two instantiations of the service provider do not communicate with
each other directly.

HRS-SPs should post to the module registry whether they support Local operation, Distributed
operation, or both.

Local HRS-SPs should support all functions required by their category. These functions are both
called locally (by an application running on the same platform) and executed locally (on the
platform on which they are called and on which the service provider is installed). Streaming
callbacks are not supported or used by local service providers.

In order to be HRS-compliant, Client/Server service providers should support all functions for
their category (Verification or Identification) defined above, when initiated from an application
on either side. That is, all functions are supported by both the client and server components.
However, although called locally, some functions may be executed remotely. These are
identified below.

__
Executed Locally Executed Locally or Remotely__

HRS_Capture*
HRS_CreateTemplate*
HRS_Process*
HRS_VerifyMatch*
HRS_IdentifyMatch*
HRS_Import*

HRS_Enroll
HRS_Verify
HRS_Identify

__L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

Table A-2 Function Calls Executed Locally/Remotely

Local functions are always executed on the system where the API is called. Eligible functions are
executed remotely if a Streaming Callback has been set.

* Optional function.

82 Open Group Technical Standard (2001)

Conformance HRS-Compliant Service Providers

Additionally, Distributed HRS-SPs should support direct communication between partner
components by ‘‘tunneling’’ through the application layer using the streaming callback
capability (via the HRS_SetStreamCallback() and HRS_StreamInputOutput() functions).

A.4.4 Optional Capabilities

The following capabilities are considered optional in terms of HRS support and compliance.
Note that:

• If implemented, optional capabilities should conform to specification definitions.

• HRS-SPs are required to post to the module registry whether or not each option is supported.

• HRS-SP documentation should include a table that identifies which options are supported
and which options are not supported.

A.4.4.1 Optional Functions

Primitive Functions

Although it was originally intended that the primitive functions (CSSM_HRS_Capture,
CSSM_HRS_CreateTemplate, CSSM_HRS_Process, CSSM_HRS_VerifyMatch, and
CSSM_HRS_IdentifyMatch) would be mandatory, it was decided that this would place undue
burden on manufacturers of ‘‘self-contained devices’’ in which the biometric
processing/matching is performed within the device itself. Therefore, these functions have not
been specified as required for HRS service providers to be considered ‘‘HRS-compliant’’.
However, it is highly recommended that, if supported by the underlying technology, these
functions be included in the service provider.

CSSM_HRS_Capture()

If this function is supported, Verification BSPs need only accept Purpose flags indicating
Verification or Enroll for verification. If another purpose is set by the application, an error
condition may be set as a CSSM_RETURN. Similarly, this function need only return CapturedBIR
with the Purpose mask set to Verification or Enrol for verification. If this function is supported,
Identification service providers must accept all possible Purpose flags (except Audit), even if there
is no difference in the content or format of the returned data.

Return of raw data (ac AuditData) is optional.

As a default, all service providers must provide any GUI associated with the Capture operation.
However, support for application control of the GUI is optional.

CSSM_HRS_CreateTemplate()

If this function is supported, verification service providers need only accept input CapturedBIRs
with the Purpose set to Enroll for verification. f another purpose is set, an error condition may be
set as a CSSM_RETURN.

If this function is supported, identification service providers must accept input CapturedBIRs
with both Enroll purposes.

Acceptance of Payload is optional.

Adaptation of an existing template is optional.

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 83

HRS-Compliant Service Providers Conformance

CSSM_HRS_Process()

If this function is supported, verification service providers need only accept input CapturedBIRs
with the Purpose set to verification. If another purpose is set, an error condition may be set as a
CSSM_RETURN.

If this function is supported, identification service providers must accept input CapturedBIRs
with all possible Purpose flags (except Audit), even if there is no difference in the content or
format of the returned data.

CSSM_HRS_VerifyMatch()

If this function is supported, only input BIRs (ProcessedBIR) with the Purpose mask including a
value of Verification , and (StoredTemplate) with the Purpose mask including a value of Enroll for
verification must be accepted. If another Purpose is set, an error condition may be set as a
CSSM_RETURN.

Only the nearest, better supported RequestedFAR must be supported; however, the service
provider must return that supported value (ActualFAR).

Return of payload is required only if one is contained within the input StoredTemplate and if the
score is better than the ActualFAR (the service provider must post the minimum FAR required to
return payload in the module registry).

Return of AdaptedBIR is optional.

BioAPI_IdentifyMatch()

May be supported by identification service providers for BIRs whose purpose is Identify .

Only the nearest, better supported RequestedFAR must be supported; however, the service
provider must return that supported value (ActualFAR).

Support of binning is optional.

Return of matching Candidates is required; however, the service provider may return values for
the Score field as next nearest step/increment.

Database Operations

HRS-SPs are not required to provide an internal (or internally controlled) database. If one is
provided, however, all database functions should be provided in order to access and maintain it.
All provided database functions should conform to the definitions.

HRS_Import()

This function, as a whole, is optional. If it is provided, the module registry should so reflect, and
it should be implemented as defined.

Verification BSPs are only required to process imported data if the Purpose flag includes Enroll or
Enroll for Verification .

84 Open Group Technical Standard (2001)

Conformance HRS-Compliant Service Providers

HRS_SetPowerMode()

This function, as a whole, is optional. If it is provided, the module registry should so reflect, and
it should be implemented as defined.

Application-Controlled GUI

The SP supports the necessary callbacks to allow the application to control the look-and-feel of
the GUI.

All HRS-compliant SPs should provide, as a default, the capability to display user interface
information (assuming such a display is present and required by the authentication technology).

All SP-supplied GUIs should include an operator abort/cancel mechanism.

Optionally, the HRS-SP may also support application-controlled GUI. In this case, the SP should
support the HRS_SetGUICallbacks() function.

If application-controlled GUI is supported, the HRS-SP may additionally provide streaming data
(for example, for voice and face recognition). If streaming data is provided, the SP should
support the input parameters GuiStreamingCallback and GuiStreamingCallbackCtx.

All HRS-SPs should post to the module registry the GUI functions/options it supports.

A.4.4.2 Optional Sub-Functions

The following table identifies optional capabilities, each of which the HRS-SP should declare (by
filling in the table) as being supported or not supported (both in the module registry and in the
SP documentation).

__
Capability Supported Not Supported__

Return of raw/audit data__
Return of quality__
Application-controlled GUI__
GUI streaming callbacks__
Detection of source presence__
Payload carry__
BIR signing__
BIR encryption__
Return of FRR__
Model adaptation__
Binning__
Client/server communications__
Supports self-contained device__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table A-3 Support for HRS-SP Optional Sub-Functions

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 85

HRS-Compliant Service Providers Conformance

Return of Raw Data

Functions involving the capture of biometric data from a sensor may optionally support the
return of this raw data for purposes of display or audit. If supported, the output parameter
AuditData contains a pointer to this data (or CSSM_HRS_INVALID_BIR_HANDLE to indicate
that no audit data is available). If not supported, the SP returns a value of −1.

Return of Quality

Upon the new capture of biometric data from a sensor, the SP may calculate a relative quality
value associated with this data, which it will include in the header of the returned CapturedBIR
(and the optional AuditData). If supported, this header field will be filled with a positive value
between 1 and 100. If not supported, this field will be set to −2. This would occur during
HRS_Capture() and HRS_Enroll().

Similarly, when a BIR is processed, another quality calculation may be performed and the
quality value included in the header of the ProcessedBIR (and the optional AdaptedBIR). This
would occur during the following ConstructedBIR operations:

HRS_CreateTemplate()
HRS_Process()
HRS_Verify()
HRS_VerifyMatch()
HRS_Enroll()
HRS_Import()

The HRS-SP should post to the module registry whether or not it supports the calculation of
quality measurements for each type of BIR—raw, intermediate, and processed.

Application-Controlled GUI

The HRS-SP supports the necessary callbacks to allow the application to control the ‘‘look-and-
feel’’ of the GUI.

GUI Streaming Callbacks

The HRS-SP provides GUI streaming data, and supports the GUI streaming callback.

Detection of Source Presence

The HRS-SP can detect when there are samples available, and supports the source present event.

Payload Carry

Some HRS-SPs may optionally support the encapsulation of a Payload within a processed BIR,
and the subsequent release of that payload upon successful verification. The content of the
payload is unrestricted, but may include secrets such as PINs or private keys associated with the
user whose biometric data is contained within the BIR. Payload data is encapsulated during an
HRS_Enroll() or HRS_CreateTemplate() operation, and is released as a result of a HRS_Verify() or
HRS_VerifyMatch() operation. If supported, HRS-SPs should post to the module registry the
maximum payload size that can be accommodated. A maximum size of zero indicates payload
carry is not supported. If input payloads exceed this size, an error should be generated. If payload
carry is not supported, the output Payload is set to a NULL pointer.

The HRS-SP should post to the module registry whether or not it provides the following:

• BIR encryption

86 Open Group Technical Standard (2001)

Conformance HRS-Compliant Service Providers

• BIR signing

Return of FRR

During matching operations, the application may request a specific FAR threshold and the
HRS-SP should return the nearest supported threshold. Optionally, the SP may also return the
estimated FRR associated with this supported FAR. This Corresponding FRR value is an
optional return from the HRS_Verify(), HRS_VerifyMatch(), HRS_Identify(), and
HRS_IdentifyMatch() functions. If supported, the HRS-SP will return its best estimate of
expected FRR. If not supported, the SP will return a value of
CSSM_HRS_FRR_NOT_SUPPORTED.

Template/Model Adaptation

Some HRS-SPs may optionally provide the capability to utilize newly captured biometric data to
update a stored BIR. This may only be performed as a result of a successful HRS_Verify() or
HRS_VerifyMatch() (that is, one in which Result = CSSM_TRUE). This is performed in order to
keep the enrolled BIR as fresh as possible, with the highest possible quality. The SP makes the
decision as to when and if the adaptation should be performed (based on such factors as quality,
elapsed time, and significant differences). If the SP does not support adaptation, the returned
AdaptedBIR is set to CSSM_HRS_UNSUPPORTED_BIR_HANDLE. If the SP supports
adaptation, but for some reason is not able or chooses not to perform the adaptation, then the
return AdaptedBIR is set to CSSM_HRS_INVALID_BIR_HANDLE. The SP should post to the
module registry its support for adaptation.

Binning

Identification SPs may optionally support methods of limiting the population of a database to be
searched in order to improve response time. This applies to Identification type SPs only and
occurs only during HRS_Identify() and HRS_IdentifyMatch() operations. Identification SPs should
post whether or not they support binning. Identification SPs that do not support binning may
ignore the input Binning on/off parameter. Note that no explicit API support is provided for
setting or modifying the binning strategy other than for turning it on or off.

Client/Server Communication

The SP supports the streaming callback to allow the client and server SPs to communicate.

Self-Contained Device

The supported device is self-contained; that is, at least the verification function is entirely
contained within the device, and the device may contain a database.

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 87

Conformance

88 Open Group Technical Standard (2001)

Glossary

API
Application Programming Interface

BIR
Biometric Identification Record

BSP
Biometric Service Provider

CDSA
Common Data Security Architecture

CSSM
Common Security Services Manager: the infrastructure parts of the CDSA.

EMM
Elective Module Manager: an extensibility mechanism in CDSA supporting the dynamic
addition of new categories of service, beyond the basic set of Cryptographic Service
Provider (CSP), Trust Policy (TP), Authorization Computation (AC), Certificate Library
(CL), and Data Storage Library (DL).

FAR
False Accept Rate: the probability that biometric data samples are falsely decided by the
HRS as matching; that is, they should not match, but do.

FRR
False Reject Rate: the probability that biometric data samples are falsely decided by the HRS
as not matching; that is, they should match, but do not.

GUI
Graphical User Interface

HRS
Human Recognition Service

IBIA
International Biometric Industry Association

MDS
Module Directory Service: a platform-independent registry service used by CDSA to name
and locate software components and their security credentials.

Payload
Data wrapped inside biometric data for release to an application on successful verification
of authenticity of a user. This can be any data that is useful to an application.

PIN
Personal Identification Number

SPI
Service Provider Interface

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 89

Glossary

90 Open Group Technical Standard (2001)

Index

API ...89
authentication..1
BioAPI_IdentifyMatch...84
biometric authentication...1
biometric identification record2
biometric operations ..39
biometric sampling...1
biometric service provider1-2
biometrics as cryptographic keys............................8
BIR ...2, 89
BIR database ..9
BSP...1, 89
callback operations...32
capture ..2
Capture ...4
CDSA...89
CDSA/HRS..1
component schema ..22
conformance

claims to ...79
identification SP..80
minimum..79
product standards ..79
statement questionnaires....................................79
verification SP ...80

CreateTemplate ...5
CSSM...1, 89
CSSM_HRS_BIR..11
CSSM_HRS_BIR_ARRAY_POPULATION12
CSSM_HRS_BIR_AUTH_FACTORS....................12
CSSM_HRS_BIR_BIOMETRIC_DATA12
CSSM_HRS_BIR_BIOMETRIC_DATA_...................
FORMAT...12
CSSM_HRS_BIR_DATA_TYPE13
CSSM_HRS_BIR_HANDLE...................................13
CSSM_HRS_BIR_HEADER....................................13
CSSM_HRS_BIR_PURPOSE13
CSSM_HRS_BIR_VERSION...................................14
CSSM_HRS_CANDIDATE.....................................15
CSSM_HRS_CANDIDATE_ARRAY15
CSSM_HRS_Capture ...83
CSSM_HRS_CreateTemplate83
CSSM_HRS_DBBIR_ID ...15
CSSM_HRS_DB_ACCESS_TYPE..........................15
CSSM_HRS_DB_CURSOR15
CSSM_HRS_DB_HANDLE....................................15

CSSM_HRS_FAR..16
CSSM_HRS_FRR ..16
CSSM_HRS_GUI_BITMAP16
CSSM_HRS_GUI_MESSAGE.................................16
CSSM_HRS_GUI_PROGRESS...............................16
CSSM_HRS_GUI_RESPONSE...............................16
CSSM_HRS_GUI_STATE..17
CSSM_HRS_GUI_STATE_CALLBACK...............17
CSSM_HRS_GUI_STREAMING_CALLBACK..18
CSSM_HRS_HANDLE..18
CSSM_HRS_IDENTIFY_POPULATION.............18
CSSM_HRS_IDENTIFY_POPULATION_TYPE 18
CSSM_HRS_INPUT_BIR ..19
CSSM_HRS_INPUT_BIR_FORM..........................19
CSSM_HRS_OPERATIONS_MASK.....................21
CSSM_HRS_OPTIONS_MASK.............................21
CSSM_HRS_POWER_MODE................................19
CSSM_HRS_Process ..84
CSSM_HRS_QUALITY ...19
CSSM_HRS_STREAM_CALLBACK....................20
CSSM_HRS_VerifyMatch84
CSSM_ModuleAttach..18, 75
CSSM_MODULE_EVENT11
CSSM_MODULE_EVENT_MASK........................11
data definitions ...21
data structures...11
elective module manager..1
EMM..1, 89
enrollment ..1
error codes..25
event operations ...32
false accept rate...8
false reject rate...8
FAR..8, 89
FRR ..8, 89
function pointers...75
GUI ..89
handle operations ...28
HRS..89
HRS_CancelGUICallbacks35
HRS_CancelStreamCallbacks37
HRS_Capture ..40, 44, 86
HRS_CreateTemplate ..42, 86
HRS_DbClose..65
HRS_DbCreate ..66
HRS_DbDelete ..67

CDSA/CSSM Authentication: Human Recognition Service (HRS) API, Version 2 91

Index

HRS_DbDeleteBIR..74
HRS_DbFreeCursor..69
HRS_DbGetBIR...71
HRS_DbGetNextBIR..72
HRS_DbOpen..63
HRS_DbQueryBIR..73
HRS_DbSetCursor..68
HRS_DbStoreBIR..59, 70
HRS_EnableEvents...33
HRS_Enroll ..51, 86
HRS_FreeBIRHandle ...29
HRS_GetBIRFromHandle30, 40, 59
HRS_GetHeaderFromHandle................................31
HRS_Identify...56, 87
HRS_IdentifyMatch ...48, 87
HRS_Import...59
HRS_Process..44
HRS_SetGUICallbacks................................34, 40, 85
HRS_SetPowerMode..61
HRS_SetStreamCallback...................................36, 83
HRS_StreamInputOutput.................................38, 83
HRS_Verify...53, 86-87
HRS_VerifyMatch...45, 86-87
human recognition service1
IBIA..3, 89
identification..1
IdentifyMatch..5
look and feel...9
match...2
Match...5
MDS...21, 89
multiple authentication methods............................1
opaque biometric data...3
passwords ..9
payload ...8
Payload ...89
PIN...9, 89
primitive functions...4, 83
process ..2
Process...5
processing and matching ..4
registry schema ...21
SPI ..89
SPI function calls ..78
Streaming Callback ..6
streaming callback..6
template matching..1
template of the user..1
user interface ...9

callbacks ...9
look-and-feel..9

verification ...1
VerifyMatch ...5

92 Open Group Technical Standard (2001)

	c013cov.pdf
	Page 1

	blank.pdf
	Page 1

